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Development and Analysis of a Feedback Treatment
Strategy for Parturient Paresis of Cows

Radhakant Padhi and S. N. Balakrishnan

Abstract—An intelligent on-line feedback treatment strategy
based on nonlinear optimal control theory is presented for the
parturient paresis of cows. A limitation in the development of
an existing nonlinear mathematical model for the homogeneous
system is addressed and further modified to incorporate a control
input. A neural network based optimal feedback controller is
synthesized for the treatment of the disease. Detailed studies
are used to analyze the effectiveness of a feedback medication
strategy and it is compared with the current ’impulse’ strategy.
The results show that while the current practice may fail in some
cases, especially if it is carried out before the condition of a patient
deteriorates, the proposed continuous medication process may be
initiated at any time. Moreover the proposed on-line continuous
infusion strategy never leads to severe hypercalcemic problems,
thereby avoiding an associated disastrous consequence of cardiac
arrest. A comparison study with linear quadratic regulator theory
brings out the advantages of the nonlinear control synthesis
approach.

Index Terms—Biomedical system, calcium homeostatis, neural
networks, optimal control, parturient paresis.

I. INTRODUCTION

THE idea of using mathematical control theory to solve
problems in biological sciences is relatively old [7]. How-

ever, in recent years, activities based on this idea is growing
fast. This is primarily due to development of more mathemat-
ical models for various biological systems [5], [14]. This rapid
growth can also be attributed to the advancement in control
theory. Some of the recent biomedical applications of control
engineering can be found in [10] and the references therein.

In this paper we address a control problem associated with
the treatment strategy of parturient paresis of cows, which is re-
lated to the Calcium (Ca) dynamics of the animal. Ca has various
crucial physiological roles in animals. Besides maintaining the
integrity of the bone structure, intracellular Ca ions are involved
in the activity of a large number of enzymes. They are also in-
volved in conveying information from the surface to the interior
of the cell. Extracellular Ca ions are necessary for neuromus-
cular excitability, blood clotting and hormonal secretions etc.
We cite [6] for an interested reader. A systematic mathematical
model for the calcium homeostatis problem of cows was first
developed by Ramberg et al. [18]. The one-dimensional (1-D)
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model has recently been modified to a two-dimensional (2-D)
model, with appropriate justifications, by El-Samad et al. [3],
[4]. This model clearly explains the Ca homeostatis phenom-
enon in healthy cows. Besides, it also attempts to explain a dis-
ease with the onset of parturition (calving), commonly known as
parturition paresis (milk fever), experienced by some animals.
This disease is caused by hypocalcemia which occurs when the
complex internal control mechanism in cattle for maintaining
calcium homeostatis fails due to a sudden and severe outflow of
calcium. As pointed out in [16], parturient paresis is one of the
most common metabolic diseases of the dairy cattle, with about
6% of the dairy cattle in USA being affected annually.

From a system theoretic point of view, the parturient paresis
problem of dairy cows can be thought of as follows Fig. 1: prior
to onset of parturition, the internal Ca homeostatis mechanism
operates at a stable equilibrium point. However, after the par-
turition, due to the outflow of Ca the equilibrium point shifts
to a new value. With respect to this new equilibrium point, the
earlier one can be thought of as an initial condition. Depending
on the system parameters, the dynamics may drive the system
from this initial condition toward the domain of attraction [19]
of new equilibrium point and is eventually driven to the new
equilibrium point (which happens for a ’healthy’ animal). In
some cases, however, the dynamics may drive the system away
from this domain of attraction of the new equilibrium point and
in that case the Ca dynamics goes unstable and the animal suf-
fers from the parturient paresis disease. As pointed out in [16],
a common treatment strategy for the cows with milk fever is the
intravenous infusion of Ca salt. However, as the authors have
pointed out, it should always be administered “slowly” to pre-
vent sudden cardiac arrest due to hypercalcemia.

