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SYSTEMS" has been submitted to the IEEE TRANSACTIONS ON 

NANOTECHNOLOGY, 2011. 
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NOVEL DEFECT-A WARE LOGIC MAPPING APPROACH FOR CROSSBAR­

BASED NANOFABRICS" is intended for submission to INTEGRATION, THE VLSI 

JOURNAL. 

A condensed version of Paper I titled "OPTIMIZED BUILT-IN SELF-TEST 

TECHNIQUE FOR CAEN-BASED NANOFABRIC SYSTEMS" has been accepted at 

the IEEE NANO 2011, to be held in Portland-Oregon, August 15-19,2011. 
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ABSTRACT 

Nanotechnology has been shown to have the potential to replace the existing 

CMOS technology in the race to maintain the Moore's Law increases in IC complexity. 

This work considers the Chemically Assembled Electronic Nanotechnology (CAEN), 

which fabricates nanofabric using a low cost self-assembly and self-alignment chemical 

process and provides very high density. However, the main disadvantage of this 

technology is the inherently high defect rate that hinders the efforts to commercialize 

such systems. Existing testing and design techniques, for example for FPGAs, are ill 

suited since they typically assume vary low defect rates. 

This thesis is comprised of two papers. In the paper I, a novel testing 

methodology is proposed along with a new set of test patterns and configurations which 

test the entire nanofabric for stuck-at, bridging and cross-point faults. An optimization 

technique is described to reduce the number of test configurations and testing time. A 

customization technique is also discussed to further increase the yield of the nanofabric 

when the desired functionality is known. Once the nanofabric has been tested and the 

faulty areas in the chip have been identified, the next step is to map the logic onto the 

nanofabric. The paper II discusses a new logic mapping approach for nanofabrics which 

have been tested to successfully implement AND/OR configurations of various logic 

functions. This approach uses the information provided by the testing technique from the 

paper I to simplify the logic mapping process. It used standard implementations of 

nanoblocks as compared to the existing techniques, which require customized solutions. 
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SECTION 

1. INTRODUCTION 

1.1. OBJECTIVE 

The main objective of this work is to design a new and improved approach for 

testing and design of logic functions using nanofabric arrays. The goal was to maximize 

the nanofabric yield while keeping the testing time to a minimum. The proposed testing 

process and logic mapping approach are design to work in concert to achieve these goals. 

1.2. BACKGROUND 

In the last 40 years there has been an exponential increase in the number of 

transistors per unit area. This increase has been in accordance with Moore's Law that 

predicted the number of transistors that could be placed on the chip would double every 

two years. However, there are some challenges like leakage currents, process variation, 

costs and reliability issues that may result to the end of scaling. This poses a threat to the 

continuation of Moore's Law. Therefore, a new technology will need to replace CMOS 

one in the near future. 

One of the technologies under intense investigation as a possible alternative to 

CMOS is Chemically-Assembled Electronic Nanotechnology (CAEN) [1][2]. It has the 

potential to achieve high density while being fabricated using a low-cost chemical 

synthesis processes. The CAEN uses self-assembly and self-alignment to construct 

electronic circuits out of nanometer-scale devices. CAEN systems also referred to as 

nanofabrics, can achieve a density of as high as 1 08 to 1 010 gates per cm2 by using 
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interconnected 2D arrays of nanowires. The 2D arrays, referred to as nanoblocks are the 

fundamental units of a nanofabric. 

However, the main drawback of the nanofabric system is its high defect rate 

which could be as high as I 0%. Such a high defect rate leads to low yield thus making 

the manufacturing costs prohibitively high. Therefore it is not economically feasible to 

discard a nanofabric if it is found to have defects. Defect tolerance is needed to make 

such nanofabrics commercially viable. Defect tolerance refers to the ability to detect and 

locate faulty elements on a chip, and then avoid these faults through reconfiguration. 

Such approach has potential to increase yield and reduced manufacturing cost. Therefore, 

new testing approaches and methods are required to diagnose defective sections of the 

nanofabric and then use this information to effectively map logic onto the nanofabric. 

1.3. PROPOSED APPROACHES 

In this thesis, a new testing methodology is discussed which aims at maximizing 

the yield from a nanofabric while minimizing the testing time. In comparison to the 

existing testing methods for nanofabric testing, this method is much more efficient in 

terms of yield, total testing time and the number of test patterns and test configurations 

required. An optimization scheme is described which can be used to eliminate redundant 

test configurations to improve yield. It is also possible to customize the existing test 

configurations to meet the user requirements, which if used effectively, can further 

reduce the testing time and maximize yield of the nanofabric. 

Once the nanofabric has been tested, a defect map is created which identifies the 

faulty blocks on the chip. This defect map can be used while mapping logic onto the 



3 

nanofabric so that the faulty blocks could be avoided. The logic mapping process takes 

the defect map and the function to be implemented as the inputs. The fault-free blocks are 

configured accordingly and connected with each other in order to obtain the final output. 

The traditional approach aims at designing an individually tailored realization of 

functions for each nanoblock. The programming typically differs due to the changing 

location of faults inside the nanoblock and particular function that is to be implemented. 

In contract, the proposed approach uses standardized gate configurations for AND/OR 

gates. This may result in small fraction of nanoblocks that will be considered faulty 

where a per-block customized function implementation might be able to recover it. 

However, such highly customized, existing approaches will lack flexibility during 

reconfiguration and incur a very high testing and design overhead since each nanoblock 

has to be analyzed and redesigned for all possible solutions. In contrast, the proposed 

approach utilizes standard predefined configurations, and hence this simplifies the 

mapping process. However, when accompanied by the proposed testing techniques will 

miss only small fraction of usable, partially defective nanoblock. Also, it does not require 

knowledge about the location of defects inside the nanoblock, nor has to consider it 

during logic design and mapping phase. 

1.4. CONTRIBUTIONS 

Paper I 

• A novel testing technique for testing nanofabric arrays. 

• An introduction of several new test configurations and patterns. 
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• Detailed analysis of fault coverage capabilities for the complete set of test 

configurations and their test patterns. 

• An optimization technique for selecting the minimal test set and increasing 

utilization with reduced testing time, and a customization approach that further 

reduces testing time and increases nanofabric yield when the desired logical 

functionality is known. 

Paper II 

• A novel logic mapping approach for nanofabrics tested by the testing technique 

discussed in paper I. 

• Study of the effects of various parameters such as the defect rate, location of 

defects, complexity of the function to be implemented, on the proposed mapping 

technique. 

1.5. FUTURE WORK 

The proposed testing methodology can be further extended to include extensive 

testing of switchblocks. The new proposed set of configurations and test patterns only test 

for nanoblocks faults, though switchblock faults can be detected in some cases. A new set 

of configurations could be developed such that the switchblocks are tested along with the 

nanoblocks. Also, a design of the comparator blocks is an important aspect of testing, and 

yet little literature is available on the topic. Paper I also discusses the recovery procedure, 

which can be further refined to allow arbitrary implementation of one or few gates within 

a nanoblock. The logic mapping technique could be modified/extended to incorporate 

these blocks since this would increase the overall utilization of the nanofabric. Moreover, 
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the current assumption was that only one pair of AND and OR gates with (k-1) inputs is 

implemented in each block. However, it is possible to implement several smaller gates 

within one nanoblock by making use of the unutilized cross-points. 
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PAPER 

I. OPTIMIZED TESTING TECHNIQUE FOR DEFECT TOLERANCE 
IN CAEN-BASED NANOFABRIC SYSTEMS 

Sambhav Kundaikar, Maciej Zawodniok 

Electrical and Computer Engineering 

Missouri University of Science and Technology 

Rolla, MO 65401, USA 

Email: sdk8v5@mail.mst.edu, mjzx9c@mst.edu 

Abstract 

Nanotechnology enables future advancements in integrated circuitry's miniaturization, 

energy and cost efficiency, and capabilities. However, a popular chemically assembled 

electronic nanotechnology (CAEN) has a high rate of defects that negates these benefits 

of the nanofabric. In order to address this challenge, a testing technique is proposed that 

maximizes the yield from a nanofabric while minimizing testing overhead. Moreover, 

traditional testing techniques, for example the ones employed in FPGA applications, 

assume low defect rate and fails to achieve high effectiveness when applied to testing 

nanofabrics. In this paper, a novel approach to testing nanofabric is proposed that 

includes new testing configurations, test-set optimization methodology, and design of 

customized configuration, which provide reduction in testing time while enhancing the 

utilization of the nanofabric. Part of the proposed scheme is a recovery procedure that 

further increases the utilization of nanoblocks at the expense of testing time. The 

proposed procedure tests all the components in parallel and identifies the defective 
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nanoblocks in a nanofabric. A defect map is generated to aid logic function 

implementation in a nanofabric. The proposed technique results in less number of test 

configurations compared to other proposed methods and a significant reduction in the 

test time. 
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1. INTRODUCTION 

Moore's Law predicted that the number of transistors that could be placed on the 

chip would double every two years. The CMOS technology has been able to keep up with 

Moore's law as a result of scaling. However, CMOS technology today faces a number of 

challenges such as leakage currents, process variation, costs and reliability issues which 

may put an end to scaling. Therefore, new technologies are needed to replace CMOS in 

the future to continue the Moore's Law advancement. 

