
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2011

Optimized testing and logic mapping methodology for CAEN-Optimized testing and logic mapping methodology for CAEN-

based nano-circuits based nano-circuits

Sambhav Kundaikar

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Kundaikar, Sambhav, "Optimized testing and logic mapping methodology for CAEN-based nano-circuits"
(2011). Masters Theses. 4137.
https://scholarsmine.mst.edu/masters_theses/4137

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4137?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

OPTIMIZED TESTING AND LOGIC MAPPING METHODOLOGY FOR CAEN-

BASED NANO-CIRCUITS

By

SAMBHA V DILIP KUNDAIKAR

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER ENGINEERING

2011

Approved by:

Maciej Zawodniok, Advisor
Minsu Choi

Daryl Beetner

© 2011

Sambhav Dilip Kundaikar

All Rights Reserved

111

PUBLICATION THESIS OPTION

This thesis is composed of the following two papers which were reformatted in

the style used by the university.

The first paper presented m pages 06-50 titled "OPTIMIZED TESTING

TECHNIQUE FOR DEFECT TOLERANCE IN CAEN-BASED NANOFABRIC

SYSTEMS" has been submitted to the IEEE TRANSACTIONS ON

NANOTECHNOLOGY, 2011.

The second paper presented in pages 51-72 titled "INTRODUCTION TO A

NOVEL DEFECT-A WARE LOGIC MAPPING APPROACH FOR CROSSBAR­

BASED NANOFABRICS" is intended for submission to INTEGRATION, THE VLSI

JOURNAL.

A condensed version of Paper I titled "OPTIMIZED BUILT-IN SELF-TEST

TECHNIQUE FOR CAEN-BASED NANOFABRIC SYSTEMS" has been accepted at

the IEEE NANO 2011, to be held in Portland-Oregon, August 15-19,2011.

lV

ABSTRACT

Nanotechnology has been shown to have the potential to replace the existing

CMOS technology in the race to maintain the Moore's Law increases in IC complexity.

This work considers the Chemically Assembled Electronic Nanotechnology (CAEN),

which fabricates nanofabric using a low cost self-assembly and self-alignment chemical

process and provides very high density. However, the main disadvantage of this

technology is the inherently high defect rate that hinders the efforts to commercialize

such systems. Existing testing and design techniques, for example for FPGAs, are ill

suited since they typically assume vary low defect rates.

This thesis is comprised of two papers. In the paper I, a novel testing

methodology is proposed along with a new set of test patterns and configurations which

test the entire nanofabric for stuck-at, bridging and cross-point faults. An optimization

technique is described to reduce the number of test configurations and testing time. A

customization technique is also discussed to further increase the yield of the nanofabric

when the desired functionality is known. Once the nanofabric has been tested and the

faulty areas in the chip have been identified, the next step is to map the logic onto the

nanofabric. The paper II discusses a new logic mapping approach for nanofabrics which

have been tested to successfully implement AND/OR configurations of various logic

functions. This approach uses the information provided by the testing technique from the

paper I to simplify the logic mapping process. It used standard implementations of

nanoblocks as compared to the existing techniques, which require customized solutions.

v

ACKNOWLEDGMENTS

It gives me great pleasure to thank all the people who have supported me and

made this thesis possible. I would like to thank Dr. Maciej Zawodniok for being a great

advisor throughout my Master's program and it has been a pleasure working with him.

He has been a continuous source of motivation and has helped me develop my skills.

I would like to express my sincere gratitude to my thesis committee members, Dr.

Minsu Choi and Dr. Daryl Beetner for their co-operation. I would also like to thank Dr.

Waleed Al-Assadi, Dr. Minsu Choi, Dr. Daryl Beetner and Dr. Ali Hurson who have

taught me excellent courses during my Master's program.

I would also like to thank Ritu Bhatia, V eeresh Hongal and many more friends

who have helped me continuously throughout my Degree program and provided me with

a refreshing environment. Most importantly, I ~ould like to thank my parents, Dilip

Kundaikar and Surat Kundaikar whose continuous support made this degree possible.

Vl

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION .. iii

ABSTRACT .. .iv

ACKNOWLEDGMENTS .. v

LIST OF ILLUSTRATIONS ... ix

LIST OF TABLES ... xi

SECTION

1. INTRODUCTION .. 1

1.1. OBJECTIVE .. 1

1.2. BACKGROUND ... 1

1.3. PROPOSED APPROACHES .. 2

1.4. CONTRIBUTIONS ... 3

1.5. FUTURE WORK .. 4

PAPER

I. OPTIMIZED TESTING TECHNIQUE FOR DEFECT TOLERANCE
IN CAEN-BASED NANOFABRIC SYSTEMS ... 6

Abstract .. 6

1. INTRODUCTION .. 8

2. NANOFABRIC ARCHITECTURE ... 10

2.1. NANOBLOCK .. 11

2.2. SWITCHBLOCK .. 13

3. RELATED PREVIOUS WORKS .. 15

4. TESTING APPROACH .. 17

4.1. OVERVIEW .. 17

4.2. TEST ARCHITECTURES AND PROCEDURE .. 18

4.2.1. Testing Procedure ... 20

4.2.2. Algorithm for Locating Defects .. 22

4.2.3. Example of a Faulty Block Detection ... 23

4.3. DESIGN OF NEW BUT CONFIGURATIONS, TEST PATTERNS AND
FAULT COVERAGE ANALYSIS .. 24

Vll

4.3.1. Configuration C1: Stuck-at-0 and Stuck-Open Faults 25

4.3.2. Configuration C2: Stuck-at-1 Faults ... 26

4.3.3. Configuration C3: AND/OR Bridging Faults (H/H) 27

4.3.4. Configuration C4: AND/OR Bridging Faults (V/H) 28

4.3.5. Configuration C5: Reverse Biased Diode and V/H Bridging Faults 29

4.3.6. Configuration C6: Forward Biased Diode Faults 30

4.4. FAULT COVERAGE AND NUMBER OF CONFIGURA TIONS 31

5. OPTIMIZATION TECHNIQUE .. 33

5.1. ELIMINATION OF REDUNDANT CONFIGURATIONS 36

5.2. CUSTOMIZED CONFIGURATIONS ... 37

5.3. RECOVERY PROCEDURE ... 38

6. ANALYSIS AND DISCUSSION ... 39

6.1. NUMBER OF CONFIGURATIONS/TEST PATTERNS 39

6.2. NANOBLOCK UTILIZATION .. 39

6.3. TESTING TIME .. 40

6.4. RECOVERY PROCEDURE ... 42

7. RESULTS ... 43

8. CONCLUSION ... 47

9. REFERENCES .. 48

II. INTRODUCTION TO A NOVEL DEFECT -AWARE LOGIC MAPPING
APPROACH FOR CROSSBAR-BASED NANOFABRICS 50

Abstract .. 50

1. INTRODUCTION , .. 51

2. BACKGROUND AND PREVIOUS WORK ... 54

3. A NOVEL LOGIC MAPPING TECHNIQUE , ... 57

4. ANALYSIS AND DISCUSSION ... 61

4.1. CASE I: FAULTY INPUT BLOCKS ... 63

4.2. CASE II: FAULTY BLOCKS IN THE OUTPUT PATH 63

4.3. CASE III: RANDOMLY LOCATED FAULTY BLOCKS 63

5. RESULTS ... 65

6. CONCLUSION ... 69

Vlll

7. REFERENCES .. 70

SECTION

2. CONCLUSIONS ... 72

VITA ... 73

Figure

PAPER I

LIST OF ILLUSTRATIONS

IX

Page

1 Nanofabric architecture ... 11

2 Schematic of a nanoblock [1] .. 12

3 AND/OR gate implementation .. 12

4 A switchblock with four surrounding nanoblocks [1] 14

5 Test architectures .. 19

6 Testing flow .. 21

7 Subset ofnanofabric in TA-la and TA-lb .. 23

8 (a) BUT configurations and test patterns for Cl (b) Example fault detection .. 26

9 (a) BUT configurations and test patterns for C2 (b) Example fault detection .. 27

10 (a) BUT configurations and test patterns for C3 (b) Example fault detection .. 28

11 (a) BUT configurations and test patterns for C4 (b) Example fault detection .. 29

12 (a) BUT configurations and test patterns for C5 (b) Example fault detection .. 30

13 (a) BUT configurations and test patterns for C6 (b) Example fault detection .. 31

14 Customized configuration C5 ... 35

15 Customized configuration C6 ... 3 7

16 Number of configurations required in comparison with the approaches
discussed in [15] and [16] ... 43

17 Improvement in utilization of the nanoblock44

18 Reduction in total testing time after optimization ... 45

19 Improvement in utilization using recovery procedure45

20 Increase in testing time as a result of using recovery procedure 46

PAPER II

1 Simple logic implementation ... , 55

2 Logic implementation in the presence of defects .. 56

3 AND/OR implementation , .. 58

4 Logic mapping using AND/OR blocks ... 59

5 Half adder implementation in the presence of defects 60

X

6 Sample nanofabric ... 61

7 Location of fault cases .. 62

8 Output row vs probability plot for variable defect rate, p 65

9 Output row vs probability plot for variable number of input blocks, i 66

10 Logic density vs. input blocks for different values ofm,n 67

11 Effective logic density vs. input blocks for different values ofm,n 68

Table

PAPER I

LIST OFT ABLES

XI

Page

I. Pseudo-code of the faulty block detection algorithm .. 22

II. Fault coverage and configurations .. 32

III. Junction cross-points tested in each configuration ... 37

IV. Summary comparison of the testing time .. .41

SECTION

1. INTRODUCTION

1.1. OBJECTIVE

The main objective of this work is to design a new and improved approach for

testing and design of logic functions using nanofabric arrays. The goal was to maximize

the nanofabric yield while keeping the testing time to a minimum. The proposed testing

process and logic mapping approach are design to work in concert to achieve these goals.

1.2. BACKGROUND

In the last 40 years there has been an exponential increase in the number of

transistors per unit area. This increase has been in accordance with Moore's Law that

predicted the number of transistors that could be placed on the chip would double every

two years. However, there are some challenges like leakage currents, process variation,

costs and reliability issues that may result to the end of scaling. This poses a threat to the

continuation of Moore's Law. Therefore, a new technology will need to replace CMOS

one in the near future.

One of the technologies under intense investigation as a possible alternative to

CMOS is Chemically-Assembled Electronic Nanotechnology (CAEN) [1][2]. It has the

potential to achieve high density while being fabricated using a low-cost chemical

synthesis processes. The CAEN uses self-assembly and self-alignment to construct

electronic circuits out of nanometer-scale devices. CAEN systems also referred to as

nanofabrics, can achieve a density of as high as 1 08 to 1 010 gates per cm2 by using

2

interconnected 2D arrays of nanowires. The 2D arrays, referred to as nanoblocks are the

fundamental units of a nanofabric.