The major objectives of this paper are twofold: to develop
a system theoretic model of calcium homeostatis to accommo-
date feedback control and, more important, to devise an optimal
on-line feedback control (medication) strategy based on non-
linear optimal control theory. Many difficult real-life control
problems can be formulated within the framework of optimal
control. It is well known that the dynamic programming for-
mulation offers the most comprehensive solution approach to
nonlinear optimal control in a state feedback form [2], which
is desirable because of its beneficial properties (e.g., robustness
with respect to noise suppression). However, a huge (infeasible)
amount of computational and storage requirements are needed
to solve the associated Hamilton-Jacobi-Bellman (HJB) equa-
tion. There is a technique in the current literature which yields
optimal feedback control for nonlinear systems. An innovative
idea was proposed in [20] to get around the computational com-
plexity of the dynamic programming formulation by using Ap-
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Fig. 1. System theoretic view of parturient paresis.

proximate Dynamic Programming (ADP) formulations. The so-
lution to the ADP formulation is obtained through a two-neural
network approach called Adaptive Critic (AC). In one version
of the adaptive critic approach, called the Dual Heuristic Pro-
gramming (DHP), one network (called the action network) cap-
tures the mapping between the state and control variables while
a second network (called the critic network) captures the map-
ping between the state and costate variables. More important,
this solution can be implemented on-line, since the control com-
putation requires a few multiplications of the network weights
(which are trained off-line). Among many successful use of this
method for nonlinear control design found in the literature, we
cite [1] in which the authors solved an aircraft control problem
using this technique. Proofs for both convergence of networks
at each step of the training process as well as the fact that the
process will eventually lead to the optimal control is found in
[12] for linear systems. A related but separate development to-
ward the stability and global convergence proofs is found in
[15] for input-affine nonlinear systems (the nonlinear system
discussed in this paper is input-affine). Note that a significant
improvement to the adaptive critic technique is proposed in this
paper (see Section III) by eliminating one of the two networks
in the structure.

The medication strategy presented in this paper assures that
the initial condition (earlier equilibrium point) of almost all the
sick animals are safely driven toward a new safe equilibrium
point. The intravenous Ca treatment is treated as an on-line
process with the rate of infusion being the control variable. De-
tailed studies are used to show the effectiveness of a feedback
strategy and compared with an ’impulse’ strategy which is cur-
rently carried out by manually injecting Ca salt to the blood
pool of a sick animal (by a veterinary surgeon). A comparison
study was carried out with the standard linear quadratic regu-
lator theory [2], [11], which clearly brought out the advantage
of the proposed nonlinear control synthesis approach.

Rest of the paper is organized as follows: Section II deals with
the mathematical modeling aspects of the problem. We point out
a limitation of the mathematical model developed in [3], [4] and
modify the model to address that and expand the basic homoge-
neous model to accommodate control inputs. In Section III we
discuss the necessary conditions of optimality from a discrete
dynamic programming perspective. We describe the main idea

of a neural network based controller synthesis procedure in this
section. We outline our proposed on-line medication strategy
for parturient paresis in detail in Section IV. In Section V, we
discuss the numerical results and outline some of the relevant
comments and derive some conclusions in Section VI.

II. CALCIUM HOMEOSTATIS IN COWS: MATHEMATICAL

MODELS

A. Existing Model

A systematic dynamic model for the Ca homeostatis problem
was first developed by Rabmerg et al. [18]. The model has re-
cently been modified to the following 2-D model, by El-Samad
et al. [3], [4]

(1)

where is Ca concentration (gm/L) in the blood plasma;
is the rate (gm/d) (where d stands for day) at which Ca is sup-
plied to blood plasma from intestine ; is the rate of change
of and , respectively, with respect to time ; is the
total plasma volume ; is the total Ca clearance from the
plasma (gm/L); is the set point, for Ca concentration regu-
lation (gm/L); is the constant, for the internal proportional
block (L/d); is the constant, for the internal integral block
(L/d ); , are the saturation values;

, is
a multiplicative reduction factor, reflecting the effect of plasma
Ca concentration on rate of Ca supply from intestine, where ,

, , are constants. For more details on the model and its
validity, refer to [3], [4].

B. Refinement to the Model

In [3], [4], the authors have relied on the model given by (1)
to explain the parturient paresis problem in dairy cows. One
can notice that the model consists of saturation nonlinearity
functions which fall under the class of hard nonlinearities
(having discontinuities in derivatives). However, biological
systems seldom exhibit this behavior. At worst, they can have
strong nonlinearities (consisting of higher order terms in a
power series expansion). Thus, the nonlinear model for the
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problem should ensure gradual saturation, rather than a sudden
saturation. To incorporate this effect, the hard-nonlinear satura-
tion functions should be replaced by some gradually saturating
functions. Besides, the modified model should have the same
saturation values as (1) and moreover, near the equilibrium
point, it should closely represent the original linear model as
predicted by (1). To account for the above factors, we propose
to change the hard-nonlinear saturation functions to hyperbolic
tangent function, and rewrite the system dynamics as:

(2)

where , . We consider , , ,
as system parameters. At this point, we point out that in (1) the
equilibrium point is given by whereas
in (2), the equilibrium point is given by

(3)

Note that in our modified model, the final equilibrium point
(after parturition) is parameter dependent. Intuitively this makes
more sense, since different animals are supposed to settle at dif-
ferent equilibrium points.

