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Nonlinear development and secondary instability
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1NASA Langley Research Center, Hampton, Virginia 23681, USA
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(Received 20 March 2014; accepted 2 June 2014; published online 23 June 2014)

Building upon the prior research targeting the laminar breakdown mechanisms as-
sociated with stationary crossflow instability over a swept-wing configuration, this
paper investigates the secondary instability of traveling crossflow modes as an alter-
nate scenario for transition. For the parameter range investigated herein, this alternate
scenario is shown to be viable unless the initial amplitudes of the traveling crossflow
instability are lower than those of the stationary modes by considerably more than
one order of magnitude. The linear growth predictions based on the secondary insta-
bility theory are found to agree well with both parabolized stability equations and
direct numerical simulation, and the most significant discrepancies among the var-
ious predictions are limited to spatial regions of relatively weak secondary growth,
i.e., regions where the primary disturbance amplitudes are smaller in comparison
to their peak values. Nonlinear effects on secondary instability evolution are also
investigated and found to be initially stabilizing when they first come into play.
[http://dx.doi.org/10.1063/1.4883256]

I. INTRODUCTION

The economic and environmental benefits of laminar flow technology via reduced fuel burn
of transport aircraft cannot be realized without minimizing the uncertainty in drag prediction in
general and transition prediction for boundary layer flows in particular. Thus, it becomes essential to
develop a validated set of variable fidelity prediction tools to enable sufficiently accurate transition
prediction and practical transition control for the future vehicle concepts. In particular, transition due
to crossflow instability has been difficult to predict in the context of both subsonic and supersonic
transports. The purpose of the present research is to investigate the transition mechanisms involving
the breakdown of traveling crossflow vortices, which have received less attention than their stationary
counterpart.

In general, a swept wing boundary layer can be susceptible to various types of primary insta-
bilities such as attachment line instability,1 stationary and traveling crossflow modes, and Tollmien-
Schlichting (TS) waves. Malik et al.2 studied the nonlinear development of stationary and traveling
crossflow vortices and their interactions in an incompressible swept Hiemenz flow, as well as the
associated temporal secondary instabilities of stationary crossflow vortices. A follow on study by
Malik et al.3 studied the secondary instability of stationary crossflow vortices over an essentially
incompressible swept wing configuration that was the focus of a wind tunnel experiment at Arizona
State University (ASU) by Reibert et al.4 Gaster’s relation5 was used to convert temporal growth
rates of secondary instability into spatial growth rates so as to enable predictions of associated
amplification ratios (i.e., N-factors) of secondary instability waves. The predicted N-factor values
were correlated with transition locations measured in the ASU experiment. The two major types of
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secondary instability modes found in this case were classified as Y- and Z-modes, respectively, based
on the dominant direction of mean flow shear that contributes to the energy production mechanisms
associated with this instability mode. Often, the Y-direction is associated with the wall-normal direc-
tion and, therefore, the Y-modes of secondary instability correspond to modes that primarily derive
their energy production mechanism from the wall-normal velocity gradient associated with a non-
linearly developed primary crossflow vortex. Similarly, the Z-mode is associated with disturbance
energy production via the spanwise velocity gradient. The same classification was subsequently
used in a number of follow-on papers. Koch et al.6 examined the nonlinear equilibrium solutions in
three-dimensional boundary layer and their secondary instability.

Direct numerical simulations involving secondary instability of stationary crossflow modes were
described by Hogberg and Henningson7 and Bonfigli and Kloker.8 A majority of the previous studies
from the literature were directed at understanding and prediction of the secondary instability modes.
However, Friedrich and Kloker9 recently described an interesting investigation that demonstrated
the successful control of secondary instability via localized suction at the surface.

Regardless of which mode dominates the primary amplification stage, the other modes could
play a role during the nonlinear stage and hence, influence the onset of transition. Although, in
cases of practical interest, the breakdown of stationary crossflow vortices appears to be the more
likely route to transition,2, 4, 6–13 other scenarios involving a more significant role for the traveling
crossflow instability14–17 may become relevant under less common circumstances. These may happen
either when the initial amplitudes of traveling modes become sufficiently large as a result of higher
amplitude freestream disturbances or when the surface has been carefully polished to minimize the
initial amplitudes of stationary crossflow modes. Wassermann and Klocker15 studied the nonlinear
saturation of traveling crossflow vortices and the associated developments of secondary instability
for a flat plate configuration subject to a favorable pressure gradient. Among their findings are that the
finite amplitude traveling crossflow vortices form stronger internal shear layers which are much closer
to the wall than their stationary counterpart and that the secondary instability is dominated by the
so called Z-modes3 that are dominated by energy production mechanisms associated with spanwise
variations (i.e., in Z-coordinate) of the underlying basic state. In a recent paper, Choudhari et al.16

used nonlinear parabolized stability equations (NPSE) and linear secondary instability theory (LSIT)
to analyze the traveling crossflow vortices and their secondary instability and found that, even though
the traveling crossflow vortices saturate at much lower amplitudes than their stationary counterparts,
the growth of secondary instabilities of the traveling crossflow vortices is at least as strong as the
secondary modes of the stationary crossflow vortices when the amplitudes of the two types of primary
disturbances at the respective lower branch neutral locations are comparable to each other. They
also observed the Y-mode3 secondary instability (associated with wall-normal variations of the basic
state), which becomes dominant when the amplitude of the primary crossflow vortex is large. Down
and White17 studied the effect of freestream turbulence on the development of crossflow disturbances
in a recent experiment and showed that increasing freestream turbulent levels promote the traveling
crossflow vortices. Their paper also included a thorough review of the previous work on this topic.

The present paper stands apart from the abovementioned studies in a number of different
ways. To our knowledge, it represents the first application of linear secondary instability theory to
traveling crossflow vortices. Furthermore, the setting used is more general in that it is applicable to a
compressible swept wing boundary layer. Finally, a formally consistent model of spatial secondary
instability is presented by extending the previous work by Li and Choudhari18, 19 for the secondary
instabilities of stationary crossflow vortices.

In a practical setting, the investigation of nonlinear breakdown scenarios associated with a
mixed evolution of stationary and traveling crossflow modes is perhaps more important. However, as
a prelude to the more complex scenario, the secondary instability of traveling crossflow modes alone
is studied herein to obtain useful insights regarding their breakdown. Results presented in a previous
paper16 showed that the traveling crossflow modes saturate at much lower amplitudes in comparison
to the stationary modes and, yet, the growth of secondary instabilities of the traveling crossflow
vortices can be at least as strong as those of the stationary crossflow modes. The work presented
herein extends that effort to address the important issue of what threshold initial amplitudes are
required for the traveling vortices to sustain a significant amplification of secondary instabilities.
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Additionally, the predictions based on the secondary instability theory are compared with direct
numerical simulations (DNS) with controlled initial disturbances.

