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Abstract This paper addresses the modeling problem associated 
with Brushless DC Motors (BLDCM) with non-uniform air gaps 
which operate in a range where magnetic saturation may exist. The 
mathematical model includes the effects of reluctance variations as 
well as magnetic saturation to guarantee proper modeling of the 
system. An experimental procedure is developed and implemented 
in a laboratory environment to identify the electromagnetic 
characteristics of a BLDCM in the presence of magnetic saturation. 
It is demonstrated that the modeling problem associated with this 
class of BLDCM can be formulated in terms of mathematically 
modeling a set of multi-dimensional surfaces corresponding to the 
electromagnetic torque function and the flux linkages associated with 
the motor phase windings. The accuracy of the mathematical model 
constructed by the developed method is checked against 
experimental measurements. 

I. Introduction 
In recent years, brushless motors have become a viable choice for 

motion control applications such as robotics, aerospace, numerically 
controlled machine tools, electric propulsion, and many 
more[1,3,15,16,21]. The increasing interest has been a 
consequnece of the advantages of brushless motors compared to the 
conventional DC motors. These advantages are mainly the result of 
the elimination of the physical contact between the mechanical 
brushes and commutators. Among the numerous types of brushless 
motors, the Brushless DC Motor (BLDCM) has emerged as the one 
with the highest potential in high performance 
applications[l,3,15,16]. In particular, BLDCM has been an 
attractive choice for direct drive applications[l,l5], where large 
torques are required for high acceleration and deceleration rates. For 
such high performance applications, the mathematical model of 
BLDCM must include the effects of reluctance variations and, most 
importantly, the magnetic saturation whose existence is inevitable 
when large torques are generated. 

In the past, due to the complexity involved, the tasks of 
modeling, analysis, and control of BLDCM have been based on a 
number of simplifying assumptions. Namely, the air gap has been 
assumed to be uniform and/or the magnetic structure has been 
assumed to be linear[l,3,9,11,14,15,17,18,20]. Persson and 
Buric[l7] considered the mathematical modeling of BLDCM with 
arbitrary number of stator phase windings and permanent magnet 
pole pairs. Their work, however, was solely based on the 
assumption of having uniform air gaps and the absence of magnetic 
saturation. In [3], Demerdash et. al. presented digital simulation 
techniques to demonstrate the feasibility of using BLDCM for 
electric propulsion applications, where they cosidered BLDCMs 
with uniform air gaps and linear magnetic structures. The problem 
of optimal phase advancing to enhance the torque generation of 
BLDCM has been addressed by numerous authors, e.g. [11,14,20], 
whose results are based of the assumption that the reluctance 
variations are negligible. Krause et. al.[ 111 and Jahns [9] have used 

mathematical models which include the effect of reluctance 
variations to present some analytical results without addressing the 
saturation nonlinearity effects. 

Another class of brushless motors which has attracted wide 
attention in the motion control industry is the Switched Reluctance 
Motor (SRM). Similar to BLDCM, SRM has also been the subject 
of numerous research projects and publications[2,7,8,13,19]. 
However, SRM constitutes a fundamentally different dynamical 
system than BLDCM. The difference lies in the fact that the phase 
windings of SRM are decoupled whereas in a BLDCM the coupling 
is significant. In other words, while it is common to neglect the 
effect of mutual inductances associated with the phase windings in a 
SRM, this is not a valid assumption in a BLDCM. The coupling 
among the phase windings introduces a significant problem which is 
resolved in section N. 

This paper presents a method of constructing accurate BLDCM 
models where both magnetic saturation and reluctance variation 
effects have been accounted for. It is demonstated that an accurate 
description of the characteristics of BLDCM may be obtained by 
modeling the torque function and the flux linkages associated with 
the stator phase windings as four-dirnensional surfaces. However, 
for the mathematical model to be computationally feasible in real- 
time motion control applications, a method is presented which is 
used to reduce the complexity of the model without sacrificing its 
accuracy. For if the mathematical model is excessively complex, 
one will have to resort to incorporating look-up tables in real-time 
motion control applications[7]. To keep the complexity of the 
mathematical model within feasible limits, through physical 
reasoning it is demonstrated that the modeling problem may be 
reduced to that of identifying a set of two-dimensional surfaces. 
Based on this, a practical method for constructing accurate models 
of BLDCM is outlined and shown to be effectively implementable in 
a typical laboratory environment. 

