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Approximate dynamic programming based optimal neurocontrol synthesis of 
a chemical reactor process using proper orthogonal decomposition 

Radhakant Padhi' and S. N. Balakrishnad 
Department of Mechanical and Aerospace Engineering, and Engineering Mechanics 

University of Missouri-Rolla, MO, 65409, USA 

Abslracf - The concept of approximate dynamic programming 
and adaptive critic neural network based optimal controller is 
extended in this study to include systems governed hy partial 
differential equations. An optimal controller is synthesized for  a 
dispersion type tubular chemical reactor, which is governed by 
two coupled nonlinear partial differential equations. I t  consists 
of three steps: First, empirical hasis functions a r e  designed 
using the 'Proper Orthogonal Decomposition' technique and a 
low-order lumped parameter system to represent the infinite- 
dimensional system is obtained by carrying out a Galerkin 
projection. Second, approximate dynamic programming 
technique is applied in a discrete time framework, followed by 
the use of a dual neural network structure called adaplive 
critics, to obtain optimal neurocontrollers for this system. In 
this structure, one set of neural networks captures the 
relationship between the state variables and the control, 
whereas the other set captures the relationship between the 
state and  the costate variables. Third, the lumped parameter 
control is then mapped hack to the spatial dimension using the 
same hasis functions to result in a feedback control. Numerical 
results are  presented that illustrate the potential of this 
approach. I t  should be noted that the procedure presented in 
this study can be used in synthesizing optimal controllers for  a 
fairly general class of nonlinear distrihuted parameter systems. 

1. INTRODUCTION 

Process control problems are mostly govemed by partial differential 
equations (PDEs) and are infinite-dimensional in nature. They are 
also called Distributed Parameter Systems (DPS). The DPS appear 
naturally in various application areas such as chemical processes, 
thermal processes, vibrating structures, fluid flow systems etc. They 
inherently have an infinite number of system modes. Since it is 
impossible to deal with all the modes, some son of approximation 
technique is usually applied for the analysis and synthesis 
procedures related to DPS. 

A popular DPS analysis and synthesis technique is to use 
orthogonal basis functions in a Galerkin procedure to first create an 
approximate finite-dimensional system of Ordinary Differential 
Equations (ODES). This lumped parameter model model is then 
used for control design using various tools of lumped parameter 
control design. If arbitrary basis functions (e.g. Fourier and 
Chebyshev polynomials) are used in the Galerkin procedure, they 
can result in a high-dimensional ODE system. A better and 
powerful basis function design is obtained when the Proper 
Orthogonal Decomposition (POD) technique is used with a 
Galerkin approximation. In the POD technique, a set of problem- 
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oriented basis functions is first obtained by generating a set of 
"snap-shot solutions" through simulations or from the. actual 
process. Using these orthogonal basis functions in a Galerkin 
procedure, a low-dimensional ODE system can be developed. This 
technique has widely been used in recent years (e.g. [4, 71). 

The issue of optimal control synthesis should be addressed next. It 
is well known that the dynamic programming formulation offers the 
most comprehensive solution to nonlinear optimal control; however, 
a huge amount of computational and storage requirements are 
needed to solve the associated Hamilton-Jacobi-Bellman (HJB) 
equation [2] .  which is also known as the Bellman equation. Werbos 
[IO] proposed a means to get around this numerical complexity by 
using 'approximate dynamic programming' (ADP) formulations. 
His methods approximate the original problem with a discrete 
formulation. The solution lo the ADP formulation is obtained 
through the two-neural network adaptive critic approach. In one 
version of the adaptive critic approach called the dual heuristic 
programming (DHP) one network called the action network 
represents the mapping between the state variables of a dynamic 
system and control and the second network, called the critic, outputs 
the costates with the state variables as its inputs. This ADP process, 
through the nonlinear function approximation capabilities of neural 
networks, overcomes the computational complexity that plagued the 
dynamic programming formulation of optimal control problems. 
More important, this solution can be implemented on-line, since the 
control computation requires a few multiplications of the network 
weights which are trained off-line. This technique was used in [ I ]  to 
solve an aircraft control problem in a domain of interest. 