However, the main drawback of the nanofabric system is its high defect rate

which could be as high as I 0%. Such a high defect rate leads to low yield thus making

the manufacturing costs prohibitively high. Therefore it is not economically feasible to

discard a nanofabric if it is found to have defects. Defect tolerance is needed to make

such nanofabrics commercially viable. Defect tolerance refers to the ability to detect and

locate faulty elements on a chip, and then avoid these faults through reconfiguration.

Such approach has potential to increase yield and reduced manufacturing cost. Therefore,

new testing approaches and methods are required to diagnose defective sections of the

nanofabric and then use this information to effectively map logic onto the nanofabric.

1.3. PROPOSED APPROACHES

In this thesis, a new testing methodology is discussed which aims at maximizing

the yield from a nanofabric while minimizing the testing time. In comparison to the

existing testing methods for nanofabric testing, this method is much more efficient in

terms of yield, total testing time and the number of test patterns and test configurations

required. An optimization scheme is described which can be used to eliminate redundant

test configurations to improve yield. It is also possible to customize the existing test

configurations to meet the user requirements, which if used effectively, can further

reduce the testing time and maximize yield of the nanofabric.

Once the nanofabric has been tested, a defect map is created which identifies the

faulty blocks on the chip. This defect map can be used while mapping logic onto the

3

nanofabric so that the faulty blocks could be avoided. The logic mapping process takes

the defect map and the function to be implemented as the inputs. The fault-free blocks are

configured accordingly and connected with each other in order to obtain the final output.

The traditional approach aims at designing an individually tailored realization of

functions for each nanoblock. The programming typically differs due to the changing

location of faults inside the nanoblock and particular function that is to be implemented.

In contract, the proposed approach uses standardized gate configurations for AND/OR

gates. This may result in small fraction of nanoblocks that will be considered faulty

where a per-block customized function implementation might be able to recover it.

However, such highly customized, existing approaches will lack flexibility during

reconfiguration and incur a very high testing and design overhead since each nanoblock

has to be analyzed and redesigned for all possible solutions. In contrast, the proposed

approach utilizes standard predefined configurations, and hence this simplifies the

mapping process. However, when accompanied by the proposed testing techniques will

miss only small fraction of usable, partially defective nanoblock. Also, it does not require

knowledge about the location of defects inside the nanoblock, nor has to consider it

during logic design and mapping phase.

1.4. CONTRIBUTIONS

Paper I

• A novel testing technique for testing nanofabric arrays.

• An introduction of several new test configurations and patterns.

4

• Detailed analysis of fault coverage capabilities for the complete set of test

configurations and their test patterns.

• An optimization technique for selecting the minimal test set and increasing

utilization with reduced testing time, and a customization approach that further

reduces testing time and increases nanofabric yield when the desired logical

functionality is known.

Paper II

• A novel logic mapping approach for nanofabrics tested by the testing technique

discussed in paper I.

• Study of the effects of various parameters such as the defect rate, location of

defects, complexity of the function to be implemented, on the proposed mapping

technique.

1.5. FUTURE WORK

The proposed testing methodology can be further extended to include extensive

testing of switchblocks. The new proposed set of configurations and test patterns only test

for nanoblocks faults, though switchblock faults can be detected in some cases. A new set

of configurations could be developed such that the switchblocks are tested along with the

nanoblocks. Also, a design of the comparator blocks is an important aspect of testing, and

yet little literature is available on the topic. Paper I also discusses the recovery procedure,

which can be further refined to allow arbitrary implementation of one or few gates within

a nanoblock. The logic mapping technique could be modified/extended to incorporate

these blocks since this would increase the overall utilization of the nanofabric. Moreover,

5

the current assumption was that only one pair of AND and OR gates with (k-1) inputs is

implemented in each block. However, it is possible to implement several smaller gates

within one nanoblock by making use of the unutilized cross-points.

6

PAPER

I. OPTIMIZED TESTING TECHNIQUE FOR DEFECT TOLERANCE
IN CAEN-BASED NANOFABRIC SYSTEMS

Sambhav Kundaikar, Maciej Zawodniok

Electrical and Computer Engineering

Missouri University of Science and Technology

Rolla, MO 65401, USA

Email: sdk8v5@mail.mst.edu, mjzx9c@mst.edu

Abstract

Nanotechnology enables future advancements in integrated circuitry's miniaturization,

energy and cost efficiency, and capabilities. However, a popular chemically assembled

electronic nanotechnology (CAEN) has a high rate of defects that negates these benefits

of the nanofabric. In order to address this challenge, a testing technique is proposed that

maximizes the yield from a nanofabric while minimizing testing overhead. Moreover,

traditional testing techniques, for example the ones employed in FPGA applications,

assume low defect rate and fails to achieve high effectiveness when applied to testing

nanofabrics. In this paper, a novel approach to testing nanofabric is proposed that

includes new testing configurations, test-set optimization methodology, and design of

customized configuration, which provide reduction in testing time while enhancing the

utilization of the nanofabric. Part of the proposed scheme is a recovery procedure that

further increases the utilization of nanoblocks at the expense of testing time. The

proposed procedure tests all the components in parallel and identifies the defective

7

nanoblocks in a nanofabric. A defect map is generated to aid logic function

implementation in a nanofabric. The proposed technique results in less number of test

configurations compared to other proposed methods and a significant reduction in the

test time.

8

1. INTRODUCTION

Moore's Law predicted that the number of transistors that could be placed on the

chip would double every two years. The CMOS technology has been able to keep up with

Moore's law as a result of scaling. However, CMOS technology today faces a number of

challenges such as leakage currents, process variation, costs and reliability issues which

may put an end to scaling. Therefore, new technologies are needed to replace CMOS in

the future to continue the Moore's Law advancement.

Chemically-Assembled Electronic Nanotechnology (CAEN) has shown promising

potential for the future of nano-scale design [1][2]. A basic building block of a nanofabric

is nanoblock, which is an interconnected 2D array of nano-scale wires that can be

electronically configured as logic networks, memory units, and signal-routing cells [3].

These nanofabric architectures are reconfigurable in nature and can achieve a density of

10 10 to 1012 gates per cm2, which is significantly higher than CMOS-based devices.

However, due to the high defect rate in these nanofabrics, new testing strategies need to

be devised to effectively test and diagnose the nanofabric within a reasonable time.

However, due to the low cost manufacturing process of self-assembly and self­

alignment, the defect rate could be as high as 10%. Such high defect rate leads to low

yield, which in tum results in high manufacturing costs. It is impractical to throw-away a

fabricated chip once it is diagnosed to be defective. Thus defect tolerance is needed. The

ability to identify and diagnose the faulty sites on a chip and develop techniques to avoid

these faulty areas is known as Defect tolerance [3]-[9]. Also, the testing techniques

needed for nanofabrics are complicated due to the large density, high defect rate and

9

large size of the nanoblocks. Hence traditional FPGA testing approaches do not apply to

the nanofabric systems. A more distinct approach is required to address these challenges.

In this paper, a new testing methodology is discussed which configures the

components as Block Under Tests (BUT) and Comparators (C). This method can handle

high defect densities and large size nanofabrics. Our method uses a set of Test

Architectures and BUT configurations to test the nanofabric. The design of each of the

BUT configurations for the targeted faults is also explained. An external tester is used to

apply test patterns to the BUTs. The nanoblocks are tested in parallel and hence the

testing time does not depend on the size of the nanofabric. Further, an optimization

technique is introduced which can increase both the testing speed and the utilization

(yield) of the nanoblock.

The main contributions of this paper are: (a) a novel testing technique for testing

nanofabric arrays, (b) an introduction of several new test configurations and patterns, (c)

detailed analysis of fault coverage capabilities for the complete set of test configurations

and their test patterns, (d) an optimization technique for selecting the minimal test set and

increasing utilization with reduced testing time, and (e) customization approach that

further reduces testing time and increases nanofabric yield when the desired logical

functionality is known.

10

2. NANOFABRIC ARCHITECTURE

A nanofabric system has some similarities with a field-programmable gate-array

(FPGA) [8], a regular 2D-array architecture and re-configurability. Reconfigurable

devices are fault tolerant since faults can be identified and the functionality redesigned to

avoid the corresponding defect map. Traditionally, the faulty blocks are masked during

the configuration of the device and implementation. The remaining blocks are used, thus

enabling to utilize partially defective chips. The same general methodology can be

employed for nanofabric systems, though specific approach and testing scheme has to be

designed to address high defect rate of the nanoblocks.

CAEN systems are fabricated using bottom-up manufacturing, where basic

components such as nanowires are first obtained through chemical self-assembly, and

then aligned to form a two-dimensional grid with configurable molecular switches at the

junctions [1]. These molecular switches are configured to create useful circuits out of

these grids [1].

Similar to FPGAs, the nanofabric is a regular 2D-mesh of interconnected

fundamental units called nanoblocks, as shown in Fig. 1. A nanoblock can be

programmed after fabrication to implement a certain logic function, while the

switchblock can be configured to route signals between nanoblocks.

2.1. NANOBLOCK

D nanoblock

0 switchblock

Fig. 1 Nanofabric architecture

11

Figure 2 shows the schematic of a nanoblock. It is composed of three sections: (1)

the molecular logic array, where the functionality of the block is located, (2) the latches,

used for signal restoration and signal latching for sequential circuit implementation, and

(3) the I/0 area, used to connect the nanoblock to its neighbors through the switch block.

The molecular logic array (MLA) portion of a nanoblock is composed of two orthogonal

sets of wires. At each intersection of two wires lies a configurable molecular switch or a

cross-point or a junction. The cross-points can be configured as "on" or "off' by applying

a voltage potential across it. When configured to be "on", the cross-points act as diodes

[1].

Figure 3 shows the implementation of an AND gate. If either A or B is at logic

"0", the corresponding diode is forward-biased and turned on. The resistors are

manufactured appropriately, i.e., resistors attached to VDD have smaller impedances than

those attached to Gnd, such that the output vertical wire is pulled down to logic "0" [1).

12

Note that the resistance of nanowires and molecular switches is very low. Figure 3 also

shows how an OR gate can be implemented for inputs X andY.

Inputs on north
and cas t
Outputs on south
and wes t.

Outputs :1re la tched by
in! inc NDR. that also

I nline
NDRs

Stripped regions
indicate connec ti ons
from the Ci\,IOS layer.

