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Abstract 

A new Neural Network (NN) based observer design method for 
nonlinear systems represented by nonlinear dynamics and 
linear/nonlinear measurement is proposed in this paper. In this 
new approach, as the first step, the observer design problem is 
changed into a ‘controller’ design problem by establishing the 
error dynamics, and then the Adaptive Critic (AC) based approach 
is applied on this error dynamics to design a ‘controller’, such that 
the errors are driven to zero. The resulting observer has inherent 
robustness from the AC based design approach. Some simulations 
are presented to illustrate the effectiveness of this approach. 

1. Introduction: 

State estimation is a critical issue in control and has been used 
widely in real-time applications, such as [l]. Although the 
solutions for linear systems can be obtained successfully by using 
Kalman filter [2] and Luenberger observer [3], the solutions for 
more important and complicated nonlinear problems are still under 
investigation. In [4], a stable adaptive observer for Single Input 
Single Output (SISO) observable nonlinear time varying system is 
introduced, which is based on the trarisformation of the system to 
an observable canonical form. A nonlinear observer design 
method is proposed by Yaolong [5] for a class of nonlinear 
systems. Those nonlinear systems are affine functions of the 
derivative of the measured output, with coefficients that are 
smooth nonlinear functions of the measured output. Krishna, K. 
Busawon[6] proposed a constant gain nonlinear observer design 
method based on linearization. All these efforts attempted to find 
the solutions for some class of nonlinear systems and as such the 
resulting design approaches are limited to be used on certain class 
of nonlinear system or not accurate when the states are far from 
the linearization point. 
In order to deal with control systems with complex and unknown 
nonlinear dynamics, NNs are introduced to approximate a part or 
the whole nonlinear dynamics [7-141, which is based on the 
premise that NNs have the capability of approximating any 
nonlinear continuous function to arbitrary accuracy. Thus, the 
observer design problem is transformed to how to adjust the 
weights of NNs to find the desired solution. In 171, a multi-layer 
Recurrent Neural Network (R”) is used to determine the output 
gain matrix of a Luenberger state observer in real time. General 
Regression Neural Networks (GR”) are used in [8]  and [9] to 
design observers for a class of nonlinear systems with known 
linear part and single unknown nonlinear part. In [lo], C. L. 
Hwang proposes an estimator design method for a class of 
nonlinear dynamic systems based on Radial Basis Function 
Networks (RBFN). A B-Spline NN is used in [ l  11, in which the 
nonlinear observer consists of a linear observer and a nonlinear 
compensation term. The compensation term is determined first and 
then a B-Spline NN is used to model the compensation term. 
Some of the attempts to address general class of nonlinear systems 
were presented in [13] and [14]. State estimators are designed 
using Dynamic Recurrent Neural Networks (DRNN) for a general 
class of single output nonlinear system. However, the nonlinear 

dynamics should contain a known linear part, and the Strictly 
Positive Real (SPR) requirement is very hard to satisfy sometimes. 
Of all those observer design methods, NNs are used to 
approximate the unknown dynamics and little work has been done 
to use the NNs to approximate the observer gains. In this paper, a 
new observer design method is presented to address a more 
general class of nonlinear systems, and Multi-Layer Perceptrons 
(MLPs) are used to approximate the observer gain in the designed 
observers. 

2. Background: Adaptive Critic Based Optimal Control 
(ACBOC) 

Optimal controller designs seek to accomplish some desired 
objectives by minimizing a pre-defined cost functional, and 
simultaneously, satisfying some boundary conditions and 
constraints. The cost functional or performance index is expressed 
by a mathematical expression in terms of the system variables and 
controls. For the problems discussed in this paper, the cost 
functional is chosen to be in a quadratic form which is used in 
most applications: 

I = cx: ex, + u : ~  u t )  - ( 1 )  
1-0 

where x is the state vector, U represents the control vector and k is 
the time index. In Eq. (l) ,  Q is a symmetric positive semi-definite 
matrix and R is a symmetric positive definite matrix. The choice 
of these matrices is a design decision to give different degrees of 
importance to the state trajectory and the control effort. The 
optimal control problem can now be stated as - minimize the  cost 
function I given in Q. (1) with the differential constraints of the 
state equation: 

xx+/= f ( x t . u , )  (2) 
when the initial state xo is given and final time r, + og In our study 
this problem is solved through approximate dynamic 
programming formulation. 