In this paper, this techniques of POD and approximate dynamic 
programming are combined, which is then applied to a more 
challenging nonlinear chemical reactor process. This dispersion 
type tubular chemical reactor control problem has been discussed in 
[3]. The authors have used Green's function to calculate optimal 
control. Their method for calculating the costate variables that arise 
in an optimal control formulation is complicated. Even though the 
authors have found a Greens function for the particular problem, 
finding an appropriate Green's function and calculating its 
coefficients is not an easy task in general. More important, their 
solution is for specific initial condition (initial state profiles) only. 
In other words, it is an open loop control which will severely 
degrade the process performance if the initial profile were different. 
In contrast to this, the approach presented in this paper is applicable 
to a large number of initial conditions (or profiles). Once the neural 
networks ille trained to capture the relationship between state and 
control within a domain of interest (which is done off-line) they can 
be used to compute the control for "any" value of the state variables 
within that domain. Moreover since using a set of networks is not 
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computationally intensive it can be implemented on-line. In control 
terminology this is i feedback solution; a feedback control is 
desirable because of its beneficial properties like robustness with 
respect to noise suppression and modeling uncertainties. 

We wish to point out that we have solved the same chemical reactor 
optimal control problem using a different approach earlier [SI. In 
that approach a controller was used at every step in a finite 
difference scheme, which was used to discretize the spatial variable. 
Even though we obtained satisfactory results, there are some 
implementation issues. Note that one has to take a large number of 
node points for good finite difference approximations. However, 
because for each node point critic and action networks were 
proposed, the number of networks grows with the number of grid 
points and this would lead to serious problem in training of the 
networks. As a consequence one has to remain contented with a 
“coarse grid approximation”. In contrast, the current approach is 
grid independent in the sense that lumped parameter state vector 
does not depend on the number of grid points assumed for the 
integral evaluations. Second, in the earlier technique the state (and 
control) values at some point in space other than the node point 
locations are unknown. If one wants to get value for such a location, 
interpolation techniques are necessary. The prediction may not be 
good if the grid approximation is coarse. In contrast, in the 
proposed methodology by definition the basis functions are 
supposed to be continuous functions. So values at any point in the 
space can theoretically be computed without resorting to any 
interpolation technique. This issue is of significantly less concern in 
our new approach, since one can have a fine-grid approximation to 
begin with and therefore. will result in much smaller interpolation 
errors. 

II.  SYSTEM MODEL AND OBJECTIVE 

Dynamics of the chemical reactor problem considered in this 
research is described by the following set of partial differential 
equations [3]: 

The boundary conditions are given by 

where, w,.w,  are the state variables that represent concentration and 
temperature respectively. The control variable U represents the 
cooling water temperature. The terms Pe , ,  PP,  are the Pecler 
numbers of mass and energy flows respectively. 
N ( v , ) = D , e x p r v , / ( l t v , / & ) l ,  where Do is the Damkohler . 

number, E is the activation energy, B and h are the parameters 
related to heat of reaction and heat transfer respectively. y E [0, L ]  

and r E  [ r o , r , ]  , where I, and r ,  are initial and final times 
~~ 

respectively. Values of different parameters describing the process 
are: P e , = I . P e , = I , D n = I ,  ~ = 2 0 ,  B = 2 ,  h = l .  m = 2 , r 0 = O  
and L = l .  

~ 
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For convenience, we define and U!,,, as the steady state values 

of vI and v1 respectively while the h(v ,  - U )  term is omitted from 

the v2 dynamics; this implies that the reactor operates with perfect 

insulation. Consequently. we observe that U,,( = w2* . For 

computing Y,,+ and v2* , it was assumed that Jv, / Jr = Jw, / Jr = 0 

(steady-state condition), in addition to h ( v ,  -U) = 0 .  Then we use 

these conditions in (1-2) and solved the resulting two point 
boundary value problem (in spatial dimension) for 

Defining x ,?  (U,-, ,,,, ) ,  x 2 ?  (v,-w,,,).werewrite(l)as 

and wlwl . 

where 

f ( x 1 3  x l )  (3c) 

Here w = ( U - + )  is the new auxiliary control variable. The 

objective is to find the optimal control u ( t . y )  which ensures 

{ x , . x ~ + { 0 , 0 1  (i.e. { v , . w ~ + { w , ~ , v ~ ~ } )  as r + - .  This 

objective can be met by minimizing the quadratic cost function: 

N(v,,, + X I )  (1 -U,,,, -x,)- N ( v ~ , , ~ )  ( I -  w,,,,) 

I’ 

where q,,q, 2 0 and r > 0 are weights to be appropriately fixed by 
the control designer. We have used q, = 5000 , q2 = I and r = 1 . 
The relatively high value of q, was selected mainly because our 

goal was to drive Y, towards v,,~, as quickly as possible. 

