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Abstract—In this paper we examine the problem of transient 
growth in Iterative Learning Control (ILC).  Transient growth 
is generally avoided in design by using robust monotonic 
convergence (RMC) criteria.  However, RMC leads to 
fundamental performance limitations.  We consider the 
possibility of allowing safe transient growth in ILC algorithms 
as a means to circumvent these limitations.  Here the 
pseudospectra is used for the first time to study transient 
growth in ILC.  Basic properties of the pseudospectra that are 
relevant to the ILC problem are presented.  Two ILC design 
problems are considered and examined using pseduospectra.  
The pseudospectra provides new results for these problems and 
illuminates the oft-misunderstood problem of transient growth. 

I. INTRODUCTION 
TERATIVE learning control (ILC) [1-3] is used to 
improve the performance of systems that repeat the same 
operation many times.  ILC uses the tracking errors from 

previous iterations of the repeated motion to generate a 
feedforward control signal for subsequent iterations.  
Convergence of the learning process results in a feedforward 
control signal that is customized for the repeated motion, 
yielding very low or zero tracking error. 
 ILC is a performance-improving control algorithm, rather 
than a stabilizing algorithm, and thus the emphasis of much 
of the ILC literature focuses on behavior at convergence.  Of 
course, convergence of the algorithm is typically 
demonstrated, but comparatively little attention is given to 
the nature of the convergence.  The transient behavior of the 
learning process, however, is critically important in many 
practical applications.  For example, in robotics and 
manufacturing applications, slow convergence leads to 
delays in process startup and possibly costly material waste.  
Perhaps of greater concern to the ILC designer is the 
problem of large transient growth [4], whereby the error 
may grow rapidly and with little warning, potentially 
damaging hardware. 
 The problem of large transient growth has been studied 
extensively by Longman and colleagues [4-8].  Although 
these works examine the mechanism by which large 
transient growth occurs, the tools they develop deal 
primarily with designing algorithms to avoid all transient 
growth entirely.  These algorithms, developed in the 
frequency domain, can be said to satisfy a robust monotonic 
convergence (RMC) condition because the control signal 
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converges monotonically under some suitable norm [8].  
Recently, similar results have been obtained using Norm-
Optimal ILC [9,10].   In both cases, converged performance 
is the trade off for RMC (equivalently, more model 
uncertainty means worse tracking).   
 In another approach using an exponentially decaying 
learning filter [11] monotonic convergence is also 
demonstrated.  Although, not discussed explicitly in that 
work, it is straightforward to extend the approach to achieve 
RMC (for example using interval uncertainty [12]).  In this 
case convergence to zero tracking error occurs, but the 
tradeoff for RMC is convergence rate.  It may be interesting 
to combine the above approaches to achieve RMC with 
some new combination of tradeoffs in converged 
performance and convergence rate.  Although such an 
approach may provide a better tradeoff, it is not expected to 
eliminate these tradeoffs. 
 In order to extend beyond the limitations of RMC, it is 
necessary to revisit the problem of transient growth.  Indeed, 
some transient growth may not be problematic, provided it is 
not so large as to damage equipment or so long lasting as to 
significantly delay convergence.  Therefore, we might to 
develop robust transient convergence conditions and 
algorithms that have better performance and convergence 
rate tradeoffs, as compared to RMC.  This paper presents 
initial progress toward this goal.  In particular, this paper 
will 1) introduce the pseudospectra mathematical tool [13] 
to the ILC community for use in transient analysis and 2) 
illustrate the utility of this tool in understanding and 
designing for (safe) transient growth through two ILC 
design examples. 

The remainder of this paper is organized as follows.  In 
Section II we set up the problem of transient growth in ILC.  
The Pseudospectra is introduced in Section III.  The 
following two sections present two ILC design problems.  
An example is given for each problem and the 
pseudospectra is used to provide new insight into the 
transient behavior in these algorithms.  The insight can be 
used to improve the performance of the algorithms.  Finally, 
concluding remarks are given in Section V. 

