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CIVIL ENGINEERING ABSTRACT 

A Comparison of Three Urban Hydrology Models, by Richard F. Astrack. 

Three models, the British Road Research Laboratory Hydrograph Method, the 

Hydrocomp Simulation Program, and the HEC-1 Flood Hydrograph Package, are 

applied to the Boneyard Creek basin. Comparing the ability of these 

models to reproduce the observed peak discharge, time of the peak, and 

the first runoff volume determines the accuracy of these models. 



A COMPARISON OF THREE URBAN HYDROLOGY MODELS 

1 By Richard F. Astrack , A.M. ASCE 

KEY WORDS: Comparison: Computer; Hydraulics; Mathematical models; 

Overland flow; Runoff; Simulation; Urban hydrology. 

ABSTRACT: A comparison of three methods used for the calculation of 

iv 

urban stormwater runoff is presented. The Hydrocomp Simulation Program, 

the British Road Research Laboratory Hydrograph Method, and the HEC-1 

Flood Hydrograph Package are applied to the Boneyard Creek basin lo-

cated in Champaign-Urbana, Illinois. Simulation results are based on 

the accuracy of these models to reproduce observed peak discharges, time 

of the peak, and the direct runoff volume. This comparison demonstrates 

that all three methods will satisfactorily simulate urban runoff within 

certain stated limitations. 

1Hydraulic Engineer, U. S. Army Corps of Engineers, St. Louis District. 
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A COMPARISON OF THREE URBAN HYDROLOGY MODELS 

1 by Richard F. Astrack, A.M. ASCE 

INTRODUCTION 

In the past decade, the major emphasis of hydrology has shifted to 

1 

the urban scene. This change can be illustrated by the changing mission 

of the U. S. Army Corps of Engineers. Ten years ago, the Corps had 

under consideration only a few single-purpose flood control studies lo-

cated in urban areas. Now, the Corps' urban studies are comprehensive 

regional water resource studies which generally include consideration of 

wastewater management, flood control, flood plain management, water 

quality management, recreation, water supply, and environmental enhance-

ment. With such a major shift in emphasis, the hydrologist needs methods 

available for determining the hydrologic response of urban watersheds. 

The important characteristics of any runoff hydrograph are its peak 

discharge, timing of the peak, and direct runoff volume. Depending on 

the situation, one, two, or all three hydrograph characteristics may 

have to be determined. The peak discharge, generally the most important 

hydrograph parameter, determines the magnitude of flooding or the size 

of most hydraulic structures. For large basins or basins with highly 

variable characteristics, the timing of the peak discharge is important 

in determining how much in phase the subarea hydrographs are as they are 

routed and combined. 

1Hydraulic Engineer, U. S. Army Corps of Engineers, St. Louis District 
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Volume of direct runoff is an important hydrograph characteristic in 

the design of storage facilities. The volume determines the size of the 

reservoir and its outlet facilities for both large and small detention 

structures. Therefore, depending on the situation, the determination of 

any or all of these hydrograph characteristics may be critical. 

This application deals with three runoff simulation models, each of 

which has been available for at least five years. The three hydrograph 

simulation models are applied to a gaged, urbanized watershed, Boneyard 

Creek, located in Champaign-Urbana, Illinois. The models are evaluated 

according to their ability to reproduce the observed hydrograph in peak 

discharge, timing of the peak, and direct runoff volume. The British 

Road Research Laboratory Hydrograph Method (10) 2 was developed exclu-

sively for design of urban runoff water systems. A general model, the 

Hydrocomp Simulation Program (7) was developed from the Stanford Water-

shed Model and is copyrighted by Hydrocomp, Inc. The final method used, 

the HEC-1 Flood Hydrograph Package (5), developed by the U. S. Army 

Corps of Engineers, is a general model based on the unit hydrograph 

theory. The following material presents each hydrograph simulation 

model and discusses their applicability and limitations in urban 

hydrology. 

THE BRITISH ROAD RESEARCH LABORATORY HYDROGRAPH METHOD 

The British Road Research Laboratory Hydrograph Method (RRL method) 

was developed as the result of a comprehensive research program of the 

2Numerals in parentheses refer to corresponding items in the 
Appendix I. - References. 
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British Road Research Laboratory (13). The initial RRL method was in-

traduced to the United States in 1969 by Stall and Terstriep (11) and 

later revised and applied to 10 basins located throughout the United 

States (10). 

The revised RRL method has several features which make it desirable 

for use as either a storm drain design method or a research tool. It 

can be used to analyze existing systems or to design new ones. The model 

can provide an entire runoff hydrograph for a simple or complex storm. 

The following material describes the necessary data preparation to apply 

the RRL method to an urban watershed. 

Development on B~~n Chanae~~~~. First, the basin is divided 

into sub-basins, i.e., areas of the basin contributing to one or a set 

of inlets. For each sub-basin, the impervious area directly connected 

to the storm drainage system is determined. If roof outlets either enter 

the drainage system by direct underground connection or empty onto an 

impervious surface (driveway or sidewalk) which is directly connected to 

the street gutter, then this additional impervious roof area is added 

to the total impervious portion of the sub-basin. 

Travel times are computed for the gutter flow by assuming a design 

flow of 0.5 cubic feet per second (0.014 m3) per acre of impervious area 

and using Manning's equation as modified by Izzard (8) to compute flow 

velocities. The equation is as follows: 

Q . (1) 

in which 

Q discharge in cfs (m3/sec) 

Y maximum depth in feet (m) 
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Z ratio of width to Y 

n Manning's roughness coefficient 

S average channel slope in ft/ft (m/m) 

Using the above equation, the flow depth is determined. Assuming uni-

form flow, then the flow velocity and thus travel time are computed for 

the gutter flow. 

With the travel time calculated, isochrons of equal travel time 

are plotted. The area in each isochron is measured and a time-area 

curve prepared. Thus, the impervious area contributing during each time 

interval is known. 