Chemically-Assembled Electronic Nanotechnology (CAEN) has shown promising 

potential for the future of nano-scale design [1 ][2]. A basic building block of a nanofabric 

is nanoblock, which is an interconnected 2D array of nano-scale wires that can be 

electronically configured as logic networks, memory units, and signal-routing cells [3]. 

These nanofabric architectures are reconfigurable in nature and can achieve a density of 

10 10 to 1012 gates per cm2, which is significantly higher than CMOS-based devices. 

However, due to the high defect rate in these nanofabrics, new testing strategies need to 

be devised to effectively test and diagnose the nanofabric within a reasonable time. 

However, due to the low cost manufacturing process of self-assembly and self­

alignment, the defect rate could be as high as 10%. Such high defect rate leads to low 

yield, which in tum results in high manufacturing costs. It is impractical to throw-away a 

fabricated chip once it is diagnosed to be defective. Thus defect tolerance is needed. The 

ability to identify and diagnose the faulty sites on a chip and develop techniques to avoid 

these faulty areas is known as Defect tolerance [3]-[9]. Also, the testing techniques 

needed for nanofabrics are complicated due to the large density, high defect rate and 
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large size of the nanoblocks. Hence traditional FPGA testing approaches do not apply to 

the nanofabric systems. A more distinct approach is required to address these challenges. 

In this paper, a new testing methodology is discussed which configures the 

components as Block Under Tests (BUT) and Comparators (C). This method can handle 

high defect densities and large size nanofabrics. Our method uses a set of Test 

Architectures and BUT configurations to test the nanofabric. The design of each of the 

BUT configurations for the targeted faults is also explained. An external tester is used to 

apply test patterns to the BUTs. The nanoblocks are tested in parallel and hence the 

testing time does not depend on the size of the nanofabric. Further, an optimization 

technique is introduced which can increase both the testing speed and the utilization 

(yield) of the nanoblock. 

The main contributions of this paper are: (a) a novel testing technique for testing 

nanofabric arrays, (b) an introduction of several new test configurations and patterns, (c) 

detailed analysis of fault coverage capabilities for the complete set of test configurations 

and their test patterns, (d) an optimization technique for selecting the minimal test set and 

increasing utilization with reduced testing time, and (e) customization approach that 

further reduces testing time and increases nanofabric yield when the desired logical 

functionality is known. 
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2. NANOFABRIC ARCHITECTURE 

A nanofabric system has some similarities with a field-programmable gate-array 

(FPGA) [8], a regular 2D-array architecture and re-configurability. Reconfigurable 

devices are fault tolerant since faults can be identified and the functionality redesigned to 

avoid the corresponding defect map. Traditionally, the faulty blocks are masked during 

the configuration of the device and implementation. The remaining blocks are used, thus 

enabling to utilize partially defective chips. The same general methodology can be 

employed for nanofabric systems, though specific approach and testing scheme has to be 

designed to address high defect rate of the nanoblocks. 

CAEN systems are fabricated using bottom-up manufacturing, where basic 

components such as nanowires are first obtained through chemical self-assembly, and 

then aligned to form a two-dimensional grid with configurable molecular switches at the 

junctions [1]. These molecular switches are configured to create useful circuits out of 

these grids [ 1]. 

Similar to FPGAs, the nanofabric is a regular 2D-mesh of interconnected 

fundamental units called nanoblocks, as shown in Fig. 1. A nanoblock can be 

programmed after fabrication to implement a certain logic function, while the 

switchblock can be configured to route signals between nanoblocks. 



2.1. NANOBLOCK 

D nanoblock 

0 switchblock 

Fig. 1 Nanofabric architecture 
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Figure 2 shows the schematic of a nanoblock. It is composed of three sections: (1) 

the molecular logic array, where the functionality of the block is located, (2) the latches, 

used for signal restoration and signal latching for sequential circuit implementation, and 

(3) the I/0 area, used to connect the nanoblock to its neighbors through the switch block. 

The molecular logic array (MLA) portion of a nanoblock is composed of two orthogonal 

sets of wires. At each intersection of two wires lies a configurable molecular switch or a 

cross-point or a junction. The cross-points can be configured as "on" or "off' by applying 

a voltage potential across it. When configured to be "on", the cross-points act as diodes 

[ 1]. 

Figure 3 shows the implementation of an AND gate. If either A or B is at logic 

"0", the corresponding diode is forward-biased and turned on. The resistors are 

manufactured appropriately, i.e., resistors attached to VDD have smaller impedances than 

those attached to Gnd, such that the output vertical wire is pulled down to logic "0" [ 1). 
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Note that the resistance of nanowires and molecular switches is very low. Figure 3 also 

shows how an OR gate can be implemented for inputs X andY. 

Inputs on north 
and cas t 
Outputs on south 
and wes t. 

Outputs :1re la tched by 
in! inc NDR. that also 

I nline 
NDRs 

Stripped regions 
indicate connec ti ons 
from the Ci\,IOS layer. 

Fig. 2 Schematic of a nanoblock [1] 

X y 

A -+-:r--t---t--

8 -+-:r-t---t--

A"B 

X+Y 

Fig. 3 AND/OR gate implementation 
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If the MLA portion of a nanoblock has k horizontal wires and k vertical wires, 

then the size of the nanoblock is referred to as kxk. The MLA implements Boolean 

functions using diode-resistor logic. The drawback of this logic style is that a signal is 

degraded whenever it passes a molecular switch. The molecular latch, constructed 

entirely from molecular-scale devices, is used to perform signal restoration using power 

from the clock to provide gain. The molecular latch also provides the properties of I/0 

isolation and noise immunity [14]. 

2.2. SWITCHBLOCK 

A switchblock is shown in Fig. 4. It is similar to the MLA portion of a nanoblock, 

with the difference that it does not have inline NDR latches, I/0 ports and connections to 

VDD and Gnd. A switchblock is formed by 4 nanoblocks. Crossing horizontal wires and 

vertical wires from the surrounding nanoblocks are connected by configurable molecular 

switches. If the size of the nanoblocks is kxk, then there are 2k vertical wires and 2k 

horizontal wires inside a switchblock and 4k2 cross-points can be formed [1]. 
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Fig. 4 A switchblock with four surrounding nanoblocks [1] 
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3. RELATED PREVIOUS WORKS 

Defect tolerance methodology is presented in [2] such that components of a 

nanofabric are configured to test circuits to infer the defect status of individual 

components. Only stuck-at and stuck-open faults are targeted during test and the 

proposed technique does not provide high recovery. Application-dependent testing of 

FPGA has also been proposed in [9], [10]. A defective FPGA may pass the test for a 

specific application. This is a one-time configuration; in other words the FPGA will no 

longer be reconfigurable. This reduces yield loss and yields to manufacturing cost 

savmgs. 

In [3], testing is performed by configuring the blocks and switches as linear 

feedback shift registers (LFSR). If the final bit stream generated by LFSR is correct, all 

the components are assumed to be defect-free. Otherwise, there is at least one faulty 

component in LFSR. To diagnose, the components in LFSR and other components are 

used to configure a new LFSR. If the new LFSR is faulty, the component at the 

intersection of faulty LFSRs is considered defective. A defect database is created after 

completing the test and diagnosis. However only stuck-at and stuck-open faults are 

targeted during test and the proposed technique does not provide high recovery. 