C. Model in Terms of Deviated State Values From Equilibrium

Our main aim is to regulate the system about its equilibrium
point. For convenience, we rewrite the system dynamics in de-
viation terms by defining

(4)

where , are the deviations of and , respectively, from
their equilibrium values. The equations in terms of and
can be written as

(5)

where and , are given by

(6)

Note that the phase plots (not included in this paper) of the new
model closely followed that of [3], [4].

D. Model With External Control

The models discussed in (1) and (2) do not contain the effects
of external inputs (control). Our main objective is to develop an

Fig. 2. Block diagram representation of Ca regulation.

on-line medication strategy for the sick animals affected with
parturient paresis, so we need to develop a mathematical model
that includes a control term. Toward this goal, we observe that
we are primarily interested in a medication strategy with intra-
venous Ca infusion (assumed as the control variable) which is
infused directly to the blood plasma. Due to direct infusion, the
rate of change of Ca in the blood plasma is assumed to be
changed instantaneously. However, the externally infused Ca is
assumed to reflect in the blood plasma with efficiency ; the
body rejects the rest. A block diagram for the system reflecting
these points is given in Fig. 2. Combining (5) and (6), we arrive
at

(7)

where is the efficiency of external control and is the external
control.

E. Model With Normalized Variables

For better training of neural networks (Section III-B), we nor-
malize the neural network inputs. For this reason, we define
the new variables , , where

and are the nominal values of and , respec-
tively, (chosen appropriately so that the values of , be-
comes roughly of same order). After writing the system dynamic
equation in terms of and , for convenience we redefine

and arrive at the following equations

(8)

where

(9)

Note that the equilibrium point of the homogeneous system
dynamics in (8) and (9) now corresponds to the origin (for nor-
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malized and deviated states) and the control term
represents the rate of infusion of Ca per unit volume of blood
plasma. Accordingly, the actual rate of Ca infusion (gm/d)
and the amount of Ca infused to the blood plasma (gm) by
time are given by

(10)

III. OPTIMALITY CONDITIONS AND NEURAL NETWORK

SYNTHESIS

A. Optimality Conditions for Calcium Regulation Problem

For use with neural networks, the Ca regulation medication
dynamics is first discretized as

(11)

where is the step size in time, is the state
vector and is given by

(12)

It is clear that the medication problem falls under the class of
regulator problems, the regulation being carried out about the
origin. We assume a discrete cost function of the form

(13)

where , are the weighting matrices on state and
control, respectively, and is the step size in time. The goal of
this control synthesis approach is to administer Ca slowly into
the blood stream which means one should not choose too high
values of or very small values for . Appropriate choice of
these values is problem dependent and can be adjusted with rela-
tive ease after a few simulations. Applying the standard discrete
optimal control theory [2], [11], the equations for optimal con-
trol and costate dynamics are given by

(14)

(15)

where is the costate variable at time step , the dynamics
for which evolves backward.

At each time step the coupled equations (12), (14) and (15)
have to be solved simultaneously, together with the boundary
conditions ( specified and as ), to obtain
the optimal control solution . In an infinite horizon of the
problem, we can essentially capture the steady state relationship
between state and costate in a single network (or set of networks,
if one network is assumed for each element of the output vector,
as done in this work). For finite horizon problems, however, one

needs a series of such networks to capture this relationship at
every time step [8].

B. Procedure for Neural Network Synthesis

In this section, a neural network based optimal control syn-
thesis is presented. The schematic of the controller synthesis
procedure is shown in Fig. 1. We propose a neural network struc-
ture that solve the optimal control problem contained in (11) and
(12), (14) and (15), while satisfying the boundary conditions as
well. The controller is essentially obtained through what we call
as a set of “critic networks”. This is to retain the terminology of
the adaptive-critic methodology [1], [8], [17], [20]. Note that,
as pointed out earlier in Section I, the need for a second network
has been eliminated.