The paper is organized as follows. Section II provides a brief background on the secondary insta-
bility theory for traveling crossflow instabilities in a swept wing boundary layer. For a more complete
description of underlying methodology, the reader is referred to Refs. 18 and 19. The flow configura-
tion of interest in this paper is outlined in Sec. III, along with the computational codes used in the anal-
ysis. The computational results are discussed in Sec. IV, followed by concluding remarks in Sec. V.

II. SECONDARY INSTABILITY

Secondary instability is an instability mechanism of the primary instability. Examples of primary
instabilities in swept wing boundary layers include Tollmien-Schlichting waves, Görtler vortices,
and crossflow vortices. The initial growth of a primary instability of infinitesimal amplitude is
usually exponential and, as the amplitude increases downstream, nonlinear effects often lead to
a quasi-saturation behavior. In strictly parallel flows such as a plane Poiseuille flow, the primary
amplitude reaches a finite constant value. In many other cases such as external boundary-layer flows,
however, the primary wave amplitude continues to evolve slowly as a result of the slow streamwise
variations in the base flow.

The quasi-saturated, finite amplitude primary wave can become susceptible to an instability of
its own, namely, the secondary instability.20 Many examples of primary waves are time-independent
when viewed in a proper inertial frame of reference and are periodic in at least one spatial direction.
When the boundary layer flow is invariant along a spatial direction such as the spanwise direction in
the case of a two-dimensional or infinite-span swept wing, the modified basic state in the presence
of stationary Görtler or crossflow vortex modes is periodic in the spanwise direction and time-
independent in a fixed frame of reference. Traveling crossflow vortices in such boundary layers are
also periodic in the spanwise direction and appear stationary when the observer travels with the
spanwise phase velocity of the vortex modes.

A local secondary instability analysis becomes possible when the slowly varying base flow
is approximated as locally constant along the direction of slow mean flow evolution, because the
coefficients of the perturbation equation become locally independent of that direction. The stationary
and periodic nature of the primary waves greatly facilitates the analysis of secondary instabilities.
If the flow field with a saturated primary wave is used as the base flow on which an infinitesimal
perturbation is introduced, then the resulting linearized equations governing the evolution of the
perturbation take the form of a set of linear partial differential equations with periodic coefficients in
one of the directions. For Görtler and crossflow vortices, the periodic direction is along the wing span.

When the primary instability corresponds to crossflow vortices, the base flow is slowly varying
along the vortex axis but periodic in the spanwise direction with the same period as the spanwise
wavelength of the primary crossflow vortex. These two directions are, in general, not orthogonal
and the problem is best solved in a non-orthogonal coordinate system. The derivation of secondary
instability equations is described by Li and Choudhari,19 who described the development of a self-
consistent spatial formulation of secondary stability theory for infinite-span swept wing boundary
layers. The spatial theory extended the simpler, temporal formulation described in the preceding
incompressible studies by Malik et al.,2 which provides the expressions for the coefficients for the 2D
partial-differential-equation based eigenvalue problem for incompressible flow in Eqs. (5.2)–(5.5)
of Ref. 2. A similar process was followed by Li and Choudhari18, 19 in generating the compressible
equivalents of the coefficient matrices for an orthogonal system by symbolic manipulation software.
These coefficients were then transformed into the non-orthogonal system of Eq. (1) below as
described in Eqs. (4) and (5) of Li and Choudhari.19 The secondary instability equations in a
non-orthogonal coordinate system take the form,

�
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where φ(ξ , η, ζ ) is a vector representing perturbation quantities of secondary instability, ξ is the
coordinate along the crossflow vortex axis, η is normal to the wall, and ζ is the spanwise coordinate.
The coefficient matrices in front of the derivatives of φ are functions of the coordinates (ξ , η,
ζ ), slow-varying in ξ and periodic in ζ . The perturbation variables associated with the secondary
instability can then be expressed in the form

φ (ξ, η, ζ ) = ϕ (η, ζ ; ξ ) exp (−iωs t + iαξ ) , (2)

where ϕ(η, ζ ; ξ ) is a 2D complex function corresponding to the mode shape of secondary instability
at station ξ along the axis of the primary crossflow vortex (i.e., the ξ dependence of ϕ is treated in a
parametric sense), ωs is the angular frequency of the secondary instability (treated as a real parameter
in predicting the spatial evolution of secondary instability) and α is the complex wavenumber in the
direction of the primary crossflow vortex. After substituting the modal ansatz (2) into the governing
equations (1), the resulting set of equations is given by

−iωs�ϕ + (iαA + α2Vξξ )ϕ + (B − iαVξη)
∂ϕ

∂η
+ (C − iαVξζ )

∂ϕ

∂ζ

= Vηη

∂2ϕ

∂η2
+ Vζ ζ

∂2ϕ

∂ζ 2
+ Vηζ

∂2ϕ

∂η∂ζ
. (3)

Together with appropriate boundary conditions in η and ζ directions, the equation set (3) corre-
sponds to a 2D, i.e., planar, partial differential equation based eigenvalue problem. Equation (3) has
coefficients that are 1-periodic in ζ (where the notation n-periodic denotes periodic functions with a
fundamental wavelength of n times the corresponding wavelength of the primary crossflow mode),
but its solution is not necessarily periodic in ζ . It takes the following form given by the well-known
Floquet theory:20

ϕ(η, ζ ) = �(η, ζ ) exp(
iεβζ

2
), (4)

where � is 1-periodic in ζ , β is the spanwise fundamental wavenumber of the crossflow vortex and,
in general, ε is a complex number that will be referred to herein as the detuning parameter. If the
solutions to Eq. (3) are restricted to periodic functions of ζ , then ε becomes a real parameter. In par-
ticular, ϕ is 1-periodic when ε = 0 and 2-periodic when ε = 1, which correspond to the fundamental
and subharmonic modes, respectively, of the secondary instability. In this paper, however, we are
primarily interested in the fundamental modes. Computations of subharmonic modes at selected fre-
quencies show that such modes do not behave very differently from their fundamental counterparts
other than a 180◦ phase shift between the locations of peak oscillations across a pair of adjacent
crossflow vortex modes. It may be noted that, once a solution is obtained in the non-orthogonal
coordinate system (ξ , η, ζ ), it can be easily remapped to the more intuitive orthogonal system (X, Y,
Z), where Y and Z are in the same directions as η (wall-normal) and ζ (spanwise), respectively, and
X is the surface coordinate normal to the leading edge of the wing.