111. FINITE-DIMENSIONAL APPROXIMATION 

A. Proper Onhogonal Decomposition: Design of Basis Funcrions 

Let ( U , ( y )  : 1 Si S N ,  0 5 y 5 LJ be a set of N snapshot solutions 
of the system. The goal of the POD technique is to design a set of 
basis functions which has the largest mean square projection on the 
snapshots. In other words, we try to find all such possible basis 
functions 4, , each of which provides a local maximum for the 
following figure of merit: 

N 

The solution approach is to seek a function 4, = E w, U ,  , where 

the coefficients w, are to be determined such that ‘0 maximizes I 

in (5) .  In the process we obtain N orthonormal basis functions 
4,,, i = l ,  ..., N . Depending on the energy content, this eigen 

,=, 



spectrum is  truncated to retain only fi 5 N eigen functions that 
will be used in the Galerkin projection. An interested reader can see 
[7] for detail discussions on this basis function design procedure. It 
may be noted. however, that the POD technique is a generalization 
of a familiar method known as Principal Component Analysis 
(PCA) [6], to continuous square integrable functions. The PCA 
technique is widely used as a tool in pattern recognition, image 
processing efc. 

For the process control problem, the basis functions for x, and xt 

were designed independently. In order to determine the proper order 
N, N 7, N 

of the system, the ratios cA,/cA, and c A , / c A ,  were 
,=I ,il pi ,=I 

plotted for different values of fi,,fi? and it was observed that 99% 
of the ratio was accounted for by the first three eigenvalues for both 
the state variables. Hence, we fixed fi, = fi2 = 3 and assumed that 
the six basis functions captured the essential characteristics 
contained in the snap shots with sufficient accuracy. The basis 
functions for state variables x, and x2 in the chemical reactor 
control problem are shown in Figure I .  

Y 

Figure I :  POD Basis functions for state variables 

B. Finire-dimensional Approximar ion: Galerkin Projection 

The state variables x , ( I , y )  , x l ( l , y )  and auxiliary control variable 

v(r .  y) can be written in t e m  of the basis functions as 

0. 

. ,(hY) = f i > , ( l )  Q!;(YL X ? ( ' , Y )  = Ci,;(I) Q , ( Y )  @a) 

v ( 1 . y )  =gc,, jil ( ~ ) ~ , , ( y ) + ~ s 2 j ( l )  ,=, al,w (6b) 

Note that the basis functions for the state variables as well as the 
control are the same. This is because i t  is assumed in this study that 
the control spans a subset of the state variables as i t  is in a feedback 
form and therefore, the basis functions to represent the states are 
adequate to describe the control variable. Note that no mean state 
profiles were assumed in the expansion since our formulation is 
based on the state deviations. 

,=I ,=, 

,(I 

Forconvenience, wedefine i ,  ' [ i ,  ,..., i7,]', m,i[i 2,...,i7,]', 

$ '[C, ,..., and p 2 i [ C 2 . - . . , P N , ] ' .  By substituting (6a.b) in 

(3a), .and ta!ung the inner product with the basis function 
@,, , i = I, .  . ., fi and carrying out s o k  algebra we obtain: 

k, = A i , + 6 ( i , . i * )  
where 

6, j f ( v l ) ! , j d y  
0 

Similarly, by substituting (6 )  in (3b). and taking the inner product 
with the basis function a*,, i = 1 ,..., fi and carrying out some 
algebra we obtain: 

i> =&a, + P* (i,,i>) + i,q + i*t* ( 8 4  

where 

It should be noted that the integrals in (7) and (8) can be computed 
numerically. Hence this approach is applicable for general nonlinear 
systems without having to first evaluate the integrals symbolically 
and then computing them. 