Hy~ognaph Comp~~on. The runoff hydrograph for each sub-basin 

is computed by applying the effective rainfall rate to the time-area 

curve. The effective rainfall is total rainfall minus losses. The 

losses, on the order of magnitude of 0.1 inches (.254 em) as selected by 

the user, represent initial wetting and depression storage. If the areas 

for each time interval of the time-area relationship are designated 

A7, A2, A3 ..• , An and if the effective rainfall intensity of each inter­

val (I7, I 2, ... , In) that is applied to A7 is designated I 7_7, I 7_2, ... , 

I 1_n and that is applied to A2 is designated I2-1, I 2_2, ... , I 2_n and so 

on, then the runoff hydrograph ordinates (Q
1

, Q
2

, Q
3

, • •• , ~) are com­

puted as: 

~ 0. . . . . (2) 

Q1 IJ-1 A1. . . . . . . (3) 

Q2 I7-2 A2 + I2-7 A7. . . . . . (4) 

Q3 I1 ? -J A3 + I2-2 A2 + I2-7 A7. . . . . . . . (5) 

~ = I(7-n) A + + I A7. . . . . . (6) (n-7) (n-7) 
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Hy~ognaph Routing. With all of the sub-basin hydrographs com-

puted, the furthest upstream sub-basin hydrograph is routed downstream 

to the next inlet. This hydrograph is then combined with the second 

sub-basin hydrograph and this new hydrograph routed to the next inlet. 

This procedure of routing and combining hydrographs is continued through 

the basin keeping the timing of the sub-basin hydrographs correct. 

The sub-basin hydrographs are routed from inlet to inlet using a 

simple storage routing technique (4). The technique requires that a 

relationship must be determined between discharge and storage. A stage-

discharge curve is developed by using Manning's equation. Then, by 

assuming uniform flow and knowing the channel geometry for the reach, 

the discharge-storage relationship is computed for the reach. The dis-

charge out of the reach for the first time interval is computed by the 

following equation: 

1 

0 

1/7.. 1 -t s1 + 1 ;z o -t • ••••••••••• 

discharge into the reach in cfs (m3 /s) 

3 
discharge out of the reach in cfs (m /s) 

s
1
= storage during the first time interval in cu ft (m3 ) 

-t = time interval in seconds 

For the time interval from -t to 7..-t 

' . . . . . 

(7) 

(8) 

Since s
2 

is determined from the discharge-storage relationship and all the 

other parameters except Oz are known, then the discharge out of the reach 
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at the end of the second ti~e interval is computed, Using this step-by­

step procedure, all ordinates of the routed hydrograph may be determined. 

THE HYDROCOMP SIMULATION PROGRAM 

The Hydrocomp Simulation Program (HSP) does the complete set of com­

putations needed to predict storm runoff from rainfall. Moisture ac­

counting procedures keep track of the amount of water going into and out 

of each component of the hydrologic cycle. Changes in soil moisture 

storage are established as the model continuously computes evapotrans­

piration losses, percolation to groundwater, interflow discharge, and 

groundwater discharge to the stream. Continuous operation of HSP re­

sults in a moisture balance maintained throughout the basin such that 

basin moisture conditions are consistent with the antecedent rainfall. 

A complete time history of runoff, as opposed to runoff for a single 

event as with the RRL method, is available. 

Rainfall is first applied to the simulation model. Then the model 

continuously models the interception, infiltration, interflow, upper 

zone storage, lower zone storage, groundwater storage, evapotranspira­

tion, the resulting depth of overland flow, and stream flow. The fol­

lowing material describes how the above components are modeled by HSP. 

V~enip~on on Modeling ~he Compone~. The first loss encountered 

by the rainfall is interception. This is rain that is retained on vege­

tation, and this loss must be filled to capacity before any other fac­

tors may act on the rainfall. Water is removed from the interception 

storage by evaporation. Typical values for the interception storage 

capacity are: 0.10 (.254 em) inches for grassland; 0.15 (.381 em) inches 



for light forest cover; and, 0.20 (.508 em) inches for heavy forest 

cover, In determining runoff from impervious areas of the basin, in­

terception is the only loss applied to the rainfall. 

Infiltration is the movement of water through the soil surface into 

the soil profile. Since infiltration is dependent on the basin char­

acteristics, soil type, percolation, slope, cover, and soil moisture 

content, continuous simulation must first represent a mean infiltration 

rate for a relatively uniform portion of the basin, and secondly, repre­

sent the areal variation in infiltration. The first requirement is sat­

isfied by using the following empirical infiltration equation: 

7 

constant • (9) 

where n infiltration rate in in/hr (cm/hr) 

F cumulative infiltration in inches (em) 

By assuming that the cumulative infiltration capacity for the basin 

is a linear relationship, the second requirement, the areal variation 

of infiltration, is modeled. 

Interflow, that portion of infiltration which becomes runoff after 

moving laterally in the soil, is defined by the empirical equation: 

where e 

LZS 

LZSN 

interflow 

(LZS/LZSN) 
INTERFLOW · 2 

current soil moisture storage level 

index level of soil moisture storage 

INTERFLOW = variable, determined only through calibration runs 

(10) 
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The depth of rainfall remaining after subtraction of interception, 

interflow and infiltration will either enter upper zone storage or con­

tribute to overland flow. The upper zone models depression storage and 

storage in highly permeable surface soils. The upper zone storage is 

represented by a series of empirical expressions of which the major fea­

ture is the upper zone storage ratio (UZS/UZSN) where UZS is the upper 

zone storage and UZSN is the normal capacity of the upper zone storage. 

Various values of UZSN based on the watershed topography are presented 

in the HSP Operations Manual (7). Percolation will occur from the upper 

zone to the groundwater and lower zone storages if the upper zone stor­

age ratio (UZS/UZSN) is greater than the soil moisture content ratio 

(LZS/LZSN). 

Evapotranspiration is continuously subtracted from the upper zone 

storage. Similarily to the modeling of the areal variation of infil­

tration, continuous estimation of the actual evapotranspiration is made 

by a linear approximation of the process. 

Infiltration and percolation from the upper zone storage enter the 

lower zone or soil moisture storage and groundwater storage. As the 

total water available from the upper zone is known, the soil moisture 

storage is determined by subtraction of the groundwater storage from 

the total. The percent of infiltration entering groundwater storage 

is defined as an S-shaped curve when related to the soil moisture 

content ratio. If the value of LZS/LZSN is 1.0, fifty percent of the 

infiltration enters the groundwater storage. When LZS/LZSN is greater 

than 2.3, all of the infiltration enters the groundwater storage. 