Fig. 2 Schematic of a nanoblock [1]

X y

A -+-:r--t---t--

8 -+-:r-t---t--

A"B

X+Y

Fig. 3 AND/OR gate implementation

13

If the MLA portion of a nanoblock has k horizontal wires and k vertical wires,

then the size of the nanoblock is referred to as kxk. The MLA implements Boolean

functions using diode-resistor logic. The drawback of this logic style is that a signal is

degraded whenever it passes a molecular switch. The molecular latch, constructed

entirely from molecular-scale devices, is used to perform signal restoration using power

from the clock to provide gain. The molecular latch also provides the properties of I/0

isolation and noise immunity [14].

2.2. SWITCHBLOCK

A switchblock is shown in Fig. 4. It is similar to the MLA portion of a nanoblock,

with the difference that it does not have inline NDR latches, I/0 ports and connections to

VDD and Gnd. A switchblock is formed by 4 nanoblocks. Crossing horizontal wires and

vertical wires from the surrounding nanoblocks are connected by configurable molecular

switches. If the size of the nanoblocks is kxk, then there are 2k vertical wires and 2k

horizontal wires inside a switchblock and 4k2 cross-points can be formed [1].

14

Fig. 4 A switchblock with four surrounding nanoblocks [1]

15

3. RELATED PREVIOUS WORKS

Defect tolerance methodology is presented in [2] such that components of a

nanofabric are configured to test circuits to infer the defect status of individual

components. Only stuck-at and stuck-open faults are targeted during test and the

proposed technique does not provide high recovery. Application-dependent testing of

FPGA has also been proposed in [9], [10]. A defective FPGA may pass the test for a

specific application. This is a one-time configuration; in other words the FPGA will no

longer be reconfigurable. This reduces yield loss and yields to manufacturing cost

savmgs.

In [3], testing is performed by configuring the blocks and switches as linear

feedback shift registers (LFSR). If the final bit stream generated by LFSR is correct, all

the components are assumed to be defect-free. Otherwise, there is at least one faulty

component in LFSR. To diagnose, the components in LFSR and other components are

used to configure a new LFSR. If the new LFSR is faulty, the component at the

intersection of faulty LFSRs is considered defective. A defect database is created after

completing the test and diagnosis. However only stuck-at and stuck-open faults are

targeted during test and the proposed technique does not provide high recovery.

The CAEN-BIST approach presented in [7] configures a nanoblock as a tester to

test its neighboring nanoblocks. Test patterns are fed to both the tester and the nanoblock

under test (BUT) from an external source. A defect-free BUT generates output patterns

that are identical to the input patterns. The tester compares the input test patterns and the

output patterns from the BUT to see if the BUT is defective. However, CAEN-BIST is

performed in a wave-like manner in which a set of nanoblocks in the same diagonal tests

16

another set of nanoblocks until the entire nanofabric has been tested. Therefore, the

complexity and testing time depends on the size of the nanofabric under test.

Another BIST approach was proposed in [15] where the NanoBlocks can be

configured as Test Pattern Generators (TPGs), Block Under Test (BUTs) or Output

Response Analyzers (ORAs). These blocks, along with the corresponding Switchblocks,

comprise a TG (Test Group). In a TG, the TPG generates the testing patterns for a BUT

and ORAs examine the BUT output response. A total of 4k +6 configurations are needed

to test for the stuck-at, stuck-open, bridging and defective cross-points.

In the Built-in Self-Test procedure discussed in [16] each NanoBlock is

configured either as a Pattern Generator (PG) or a Response Generator (RG). A Test

Group is created using a set of PGs, RGs and switchblock(s) between the two. The

NanoBlock configured as a PG tests itself and generates the test pattern for RG. An

external device is needed to program the NanoBlocks and read the RGs' responses. In the

test configurations, stuck-at, stuck-open, forward biased and reverse biased diode and

AND & OR bridging faults are targeted. If the size of the nanoblock is kxk, it is

estimated that 8K + 5 configurations are needed to provide 100% fault coverage. This

number of configurations is still large for a large value of k.

17

4. TESTING APPROACH

4.1. OVERVIEW

In this section, a testing approach is presented that efficiently and cost effectively

identifies the faulty components. The entire nanofabric is setup based on test

architectures to perform a self-test among the nanoblocks. In concert with carefully

selected configurations for the nanoblocks under test, the proposed approach minimizes

testing time while ensuring all fault testability. The analysis of the tests results in a defect

map that indicates faulty nanoblocks.

Moreover, two methods are proposed that increase nanofabric yield by identifying

partially defective nanoblocks that still can correctly implement the AND/OR logical

functions. The proposed optimization approach selects the minimal subset from the

entire, proposed list of configurations to test for the desired functionality only.

Additionally, this test set optimization reduces the overall testing time. The second,

customization method redesigns the test configurations such that only the required cross­

points are tested. In contrast, the optimization technique only reduces the number of

unnecessary configurations while still testing unnecessary cross-points. The drawback of

the customization method is the need for creating a new set of test configurations for each

desired logical function. The increased overhead may result in longer and more complex

testing process.

First, a set of test architectures is presented in Section 4.2. Next, the nanoblocks

configurations are introduced and discussed in Section 4.3. The optimization and

customization techniques are proposed in next Section 5.

18

4.2. TEST ARCHITECTURES AND PROCEDURE

A Test Architecture (TA) defines the manner m which the nanoblocks and

switchblocks are configured and connected. Each of the nanoblocks is configured either

as a Block Under Test (BUT) or a comparator (C) [17] and the switch blocks are used to

connect the outputs of BUTs to comparators. A nanoblock configured as a BUT in one

T A is configured as a comparator in the other T A. Hence, half of the total number of

nanoblocks is tested in each TA. In contrast to the traditional approach utilized in FPGA

type application, the proposed TAs are constrained by the fabric topology. In typical

nanofabric, nanoblocks have outputs on two sides called east (right) and south (bottom).

In order to test nanoblocks' functionality in both directions a total of four (4) T As are

required, as shown in Fig. 5. In the figure, B refers to a nanoblock which is configured as

a BUT and C refers to a nanoblock configured as a comparator.

The proposed approach defines two pairs of complementary TAs: TA-l for

outputs on the east side, and T A-2 for outputs on the south side. TA-l b is the

complement of TA-la since a BUT in TA-la is a comparator in TA-lb and vice versa.

Similarly, TA-2b is the complement of TA-2a. The selection of the particular test sets

(TA-la and TA-lb) or (TA-2a and TA-2b) is dictated by the test configuration as

discussed in the subsection 4.3.

19

[J!] l)~ 0 [i] l) '+'
~[g 0 [I] l)~ 0

-r[g 0 [ii] l)~ 0 [ID ~ >[t] 0 ~

~[g 0 [j] l) It] 0 [j] l >[Q 0 [I] ~)
0 [i] l)(g 0 ~ -r[t] 0 [j] t >[Q
[j] l)[t] 0 1m t) ~[Q 0 [ii] l)[g 0

-r[g 0 [I] t>~ 0 [ID t >[£] 0 ~

TA-la TA-lb

TA-2a TA-2b

Fig. 5 Test architectures

The test patterns are applied simultaneously usmg an external tester. Each

comparator compares outputs from two BUTs and each BUT output is connected to two

comparators. The output of the comparator will be successful if the BUTs being

compared and the comparator itself are defect free. If any of the BUTs or the comparator

itself is faulty, it's an unsuccessful comparison. Since the defect rate is of the order of

I 0%-15%, it is assumed that the probability of two defective BUTs being compared by

the same comparator is very low. It is assumed that the comparator generates a "0" for a

successful comparison and a "I" for an unsuccessful comparison. This helps generate an

intermediate defect map called the partial defect map and, in tum, the final defect map. A

20

test is run for each type of fault to be targeted to create Partial Defect Maps for

corresponding faults. Combining all the partial defect maps gives the final defect map,

which the compiler can use to configure the nanofabric by avoiding defective blocks.

4.2.1. Testing Procedure. A block is declared fault-free only if it does not

manifest any of the faults targeted. Initially the Final Defect Map is set to NULL. Next,

the BUT configuration is optimized/customized for the targeted fault. A raw defect map

is a defect map for a particular fault. For each targeted fault, the raw defect map is

initially set to null. The first test architecture is then selected and the corresponding BUT

configuration and test patterns are applied. The comparator outputs are read out and

possible faulty blocks are marked as suspects. The complementary test architecture is

then applied and the procedure is repeated. The comparator outputs are read out and a

decision is made whether the marked blocks are actually faulty or not. Figure 6 gives the

flowchart for this testing procedure.

Select target fault

Optimize/customize BUT configurations as per
requirement

Select test architecture TA-1a (TA-2a)

Partiai_Defect_Map = NULL, ~
Apply BUT configurations and test pattern_:; _ _j

'------------ I
Read comparator outputs and mark suspect faulty

blocks.

Select test architecture TA-1b (TA-2b)

Apply BUT conflg,.atlons, test patt~ms and cead]
comparator outputs ---------.. -------c-----------

E~;~_ -faulty blocks. and. generate P~rt. ia~=Defect_~:~
for the corresponding fault J

---------- I --
[Update Finai_Defect_Ma~ _____ _]

All faults
tested?

/

Yes

(---~-;:~~

~~

No

Fig. 6 Testing flow

21

22

4.2.2. Algorithm for Locating Defects. The comparator detects inconsistencies

between the outputs of two BUTs, which indicate a presence of a fault. In order to

uniquely identify the defective nanoblocks two things need to be analyzed - (1) outputs of

adjacent comparators and (2) test results in the complementary architecture. Once the

defect is located the Raw Defect Map is updated accordingly. The faulty block

identification algorithm is presented in Table I. In general, the faulty block is identified

when it is marked as faulty by two corresponding comparators. The complementary test

architecture is used to identify faults in the comparators.

Table I. Pseudo-code of the faulty block detection algorithm

1. Assign a score of zero (0) to all the nanoblocks.

2. For each TA:

a. For each comparator:

i. If the comparator gives false output, increment score "+1"

for each of the corresponding BUTs

b. For each BUT:

i. If total score is equal to two (2) then block is marked as

defective

c. Create the raw defect map.

23

4.2.3. Example of a Faulty Block Detection. Figure 7 illustrates a section of

nanofabric for two test architectures with the blocks numbered 1 through 18. The two

complementary architectures are needed to ensure that each of the blocks is tested.

I I I
T T §]

~
0 -+@] 0 0

0 0 ~ :r 0 0 ::r 0 88

0 0 §}+ 0 1

0 ::r 0

0 ~ 0 §}+ 1
Fig. 7 Subset of nanofabric in T A-1 a and T A-1 b

Consider the following assumptions:

• The fault targeted is F 1 and the test architectures used are T A-1 a and T A-1 b.