By defining 2 [ 2; 2: and e e [ e::]', we can write 3' 
i = i \ i + P ( B ) + i r ;  (9a) 

Similarly, after carrying out some algebra we can write: 

, ',-- 
2 0  

J = -  j ( i ' Q i + d 7 R l i ) d r  

where 

Equations (9-10) define an analogous optimal control problem in 
the reduced-order lumped parameter framework. In other words, we 
now have a low order finite-dimensional ODE system (9) with a 
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cost function expressed in terms of finite-dimensional state 
variables and control (IO). 

C. Domain of Interest 

In the controller synthesis presented later in Section V, we choose a 
set of states for which the networks are to be trained. We define this 
set as domain of interest. This set has to be defined in such a way 
that the elements in i t  approximately cover the domain of states that 
are supposed to be encountered in actual operation of the system. 
For the reactor problem, we define the domain of interest as 

where x ' = J x / a Y ,  x ' ~ a * x / J y '  etc. We use & norms. The 

conditions on * ; ( y )  and + ( y )  lead to "smooth" profiles. We 
expect that in practice the profiles representing the initial conditions 
will remain within S, . 

D .  Generation of Inirial Srare Profiles and SMP Shot Solutions 

To generate a possible initial condition tiom S, first observe that 
Fourier series is a universal function approximator for piece-wise 
continuous functions and it always leads to smooth function 
generation. Therefore, we write 

where N is chosen as a sufficiently large number (in our case, 
N = 50) and i =1,2 represent the two states. A straightforward 
computation then leads to 

(13) 

We computed random values for the coefficients so that the 
conditions in (11) are satisfied. These are then used in (12) to 
compute state profiles which may represent possible initial 
conditions. Further details of this procedure are omitted for brevity. 
After generating an initial condition, the state solutions at random 
instants of time were selected to serve as snap shot solutions. 

IV. APPROXIMATE DYNAMMIC PROGRAMMING 

In this section, the general discussion on the optimal control of the 
distributed parameter systems is presented in an ADP framework. 

A. Problem Description and Oprimaliry Conditions 

We consider a scalar cost function, to be minimized, of the form: 

(14) 

where 2, and tk represent the n x l  statevector and m x l  control 
vector respectively at time step k . N represents the number of 
discrete time steps. Note that when N is large, (14) represents the 
cost function for an infinite horizon problem. We denote the cost 
funcrion from time step k as 

W e  can rewrite the cost from k in terms of the cost from ( k  +I ) ,  
J, , ,  and Y, the cost to go from k to ( k  + I )  (called the utility 
function) as J ,  =Y, + J,, ,  . We define the costate vector 

A, I JJ, / a i , .  The necessary condition for optimality is 

After some algebra, we get the optimal control equation as 

(17) 

Similarly, after some algebra we get the costate equation on optimal 
path as 

E .  Oprimaliry Equarions for  Chemical Reactor Problem 

We can write the state equation in a discrete form as 

i.,,, = F ( % . P * )  (19) 

W e  notice that a discrete equivalent of the cost function weights 
( loa)  can be written as Q,> I Q  At and R, = R Ar . So we have 

Y, = ,f:QDi, +c:RDCe (20) 

Using (19) and (20) in equations (17) and ( I Q ,  we can write the 
optimal control and costate propagation equations as: 

r', = -k'BA,,, (21) 

A, = G ( L e k , A k * , )  (22) 

We point out that explicit forms of the functions F and G depend 
on the type of discretization procedure. A simple way is to 
introduce Euler integration approximation [SI with a small step size 
io time At 

V. DHP WITH ADAPTIVE CRITICS 

A. Neural Nerwork Synthesis 

Assuming the action networks to be optimal for 1, and critic 
network to be optimal for I,,, , we synthesize the criric networks for 

t, as follows (Figure 2). 
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I .  Generate a set of l?, values from the domain of interest. For 

each 8,.  follow the steps below. 

a. 

b. 

c. 

d. 

Train the set of critic networks with input 2, and output 

Get r', from the action networks 

Get 8,,, from the sfare equarion (19) 

Input Xk+, to the trained set of critic network to get Ak+l 

Calculate target critic A; from cosrare equation (22) 

2. 

for the critic network, using all the input-output data together. 

Figure 2 :  Schematic of critic network synthesis 

Similarly assuming the critic network to be optimal for I , ,  we 
synthesize the acrion networks for r, as follows (Figure 3). 

I .  

each it , follow the steps below. 

Generate a set of i, values from the domain of interest. For 

a. 

b. 

c. 

d. 