The CAEN-BIST approach presented in [7] configures a nanoblock as a tester to 

test its neighboring nanoblocks. Test patterns are fed to both the tester and the nanoblock 

under test (BUT) from an external source. A defect-free BUT generates output patterns 

that are identical to the input patterns. The tester compares the input test patterns and the 

output patterns from the BUT to see if the BUT is defective. However, CAEN-BIST is 

performed in a wave-like manner in which a set of nanoblocks in the same diagonal tests 



16 

another set of nanoblocks until the entire nanofabric has been tested. Therefore, the 

complexity and testing time depends on the size of the nanofabric under test. 

Another BIST approach was proposed in [15] where the NanoBlocks can be 

configured as Test Pattern Generators (TPGs), Block Under Test (BUTs) or Output 

Response Analyzers (ORAs). These blocks, along with the corresponding Switchblocks, 

comprise a TG (Test Group). In a TG, the TPG generates the testing patterns for a BUT 

and ORAs examine the BUT output response. A total of 4k +6 configurations are needed 

to test for the stuck-at, stuck-open, bridging and defective cross-points. 

In the Built-in Self-Test procedure discussed in [16] each NanoBlock is 

configured either as a Pattern Generator (PG) or a Response Generator (RG). A Test 

Group is created using a set of PGs, RGs and switchblock(s) between the two. The 

NanoBlock configured as a PG tests itself and generates the test pattern for RG. An 

external device is needed to program the NanoBlocks and read the RGs' responses. In the 

test configurations, stuck-at, stuck-open, forward biased and reverse biased diode and 

AND & OR bridging faults are targeted. If the size of the nanoblock is kxk, it is 

estimated that 8K + 5 configurations are needed to provide 100% fault coverage. This 

number of configurations is still large for a large value of k. 
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4. TESTING APPROACH 

4.1. OVERVIEW 

In this section, a testing approach is presented that efficiently and cost effectively 

identifies the faulty components. The entire nanofabric is setup based on test 

architectures to perform a self-test among the nanoblocks. In concert with carefully 

selected configurations for the nanoblocks under test, the proposed approach minimizes 

testing time while ensuring all fault testability. The analysis of the tests results in a defect 

map that indicates faulty nanoblocks. 

Moreover, two methods are proposed that increase nanofabric yield by identifying 

partially defective nanoblocks that still can correctly implement the AND/OR logical 

functions. The proposed optimization approach selects the minimal subset from the 

entire, proposed list of configurations to test for the desired functionality only. 

Additionally, this test set optimization reduces the overall testing time. The second, 

customization method redesigns the test configurations such that only the required cross­

points are tested. In contrast, the optimization technique only reduces the number of 

unnecessary configurations while still testing unnecessary cross-points. The drawback of 

the customization method is the need for creating a new set of test configurations for each 

desired logical function. The increased overhead may result in longer and more complex 

testing process. 

First, a set of test architectures is presented in Section 4.2. Next, the nanoblocks 

configurations are introduced and discussed in Section 4.3. The optimization and 

customization techniques are proposed in next Section 5. 



18 

4.2. TEST ARCHITECTURES AND PROCEDURE 

A Test Architecture (TA) defines the manner m which the nanoblocks and 

switchblocks are configured and connected. Each of the nanoblocks is configured either 

as a Block Under Test (BUT) or a comparator (C) [17] and the switch blocks are used to 

connect the outputs of BUTs to comparators. A nanoblock configured as a BUT in one 

T A is configured as a comparator in the other T A. Hence, half of the total number of 

nanoblocks is tested in each TA. In contrast to the traditional approach utilized in FPGA 

type application, the proposed TAs are constrained by the fabric topology. In typical 

nanofabric, nanoblocks have outputs on two sides called east (right) and south (bottom). 

In order to test nanoblocks' functionality in both directions a total of four ( 4) T As are 

required, as shown in Fig. 5. In the figure, B refers to a nanoblock which is configured as 

a BUT and C refers to a nanoblock configured as a comparator. 

The proposed approach defines two pairs of complementary TAs: TA-l for 

outputs on the east side, and T A-2 for outputs on the south side. TA-l b is the 

complement of TA-la since a BUT in TA-la is a comparator in TA-lb and vice versa. 

Similarly, TA-2b is the complement of TA-2a. The selection of the particular test sets 

(TA-la and TA-lb) or (TA-2a and TA-2b) is dictated by the test configuration as 

discussed in the subsection 4.3. 
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Fig. 5 Test architectures 

The test patterns are applied simultaneously usmg an external tester. Each 

comparator compares outputs from two BUTs and each BUT output is connected to two 

comparators. The output of the comparator will be successful if the BUTs being 

compared and the comparator itself are defect free. If any of the BUTs or the comparator 

itself is faulty, it's an unsuccessful comparison. Since the defect rate is of the order of 

I 0%-15%, it is assumed that the probability of two defective BUTs being compared by 

the same comparator is very low. It is assumed that the comparator generates a "0" for a 

successful comparison and a "I" for an unsuccessful comparison. This helps generate an 

intermediate defect map called the partial defect map and, in tum, the final defect map. A 
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test is run for each type of fault to be targeted to create Partial Defect Maps for 

corresponding faults. Combining all the partial defect maps gives the final defect map, 

which the compiler can use to configure the nanofabric by avoiding defective blocks. 

4.2.1. Testing Procedure. A block is declared fault-free only if it does not 

manifest any of the faults targeted. Initially the Final Defect Map is set to NULL. Next, 

the BUT configuration is optimized/customized for the targeted fault. A raw defect map 

is a defect map for a particular fault. For each targeted fault, the raw defect map is 

initially set to null. The first test architecture is then selected and the corresponding BUT 

configuration and test patterns are applied. The comparator outputs are read out and 

possible faulty blocks are marked as suspects. The complementary test architecture is 

then applied and the procedure is repeated. The comparator outputs are read out and a 

decision is made whether the marked blocks are actually faulty or not. Figure 6 gives the 

flowchart for this testing procedure. 
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4.2.2. Algorithm for Locating Defects. The comparator detects inconsistencies 

between the outputs of two BUTs, which indicate a presence of a fault. In order to 

uniquely identify the defective nanoblocks two things need to be analyzed - (1) outputs of 

adjacent comparators and (2) test results in the complementary architecture. Once the 

defect is located the Raw Defect Map is updated accordingly. The faulty block 

identification algorithm is presented in Table I. In general, the faulty block is identified 

when it is marked as faulty by two corresponding comparators. The complementary test 

architecture is used to identify faults in the comparators. 

Table I. Pseudo-code of the faulty block detection algorithm 

1. Assign a score of zero (0) to all the nanoblocks. 

2. For each TA: 

a. For each comparator: 

i. If the comparator gives false output, increment score "+1" 

for each of the corresponding BUTs 

b. For each BUT: 

i. If total score is equal to two (2) then block is marked as 

defective 

c. Create the raw defect map. 
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4.2.3. Example of a Faulty Block Detection. Figure 7 illustrates a section of 

nanofabric for two test architectures with the blocks numbered 1 through 18. The two 

complementary architectures are needed to ensure that each of the blocks is tested. 

I I I 
T T §] 

~ 
0 -+@] 0 0 

0 0 ~ :r 0 0 ::r 0 88 

0 0 §}+ 0 1 

0 ::r 0 

0 ~ 0 §}+ 1 
Fig. 7 Subset of nanofabric in T A-1 a and T A-1 b 

Consider the following assumptions: 

• The fault targeted is F 1 and the test architectures used are T A-1 a and T A-1 b. 

• The size of the nanofabric is 6x6. 

• Blocks B4 and B5 have faults F 1. 

It can be observed that block B5 is tested in T A-1 a and block B4 is tested in T A-

lb. Consider the first test architecture TA-la. The blocks C2, C4, C6, C7, C9, Cll, Cl3, 

C16 and C18 are configured as comparators and compare the outputs of the BUTs. 

Initially all the nanoblocks are assigned a score of "0". 
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Due to the presence of the faulty block BS, the following comparators would 

generate a "1" at the output: 

• C9: Blocks B3 orBS have fault Fl. 

Increment B3 and BS by "1". B3=1, BS=l. 

• Cll: Blocks BS or B8 have fault Fl 

Increment BS and B8 by "1 ". B5=2, B8=1. 

The remaining comparisons are successful. Analyzing the above results, the 

following is obtained: 

B3=1 

B5=2 

B8=1 

Rest of the BUTs = 0. 