1) State Generation for Neural Network Training: In
the controller synthesis process, we first fix a par-
ticular time step . Then, we choose a set of states

for which the
critic networks are to be trained. Obviously it is a difficult task,
mainly because of the fact that prior to the controller solution,
we do not have an idea so as how exactly a system evolves in
the presence of control. However, for all practical purposes,
one can just choose a sufficiently large number of random
states in the domain of interest for training the neural networks.
One can notice, however, that for regulator problems, as time
increases the states tend to zero. Thus the set must also
contain, with nonzero probability, the controlled states with
different magnitudes, including the ones close to zero. For this
reason, we follow a telescopic procedure outlined here.

Define, for , ,
where is a positive constant. Notice that for

, . Thus, for some , will include
the domain of interest for initial conditions. Hence, to begin the
synthesis procedure, we fix a small value for the constant
and train the networks for the states, randomly generated within

. Once the critic networks converge for this set, we choose
close to and again train the networks for the profiles within

and so on. We keep on increasing the constant this way
until the networks are trained for states in . In this paper, we
have chosen , for
and continued until .

2) Neural Network Training: The critic neural network(s)
essentially capture the relationship between and . For
faster training, we have synthesized two neural
networks (separate networks for each element of the
vector ). We have assumed that the parameters of the
problem are not fixed and they can
vary, within known minimum and maximum values.
Thus, , ,

and . However, we
have assumed that the parameters remain constant for any
particular animal and, hence, for a typical state trajectory.
Thus, to capture the relationship between and , we

construct an augmented vector ... (
is the vector containing parameters), which serves as the input
to the neural networks. However, since the individual
elements of vary widely in magnitude, we construct a



56 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 1, JANUARY 2004

Fig. 3. Schematic of optimal control synthesis using neural networks.

normalized vector to serve as the input. Thus we have
,

where , , and are the normalizing
values for , , and , respectively. Note that after
successful training of the networks, we can directly calculate
the associated optimal control from (14) for each . We
synthesize the neural networks in the following manner (Fig. 3)

1) Generate , as described in Section III-B.1.
2) For each element of , follow the steps below.

• Construct .
• Input to the networks to get : let us de-

note this actual output as as well.
• Calculate , knowing and , from optimal

control equation (14).
• Get from the state equation (11) and (12),

using and .
• Construct .
• Input to the networks to get .
• Calculate the target , from the costate equation

(15). Let us denote this as .
3) Train the networks, with all as input and all corre-

sponding as output.
4) Check for convergence, as described in Section III-B.3.
5) If proper convergence is achieved, stop and revert to step

1, with . If not, go to step 1 and retrain the
networks.

6) Continue the process till ; i.e., until .

One can notice that for faster convergence, one can take the
convex combinations ,

as target outputs for training, where
is the learning rate for the neural network training. Moreover, to
minimize the chance of getting trapped in a local minimum, one
can follow the philosophy of batch training, where a network
is trained for all of the elements of together. One also no-
tices that although should ideally contain an infinite number
of profiles, we generate with a finite, yet large number of

random states. For the biomedical problem under consideration,
we have followed these ideas (selecting ).

3) Convergence Condition: Before changing to and
generating new profiles for further training, it should be assured
that proper convergence is arrived for . This can be done in the
following manner.

1) Fix to the same values that have been used for the
training of the networks. Generate a set of profiles, ex-
actly the same manner used to generate . This set will
be used to check or the convergence of the network.

2) Choose a tolerance value (we have selected )
3) By using the profiles from , generate the target outputs,

as described in Section III-B.1. Let the outputs be ,
4) Generate the actual output from the networks, by simu-

lating the trained networks with the profiles from . Let
the outputs be , .

5) Check whether and
. If these conditions are satisfied

simultaneously, we assume that the networks have con-
verged.

4) Choice of Neural Network Structure and Initializa-
tion: Choosing a neural network structure is not a science yet;
one mostly relies on experience and intuition. The choice of
a smaller network may not be adequate to capture the nonlin-
earity of the problem whereas a larger network choice may lead
to a slower training and a greater probability of getting trapped
in a local minimum. For this particular problem, we took two

neural networks, one each for each of the costates.
Note that a neural network means six neurons in the
input layer, six neurons in the first hidden layer, 4 neurons
in the second hidden layer and 1 neuron in the output layer.
For activation functions, we took tangent sigmoid function for
all the hidden layers and linear function for the output layer.
Simulation results indicate that this was an appropriate choice.
For initializing the weights, we solved the problem with the
well-known linear quadratic regulator optimal control theory
[2], [11], after linearizing the system dynamics, and trained the
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networks based on the associated relationship between state
and costate variables.