• The size of the nanofabric is 6x6.

• Blocks B4 and B5 have faults F 1.

It can be observed that block B5 is tested in T A-1 a and block B4 is tested in T A-

lb. Consider the first test architecture TA-la. The blocks C2, C4, C6, C7, C9, Cll, Cl3,

C16 and C18 are configured as comparators and compare the outputs of the BUTs.

Initially all the nanoblocks are assigned a score of "0".

24

Due to the presence of the faulty block BS, the following comparators would

generate a "1" at the output:

• C9: Blocks B3 orBS have fault Fl.

Increment B3 and BS by "1". B3=1, BS=l.

• Cll: Blocks BS or B8 have fault Fl

Increment BS and B8 by "1 ". B5=2, B8=1.

The remaining comparisons are successful. Analyzing the above results, the

following is obtained:

B3=1

B5=2

B8=1

Rest of the BUTs = 0.

Therefore, eliminating all the blocks with a score of "1" and "0" and only

retaining blocks with a score of "2" as faulty blocks, block BS is diagnosed as faulty and

the defect map is updated accordingly. Similarly the faulty block B4 is identified using

test architecture T A-1 b. Since the nanoblock size is very large, efficient data structures

based on Bloom filters have been proposed for storage of the defect map [19].

4.3. DESIGN OF NEW BUT CONFIGURATIONS, TEST PATTERNS AND
FAULT COVERAGE ANALYSIS

In order to test the BUTs for defects, they need to be configured internally and

test patterns need to be applied. Configuring a BUT refers to programming the various

cross-points in the nanoblock and applying the desired voltages to the nanowires. The

BUT configuration and the test pattern target specific fault types. In turn, the particular

25

configuration dictates which pair of complementary test architecture has to be used based

on the direction of inputs and outputs. In each configuration, one or more faults can be

targeted.

In general the faults can be divided into two categories: nanowire faults and the

cross-point faults. The former affects the entire vertical or horizontal wire in a nanoblock,

thus rendering it useless. The latter affect only individual cross points and can potentially

have no effect on the correctness of a logic function implemented using the remaining

good cross-points inside the particular block. The configurations are grouped in two sets:

(a) Set I that targets the nanowire faults and includes configurations C 1 through C4, and

(b) Set II that targets the cross-point faults and includes configurations C5 and C6. The

following faults are targeted in the next subsection: stuck-at and stuck-open faults,

connection faults, and bridging faults using a set of test architectures, BUT configurations

and test patterns.

4.3.1. Configuration Cl: Stuck-a t-O and Stuck-Open Faults. The BUT

configuration C 1 is shown in Fig. 8(a). Here, all the junctions are programmed as diodes

and all inputs are connected to "1 ". Hence all outputs should be "1" for a fault free BUT.

However if any of the lines has a stuck-at-0 and/or stuck-open fault, the corresponding

output will be "0". Test architectures T A-1 a and T A-1 b will be used in conjunction with

this BUT configuration since the inputs are on the west and outputs on the south of the

nanoblock. Consider for instance that a vertical line has a stuck-at-0 fault as shown in

Fig. 8(b) and hence is permanently tied to 0. As a result, the output for the vertical line 2

will be a "0" while for all other defect free lines the output will be a "1 ".

k

1--t~~-+-:r

1-t~-br---f::r

1 1 1

(a)

Stuck-at-0 fault

/
1-t:r-~-+-:r

1 --t-:;,--t::Jr-+::r-

1 [Q] 1

(b)

Fig. 8 (a) BUT configurations and test patterns for Cl (b) Example fault detection

26

4.3.2. Configuration C2: Stuck-at-1 Faults. The BUT configuration C2 is

shown in Fig. 9(a). Here all the junctions are programmed to behave as diodes and all

inputs are connected to "0". Hence, for a defect free BUT all the outputs should be "0".

However, if any of the lines has a stuck-at-1 fault, the corresponding output will be "1 ".

Test architectures TA-2a and T A-2b will be used in conjunction with this BUT

configuration since the inputs are on the north and outputs on the east of the nanoblock.

Consider for instance that a vertical line has a stuck-at-1 fault as shown in Fig. 9(b) and

hence is permanently tied to 1. As a result, the outputs will be "0".

k

k
__ A.._ ___

r "'
0 0 0

r-'Y'----t:r--f-7--+..- 0

~-+-br-~,.. 0

,-JV\---t-,,--1!-,----+-,,... 0

(a)

Stuck-at-1 fault

0 0

(b)

Fig. 9 (a) BUT configurations and test patterns for C2 (b) Example fault detection

27

4.3.3. Configuration C3: AND/OR Bridging Faults (H/H). The bridging faults

between adjacent horizontal wires can be detected by using the configuration shown in

Fig. 10(a). The BUT is configured in such a way that the programmed diodes are forward

biased. Consider that there is AND-bridging between the second and third horizontal wire

as shown in Fig. 1 O(b) and as a result the second horizontal wire is pulled down to a "0",

the output will be inverted. Test architecture T A -1 a and T A -1 b will be used in

conjunction with this BUT configuration.

28

0 -+-+----+o:r

0 1 0 0 []] 0

(a) (b)

Fig. 10 (a) BUT configurations and test patterns for C3 (b) Example fault detection

4.3.4. Configuration C4: AND/OR Bridging Faults (V/H). This is similar to the

previous configuration, and tests for bridging faults between the vertical wires. The

configuration is as shown in Fig. 11(a). The inputs applied and the expected outputs are

as shown. However if there is any AND/OR bridging between the vertical wires, the

output changes. Consider for example that the first vertical wire changes to a "1" due to

OR bridging with its neighboring wires. This is shown in Fig. 11 (b). The diode on that

wire will now be reverse-biased and hence act as open switch and the corresponding

horizontal output will become a "1 ". Test architecture TA-2a and TA-2b will be used in

conjunction with this BUT configuration.

k

k
~

0 1 0

~~...-11---+- 0

L"""--t----1M:r--+- 1

OR bridging
,-A---.

0 1 0

1"'¥'--t::r-+---t-[)

r!"'--+---tb:r--+-- 1

Fig. 11 (a) BUT configurations and test patterns for C4 (b) Example fault detection

29

4.3.5. Configuration CS: Reverse Biased Diode and V 1H Bridging Faults.

Here all the junctions are programmed to behave as diodes. Horizontal wires are

connected to "1" while the vertical wires are connected to "0" as shown in Fig. 12(a). The

output can be taken either from the east or from the south side. Hence either of the two

test architecture sets can be used. Such a configuration reverse biases all the junction

diodes and the outputs are all 1 's if taken on the east side and all O's if taken on the south

side. In the figure shown, outputs are taken on the east. If any of the reversed biased

diode is defective and has a small resistance, or there is bridging between the horizontal

and vertical wires, the output on the east side will be pulled down to "0". This

configuration thus detects defective reversed biased diodes and bridging faults between

vertical and horizontal wires. Consider the example shown in Fig. 12(b). The circled

diode is faulty and offers a small resistance in the reverse biased state. Hence the

corresponding horizontal output changes to a 0.

30

k
~
0 0 0 0 0 0

1 1 1 1

k 1 1 1 [Q]

1 1 1

(a) (b)

Fig. 12 (a) BUT configurations and test patterns for CS (b) Example fault detection

4.3.6. Configuration C6: Forward Biased Diode Faults. For a kxk nanoblock,

detection of forward biased diode faults requires a total of k configurations to test all the

cross-points. Figure 13(a) shows these configurations. Here the vertical wires are

connected to V dd and only one junction is programmed as a diode on each of the

horizontal and vertical wires in each configuration. Thus in the first configuration, the

cross-points are programmed in a diagonal fashion. The different sub-configurations are

obtained by shifting the programmed cross-points one position to the right. The outputs

are "0" for a defect free BUT since the diodes are forward biased and transmit a "0" to

the output. If any of the forward biased diode is defective as shown in Fig. 13(b), the

corresponding vertical wire output will be pulled up to a "1 ". Test architecture T A -1 a and

T A-1 b will be used in conjunction with this BUT configuration.

0 0 0

v y

0 -+-i:::r--+--

0--t-+--+-

0 -+.,..--+--+-

0 0 0

(a)

0--+-+---+=-

0 --+~+---+-

0 0 0

0--tr--+--+-

0 --t---f~r-+-

0 1 0

(b)

Fig. 13 (a) BUT configurations and test patterns for C6 (b) Example fault detection

4.4. FAULT COVERAGE AND NUMBER OF CONFIGURATIONS

31

Table II summarizes the various faults covered using these configurations, and the

BUT configurations-test architectures to be used for each of the faults. A Total of 2k+ 10

configurations are needed to test the entire nanofabric for the given faults. This number is

reasonably small compared to other BIST techniques and also provides sufficient fault

coverage. Also, it is independent of the number of nanoblocks in a nanofabric. These

configurations can be modified as per the optimization technique which will be described

in Section 5. By optimization, the main aim is to reduce the number of configurations

and/or the number of cross-points programmed thereby reducing the testing time.

32

Table II. Fault coverage and configurations

Configuration

Fault Model Set I Set II

C1 C2 C3 C4 C5 C6

Stuck-at-0 X

Stuck-at-1 X

open-line X

AND bridging (h/h) X

AND bridging (v/v) X

OR bridging (h/h) X

OR bridging (v/v) X

OR bridging (v/h) X

Cross-points
X

(foiWard)
Cross-points

X
(reverse)

Configurations/test 1 1 1 1 1 k
patterns

Test Architecture TA-1 TA-2 TA-1 TA-2 TA-1 TA-1 /TA-2
Elimination of

redundant N N N N N y
configurations

Customization for
effective cross-point N N N N y y

testing

33

5. OPTIMIZATION TECHNIQUE

The BUT configurations described above are used to test for one or more faults.

Thus it gives the user a flexibility to choose the configurations depending upon which

faults are targeted. Also, each fault detecting configuration will have its own cost

associated with it i.e. testing time, complexity etc.

The proposed testing strategy can be optimized such that utilization of the

nanoblocks is increased, the testing time reduced, and the number of required

configurations decreased. Exhaustive test includes all configurations C 1 through C6,

where all cross-points and nanowires of each nanoblock are tested for all faults.

However, it may not be necessary to test all the cross-points/NWs in a nanofabric since

there are redundant cross-points. Consequently, the entire test process includes

unnecessary checks and it is possible to test only a subset of cross-points and NWs,

which are required to implement a logic function. For example, the optimization scheme

would select a subset of tests that target only the needed cross-points out of all k/\2 ones.