Therefore, eliminating all the blocks with a score of "1" and "0" and only 

retaining blocks with a score of "2" as faulty blocks, block BS is diagnosed as faulty and 

the defect map is updated accordingly. Similarly the faulty block B4 is identified using 

test architecture T A-1 b. Since the nanoblock size is very large, efficient data structures 

based on Bloom filters have been proposed for storage of the defect map [ 19]. 

4.3. DESIGN OF NEW BUT CONFIGURATIONS, TEST PATTERNS AND 
FAULT COVERAGE ANALYSIS 

In order to test the BUTs for defects, they need to be configured internally and 

test patterns need to be applied. Configuring a BUT refers to programming the various 

cross-points in the nanoblock and applying the desired voltages to the nanowires. The 

BUT configuration and the test pattern target specific fault types. In turn, the particular 
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configuration dictates which pair of complementary test architecture has to be used based 

on the direction of inputs and outputs. In each configuration, one or more faults can be 

targeted. 

In general the faults can be divided into two categories: nanowire faults and the 

cross-point faults. The former affects the entire vertical or horizontal wire in a nanoblock, 

thus rendering it useless. The latter affect only individual cross points and can potentially 

have no effect on the correctness of a logic function implemented using the remaining 

good cross-points inside the particular block. The configurations are grouped in two sets: 

(a) Set I that targets the nanowire faults and includes configurations C 1 through C4, and 

(b) Set II that targets the cross-point faults and includes configurations C5 and C6. The 

following faults are targeted in the next subsection: stuck-at and stuck-open faults, 

connection faults, and bridging faults using a set of test architectures, BUT configurations 

and test patterns. 

4.3.1. Configuration Cl: Stuck-a t-O and Stuck-Open Faults. The BUT 

configuration C 1 is shown in Fig. 8(a). Here, all the junctions are programmed as diodes 

and all inputs are connected to "1 ". Hence all outputs should be "1" for a fault free BUT. 

However if any of the lines has a stuck-at-0 and/or stuck-open fault, the corresponding 

output will be "0". Test architectures T A-1 a and T A-1 b will be used in conjunction with 

this BUT configuration since the inputs are on the west and outputs on the south of the 

nanoblock. Consider for instance that a vertical line has a stuck-at-0 fault as shown in 

Fig. 8(b) and hence is permanently tied to 0. As a result, the output for the vertical line 2 

will be a "0" while for all other defect free lines the output will be a "1 ". 
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Fig. 8 (a) BUT configurations and test patterns for Cl (b) Example fault detection 
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4.3.2. Configuration C2: Stuck-at-1 Faults. The BUT configuration C2 is 

shown in Fig. 9(a). Here all the junctions are programmed to behave as diodes and all 

inputs are connected to "0". Hence, for a defect free BUT all the outputs should be "0". 

However, if any of the lines has a stuck-at-1 fault, the corresponding output will be "1 ". 

Test architectures TA-2a and T A-2b will be used in conjunction with this BUT 

configuration since the inputs are on the north and outputs on the east of the nanoblock. 

Consider for instance that a vertical line has a stuck-at-1 fault as shown in Fig. 9(b) and 

hence is permanently tied to 1. As a result, the outputs will be "0". 
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Fig. 9 (a) BUT configurations and test patterns for C2 (b) Example fault detection 
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4.3.3. Configuration C3: AND/OR Bridging Faults (H/H). The bridging faults 

between adjacent horizontal wires can be detected by using the configuration shown in 

Fig. 10(a). The BUT is configured in such a way that the programmed diodes are forward 

biased. Consider that there is AND-bridging between the second and third horizontal wire 

as shown in Fig. 1 O(b) and as a result the second horizontal wire is pulled down to a "0", 

the output will be inverted. Test architecture T A -1 a and T A -1 b will be used in 

conjunction with this BUT configuration. 
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Fig. 10 (a) BUT configurations and test patterns for C3 (b) Example fault detection 

4.3.4. Configuration C4: AND/OR Bridging Faults (V/H). This is similar to the 

previous configuration, and tests for bridging faults between the vertical wires. The 

configuration is as shown in Fig. 11(a). The inputs applied and the expected outputs are 

as shown. However if there is any AND/OR bridging between the vertical wires, the 

output changes. Consider for example that the first vertical wire changes to a "1" due to 

OR bridging with its neighboring wires. This is shown in Fig. 11 (b). The diode on that 

wire will now be reverse-biased and hence act as open switch and the corresponding 

horizontal output will become a "1 ". Test architecture TA-2a and TA-2b will be used in 

conjunction with this BUT configuration. 
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Fig. 11 (a) BUT configurations and test patterns for C4 (b) Example fault detection 
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4.3.5. Configuration CS: Reverse Biased Diode and V 1H Bridging Faults. 

Here all the junctions are programmed to behave as diodes. Horizontal wires are 

connected to "1" while the vertical wires are connected to "0" as shown in Fig. 12(a). The 

output can be taken either from the east or from the south side. Hence either of the two 

test architecture sets can be used. Such a configuration reverse biases all the junction 

diodes and the outputs are all 1 's if taken on the east side and all O's if taken on the south 

side. In the figure shown, outputs are taken on the east. If any of the reversed biased 

diode is defective and has a small resistance, or there is bridging between the horizontal 

and vertical wires, the output on the east side will be pulled down to "0". This 

configuration thus detects defective reversed biased diodes and bridging faults between 

vertical and horizontal wires. Consider the example shown in Fig. 12(b ). The circled 

diode is faulty and offers a small resistance in the reverse biased state. Hence the 

corresponding horizontal output changes to a 0. 
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Fig. 12 (a) BUT configurations and test patterns for CS (b) Example fault detection 

4.3.6. Configuration C6: Forward Biased Diode Faults. For a kxk nanoblock, 

detection of forward biased diode faults requires a total of k configurations to test all the 

cross-points. Figure 13(a) shows these configurations. Here the vertical wires are 

connected to V dd and only one junction is programmed as a diode on each of the 

horizontal and vertical wires in each configuration. Thus in the first configuration, the 

cross-points are programmed in a diagonal fashion. The different sub-configurations are 

obtained by shifting the programmed cross-points one position to the right. The outputs 

are "0" for a defect free BUT since the diodes are forward biased and transmit a "0" to 

the output. If any of the forward biased diode is defective as shown in Fig. 13(b ), the 

corresponding vertical wire output will be pulled up to a "1 ". Test architecture T A -1 a and 

T A-1 b will be used in conjunction with this BUT configuration. 
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Fig. 13 (a) BUT configurations and test patterns for C6 (b) Example fault detection 

4.4. FAULT COVERAGE AND NUMBER OF CONFIGURATIONS 
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Table II summarizes the various faults covered using these configurations, and the 

BUT configurations-test architectures to be used for each of the faults. A Total of 2k+ 10 

configurations are needed to test the entire nanofabric for the given faults. This number is 

reasonably small compared to other BIST techniques and also provides sufficient fault 

coverage. Also, it is independent of the number of nanoblocks in a nanofabric. These 

configurations can be modified as per the optimization technique which will be described 

in Section 5. By optimization, the main aim is to reduce the number of configurations 

and/or the number of cross-points programmed thereby reducing the testing time. 
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Table II. Fault coverage and configurations 

Configuration 

Fault Model Set I Set II 

C1 C2 C3 C4 C5 C6 

Stuck-at-0 X 

Stuck-at-1 X 

open-line X 

AND bridging (h/h) X 

AND bridging (v/v) X 

OR bridging (h/h) X 

OR bridging (v/v) X 

OR bridging (v/h) X 

Cross-points 
X 

(foiWard) 
Cross-points 

X 
(reverse) 

Configurations/test 1 1 1 1 1 k 
patterns 

Test Architecture TA-1 TA-2 TA-1 TA-2 TA-1 TA-1 /TA-2 
Elimination of 

redundant N N N N N y 
configurations 

Customization for 
effective cross-point N N N N y y 

testing 
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5. OPTIMIZATION TECHNIQUE 

The BUT configurations described above are used to test for one or more faults. 

Thus it gives the user a flexibility to choose the configurations depending upon which 

faults are targeted. Also, each fault detecting configuration will have its own cost 

associated with it i.e. testing time, complexity etc. 