IV. MEDICATION STRATEGY FOR PARTURIENT PARESIS

As pointed out by Oetzel et al. [16], the milk fever can be cat-
egorized as stage I, II, or III, depending on the Ca concentration
in blood. Stage I milk fever has blood Ca concentration in the
range of 0.055–0.075 gm/L, stage-II in the range of 0.035–0.065
gm/L and stage III can have as low as 0.01 gm/L. Stage I milk
fever, considered to be a milder disease, is treated either with
oral Ca supplement or intravenous Ca salt infusion. Cattle in
stage II or III require immediate treatment with intravenous Ca
salt. In [16] it is also pointed out that the intravenous Ca should
always be administered “slowly” to prevent sudden cardiac ar-
rest due to hypercalcemia. Another fact pointed out by the au-
thors is that 75% of all cases of the milk fever occur within 24
h of calving, with additional 12% occurring within 24 to 48 h.

One may notice that our proposed medication procedure
assumes the rate of intravenous Ca infusion as a continuous
process. The parameters for a typical animal are assumed to be
known and both states are assumed to be measurable. Before
we describe the details of our proposed medication strategy,
we observe the following: if the Ca concentration in the blood
pool is 0.05 gm/L or higher, the milk-fever problem falls
under stage I and is not considered serious. Since the value
at the new equilibrium point is 0.08 gm/L, this essentially
translates to (a deviation from equilibrium) .
When , the animal runs into the danger
of stage II-III milk fever and hence, our goal should be to
assure that the deviation of the Ca concentration level (from
the new equilibrium point) never drops below
after stopping the medication. Moreover since most of the milk
fever cases have been observed to occur within a day or two
of the parturition, medication is important at this early period
after calving. Based on the above observations, we propose the
following medication strategy.

1) Monitor the condition of an animal after parturition,
showing the sign of milk fever; i.e., keep measuring
the Ca concentration in the blood pool. Note that the
parameters for a typical animal are supposed to be known
and assumed to remain fixed.

2) If value drops below a specified level, say
, bring the sick animal under the medication

scheme.
3) The medication is carried out for a fixed amount of time,

say for 1 h. During that period, the following steps are
carried out.

• At any time step , the control magnitude is com-
puted on-line, using the neural networks as synthe-
sized in Section III.

• If the computed control , we forcefully make
, since a negative infusion rate is impossible

to implement. However, essentially indi-
cates that the blood pool already contains more Ca
than necessary and, hence, there is no requirement
of additional intravenous infusion. For this reason,

forcefully making will not lead to any cata-
strophic consequence.

• The Ca infusion process is continued at a rate
until the next time step .

4) At the completion of Step 3, the condition of the patient
animal is projected for some specified future time, say
for a week (which is normally required for an animal to
restore the Ca regulation internally [3], [4]). This is done
using the homogeneous part of system dynamics.

5) If the projected states show and (i.e., the
patient recovers without further medication) and tra-
jectory never enters the region , STOP
medication. Otherwise, go to Step 3 and continue medi-
cation for another fixed amount of time (in this case, 1 h).

One should note that this paper does not deal with any new
drug development. It simply attempts to make use of the ad-
vanced control theory concepts to optimally use an available
drug, thereby improving its effectiveness substantially.

V. NUMERICAL RESULTS AND DISCUSSION

A. Parameter Values

For our numerical experimentation, we have fixed
, /d (before parturition),

/d (after parturition), as in
[3], [4]. Values of , , , for healthy cattle are
given in these references are based on minimizing a mean
square error function from actual experiment data. How-
ever for animals having milk fever, which is the focus of
our study, this reference only outlines a qualitative study.
Based on those qualitative arguments, we have chosen

/d, /d, /d ,
/d , /d, /d,

/d, /d. For normalization, we
have chosen , /d,

/d, /d , /d,
and /d. For the neural network training purposes,
we have assumed ,
and . However, depending on the param-
eter value , we have fixed

. The factor 1.2 is
chosen to allow a 20% overshoot. The weights in the cost
function are

and .The time interval was chosen as 30 s.
We have assumed the control efficiency factor

B. Analysis of Simulation Results

We first assumed /d, /d ,
/d, and /d. These parameters lead

to an unstable trajectory for the initial condition ,
(the

values at parturition), indicating a diseased animal. First, we
experimented with these parameter values. However, since the
infusion process is supposed to be carried out only for patient
animals, starting with this initial condition, we first propagated
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Fig. 4. Calcium/Vol. deviation in the pool; case-1.