First, the list of cross-points/NWs tested in each configuration is tabulated. Next, the

columns that correspond to the cross-points not required by the targeted logic function

are removed. Then, using Petrick's method of reduction, the minimal test set required for

the targeted faults is obtained. In fact, the Petrick's method will list all possible

combinations of the tests that are required. Consequently, it is straightforward to assign

various weights to performance metrics such as testing time, configuration time thus

enabling a more flexible optimization.

A typical logic implementation in nanoblocks realizes AND and OR gates only

[13], since these are the basic gates employed when implementing any logic function.

34

Note, that nanoblocks require external component to implement NOT logic function thus

complementing the minimal and complete set of gates. A kxk nanoblock can be used to

realize an AND/OR gate with (k-1)-inputs.

Figure 3 shows an example of a 2-input AND/OR gate implemented using a 3x3

nanoblock. It can be observed that all the NWs need to be fault free. However, only 4 out

of the total 9 cross-points are programmed and take part in implementing the logic

function. These cross-points are referred to as effective cross-points. Similarly for a 4x4

nanoblock, in order to implement a 3-input AND/OR gate, there are 6 effective cross­

points. In general for a kxk nanoblock, in order to implement a (k-1) input AND/OR gate,

only 2(k-1) effective cross points are needed. However, all the NWs need to be tested.

The BUT configurations and test patterns described in Section 4.3 have been split into

two sets - set I which tests the nanowire faults and set II which tests the cross-point

faults. Thus it is possible to optimize the BUT configurations C5 and C6 which belong to

set II, in such a way so as to test only the effective cross-points.

The performance will be evaluated using utilization metric, which is a probability

that a nanoblock is successfully used to implement a logic function. Considering the

effective cross-points, the utilization of nanoblocks can be improved since faults in

unused cross points will neither be tested nor interfere with correct function

implementation. The increase in utilization is due to the fact that it is possible to use a

defective nanoblock to implement a logic function as long as the effective cross-points

are defect free.

Consider configuration C5 where in all the cross-points are tested. This needs to

be modified to test only the required cross-points. The optimized configuration C5 is

35

shown in Fig. 14. Here again only the effective cross-points are tested based on the

assumption that nanoblocks implement only AND and OR gates. For this, it is required

program (k-1) cross-points on one vertical line and (k-1) cross-points on one horizontal

line. The number of cross-points programmed (and tested) is thus reduced from k2 to 2(k-

1). This reduces a lot of time-overhead associated with programming the cross-points and

also increases the utilization of the nanoblock.

1

1

1

1

0 0 0 0
...

"' :11'

, , , 11'
0 0 0 0

1

1

1

1

Fig. 14 Customized configuration C5

Now consider the configuration C6 shown in Fig. 13(a) in which all the cross-

points are tested. Here optimization using a 3x3 nanoblock is demonstrated for simplicity.

Three sub-configurations are needed to test all the cross-points (for a 3x3 nanoblock).

Two approaches to optimize C6 are discussed and each has its own pros and cons.

36

5.1. ELIMINATION OF REDUNDANT CONFIGURATIONS

It is possible to eliminate the efforts required in designing new configurations to

test only the effective cross-points by selecting a subset from the defined sub­

configurations of C6. Since C6 needs a total of k sub-configurations to test all the cross­

points, a table can be laid out which lists the different cross-points tested in each of the

configuration of C6, and then from this table select only the set of configurations which

are needed to test the effective cross-points. This is demonstrated below.

Table III shows the cross-points tested in each of the sub-configurations of C6 for

a 3x3 nanoblock. Here, the assumption is that nanoblocks are used to implement AND

and OR gates only. Hence, from Fig. 3, it can be observed that there are only 4 effective

cross-points- cpll, cp21, cp32, cp33. From Table III, it can be seen that these four cross­

points can be tested in two configurations C61 and C63 and the configuration C62 is

redundant and can be avoided. Thus, only 2 configurations are needed instead of 3 as a

result of optimization. This can be extended to a kxk nanoblock, wherein the total

number of configurations required is now (k-1) instead of k. Moreover, since the number

of cross-points to be programmed is reduced, this leads to a considerable reduction in

testing time.

37

Table III. Junction cross-points tested in each configuration

Jtu1ction cross points tested
Configuration cpll cp12 cp13 cp21 cp22 cp23 cp31 cp32 cp33

C61 X X X

C62 X X X

C63 X X X

5.2. CUSTOMIZED CONFIGURATIONS

The advantage of the above approach is that there is no need to design new

configurations. It is possible to simply select the desired configurations with the help of a

table. This is simpler and less time consuming. However, It can be seen from the above

table that in addition to the effective cross-points, some additional cross-points are also

tested (six cross-points in the above case instead of four) which are not required. This

reduces the utilization slightly as opposed to the maximum utilization that can be

obtained. To have maximum utilization, custom configurations can be designed wherein

only the cross-points which are necessary are tested. Figure 15 shows the customized

configurations for C6 for a 3x3 nanoblock.

v

0--4~-1---+-

0--+--+--+-

0--+--+--+---

0 1 0

0-4--+--+-

0-4--+--+-

0--+-........ -+-

0 0 1

Fig. 15 Customized configuration C6

38

Here, two configurations are required but only the effective cross-points are

tested. This gives the maximum utilization with a slightly reduced testing time than the

first approach. However, this demands the design of new customized configurations and

not re-using existing ones.

5.3. RECOVERY PROCEDURE

Once the entire testing phase has been completed and the faulty nanoblocks

identified, an additional recovery procedure could be used to diagnose the faulty

nanoblocks and further increase the utilization of nanoblocks. This is optional and may be

carried out only if utilization is a major concern since this will increase the total testing

time.

A defective nanoblocks implies that it cannot implement AND and OR logic

within the same nanoblock. However since the cross-points used to implement AND and

OR logic are distinct, there can be nanoblocks among the defective ones, which can

implement either of the two functions but not both. An additional testing phase can be

carried out for the defective nanoblocks to test for the AND or OR implementation. The

BUT configurations need to be modified accordingly since a nanoblock is tested only for

one implementation and hence, only the corresponding cross-points need to be tested.

Thus at the end of these test phases, there are three sets of usable nanoblocks- (i) those

which can be used to implement both AND and OR function, (ii) those which can

implement only OR function, and (iii) those capable of implementing only AND

function.

39

6. ANALYSIS AND DISCUSSION

6.1. NUMBER OF CONFIGURATIONSffEST PATTERNS

The BIST approaches developed by authors in [15] and [16] have been discussed

in Section 3. It can be seen from Table I that the total number of configurations/test

patterns required to test the entire nanofabric is 2k+ 10. While after using the optimization

technique, it results in 2(k-l)+ 10. From the analysis of BUT configurations in Section 4.3

it can be deduced that only configuration C6 depends on the value of k while rest of them

are independent of k.

6.2. NANOBLOCK UTILIZATION

The term nanoblock utilization is defined as the probability that a nanoblock can

be successfully utilized to implement a logic function in the presence of defects. A

mathematical expression will be derived for nanoblock utilization for the optimized

technique and compared with that of a non-optimized approach.

Assume a nanoblock of size kxk. Let p = probability of a faulty cross-point. For a

non-optimized testing approach, a nanoblock is deemed as faulty if at least one of its

cross-points is found to be faulty. Hence, the condition for a nanoblock to be utilized

successfully is that all its cross-points have to be fault free.

Utilization (non-optimized) = Probability {all cross-points are fault free}

(1)

For the optimized technique, as described in Section 5, there are 2(k-1) effective

cross-points for a kxk nanofabric. In order for the nanoblock to be successfully utilized to

40

implement the logic function (AND/OR), these 2(k-1) cross-points need to be fault free.

Hence the utilization in this case is given by:

Utilization (optimized)= Probability {2(k-1) cross-points are fault free}

U2 = (1- p)2(k-t) (2)

6.3. TESTING TIME

The total testing time for the nanofabric can be split into a number of components.

Let tconfig denote the total time required to configure the BUT i.e. to program the

various cross-points and set up power connections. Thus tconfig would not be the same

for all configurations since the number of cross-points programmed is not the same for all

the configurations.

Let tp denote the time required to program a single cross-point and ts be the time

required to set up the V dd/Gnd connections to the wires. Let ttest denote the time

required to apply a test pattern to the BUT, wait for the comparator outputs to be

generated, read the comparator outputs and generate the partial defect map. Here it is

assumed that ttest >> tconFig. Using these different components, the total time required

for testing a nanofabric can be calculated for a kxk nanoblock.

Let Ti denote the testing time for configuration Ci (as described in Section 4.3),

Ti* denote the testing time for the configuration Ci after using the optimization technique

and Ti ** denote the testing time after using customization approach. The total testing time

is given by the sum of the testing times for each of the individual configurations. Table

IV gives a summary of the testing time for optimization and customization approaches.

T6* = 2 * {[(k - 1) * tp + ttestl * (k - 1) + t5 }

(11)

Table IV. Summary comparison of the testing time

Change due to Change due to Customization Optimization

CI Ti- T1 = 0 Ti*- T1 = 0

Wire C2 T2- T2 = o T:Z*- T2 = 0
Testing

Time C3 T3'- T3 = 0 T3*- T3 = 0

C4 T4- T4 = 0 T4*- T4 = 0

Cross- C5 T5- Ts = -2tp[k- 1]2 T5* - T5 = -Ztp[k- 1]2
point

Testing
C6 T6- T6 = -Z[ktp + ltest) T6*- T6 = -Zk[(k + Z)tp- ltestl Time

Total
-2[tp(k2 + k -1)- ltest) -2[tv(2k2 - k + 1)- ktrest]

Difference

41

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(1 0)

42

6.4. RECOVERY PROCEDURE

The recovery procedure is discussed in Section 5.3. Here, the nanoblock would be

usable if it can implement either an AND or OR logic but not both. Though the

functionality of the nanoblock is reduced, it still is usable. Hence an increase in the

utilization of the nanoblock is expected.

Assuming the parameters defined m Section 6.2, the utilization after usmg

recovery procedure would be given as

(12)

43

7. RESULTS

Figure 16 shows the companson between our method and the approaches

discussed in [15] and [16] with respect to the number of configurations required for

testing a kxk nanofabric.

100

90

80

rJ) 70
<=
S?
~ 60 :::>
0>

"" <= 50 0
u
0

~ 40
E
:::> 30 <=

20 l •
•
•

10 ~

0
3 4

-,-~--------··---I

•
•

•

.
5 6 7

nanoblock size. k

Our optimized method

Ref [16)
Ref[15]

'
8 9

•

10

Fig. 16 Number of configurations required in comparison with the approaches discussed
in [15] and [16]

Figure 17 shows the plots of (1) and (2) for a value of k between 3 and 10. It can

be seen that the optimization technique leads to a significant improvement in the

utilization of the nanoblock. This implies that the probability of a nanoblock being

rendered unusable is greatly reduced.