For traveling crossflow vortices, the base flow (i.e., boundary layer flow plus the finite amplitude
traveling crossflow perturbations) itself is unsteady. To circumvent the temporal variations in the
base flow, the problem is analyzed in an inertial frame of reference traveling with the spanwise phase
velocity of the crossflow vortex, which makes the base flow in the traveling frame independent of
time as described by Malik et al.21 The transformation from the stationary to traveling coordinate
system is given by

Z̄ = Z − ωp t/β, (5)

where Z̄ is the spanwise coordinate in traveling system and ωp is the fundamental frequency of the
crossflow vortex in the fixed system. The stationary base flow in the traveling frame of reference can
be expressed in the form

φ̄
(
x, y, Z̄

) =
∞∑

n=−∞
ˆ̄φn (x, y) exp

(
inβ Z̄

)
. (6)
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Secondary instability analysis in this traveling coordinate system is very similar to the secondary
instability of a stationary crossflow mode, except that the base flow spanwise velocity is now non-zero
at the wall. In the spanwise traveling frame, each linear secondary instability mode can be associated
with a single fixed angular frequency, ωs. Just as for the secondary instability of stationary crossflow
modes,18, 19 the secondary instability of traveling crossflow modes can be expressed in terms of the
Fourier series expansion

φ
(
x, y, Z̄ , t

) =
∞∑

n=−∞
φ̂n (x, y) exp

(
inβ Z̄ − iωs t

)
. (7)

In experiments, the measurement devices are usually fixed in the stationary frame of the wind tunnel.
It is then natural to inquire what frequency or frequencies would be registered by the measurement
sensors? This question can be answered by substituting Eq. (5) into Eq. (7) to obtain the expression
for the secondary perturbation in the fixed frame of reference:

φ (x, y, Z , t) =
∞∑

n=−∞
φ̂n (x, y) exp

(
inβZ − (inωp + iωs) t

)
, (8)

whereas the base flow in this fixed frame of reference is given by

φ̄ (x, y, Z , t) =
∞∑

n=−∞
ˆ̄φn (x, y) exp

(
inβZ − nωpt

)
. (9)

In practice, the frequency of secondary instability is often an order of magnitude higher than that of
the primary wave, i.e., ωs � ωp, it is convenient, for illustrative purpose, to consider a secondary
instability of a frequency that is an integer multiple of the primary wave frequency. Let such a fixed
integer be denoted by, k, then Eq. (8) becomes

φ (x, y, Z , t) =
∞∑

n=−∞
φ̂n (x, y) exp

(
inβZ − i(n + k) ωpt

)
. (10)

Let us now consider the structure of both the base flow and the secondary fluctuations in the discrete
Fourier space (m, n), where m denotes the temporal harmonic and n represents the spanwise harmonic.
In the spanwise traveling frame, the base flow is spread over the vertical axis corresponding to Fourier
modes (0, n) and the secondary instability mode is spread over the parallel line corresponding to
Fourier modes (1, n). In a fixed frame of reference, on the other hand, the same two fields occupy
the diagonal lines corresponding to Fourier modes (n, n) and (n + k, n), respectively. Consequently,
when the primary instability corresponds to traveling crossflow modes, a linear secondary instability
mode in the fixed frame of reference is characterized by multiple frequencies that overlap with
the frequency range of the nonlinear primary mode. Therefore, in practice, a fixed probe may
not be able to distinguish the contributions of the secondary instability from those of the primary
instabilities within the Fourier space. Figure 1(a) illustrates the locations of the primary and secondary
modes with distinct frequencies in the discrete Fourier space in the traveling frame of reference.
Figure 1(b) shows the corresponding locations in a fixed frame of reference for an illustrative case
with k = 9, wherein the overlap in frequencies within the fixed frame is easily observed. We note
that the above discussion is purely for illustrative purpose. In our subsequent computations, there is
no assumption about the ratio of ωs and ωp. Because of the moving frame of reference in which our
computations are carried out, the primary traveling crossflow vortices appear to have 0 frequency
and as a result, the secondary instability modes of any frequency can be set as the fundamental
unsteady mode (m = 1) in the discrete Fourier space without unduly stretching the computational
resources.
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FIG. 1. Schematic of primary and secondary modes in discrete Fourier space. (a) In traveling frame of reference, primary
and secondary modes have distinct frequencies. (b) In fixed frame of reference (k = 9), primary and secondary modes have
overlapping frequencies.

The equation set (3) for the secondary instability is subject to boundary conditions of vanishing
perturbation quantities at the wall and freestream boundaries. The spanwise boundary conditions are
not explicitly specified, as they are automatically imposed as part of the admissible solutions given
by Eq. (4). The main difference between a stability equation governing the secondary instability and
that governing the primary instability is that the coefficients of the secondary modes are functions
of two spatial variables instead of just one for the case of the primary modes. Thus, the resulting
eigenvalue problem is also referred to as a 2D eigenvalue problem.22

III. FLOW CONFIGURATION AND ANALYSIS CODES

The flow configuration employed in the present study corresponds to the laminar flow airfoil
TAMU-003T-75(v.90), which is described in detail by Belisle et al.23 The 9.3% thick, 30◦ swept
wing is designed to achieve natural laminar flow over approximately 60% and 50% of the suction
and pressure surfaces, respectively, at the design condition of M = 0.75, AoA = 0◦, and Rec ≈
17 × 106. Here, the non-dimensional parameters M and Rec are based on the freestream speed, a
streamwise chord length of 12 ft, and a freestream temperature of 390◦ R, corresponding to a flight
altitude of 40 000 ft. Design constraints for the wing included (i) lift coefficients that are typical of
subsonic transports, e.g., 0.37 and 0.49 at AOAs of 0◦ and 1◦, respectively and (ii) a wing thickness
distribution that is suitable for a mid-size business jet. Both Tollmien-Schlichting and crossflow
instabilities are sufficiently weak at the design angle of attack, so that natural laminar flow should
be achievable over a significant portion of the wing surface on both suction (0 < X/C < 0.6) and
pressure (0 < X/C < 0.5) sides without any external means of boundary layer control. In the present
research, we focus on the off design condition corresponding to an angle of incidence equal to −1◦.
At this condition, an even stronger crossflow instability than the design condition is known to exist
along the suction side.23