The proposed testing strategy can be optimized such that utilization of the 

nanoblocks is increased, the testing time reduced, and the number of required 

configurations decreased. Exhaustive test includes all configurations C 1 through C6, 

where all cross-points and nanowires of each nanoblock are tested for all faults. 

However, it may not be necessary to test all the cross-points/NWs in a nanofabric since 

there are redundant cross-points. Consequently, the entire test process includes 

unnecessary checks and it is possible to test only a subset of cross-points and NWs, 

which are required to implement a logic function. For example, the optimization scheme 

would select a subset of tests that target only the needed cross-points out of all k/\2 ones. 

First, the list of cross-points/NWs tested in each configuration is tabulated. Next, the 

columns that correspond to the cross-points not required by the targeted logic function 

are removed. Then, using Petrick's method of reduction, the minimal test set required for 

the targeted faults is obtained. In fact, the Petrick's method will list all possible 

combinations of the tests that are required. Consequently, it is straightforward to assign 

various weights to performance metrics such as testing time, configuration time thus 

enabling a more flexible optimization. 

A typical logic implementation in nanoblocks realizes AND and OR gates only 

[13], since these are the basic gates employed when implementing any logic function. 
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Note, that nanoblocks require external component to implement NOT logic function thus 

complementing the minimal and complete set of gates. A kxk nanoblock can be used to 

realize an AND/OR gate with (k-1 )-inputs. 

Figure 3 shows an example of a 2-input AND/OR gate implemented using a 3x3 

nanoblock. It can be observed that all the NWs need to be fault free. However, only 4 out 

of the total 9 cross-points are programmed and take part in implementing the logic 

function. These cross-points are referred to as effective cross-points. Similarly for a 4x4 

nanoblock, in order to implement a 3-input AND/OR gate, there are 6 effective cross­

points. In general for a kxk nanoblock, in order to implement a (k-1) input AND/OR gate, 

only 2(k-1) effective cross points are needed. However, all the NWs need to be tested. 

The BUT configurations and test patterns described in Section 4.3 have been split into 

two sets - set I which tests the nanowire faults and set II which tests the cross-point 

faults. Thus it is possible to optimize the BUT configurations C5 and C6 which belong to 

set II, in such a way so as to test only the effective cross-points. 

The performance will be evaluated using utilization metric, which is a probability 

that a nanoblock is successfully used to implement a logic function. Considering the 

effective cross-points, the utilization of nanoblocks can be improved since faults in 

unused cross points will neither be tested nor interfere with correct function 

implementation. The increase in utilization is due to the fact that it is possible to use a 

defective nanoblock to implement a logic function as long as the effective cross-points 

are defect free. 

Consider configuration C5 where in all the cross-points are tested. This needs to 

be modified to test only the required cross-points. The optimized configuration C5 is 
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shown in Fig. 14. Here again only the effective cross-points are tested based on the 

assumption that nanoblocks implement only AND and OR gates. For this, it is required 

program (k-1) cross-points on one vertical line and (k-1) cross-points on one horizontal 

line. The number of cross-points programmed (and tested) is thus reduced from k2 to 2(k-

1 ). This reduces a lot of time-overhead associated with programming the cross-points and 

also increases the utilization of the nanoblock. 
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Fig. 14 Customized configuration C5 

Now consider the configuration C6 shown in Fig. 13(a) in which all the cross-

points are tested. Here optimization using a 3x3 nanoblock is demonstrated for simplicity. 

Three sub-configurations are needed to test all the cross-points (for a 3x3 nanoblock). 

Two approaches to optimize C6 are discussed and each has its own pros and cons. 
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5.1. ELIMINATION OF REDUNDANT CONFIGURATIONS 

It is possible to eliminate the efforts required in designing new configurations to 

test only the effective cross-points by selecting a subset from the defined sub­

configurations of C6. Since C6 needs a total of k sub-configurations to test all the cross­

points, a table can be laid out which lists the different cross-points tested in each of the 

configuration of C6, and then from this table select only the set of configurations which 

are needed to test the effective cross-points. This is demonstrated below. 

Table III shows the cross-points tested in each of the sub-configurations of C6 for 

a 3x3 nanoblock. Here, the assumption is that nanoblocks are used to implement AND 

and OR gates only. Hence, from Fig. 3, it can be observed that there are only 4 effective 

cross-points- cpll, cp21, cp32, cp33. From Table III, it can be seen that these four cross­

points can be tested in two configurations C61 and C63 and the configuration C62 is 

redundant and can be avoided. Thus, only 2 configurations are needed instead of 3 as a 

result of optimization. This can be extended to a kxk nanoblock, wherein the total 

number of configurations required is now (k-1) instead of k. Moreover, since the number 

of cross-points to be programmed is reduced, this leads to a considerable reduction in 

testing time. 
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Table III. Junction cross-points tested in each configuration 

Jtu1ction cross points tested 
Configuration cpll cp12 cp13 cp21 cp22 cp23 cp31 cp32 cp33 

C61 X X X 

C62 X X X 

C63 X X X 

5.2. CUSTOMIZED CONFIGURATIONS 

The advantage of the above approach is that there is no need to design new 

configurations. It is possible to simply select the desired configurations with the help of a 

table. This is simpler and less time consuming. However, It can be seen from the above 

table that in addition to the effective cross-points, some additional cross-points are also 

tested (six cross-points in the above case instead of four) which are not required. This 

reduces the utilization slightly as opposed to the maximum utilization that can be 

obtained. To have maximum utilization, custom configurations can be designed wherein 

only the cross-points which are necessary are tested. Figure 15 shows the customized 

configurations for C6 for a 3x3 nanoblock. 
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Fig. 15 Customized configuration C6 
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Here, two configurations are required but only the effective cross-points are 

tested. This gives the maximum utilization with a slightly reduced testing time than the 

first approach. However, this demands the design of new customized configurations and 

not re-using existing ones. 

5.3. RECOVERY PROCEDURE 

Once the entire testing phase has been completed and the faulty nanoblocks 

identified, an additional recovery procedure could be used to diagnose the faulty 

nanoblocks and further increase the utilization of nanoblocks. This is optional and may be 

carried out only if utilization is a major concern since this will increase the total testing 

time. 

A defective nanoblocks implies that it cannot implement AND and OR logic 

within the same nanoblock. However since the cross-points used to implement AND and 

OR logic are distinct, there can be nanoblocks among the defective ones, which can 

implement either of the two functions but not both. An additional testing phase can be 

carried out for the defective nanoblocks to test for the AND or OR implementation. The 

BUT configurations need to be modified accordingly since a nanoblock is tested only for 

one implementation and hence, only the corresponding cross-points need to be tested. 

Thus at the end of these test phases, there are three sets of usable nanoblocks- (i) those 

which can be used to implement both AND and OR function, (ii) those which can 

implement only OR function, and (iii) those capable of implementing only AND 

function. 
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6. ANALYSIS AND DISCUSSION 

6.1. NUMBER OF CONFIGURATIONSffEST PATTERNS 

The BIST approaches developed by authors in [ 15] and [ 16] have been discussed 

in Section 3. It can be seen from Table I that the total number of configurations/test 

patterns required to test the entire nanofabric is 2k+ 10. While after using the optimization 

technique, it results in 2(k-l )+ 10. From the analysis of BUT configurations in Section 4.3 

it can be deduced that only configuration C6 depends on the value of k while rest of them 

are independent of k. 

6.2. NANOBLOCK UTILIZATION 

The term nanoblock utilization is defined as the probability that a nanoblock can 

be successfully utilized to implement a logic function in the presence of defects. A 

mathematical expression will be derived for nanoblock utilization for the optimized 

technique and compared with that of a non-optimized approach. 

Assume a nanoblock of size kxk. Let p = probability of a faulty cross-point. For a 

non-optimized testing approach, a nanoblock is deemed as faulty if at least one of its 

cross-points is found to be faulty. Hence, the condition for a nanoblock to be utilized 

successfully is that all its cross-points have to be fault free. 

Utilization (non-optimized) = Probability {all cross-points are fault free} 

(1) 

For the optimized technique, as described in Section 5, there are 2(k-1) effective 

cross-points for a kxk nanofabric. In order for the nanoblock to be successfully utilized to 



40 

implement the logic function (AND/OR), these 2(k-1) cross-points need to be fault free. 