2.1 Approximate Dynamic Programming Method 

Dynamic programming provides a computational technique to 
apply the principle of optimality to sequence of decisions which 
define an optimal control policy. A general mathematical 
description of the optimality conditions obtained as a direct 
convergence of the “Principle of Optimality” is the Hamilton- 
Jacobi Bellman (HJB) equation [16]. The HJB equation for a 
discrete-time system is given below: 

(3  
where state at time step k is given by xk and the control by u(xk. 
J(xk) represents the cost-to-go from time instant k to final time P 
U(xb u(xk)) is the utility function denoting the one step cost ar 
<J(xk+,)> is the optimized cost-to-go from time instant k + l  
final time N. For the adaptive critic method used in this study, 
co-state (or Lagrangian multiplier) A(xJ is defined 

a&)=- aJw also axk+,)=- aJ‘xk’’) 

J ( x J =  min,c,,,Iu(x,.dx,))+ < J ( f ( x k . d x d ) )  > I  

and the co-stl a xt a xk+l 
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It can be seen that the co-state equation develops backwards in 
time. The Bellman's optimality equation can be derived by 
differentiating Eq. (3) with respect to uk: 

( 5 )  

Dynamic programming requires the system model and its 
derivatives in (4) and (5).  These equations are used iteratively to 
solve for a optimal control policy. 

2.2 Adaptive Critic and General Training Procedure 

Adaptive critic methods have been proposed by Werbos [17] as a 
new optimization tool combining together concepts of 
reinforcement learning and approximate dynamic programming. 
The adaptive critic method used in this paper consists of two 
neural networks: one outputs the control U& and the other outputs 
Lagrangian multiplier Rk. Inputs to both are the states xk at time 
instant k. The adaptive critic technique finds the control which 
minimizes the cost in J3q. (1) by solving J3q. (2) and Eq. (4) with 
the use of the stationary Eq.(5) and the known initial states. 
The training procedure consists of two training cycles: critic's and 
action's. The action neural network outputs the control u(x,J for 
the input state xk. The output of the plant serves as input to the 
critic neural network that is trained to estimate the derivative of 
the cost-to-go J.  Thus the critic neural network contains 
information about the function to be minimized. The optimal 
control can be obtained by training action neural network and 
critic neural network successively. MLPs are known for their 
ability to approximate any nonlinear system to any- degree of 
accuracy, and can also adapt to new sets of input-output, pairs. 
This makes them ideal in adapting to an optimal control policy by 
adjusting the weights using a standard gradient descent algorithm. 
Two MLPs are chosen to act as the action and critic networks. The 
training of both of the neural networks is illustrated in Fig. 1 ,  
where state xk is chosen randomly in both training and the weights 
of both neural networks are initialized randomly. For the optimal 
controller design problem, the iterative procedure between the 
training of the action NN and critic NN is continued till the 
optimal controller u'(k) is obtained. 

O='=- awxr ,uk)  ~ aJ(,+,) aJcx ) 
auk auk a,, 

I - - - - -_- - - - -_- - - - - - - -_- -_- - - - - - - - - - - - - - - - - - - -  

I , 
I 
I I 

Co-state 
Equation 

I Critic N N  Training 
I 

3 Adaptive Critic Based Neuro-Observer Design 

The nonlinear system in our study is given in the following 
discrete form: 

x,,, =f(x,,u,) ( 6 )  
y ,  = h(x, ' U , )  (7 )  

Assume: 
1. Dynamics of the nonlinear system x,,, = f ( r ,  , U , )  is known 

and is locally Hurwitz, where x, E W , U, E %'" is the input, 
k E Z' indicates time instant. 
Measurement y ,  E Xp is given, where p < n and function 
h(x, , U , )  is known. 

2. 

3. System is locally observable. 
For a nonlinear system given in Eq. (6) and Eq. (7). a neuro- 
observer in the following form is proposed in this study: 

(8) i,+, = f (;,, U,  1 + b"(Y, - j k  1 
jk = h(2,) (9) 

where i, represents the estimate state of the nominal system, ya 

the given measurement, b a constant, NN(y,  -9 , )  a neural 
network with yk  - 9 ,  as input. It is easy to see that Luenberger 
like observer is just a sub-class of this kind of observer, where the 
mapping of the neural network is linear. Define the error state 
e, = x, -2, , then the error dynamics of the system can be 
obtained by subtracting observer Eq. (8) from nominal system Eq. 
(6): 

= f ( x k  I U,  1 - f(%, U )  ) - bNN(y,  - ?, ) 

= f(i, +e ,  . U , )  - f(i,,uk) - bNN(h(2, + e , )  - h ( i , ) )  
= f(X, + e, ,U, ) - f ( i ,  , U , )  - bii, (e ,  .X, ) 
= F(e ,  ,it , U ,  , E k )  