For the present work, the mean boundary-layer flow over the suction surface of the wing is
computed with a boundary layer solver24 by using the infinite span approximation, in conjunc-
tion with the inviscid surface pressure distribution derived from an Euler solution under free flight
conditions.25 Linear and nonlinear development of the instability modes is computed using parab-
olized stability equations (PSE) as implemented in the Langley Stability and Transition Analysis
Codes (LASTRAC).26 The growth of high frequency secondary instability modes supported by the
finite amplitude stationary crossflow vortex is analyzed in a manner similar to the classical linear
stability analysis of swept wing boundary layers. Details of the computational methodology em-
ployed for linear secondary instability analysis (LSIT) may be obtained from Refs. 18 and 19, and
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the essential modifications for the traveling mode case are mentioned in Ref. 16 and Sec. II. DNS
computations are also carried out for both finite amplitude traveling crossflow vortices and their sec-
ondary instability. Details of the DNS method used in the analysis can be found in Refs. 27 and 28.
The main difference between the primary and secondary stability analyses is that the basic state for
the secondary modes (i.e., the mean boundary layer flow modified by the primary crossflow mode)
varies in both surface normal and spanwise directions and, hence, the instability characteristics of
the secondary modes must be analyzed using a planar, partial differential equation based eigenvalue
problem, rather than as an ordinary differential equation based eigenvalue problem for the classical
analysis. The selection of grid and other aspects of the numerical solution were based on extensive
experience with similar class of flows3, 16, 19, 29–33 and checks were made to ensure that the impact of
variations with respect to those choices was negligible.

For 2D eigenvalue problems corresponding to linear secondary instability, 121 and 32 grid points
are usually used in the wall-normal and spanwise directions, respectively. For NPSE computations
of a typical nonlinear primary wave (i.e., the traveling crossflow vortex) in the traveling frame of
reference, the number of spanwise Fourier modes used is 50, i.e., n ranging from −50 to 50, and the
number of grid points in the wall-normal direction is 281. In addition, for monitoring the development
of secondary instability using NPSE, 5 Fourier modes are used to resolve the time evolution, i.e., m
ranges from −5 to 5. Previous experiences with and tests on similar problems18, 19, 31, 32 show that
the grid resolutions described above are sufficient to resolve all relevant scales up to the transition
location for the problems at hand.

The DNS computations are based on a grid of size 2184 × 60 × 418 points in streamwise,
spanwise, and wall-normal directions, respectively. An additional set of DNS computations was
performed using a grid that was 1.5 times coarser in both spanwise and wall-normal directions. The
amplitude evolution based on the coarser grid agreed well with the fine grid solution presented here,
except for weak streamwise oscillations in the region downstream of the main lobe in instability
growth rate as a function of X/C. The streamwise resolution of the DNS grid corresponds to a
minimum of 40 points per fundamental wavelength.

IV. RESULTS

The computational results for the nonlinear development of traveling crossflow vortices and the
associated linear growths of secondary instabilities are presented in Subsections IV A and IV B.

A. Nonlinear evolution of a traveling crossflow mode

A comparison of the nonlinear amplification characteristics for stationary and traveling crossflow
modes with a fixed spanwise wavelength of λz = 8 mm was presented in Ref. 16. That analysis
is expanded herein by considering a broader range of spanwise wavelengths. To allow selection
of the most relevant frequency-wavenumber combinations for these nonlinear calculations, linear
N-factor computations for the traveling crossflow instability were carried out with linear PSE. As
a reminder to the reader, the N-factor of a disturbance at a specific chordwise location is defined
as the integral of the disturbance growth rate from its neutral point to that location. This selection
process is based on the same premise as the N-factor method for transition prediction, namely that
transition is likely to be caused by the instability mode that first achieves a linear amplification ratio
corresponding to a specified value of N. This mode may or may not correspond to the mode that
achieves the highest overall N-factor over the wing chord. Based on the aforementioned criterion,
traveling crossflow instability modes with spanwise wavelengths of 6, 8, and 10 mm and a frequency
of 1500 Hz were found to reach N = 10 before most other traveling modes and, hence, were selected
for nonlinear analysis in this paper. For λz = 12 mm, the mode with a lower frequency of 1225 Hz
reaches N = 10 first; however, its N-factor value of 10 is only slightly higher than that of the traveling
crossflow mode with a 1500 Hz mode. Therefore, to enable consistent comparisons across different
wavelengths, the 1500 Hz mode is analyzed in this paper even for the λz = 12 mm wave.

Figure 2(a) shows the linear N-factor curves for crossflow instability modes with λz = 8 mm
for selected frequencies ranging from 0 to 2250 Hz. As expected, the most amplified traveling mode



064104-8 Li et al. Phys. Fluids 26, 064104 (2014)

FIG. 2. Linear N-factors for crossflow instability. (a) Crossflow instability modes with λz = 8 mm and frequency ranging
from 0 to 2.25 kHz. The N-factor first reaches a value of 10 for the 1500 Hz. (b) Linear N-factors for various spanwise
wavelengths at a frequency of 1.5 kHz.

achieves higher N-factors than the stationary mode and, more importantly, the traveling mode with
f = 1500 Hz reaches N = 10 within nearly half the distance it takes for the stationary crossflow
mode ( f = 0) to reach the same N-factor value. This indicates the need to study the breakdown
of traveling waves to obtain a more complete picture of crossflow-dominated transition, especially
when the relative initial amplitudes of the traveling crossflow modes are not sufficiently small in
comparison with those of the stationary modes.

Figure 2(b) shows N-factor curves for various spanwise wavelengths at 1500 Hz; and the λz =
6 mm wave reaches an N-factor of 10 before the longer waves, even though the overall maximum
N-factor is reached by the 12 mm mode.

The amplitude of the perturbation becomes an important parameter in a nonlinear framework.
Throughout the present work, the non-dimensional amplitude of a perturbation is defined as the ratio
of the peak chordwise perturbation velocity to the freestream speed, i.e., the perturbation velocity
as a fraction of the freestream speed. Comparisons between nonlinear developments of traveling
and stationary vortices were presented by Choudhari et al.16 Since this is an important component
of this analysis, showing characteristic differences between the two types of crossflow vortices, the
essential results are reproduced here. Figure 3(a) shows comparisons of the nonlinear development
of stationary and traveling crossflow vortices of the same spanwise wavelength (λz = 8 mm) and
the same initial amplitude (Ainit = 1 × 10−5). This particular spanwise wave length was chosen
because the linear and nonlinear PSE computations by Li et al.31, 32 had indicated the crossflow
vortex with λz = 8 mm to be one of the most likely stationary modes to cause transition. The
essential results of Ref. 16 are that the traveling crossflow vortices saturate at lower fundamental
amplitudes than the stationary vortices, approximately just one half of the saturation amplitude of
the latter, while the peak mean flow correction amplitudes for both stationary and traveling modes
reach comparable levels. This comparison between the nonlinear evolution of isolated traveling and
stationary crossflow disturbances is very similar to that reported by Malik et al.33 for a different
wing configuration and to that by Wassermann and Kloker15 for a flat plate subject to a favorable
pressure gradient. Therefore, these findings appear to be more general and not restricted to just one
specific case.

