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An Accurate Method of Energy Use Prediction for
Systems with Known Composition

Jacob A. Mueller and Jonathan W. Kimball
Department of Electrical and Computer Engineering

Missouri University of Science and Technology
Rolla, MO 65409

Abstract—An improved method of nonintrusive load moni-
toring (NILM) using hidden Markov models is proposed. The
proposed method is intended for electrical systems with a closed
and known set of devices. Systems that meet this constraint
are more commonly found in industrial or commercial contexts
than the residential settings in which NILM is traditionally
studied. The proposed method is designed to support applications
relevant to these contexts, such as fault monitoring and system
health assessments. To this end, the energy predictions of the
disaggregation algorithm offer accurate descriptions of device
behavior in time. The accuracy of the proposed method is
validated using standard NILM performance metrics and data
from public databases.

Index Terms—Nonintrusive load monitoring, device modeling,
hidden Markov models.

I. INTRODUCTION

The value of energy use information provided by an ac-
curate nonintrusive load monitoring system is well-known.
Consumers, industry, and utilities all stand to benefit from the
continued development of NILM technologies. This breadth
of applicability has led to rapid growth in NILM research. Of
the many established NILM methods, those constructed around
hidden Markov models (HMMs) and their generalizations have
enjoyed particular success in recent years [1]–[4].

From the beginning, NILM research been heavily motivated
by the goal of providing accurate energy use assessments for
appliances in residential settings [5], [6]. Residential electrical
systems typically contain a similar set of devices, but are
complicated by the fact that the number of devices in the
system is continually changing. NILM systems address this
challenge using unsupervised training methods or provisions
for handling unmodeled loads [7]. The desired output for these
systems is a breakdown of the total energy use by device.
Energy use predictions are typically calculated from the peak
or mean values of the devices’ conditional observation dis-
tributions given the disaggregated state sequence. This bulk
energy use information is useful for many load monitoring
applications, but provides limited information regarding device
energy use in time.

This study presents a NILM method for characterizing
device behavior in electrical systems with known composition.
“Known composition” is defined here to mean that the number
of loads in the system is known and well-trained models of
each load are available. This assumption represents a departure
from the more traditional residential context, in which the set

of loads is continually changing. The assumption is, however,
met by pre-designed electrical systems, such as power systems
of satellites, data centers, and electric vehicles of all kinds.
For these systems, early warnings of possible device dam-
age are critical, as they affect mission planning, scheduling
of maintenance, and other reliability-centered functions. The
target application of the proposed method is motivated by
these concerns. Namely, the method is intended to aid in
detection and identification atypical device behavior, which
may be indicative of equipment damage or impending failure.
By eliminating the possibility of unmodeled loads, the energy
used by each device can be determined with higher precision,
and unexpected energy use may be interpreted as the result of
changes in device status, rather than contributions of unknown
devices.

The proposed method provides energy use profiles in the
form of predicted observation sequences that maximize the
total likelihood at each sampling instant. A modular training
process allows device models to be generated independently,
and then combined later as necessary. This results in a system-
level description that does not require aggregate training data
nor simultaneously collected device data. The method shares
the same scalability issues of other HMM-based NILM meth-
ods, but is able to use recent sparsity-exploitation approaches
to mitigate these problems. In the following sections the
proposed method is outlined and results are discussed for a
test system of data from public NILM databases.

II. METHODOLOGY

The proposed NILM method consists of model training,
system-level representation, state sequence disaggregation, and
energy use prediction. The observations for the underlying
HMMs are instantaneously sampled average active power
measurements. That is, the observations are the single-cycle
average power during the line frequency period immediately
preceding the sampling instant. For dc systems, observations
may simply be instantaneous power. States correspond to
devices’ operational modes. Under these assumptions, devices
are accurately modeled by finite state machines with Gaussian
conditional observation distributions for each state.

A. Training

As the devices are assumed to be known a priori, a super-
vised method of training is sufficient to build device models.



From recorded observation data for a single device, the number
of states and range of observations for each state may be
determined. A corresponding sequence of states can then be
found for the sequence of observations [8]. There are several
methods that may be used to define range of observations for
the states. One such method is given in [1]. The conditional
observation distributions for each state are assumed to be
Gaussian, and their mean and variance parameters may found
using maximum likelihood estimates.