The paper is organized as follows. In section II the fundamental 
electromechanical characteristics of BLDCM are formulated in terms 
of a set of mathematical relationships. Section 111 sets forth some 
analytical results which are used to demonstrate the importance of 
including the effect of reluctance variations in the BLDCM model. 
Section IV deals with the problems associated with the modeling of 
the saturation nonlinearity for a BLDCM. Section V presents an 
experimental procedure which is used in identifying the 
mathematical model of BLDCM. The results corresponding to the 
set of experiments which have verified the validity of the methods 
described in the earlier sections are presented in section VI. Finally, 
some concluding remarks are made in section VII. 

11. BLDCM without Magnetic Saturation 
In the absence of magnetic saturation, the goveming differential 

equations describing the dynamic behavior of BLDCM may be 
written as 

* Previously associated with the Sibley School of Mechanical and 
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where 8 is the position variable,V=[v~,v2,~31T and I=[il,i2,iglT 
are the phase voltage input and current vectors, respectively. is 
the resistance matrix, and the flux linkage vector is defined by 

h(l,e) = L(0) I + &,(e) (2) 

where the inductance matrix, L(B), is a 3-by-3, symmemc, positive 
definite matrix whose diagonal elements are the self inductances and 
the off-diagonal elements are the mutual inductances of the 
windings, and are defined by 

The subscripts 1,2,3 correspond to the stator windings, while the 
subscripts q, d, and 0 represent some fictitious windings attached to 
the rotor. The variables 01,02,03, 09' ad, and 00 may represent 
voltages, currents, or flux linkages. For convenience, we shall use 
a slightly different form of this transformation by replacing the last 

row in the transformation matrix by a row of 3's and replacing the 

scalar constant *by $. As a result, the transformed set of 
equations describing the behavior of BLDCM in the rotating frame 
become 

1 

La is the nominal (average) value of the winding inductance and Lg 
represents the amplitude of variation in the inductance due to the 

magnet flux linkage vector,&(e), i.e. &, k=1,2,3, represent the 
flux linkages associated with the permanent magnet and phase k. 

hq(t) = Lq $0) 

non-uniformity of the air gap. The elements of the permanent hd(t) = Ld id(t) + Ke 

and 
3 For sinusoidally distributed stator windings, & may be written as Lq = (2) CL, - Lg) 

2 ( k - l ) ~  
hmk = Ke sin(n8 - - ) k=1,2,3 (7) 

The torque expression after application of the transformation 
becomes where I(p. is the electromotive force constant, and n is the number of 

permanent magnet pole pairs. The expression for the torque 
generated by the motor as a function of phase currents and rotor T(i = 3n iq(t) + Xq(t) displacement is 9 ' d  

2x 
T(I, e) = n Lg { 2 (sin(2ne -3) ili2 

2X + sin(2ne + T)  ili3 + sin(2ne) i2i3 ) 
3 

+ C i k 2  cos(2ne + 2 ( k - 1 ) ~  3) 
k= 1 

3 
2 ( k - l ) ~  + n K e x  ik cos(ne - - 3 1 (8) 

k= 1 
Equation (1) represents a system of differential equations with 

time varying (periodic) coefficients. It is known [4,10,22] that for 
sinusoidally distributed windings, a Floquet transformation, 
frequently referred to as the Parks transformation, may be used to 
transform the above equations to a system of diffemetial equations 
with constant coefficients, represented in a coordinate frame attached 
to the rotor. This orthogonal transformation can be expressed in the 
matrix form as 

[ Oq Od OO IT= 

In the following section the description of BLDCM in the rotating 
frame is used to show some analytical results, which compare the 
torque-speed characteristics of BLDCM with uniform and non- 
uniform air gaps. 

111. Torque-Speed Characteristics of BLDCM 
In the previous works related to the modeling of BLDCM, it has 

been common to neglect the reluctance variation terms 
[1,3,14,15,17,20]. In this section we will demonstrate that this 
may have adverse affects on the analytical results that one obtains. 
Figure 2 shows the torque-speed characteristics of the BLDCM 
whose specifications have been tabulated in Table I. The figure 
consists of the torque-speed (T-o) plots of the BLDCM for the case 
when the reluctance variations have been accounted for and also 
when they have been neglected. As depicted in the figure, the 
reluctance variations affect the torque output in a favorable way. 
Accordingly, some researchers, e.g.[9], have used this desirable 
factor to design permanent magnet motors with better torque 
producing capabilities by introducing significant saliency in the 
motor. Here, we will demonstrate the adverse affect of neglecting 
the reluctance variations on the motor characteristics by considering 
the optimal phase advancing scheme[l1,14,20]. 