Hence the utilization in this case is given by: 

Utilization (optimized)= Probability {2(k-1) cross-points are fault free} 

U2 = (1- p)2(k-t) (2) 

6.3. TESTING TIME 

The total testing time for the nanofabric can be split into a number of components. 

Let tconfig denote the total time required to configure the BUT i.e. to program the 

various cross-points and set up power connections. Thus tconfig would not be the same 

for all configurations since the number of cross-points programmed is not the same for all 

the configurations. 

Let tp denote the time required to program a single cross-point and ts be the time 

required to set up the V dd/Gnd connections to the wires. Let ttest denote the time 

required to apply a test pattern to the BUT, wait for the comparator outputs to be 

generated, read the comparator outputs and generate the partial defect map. Here it is 

assumed that ttest >> tconFig. Using these different components, the total time required 

for testing a nanofabric can be calculated for a kxk nanoblock. 

Let Ti denote the testing time for configuration Ci (as described in Section 4.3), 

Ti* denote the testing time for the configuration Ci after using the optimization technique 

and Ti ** denote the testing time after using customization approach. The total testing time 

is given by the sum of the testing times for each of the individual configurations. Table 

IV gives a summary of the testing time for optimization and customization approaches. 



T6* = 2 * {[ (k - 1) * tp + ttestl * (k - 1) + t5 } 

(11) 

Table IV. Summary comparison of the testing time 

Change due to Change due to Customization Optimization 

CI Ti- T1 = 0 Ti*- T1 = 0 

Wire C2 T2- T2 = o T:Z*- T2 = 0 
Testing 

Time C3 T3'- T3 = 0 T3*- T3 = 0 

C4 T4- T4 = 0 T4*- T4 = 0 

Cross- C5 T5- Ts = -2tp[k- 1]2 T5* - T5 = -Ztp[k- 1]2 
point 

Testing 
C6 T6- T6 = -Z[ktp + ltest) T6*- T6 = -Zk[(k + Z)tp- ltestl Time 

Total 
-2[tp(k2 + k -1)- ltest) -2[tv(2k2 - k + 1)- ktrest] 

Difference 
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(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1 0) 
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6.4. RECOVERY PROCEDURE 

The recovery procedure is discussed in Section 5.3. Here, the nanoblock would be 

usable if it can implement either an AND or OR logic but not both. Though the 

functionality of the nanoblock is reduced, it still is usable. Hence an increase in the 

utilization of the nanoblock is expected. 

Assuming the parameters defined m Section 6.2, the utilization after usmg 

recovery procedure would be given as 

(12) 
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7. RESULTS 

Figure 16 shows the companson between our method and the approaches 

discussed in [ 15] and [16] with respect to the number of configurations required for 

testing a kxk nanofabric. 
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Fig. 16 Number of configurations required in comparison with the approaches discussed 
in [15] and [ 16] 

Figure 17 shows the plots of (1) and (2) for a value of k between 3 and 10. It can 

be seen that the optimization technique leads to a significant improvement in the 

utilization of the nanoblock. This implies that the probability of a nanoblock being 

rendered unusable is greatly reduced. 
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Fig. 17 Improvement in utilization of the nanoblock 

Figure 18 shows Total testing time for a nanoblock size varying between 3 and 

10. The improvement in testing time increases with the nanoblock size (k) since the 

fraction of effective cross points to the total number of cross points decreases with the 

nanoblock size. The number of effective cross points grows linearly with the nanoblock 

size, while the total number of cross points increases exponentially (k/\2). 

Figure 19 shows the plot of (12) for a nanoblock size between 3 and 10. The 

utilization of the nanoblocks improves since the customized configurations target only 

the effective cross points instead of fewer configurations. Consequently, only defects 

related to the effective cross points are detected and will mark the block as faulty. 
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In the case of optimization technique, unnecessary configurations were removed 

from test while still testing the redundant cross points in the remaining configurations. 

However, since only partial functionality is tested, additional tests need to be carried out. 

This results in an increase in the number of tests and testing time. Figure 20 shows the 

increase in testing time as a result of using recovery procedure. Hence, the improvement 

in utilization is obtained at the expense of increased testing time. As a result, the recovery 

procedure should be used only in cases where utilization is more important than testing 

time. 
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Fig. 20 Increase in testing time as a result of using recovery procedure 
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8. CONCLUSION 

The presented, novel testing procedure has been show to outperform the existing 

testing approaches. The proposed configurations and test patterns provide 1 00% fault 

coverage for stuck-at, stuck-open, connection and bridging faults. The parallel testing 

architectures is does not increase testing time with nanofabric size thus making it suitable 

for the dense architectures. Also, it requires only 2k+ 1 0 configurations, which 

corresponds to 23% reduction over the method discussed in [15] and 55% reduction over 

the method proposed in [16] for nanoblock size ofk=5. Moreover, using the optimization 

technique described here, the nanoblock utilization is increased from 76% to 91% for 

nanoblock size k=5. A significant reduction in testing time of the nanofabric is also 

observed. For example for k=5, the testing time is reduced by 29%. Moreover, the 

proposed recovery procedure can tailor testing to a particular functionality (either AND­

gate or OR-gate). This further increases the utilization of nanoblocks from 91% to 96% 

for k=5. In summary, the proposed technique is simple, efficient, quick, and outperforms 

the existing approaches. Further work will include theoretical analysis to demonstrate 

optimality of the proposed approach and later development of a new, fault-tolerant design 

methodology. 
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Nanofabric architectures using nanowire crossbars have shown promising potential for 

future nano-scale circuit design. However, due to the chemical self-assembly and 

alignment process, the defect rates are much higher than those of the conventional 

CMOS technology thus posing different design challenges. Specifically, the nanoblocks 

have a high level of redundancy that allows implementing a correct logic function also 

inside a partially defective block. In this paper a novel defect-aware logic mapping and 

routing technique is proposed. Additionally, compared with the previous works, our 

technique considers logic mapping at the nanoblock level. The proposed method is 

suitable for AND/OR function realizations and is a more time- and cost-effective design 

when compared with the existing techniques. Also, the impact of defects on logic mapping 

and routing is discussed and analyzed mathematically. 
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1. INTRODUCTION 

Conventional lithography-based CMOS technology faces serious challenges due 

to its fundamental physical limits such as ultra-thin gate oxides, short channel effects, 

doping fluctuations cross the chip and increasingly difficult and expensive lithography. 

Therefore, new technologies are needed to replace CMOS in the future to continue the 

Moore's Law. It has been shown that using bottom-up self-assembly techniques, it is 

possible to build nano-scale devices, such as carbon nanotubes (CNTs) and silicon 

nanowires (NWs), without relying on lithography to define the smallest feature size [1]. 

Each cross point can be made to operate as a reprogrammable switch and can be used as a 

memory cell. These switches can be programmed using the signal lines by applying an 

appropriate (high) voltage. Such devices offer a prospect of high integration density (lQlO 

to 1012 gate equivalents /cm"2) [2]. The alternative technology has been referred to as 

Chemically-Assembled Electronic Nanotechnology (CAEN) [3][4][5][6]. A 2-

dimensional array of orthogonal NWs forms a nanoblock. These nanoblocks arranged in 

a regular grid form a nanofabric. In addition to high density, these architectures offer an 

advantage of re-configurability since they consist of reprogrammable switches 

(junctions). 

High defect rate in a nanofabric is a major challenge and reduces yield of the 

nanoblocks, that is a number of nanoblocks required to implement a given logic function. 

Due to the non-deterministic nature of the self-assembly process, the defect rates in such 

devices could be as high as 10% [7]. This number is orders of magnitude larger than for 

the conventional CMOS technology thus potentially negating the benefits of 

nanotechnology. Therefore, advanced fault-tolerant design and testing techniques are 
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needed to increase nanofabric yield and fully exploit the strengths of nano-architectures 

[8][9][1 0][15]. Specifically, new, efficient logic mapping and routing techniques are 

desired. Those should counter the high defect rates in the nanofabric. Simplistic approach 

would be to perform a brute force, exhaustive search of possible mappings in order to 

find the best possible route. However, this would increase the testing and design 

overhead in terms of time and complexity. Moreover, the complexity of the design 

process increases due to the random location of defects in nanofabric and the non­

deterministic, potentially dynamically reconfigurable functionality to be implemented. 