Ov~nla~d F~ow. The overland flow depth is the total of effective 

rainfall depth, outflow depth from interflow, and outflow depth from 
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groundwater storage. The outflow from interflow is computed by an equa-

tion relating the interflow Q and a daily recession constant of inter-

flow. The recession constant is simply the ratio of the present inter-

flow discharge to the interflow discharge one day earlier. The amount 

of outflow from groundwater storage is evaluated by an equation based 

on the groundwater storage, the slope of the groundwater surface, and 

a recession constant of groundwater flow. 

Overland flow is treated as a turbulent flow process. The following 

equation is an empirical (7) relationship between outflow depth and de-

tention storage. 

3 y = V/L (1,0 + 0,6 (V/Ve.) ) ••• • • (11) 

where V ratio of detention depth at any instant 

L length of the flow plain in feet (m) 

Ve. surface detention storage at equilibrium in cu ft/ft (m3 /m) 

Substituting the above relationship into the Chezy-Manning equation 

yields: 

Q 
7. 486 

s712 (V/L) 513 
(1.0 + 0.6 (V/Ve.) 3 )513 ...... (12) 

where q = discharge in cfs (m3 /s) 

n ·=Manning's roughness coefficient 

S = average slope of the ground surface in ft/ft (m/m) 

The following continuity equation is explicitly solved by HSP to obtain 

depth at selected time intervals. 



V
2 

= v
1 

+ 6V - ~ 6~ • • • • • • • • • 

where v2 surface detention at end of current time interval in 

v1 surface detention at end of previous time interval in 

cu ft (m3 ) 

6V increment added to surface detention during the time 

interval in cu ft (m3 ) 

q overland flow into the stream channel during the time 

interval 

6~ time interval in seconds 

10 

(13) 

Usually, calculations of discharge from overland flow are made on a 15-

minute interval which is sufficiently small so that the value of dis-

charge in any time interval is a small fraction of the volume of surface 

detention. However, for small basins, a smaller computational interval 

must be used so the above difference relationships between discharge and 

surface storage approximate the true solution of the equations. 

F£ow Routing. The overland flow is routed through the basin using 

the "Kinematic wave" (6) procedure. The channel system is divided into 

reaches with the channel dimensions, lengths, cross sections, and 

Manning's n being determined. The tributary area to each reach is 

also determined. 

The local inflow for each channel reach is computed from the over-

land flow depth and the tributary area. The channel routing proceeds 

from the upstream reach downstream in order to the outlet. Each 

reach receives flow from its tributary area and from upstream 
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reaches, Continuous stage, flow velocities, and discharges are com-

puted using Manning's equation: 

where Q 

Q = (anea on n~ow) · 7 ·~9 R2/ 3 S
0

l/Z .•.•.... (14) 

discharge in cfs (m3/s) 

n Manning's roughness coefficient 

R hydraulic radius in ft (m) 

S
0 

average ground slope in ft/ft (m/m) 

HEC-1 FLOOD HYDROGRAPH PACKAGE 

The HEC-1 Flood Hydrograph Package (HEC-1) was developed in 1967 by 

the Hydrologic Engineering Center, U. S. Army Corps of Engineers. HEC-1, 

a combination and expansion of a number of computer programs, does hy-

drologic calculations of the following processes: unit hydrograph and 

rainfall loss rate optimization; basin rainfall and snowmelt; unit hydro-

graphs and hydrographs; streamflow routing optimization; hydrograph com-

bining and routing; and, balanced hydrographs. 

All ordinary flood hydrograph computations associated with a single 

recorded or hypothetical storm are accomplished by HEC-1 (4), The best 

fit unit hydrograph and rainfall loss rate coefficients are derived 

automatically, The following material describes the computational mech-

anisms used by HEC-1. 

Hy~og~aph Comp~on. Processes internal to HEC-1 for hydrograph 

computation use the Clark Instantaneous Unit Hydrograph (2), a hydro-

graph that would result from one unit of rainfall excess occurring over 

the basin in a specified areal pattern and zero time. Thus, the 
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instantaneous unit hydrograph can be used to compute a unit hydrograph 

for any unit duration equal to or greater than the time interval used in 

the computations. Two parameters, the time of concentration (TC) and 

hydrograph storage coefficient (R), along with a time-area relationship, 

are required to compute the Clark Unit Hydrograph. 

The time of concentration is defined as the travel time of water 

from the furthest upstream point (timewise) in the basin to the outflow 

location. On a hydrograph, TC is approximately the time from the end 

of rainfall excess to the point of inflection on the recession limb of 

the hydrograph. The hydrograph storage coefficient is defined by the 

following equation: 

R = -Qy/ S I • • • • • • • • • • • • • • • • ( 15) 

where R = hydrograph storage coefficient 

Q
1
= discharge at the point of inflection on the recession limb of 

the hydrograph in cfs (m3/s) 

Sz= slope of a line tangent to the point of inflection on the 

recession limb of the hydrograph 

The time-area relationship is developed by laying out isochrones 

representing equal travel time using the distance traveled per unit of 

time to establish the locations of the lines. The areas between the 

isochrones are then measured and tabulated with the corresponding travel 

time for each incremental area. It should be noted that a synthetic 

time-area curve based on the following equations will be used by the pro­

g~am unless one is developed for the basin as described above. 



AI= r1• 5j.707 6on (0<T<.5) .... 

1-AI = (1-T) 1· 5j.707 6on (.5<T<1) . 
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• • (16) 

• (17) . . . 
where AI percent of the total basin area contributing at time T 

T ratio of time T to time of concentration 

Comp~on on Enn~ctiv~ Rainnall. As in the previous methods, the 

effective rainfall must be determined. In HEC-1, rainfall loss is com-

puted using the exponential rainfall loss curve as defined in Figure 1 

or by selecting appropriate initial and uniform loss rates. The expon-

ential rainfall loss curve is defined by the following equations: 

where A LOSS 

AK 

VLTK 

RAIN 

CUML 

ERA IN 

RTIOL 

STRKR 

VLTKR 

ALOSS = (AK + VLTK) (RAIN)ERAIN . . 