Let device k be (invasively) measured for duration
T , where T ∈ Z+ is the number of discrete sam-
ple instances. Then the resulting observation sequence is
O(k) = {O(k)

1 , O
(k)
2 , · · · , Q(k)

T }, where each O(k)
t ∈ R+.

If device k has Nk states, then the sequence of states is
Q(k) = {Q(k)

1 , Q
(k)
2 , · · · , Q(k)

T }, and Q(k)
t ∈ {1, · · · , Nk}.

Each device’s HMM consists of transition matrix, A, ob-
servation distributions, φ, and initial probability occupation
vector, π. Elements of the transition matrix are estimated as

A
(k)
ij =

∑T−1
t=1 [I(Qt = i) · I(Qt+1 = j)]∑T−1

t=1 I(Qt = i)
(1)

where I(·) is the indicator function. Observation distributions
for each state of each device are assumed to be Gaussian, i.e.
φi(Ot) ∼ N (µi, σi). For device k, estimates for parameters

µ
(k)
i and

(
σ
(k)
i

)2
are the sample mean and sample variance,

respectively.

µ
(k)
i =

∑T
t=1[O

(k)
t · I(Q(k)

t = i)]∑T
k=1 I(Q

(k)
t = i)

(2)

(
σ
(k)
i

)2
=

∑T
t=1[(O

(k)
t − µ(k)

i )2 · I(Q(k)
t = i)]∑T

t=1 I(Q
(k)
t = i)

(3)

B. Model Combination and State Disaggregation

To represent a system of multiple devices, the individual
device models are combined into a single composite model.
The composite model is itself an HMM, and has the same
parameters A, φ, and π as the device models. Bold type
indicates that these parameters pertain to the composite model.
In the composite model, observation probabilities are treated
as discrete quantities, so φ takes the form of a matrix.

The composite transition matrix is constructed as the Kro-
necker product of the device transition matrices. For two
matrices X and Y , the Kronecker product X ⊗ Y produces
a block matrix Z, such that the product of element Xij and
matrix Y is the ijth block element of Z. Defined recursively,
the composite transition matrix after the inclusion of the kth

device model is

A(k) = A(k−1) ⊗A(k) (4)

where A(k) is the transition matrix of the kth device, and
A(0) is 1. The order in which device models are included
in the composite model is used to extract device-level state
sequences in the disaggregation stage.

To construct the composite observation matrix, the devices’
observation distributions must be converted to a discrete

representation. A fixed bin size B is chosen and the range of
possible observations is partitioned into discrete intervals. For
each device state, the probability of an observation in a given
bin is the integral of the conditional observation distribution
over that bin. Since each device state corresponds to a single
Gaussian observation distribution, many bins will have very
low observation probabilities. A minimum threshold ε may
be set such that the bin probabilities are fixed to 0 if the
calculated values are less than ε. This parameter influences
the sparsity of resulting composite observation matrix. For this
study, ε = 10−9 was used. The choice of B is determined
by the resolution of the measurement device to be used in
implementation of the system and the characteristics of the
observation distributions. This selection is a design tradeoff:
the size of B must be small enough that the lowest power state
of the lowest power device is not lost, but an overly small
B will lead to large memory requirements for the composite
observation matrix.

Once the discrete observation probabilities have been cal-
culated, the composite observation matrix is constructed again
using the Kronecker product and summing columns that corre-
spond to equal observations. When the composite observation
matrix has been determined, the individual devices’ observa-
tion matrices may be discarded; only the parameters of the
continuous distributions need to be retained.

In order to apply the composite model, the aggregate obser-
vation is binned using the same B as was used for the model
combination process, such that the sequence of observations is
integer-valued. Since the composite model is itself an HMM,
the Viterbi algorithm may be used to determine the most likely
sequence of composite states for the observation sequence.
However, the time complexity of the Viterbi algorithm is
problematic for systems with large numbers of states, and the
number of states in the composite system scales exponentially
with the number of devices. To address this issue, the sparse
Viterbi algorithm proposed in [9] is used, and composite
matrices are stored in a sparse matrix format.