The proposed mapping technique exploits the existing standard configurations of 

nanoblocks for the AND/OR function. The technique discussed in [ 1 0][ 16] explains the 

testing of nanoblocks implementing AND/OR functionality. As a result, the defect free 

nanoblocks are used to implement AND/OR logic. The nanoblock configurations for 

AND/OR have also been discussed in [10][16]. 

In this paper, the drawbacks of traditional logic mapping techniques in the context 

of the CAEN technology are discussed. Then, a new technique is proposed improves 

efficiency and simplifies design process over the existing approaches. Also, the effects of 

faults and defects on logic mapping and routing are analyzed. 

The main contributions of the paper are: (a) A novel logic mapping approach for 

nanofabrics tested by the testing technique discussed in [10], (b) Study of the effects of 

various parameters such as the defect rate, location of defects, complexity of the function 

to be implemented, on the proposed mapping technique. 

The rest of the paper is organized as follows. Section 2 describes the problem 

statement and the traditional logic mapping scheme for crossbar based nanofabric. In 
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Section 3 the new proposed mapping technique has been described and illustrated with a 

few examples. Analysis and results have been presented in Sections 4 and 5, respectively. 

Finally, Section 6 concludes the paper. 
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2. BACKGROUND AND PREVIOUS WORK 

The re-configurability and functional redundancy within nanofabric and 

nanoblocks enables development of robust, defect- and fault-tolerant design mechanisms. 

When a defective resource or component is identified in the chip using test and diagnosis, 

the post-fabrication configuration and logic mapping can counter effects of those defects. 

Logic mapping onto nanoblocks refers to programming the various cross-points of the 

nanoblock to implement different gates and connecting them together to obtain the 

required logic function. A nanoblock consists of two groups of parallel nanowires which 

are perpendicular to each other in the same plane and programmable cross-points at the 

junction of these nanowires [3]. These cross-points can be programmed to behave as 

diodes by application of a suitable voltage levels. Nanoblock can implement AND/OR 

gate functionalities by programming the different cross-points and by configuring pull up 

and/or pull down resistors. Figure 1 illustrates example implementation of a simple logic 

by programming the cross-points in a nanoblock and the use of pull-up/pull-down 

resistors. Note that not all cross points are employed in this realization. 



A 

B 

AB 

C D 

AB+C+D 

Fig. 1 Simple logic implementation 
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All used nanowires and cross-points need to be fault free. If any of the nanowire 

and/or any of the cross-points is faulty, the configuration needs to be redesigned. In most 

of the existing testing techniques, a nanoblock is deemed to be fault-free only if all its 

constituting nanowires and cross-points are fault-free. Consequently, the typically high 

defect rate of about 10% leads to a reduced yield and low effective logic density. In order 

to map logic onto a nanofabric in the fashion shown in Fig. 1, it is important to know the 

location of defects. If the defective nanowires and cross-points are known, the 

nanoblocks can be programmed to avoid these cross-points and wires while still 

implementing correct logic function. 

Consider nanoblock with two defective cross points as shown in Fig. 2 by "x". 

Also, an alternative implementation of the same logic function as in Fig. 1 is shown. As 

demonstrated, the functional redundancy of the nanoblock enabled us to overcome minor 

defects in the nanoblock. 
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AB+C+D 

AB 

Fig. 2 Logic implementation in the presence of defects 

The precise knowledge of the location of cross-points is known, the nanoblock 

can be programmed in a different way to implement a particular function. Also, there 

might be cases wherein it may not be possible to implement a function within a 

nanoblock if there are not enough fault-free cross-points available. Note, that any 

standard configurations of nanoblocks would not be able to overcome such defects and 

would render this block unusable. Consequently, to overcome defects each nanoblock 

needs to be configured in a different way depending on the number of faults, location of 

faults, and the logic function to be implemented. There are numerous testing techniques 

[8][9][15] described to diagnose the faulty nanoblocks. However, typically these 

techniques test for various faults in the nanoblocks and mark them as defective such that 

they can be avoided during the reconfiguration step. Consequently, these techniques do 

not support detailed information about the location of a fault within the nanoblock. 

Exhaustive testing has to be done to identify the fault location. This places a lot of 

demands on the testing algorithm to be used and also increases the complexity and testing 

time of the algorithm. 
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3. A NOVEL LOGIC MAPPING TECHNIQUE 

Once the nanofabric is manufactured, it needs to be tested thoroughly to identify 

the faulty blocks. The testing methodology used will test for certain types and number of 

faults. Once the faulty areas in the chip have been identified, the next step is to map logic 

onto the nanofabrics by avoiding the faulty blocks. A logic mapping technique was 

demonstrated in Section 2. The process of logic mapping could be simplified if there 

were standard configurations of nanoblocks available which could implement specific 

functionality. This would reduce the effort needed to design custom configurations for 

each nanoblock. Configuring a nanoblock refers to programming the various cross-points 

within the block to implement logic functionality. 

A novel logic mapping technique is proposed which would use the result of the 

testing technique discussed in [10]. Here the types of faults targeted are stuck-at faults, 

bridging and cross-point faults. It is assumed that each nanoblock implements only 

AND/OR logic and is tested to make sure it can successfully implement such a 

configuration. This requires only a certain set of cross-points to be fault free in order to 

successfully implement the function. This results in a substantial increase in the yield of 

the nanofabric. Also, the nanoblocks are assumed to be implementing only AND/OR 

gates, and the nanoblock configurations are fixed. A kxk nanoblock implementing a (k-1) 

input AND/OR gate is shown in Figure 3. The F 1 output implements the AND function 

for inputs At,A2, •. A(k-l), while F2 implements the OR function for the B~,B2, .. B(k-I) inputs. 

For such configuration, the effective cross-points (required for function realization) are 

known a priori. Hence, the customized testing, such as the one in [ 16], provides map of 

useful nanoblocks that can be utilized even if a partial defects are present. Consequently, 
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the nanoblocks marked as fault-free can implement AND/OR logic usmg standard 

configurations, such as the one in Fig. 3. 

Al --t:-+--+--t­

A2 -:-t:;r--t--+-+-

Fig. 3 AND/OR implementation 

The main advantage of such an implementation is that knowledge of the location 

of defects inside the nanoblock is not required. Also, no effort would be needed in 

designing the nanoblock configurations for each nanoblock since standard AND/OR 

implementations are used. This implementation method requires the function to be in the 

sum of products (SOP) or product of sums (POS) form. Once the function is available in 

the required form, the number of input blocks required to implement the function is 

determined and the functionality is mapped to each of the blocks used. i.e. each block is 

mapped to implement wither AND logic or OR logic. Once functionality has been 

mapped to the nanoblocks, the blocks need to be connected to each other through 

switch blocks and the result is routed to the output of the nanofabric. Here this method is 

illustrated using a few examples. 
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Consider a simple function Zl = AB+C+DE. A total of two AND and two OR 

gates are needed to implement this function. Consider a fault free nanofabric consisting 

of 36 nanoblocks and each nanoblock is 3x3. The implementation of this function is 

shown in Fig. 4. The circles represent switchblocks which are used to connect the output 

of one block to the input of next one. The rectangles represent the nanoblocks which are 

configured to implement either an AND or OR gate or are just used for routing purposes. 

As can be seen, the mapping procedure is relatively simpler in the absence of defective 

blocks. However, in the presence of defects, it is necessary to avoid the defective blocks 

and route the result to the output of the nanofabric. 

A- DODO B ··-,.·-···-· 

c DOD 
·--? zl 

ODODOD 
DODODO 
ODODOD 

Fig. 4 Logic mapping using AND/OR blocks 
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Consider a similar nanofabric with a few defective blocks as shown in Fig. 5. 

Here the defective blocks have been identified by the testing procedure and indicate that 

they cannot be used to implement any logic. However, in some cases they may be used to 

transfer signals from one block to the next. This means they can be used for routing 

purposes. Consider the implementation of a half adder with inputs A, B and outputs sum 

(S) and carry (C) in the presence of faulty blocks. As can be seen, the faulty blocks need 

to be avoided to find a fault free path. Thus in the presence of faulty blocks, a number of 

nanoblocks are used just for routing around the faulty blocks. 