II. TRANSIENT ANALYSIS PROBLEM SETUP 
For simplicity of presentation, we will consider single-

input, single-output time-invariant systems (SISO), although 
extension to analysis of multi-input, multi-output (MIMO) 
or time-varying systems is straightforward.  For brevity, we 
begin with the well-known lifted system description [3] of a 
discrete-time (SISO) linear time-invariant (LTI) dynamic 
system, 
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is the matrix of the system’s Markov parameters and 
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are the vector representations of the error, control, and initial 
error, respectively, in an N-step learning process. 

A linear ILC algorithm written in lifted form is given by, 
 ( )1j j j+ = +u u eQ L , (3) 

where Q and L are NxN.  Combining (1), (3), closed-loop 
dynamics are given by, 
 1 0j j+ = +u Tu f , (4) 

where ( )−T I PQ L�  and 0 0f eQL� . 
 Clearly the ILC system is exponentially convergent if 

( ) 1ρ <T , where ( )ρ i  is the spectral radius, or largest 

eigenvalue, of ( )i .  If the system is exponentially 

convergent, we define lim j j∞ →∞u u� , and rewrite (4) as 
[3], 
 ( )1j j∞ + ∞− = −u u T u u ,  

or equivalently, 
 ( )0

j
j∞ ∞− = −u u T u u , (5) 

Thus, we have that 0
j

j∞ ∞− ≤ ⋅ −u u T u u , where i  

is 2-norm, or the largest singular value of ( )i .  Therefore, 
the transient response of the learning process is bounded by 
the sequence, 
 2 3, , , , ,jT T T T… … . (6) 

If T is known, one may numerically compute the 
sequence (6), at least for some finite number of iterations.  
However, such an approach is numerically expensive when 
N is large and does not provide meaningful design insight.  
Therefore, we require tools that describe the sequence (6) 
using only properties of T, without explicitly calculating the 
sequence Tj.  Some results, based on eigen- and singular-
values, are well known and summarized in Table 1.  They 
are shown graphically in Figure 1. 
 
Table 1.  Well known transient response bounds. 

Spectral radius decay rate: ( ) ( )kj κ ρ≤T V T 1 

Singular value decay 
(growth) rate: 

11 jj ++ ≤T T  

Initial slope: T  

Limiting slope: ( )
1/

lim
jj

j ρ→∞ =T T 2 

1  V is the matrix of eigenvectors of T, and ( ) ( ) ( )κ σ σV V V� .   
[13], page 19. 

2  Proof on page 159, [13]. 
 

Remark 1: It is interesting to note that bounds on the 
transient response, such as ( )κ V , are not related to the 
eigenvalues.  This holds true in ILC analysis where it has 
been shown that it is easy to set up exponentially stable ILC 
with small eigenvalues, but very large response [3,14].  
Therefore, one can conclude that, generally, eigenvalues and 
eigenvalue analysis have little practical meaning in ILC. ■ 

 
Figure 1.  Transient response of the learning process with well-known 

bounds. 

The most widely used transient bounding constraint in 
ILC is the so called monotonic convergence condition 
[3,10,15].  The ILC system is said to be monotonically 
convergent  if 1<T .  The appeal of monotonic 
convergence is apparent from Figure 1:  convergence rate is 
known and the largest response is trivially the initial 
condition.  However, as discussed in the Introduction, using 
monotonic convergence as a design requirement may be 
artificially restrictive.  

In the nonmonotonic case, 1≥T , eigen- and singular-
value analysis only describe initial and final behavior.  
Specifically, Table 1 shows that initial slope is based on 
singular values, whereas final slope is based on eigenvalues. 
The pseudospectra, discussed in the following section, 
provides new insight into the critically important transient 
region in between. 

III. THE PSEUDOSPECTRA 
In this section we briefly introduce the pseudospectra 

mathematical tool along with some of the most relevant 
pseudospectra results.  For a complete treatment of the 
pseudospectra tool, the reader is referred to [13].  The 
following definition of the pseudospectra is given on page 
13 of [13]. 

