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ABSTRACT: Nonaqueous redox flow batteries often suffer from reduced battery lifetime and decreased coulombic efficiency due to
crossover of the redox-active species through the membrane. One method to mitigate this undesired crossover is to judiciously
choose a membrane based on several criteria: swelling and structural integrity, size and charge of redox active species, and ionic
conductivity. Most research to date has focused on reducing crossover by synthesizing modified redox-active molecules and/or new
membranes. However, no standard protocol exists to compare membranes and a comprehensive study comparing membranes has
yet to be done. To address both these limitations, we evaluate herein 26 commercial anion exchange membranes (AEMs) to assess
their compatibility with common nonaqueous solvents and their resistance to crossover by using neutral and cationic redox-active
molecules. Ultimately, we found that all the evaluated AEMs perform poorly in organic solvents due to uncontrolled swelling, low
ionic conductivity, and/or high crossover rates. We believe that this method, and the generated data, will be useful to evaluate and
compare the performance of all AEMs�commercial and newly synthesized�and should be implemented as a standard protocol for
future research.
KEYWORDS: anion exchange membranes, redox flow batteries, nonaqueous, crossover, permeability,
electrochemical impedance spectroscopy, voltage efficiency

■ INTRODUCTION
Renewable energy can be harvested through several avenues,
including solar panels and wind turbines. However, solar and
wind energy are intermittent, meaning they are not
continuously accessible.1 A safe, sustainable, and efficient
way to store renewable energy is necessary so that it can be
employed when needed. A promising technology for energy
storage is the redox flow battery (RFB), which has the
potential to be used in grid-scale operations.2 RFBs consist of
an electrochemical flow cell and two reservoirs, one of which
contains an anolyte (redox-active species that undergoes
reduction upon charging) and the other a catholyte (redox-
active species that undergoes oxidation upon charging), both
dissolved in a solvent with a supporting electrolyte (Scheme
1A).3 An advantage to RFBs is that power and capacity can be
independently scaled. Power is affected by the size of the
electrodes (in each cell) and the number of cells whereas

capacity is affected by the volume and concentration of redox-
active molecules in the reservoirs.4 The state-of-the-art
commercial RFB is aqueous and uses expensive vanadium
compounds for the redox-active molecules and hazardous
sulfuric acid for the supporting electrolyte.5−7 Additionally,
aqueous batteries have a relatively small thermodynamic
window (1.23 V) due to the hydrogen evolution reaction in
reducing environments and the oxygen evolution reaction in
oxidizing environments.8 In contrast, nonaqueous RFBs
(NARFBs) have a larger operating potential window (e.g.,
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∼5 V in acetonitrile), increasing the diversity of potential
redox-active molecules, and enabling higher power densities as
a result of larger attainable open circuit voltages.9

Between the two electrodes is a membrane or a separator,
that functions to isolate the anolyte from the catholyte,
preventing mixing (via crossover) of the redox-active
molecules.10 Crossover can occur through several mechanisms,
including diffusion, osmosis, electroosmosis, and migration.
Several membrane types have been used in RFBs, including
polymers of intrinsic microporosity (PIMs), porous separators,
ion-exchange membranes, and ceramic membranes.11 Each
type of membrane or separator caters to a specific system. For
example, PIMs offer size exclusion, which is advantageous
when working with oligomeric or polymeric redox-active
materials.12,13 Porous separators such as Daramic or Celgard,
have been frequently used in NARFBs due to their relatively
high ionic conductivity, which enables battery cycling at higher
current densities.14−16 However, this improved conductivity
comes at the expense of high crossover rates, especially with
small redox-active species. The result is lower coulombic
efficiencies and lifetimes of the battery.