Regardless of whether the standard Viterbi algorithm or
sparse Viterbi algorithm is used, the resulting sequence of
composite states can then be broken down into individual
sequences of device states. The disaggregated state sequences
are

Q̂
(k)
t = mod

(
ceil

(
Q̂t∏K

i=k+1Ni

)
− 1, Nk

)
+ 1, (5)

where Q̂t is the composite Viterbi path at instant t, K is the
total number of devices in the system, and mod and ceil are the
modulo and ceiling functions, respectively. For device K, the
last included in the composite model, the form of (5) reduces
to

Q̂
(K)
t = mod

(
Q̂t − 1, NK

)
+ 1 (6)

C. Energy Prediction

The approach to energy prediction is the principal difference
between the proposed method and existing NILM procedures.



In other methods, the energy use is predicted as the expected
value or peak value of the device’s conditional observation
distribution given the disaggregated device state. While this
results in accurate predictions of cumulative energy use, the
energy use predictions in time are constant when the state
is not changing. For many devices, this offers an inadequate
approximation of real behavior.

The assumption of known system composition allows the
predicted device observations to be constrained to equal the
measured aggregate observation. Let O be the aggregate
observation, and let Ô be the K-tuple of device observation
predictions. The predictions are subject to

g(Ô) =

K∑
i=1

(
Ô(k)

)
−O = 0. (7)

For notational convenience, time indices have been dropped.
Because the devices are independent, the total probability of
this observation prediction is the product of the conditional
observation probabilities for each device. Working in logspace,
this probability is described by

f(Ô) = ln

(
P
[
Ô
])

=

K∑
i=1

ln

(
φ(i)
(
Ô(i)|Q̂(i)

))
, (8)

where Q̂(k) is the disaggregated state of device k.
Using Lagrange multipliers, ∇f = λ∇g. The ith summa-

tion term of (8) depends only on the ith element of Ô. For
Q̂(i) = j, the partial derivative is then

∂f(Ô)

∂Ô(i)
=

∂

∂Ô(i)
ln

(
φ
(i)
j

(
Ô(i)

))
=

(
µ
(i)
j − Ô(i)

)(
σ
(i)
j

)2 . (9)

The convenient linear form of this equation results from the
assumption of Gaussian observation distributions. The ith term
of λ∇g is just λ, so each Ô(i) may be expressed in terms of
λ and mean and variance parameters, which are known.

Ô(i) = µ
(i)
j − λ

(
σ
(i)
j

)2
(10)

Substituting these terms into (7), λ may be calculated from the
aggregate observation and the sums of the means and variances
of the appropriate device states.

λ =

(∑K
i=1 µ

(i)

Q̂(i)

)
−O∑K

i=1

(
σ
(i)

Q̂(i)

)2 (11)

The individual observation predictions are then calculated by
substituting λ back into (10) for each device.

III. TEST RESULTS

To verify the performance of the proposed method, a
set of experiments were conducted using data from public
NILM datasets. Data from Tracebase [10], Smart∗ [11], and
GREEND [12] datasets were used. Observation data were
collected for 6 devices over 10 days. Each observation set
was downsampled to a period of 5 s. To eliminate bias, a

TABLE I
ACCURACY ASSESSMENTS - STANDARD VITERBI ALGORITHM

Device F-Score/ Est. Acc. Est. Acc.
FS-Fscore Proposed Method Expect. Method

Stove 0.9511 0.9596 0.9561
Dryer 0.9782 0.9951 0.9919

Dishwasher 0.5007 0.9107 0.9080
Microwave 0.7953 0.7348 0.7323
Refrigerator 0.8208 0.9157 0.8623

LCD TV 0.9309 0.9350 0.9226

TABLE II
ACCURACY ASSESSMENTS - SPARSE VITERBI ALGORITHM

Device F-Score/ Est. Acc. Est. Acc.
FS-Fscore Proposed Method Expect. Method

Stove 0.9553 0.9644 0.9608
Dryer 0.9834 0.9953 0.9925

Dishwasher 0.5081 0.9674 0.9651
Microwave 0.7221 0.8743 0.8732
Refrigerator 0.8754 0.9185 0.9080

