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Abstract 

Closed form solutions for the guidance laws are 
developed using modem control techniques. The 
resulting two-point boundary value problem is solved 
through the use of the state transition matrix of the 
intercept dynamics. Results are presented in terms of 
a design parameter. The results of comparison with 
other guidance laws will be presented at the 
conference (for lack of space). 

1. Introduction 

Homing missile guidance is a guidance system which 
uses mainly the line-of-sight (LOS) rate to guide the 
missile towards its target. Proportional navigation 
guidance and its derivatives have been shown to be an 
effective LOS rate guidance system [1,3,5,6,8,9]. 
With the need for improved missile performance, 
new methods for missile guidance have been 
investigated using modem control techniques [2,7]. 

In this study an optimal homing missile guidance law 
will be developed in polar Coordinates which are the 
natural coordinate system for a missile engagement 
since the measurements are bearing angle, range and 
range rate. Decoupling of the dynamic equations is 
accomplished by introducing a pseudo-control in the 
radial direction, which produces an optimal control 
problem in each direction. The closed form solution 
in the radial direction is found through the use of the 
pseudo-control and the closed form solution in the 
transverse direction is found by using the state 
transition matrix of the intercept dynamics. 

2. Optimal Guidance Law in Decoupled 
Polar Coordinates [2,7] 

The dynamics of a two dimensional target-intercept 
problem as shown in Figure 1, can be described in 
inertial polar coordinates by two coupled nonlinear 
differential equations as 

f - 1 ez = a& - 8M, 

In these equations r is the relative range between the 

target and the missile, 8 is the bearing angle, +r 

and +e are the target accelerations in the radial 

and transverse directions respectively, and a4 and 

a& are the missile commanded accelerations in 
the radial and transverse directions respectively. 
Dots denote differentiation with respect to time. 
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Figure 1: Engagement Geometry 

In order to decouple the dynamics in the radial and 
transverse directions a pseudo-control is defined in 
the radial direction as 

and 
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(3) 

By introducing the pseudocontrol, the dynamics in 
the radial and transverse directions are decoupled. 
This allows the commanded acceleration in each 
direction to be developed independent of the other. 
The performance index in the transverse direction can 
be written as 

t 

(4) 

where z= [6,6,+JT, 

fe is the corresponding state space. In Eq. (4), S 
is the weight on the final line-of-sight rate and y, 
and y2 are the weights on the line-of-sight rate and 
the transverse commanded acceleration respectively. 

The optimiation of Eq. (4) [4] results in a two-point 
boundary value problem in z, and h, 

f(t) =%/I, g(t) = l / r  and a(t) =exp[- Act]. 
The term q(O)a(t) represents the solution to the target 
acceleration by assuming a first-order model. h, 
represents the Lagrange's multiplier corresponding to 

the LOS rate. The minimizing control, % , in the 
transverse direction at any time is given by 

a& = g(t)A,/y, (6) 

3. An Optimal Guidance Law Solution 
Using State Transition Matrix 

This section deals with solutions to Eq. (5) with non- 
maneuvering and maneuvering targets. Since z, is 
known at the initial time and h, at the final time, Eq. 
(5) represents a two-point boundary value problem. 
We approximate closing velocity so as to obtain 
closed-form solutions. 

3.1. Non-Maneuvering Target 

Without target acceleration Eq. (6) can be written in 
a state space form as 

k(t) = A(t)x(t) (7) 

where X(t) [%(t) A2(t)lT . 
The solution to Eq. (7) can be assumed as 

where +(t,z) is the state transition matrix. 
elements are 

It's 

b = G-t ,  c = t-t, 

F = 1/izy2, D = pFq  
A, = -yle4/D, 4 = y,e"/D 

kj = (D-3)/(2De "I), and 

A4 = (D +3)/ (2De"). 

Note that we assume the closing velocity constant in 
Eq. (8). That is, 

r(t) = -ict)(t - t) ' (9) 

The resulting solution to the homogeneous differential 
equation in Eq. (7) and hence, Eq. (6) are 



(12) 
The resulting solutions to Eq. (5) are 

&t) = e, b0+-[(3 2 s4-s3 -e, (3 %-s3)]a(t), 
4 

+ . . . . . , , 1 @+1) @+3) 2!@+5) 

If t = 0 is assumed to be the current time, the 
minimizing control in the transverse direction with a 
non-maneuvering target becomes 

3.2. Maneuvering Target 

The solution to the two-point boundary value problem 
for a maneuvering target can be obtained by adding 
the target acceleration to Eq. (7). The solution leads 
to adding ql(t) to q(t) and Q(t) to &(t) where 

Note that sI , 5 , s, , s, and s5 are all functions of the 
target acceleration model. 

@+3)* 2 (j e 0 0 1 - -  6@+3) e, sla(t) a&(t) = -- 
D 

+ w2 - 9) ~4 - Del a(t) 
3 1  

(14) 
The current time is assumed zero. The minimizing 
control in the transverse direction becomes 

4. Design Parameter: D 

In this section the expression for the design 
parameter, D, will be evaluated for various typical 
intercept scenarios. The effect of D on the line-of- 
sight rate, commanded acceleration and range will be 
analyzed. 