One method to decrease crossover is to use a premixed
symmetric flow cell wherein equal quantities of anolyte and
catholyte are dissolved in each reservoir,17,18 but doing so
effectively wastes half of the redox-active materials. Addition-
ally, there will still be a concentration gradient of the
electrochemically charged species across the cell during
cycling, so crossover may still occur, and coulombic efficiency
will suffer. A technologically relevant battery (i.e., a battery
with high capacity, energy density, and energy efficiency) will
be nonsymmetric and have a membrane that is both highly
conductive and prevents crossover.

Commercial ion-exchange membranes were originally
fabricated for aqueous systems, such as fuel cells, water
purification, desalination, dialysis, and/or aqueous RFBs.19−21

Specifically, AEMs are cross-linked polymers, assembled into
three-dimensional networks with fixed, ionic functional groups
(i.e., −NH3

+, −NRH2
+, −NR2H+, −NR3

+, and −SR2
+).19

AEMs should repel positively charged molecules, ensuring that
cationic molecules stay in their respective tank.22 In AEMs,
only anionic supporting electrolyte ions, like PF6

− or BF4
−, can

traverse the membrane for charge balancing during charging
and discharging (Scheme 1B). AEMs have been used in
nonaqueous, inorganic RFBs for decades23−26 but have more
recently been adopted in nonaqueous organic RFBs. For
instance, Sanford and co-workers used an AEM in organic
NARFBs (Fumasep FAP-375-PP) to mitigate the crossover of
redox-active cyclopropenium species.12,27−29 Increasing charge

incorporation and molecular size decreased the rate of
crossover, with a tetramer (4+ charge) crossing over so slowly
it was below the limit of detection within the time frame of
their experiment. As a result, FAP-375-PP has been the go-to
commercial membrane in many nonaqueous RFB studies,31 in
addition to FAPQ-375-PP.30,32−33 However, both FAP-375-PP
and FAPQ-375-PP have been discontinued by the manufac-
turer.

To date, a systematic study has not directly compared
AEMs,30,34−39 so it is unclear what membranes would perform
best in flow battery systems. To address this limitation, we
evaluated herein 26 AEMs (Table 1) for structural stability in

electrochemically relevant organic solvents. From these results,
seven membranes were selected for further evaluation,
including measuring crossover rates, ionic conductivities, and
performance in a RFB. Overall, these data reveal that most
commercial AEMs do not perform satisfactorily in lab-scale
NARFBs. Moving forward, we suggest that researchers
developing new membranes and/or evaluating new commer-
cial membranes utilize the standard protocol described herein
for benchmarking and comparison.

■ RESULTS AND DISCUSSION
Most Commercial AEMs Dissolve or Deform in

Nonaqueous Solvents. All membranes were first pretreated
in a saturated, aqueous solution of potassium hexafluorophos-
phate (KPF6) to exchange the mobile counterions in the
polymer resin with PF6

− anions to match the supporting
electrolyte used in crossover and battery studies (see
Supporting Information for examples with NH4PF6 pretreat-
ment). After drying, the membranes were cut into small

Scheme 1. (A) RFB in Operation ; (B) AEM Impeding Positively Charged Redox-Active Species From Crossing Over

Table 1. Commercial AEMs Evaluated

(Color Blocks Indicate Different Manufacturers of AEMs)
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rectangles for further analysis. To qualitatively assess the
membranes’ structural stability, the AEMs were soaked in neat
organic solvent (MeCN, PC, DMF, DMA, and DME,
separately) for 48 h to simulate long-term cycling conditions.
Every membrane deformed in DMF and DMA, either
dissolving completely or swelling excessively after soaking,
even those with mechanical reinforcements (i.e., a polymer
support). Too much swelling will immediately allow redox
species to crossover the membrane.11,40 In contrast, many
membranes remained intact in DME, but some turned opaque,
which is likely caused by a change in polymer properties (e.g.,
solubility). Photos of all ion-exchanged AEMs taken before and
after soaking in organic solvents are included in the Supporting
Information (Section SIII).