Definition: Let NxNA∈C  and 0ε >  be arbitrary.  The 
ε-pseudospectrum ( )Aεσ  of A  is the set of z ∈C  such 
that 

log jT

j0
log T

( )ρ TMonotonic 
Response 

Nonmonotonic
Response 



  

 ( ) 1 1z A ε− −− > . (7) 

The pseudospectrum is a generalization of the spectrum, 
or set of eigenvalues.  Note that when z is an eigenvalue of 

A, then ( ) 1z A −−  is unbounded, so ( )Aεσ  always 

contains the eigenvalues of A.  More generally, we can think 
( )Aεσ  as a set of approximate eigenvalues, where the 

quality of such an approximation is determined by ε  
(smaller ε  gives a better approximation).  It turns out that 
transient growth is related to the extent to which ( )Aεσ  
extends outside the unit circle.  The relationship will be 
made explicit at the end of this section.  First, however, we 
introduce an example to illustrate the pseudospectrum. 

Consider the following two matrices, 

 1
0.8 0
0.1 0.8

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 2
0.8 0
100 0.8

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, (8) 

Although A1 and A2 share the same eigenvalues, their 
transient responses j

iA , i=1,2, as shown in Figure 2, 

behave quite differently.  While the powers of A1 converge 
monotonically, the powers of A2 experience a transient 
growth.  This behavior can be predicted by the 
pseudospectra.  Shown in Figure 3 are several ε -level sets 
of the A1 and A2 pseudospectra.  Eigenvalues, located at 0.8 
for both systems, are at the center of the level sets.  
However, whereas ( )1Aεσ  are clustered closely around its 

eigenvalues, ( )2Aεσ  are much larger.  Since levels sets 

( )2Aεσ  extend well outside of the unit circle, even for 
small ε , transient growth is expected.  An explicit 
relationship between the pseudospectra and the magnitude 
of expected transient growth is presented next. 

Let the pseduospectrum radius be given by, 
( ) ( ){ }max : . .A z s t z Aε ερ σ∈� .  That is, ( )Aερ  is the 

farthest distance from the origin of all the points contained 
in a level set ( )Aεσ .  Define the Kreiss constant as, 

 ( ) ( )( )
0

sup 1A Aε
ε

ρ ε
>

= −K . 

Theorem 1 (page 177 [13]): For any NxNA∈C , the 
largest transient is bounded by, 
 ( ) ( )

0
sup j

j
A A eN A

≥
≤ ≤K K . (9) 

 Remark 2: Bounding the transient response, as in 
Theorem 1, is the necessary first step towards designing ILC 
algorithms that operate safely in the nonmonotonic 
convergence regime.  Unfortunately, (9) is clearly loose for 
large N, and thus it may be too imprecise to be immediately 
useful for many ILC applications.  However, Theorem 1 
provides a very general result, assuming no structure on A, 
whereas T in the ILC problem is structured.  One may 
reasonably expect that such structure can be leveraged to 
yield tighter bounds.  Such efforts will be the subject of 

future work, which is addressed in Section VI. 
 Although the bound (9) is too imprecise to be 
immediately useful in a rigorous design procedure, there 
may still be immediate value in using the pseudospectrum in 
analysis and design.  That is, the pseudospectrum can still be 
a useful tool by providing insight into the behavior and 
tradeoffs in ILC design.   In Sections IV and V, we 
demonstrate how such this tool may be used on two ILC 
problems. 
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Figure 2.  Transient response of j

iA , i=1,2. 
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Figure 3.  Pseudospectrum of A1 and A2.  The colored rings represent 
constant level set contour lines.  ε  is given by the colored legend. 

IV.  PROBLEM 1: MODEL UNCERTAINTY IN NORM-
OPTIMAL ILC 

The norm-optimal ILC algorithm seeks to optimize the 
cost, 

 ( ) ( )1 1 1 1 1 1
TT T

j j j j j j j j+ + + + + += + − − +e Qe u u R u u u SuJ� ,(10) 

where 0T= >Q Q , 0T= ≥R R , and 0T= >S S .  The 
solution yields learning filters of the form, 

 
( ) ( )
( )

1

1

,

.