LCD TV 0.9011 0.9088 0.8943

10-fold cross validation procedure was used; the observations
were split into 9 days of training data and 1 day of test
data. The aggregate test data was generated as the sum of the
test devices’ observations, with each device’s initial start time
randomly generated. For each fold, 10 trials were conducted,
corresponding to 10 random device start times. A relatively
small set of devices was chosen so that the accuracies resulting
from the standard Viterbi algorithm and sparse Viterbi algo-
rithm could be compared. As a further point of comparison,
the energy predictions calculated from expected observation
values conditional on the disaggregated states were assessed as
well. The accuracies of the state and energy predictions were
measured using the standard NILM metrics discussed in [13].
Namely, F-Score and modified finite state F-Score were used
for state accuracy, and estimation accuracy [14] was used to
assess energy predictions.

Accuracies for the standard Viterbi tests and sparse Viterbi
tests are shown in Table I and Table II, respectively. The
proposed method is more accurate in all cases. On average,
the increase in accuracy is +1.29%. The accuracy metric used
normalizes predictive error by the device’s total energy, so
an increase of this magnitude is expected. The improvement
provided by the proposed method is its ability to predict
transient features. These characteristics are important to the
identification of correct device operation, but typically make
up a small fraction of the cumulative energy.

The difference in predictive performance is best demon-
strated by the results for the refrigerator and LCD TV. The
refrigerator’s behavior is characterized by transient spikes in
active power corresponding to the inrush current of the starting
compressor. The transient is consistent enough to require its
own dedicated state. The TV is an electronic device, and ex-
periences small variations in power as the image on the screen



Fig. 1. Comparison of refrigerator ground truth and predicted observations.

changes. These variations are not large enough to necessitate
their own states, but are an immediately recognizable feature
in the device’s energy use profile. A comparison of the ground-
truth observations and predictions of the two methods for these
devices are shown in Fig. 1 and Fig. 2, respectively. The
proposed method is much more capable of predicting these
transient effects, while the expectation method provides only
a rough approximation. The performance difference shown in
these plots is indicative of the overall improvement offered
by the proposed method: the refrigerator predictions shown
in Fig. 1 represent a increase accuracy of 1.75%, and TV
predictions in Fig. 2 represent an increase of 1.36%.

These two devices represent critical areas in the space of
devices. The transient behavior of the refrigerator is typical of
devices with inductive or capacitive load characteristics, while
the TV’s power variations due to operational changes are typi-
cal of electronic loads. While the total energy use during these
transients and variations is small compared to the devices’
cumulative energies, their recognition is of critical importance
to applications involving the identification of atypical device
behaviors.

IV. CONCLUSION

In this study, an HMM-based NILM method has been
extended for systems with known composition. The proposed
method provides accurate descriptions of device behavior in
time, but requires a static and well-modeled system. Since the
system is well-known, the observation predictions for each

Fig. 2. Comparison of LCD TV ground truth and predicted observations.

device may be constrained to equal the measured aggregate
observation sequence. The process of determining the device-
level observations is then reduced to a constrained optimiza-
tion problem, which maximizes the likelihood of the predicted
observations at each sampling instant. This provides an addi-
tional level of accuracy without affecting the functionality of
the base NILM method. Moreover, this increased accuracy is
possible with only minimal increases to algorithm complexity.
The method is most useful for recognizing transient device
behavior and energy use variations within a single device
state, where the expectation method provides only rough
approximations.

In situations where the known system composition assump-
tion is met, the proposed method may be used to support
NILM-based system health assessments through the identi-
fication of atypical device behaviors. This functionality is
particularly relevant to industrial and mobile power systems,
which are more likely to contain only known and well-
modeled devices. The proposed method of energy estimation is
compatible with the sparse Viterbi algorithm, which provides
the capability for online operation and allows a larger set of
devices to be used before algorithm time-complexity becomes
problematic. Nonetheless, the proposed method is still subject
to the scalability challenges experienced by all HMM-based
NILM approaches. Further work in this study will explore
fault monitoring procedures based on this method, and look at
new ways of increasing the scalability of the disaggregation
algorithm as a whole.
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