AK = STRKR/(RTIOL)· 1 CUML . ... 

VLTK = 0.2 VLTKR (1-(CUML/VLTKR)) 2 . . 

for (CUML/VLTKR) <1; otherwise zero 

loss rate in inches/hour (cm/hr) 

basic loss coefficient 

incremental loss coefficient 

rainfall in inches/hour (cm/hr) 

accumulated loss in inches (em) 

. (18) 

• • (19) 

• (20) 

variable relative to how storms occur over the basin 

ratio of AK to that AK after an additional 10 inches 

of accumulated loss occurs 

loss index for the start of the storm in inches/ 

hours (cm/hr) 

incremental loss index 
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FIGURE 1. - HEC-1 GENERAL LOSS RATE FUNCTION 
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DL TK = DLTKR ( I-(CUML/DLTKR)) 2 

.......... 
~ 

+-DLTKR -1 

RTIOL = A/B 

CUML -ACCUMULATED LOSS -INCHES 



It should be noted that ERAIN and RTIOL are regional parameters, and 

that STRKR and VLTKR are related directly to the antecedent moisture 

conditions, 

16 

Catib~on. The available streamflow and corresponding rainfall 

data are obtained for the basin under consideration. Approximately 

five to ten rainfall-runoff events are required to calibrate the HEC-1 

model, The rainfall and runoff data, plus the drainage area of the 

basin are input in HEC-1 and six variables, two unit hydrograph and four 

rainfall loss rate, are optimized for each storm event using the uni­

variate gradient search procedure (1)(9). The best or optimum recon­

stitution is considered to be the one which minimizes the weighted 

squared deviations between the observed and a reconstituted hydrograph. 

With the variables optimized for each storm event, the best single value 

for each variable is determined for all the storm events. 

THE HEC-1 APPLICATION TO THE BONEYARD CREEK BASIN 

In 1969, the RRL method (11) was applied to the Boneyard Creek 

watershed, The HSP model was applied to the Boneyard Creek basin in 

1971 (3) as part of an urban runoff simulation study. With these 

studies complete and detailed rainfall and streamflow data available, 

the HEC-1 model was applied to this same basin. Thus, comparisons 

could be made between these three simulation models, 

Wat~h~d V~~p~on. The Boneyard Creek watershed is an entirely 

urbanized area with about 44 percent of the 3.58 square mile (9.27 km2 ) 

drainage basin having impervious cover. The watershed contains a por­

tion of the University of Illinois, old and new residential areas, 
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and a sizeable commercial area. A major portion of the basin is served 

by a storm drainage system that discharges into approximately three 

miles (4.8 km) of open channels. One recording U. s. Geological Survey 

stream gage, and five recording rain gages provided the basic data avail­

able for calibrating the simulation models. 

Model Catibnation. The first step in calibration of the HEC-1 

model was the utilization of available rainfall and runoff data (12). 

These actual recorded data and the unit hydrograph and rainfall loss rate 

optimization option of the HEC-1 model, were used to automatically deter­

mine the optimum value for each of the unit hydrograph variables, TC and 

R, and each of the rainfall loss rate variables, ERAIN, RTIOL, VLTKR and 

STRKR for each storm event. The first set of values in Table 1 presents 

the results of a "wide open" optimization run, with all unit hydrograph 

and loss rate variables optimized. 

The best value of TC and R for the basin can thus be determined. 

This is accomplished through a series of trial runs where the value of 

TC and R is incrementally changed. The same value of TC and R is used 

for each storm event, with just the four rainfall loss rate variables 

being optimized. The first value of TC and R is determined as the ap­

proximate average of all the values optimized in the first "wide open" 

runs. The first incremental change in TC is a 100 percent increase of 

the initial average value. Thereafter, as seen in Table 1, the incre­

mental change in TC and R is reduced from trial to trial as the best fit 

value is approached. 

As the incremental change of both TC and R may be positive or nega­

tive, the results of the changes in TC and R are evaluated by a visual 

comparison of plots of the recorded and computed hydrographs for each 
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TABLE 1. - OPTIMIZATION BY HEC-1 MODEL 

FROZEN UNIT HYDROGRAPH RAINFALL LOSS 
STORM VARIABLE COEFFICIENTS COEFFICIENTS 

TC R STRKR ERA IN DLTKR RTIOL 
(1) (2) (3) (4) (5) (6) (7) (8) 

19 Ju1 63 None .35 .95 .49 .77 1.09 1.75 
28 Aug 63 .12 1.19 .50 .30 1.02 1.24 
19 Apr 64 .19 1.56 .57 .69 .09 1.0 
25 May 65 .51 1.09 .48 .44 1.03 1.36 

2 Ju1 65 .11 1.29 .75 .46 1.47 1.0 

19 Ju1 63 TC, R .20 1.0 .53 .99 1.0 2.74 
28 Aug 63 .45 .32 1.10 1.0 
19 Apr 64 .68 1.0 .24 1.0 
25 May 65 .60 1.0 .81 4.48 

2 Ju1 65 .87 .47 1.21 1.0 

19 Ju1 63 TC, R .40 .80 .51 .79 1.07 2.01 
28 Aug 63 . 57 .30 .94 1.0 
19 Apr 64 .61 .87 .25 1.0 
25 May 65 .58 1.0 .81 3.05 

2 Ju1 65 .83 .45 1.43 1.0 

19 Ju1 63 TC, R .50 .70 .66 .50 .95 1.66 
28 Aug 63 .61 .19 .97 1.0 
19 Apr 64 .55 .59 .14 1.0 
25 May 65 .57 .84 .88 2.75 

2 Ju1 65 .83 .45 1.43 1.0 

19 Ju1 63 TC, R .60 .70 .66 .31 1.04 2.53 
28 Aug 63 .60 .14 1.03 1.0 
19 Apr 64 .62 .88 .14 1.0 
25 May 65 .57 .48 .94 2.24 