T T

T T

−

−

= + + +

= +

P QP R S P QP R

P QP R P Q

Q

L
 (11) 

Previous analysis [9,10,16] shows that the weighting R, 
which controls convergence rate, has very little effect on 
RMC.  The implication [16] is that, in practice, one should 
not bother to tune R until convergence is established 
through Q and S.  Rs role is thus relegated solely to noise 
sensitivity [16].  Contrary to this result, many practitioners 
find that slowing convergence rate is a useful method to 
achieve convergence.  How do we explain this apparent 
contradiction?  One possible explanation is that practitioners 
are operating in the transient growth regime, for which the 
RMC theory does not apply.  Note, that although the 
learning system may be operating in a transient growth 
regime, it is not necessarily the case that transient growth 
will be observed.  The appearance of transient growth in the 

A1 A2 

log10

Monotonic 
Response 

Nonmonotonic 
Response 

No transient 
growth 

expected
Transient 
growth 
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response can depend on the particular initial conditions (or 
in the case of ILC, trajectory) that is used. 

The following example supports the explanation that 
practitioners are operating in the transient growth regime 
when they note that slower convergence rate helps to 
achieve robustness.  As we will show, R can have a 
significant effect on reducing learning transient growth.  The 
implications are twofold.  First, R should be a part of 
convergence turning procedures in practice.  Second, 
practitioners may already be using nonmonotonic ILC 
algorithms on real systems (likely this is the inadvertent 
result of increasing performance weightings beyond the 
limitations governed by RMC).  Therefore, it is imperative 
that ILC theoreticians develop the missing theoretical and 
design tools to support ILC design in the transient growth 
regime. 
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Figure 4.  Learning transient bound for norm-optimal ILC designs. 
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Figure 5.  Pseudospectrum of norm-optimal ILC designs. The colored rings 
represent constant level set contour lines.  ε  is given by the colored legend. 

Consider the nominal and perturbed systems, 

 ( ) ( )
( )2

0.4 0.8ˆ
0.8 0.5

z
P z

z z

+
=

− +
, ( ) ( )

( )2

0.4 0.8

0.2 0.5

z
P z

z z

+
=

− +
, 

respectively.  Three norm-optimal ILCs are designed with 
different R weightings (Table 2).  A check of the RMC 
condition [10] will show that all three designs are not RMC.  
Numerical calculation of the learning transient bound, 
shown in Figure 4, shows that transient growth is reduced by 
increasing R.  From the pseudospectra, shown in Figure 5, 
we can see why this occurs.  Increasing R pulls the levels 
sets in closer to the eigenvalues, while also moving some of 
the eigenvalues farther from the origin.  Tighter grouping of 
the ( )εσ T  levels reduces the magnitude of the transient 
growth, while shifting eigenvalues away from the origin 
accounts for the slower convergence rate observed at large 
iterations.  Calculations using several other system 
perturbations by the authors has yielded the same trend 
demonstrated here. 

Table 2.  Weighting matrices for norm-optimal ILC 
example. 

Design  Q  R  S 

1 100 ⋅ I  0 ⋅ I  1⋅ I  
2 100 ⋅ I  2 ⋅ I  1⋅ I  
3 100 ⋅ I  10 ⋅ I  1⋅ I  

V. PROBLEM 2: TIME-VARYING LOWPASS FILTERING 

In classical frequency domain analysis of ILC systems, Q 
is an LTI lowpass filter [8].  The filter bandwidth is 
comparable to converged performance, with higher 
bandwidth yielding higher performance.  However, RMC 
conditions result in an upper limit to the bandwidth, and thus 
an upper limit to the performance.  Time-varying lowpass 
filtering [17-19] seeks to circumvent this limitation.  In this 
approach[18,19], the filter Q is designed to behave like a 
lowpass filter whose bandwidth varies in time, along the 
iteration.  The goal is to raise the bandwidth above the LTI 
“upper limit” for short periods that coincide with rapid 
changes in the reference trajectory.    Robustness is 
recovered by lowering the bandwidth elsewhere along the 
trajectory.  This approach significantly improves 
performance when tracking aggressive trajectories [17]. 
Previous work has shown that this approach may be most 
effective in the nonmonotonic convergence regime [18].  
The following example uses the pseudospectra to give new 
insight into understanding why the time-varying lowpass 
filter is so effective outside of the RMC regime. 