Both MeCN and PC were chosen as the organic solvents for
subsequent studies due to the incompatibility of AEMs in
DMF and DMA, and the low relative permittivity of DME.41

Additionally, PC and MeCN are the two most widely used
solvents in the NARFB field. Acetonitrile is an ideal organic
solvent in NARFBs because of its large electrochemical
window and high dielectric permittivity. Propylene carbonate
is considered a green solvent because of its low relative toxicity
and environmental impact, making it attractive for commercial
applications.42 However, PC does have some drawbacks, such
as a higher viscosity and lower conductivity than comparable
electrolytes in MeCN. Among the 26 commercial AEMs
examined, only seven demonstrated stability (no dissolution or
deformation) in MeCN and PC: FAP-330, FAPQ-330, FAP-

450, FAPQ-375-PP, FAP-330-PE, FAM, and AMI-7001S.
These membranes were analyzed for increases in length,
width, thickness, and mass to measure swelling from solvent
uptake (see Section SIII of the Supporting Information).
Interestingly, of the three membranes that swelled the least in
MeCN and PC, only one (FAM) included a mechanical
support (a polypropylene mesh). These results suggest that
these mechanical reinforcements do not prevent swelling in
nonaqueous solvents (see Supporting Information Figure S4).

Too Much Membrane Swelling Leads to Higher
Permeability. Crossover rates were measured for three
different redox-active small molecules with increasing positive
charges: neutral ferrocene (Fc, catholyte), monocationic (1+)
ammonium-appended ferrocene (FcNPF6, catholyte), and
dicationic (2+) butyl viologen (BuV2PF6, anolyte) (Figure
1A). These molecules were chosen because they are electro-
chemically stable to galvanostatic cycling and are commercially
available or easily synthesized. Additionally, these molecules
have similar hydrodynamic radii (molecular size in solution),43

so conclusions regarding crossover rates can be made primarily
based on charge interactions with the positively charged
membrane instead of size-exclusion. An H-cell was used for
crossover studies,44 enabling the membrane to sit between
two-half cells: one, the retentate, is composed of 25 mM redox-
active material in supporting electrolyte and solvent (either 0.5
M KPF6 in MeCN or 0.1 M KPF6 in PC) and the other, the
permeate, only contains supporting electrolyte in solvent
(Figure 1B). A lower concentration of supporting electrolyte

Figure 1. (A) Structures of catholytes and anolyte. (B) H-cell used for crossover experiments, adapted from Adams & Chittenden Scientific Glass
Coop.46 (C) Plot of membrane performance (Dsol/Deff) in 0.5 M KPF6 in MeCN. (D) Plot of membrane performance in 0.1 M KPF6 in PC. All
bars represent the average of two trials. The error bars represent the range of values.
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was used in PC due to the low solubility of KPF6. Note that
the supporting electrolyte concentrations were adjusted so that
the ionic strengths were the same in both reservoirs. Crossover
was monitored by cyclic voltammetry, which relates measured
peak current to the concentration of redox-active material
using a three-electrode setup on the permeate side of the H-
cell. In these experiments, redox-active species diffusion
through the membrane is being measured; osmosis and
electroosmosis are unlikely contributors to the crossover
because solvent imbalances were not observed. Though not
used in this study, ultraviolet−visible (UV−vis) and nuclear
magnetic resonance (NMR) spectroscopy are also viable
methods of measuring crossover.45

Each membrane has a different thickness, and each molecule
has a different diffusion coefficient in solution. Therefore, to
compare results between membranes and molecules, we used
the ratio between the redox-active molecule’s diffusion
coefficient in the electrolyte (Dsol) and its effective diffusion,
or permeability, through the membrane (Deff). Specifically, we
used the Randles−Ševc ̌iḱ equation to calculate Dsol

47,48

(Supporting Information Section SVII) and the following
equation, derived from Fick’s laws of diffusion, for Deff

49

(Supporting Information Section SVIII)

=
× ×

×
D

C l V

C Aeff
permeate permeate

0

Cpermeate is the initial rate of crossover (mol/s·cm3), l is the
thickness of the dry membrane (cm), Vpermeate is the volume of
the permeate (cm3), C0 is the initial redox material
concentration on the retentate side (mol/cm3), and A is the
area of the membrane exposed to solution (cm2).