Modal amplitudes of traveling crossflow vortices of 1500 Hz analyzed in Ref. 16 are shown in
Figure 3(b) for initial amplitudes of 2.5 × 10−6, 5.0 × 10−6, 7.5 × 10−6, and 10−5. Amplitudes of
the mean flow correction and the first harmonic are also shown for the case of the smallest initial
amplitude. The general features of oscillatory behavior and decay after saturation as seen earlier
in Figure 3(a) for Ainit = 1 × 10−5 are present for all initial amplitudes, with waves correspond-
ing to higher initial amplitudes exhibiting an earlier quasi-saturation. Figure 3(b) also indicates
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FIG. 3. Nonlinear evolution of crossflow vortex modal amplitudes (Ref. 16). (a) Stationary and traveling crossflow ( f
= 1.5 kHz) modes with λz = 8 mm and the same initial amplitude (Ainit = 1 × 10−5): Comparison of modal amplitudes for
the fundamental and mean flow correction modes. (b) Fundamental mode amplitude for 8 mm traveling crossflow vortices
with different initial amplitudes. The amplitudes of mean flow correction and the first harmonic are also shown for the case
with the smallest initial amplitude (Ainit = 2.5 × 10−6).

that traveling crossflow modes with higher initial amplitudes saturate at progressively larger peak
amplitudes.

Now the nonlinear analysis is expanded to a range of other wavelengths. Figure 4(a) shows
the nonlinear evolution of traveling crossflow vortices with f = 1500 Hz and λz = 6, 8, 10, and
12 mm, respectively. The number of spanwise Fourier modes retained is 50 in the NPSE computa-
tions, which is more than necessary to resolve the spanwise variations of the crossflow vortex. The
initial amplitudes, defined as the chordwise perturbation velocity as a fraction of the freestream veloc-
ity, for all spanwise wavelengths are held fixed at 10−5. As expected from the results of linear compu-
tations discussed earlier, the 6 mm wave rises in amplitude first and is followed by waves of consecu-
tively larger wavelengths. The highest overall amplitude is reached by the 8 mm wave, and not the 12
mm wave corresponding to the highest value of linear N-factor. Due to nonlinear effects, the 12 mm
wave saturates at a lower peak amplitude than the 8 mm wave. However, the hierarchy based on peak
fundamental mode amplitudes is dependent on the initial amplitude of the wave. In particular, when
the initial amplitude is lowered to 2.5 × 10−7, the λz = 10 mm mode has the highest peak amplitude as
shown in Figure 4(b). As the initial amplitude is further lowered, the nonlinear effects become rather
weak; and hence, the 12 mm wave becomes dominant as predicted by the linear theory (Figure 4(c)).

The results in Figure 4 also show that, in all cases with a significant effect of nonlinearity
(i.e., for sufficiently large initial amplitudes), the amplitude of the fundamental mode evolves in an
oscillatory manner. The initial evolution up to the first peak is strictly monotonic; and in general, this
first peak also represents the global maximum of the fundamental mode amplitude. However, the
subsequent evolution of the fundamental amplitude displays oscillatory behavior superimposed on a
decaying trend. Gajjar34 observed similar oscillations in a theoretical study of stationary crossflow
vortices. The oscillations are believed to have been caused by the interaction of the fundamental
and mean flow correction modes. Figure 4(d) shows the evolutions of the fundamental and mean
flow correction modes for the 1500 Hz, 10 mm traveling wave with initial amplitude of 10−5. Their
respective oscillations appear to be approximately 90◦ out of phase. The fundamental mode, of
course, initially drives up the mean flow correction. When it becomes sufficiently large, the mean
flow correction mode modifies the boundary layer in such a way that the fundamental mode is
stabilized and its amplitude starts to drop. As the mean flow correction mode reaches its peak, the
rate of decay of the fundamental mode is approximately the largest. Further drop in the fundamental
amplitude, in turn, leads to a decrease in the mean flow correction amplitude, which causes the
fundamental mode to grow again. And this interactive process repeats itself downstream. An NPSE
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FIG. 4. Evolution of modal amplitudes. (a) Fundamental mode amplitude. f = 1.5 kHz, Ainit = 10−5. (b) Fundamental
mode amplitudes. f = 1.5 kHz, Ainit = 2.5 × 10−7. (c) Fundamental mode amplitudes. f = 1.5 kHz, Ainit = 1 × 10−7.
(d) Fundamental and mean flow correction modes with approximately 90◦ phase difference. Vertical dashed-dotted lines
indicate corresponding locations of peak meanflow correction and rapid rate of change of fundamental mode. Ainit = 10−5, λz

= 10 mm, f = 1.5 kHz.

computation with only the fundamental and the mean flow correction terms retained reproduces
exactly the same oscillatory behavior. Additionally, an NPSE computation with one more Fourier
mode retained, namely the first harmonic, also produces very similar result with some modifications
in modal amplitudes only, indicating that the first harmonic is not an active player in the interactive
process. This confirms that the interaction of two modes and these two modes alone is responsible
for the oscillations.

To help validate the PSE predictions for nonlinear evolution of the primary, traveling crossflow
instabilities, DNS computations were also carried out for 1,500 Hz modes in the traveling frame of
reference discussed in Sec. II. The DNS solutions are based on a spatial grid of size 981 × 40 × 278
in the streamwise, spanwise, and wall-normal directions, respectively. Following Jiang et al.,35 the
i-coordinate of the grid is aligned with the constant phase surfaces of the traveling crossflow vortex
to reduce the number of points required to resolve the wavy structure of the mode in the chordwise
direction. To further save on the computational resources, the chordwise extent of the domain is
restricted by choosing an inflow location at X/C = 0.15, i.e., somewhat farther downstream from the
lower branch neutral station domain at X/C ≈ 0.05. The linear eigenfunction of the 1500 Hz traveling
mode is imposed at the inflow with an initial amplitude that is equivalent to Ainit = 5 × 10−7.
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FIG. 5. Evolution of modal amplitudes for traveling crossflow vortices with initial amplitude of 5 × 10−7. Comparison
between results of nonlinear PSE and direct numerical simulations. Solid lines and dash-dot lines represent results of DNS
and NPSE computations, respectively.