2 Ju1 65 .82 .46 1.41 1.0 

19 Ju1 63 TC, R .50 . 90 .50 .40 1.18 1.76 
28 Aug 63 .50 .12 1.13 1.0 
19 Apr 64 .61 .83 .18 1.0 
25 May 65 .59 .41 .93 2.96 

2 Ju1 65 .84 .40 1.45 1.0 

19 Ju1 63 TC, R .50 1.0 .51 .17 1.21 1.0 
28 Aug 63 .51 .12 1.12 1.0 
19 Apr 64 .60 .80 .16 1.0 
25 May 65 .61 .35 .91 2.11 

2 Ju1 65 . 91 .37 1.34 1.0 

19 Ju1 63 TC, R .50 1.0 .51 .40 1.16 2.0 
28 Aug 63 ERA IN .52 .99 
19 Apr 64 RTIOL .50 .04 
25 May 65 .69 .72 

2 Ju1 65 . 98 1.32 
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storm, The present computed hydrograph is compared to the previous 

computed hydrograph. If this latest change in TC or R improved the fit 

of the computed hydrograph, then the value is further incremented. 

This procedure continues until the fit of the computed hydrograph is 

no longer improved, thereby selecting the previous value of TC or R as 

the best fit value. 

The second through seventh series of trial runs in Table 1 presents 

the results of the trial runs as the best fit values of TC, 0.50, and 

R, 1.0, are determined. It is seen that the value of TC was increased 

as the plotted hydrographs were compared. Each increase up to a TC 

value of 0.5 resulted in a better hydrograph fit. When a TC of 0.6 was 

tried, the computed hydrograph did not fit the observed hydrograph as 

well as for the last previous value of TC. Thus, the optimum value of 

TC was determined. Likewise, the value of R was incrementally changed 

arriving at the best value, even though results indicate the initial 

estimate of R equal to 1.0 was the best fit value. 

The rainfall loss rate variables were then calibrated to the basin. 

Since two variables, ERAIN and RTIOL, are regional; the other two var­

iables, STRKR and VLTKR, are the only variables dependent on basin 

characteristics and particularly antecedent soil moisture conditions. 

As a result of other studies completed in this region, values of ERAIN 

and RTIOL of 0.4 and 2.0, respectively, were utilized in the last opti-

mization run. 

The final HEC-1 calibration run was made using the best fit unit 

hydrograph values and the regional values for ERAIN and RTIOL. Only 

the two loss rate variables, VLTKR and STRKR, were optimized. The last 

series of values in Table 1 shows the results of this final calibration 
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run. The results indicate that the minimum value for STRKR is 0.50 for 

these storm events. This value increases to about 1.0 as the antecedent 

soil moisture content decreases. The range of values for VLTKR is 0.4 

to 1.32. Low values of VLTKR indicate high antecedent soil moisture. 

Figure 2 is a plot comparing the final computed and observed hydro­

graphs for the 19 April 1964 storm event. The representative plot indi­

cates the accuracy of the hydrograph fitting process and shows that multi­

peaked hydrographs are satisfactorily reconstituted by HEC-1. 

Hydnog~aph Comp~on. The data required to compute a runoff 

hydrograph for an individual storm event includes synthetic or observed 

rainfall, derived best fit unit hydrograph, and rainfall loss rate var­

iables, and a time-area curve for the basin. 

For this application, observed rainfall data were used. Though data 

were available for five rain gages, only one gage, located adjacent to 

the stream gage, was used to apply rainfall to the basin. This reduced 

the amount of rainfall data required by a factor of five. 

The best fit values of TC and R, 0.5 and 1.0, respectively, were 

derived as explained above. Regional values of ERAIN, 0.4, and RTIOL, 

2.0, were used. For high antecedent soil moisture conditions, only 

hours or a few days since the last rainfall, low values of VLTKR and 

STRKR were selected. Conversely, as the soil moisture decreases, longer 

time since the previous rainfall, high values of VKTKR and STRKR were 

selected. 

Again, to simplify data requirements, the synthetic time-area curve 

available in HEC-1 was used rather than developing a specific time-area 

curve for the Boneyard Creek basin. 
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FIGURE 2. - FINAL OPTIMIZATION HEC-1 19 APR 1964 



(f) 

LL 
u 
LLJ 
(!) 

a:: 
<( 
::c 
u 
(f) 

0 

300 

200 

100 

2300 0100 0300 

LEGEND 

- OBSERVED 

HEC-1 

0500 0700 

TIME- HOURS 

22 



23 

COMPARISON OF RESULTS 

A total of 22 storm events were analyzed and simulated by the three 

runoff models. Eleven storm events were simulated by the RRL method; 

six events were simulated by the HEC-1 model; and five were simulated 

by the HSP model. Comparisons between the RRL method and the other 

models were made, because the RRL simulation method was applied to the 

same storm event as the other two models, The simulation results of 

the HSP model as applied to the Boneyard Creek basin were unavailable 

at the time of the HEC-1 model application; thus, there are no storm 

events for which both of these models have been applied. However, 

comparisons between simulations by the HEC-1 and HSP models are con­

sidered valid since both were applied to the same basin for the same 

time frame, early and mid 1960s, 

Comp~on on RRL and HEC-1 Mod~. A comparison of computed hydro­

graph characteristics for six storm events using the revised RRL and 

HEC-1 methods is presented in Table 2. Table 2 includes the observed 

hydrograph values for peak discharge, time of the peak and runoff vol­

ume, and the corresponding computed values by the RRL and HEC-1 methods 

with the percent error for each of the computed values. Figures 3 and 4 

present the observed hydrograph and the simulated hydrographs by the 

RRL and HEC-1 models for two storm events. 