For the constant speed operation of BLDCM, the voltage inputs 
accross the stator phase windings may be written as 

2(k-l)i~ 
3 Vk = vmax COS(n8 - - - I$) k=1,2,3 

where @ is a phase shift which may be varied to alter the torque- 
speed characterisitcs of the motor. When the reluctance variations 
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are neglected, the torque generated as a function of the phase shift $ 
may be written as 

The torque function, equation (18), has a maximum at 

n L w  -A 

2 
@ =  -tun-1 (*) where - < $ C O  

which is referred to as the "optimal phase advance"[l4,20]. Figure 
3 shows the effect of the optimal phase advance on the torque-speed 
characteristics of the BLDCM assuming that the air gap is uniform. 
However, if this "optimal" phase advance is incorporated in altering 
the characteristics of the actual motor, i.e. the non-uniform air-gap 
motor, then the enhancement in the T-w plots will only exist at high 
operating speeds; see figure 4. As depicted in this figure, the 
incorporation of the "optimal" phase advance computed based on a 
uniform air-gap model actually degrades the T-w characteristics at 
lower operating speeds. This degradation would be even more 
pronounced if the BLDCM were to have more significant variations 
in its air gap reluctance; see figure 5. These suggest that in order to 
enhance the T-w characteristics of the non-uniform air-gap BLDCM 
the optimal phase advance must be computed based on the model 
which includes the effect of reluctance variations. 

#en the reluctance variations have been taken into account, and 
for a constant rotor speed, the torque equation as a function of $ 
may be written as 

where 

To determine the value of $ which would maximize T(@), it is 
necessary to use numerical techniques. Figure 6 shows the torque- 
speed characteristics of the BLDCM for both the normal operation, 
i.e. $=O, and when the optimal phase advance, computed by 
maximizing T($) in equation (20), has been incorporated. 

IV. BLDCM with Magnetic Saturation 
In this section we will consider the presence of magnetic 

saturation. A procedure will be outlined and then implemented for 
construction of accurate BLDCM mathematical models when 
magnetic saturation and reluctance variations are present. In section 
II the flux linkages were in terms of constant inductance parameters, 
see equations (2)-(6). However, when magnetic saturation is 
present, the flux linkages are no longer linear functions of the phase 
currents, and one can only state that 

hk = hk (il, i2, ig, e) k = 1,2, 3 (22) 

In other words, the flux linkages define a set of 4-dimensional 
surfaces in a 5-dimensional space. It is possible to experimentally 
obtain these flux linkage surfaces. Recalling equation (1) and for a 
fixed value of e = €I*, one can write 

t 

This may be used in constructing the flux linkage surfaces as 
follows. By appropriately varying phase voltages, vk. or currents, 
ik, and sampling their values, the integral in equation (23) can be 
computed. The corresponding values of the integral will then define 
a set of discrete data points which lie on the flux linkage surfaces. 
Using numerical techniques, one can then compute approximate 
mathematical representations for these surfaces. Once a set of 
mathematical representations for the flux linkages have been 
obtained, one can then derive the torque expression by first 
constructing the coenergy function 

and then 

where in equation (24) 5, q, and are dummy variables of 
integration. 

Our main purpose for constructing an accurate mathematical 
model for BLDCM has been to be able to incorporate it in control 
applications. However, the modeling procedure stated above will 
result in  complex mathematical relationships, which are 
computationally unattractive for real-time control purposes. 
Furthermore, as illustrated in equation (25) the torque expression 
explicitly depends on rotor displacement which leads to the need for 
constructing explicit commutation strategies. This could make the 
real-time control of BLDCM with magnetic saturation infeasible. In 
the following subsection a different approach is presented which 
eliminates the need for such a complex model formulation. 