44

• No optimization
·* _,. Optimized techtique

0.9 +
-Y-

•
·~;·

0.8
......... • #. -c:
0

ia 0.7
~ •
:;::;
:J

.:.(. • g 0.6
:c
0 c:
1"0 • c: 0.5

•
0.4

3 4 5 6 7 8 9 10
nanoblock size, k

Fig. 17 Improvement in utilization of the nanoblock

Figure 18 shows Total testing time for a nanoblock size varying between 3 and

10. The improvement in testing time increases with the nanoblock size (k) since the

fraction of effective cross points to the total number of cross points decreases with the

nanoblock size. The number of effective cross points grows linearly with the nanoblock

size, while the total number of cross points increases exponentially (k/\2).

Figure 19 shows the plot of (12) for a nanoblock size between 3 and 10. The

utilization of the nanoblocks improves since the customized configurations target only

the effective cross points instead of fewer configurations. Consequently, only defects

related to the effective cross points are detected and will mark the block as faulty.

45

2200
.l • No optimization ~

2000 Optimized technique

1800

• 1600
Q)

E 1400 :;:; • + Cl
.!:
iii 1200
Q)
I- •
ni 1000 0
I- • BOO

+ • 600
•·· •

400)t;.

200
3 4 5 6 7 8 9 10

nanoblock size, k

Fig. 18 Reduction in total testing time after optimization

• No reco~ery procedure

0.98*' Using reco~ery procedure

0.96

0.94

~
•

~ 0.92 c::
0 •
~
~ 0.9
5 •

0.88 •

0.86 •

0.84 •

0.82 __l__~

3 4 5 6 7 8 9 10
nanoblock size, k

Fig. 19 Improvement in utilization using recovery procedure

46

In the case of optimization technique, unnecessary configurations were removed

from test while still testing the redundant cross points in the remaining configurations.

However, since only partial functionality is tested, additional tests need to be carried out.

This results in an increase in the number of tests and testing time. Figure 20 shows the

increase in testing time as a result of using recovery procedure. Hence, the improvement

in utilization is obtained at the expense of increased testing time. As a result, the recovery

procedure should be used only in cases where utilization is more important than testing

time.

2200

2000

1800

1600
Q)

·~ 1400 -
Cl c::
~ 1200
Q)

1-
Iii 1000 0
1-

800

600

•
400

200 ~-
3 4 5 6

• No optimization
Optimized technique
Using recovery procedure

•

7 8 9
nanoblock size, k

10

Fig. 20 Increase in testing time as a result of using recovery procedure

47

8. CONCLUSION

The presented, novel testing procedure has been show to outperform the existing

testing approaches. The proposed configurations and test patterns provide 1 00% fault

coverage for stuck-at, stuck-open, connection and bridging faults. The parallel testing

architectures is does not increase testing time with nanofabric size thus making it suitable

for the dense architectures. Also, it requires only 2k+ 1 0 configurations, which

corresponds to 23% reduction over the method discussed in [15] and 55% reduction over

the method proposed in [16] for nanoblock size ofk=5. Moreover, using the optimization

technique described here, the nanoblock utilization is increased from 76% to 91% for

nanoblock size k=5. A significant reduction in testing time of the nanofabric is also

observed. For example for k=5, the testing time is reduced by 29%. Moreover, the

proposed recovery procedure can tailor testing to a particular functionality (either AND­

gate or OR-gate). This further increases the utilization of nanoblocks from 91% to 96%

for k=5. In summary, the proposed technique is simple, efficient, quick, and outperforms

the existing approaches. Further work will include theoretical analysis to demonstrate

optimality of the proposed approach and later development of a new, fault-tolerant design

methodology.

48

9. REFERENCES

[1] S. C. Goldstein and M. Budiu, "NanoFabric: Spatial Computing using Molecular
Electronics," in Proc. Int. Symp. on Computer Architecture, pp. 178-189, 2001

[2] M. Mishra and S. C. Goldstein, "Scalable Defect Tolerance for Molecular
Electronics," workshop on Non-Silicon Computing, 2002

[3] M. Mishra and S. C. Goldstein, "Defect Tolerance at the End of the Roadmap," in
Proc. Int. Test Conf. (ITC'03), pp. 1201-1210, 2003

[4] R.M.P. Rad; M. Tehranipoor, "A Reconfiguration-based Defect Tolerance
Method for Nanoscale Devices," 21st IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, 2006. DFT '06, pp. 107- 118

[5] J. Dai, L. Wang; F. Jain, "Analysis of Defect Tolerance in Molecular Crossbar
Electronics," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2009, pp. 529- 540

[6] A. Al-Yamani; S. Ramsundar,; D. Pradhan, "A Defect Tolerance Scheme for
Nanotechnology Circuits," IEEE Transactions on Circuits and Systems 1: Regular
Papers, 2007, pp. 2402 - 2409

[7] J. G. Brown and R. D. S. Blanton, "CAEN-BIST: Testing the nanofabric," in
Proc. International Test Conference, 2004, pp. 462--471

[8] C. Stroud, S. Konala, P. Chen and M. Abramivici, "Built-In Self-test of Logic
Blocks in FPGAs (finally, a free lunch: BIST Without Overhead)," in Proc. IEEE
VLSI Test Symposium (VTS'96), pp. 387-392, 1996

[9] M. B. Tahoori, E. J. McCluskey, M. Renovel and P. Faure, "A Multi­
Configuration Strategy for an Application Dependent Testing of FPGAs," in Proc.
IEEE VLSI Test Symposium (VTS'04), pp. 154-159, 2004

[10] M. Tahoori, "Application-Dependent Diagnosis of FPGAs," in Proc. Int. Test
Conf. (ITC'04), pp. 645-654, 2004

[11] C. Metra, G. Mojoli, S. Pastore, D. Salvi and G. Sechi, "Novel Technique for
Testing FPGAs," in proc. Design, Automation and Test in Europe (DATE'98),
pp. 89-94, 1998

[12] S. J. Wang and T.M. Tsai, "Test and Diagnosis of Faulty Logic Blocks in
FPGAs," in lEE Proceedings: Computers and Digital Techniques, pp. 100-106,
1999

49

[13] M. Abramovici, E. Lee, and C. Stroud, "BIST-based diagnostics for FPGA logic
blocks," in Proc. International Test conference, 1997, pp. 539-547

[14] S.C. Goldstein and D. Rosewater, "What makes a good molecularscale computer
device?" School of Computer Science, Carneige Mellon University, Tech. Rep.
CMU-CS-02-181, Sept. 2002

[15] Z. Wang and Chakrabarty, K., "Built-in Self-Test of Molecular Electronics-Based
Nanofabrics," European Test Symposium, 2005, pp. 168- 173

[16] M. Tehranipoor, "Defect Tolerance for Molecular Electronics-Based NanoFabrics
Using Built-In Self-Test Procedure," 20th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), 2005

[17] M. V. Joshi and W. K. Al-Assadi, "A BIST approach for configurable nanofabric
arrays," 8th IEEE Conference on Nanotechnology, 2008, pp. 695-698

[18] R. Zamanlooy, B. Ayatollahi, A., "Modified CAEN-BIST algorithm for better
utilization of nanofabrics," International Conference on Electrical and Computer
Engineering, 2008. ICECE 2008, pp. 297 - 301

[19] G. Wang, "On the Use of Bloom Filters for Defect Maps in Nanocomputing,"
Proceedings ICCAD 2006, pp: 743-746

II. INTRODUCTION TO A NOVEL DEFECT -A WARE LOGIC MAPPING
APPROACH FOR CROSSBAR-BASED NANOFABRICS

Sambhav Kundaikar, Maciej Zawodniok

Electrical and Computer Engineering

Missouri University of Science and Technology

Rolla, MO 65401, USA

Email: sdk8v5@mail.mst.edu, mjzx9c@mst.edu

Abstract

50

Nanofabric architectures using nanowire crossbars have shown promising potential for

future nano-scale circuit design. However, due to the chemical self-assembly and

alignment process, the defect rates are much higher than those of the conventional

CMOS technology thus posing different design challenges. Specifically, the nanoblocks

have a high level of redundancy that allows implementing a correct logic function also

inside a partially defective block. In this paper a novel defect-aware logic mapping and

routing technique is proposed. Additionally, compared with the previous works, our

technique considers logic mapping at the nanoblock level. The proposed method is

suitable for AND/OR function realizations and is a more time- and cost-effective design

when compared with the existing techniques. Also, the impact of defects on logic mapping

and routing is discussed and analyzed mathematically.

51

1. INTRODUCTION

Conventional lithography-based CMOS technology faces serious challenges due

to its fundamental physical limits such as ultra-thin gate oxides, short channel effects,

doping fluctuations cross the chip and increasingly difficult and expensive lithography.

Therefore, new technologies are needed to replace CMOS in the future to continue the

Moore's Law. It has been shown that using bottom-up self-assembly techniques, it is

possible to build nano-scale devices, such as carbon nanotubes (CNTs) and silicon

nanowires (NWs), without relying on lithography to define the smallest feature size [1].

Each cross point can be made to operate as a reprogrammable switch and can be used as a

memory cell. These switches can be programmed using the signal lines by applying an

appropriate (high) voltage. Such devices offer a prospect of high integration density (lQlO

to 1012 gate equivalents /cm"2) [2]. The alternative technology has been referred to as

Chemically-Assembled Electronic Nanotechnology (CAEN) [3][4][5][6]. A 2-

dimensional array of orthogonal NWs forms a nanoblock. These nanoblocks arranged in

a regular grid form a nanofabric. In addition to high density, these architectures offer an

advantage of re-configurability since they consist of reprogrammable switches

(junctions).

High defect rate in a nanofabric is a major challenge and reduces yield of the

nanoblocks, that is a number of nanoblocks required to implement a given logic function.

Due to the non-deterministic nature of the self-assembly process, the defect rates in such

devices could be as high as 10% [7]. This number is orders of magnitude larger than for

the conventional CMOS technology thus potentially negating the benefits of

nanotechnology. Therefore, advanced fault-tolerant design and testing techniques are

52

needed to increase nanofabric yield and fully exploit the strengths of nano-architectures

[8][9][1 0][15]. Specifically, new, efficient logic mapping and routing techniques are

desired. Those should counter the high defect rates in the nanofabric. Simplistic approach

would be to perform a brute force, exhaustive search of possible mappings in order to

find the best possible route. However, this would increase the testing and design

overhead in terms of time and complexity. Moreover, the complexity of the design

process increases due to the random location of defects in nanofabric and the non­

deterministic, potentially dynamically reconfigurable functionality to be implemented.