Considering peak discharge, the mean error in simulation by the 

revised RRL method is 67,3%. The high error in comparing the observed 

and simulated peak discharges by the RRL method is graphically seen in 

rigure 5, Using the HEC-1 model, the mean error of the simulated peak 

is 9.2%. Figure 6 presents a comparison of observed and simulated 
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TABLE 2. - COMPARISON OF RESULTS OF RRL AND HEC-1 METHODS 

OBSERVED 
HYDROGRAPH RRL METHOD HEC-1 METHOD 

STORM PEAK in PEAK in PERCENT PEAK in PERCENT 
EVENT cubic feet cubic feet ERROR cubic feet ERROR 

per second per second per second 
(1) (2) (3) (4) (5) (6) 

15 Nov 1960 223. 262. 17.5 223. 0.0 
6 Jun 1961 479. 1154. 140.9 592. 23.6 

13 Ju1 1962 274. 423. 54.4 305. 11.3 
19 Ju1 1963 388. 734. 89.2 393. 1.3 
14 Sep 1965 270. 350. 29.6 291. 7.8 
20 Apr 1966 308. 531. 72.4 343. 11.4 

OBSERVED 
HYDROGRAPH RRL METHOD HEC-1 METHOD 

STORM TIME to TIME to PERCENT TIME to PERCENT 
EVENT PEAK PEAK ERROR PEAK ERROR 

in minutes in minutes in minutes 
(1) (2) (3) (4) (5) (6) 

15 Nov 1960 162. 144. -11.1 165. 1.9 
6 Jun 1961 96. 90. - 6.2 90. - 6.2 

13 Ju1 1962 84. 66. -21.4 72. -14.3 
19 Ju1 1963 84. 60. -28.6 72. -14.3 
14 Sep 1965 60. 42. -30.0 54. -10.0 
20 Apr 1966 96. 90. - 6.3 108. 12.5 

OBSERVED 
HYDROGRAPH RRL METHOD HEC-1 METHOD 

STORM VOLUME in VOLUME in PERCENT VOLUME in PERCENT 
EVENT acre feet acre feet ERROR acre feet ERROR 

(1) (2) (3) (4) (5) (6) 

15 Nov 1960 33.1 37.1 12.1 35.8 8.2 
6 Jun 1961 85.0 84.9 0.1 66.1 -22.2 

13 Ju1 1962 42.8 30.4 -29.0 40.3 - 5.8 
19 Ju1 1963 48.2 48.1 0.2 47.6 - 1.2 
14 Sep 1965 35.0 33.0 - 5.7 31.8 - 9.1 
20 Apr 1966 52.2 51.8 - 0.8 44.4 -14.9 
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FIGURE 3. - COMPARISON OF RRL AND HEC-1 HYDROGRAPHS FOR 14 SEP 1965 

FIGURE 4. - COMPARISON OF RRL AND HEC-1 HYDROGRAPHS FOR 20 APR 1966 
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FIGURE 5. - RRL VS. OBSERVED PEAK DISCHARGES 
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FIGURE 6. - HEC-1 VS. OBSERVED PEAK DISCHARGES 
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peaks by the HEC-1 model. The accuracy of the HEC-1 simulation model 

is clearly seen. 

Along with the higher computed peak, the RRL simulated peak dis-

charge occurs an average of 17.3% earlier than the observed peak. 

On the average, the HEC-1 simulated peak occurs 5.1% ahead of the ob-

served peak as seen in Table 2. 

Generally, both models accurately reproduce the total direct 

runoff volume. The RRL method simulates the observed runoff volume 4% 

low and the HEC-1 model simulates 7% low. 

Comp~on on RRL and HSP Mod~. Table 3 presents a comparison 

of the observed and simulated hydrograph parameters as computed by the 

RRL and HSP models. As before, two storm events showing the observed 

hydrograph and the RRL and HSP simulated hydrograph are presented in 

Figures 7 and 8. With a range of 69.6% to 118.5%, the revised RRL meth-

od computed that peak discharge to be high by an average of 88.6%. 

Using the revised RRL results, overdesign by a factor of almost two, as 

seen in Figure 9, would occur. The HSP simulation model, on the other 

hand, underestimates the observed peak discharge by 11.8%. Figure 10 

graphically shows a comparison of the observed and HSP simulated peak 

discharges. Considering the timing of the peak, the mean error by the 

RRL and HSP models is 15.1% early and 5.1% late, respectively, 

As seen in Figures 7 and 8, the complete hydrograph was not sim-

ulated in these HSP computer runs. Even though the HSP model simulates 

runoff continuously, only discharge values greater than 200 cfs 

3 
(5.6 m /s) were printed by the computer for this application. Since 

only high flows are of interest in this application, this cutoff of 

lower discharges significantly reduced the data management. Because 
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TABLE 3, - COMPARISON OF RESULTS OF RRL AND HSP METHODS 

OBSERVED 
HYDRO GRAPH RRL METHOD HEC-1 METHOD 

STORM PEAK in PEAK in PERCENT PEAK in PERCENT 
EVENT cubic feet cubic feet ERROR cubic feet ERROR 

per second per second per second 
(1) (2) (3) (4) (5) (6) 

25 May 1965 378. 704. 86.2 314. -16.9 
2 Ju1 1965 579. 1265. 118.5 494. -14.7 

25 Aug 1965 605. 1190. 96.7 572. - 5.4 
27 Jun 1966 224. 380. 69.6 225. 4.5 
18 Aug 1966 418. 718. 71.8 308. -26.3 

OBSERVED 
HYDRO GRAPH RRL METHOD HEC-1 METHOD 

STORM TIME to TIME to PERCENT TIME to PERCENT 
EVENT PEAK PEAK ERROR PEAK ERROR 

in minutes in minutes in minutes 
(1) (2) (3) (4) (5) (6) 

25 May 1965 114. 90. -20.1 90. -20.1 
2 Ju1 1965 90. 78. -13.3 84. - 6.7 

25 Aug 1965 42. 30. -28.6 45. 7.1 
27 Jun 1966 132. 114. -13.6 192. 45.4 
18 Aug 1966 102. 102. 0.0 105. 2.9 

OBSERVED 
HYDROGRAPH RRL METHOD HEC-1 METHOD 

STORM VOLUME in VOLUME in PERCENT VOLUME in PERCENT 

EVENT acre feet acre feet ERROR acre feet ERROR 

(1) (2) (3) (4) (5) (6) 

25 May 1965 16.0 22.2 38.8 16.4 2.5 
2 Ju1 1965 72.8 79.2 8.8 69.7 - 4.2 

25 Aug 1965 72.4 52.4 -27.6 80.0 10.5 

27 Jun 1966 5.4 2.7 -50.0 17.5 224.1 

18 Aug 1966 19.7 29.2 48.2 27.2 38.1 
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FIGURE 7. -COMPARISON OF RRL AND HSP HYDROGRAPHS FOR 2 JUL 1965 