A 
8 ~?EJm(j) 0 0 D 0 

0dJ-wooo 
~ =:EJ-B~B-8-·s 
~ o-~ANol(j) 0 0 D 

l 

D 0 Gmmm8El0 :·C 

ODODOD 
Fig. 5 Half adder implementation in the presence of defects 
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4. ANALYSIS AND DISCUSSION 

In this section, the effect of presence of faults on the proposed technique is 

analyzed. In the presence of faults, it is required to identify alternate routing around the 

faulty blocks and to the output. This would increase the complexity of this method 

depending on the number and location of faults. Sometimes it might not be possible to 

implement a given function using a set of nanoblocks. 

Firstly, a few new terms will be defined and the impact of faults on each of these 

terms is studied. Consider a nanofabric of fixed depth as shown in Fig. 6. The term 

utilization in terms of the number of rows required to implement a given function for a 

given depth of the nanofabric. It is defined as the inverse of the row number (the row at 

which the output is available). Greater the number of rows required, lesser the utilization. 

oooooo­
oooo·oo 
DODODO 
000000 rRows 

DODODO 
ODODODJ 
L---··--·-.. ·-------·-~---· ............ _._ ......................... .J 

Depth of the nanofabric 

Fig. 6 Sample nanofabric 
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Next, the term logic density is defined as the number of nanoblocks used to the 

total number of nanoblocks in the nanofabric. Here the number of nanoblocks used 

includes the nanoblocks which are used to implement AND/OR logic and the nanoblocks 

which are simply used to pass the signal to the output. This gives an idea about how 

much logic can be packed in a given nanofabric. Effective logic density is defined as the 

ratio of the number of nanoblocks which are configured to implement logic to the total 

number of nanoblocks used. 

Next, consider the location of faulty blocks and how it affects the mapping 

process. Here, three distinct cases are defined based on the location of faults: faulty input 

blocks, faulty blocks in the output path and randomly located faulty blocks. This is shown 

in Fig. 7. 

Case I -·····'~> 

Fig. 7 Location of fault cases 
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4.1. CASE I: FAULTY INPUT BLOCKS 

Input block refers to a block on the input side of the nanofabric. Any faulty block 

in the input column will shift the output down and increase the output row number by 

one. This is because it is required to use the next possible input block which is the 

immediate row below the faulty block. Thus the presence of a faulty block at the input 

will directly have an impact on utilization. 

4.2. CASE II: FAULTY BLOCKS IN THE OUTPUT PATH 

Once the functionality has been mapped onto the nanoblocks and the required 

result obtained, it is necessary to route the result to the output of the nanofabric. This is 

known as output routing. Here the nanoblocks would be configured to simply pass the 

signal from one block to the next. And the output path refers to the horizontal path from 

the block where the result is generated to the output block of the nanofabric. If there are 

faulty blocks in this path, it is required to move one row down in order to avoid using the 

faulty block. This again has a direct impact on utilization and increases the output row 

number by one. 

4.3. CASE III: RANDOMLY LOCATED FAULTY BLOCKS 

These are the faulty blocks located in the region shown in Fig. 7. These faulty 

blocks do not have a major impact on the output row number. Since there are always 

more blocks available to go around the faulty block without increasing the output row 

number. 

For a fixed nanofabric depth, the best possible mapping needs to be determined. 

i.e. one with the least output row number. This depends on the complexity of the function 
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to be implemented, the number of input blocks required and the number and location of 

faults as described above. Here, an expression for the probability that a function can be 

implemented at a particular row number is derived. 

Consider a nanofabric of size N. This means a total of N2/2 nanoblocks and N2/2 

switchblocks. 

Let p = probability of a faulty nanoblock. 

Let i = number of input logic blocks required. 

Assume there are m faulty input blocks (Case I), n faulty blocks in the output path 

(case II), and l randomly located defects (case III). With i input blocks, the best possible 

mapping that can be obtained is at output row number i. The probability of m input 

defective blocks out of i is 

(1) 

P(m input defective blocks out of i) = (~) pm (1- p)i-m 

The output will be evaluated at the (i+m)th row and column. 

Probability (n defblocks out ofN-(i+m)) is 

P(n defective blocks out of N- (i + m)) = (N-(~+m)) pm (1-

p )N-(i+m)-n (2) 

The output will be at the (i+m+n)th row. 
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5. RESULTS 

Equations (1) and (2) can be combined and plotted for different values of p, N and 

1. Figures 8, and 9 gives the probability that a function can be implemented at the 

required output row number for varying values of the parameters. 

--- p=0.08 

0.9 -·-·· p=0.10 

--+--- p=0.15 

0.8 

0.7 -·· -·· 
~ 
ii 0.6 Ill 
.c e 
a.. 

Output row 

Fig. 8 Output row vs probability plot for variable defect rate, p 
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Figure 8 shows the plot for different values of defect rates and N=l 0 and i = 3. It 

can be seen that as the defect rate increases, the probability reduces. This is because there 

exist more number of faulty blocks which need to be avoided which increases the output 

row number. Figure 9 shows the plot for varying number of input blocks for a defect rate 

of 8% and N=l 0. The number of input blocks required depends on the complexity of the 

function to some extent. As the number of input blocks increases, the function becomes 

more and more complex the output row number also increases for a constant defect rate 

and nanoblock size. 
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Fig. 9 Output row vs probability plot for variable number of input blocks, i 

Logic density and effective logic density are two more terms of importance. 

Several simple functions were implemented with varying values of i and recorded the 
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number of blocks utilized to implement a function and in tum the logic density and 

effective logic density for p = 10% and varying values of m and n. These values have 

been plotted against the value of i in Fig. 10 and Fig. II for logic density and effective 

logic density respectively. The number of input blocks is a measure of the complexity of 

the function to be implemented. 
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Fig. I 0 Logic density vs. input blocks for different values of m,n 
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From Fig. 10, it can be seen that the logic density reduces with the increase in the 

complexity of the function. This is because as the output row shifts down, more and more 

number of blocks are left unused in the upper right of the nanofabric which would 

otherwise be used to go around any defects. However, the effective logic density is seen 

to be increasing slightly with I as is evident from Fig. 11. This is because effective logic 

density is a measure of how many blocks are actually used to implement logic out of the 

total blocks used. Thus more the number of input bocks, better is the effective logic 

density. When compared with different values of mann, greater the values of m and n, 

lesser the logic density as well as the effective logic density. This is because m and n are 

case I and case II types of faulty blocks (discussed in Section 4) and have a direct impact 

on the output. 
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Fig. 11 Effective logic density vs. input blocks for different values of m,n 



69 

6. CONCLUSION 

This paper presented a novel logic mappmg technique for nanofabrics. This 

technique is based on the nanofabric which assumes standard AND/OR functionality for 

the nanoblocks. An effective testing approach to obtain such a nanofabric has been 

discussed in our previous publication. This method is much simpler than the existing 

ones, since there are standard nanoblocks configurations available for AND/OR. This 

eliminates the need to program and configure each nanoblock manually thereby 

simplifying the design process. Also, there is no need to have knowledge about the 

location of defects within the nanoblock. This reduces the demands on the testing 

technique used and hence the testing procedure could be simplified as well.It is also 

illustrated with examples, how several functions can be implemented using this technique 

in the presence of defects. This paper presents an outline of this new approach and how it 

can be implemented and future work is planned to do more extensive analysis and test the 

effectiveness of this approach with the help of performance metrics. 
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SECTION 

2. CONCLUSIONS 

A new testing and design approach was proposed and successfully analyzed. Its 

performance has been compared with the existing schemes in terms of with respect to a 

number of parameters including nanoblock size, probability of defect, and nanofabric 

size. Also, the fault coverage has been shown for a large set of fault types. Theoretical 

analysis demonstrated that the proposed optimization technique reduces the number of 

required configurations and testing time while increasing the effective yield of a 

nanofabric. A reduction of 23% - 55% is obtained in the number of required 

configurations, which also leads to reduced testing time. Additionally, a customization 

approach was presented. It further improves the testing time if the specific logic function 

is known a priori and the yield of the nanofabric could be increased to as high as 96%. 

Moreover, the testing has been accompanied with a new logic mapping technique that 

complements each other. The defect map generated by testing procedure is utilized to 

efficiently map logic functions onto the nanofabric such that partially defective, but 

functional, nanoblocks are utilized instead of discarding. The main benefit of the 

proposed approach is simplification of the logic mapping process by using standard 

nanoblock configurations. The location of defects inside each nanoblock does not have to 

be known thus avoiding a complex and time consuming testing process. 
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