Both the absolute value and the relative values of Dsol/Deff
between molecules are important measurements. A higher
absolute value of Dsol/Deff equates to a better membrane
blocking ability, whereas the relative values between the redox-
active molecules studied herein reflect the membranes’
selectivity for repelling positively charged molecules.13 We
want to highlight that Deff is the product of redox species
diffusion through the membrane (transport) and absorption
(e.g., partitioning through the membrane), which is a
thermodynamic process. Active species transport is important
in flow cell cycling and can affect capacity fade, particularly in

less conductive membranes, but it is not the sole contributor to
permeability.

In MeCN, FAM and AMI-7001S are the best at suppressing
crossover of all molecules. Both membranes display charge
selectivity because they suppress the dication (BuV2PF6)
better than the monocation (FcNPF6), and the monocation
better than neutral compound (Fc) (Figure 1C). Though these
two AEMs have the slowest crossover rates, they also have the
lowest ionic conductivities and would therefore require a large
overpotential to run in a NARFB (vide infra).

In PC, the most ion-selective membranes were FAPQ-375-
PP and FAP-330-PE, both of which dramatically suppress the
crossover of the dication compared to the monocation and
neutral molecule (Figure 1D). These membranes, however,
have both been discontinued from commercial suppliers. FAM
and AMI-7001S also performed well comparatively but again
suffered from low ionic conductivity (vide infra). Permeability
(Deff) should be no higher than 10−10 cm2/s and the lowest
(slowest) value obtained in this work was 10−8 cm2/s for FAM
and AMI-7001S in PC, a factor of 102 faster, meaning that even
the best performers in our study could never be commercially
viable.40

Though we cannot attribute performance to the membranes’
chemical structure, which is proprietary, we observe a
“Goldilocks” correlation between solvent uptake and mem-
brane performance in the limited data (7 membranes; Figure
S4). Membranes with a high solvent uptake generally have
more crossover (i.e., a smaller Dsol/Deff value.) For example,
the weight of FAP-330 increased by 327% after soaking in
MeCN and is a poor membrane with respect to crossover
(Dsol/Deff of 9.4 for BuV2PF6). Similarly, membranes with a
low solvent uptake also showed more crossover. For example,
FAPQ-330 had a mass gain of only 8% in MeCN and had an
average Dsol/Deff of 11 with BuV2PF6. In contrast, the
membranes with “in between” mass gains showed the least
crossover. For example, FAM and AMI-7001S exhibited a
more moderate weight increase of 24% and 31%, respectively,
and have the best crossover performance (Dsol/Deff of 240 and
360 for BuV2PF6, respectively) in MeCN (Supporting
Information Table S2).

AEMs with the Least Crossover Have the Lowest
Ionic Conductivity. AEMs should be tested in a flow battery
for a more accurate comparison to grid-scale applications. As
such, flow batteries were run using cationic FcNPF6 as the

Figure 2. (A) Idealized plot of ionic conductivity of supporting electrolyte anions and permeability of redox-active cations through AEMs. (B) Plot
of measured ionic conductivity and permeability of each AEM in MeCN and PC with BuV2PF6.
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catholyte and dicationic BuV2PF6 as the anolyte, with either
0.5 M KPF6 in MeCN or 0.1 M KPF6 in PC. High ionic
conductivity through the membranes is critical for AEMs in a
flow cell to complete the circuit and balance charge efficiently.
Ionic conductivity is an intrinsic property of membranes in
supporting electrolytes, and, in our study, is measured via
electrochemical impedance spectroscopy (EIS), though it
could also be measured with a four-point probe.50 Ions can
move through the membrane as solvated ions, solvent-
separated ion pairs, contact ion pairs, or in aggregates. Because
the batteries used low-to-moderate ion concentrations, and the
membranes were swollen, we expect that the ions primarily
move through the membranes as solvated free ions, though the
other mechanisms are possible.51,52