The DNS results are compared with the NPSE results in Figure 5 with m denoting the harmonic
index, i.e, when the frequency of the fundamental mode is 1500 Hz, the m’th mode has a frequency
of 1500 × m Hz. At the inflow location, the NPSE result shows that only the fundamental mode is
present and subsequently, the mean flow correction mode (m = 0) and other harmonic modes (m >

1) are driven up due to nonlinear interactions between modes. These modes behave in a similar way
as those in stationary crossflow vortices. The mean flow correction mode (m = 0) and the second
harmonic mode (m = 2) are, initially, the dominant driven modes and have comparable amplitudes
because they are both generated by self-interactions of the fundamental mode. Higher harmonics that
are forced by hetero-interactions of mode shave consecutively smaller amplitudes. Eventually, the
nonlinearly developed disturbance appears to saturate. The amplitude evolution of the fundamental
mode (m = 1) from DNS compares very well with that from NPSE right from the beginning of the
DNS domain. This is not the case for the mean flow correction mode and the higher harmonics. For
DNS, these modes undergo a transient phase, but eventually settle to match the results of NPSE.

B. Secondary instability of traveling crossflow vortex

In this subsection, the secondary instability of traveling crossflow vortices is analyzed and
comparisons among of LSIT, NPSE and DNS results are presented.

1. Linear amplification characteristics for primary waves of selected
frequency-wavelength combinations

The presence of crossflow vortices creates strong localized shear layers within the boundary
layer. Secondary instability modes riding on crossflow vortices can be classified into two major
types:2 secondary modes associated with the strong wall-normal shear of the modified basic state
are known as Y modes and those associated with a strong spanwise shear are known as Z modes. At
times, when mean shears in both directions have comparable contributions to the energy production
mechanisms associated with the secondary instability, the resulting modes have a mixed character
and, hence, are termed as Y/Z modes.16 The secondary instability of the non-stationary crossflow
vortex with λz = 8 mm and f = 1500 Hz was discussed in Ref. 16. Here, a larger number of cases with
different primary wave initial amplitudes and wavelengths are analyzed to help characterize the range
of initial amplitudes below which the secondary instability of traveling crossflow modes becomes
relatively insignificant in comparison with the secondary instability of stationary crossflow vortices.

The comparison of secondary instability growths on stationary and traveling crossflow vortices
of the same initial amplitude was given in Ref. 16. The main result is reproduced in Figure 6 for
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FIG. 6. Comparison of N-factor curves for most dangerous secondary instability modes of stationary and traveling crossflow
vortices. The metric for growth potential corresponds to earliest attainment of N = 10, or of the highest N-factor if N =
10 is never achieved. Both stationary and traveling crossflow vortices have the same spanwise wavelength of 8 mm and the
traveling mode has a frequency of 1500 Hz (Ref. 16).

an initial primary amplitude of 10−5. The traveling crossflow vortex is seen to sustain secondary
instability N-factors just as large as those for stationary waves even though the saturation primary
amplitude of the traveling wave is only about one half that of the peak amplitude of stationary mode
(see Figure 3(a)).

The onset of secondary instability is dependent on the primary wave amplitudes exceeding a
threshold level that depends on both the local mean flow and the disturbance parameters. To help
characterize the threshold amplitudes required for significant amplification of secondary instabilities,
a parametric study is carried out for secondary instability modes for various initial amplitudes of
the primary wave. Figure 7(a) shows the N-factor curves for secondary instability modes that first
achieve an N-factor of 10 for each initial amplitude of the traveling crossflow vortex ranging from
Ainit = 1.5 × 10−7 to 10−5. The wavelength (λz = 8 mm) and frequency (f = 1500 Hz) of the primary
disturbance are the same in each of these cases. At relatively high initial amplitudes (approximately
Ainit ≥ 5 × 10−6), the Y mode dominates. For example, for Ainit = 10−5, the peak N-factor reached
by the Y mode is approximately 1.6 times the maximum N-factor achieved by the Y/Z mode. As the
primary amplitude decreases, the maximum N-factors for both modes drop as expected. However, the
Y-mode peak N-factor decreases faster with decreasing primary wave amplitude than the Y/Z-mode
N-factor. At primary amplitude of 2.5 × 10−6, the Y mode is approximately 13 and the Y/Z-mode
N-factor has already overtaken the former with a peak value of 18. On further reduction of primary
wave amplitude to 5 × 10−7, no Y mode is picked up by the secondary instability analysis code,
indicating that the Y-mode secondary instability has become substantially weaker. On the other hand,
the Y/Z mode still reaches a peak N-factor of approximately 10.

The exact thresholds for the initial primary amplitude required for the onset of secondary insta-
bility cannot be defined without carrying out a systematic and time consuming set of computations
over a broad range of primary wave amplitudes and streamwise locations. However, the data shown
in Figure 7 reveals that the peak N-factor for the Y mode has reduced to less than 3.3 for Ainit ≤ 10−6

and the peak N-factor of the Y/Z mode has fallen below 4.2 for Ainit ≤ 1.5 × 10−7. The corresponding
peak amplitudes of the primary wave are approximately 12% and 7%, respectively. Thus, a conser-
vative estimate is that, below these primary wave peak amplitudes, there is no significant secondary
instability growth for the 8 mm traveling crossflow mode. For the Y modes shown in Figure 7, the
peak frequency ranges from 58 to 67.5 kHz, and those for the Y/Z modes from 15 to 20 kHz.

A comparison is given next of the initial amplitudes of stationary and non-stationary crossflow
modes required to reach N-factor values that are likely to correlate with transition. For a stationary
crossflow mode of λz = 8 mm, the computations by Choudhari et al.16 had shown that the initial
primary amplitude required for a secondary instability mode on a traveling crossflow vortex to reach a
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FIG. 7. Peak N-factors of secondary instability of traveling crossflow vortices. (a) Effect of different primary wave initial
amplitudes, λz = 8 mm, (b) λz = 10 and 12 mm, Ainit = 2.5 × 10−7. (c) λz = 10 and 12 mm, Ainit = 10−7.

given N-factor is much smaller than that required on a stationary crossflow vortex. Of course, because
of the stronger receptivity mechanisms for stationary crossflow vortices,36 the disparity between
initial amplitudes of stationary and non-stationary crossflow modes is expected to be substantially
greater in most low-amplitude environments. Thus, the next relevant question becomes how much
smaller the traveling mode amplitudes need to be so that they do not play any significant role during
the transition of the swept wing boundary layer. Based on the discussion of the threshold amplitudes
in the preceding paragraph, this is predicted to happen for the λz = 8 mm traveling mode when its
initial amplitude is more than one order of magnitude lower than the initial amplitude of the stationary
crossflow mode. Of course, this conclusion only holds within the limited context of the present study;
however, it provides useful guidance regarding the dominant mechanism for transition onset.