FIGURE 8. - COMPARISON OF RRL AND HSP HYDROGRAPHS FOR 25 AUG 1965 
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FIGURE 9. - RRL VS. OBSERVED PEAK DISCHARGES 
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FIGURE 10. - HSP VS. OBSERVED PEAK DISCHARGES 
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of this, the volume comparison between the observed and the RRL and 

the HSP simulated hydrographs is determined only for the base time 

period when data are computed by the HSP model (i.e., above 200 cfs). 
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The range of error of the volume simulation by the RRL method is 

-50 to 48.2% with an average of 3.6%. Though the average error is 

small, the high range indicates that the volume computed by this method 

for one storm event could probably be significantly in error. The HSP 

model computes hydrographs whose volume is in error by a range of -4.2 

to 224.1%. The average error is 54.2%. Ignoring the storm event of 

27 June 1966, the average error reduces to 11.7%. As seen in Table 3, 

the large error in volume by the 27 June 1966 storm event is a result 

of the timing of the peak occurring 60 minutes later than the observed 

peak. If these hydrograph peaks weren't so out of phase, the volumes 

would have compared favorably. 

In general, both the HEC-1 and HSP simulated hydrographs compare 

well with the observed hydrograph. However, the revised RRL method 

computed hydrograph peaks considerably higher than the corresponding 

observed hydrograph peak discharge. 

These results for the RRL method, obtained from Stall and Terstriep, 

vary considerably from the results presented in their 1969 ASCE publica­

tion (4). Their original paper showed a range of error of -15.2% to 

+17.7% for these same eleven storm events. The difference in there­

sults is due to changes in the RRL model. In the original model, the 

discharge-storage relationship is only approximated, and a simplified 

one-step storage-routing procedure is used for the entire basin. There­

fore, the detail required for application of the earlier model is very 

rough to be consistent with the procedures used. However, the improved 
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version of the RRL model requires that the discharge-storage relationship 

be defined more accurately, As this relationship was not accurately de­

fined for the application presented in this paper, the computed hydro­

graphs are in error. A detailed field survey of the Boneyard Creek basin 

by Stall and Terstriep indicated many clogged and partially blocked sewers 

formerly unknown and also that a higher roughness factor should be used 

for the open channels in the basin. With these changes made, Stall in­

dicated to the author that the revised RRL method is performing very 

satisfactorily again for the Boneyard Creek basin. 

Se.MA.;t)__vUy on HEC-1 .to UnU. HydJtogJtaph ChaJLact~Uc.,6. The basic 

element of the HEC-1 method is the unit hydrograph, defined by the time 

of concentration (TC) and the hydrograph storage coefficient (R), The 

time of concentration is determined as the time from the end of rainfall 

excess to the point of inflection on the recession side of the hydrograph. 

Table 4 shows the sensitivity of simulated peak discharge to changes in 

TC only. The initial optimization run for TC .20 and R = 1.0 gives a 

range of error of -16.2% to +49.4%. The mean error for this run is 12.0%, 

The final run for T = .50 and R = 1.0 shows a range of -5.1% to +38.0% 

with an average error of 10.0%. Thus, it is seen that a large percen­

tage change in TC results in only a small change in the peak discharge. 

The hydrograph storage coefficient (R) of the unit hydrograph is 

defined as the slope of a tangent to the recession limb of a hydrograph 

at its point of inflection. Table 5 shows the sensitivity of peak 

discharge to changes in R only. The optimization run for TC = 0.50% and 

R = 0.70 shows a range of error of -5.1% to 55.8% with an average error 

of 27,0%. The final optimization run for TC = 0.50 and R = 1.0 has an 

average error of 9.8%. 
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TABLE 4. - SENSITIVITY OF PEAK DISCHARGE 
TO CHANGES IN TIME OF CONCENTRATION 

OBSERVED TC = .20 TC = .50 
STORM HYDRO GRAPH R =1.0 R =1.0 
EVENT PEAK in PEAK in PERCENT PEAK in PERCENT 

cubic feet cubic feet ERROR a cubic feet ERRORb 
per second per second per second 

(1) (2) (3) (4) (5) (6) 

19 Jul 63 388. 425. 9.5 396. 2.1 
28 Aug 63 410. 467. 13.9 440. 7.3 
19 Apr 64 234. 196. -16.2 222. - 5.1 
25 May 65 378. 390. 3.2 403. 6.6 

2 Ju1 65 579. 865. 49.4 799. 38.0 

a Mean percent error, 12.0. 

b Mean percent error, 10.0. 

TABLE 5. - SENSITIVITY OF PEAK DISCHARGE 
TO CHANGES IN ATTENUATION 

OBSERVED TC = .50 TC = .50 
STORM HYDROGRAPH R = .70 R =1.0 
EVENT PEAK in PEAK in PERCENT PEAK in PERC EN£ 

cubic feet cubic feet ERROR a cubic feet ERROR 
per second per second per second 

(1) (2) (3) (4) (5) (6) 

19 Ju1 63 388 460. 18.6 396. 2.1 
28 Aug 63 410. 558. 36.1 440. 7.3 
19 Apr 64 234. 286. - 5.1 222. - 5.1 
25 May 65 378. 490. 29.6 403. 6.6 

2 Ju1 65 579. 902. 55.8 799. 38.0 

a Mean percent error, 27.0. 

b 
Mean percent error, 9.8. 
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Thus, the definition of the storage relationship of the Boneyard 

Creek basin is of prime importance. As seen in the HEC-1 application, 

the results are very sensitive to changes in the hydrograph storage co­

efficient. Likewise, with the storage roughly defined, poor results 

were derived using the RRL method. When the storage relationship was 

adequately defined, the RRL method computed satisfactorily runoff 

hydrographs, 

CONCLUSIONS 

As a result of this study, the following statements are made 

about the capabilities of these urban runoff simulation studies. 

These three models are compared as to their capability in reproducing 

peak discharges, time to the peak, and volume of the storm hydrograph. 