The system resistance was calculated by subtracting the bulk
electrolyte resistance (measured from a blank experiment
without a membrane) from the total resistance measured in the

flow cell. For AEMs in nonaqueous systems, a practical ionic
conductivity range is > 1 mS/cm by way of the maximum area-
specific resistance for a membrane with a thickness of ∼25 μm
(2.3 Ω·cm2).53,54 None of the membranes exhibited ionic
conductivities over 1 mS/cm (Table 1 and Figure S5).
Membranes with high ionic conductivity and low redox-active
molecule permeability are desired (Figure 2A). Unfortunately,
the membranes with the highest ionic conductivities also
exhibited the highest permeabilities of redox-active species
(Figure 2B). These results cannot be explained by differences
in swelling (Figure S6); as an example, the least (8%) and most
(327%) swollen membranes both exhibited similar ionic
conductivities (317 and 390 μS/cm, respectively) and
permeabilities (7.43 × 10−7 and 6.12 × 10−7 cm2/s; for
BuV2PF6 in MeCN). Overall, the data show that no
membrane, solvent, or redox molecule combination was able

Figure 3. Capacity fade in (A) MeCN and (B) PC. coulombic efficiency in (C) MeCN and (D) PC over 100 cycles. The theoretical capacity of the
battery is 2.7 mAh.

Table 2. Dry Thickness, Ionic Conductivity, and Voltage Efficiency Values for AEMs in MeCN and PC

ionic conductivity (μS/cm) voltage efficiency (%)

AEM dry thickness (μm) MeCN PC MeCN PC

FAP-330 32 317 ± 7 168 ± 4 87 ± 1 80 ± 1
FAPQ-330 36 390 ± 10 151 ± 3 90 ± 1 74 ± 1
FAP-450 56 560 ± 10 231 ± 4 95 ± 1 78 ± 1
FAPQ-375-PP 107 440 ± 10 78 ± 3 90 ± 1 34 ± 1
FAP-330-PE 45 263 ± 8 81 ± 1 95 ± 1 66 ± 1
FAM 526 19.7 ± 0.03 0.88 ± 0.03 21.0 ± 0.5 n.d
AMI-7001S 568 110 ± 3 1.17 ± 0.05 33.5 ± 0.5 n.d
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to reach these targeted metrics, and as a result, none of the
evaluated systems are suitable for NARFB applications.

Nevertheless, all seven membranes were advanced to battery
testing to measure capacity fade, coulombic efficiency, and
voltage efficiency, among other variables. Capacity fade
measures how much redox-active material can be discharged
over time, with a lower fade equating to a longer battery
lifetime.55 Coulombic efficiency is the difference between the
capacities reached during charging and discharging and reflects
how much of stored charge is accessible. Voltage efficiency
accounts for any overpotential necessary to run the battery and
dictates whether enough power is generated to be
commercially viable. Ideally, a battery will have low capacity
fade, high coulombic efficiency, and high voltage efficiency.
However, it can be challenging to simultaneously optimize
these factors in RFBs.

In MeCN, the membranes with the lowest capacity fade and
the highest coulombic efficiency were FAM and AMI-7001S
(Figure 3). However, both FAM and AMI-7001S have low
voltage efficiencies (34% and 21%, respectively) (Table 2),
requiring considerably more energy to run the battery than the
open-circuit voltage (1.05 V). In PC, the best membrane was
FAP-330-PE, which had the lowest capacity fade (10% over 22
h), with a high coulombic efficiency (97%) and modest voltaic
efficiency (80%).56 Nevertheless, this membrane was discon-
tinued and is no longer available. The capacity fade is likely
due to crossover due to both diffusion and migration, which
may explain why the discharge capacity surpasses 50% losses in
FAP-330, FAPQ-330, and FAP-450.57,58 No solvent imbal-
ances were observed, suggesting that neither osmosis nor
electroosmosis contributed to crossover.