(10) 

where ik can be calculated directly from observer Eq. (8). In fact, 
observer Eq. (8) and error dynamics (10) are coupled during the 
training. The design of the observer is then changed to find a 
nonlinear function i i k ( e , , 2 , ) =  N N ( h ( i ,  + e , ) - h ( i , ) ) ,  such that 
the error state ek is driven to zero with time. Note that this can be 
considered as a control design problem. There are many ways to 
design controllers for different nonlinear systems, such as 
feedback linearization [ 181, State Dependent Riccati Equation 
(SDRE) I191 and so on. In order to use those approaches, we have 
to know all the error states in Eq. (10). and this is actually our 
design objective in this study. Since the AC design is based on the 
powerful dynamic programming concept and the fact that the 
convergence of the neural networks and the algorithm have also 
been proved in our previous studies [20], it is the basis for the 
observer design in this study. 
With error dynamics Eq. (10). a quadratic cost function is chosen: 

The discrete HJB equation is now given by: 

(12) 
f (e,, i, 1 = min;(, .it (U@, I iik ,4  1) 

+ < J ( F ( e ,  $2, , U ,  ,CL 1) >I 
where U, = il(e,, i t ) .  The co-state equation for the error dynamics 
can then be obtained from Eq. (4): 
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Where f i  and iik' are targets of critic neural network and action 
neural network respectively. Then the training of the neural 
networks can start with choosing ek randomly [21]. The neural 
networks in our study are MLPs where the number of layer and 
the number of neuron in each hidden layer should be determined 
by the complexity of the problem. 
Up to this point the AC based neuro-observer design method is 
almost the same as that of the controller design method. mere are 
some differences, however: 
1. 

2. 

3. 

4. 

5 .  

Since only measurements are known for feedback and the 
measurement vector has a smaller dimension than that of the 
state vector, the number of inputs to the action neural 
network is therefore less than the number of the states. 
Where the measurements are nonlinear, two approaches can 
be used to train the action neural network. First some kind of 
nonlinear transformation can be used to get corresponding 
state from the nonlinear measurement before training the 
action neural network; second the nonlinear measurement can 
be used directly as input to train the action neural network. 
The first approach is pretty straightforward; the second 
approach is also applicable because of the universal 
approximation capability of the neural networks. Some 
examples will be given later to illustrate these two 
approaches. 
Consider iit is not a real controller, and optimal controller is 
not the objective of the design. the iteration process of the 
algorithm can be simplified such that only one or a few 
iterations are used to find i r , .  Thus the time used for the 
training of the neural network can be tremendously reduced. 
The meaning of matrix R in the cost functional (1 1) should be 
redefined. It can be seen from the following simulations that 
matrix R is an important parameter to adjust the time for the 
state trajectories of the observer to track the desired state 
trajectories. While in ACBOC method it is used to adjust the 
magnitude of the controller such that the control effort is 
limited in a desired range. 
Robustness is another important issue in observer design, 
since the measurements are always combinations of useful 
signals and noises. A robust observer should be able to keep 
the tracking error bounded in a small range given noisy 
measurements. The design approach introduced in this 
section also shows good robustness as evidenced in the 
simulations. 

4. Illustrations: 

A second order nonlinear system is used in this section to illustrate 
the neuro-observer design approach. The effect of matrix R in the 
cost hnctional (1 1) on the tracking of the desired trajectories of 
the system is studied, the results while the measurement is 
nonlinear are plotted, and robustness of the observer given noisy 
measurement is also illustrated in the following sections. 

A single-link robot arm rotating in a vertical plane 

The equation of motion is: 
1 
2 

Mq +-mgl sin q = u (15) 

Y = q  (16) 
In which q is the angle, U the input torque, M the moment of 
inertia, g the gravity constant, m and I are the mass and the length 
of the link, and the measurement is the angle. The robot 
parameters are (in SI units): m = 1, 1 = I, M = 0.5, and g = 9.8. 
Letting x, = q and x, = q , the state space representation of the 
system given in E!q. (15) and Eq. (16) can be written as follow: 

(18) 

Where input U = sin(2t) + cos(20t) is given. 
According to the previous section, we can design a neuro-observer 
for this system: 

(i)=(o 0 0 'l')++(:p i, 
-fmglsin i , ) -NN(y , , ,  - 5) (19) 

The error dynamics are: 

+ " ( Y ,  - 3 
Where ym is the measurement. The observer (19) and the error 
dynamics (21) are then discretized using a time step 
Ar=O.Olsec. 

where e, =(e, .]  x,,,p , the first index k denote 
the time index, the second index tells us whether the state is the 
first state or the second state, F t ( e k , i t )  = NN(y,,* - j t ) ,  Y,,,~ is the 
discrete measurement. The cost functional is chosen to be in a 
quadratic form the same as Eq. (1 l), then the co-state equation ani 
the stationary equation can be obtained from Eq. (1 3) and Eq. (14 
separately. 