Train the set of action networks with input ,f, and output vk*, 
using all the input-output data together. 

Get pe from the action networks 

Get X,,, from the sfare equarion (19) 

Input 8,+, to the trained set of critic network to get At+, 
Get the target optimal control pt' from (2 I )  

2. 

Figure 3: Schematic of action network synthesis 

Once the process of action synthesis is over. we revert to the critic 
synthesis again and vice-versa. The alternate critic and action 
network training process is continued till no noticeable change in 
the output is observed in the outputs of successive training steps. 
This mutual convergence indicates that the action networks 
represent the optimal,relationship between the state and control. For 
details on training process, the reader i s  referred to [ I ] .  For more on 
the topic of adaptive critic (DHP) design process, the reader is 
referred to [lo]. 

B. Neural Nerwork Srrucrures 

In this study, we used six multi-layer feed forward networks of the 
form j?6,B,, for the critics and six similar networks for the 

controller. Here, denotes a neural network with 6 neurons in 
the input layer to account for the six states in the reduced order 
system, 8 neurons in the hidden layers and I neuron in the output 
layer. Choosing separate networks for each costate and control was 
needed for fastcr convergence in this difficult nonlinear problem. 
We used tangent sigmoid functions for all the hidden layers and 
linear function for the output layer. No optimization was carried out 
for the 'hest' neural architecture. Numerical results in Section V 
demonstrate that our network structures were appropriate. 

C. lnirialiurrion of Neural Networks 

Initialization of the network weights plays an important role in the 
convergence process. In order to have appropriate initial weights, 
we linearized (9) about ,f =0, = O  . We then discretized it and 
used standard Linear Quadraric Regularor (LQR) theory [2] to 
obtain the control and costate solutions and train the networks. 

VI. NUMERICAL RESULTS 

Histories of state variables and control from various simulations are 
presented in Figures 4-6. It should be noted that y = 0 and y = 1 

correspond to the boundary points. The system dynamics equations 
for the reactor (1-2) are given in terms of normalized variables, in 
which time is normalized with respect to the residence rime (i.e. the 
time for which the fluid stays within the reactor). For this reason, 
we have simulated the system only up to I, = I  

We picked random initial profiles of conversion and temperature 
and let the neuro-controller (cooling water temperature) drive the 
system. The resulting state variables (conversion and temperature) 
are plotted in Figures 4-5. It is clear that the state variables are 
driven towards the final profiles. Moreover, as desired, they reach 
the desired steady-state profiles quickly (in about 50% of the 
residence time). The associated control (cooling water temperature) 
is shown in Figure 6,  which indicates that the control values are not 
high and the control profile is fairly smooth across the spatial 
dimension, a desirable characteristic for implementation. 

Even though we have presented only a representative case for state 
and control histories, similar results were observed from a very 
large number of initial profiles (it was observed in every case we 
simulated). This indicates that the action networks, with proper 
training, in fact imbed optimal control solutions for a very large 
number of initial conditions (state profiles). 

Finally, we point out that more details on some of the derivations 
and procedures in this paper, along with additional references, will 
appear in the journal version of this paper [9]. 
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VII. CONCLUSIONS 

Combining the techniques of proper orthogonal decomposition and 
adaptive critic design, we have successfully synthesized an optimal 
controller for a nonlinear dispersion-type tubular reactor process. 
Simulation results are promising. The desired adiabatic steady state 
profiles are reached quickly (in about 50% of the resident time). 
This increases the conversion efficiency of the reactor. More 
important, the controller is able to drive a large number of initial 
state profiles in the domain of interest towards the desired profiles. 
For this reason the synthesized action neural network embeds the 
optimal control solution in a state feedback form, which is highly 
desired in practical implementation. The technique presented in this 
paper can also be viewed as a general computational tool for the 
optimal control of nonlinear distributed parameter systems. In other 
words, the procedure of synthesizing the networks remains the 
same. Only the relevant state, costate and optimal control equations 
change depending on the problem under consideration. 
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Figure 4. Drvelopmcnt of conversion in the reactor from a random 
initial profile 
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Figure 5 :  Temperature in the reactor for conversion as in Figure-4 
from a random initial profile 
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Figure 6: Cooling water temperature (control) for conversion in 
Figure 5 and temperature in Figure 6 
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