A Standardized Protocol is Necessary to Compare
Between Commercial and Synthesized Membranes. If
all studies use the same redox-active molecules, solvents, and
supporting electrolytes for crossover and battery testing, a
direct comparison can be made between different membranes.
To this end, we recommend that all NARFB groups that are
synthesizing their own AEMs (or evaluating new commercial
membranes) use the following protocol as a baseline: (1)
membrane integrity testing and swelling measurements in
MeCN, PC, DMF, DMA, and DME, (2) crossover studies
using Fc, FcNPF6, and BuV2PF6, (3) EIS to determine ionic
conductivity, and (4) flow battery cycling.

To maximize ionic conductivity of supporting electrolyte
(e.g., KPF6), we suggest using MeCN as a solvent over PC,
assuming similar redox-active molecule solubility in both
solvents. KPF6 is a convenient supporting electrolyte because it
has no 1H or 13C signals via NMR spectroscopy, simplifying
spectral analyses that may provide insight into redox-active

molecule degradation. If this protocol is widely adopted, it will
be easier to benchmark membranes and push the boundaries of
membrane fabrication for RFBs.

Limitations and Other Considerations. Our workflow
focuses on the membranes, and an easily translatable
performance test to benchmark them. Initially, structural
integrity and swelling of AEMs is evaluated (Scheme 2, left)
followed by permeability of redox molecules through the
membranes (Scheme 2, center), and finally flow battery
performance and ionic conductivity (Scheme 2, right).
However, some conditions must be considered when adopting
our methodology. Although Fc, FcNPF6, and BuV2PF6 are
good model compounds, we recognize that crossover can also
be mitigated through chemical synthesis (i.e., installing ionic
functional groups onto redox molecules to be repelled by ion
exchange membranes), meaning that our measured crossover
rates of neutral, 1+, and 2+ species may not translate perfectly
to other molecules.

Additionally, some membrane characterization methods
(i.e., ion-exchange capacity,59 swelling/sorption with different
supporting electrolytes,60 and surface area/pore size of the
membrane61) lie beyond the scope of this study but are
important for full characterization of new membranes. Other
methods to evaluate electrochemical performance and cross-
over in situ include dialysis diagnostics using an applied electric
field by Darling and co-workers62 and compositionally
unbalanced symmetric cell cycling by Brushett and co-
workers.63

Furthermore, our protocol is performed at low concen-
trations but transport and membrane properties (i.e.,
conductivity, partitioning, swelling) are likely to change at
application-relevant active species concentrations.64 Battery
performance depends on volume, flow rate, concentrations of
redox species, viscosity, electrode area, temperature, battery
cell structure, and many other parameters. With these
considerations, we emphasize that this study is for membrane
comparison, and the relative values between the model
compounds and membranes are what enable a precise
comparison.

■ CONCLUSIONS
Commercially available AEMs were examined as potential
membranes for NARFBs. Performance was compared based on
structural stability in nonaqueous solvents, swelling, crossover
of the redox-active molecules, ionic conductivity , and a 100-
cycle flow battery. Of the 26 membranes initially tested, only
seven membranes emerged as good candidates for full
evaluation. Overall, no commercial AEM studied had an
acceptable performance in all categories. Based on our data,

Scheme 2. Recommended Protocol for Evaluating the Performance of AEMs
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FAPQ-375-PP and FAP-330-PE are the best membrane
candidates for nonaqueous RFBs in acetonitrile and only the
latter membrane works well in propylene carbonate; however,
these two membranes have been discontinued by the
manufacturer. Consequently, new membranes (commercial
or synthesized65−68) are needed for NARFBs and should be
evaluated using our suggested protocol to accurately bench-
mark them against existing membranes.
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