Fig. 5. Calcium absorption rate in intestine; case-1.

the homogeneous system until dropped below , a
known value. Then we collected the corresponding value of
at that time and considered the state values at that time as our
initial condition for the application of control.

As mentioned in [16], the current practice of Ca infusion to
treat parturient paresis is to infuse 10.8 gm of Ca in 12 min.
So, it becomes necessary to compare our results not only with
the homogeneous system behavior, but also with this current
practice of medication. However one can notice, because of the
high rate of infusion, this process is completed very quickly
as compared to our proposed on-line continuous medication.
In systems theory, this can be termed as an “impulse” input.
Thus, we refer to this as impulse medication, in our attempt
to compare the results. For the numerical simulation, we just
assume a constant rate of infusion (control) of 10.8 gm /12 min
for 12 min, and then assume it to be zero for rest of the time.

Figs. 4–6 show the results with . It
is clear that both the continuous and the impulse medication
work fine in recovering the patient animal. Moreover the
actual amount of Ca infused to the system in the 6-h long

Fig. 6. Rate of Ca needed in medication; case-1.

Fig. 7. Calcium/Vol. deviation in the pool; case-2.

medication is , a comparable value to 10.8
gm. However, as seen in Fig. 4, the trajectory of the deviated
amount of Ca per unit volume of the blood pool from its
equilibrium value enters the positive domain, which means the
presence of extra Ca in the pool than necessary. This may lead
to a potential danger of hypercalcemia [16]. Moreover, the
same trajectory for the impulse medication again drops below

, a low value that could cause some concern,
before recovering back. On the other hand, the continuous
medication shows a much smoother trajectory. It never goes
to the positive side either. Moreover after termination of the
medication, even though the trajectory drops a little before
recovering back, it always remains above the danger level of

(meeting the condition we set in Section IV) for
all future time. About 1 h after terminating the medication,
the trajectory drops close to (but remains above
it in strict mathematical sense). This is significantly better
than the impulse medication. Fig. 5 depicts the trajectory of
the rate of Ca resorption from intestine. The two plots for
impulse and continuous control are quite close to each other,
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Fig. 8. Calcium absorption rate in intestine; case-2.

Fig. 9. Rate of Ca needed in medication; case-2.

which indicate that by continuous control, we are not doing
anything drastically wrong to the intestine. Fig. 6 depicts the
control trajectory under the on-line optimal medication. At
time , the control is terminated. Note that as compared
to the impulse input of 10.8 gm/12 min, which is 1296 gm/d,

the control magnitude in the continuous scheme is much lesser.
Thus the system is pulled toward the equilibrium point in
a much smoother way.

In Figs. 7–9 we used the same value of the parame-
ters. However, this time we simulated the system with
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Fig. 10. Calcium/Vol. deviation in the pool from various initial conditions.

. It was surprising to see that the
impulse control did not work. This implies that if the current
practice of impulse infusion is carried out before the condition
of the patient animal becomes sufficiently bad, in some cases
(depends on system parameters) it may not work. However,
the on-line continuous scheme was successful in achieving
its goal and recovered the animal successfully. In this case,
however, the duration of control application was longer and
the amount of Ca infused was . Note that
although the continuous medication scheme works from any
initial condition, one may consider starting the medication a
little later for easier drug administration if the animals have
to be kept static (by strapping, putting under anesthesia, etc.)
for the duration of continuous infusion of Ca injection. Even
if it is feasible, it is always better for the animal to minimize
the duration of medication as much as possible to minimize
the associated risks (e.g., high doses of anesthesia may lead to
death).

One of our objectives, however, was to see that the proposed
methodology and the synthesized controller work from a large
number of initial conditions from the domain of interest. To-
ward this end, we assumed a large number of random parameter
values and random initial states and simulated the system re-
peatedly (Monte Carlo simulation). Figs. 10–12 show some of
the simulated results indicating that the proposed scheme works
for many different possible cases. Even though only ten such
cases are shown (for clarity of the figures), similar results were
obtained for a very large number of cases. In fact, the controller
was successful in all the cases. Furthermore, the trajectory of Ca
deviation per unit volume of blood pool never entered the posi-
tive domain (dangerous hypercalcemic problem) in any simula-
tion.