Consider again the nominal system ( )P̂ z  from Section 
IV.  For this example it is not necessary to consider the 
model perturbation ( )P z .   A P-type learning filter, or 

0.9= ⋅IL  is used.  Three lowpass first-order Butterworth 
filters are designed and lifted into a Q  for analysis.  The 
first two are LTI filters while the third is a LTV filter.  
Bandwidths of the three filters are shown in Figure 6. 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Time step (k)

B
an

dw
id

th
 (1

/s
am

pl
es

)

 

 

Design 1
Design 2
Design 3

 
Figure 6. Q  filter bandwidths used for time-varying lowpass filter 

problem. 

Pseudospectra for the three ILC designs are shown in 
Figure 7.  The learning transients are shown in Figure 8.  
Interestingly, Design 1 and Design 3 have similar transient 
responses, although very different bandwidth profiles.  The 
pseudospectra provides a new explanation for this behavior.  
From Figure 7 we can see that the higher and lower 
bandwidth sections of the LTV filter have an averaging 
effect on the pseudospectra.  Although some eigenvalues 
(those associated with the higher bandwidth segment) are 
moved closer to the unit circle, they are offset by moving 
other eigenvalues (those associated with the lower 

LTI 

LTI 

LTV 

log10



  

bandwidth segment) closer to the origin.  The overall effect 
averages the profile of the level sets outside of the unit 
circle, which govern the transient properties. 

 Although transient behavior is similar in Design 1 and 
Design 3, Design 3 has the performance advantage when its 
high bandwidth peak is aligned with the aggressive portion 
of a desired trajectory.  Of course, proper alignment of the 
high bandwidth segment is necessary, and thus time-varying 
bandwidths are always designed in conjunction with the 
trajectories [17,18].  Design 2 is presented to illustrate the 
need for a time-varying bandwidth as opposed to simply 
increasing the LTI bandwidth.  While Design 2 and Design 
3 share the same bandwidth during time steps 30 to 40, the 
transient response in Design 2 is significantly worse.  
Therefore, the time-varying design is necessary when the 
trajectory is aggressive enough to necessitate the use of very 
high bandwidth. 
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Figure 7.  Pseudospectrum of time-varying lowpass ILC. The colored rings 
represent constant level set contour lines.  ε  is given by the colored legend. 
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Figure 8.  Learning transient bound for time-varying lowpass ILC designs. 

VI. CONCLUSIONS 
This work revisited the topic of transient growth in ILC.  

Whereas previous efforts in this area focus primarily on 
avoiding transient growth, our efforts are directed at laying 
groundwork for ILC algorithms that can operate safely and 
predictably in the transient growth regime.  We have shown 
that the pseudospectra can be used to predict and bound 
transient growth.  As importantly, the pseudospectra 
provides a mathematical framework that illuminates the 
often misunderstood topic of transient growth in ILC. 

Two design problems were considered.  The 
pseudospectra was used to provide new insights into these 
problems.  In the case of norm-optimal ILC, it was found 
that the convergence rate weighting plays an important role 
in reducing transients when the model does not accurately 
capture the plant dynamics.  In the other case, it was found 
that time-varying bandwidth filters can be used to 
selectively allocate performance along the iteration without 
significantly changing learning transients.  These results 
cannot be obtained using eigenvalue or singular value 
analysis, but instead are only evident using pseudospectral 
analysis. 

REFERENCES 
[1] Moore, K.L.,  Iterative Learning Control for Deterministic 

Systems, London: Springer-Verlag, 1993. 
[2] Ahn, H.-S., Chen, Y., and Moore, K.L., "Iterative Learning 

Control: Brief Survey and Categorization," IEEE Transactions 
on Systems, Man, and Cybernetics-Part C, vol. 37, no. 6, pp. 
1099-121, 2007. 

[3] Bristow, D.A., Tharayil, M., and Alleyne, A.G., "A Survey of 
Iterative Learning Control," IEEE Control Systems Magazine, 
vol. 26, no. 3, pp. 96-114, 2006. 