The proposed mapping technique exploits the existing standard configurations of

nanoblocks for the AND/OR function. The technique discussed in [1 0][16] explains the

testing of nanoblocks implementing AND/OR functionality. As a result, the defect free

nanoblocks are used to implement AND/OR logic. The nanoblock configurations for

AND/OR have also been discussed in [10][16].

In this paper, the drawbacks of traditional logic mapping techniques in the context

of the CAEN technology are discussed. Then, a new technique is proposed improves

efficiency and simplifies design process over the existing approaches. Also, the effects of

faults and defects on logic mapping and routing are analyzed.

The main contributions of the paper are: (a) A novel logic mapping approach for

nanofabrics tested by the testing technique discussed in [10], (b) Study of the effects of

various parameters such as the defect rate, location of defects, complexity of the function

to be implemented, on the proposed mapping technique.

The rest of the paper is organized as follows. Section 2 describes the problem

statement and the traditional logic mapping scheme for crossbar based nanofabric. In

53

Section 3 the new proposed mapping technique has been described and illustrated with a

few examples. Analysis and results have been presented in Sections 4 and 5, respectively.

Finally, Section 6 concludes the paper.

54

2. BACKGROUND AND PREVIOUS WORK

The re-configurability and functional redundancy within nanofabric and

nanoblocks enables development of robust, defect- and fault-tolerant design mechanisms.

When a defective resource or component is identified in the chip using test and diagnosis,

the post-fabrication configuration and logic mapping can counter effects of those defects.

Logic mapping onto nanoblocks refers to programming the various cross-points of the

nanoblock to implement different gates and connecting them together to obtain the

required logic function. A nanoblock consists of two groups of parallel nanowires which

are perpendicular to each other in the same plane and programmable cross-points at the

junction of these nanowires [3]. These cross-points can be programmed to behave as

diodes by application of a suitable voltage levels. Nanoblock can implement AND/OR

gate functionalities by programming the different cross-points and by configuring pull up

and/or pull down resistors. Figure 1 illustrates example implementation of a simple logic

by programming the cross-points in a nanoblock and the use of pull-up/pull-down

resistors. Note that not all cross points are employed in this realization.

A

B

AB

C D

AB+C+D

Fig. 1 Simple logic implementation

55

All used nanowires and cross-points need to be fault free. If any of the nanowire

and/or any of the cross-points is faulty, the configuration needs to be redesigned. In most

of the existing testing techniques, a nanoblock is deemed to be fault-free only if all its

constituting nanowires and cross-points are fault-free. Consequently, the typically high

defect rate of about 10% leads to a reduced yield and low effective logic density. In order

to map logic onto a nanofabric in the fashion shown in Fig. 1, it is important to know the

location of defects. If the defective nanowires and cross-points are known, the

nanoblocks can be programmed to avoid these cross-points and wires while still

implementing correct logic function.

Consider nanoblock with two defective cross points as shown in Fig. 2 by "x".

Also, an alternative implementation of the same logic function as in Fig. 1 is shown. As

demonstrated, the functional redundancy of the nanoblock enabled us to overcome minor

defects in the nanoblock.

56

AB+C+D

AB

Fig. 2 Logic implementation in the presence of defects

The precise knowledge of the location of cross-points is known, the nanoblock

can be programmed in a different way to implement a particular function. Also, there

might be cases wherein it may not be possible to implement a function within a

nanoblock if there are not enough fault-free cross-points available. Note, that any

standard configurations of nanoblocks would not be able to overcome such defects and

would render this block unusable. Consequently, to overcome defects each nanoblock

needs to be configured in a different way depending on the number of faults, location of

faults, and the logic function to be implemented. There are numerous testing techniques

[8][9][15] described to diagnose the faulty nanoblocks. However, typically these

techniques test for various faults in the nanoblocks and mark them as defective such that

they can be avoided during the reconfiguration step. Consequently, these techniques do

not support detailed information about the location of a fault within the nanoblock.

Exhaustive testing has to be done to identify the fault location. This places a lot of

demands on the testing algorithm to be used and also increases the complexity and testing

time of the algorithm.

57

3. A NOVEL LOGIC MAPPING TECHNIQUE

Once the nanofabric is manufactured, it needs to be tested thoroughly to identify

the faulty blocks. The testing methodology used will test for certain types and number of

faults. Once the faulty areas in the chip have been identified, the next step is to map logic

onto the nanofabrics by avoiding the faulty blocks. A logic mapping technique was

demonstrated in Section 2. The process of logic mapping could be simplified if there

were standard configurations of nanoblocks available which could implement specific

functionality. This would reduce the effort needed to design custom configurations for

each nanoblock. Configuring a nanoblock refers to programming the various cross-points

within the block to implement logic functionality.

A novel logic mapping technique is proposed which would use the result of the

testing technique discussed in [10]. Here the types of faults targeted are stuck-at faults,

bridging and cross-point faults. It is assumed that each nanoblock implements only

AND/OR logic and is tested to make sure it can successfully implement such a

configuration. This requires only a certain set of cross-points to be fault free in order to

successfully implement the function. This results in a substantial increase in the yield of

the nanofabric. Also, the nanoblocks are assumed to be implementing only AND/OR

gates, and the nanoblock configurations are fixed. A kxk nanoblock implementing a (k-1)

input AND/OR gate is shown in Figure 3. The F 1 output implements the AND function

for inputs At,A2, •. A(k-l), while F2 implements the OR function for the B~,B2, .. B(k-I) inputs.

For such configuration, the effective cross-points (required for function realization) are

known a priori. Hence, the customized testing, such as the one in [16], provides map of

useful nanoblocks that can be utilized even if a partial defects are present. Consequently,

58

the nanoblocks marked as fault-free can implement AND/OR logic usmg standard

configurations, such as the one in Fig. 3.

Al --t:-+--+--t­

A2 -:-t:;r--t--+-+-

Fig. 3 AND/OR implementation

The main advantage of such an implementation is that knowledge of the location

of defects inside the nanoblock is not required. Also, no effort would be needed in

designing the nanoblock configurations for each nanoblock since standard AND/OR

implementations are used. This implementation method requires the function to be in the

sum of products (SOP) or product of sums (POS) form. Once the function is available in

the required form, the number of input blocks required to implement the function is

determined and the functionality is mapped to each of the blocks used. i.e. each block is

mapped to implement wither AND logic or OR logic. Once functionality has been

mapped to the nanoblocks, the blocks need to be connected to each other through

switch blocks and the result is routed to the output of the nanofabric. Here this method is

illustrated using a few examples.

59

Consider a simple function Zl = AB+C+DE. A total of two AND and two OR

gates are needed to implement this function. Consider a fault free nanofabric consisting

of 36 nanoblocks and each nanoblock is 3x3. The implementation of this function is

shown in Fig. 4. The circles represent switchblocks which are used to connect the output

of one block to the input of next one. The rectangles represent the nanoblocks which are

configured to implement either an AND or OR gate or are just used for routing purposes.

As can be seen, the mapping procedure is relatively simpler in the absence of defective

blocks. However, in the presence of defects, it is necessary to avoid the defective blocks

and route the result to the output of the nanofabric.

A- DODO B ··-,.·-···-·

c DOD
·--? zl

ODODOD
DODODO
ODODOD

Fig. 4 Logic mapping using AND/OR blocks

60

Consider a similar nanofabric with a few defective blocks as shown in Fig. 5.

Here the defective blocks have been identified by the testing procedure and indicate that

they cannot be used to implement any logic. However, in some cases they may be used to

transfer signals from one block to the next. This means they can be used for routing

purposes. Consider the implementation of a half adder with inputs A, B and outputs sum

(S) and carry (C) in the presence of faulty blocks. As can be seen, the faulty blocks need

to be avoided to find a fault free path. Thus in the presence of faulty blocks, a number of

nanoblocks are used just for routing around the faulty blocks.

A
8 ~?EJm(j) 0 0 D 0

0dJ-wooo
~ =:EJ-B~B-8-·s
~ o-~ANol(j) 0 0 D

l

D 0 Gmmm8El0 :·C

ODODOD
Fig. 5 Half adder implementation in the presence of defects

61

4. ANALYSIS AND DISCUSSION

In this section, the effect of presence of faults on the proposed technique is

analyzed. In the presence of faults, it is required to identify alternate routing around the

faulty blocks and to the output. This would increase the complexity of this method

depending on the number and location of faults. Sometimes it might not be possible to

implement a given function using a set of nanoblocks.

Firstly, a few new terms will be defined and the impact of faults on each of these

terms is studied. Consider a nanofabric of fixed depth as shown in Fig. 6. The term

utilization in terms of the number of rows required to implement a given function for a

given depth of the nanofabric. It is defined as the inverse of the row number (the row at

which the output is available). Greater the number of rows required, lesser the utilization.

oooooo­
oooo·oo
DODODO
000000 rRows

DODODO
ODODODJ
L---··--·-.. ·-------·-~---· _._J

Depth of the nanofabric

Fig. 6 Sample nanofabric

62

Next, the term logic density is defined as the number of nanoblocks used to the

total number of nanoblocks in the nanofabric. Here the number of nanoblocks used

includes the nanoblocks which are used to implement AND/OR logic and the nanoblocks

which are simply used to pass the signal to the output. This gives an idea about how

much logic can be packed in a given nanofabric. Effective logic density is defined as the

ratio of the number of nanoblocks which are configured to implement logic to the total

number of nanoblocks used.

Next, consider the location of faulty blocks and how it affects the mapping

process. Here, three distinct cases are defined based on the location of faults: faulty input

blocks, faulty blocks in the output path and randomly located faulty blocks. This is shown

in Fig. 7.

Case I -·····'~>

Fig. 7 Location of fault cases

63

4.1. CASE I: FAULTY INPUT BLOCKS

Input block refers to a block on the input side of the nanofabric. Any faulty block

in the input column will shift the output down and increase the output row number by

one. This is because it is required to use the next possible input block which is the

immediate row below the faulty block. Thus the presence of a faulty block at the input

will directly have an impact on utilization.

4.2. CASE II: FAULTY BLOCKS IN THE OUTPUT PATH

Once the functionality has been mapped onto the nanoblocks and the required

result obtained, it is necessary to route the result to the output of the nanofabric. This is

known as output routing. Here the nanoblocks would be configured to simply pass the

signal from one block to the next. And the output path refers to the horizontal path from

the block where the result is generated to the output block of the nanofabric. If there are

faulty blocks in this path, it is required to move one row down in order to avoid using the

faulty block. This again has a direct impact on utilization and increases the output row

number by one.