e t , 2 p  , xt = (x,,, 

1618 



I y )  a L k ; % ) l  (24) +[[-A" cos(e, I +it,, ) + bp 

4%+l *%+I 

2M 

iik' = -R-'Atl(e,+,  ,ik,) (25) 
The Q matrix is chosen to be an identity matrix and matrix R = 
Zdiug(1 I} (a two by two matrix with all diagonal elements to be 
2) in the cost functional (1 1). Two MLPs with two hidden layers 
and one output layer are chosen to act as Action NN and Critic NN. 
There are eight neurons in each of the hidden layer and two 
neurons in the output layer. The activation functions in the hidden 
layers are chosen to be tangent sigmoid functions and pure linear 
functions are used in the output layers. 
Fig. 2(a) and Fig. 2(b) show the state trajectories when the initial 
state is io =[-0.6 0.61' for the observer. The dashed lines 
denote the exact state trajectories of the nominal system when the 
initial state is x, =[0 0Ir . Fig. 2(c) shows the state trajectory 
errors for those different initial states. 

1 JI 
0 5 IO I5 20 25 Jo SI 40 

lm- luw4 

Fig. 2(a) Trajectory of state XI, 2, for io =[-0.6 0.6Ir 

I . I , . , , , 
' 0  5 10 15 I 25 Jo 0 40 

1mU1-d) 

Fig. 2(b) Trajectory of state X 2 ,  f2 for io = [-0.6 0.61' 

1 

i o  ;5 ;o 2; Ib % 40 
WS-m 

Fig. 2(c) Tracking error for io =[-0.6 0.61' 
In order to demonstrate the affection of matrix R on the tracking ot 
the state trajectories of the observer to the desired state 
trajectories, it is changed to be R =O.2diag(l I } ,  and the state 
trajectories are plotted in Fig. 3(a) and Fig. 3(b). The tracking 
errors are plotted in Fig. 3(c). It is obvious that the tracking speed 
and accuracy are increased significantly using a smaller R matrix 

D l l  

0 6  

0 1  

0 2  

I 

-02 

-01 

-06 

0 5 , 1 , 5 1 0 B 1 0 I s . 0  L * . , , , , , J  
m*ucadJ 

Fig. 3(a) Trajectory of state x,  , i, 

0 5 (0 IS 20 25 10 IS I ,o 

"M.W*d) 

Fig. 3(b) Trajectory of state x2.X2 
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The measurements used in the above examples are all linear 
measurements. When nonlinear measurements are used, this 
design method can still generate the desired results. Let y = x13 

and = X,' in the above example. Basically, a nonlinear 

transformation x, =G can be used to calculate the state X ,  in 
this example, but when the measurement contains noise, this 
transformation approach is not proper. Hence, we consider using 
the nonlinear measurements as inputs to the action neural network 
directly. The state trajectories of the observer and the nominal 
system are plotted in Fig. 4(a) and Fig. 4(b) and the tracking error 
is plotted in Fig. 4(c). It's obvious the results are reasonable. 

I ; I - * , ' ' I  
-lo 5 10 I5 20 ZT Jo 35 40 

Wwraq 

Fig. 4(a) Trajectory of state X,  ,?, 

' 0  I . . . . . . . !  6 1 0 1 6 W S W 5 0 M  

M.(.ra6) 

Fig. 5(a) Trajectory of state X ,  ,;, 

Now, we can demonstrate the robustness of this observer design 
method to noise. Let the measurement be y = x l  + v ( r )  , where v(t) 
is a noise distributed uniformly in the range of [-OS, OS]. The 
same observer designed with R=diag(O.2 0.2) is used for this 
noisy measurement example. The state trajectories of the observer 
and the nominal system are plotted in Fig. 5(a) and Fig. 5(b). The 
noisy measurement is plotted in Fig. 5(c) and the tracking error in 
Fig. 5(d). We can see that the state trajectories can track the 
desired state trajectories very well given noisy measurements. 

I 

I . I * * ' ' ' '  

Jo 5 1 0 1 5 ? 0 ~ 3 0 3 5 1 0  

Fig. 4(b) Trajectory of state X 2 ,  i2 
- 
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o s  

5 Conclusion 

The observer design developed in this study is a general 
methodology that can be used to design observers for a large class 
of nonlinear systems, with linear or nonlinear measurements. It 
exhibits good levels of robustness in the test simulations. 
Therefore, desired tracking results can be obtained even when the 
measurements are quite noisy. However, the above observers are 
designed particularly for systems whose functional forms are 
known before hand. In practice, there are many systems that may 
not be totally known, i. e. only parts of systems are known before 
hand. Therefore, it is not enough to design observers for fixed 
systems only. Now, our research is focused on extending this 
neuro-observer design for systems which are not totally known or 
partially known. 

5 [=--%Ez] 
4 ,  
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2. 

3. 
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