The secondary instability properties for primary waves of wavelengths other than λz = 8 mm
are considered next. Recall from Figure 4 for Ainit ≤ 2.5 × 10−7 that the peak amplitude of
6 mm wave becomes small enough so that it is highly unlikely to sustain any significant secondary
instability. On the other hand, the longer waves (10 and 12 mm) achieve large enough amplitudes to
indicate the potential for significant secondary instabilities at farther downstream locations than the
secondary instability modes of the λz = 8 mm wave. Therefore, secondary instability computations
are carried out for the 10 and 12 mm waves for Ainit = 2.5 × 10−7. The modes that achieve the
highest N-factors in each case are plotted in Figure 7(b). For both wavelengths, strong Y/Z-mode
secondary instability growth is found. In the case of the 12 mm wave, there is also a strong Y mode
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FIG. 8. Y/Z mode eigenfunctions (chordwise perturbation velocity) for secondary instability modes on primary waves with
f = 1500 Hz and varying spanwise wavelength. Flood contours represent chordwise velocity perturbation associated with the
secondary instability; white lines represent the base flow chordwise velocity. (a) X/C = 0.18, λz = 6 mm, (b) X/C = 0.21, λz

= 8 mm, (c) X/C = 0.38, λz = 10 mm, and (d) X/C = 0.43, λz = 12 mm.

(Figure 7(b)). However, these Y modes attain an N-factor of 10 or greater significantly downstream
of the mid-chord location, so that they would not be expected to play a role in transition even if the
stationary crossflow modes were not a factor. Further reduction of their initial amplitudes pushes
the large peak amplitudes downstream and hence delay, but not eliminate, the onset of secondary
instability, as shown in Figure 7(c) for a primary amplitude of Ainit = 10−7. However, what can be
said about the thresholds for secondary instability is that, for primary amplitudes below 2.5 × 10−7

and 10−7, no N-factor greater than 3 is reached by any secondary instability mode before X/C =
0.35 and 0.4, respectively.

Figures 8(a)–8(d) show the Y/Z-mode eigenfunctions on primary waves with 1500 Hz in
frequencies and 6, 8, 10, and 12 mm in spanwise wavelengths at chordwise locations where their
respective fundamental amplitudes are largest. The primary waves for the 8, 10, and 12 mm cases
all have the same initial amplitude of 2.5 × 10−7. However, this amplitude is too small to sustain
any secondary instability for the 6 mm primary wave, therefore, an initial amplitude of 1 × 10−5

is used instead for that case. These typical eigenfunction shapes are very similar to those found on
stationary primary waves.3

Figure 9(a)–9(d) show the mean chordwise velocity contours of 1500 Hz crossflow instability
waves in the traveling frame for spanwise wavelengths of 6, 8, 10, and 12 mm at the peak amplitude

FIG. 9. Chordwise velocity (u/U∞) contours associated with finite amplitude traveling crossflow modes of various spanwise
wavelengths at chordwise location corresponding to the maximum wave amplitude in that case (Ainit = 10−5 in each case).
(a) X/C = 0.18, λz = 6 mm, (b) X/C = 0.21, λz = 8 mm, (c) X/C = 0.25, λz = 10 mm, and (d) X/C = 0.29, λz = 12 mm.
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streamwise locations, respectively, all with an initial amplitude of 10−5. The shortest wave (6 mm)
shows only a hint of the turnover feature that is almost ubiquitously present in stationary crossflow
vortices, but the structure is not nearly as strong as in the latter case. As the spanwise wavelengths
becomes longer, this feature diminishes and is hardly discernible for the longest 12 mm wave. This
may be attributed to the relatively low saturation amplitude of the traveling crossflow vortex as
discussed earlier.

2. Comparison of LSIT predictions with NPSE and DNS

Secondary instability computations using NPSE and DNS are also carried out for comparison
with the secondary instability theory for the primary mode with λz = 8 mm, f = 1,500 Hz, and Ainit

= 5 × 10−7. Computations are performed for a fixed-frequency secondary instability mode with a
frequency of 13.5 kHz, which is close to the most amplified Y/Z mode in this case. As discussed
before, at the relatively low value of Ainit for the primary crossflow vortex, the Y mode of secondary
instability is nearly stable, but the Y/Z mode is still strong. Furthermore, in the experiments on
stationary crossflow vortices,37 the Y mode has been less commonly observed than the secondary
instability modes associated with spanwise basic state shear. Therefore, a Y/Z mode is chosen for
the DNS analysis. The linear eigenfunction of the 13.5 kHz secondary instability mode is imposed
at a streamwise location of X/C = 0.265, i.e., slightly downstream of its neutral point. The minimum
wavelength of this mode in the i-direction of the grid in the computational domain is approximately
12.7 mm.

Figure 10(a) shows the amplitude evolutions of the 13.5 kHz Y/Z-mode secondary instability
as computed by three different methods, namely, LSIT, NPSE, and DNS. The comparison of NPSE
and DNS results, while not perfect, is good. The LSIT method, however, is found to over-predict the
instability growth downstream by a significant amount compared to the NPSE and DNS results. The
differences that accumulate with distance may be attributed to the different degrees of approximations
inherent to each of these methods. The LSIT method assumes a quasi-parallel base flow (i.e., slowly
varying laminar boundary layer as well as traveling crossflow amplitude), which becomes less
accurate when the base flow changes relatively rapidly, e.g., in regions of stronger growth or decay
of the primary wave. The NPSE method takes into account the non-parallelism of the base flow, but
assumes that streamwise second derivatives of perturbation amplitudes are negligible due to their
slow variation in the streamwise direction. Furthermore, for numerical stability, the streamwise first
derivative of pressure amplitude is neglected (note that the neglected first derivative is that of the
slow-varying pressure amplitude, and not that of the overall pressure perturbation).26

FIG. 10. Comparison of LSIT, NPSE, and DNS predictions for secondary wave evolution (primary wave: λz = 8 mm, f =
1500 Hz; secondary wave: f = 13.5 kHz, Ainit = 5 × 10−7). (a) Fundamental amplitude of secondary wave. (b) Growth rate
of secondary wave.
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An equivalent but perhaps more revealing comparison between the LSIT, NPSE, and DNS
predictions can be made by comparing the corresponding growth rates based on the peak chordwise
velocity amplitude of the secondary instability mode (Figure 10(b)). In the main region of secondary
mode amplification (X/C < 0.37), all three predictions are close to each other. To our knowledge,
this result represents the first DNS based validation of secondary instability theory for traveling
crossflow modes. The differences between the NPSE and DNS results within the above region are
somewhat smaller than those relative to the LSIT predictions, except in the neighborhood of the
peak growth rate location of the secondary mode. Therefore, the cause for the over-prediction of
secondary instability growth by the LSIT method in this particular case may be related to the quasi-
parallel assumption inherent to LSIT. However, this trend is certainly different from the analogous
findings for the secondary instability of stationary crossflow modes.16 Furthermore, the effects of a
non-parallel basic state also tend to be destabilizing in the linear stability analysis of primary waves.
Again, in this particular case, at least, an opposite trend appears to hold for the secondary instability
evolution. Figure 10(b) also shows significant differences among the three different predictions for
chordwise locations beyond the main region of secondary amplification (X/C > 0.37). The DNS
prediction actually falls in between the LSIT and NPSE predictions.