The parameter D will always be a positive quantity 
since the second term under the square root is always 
greater than zero. If the second term under the 
square root is small compared to the first term under 
the square root, the lower limit of D can be 
approximated as 3. If the first term under the square 
root is small compared to the second term under the 
square root, D can be approximated as 

2/f~Jy1/y2* An increasing value for D 
corresponds to controlling the level of the line-of- 
sight rate more than the commanded acceleration. A 
value of D = 3 corresponds to maintaining acceptable 
levels of both the line-of-sight rate and the 
commanded acceleration. 

4.1. Approximations for D 

For many typical intercept scenarios, D can be 
approximated as 3. If the weight on the line-of-sight 
rate, yI,  is at most three orders of magnitude larger 
than the weight on the control effort, y2, then the 
approximation D = 3 holds, over the entire flight 
time, for intercept scenarios with initial ranges larger 
than lo00 feet. 
If t = 0 is considered to be the current time and D 
can be approximated as 3, the commanded 
acceleration for the STM solution with a non- 
maneuvering target can be written as 
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which is the standard proportional navigation 
equation. Similarly, the commanded acceleration for 
the STM solution with a maneuvering target can be 
written as 

(17) 

If the weight on the line-of-sight rate, yr, if more 
than three orders of magnitude or less than eight 
orders of magnitude lar er than the weight on the 

previous approximations do not hold. This is because 
both terms under the square root become a significant 
part of the value of D. During an engagement, if the 
approximation does not hold, the full expression of D 
must be used and the value of D is larger than 3 over 
the entire flight time. 

4.2. The Effects of the Design Parameter, D 

Note that e canbewrittenas 

control effort, y2, (1 08 < rat < 108) then the 

The line-of-sight rate will always go to zero since the 
minimum value of D is 3. 

A plot of Eq. (18), for D = 3; yI y2 = l@, D = 
6; y1 ! yz = lo6, D = 9; y, / yz = 3 x lo6, is 
shown m Figure 2. 

1 -  
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From Figure 2 it can be seen that as D is increased, 
the line-of-sight rate goes to zero faster and earlier in 
the engagement when the range is still large. This 
means the heading error is corrected earlier in the 
flight with larger values of D. 

of nondimensional acceleration for dif!~~~~l&!% 
D, as shown in Figure 3. 

Using the same substitution for 8 

4t 
-6 
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Figure 3: Commanded Acceleration vs. Range for 
Different D (% = 0) 

It can be seen from Figure 3 that the initial 
commanded acceleration increases as D is increased 
but the commanded acceleration also goes to zero 
faster as D is increased. 

A threedegree-of-freedom missile-target simulation 
was used to evaluate the effect D where the initial 
conditions: range 3,000 ft; altitude, 10,OOO ft; aspect 
angle, 150 deg; off-boresight angle, 0 deg. The 
results for the range over the flight time, for D = 3, 
6, 9, were all within ten feet of one another. 
In order to observe the effects D has on the guidance 
law, wit3 a maneuvering target, the equations for the 
line-of-sight rate (Eq. (13)) and commanded 
acceleration (Eq. (15)) will be used. 

Figure 2: Line of Sight Rate vs. Range for 
Different D (* = 0) 



~ 5. Conclusions 

An optimal guidance law has been developed in polar 
coordinates by introducing a pseudocontrol to 
decouple the intercept dynamics. 

Approximations for the state transition matrix solution 
were evaluated for typical intercept scenarios and it 
was found that the design parameter, D, can be 
approximated as 3 for intercept scenarios which have 
initial ranges of at least lo00 ft. and the weight on 
the line-of-sight rate is 3 orders of magnitude larger 
than the weight on the control effort. It was also 
determined that the minimum value of D was 3. 

v 
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Figure 4: Line-of-Sight Rate vs. Range for 
Different D (aT # 0) 

From Figure 4 it can be seen that as D is increased, 
the line-of-sight rate reaches a minimum constant 
LOS rate faster and earlier in the engagement when 
the range is still large. The line-of-sight rate will 
never go to zero, regardless of the value of D, 
because of the target maneuver. 
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Figure 5: Commanded Acceleration vs. Range for 
Different D (& # 0) 

It can be seen from Figure 5 that the initial 
commanded acceleration increases as D is increased 
but the commanded acceleration also settles to a 
constant faster as D is increased from 3 to 9. In the 
case where D = 3, the commanded acceleration goes 
to zero regardless of the target maneuver. 

A threedegree-of-freedom missile-target simulation 
was used where the target performs a 5 g maneuver 
in the transverse direction. As was the case for the 
non-maneuvering target, the results for the range over 
the flight time, for D = 3, 6, 9, were all again 
within ten feet of one another so the plot is not 
presented. 
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