4.3. CASE III: RANDOMLY LOCATED FAULTY BLOCKS

These are the faulty blocks located in the region shown in Fig. 7. These faulty

blocks do not have a major impact on the output row number. Since there are always

more blocks available to go around the faulty block without increasing the output row

number.

For a fixed nanofabric depth, the best possible mapping needs to be determined.

i.e. one with the least output row number. This depends on the complexity of the function

64

to be implemented, the number of input blocks required and the number and location of

faults as described above. Here, an expression for the probability that a function can be

implemented at a particular row number is derived.

Consider a nanofabric of size N. This means a total of N2/2 nanoblocks and N2/2

switchblocks.

Let p = probability of a faulty nanoblock.

Let i = number of input logic blocks required.

Assume there are m faulty input blocks (Case I), n faulty blocks in the output path

(case II), and l randomly located defects (case III). With i input blocks, the best possible

mapping that can be obtained is at output row number i. The probability of m input

defective blocks out of i is

(1)

P(m input defective blocks out of i) = (~) pm (1- p)i-m

The output will be evaluated at the (i+m)th row and column.

Probability (n defblocks out ofN-(i+m)) is

P(n defective blocks out of N- (i + m)) = (N-(~+m)) pm (1-

p)N-(i+m)-n (2)

The output will be at the (i+m+n)th row.

65

5. RESULTS

Equations (1) and (2) can be combined and plotted for different values of p, N and

1. Figures 8, and 9 gives the probability that a function can be implemented at the

required output row number for varying values of the parameters.

--- p=0.08

0.9 -·-·· p=0.10

--+--- p=0.15

0.8

0.7 -·· -··
~
ii 0.6 Ill
.c e
a..

Output row

Fig. 8 Output row vs probability plot for variable defect rate, p

66

Figure 8 shows the plot for different values of defect rates and N=l 0 and i = 3. It

can be seen that as the defect rate increases, the probability reduces. This is because there

exist more number of faulty blocks which need to be avoided which increases the output

row number. Figure 9 shows the plot for varying number of input blocks for a defect rate

of 8% and N=l 0. The number of input blocks required depends on the complexity of the

function to some extent. As the number of input blocks increases, the function becomes

more and more complex the output row number also increases for a constant defect rate

and nanoblock size.

0.9

0.8

0.7

0.6
~
:.0 0.5 ell .c e
c.. 0.4

0.3

0.2

I

/
/

I
0.1 I I

/

-r
I

I

/

~ --

-- i=3
--- --- i=4

~.- i=5

·-·

0 { .. ----------{------L------'------'------'-------'------'
3 4 5 6 7 8 9 10

Output row

Fig. 9 Output row vs probability plot for variable number of input blocks, i

Logic density and effective logic density are two more terms of importance.

Several simple functions were implemented with varying values of i and recorded the

67

number of blocks utilized to implement a function and in tum the logic density and

effective logic density for p = 10% and varying values of m and n. These values have

been plotted against the value of i in Fig. 10 and Fig. II for logic density and effective

logic density respectively. The number of input blocks is a measure of the complexity of

the function to be implemented.

0. 5 ~----~------~----~------~----~----~

0.45

0.4

0 . 35~-----

~~ m=2 , n= 1

- m=2,n=2

-+--- m=3,n=1

·+-.... ~ ... ~ ~ -. ~ ---~--~-----
>. 0.3 ··--·----·- ·------- --

.~ .. --
~ ·-·----~--- ----- - ----•.. __ :: ___ .

~ 0.25 ---- --... -+-- ---- ---~ -- ~:4~--: -~:-----~------- ~--- _:: _-
---··--·~·

0 ·c;,
0 0.2 _J

0.15

0.1

0.05

0
4 5 6 7 8 9 10

Number of input blocks, i

Fig. I 0 Logic density vs. input blocks for different values of m,n

68

From Fig. 10, it can be seen that the logic density reduces with the increase in the

complexity of the function. This is because as the output row shifts down, more and more

number of blocks are left unused in the upper right of the nanofabric which would

otherwise be used to go around any defects. However, the effective logic density is seen

to be increasing slightly with I as is evident from Fig. 11. This is because effective logic

density is a measure of how many blocks are actually used to implement logic out of the

total blocks used. Thus more the number of input bocks, better is the effective logic

density. When compared with different values of mann, greater the values of m and n,

lesser the logic density as well as the effective logic density. This is because m and n are

case I and case II types of faulty blocks (discussed in Section 4) and have a direct impact

on the output.

~
en c

0.6

0.5

~ 0.4
u

~

---m=2,n=1

m=2,n=2
----+-- m=3,n=1

~ 0.3
~
&

---------~-
--- ~.....----r---

- _.....---+----
w --- ,_-----

0. 2 _______.,...
~...-----

0.1

O L------L------L-----~------~----~------~
4 5 6 7 8 9 10

Number of input blocks, i

Fig. 11 Effective logic density vs. input blocks for different values of m,n

69

6. CONCLUSION

This paper presented a novel logic mappmg technique for nanofabrics. This

technique is based on the nanofabric which assumes standard AND/OR functionality for

the nanoblocks. An effective testing approach to obtain such a nanofabric has been

discussed in our previous publication. This method is much simpler than the existing

ones, since there are standard nanoblocks configurations available for AND/OR. This

eliminates the need to program and configure each nanoblock manually thereby

simplifying the design process. Also, there is no need to have knowledge about the

location of defects within the nanoblock. This reduces the demands on the testing

technique used and hence the testing procedure could be simplified as well.It is also

illustrated with examples, how several functions can be implemented using this technique

in the presence of defects. This paper presents an outline of this new approach and how it

can be implemented and future work is planned to do more extensive analysis and test the

effectiveness of this approach with the help of performance metrics.

70

7. REFERENCES

[1] Y. Chen, Z. Wang, "Nanoscale Molecular-switch crossbar circuits,"
Nanotechnology, 2003, pp: 462-468

[2] M. Butts, X. Weng., "Molecular Electronics: Devices, Systems and Tools for
Gigagate, Gigabit Chips," Proceedings ICCAD, 2002, pp: 433-440

[3] S. C. Goldstein and M. Budiu, "NanoFabric: Spatial Computing using Molecular
Electronics," in Proc. Int. Symp. on Computer Architecture, pp. 178-189, 2001.

[4] M. Mishra and S. C. Goldstein, "Scalable Defect Tolerance for Molecular
Electronics," workshop on Non-Silicon Computing, 2002

[5] V. V. Zhimov and D. J. C. Herr, "New frontiers: Self-assembly and
nanoelectronics," IEEE Computer, vol. 34, no. 1, pp. 34-43, Jan. 2001

[6] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, "A defect-tolerant
computer architecture: Opportunities for nanotechnology," Science, vol. 280, no.
5370,pp. 1716- 1721 , June 1998

[7] Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. 0 . Jeppesen, K.
A. Nielsen, J. F. Stoddart, and R. S. Williams, "Nanoscale molecular-switch
crossbar circuits," Nanotechnology, vol. 14, no. 4, pp. 462-468, Apr. 2003

[8] Z. Wang, and Chakrabarty, K., "Built-in Self-Test of Molecular Electronics­
Based Nanofabrics" European Test Symposium, 2005, pp. 168- 173

[9] M. Tehranipoor, "Defect Tolerance for Molecular Electronics-Based NanoFabrics
Using Built-In Self-Test Procedure," 20th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT), 2005

[1 0] S. Kundaikar and M. Zawodniok, "Optimized Testing Technique for Defect
Tolerance in CAEN-based Nanofabric Systems," to be submitted to the IEEE
transactions on nanotechnology

[11] Y. Zheng and C. Huang, "Defect-aware Logic Mapping for Nanowire-based
Programmable Logic Arrays via Satisfiability," European Test Symposium, 2005,
pp. 189 - 193

[1 2] A. Bachtold, P. Harley, T. Nakanishi, C. Dekker, "Logic Circuits with Carbon
Nanotube Transistors," Science, vol. 294, pp. 1317-1320,2001

[13] Y. Cui, C. M. Lieber, "Functional Nanoscale Electronics Devices Assembled
Using Silicon Nanowire Building Blocks," Science, vol 291 , pp. 851-853 , 2001

71

[14] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber, "Logic Gates
and Computation From Assembled Nanowire Building Blocks", Science, vol294,
pp. 1313-1317,2001

[15] J. G. Brown and R. D. S. Blanton, "CAEN-BIST: Testing the nanofabric," in
Proc. International Test Conference, 2004, pp. 462-471

[16] S. Kundaikar, M. Zawodniok, "Optimized Built-In Self-Test Technique for
CAEN-based Nanofabric Systems," accepted at IEEE NANO 2011

72

SECTION

2. CONCLUSIONS

A new testing and design approach was proposed and successfully analyzed. Its

performance has been compared with the existing schemes in terms of with respect to a

number of parameters including nanoblock size, probability of defect, and nanofabric

size. Also, the fault coverage has been shown for a large set of fault types. Theoretical

analysis demonstrated that the proposed optimization technique reduces the number of

required configurations and testing time while increasing the effective yield of a

nanofabric. A reduction of 23% - 55% is obtained in the number of required

configurations, which also leads to reduced testing time. Additionally, a customization

approach was presented. It further improves the testing time if the specific logic function

is known a priori and the yield of the nanofabric could be increased to as high as 96%.

Moreover, the testing has been accompanied with a new logic mapping technique that

complements each other. The defect map generated by testing procedure is utilized to

efficiently map logic functions onto the nanofabric such that partially defective, but

functional, nanoblocks are utilized instead of discarding. The main benefit of the

proposed approach is simplification of the logic mapping process by using standard

nanoblock configurations. The location of defects inside each nanoblock does not have to

be known thus avoiding a complex and time consuming testing process.

73

VITA

Sambhav Dilip Kundaikar was born in Panaji-Goa, India, on August 06, 1986. In

July 2007, he received his Bachelor of Engineering with Distinction Honors in

Electronics and Telecommunications Engineering from Goa University. He joined

Cognizant Technology Solutions in November 2007 as a Programmer Analyst and

worked in the field of PeopleSoft-ERP for 20 months. He started his Master of Science

program in Computer Engineering at Missouri University of Science and Technology in

August 2009. He worked as a research assistant under the guidance of Dr. Maciej

Zawodniok from January 2010 to July 2011. He graduated in December 2011.

	Optimized testing and logic mapping methodology for CAEN-based nano-circuits
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084