3. Weakly nonlinear effects on secondary mode amplification

The growth and breakdown of secondary instability eventually lead to turbulence. In this
process, as the amplitude of the secondary instability becomes progressively larger, its growth rate
starts to deviate from that predicted by the linear theory due to the onset of nonlinear effects.
Figure 11(a) shows the effect of initial secondary wave amplitude on the streamwise amplification of
the fundamental secondary instability mode of Y/Z type and f = 13 500 Hz corresponding to a finite
amplitude primary crossflow disturbance with λz = 8 mm and f = 1500 Hz. The initial amplitude
of the primary wave is fixed at 5 × 10−7 while the initial secondary wave amplitude is varied from
10−5 to 10−3. In each case, the secondary wave amplitude is normalized by its initial value, so that
the ordinate in Figure 11(a) corresponds to the growth factor relative to the inflow location. For the
smallest secondary initial amplitude (Ainit = 10−5), the fundamental amplitude remains sufficiently
small throughout the computational domain such that the instability growth may be considered to
be linear. As the initial amplitude is increased, the amplitude growth eventually deviates from the
linear theory. This occurs near X/C ≈ 0.44 and 0.34 for Ainit = 10−4 and 10−3, respectively; and in
both cases, the fundamental mode amplitude is approximately 4% at the respective locations. The
corresponding evolution of the mean wall shear in all three cases is shown in Figure 11(b). For larger

FIG. 11. Nonlinear evolution for selected initial amplitudes of the secondary wave. Secondary instability mode type: Y/Z;
secondary instability frequency 13.5 kHz; primary wave spanwise wavelength: 8 mm; primary wave frequency: 1500 Hz;
primary wave initial amplitude: 10−7. (a) Amplitudes. (b) Mean wall shear.
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FIG. 12. Chordwise evolution of fundamental secondary mode for different initial amplitudes: Comparison between NPSE
and DNS. Secondary instability mode type: Y/Z; secondary instability frequency 13.5 kHz; primary wave spanwise wave-
length: 8 mm; primary wave frequency: 1500 Hz; primary wave initial amplitude: 10−7.

initial amplitudes, the wall shear is higher. For largest initial amplitude, 10−3, the wall shear begins
a relatively rapid rise at X/C = 0.36, which may be indicative of the onset of transition.

The DNS result for secondary instability at larger initial amplitudes is next compared with
the NPSE result along with the essentially linear DNS result of a much smaller initial amplitude.
Figure 12 shows the amplitude curves for the fundamental frequency of the 13.5 kHz Y/Z mode.
The amplitudes are normalized with their respective initial values so that all curves initially collapse
onto each other. As amplitudes increase, the DNS curve with the larger initial amplitude starts to
deviate from curve representing linear amplification due to nonlinear effects. The result of NPSE
computation agrees well with the DNS result. The actual peak amplitude reached during the nonlinear
evolution is approximately 10%, but no transition is observed before the end of the computational
domain. However, the comparison confirms that NPSE should produce good results up to at least
this amplitude, which should enable the NPSE method to be used with confidence in similar cases
with much less demand on computational resources than DNS.

V. CONCLUDING REMARKS

This paper extends the previous studies of swept wing transition due to stationary crossflow in-
stability by considering when traveling crossflow modes may dominate the transition process. When
the initial amplitudes of the traveling crossflow vortices are comparable to those of the stationary
modes for which the underlying boundary layer flow is modified strongly, the traveling crossflow
vortices also support secondary instabilities in much the same way as the stationary crossflow modes.
Computational results presented herein show that the traveling crossflow vortices saturate at much
lower amplitudes than their stationary counterparts, approximately half the saturation amplitude for
a stationary crossflow vortex with the same spanwise wavelength. However, despite of the lower
amplitudes during the quasi-saturation stage, the growth of the secondary instabilities sustained by
finite amplitude traveling crossflow vortices is at least as strong as the secondary modes of the
stationary crossflow vortices.

The primary traveling crossflow vortex has a higher initial growth rate than the stationary mode,
but saturates at significantly lower amplitudes. Additionally, the cross-plane velocity contours for
the traveling mode case seem to lack the strong overturning structure of their stationary counterpart
when viewed within an appropriately moving coordinate system. An interesting phenomenon is
found in that the fundamental and mean flow correction modes appear to oscillate out of phase by
approximately 90◦ to due the alternating stabilization and destabilization nonlinear interactions of
the two modes.
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Two dominant modes of secondary instability are found for the swept wing configuration
investigated herein. The Y mode is dominant at large primary wave amplitudes, but its growth rates
diminish faster than that of the Y/Z mode when the primary amplitude decreases. At smaller primary
amplitudes of a λz = 8 mm traveling mode, the Y mode of secondary instability disappears all
together, leaving a single, strongly amplifying Y/Z mode. The critical initial amplitudes enabling the
8 mm primary wave to sustain significant secondary amplification (i.e., secondary N-factors in excess
of 4) have also been estimated for the swept wing configuration of interest. At lower initial amplitudes
of the (primary) traveling crossflow modes, the dominant growth of secondary instability shifts to
primary modes of larger spanwise wavelengths (λz = 10 mm and 12 mm, respectively). However,
large N-factor values typical of those associated with the onset of transition in low disturbance
environments are only achieved at far downstream locations. In that case, transition would appear
more likely to occur as a result of stationary crossflow modes when the traveling crossflow mode
amplitudes are at such low levels. Transition scenarios associated with the joint development of
stationary and traveling crossflow modes will be investigated in future work.

Direct numerical simulations are carried out for a Y/Z-mode secondary instability of 13.5 kHz
riding a 1500 Hz traveling crossflow vortex of 8 mm in spanwise wavelength. Comparisons with
the predictions of both nonlinear parabolized stability equations and the linear secondary instability
theory show that the linear secondary instability theory somewhat over predicts the growth of
secondary instability in this particular case and the likely reason behind this discrepancy is the
non-parallel effects associated with the underlying boundary layer flow.
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