For comparison, we have solved this problem with the well-
established Linear Quadratic Regulator (LQR) optimal control
theory [2], [11], where the control synthesis is carried out after
linearizing the system dynamics. We present two sets of rep-
resentative results in Figs. 13–18. In Figs. 13–15 we present a
case where the linear control works but the nonlinear control
works better. It can be observed from Fig. 13 that with the ap-

Fig. 11. Calcium absorption rate in intestine from various initial conditions.

Fig. 12. Rate of Ca needed in medication, from various initial conditions.

plication of linear control the Ca deviation level drops below
, a dangerously low value, before recovering back

whereas the nonlinear controller keeps this deviation relatively
small. In Figs. 16–18 we present a case where the linear control
actually fails and the system becomes unstable (i.e., the cow
dies), whereas the nonlinear control was successful in pulling
the system into a stable region (i.e., it recovers the sick animal).
From this comparison study it is clear that the proposed non-
linear control synthesis approach has a clear advantage over the
existing LQR approach based on linear theory.

C. Some Relevant Comments

• In our control synthesis, we have assumed that both the
states and are available. Where as can readily be
measurable, currently no technique exists to measure .
For this reason, in actual implementation of the proposed
medication strategy, it may be necessary to design an ob-
server or filter to have an estimate of . Similarly, it may
also be helpful to incorporate a parameter estimation tech-
nique to carry out an on-line estimation of the parameters.
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Fig. 13. Calcium/Vol. deviation in the pool: A comparison study; case-1.

Fig. 14. Calcium absorption rate in intestine: A comparison study; case-1.

These are possibilities for further refinement of the pro-
posed on-line medication technique.

• In order to analyze the effects of the control efficiency
factor on the process, we made . The results are
similar to the case when . As expected, when
the control efficiency is higher, the actual amount to be
infused to the system was observed to be lower, which in
some sense validated the fact that our control synthesis
approach was proper.

• In simulations, we observed that the even if the im-
pulse medication pushed the Ca deviation to as high
as , the system was still stabilizable in
some cases whereas in some other cases even about

lead to instability. This is because as
long as a point in the state space (dependent on all state
variables) falls within the “domain of attraction” of an
equilibrium point, the evolution of the trajectory from that
point will be stabilizing. We point out that one may use
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Fig. 15. Rate of Ca needed in medication: A comparison study; case-1.

Fig. 16. Calcium/Vol. deviation in the pool: A comparison study; case-2.

Lyapunov theory [19] to estimate the domain of attraction.
Note that with collaborative work with experimentalists
in the area will definitely lead to more accurate models
and help interpret the validity of the mathematical results
better.

• Even though the paper deals with the particular biomed-
ical problem related to parturient paresis, the idea of an
on-line feedback medication can be applied to any other

linear/nonlinear problem, provided an appropriate mathe-
matical model is available.

VI. CONCLUSION

We have developed a more realistic model for the calcium
homeostatis problem of cows in this study, which both accounts
for a limitation in an existing (recently developed) model as well
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Fig. 17. Calcium absorption rate in intestine: A comparison study; case-2.

Fig. 18. Rate of Ca needed in medication: A comparison study; case-2.

as incorporates the effects of external medication (control). We
have successfully synthesized an on-line feedback optimal med-
ication strategy for the parturient paresis problem of cows com-
monly observed on the onset of parturition. The proposed com-
puterized automatic medication scheme has been shown to im-
prove the effectiveness of an existing drug substantially as com-
pared to the impulsive manual quick infusion process, which
is currently in practice. It was found that whereas the current
practice failed in some cases (leading to the death of the an-

imal), the proposed medication process was successful in saving
the animals. Unlike the current practice which should start only
after the animal actually develops the disease (otherwise the
medicine flows out of body and hence becomes ineffective) the
proposed on-line continuous infusion strategy can be initiated at
any time. Moreover, it never leads to severe hypercalcemic prob-
lems, thereby avoiding the associated disastrous consequences
such as cardiac arrest. Furthermore, a comparison study with
the linear quadratic regulator theory clearly brings out the ad-
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vantage of the proposed nonlinear control synthesis approach.
We conclude the paper with the comment that although the re-
sults are quite promising, collaborative work with veterinarians
is needed to assess problems in implementations.
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