1. S~~on on Peak V~ehange. Analysis of these data pre­

sented in this study indicates that the HEC-1 and the HSP models 

simulate the magnitude of the peak ordinate of the discharge hydro­

graph more accurately than does the revised RRL method. 

For the storm events evaluated, the HEC-1 model computed peak 

discharges that were, on the average, 10% higher than those observed. 

The HSP model reproduced peak discharges that were, on the average, 

12% lower than those observed. The hydrograph peaks predicted by the 

revised RRL method were much larger than those measured. This method 

computed peak discharges that averaged 78% larger than observed. 

Thus, using the HEC-1 model, simulated peak discharges would be 

expected to be slightly conservative. On the other hand, the HSP 



model will compute peak discharges which can be expected to be ex-

ceeded occasionally. Significant overdesign would occur if the 

results of the revised RRL method were used. 

2. SimulaXion on Tim~ng on ~he Peak. As with the simulation 

of peak discharges, the HEC-1 and the HSP models simulate the timing 

of the peak discharge more accurately than does the revised RRL 

method. 

The HEC-1 model simulates the peak discharge to occur, on the 

average, 5% earlier than the observed peak discharge. For the five 

storm events considered, the HSP model computed the peak to occur 

an average of 5% later than the observed peak. The predicted timing 

of the peak by the revised RRL method was computed to occur 17% be­

fore those peaks measured. 

Therefore, the timing of the peak discharge can be expected to 

be satisfactorily simulated by the HEC-1 and HSP models. However, 

the error in using the revised RRL method can be important. 

3. S~~on on ~he V~ect Runonn Volume. The analysis of 

these data indicate that the revised RRL and HEC-1 models simulate 

the volume of direct runoff more accurately than the HSP model. 

For the eleven storm events evaluated, the revised RRL method 

computes a runoff volume that is higher than the measured volume by 

an average of 4%. The volume computed by the HEC-1 model is, on 

the average, 7% higher than the observed volume. The HSP model 

simulated runoff volumes that are significantly higher than the 

measured hydrograph volumes. This method computed runoff volumes 

that averaged 54% larger than observed. 
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Thus, the revised RRL and HEC-1 models would be expected to 

compute runoff volumes that are slightly conservative. Using the 

HSP model to simulate the runoff volume would result in a signifi­

cant overdesign. 

4, The revised RRL method simulates direct runoff volume that 

is slightly conservative. However, a major overdesign occurs in 

attempting to compute peak discharges and the timing of the peak 

by this method. 

5. The HSP model computes peak discharges that are somewhat 

lower and later than the measured discharges. This model computes 

volumes of runoff that would result in a large overdesign of de­

tention structures. 

6. The HEC-1 model simulates peak discharges and volumes of 

direct runoff that are a little conservative. The simulated time 

of the peak is computed to occur before the actual peak by this 

model. Overall, the HEC-1 model simulated best the observed 

hydrographs, 
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APPENDIX II. - NOTATION 

The following symbols are used in this paper: 

Areas of the time-area curve for corresponding 

increments of time 



AI Percent of the total basin area contributing 

at time T 

AK Basic rainfall loss coefficient 

A LOSS Rainfall loss rate in inches per hour (cm/hr) 

Interflow 

CUML Accumulated rainfall loss in inches (em) 

V Ratio of detention depth 

Ve Surface detention storage at equilibrium in 

3 
cu ft/ft (m /m) 

VLTK Incremental rainfall loss coefficient 

VLTKR Incremental rainfall loss index 

47 

Surface detention at the end of the previous time 

interval in cu ft (m3) 

V
2 

Surface detention at the end of the current time 

interval in cu ft (m3 ) 

ERAIN 

F 

1 

LZS 

LZSN 

0 

q 

Increment of surface detention in cu ft (m3 ) 

Exponent of rainfall 

Infiltration rate in in/hr (cm/hr) 

Cumulative infiltration in inches (em) 

Discharge into a reach in cfs (m3 /s) 

Rainfall intensity for equal durations 

Length of the flow plane in feet (m) 

Current storage level 

Index level for moisture storage 

Manning's roughness coefficient 

3 
Discharge out of a reach in cfs (m /s) 

Discharge in cfs (m3 /s) 



q = Overland flow during a time interval 

Q= Discharge in cfs 3 (m /s) 

QI = Discharge at the point of inflection on the 

recession limb of the hydrograph in cfs 3 (m /s) 

Runoff hydrograph ordinates 

Hydrograph storage coefficient 

R Hydraulic radius in feet (m) 

RAIN Rainfall in inches per hour (cm/hr) 

RTIOL Ratio of AK to that AK after 10 inches more of 

accumulated loss occurs 

S Channel slope or average ground slope in 

ft/ft (m/m) 

SI Slope of line tangent to the point of inflection 

on the recession limb of the hydrograph 

so 
STRKR 

:t 

T 

uzs 

UZSN 

tj 

y 

z 

Storage during first time interval in cu ft (m3 ) 

Slope of the energy gradient in ft/ft (m/m) 

Basic rainfall loss index in in/hr (cm/hr) 

Time in seconds 

Time interval in seconds 

Ratio of time T to time of concentration 

Upper zone storage 

Upper zone nominal capacity 

Depth in feet (m) 

Maximum depth in feet (m) 

Ratio of flow width to Y 
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Mr. Astrack was born on August 3, 1945 in St. Louis, Missouri. 

He grew up and attended elementary and high school in St. Louis. 

In June, 1964, Mr. Astrack graduated from Cleveland High School 

located in south St. Louis. He completed the requirements for the 

BSCE Degree in May 1968 at the University of Missour-Rolla. Imme­

diately after graduation, he entered graduate school at night to 

work toward his MSCE Degree. Mr. Astrack accepted employment with 

the U. s. Army Corps of Engineers, St. Louis District, on June 3, 1968 

and was assigned to the Hydraulics Branch of the Engineering Division 

in May, 1969. Presently he is assigned to the St. Louis Metropolitan 

Area Study, a comprehensive regional water resources study of the 

St. Louis area. Mr. Astrack was married on June 27, 1970 and has no 

children. 
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