[4] Longman, R.W. and Huang, Y.-C., "The Phenomenon of 
Apparent Convergence Followed by Divergence in Learning 
and Repetitive Control," Intelligent Automation and Soft 
Computing, vol. 8, no. 2, pp. 107-128, 2002. 

[5] Chang, C.-K., Longman, R.W., and Phan, M., "Techniques for 
Improving Transients in Learning Control Systems," 
Proceedings of the AAS/AIAA Astrodynamics Conference, , 
pp. 2035-2052,  1992. 

[6] Jang, H.S. and Longman, R.W., "A New Learning Control 
Law With Monotonic Decay of the Tracking Error Norm," 
Proceedings of the Thirty-Second Annual Allerton Conference 
on Communication, Control, and Computing, pp. 314-323, 
1994. 

[7] Chen, H.-J. and Longman, R.W., "The Importance of Smooth 
Updates in Producing Good Error Levels in Repetitive 
Control," Proceedings of Conference on Decision and 
Control, 7-10 Dec. 1999, pp. 258-63,  1999. 

[8] Longman, R.W., "Iterative Learning Control and Repetitive 
Control for Engineering Practice," International Journal of 
Control, vol. 73, no. 10, pp. 930-954, 2000. 

[9] Bristow, D.A., "Weighting Matrix Design for Robust 
Monotonic Convergence in Norm Optimal Iterative Learning 
Control," 2008 American Control Conference (ACC '08), 11-
13 June 2008, pp. 4554-60,  2008. 

[10] Donkers, T., Van De Wijdeven, J., and Bosgra, O., 
"Robustness Against Model Uncertainties of Norm Optimal 
Iterative Learning Control," 2008 American Control 
Conference, pp. 4561-4566,  2008. 

[11] Moore, K.L., Chen, Y., and Bahl, V., "Monotonically 
Convergent Iterative Learning Control for Linear Discrete-
Time Systems," Automatica, vol. 41, no. 9, pp. 1529-1537, 
2005. 

[12] Ahn, H.-S., Moore, K.L., and Chen, Y., "Monotonic 
Convergent Iterative Learning Controller Design Based on 
Interval Model Conversion," IEEE Transactions on Automatic 
Control, vol. 51, no. 2, pp. 366-371, 2006. 

[13] Trefethen, L.N. and Embree, M., Spectra and Pseudospectra: 
The Behavior of Nonnormal Matrices and Operators2005. 

[14] Huang, Y.-C. and Longman, R.W., "Source of the Often 
Observed Property of Initial Convergence Followed by 
Divergence in Learning and Repetitive Control," Advances in 
Astronautical Sciences, vol. 90, no. 1, pp. 555-572, 1996 . 

[15] Norrlof, M. and Gunnarsson, S., "Time and Frequency 
Domain Convergence Properties in Iterative Learning 
Control," International Journal of Control, vol. 75, no. 14, pp. 
1114-1126, 2002. 

[16] Barton, K., Van De Wijdeven, J., Alleyne, A., Bosgra, O., and 
Steinbuch, M., "Norm Optimal Cross-Coupled Iterative 
Learning Control," Proceedings of the IEEE Conference on 
Decision and Control, pp. 3020-3025, 2008. 

log10



  

[17] Bristow, D.A., Dong, J., Alleyne, A.G., Ferreira, P., and 
Salapaka, S., "High Bandwidth Control of Precision Motion 
Instrumentation," Review of Scientific Instruments, vol. 79, 
no. 10, 2008. 

[18] Bristow, D.A., Alleyne, A.G., and Tharayil, M., "Optimizing 
Learning Convergence Speed and Converged Error for 
Precision Motion Control," Journal of Dynamic Systems, 
Measurement and Control, vol. 130, no. 5, pp. 054501 (8 
pp.)2008. 

[19] Bristow, D.A. and Alleyne, A.G., "Monotonic Convergence of 
Iterative Learning Control for Uncertain Systems Using a 
Time-Varying Filter," IEEE Transactions on Automatic  
Control, vol. 53, no. 2, pp. 582-585, 2008. 

 


	Analysis of Transient Growth in Iterative Learning Control Using Pseudospectra
	Recommended Citation

	Microsoft Word - Bristow_ILC09.doc