liY*a* BLDCM Model in ~ ~ M ~ I U W  
In the absence of magnetic saturation, Park's transformation was 

used in section II to obtain a simplified formulation for BLDCM in a 
rotating frame attached to the rotor. This eliminated the dependence 
of the inductance parameters and the torque expression on the rotor 
displacement. However, when magnetic saturation is present, 
Park's transformation does not apply, if the flux linkages are 
expressed by nonlinear functions. To render this transformation 
valid, we formulate the behavior of the BLDCM with magnetic 
saturation by a piecewise linear model. In other words, the flux 
linkages are modeled by piecewise linear functions of the phase 
currents. This in turn allows us to apply the Park's transformation 
to obtain a simplified description of BLDCM with magnetic 
saturation. The parameters defining the flux linkages, i.e. 
inductances and electromotive force constant, now become 
piecewise constant functions of the phase currents. The BLDCM 
with magnetic saturation is represented in the rotating frame by a set 
of equations similar to equations (10)-(15) except that now the 
inductance parameters La and Lg and the electromotive force 
constant K, are piecewise constant functions of the phase currents. 
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This in tum defines a piecewise linear model for the flux linkages, 
hq and hd. 

Consequently, the characteristics of the saturated BLDCM are 
described by three piecewise constant functions of current: La(i), 
L (i), and Ke(i). Since the flux linkages corresponding to the 
individual phase windings are all functions of these three 
parameters, the experimental identification process may be 
performed for each phase winding independent of the rest. 
Considering one phase winding at a time, we have 

g 

hk (ik, ij = 0, im = 0,e) = hk (ik, 0) 
j, k, m = 1,2,3, j#k#m (26) 

The flux linkage, hk , now represents a 2-dimensional surface rather 
than a Cdimensional surface. As was done in equation (23), we can 
now write 

hk (ik, e) = [Vk('C)-Rik('C)] d'C k = 1,2,3 (27) Q 
The surfaces representing the flux linkages may then be constructed 
by sampling the voltage, vk, and the current, ik, and computing the 
integral in equation (27). Once a sufficient number of data points on 
the flux linkage surfaces have been collected, we can obtain a 
mathematical representation for each of these surfaces by using 
numerical optimization techniques. This will be discussed in section 
VI. 

Usually, in a BLDCM the resistance R is much larger in value 
than the inductances La and Lg . Consequently, for the inductance 

voltage drop, L x  , to be in the same order of magnitude as the 
resistance voltage drop, E k ,  the time rate of change of current must 
be very large. In performing experiments, this large current rate is 
needed if the voltage information is to be used to determine an 
accurate description of the flux linkages. However, this requires a 
power supply capable of providing currents at high frequencies and 
in turn results in the need for expensive instrumentation. To remedy 
this problem, we use an alternative approach for performing 
experiments and data collection as presented below. 

dik 

V. Experimental Determination of BLDCM Model 
The experimental procedure outlined in section IV can be 

implemented satisfactorily only if appropriate power supplies and 
instrumentation are available. To remedy these limitations, we have 
based our experimental method on the following alternative 
approach. The method incorporates torque and current 
measurements, for the rotor locked at various rotor displacements, 
to construct the coenergy function associated with the BLDCM. The 
coenergy function is expressed as 

Wc(i,e) = cD(i,e) + Y(i) (28) 

where 

and Y(i) is related to the part of winding inductance which is 
independent of the rotor position, i.e. L,. 

By conducting torque measurements at a sufficient number of 
points in the phase current-rotor displacement plane, a 2- 
dimensional surface representing the torque surface is constructed. 

By computing the integral in equation (29), @(i, 0) can be obtained. 
Separate measurements are then conducted to identify Y(i). 

The torque produced in BLDCM is due to the interaction of the 
permanent magnet with the magnetic field created by the current 
flow in the stator windings and also the reluctance effect. If only 
one phase (line-to-line) is conducting, the torque equation (8) is 
reduced to 

T(i,B) = ~ L G  sin(2ne - 24) i2 + "KE cos(n8 - 4) i (30) 

where LG = 3 L, and KE = GK,. When the saturation effect is 
taken into accoun't, the piiameten-KE and 4; cannot be assumed 
constant, and as a result equation (30) does not accurately describe 
the behavior of the system. However, since a piecewise linear 
model is considered to characterize the saturation effect, it is 
assumed that the sinusoidal distribution of the phase windings does 
not change with the current variations. In other words, we will 
assume that the functional dependence of the torque on the rotor 
displacement is preserved and only the amplitudes of the two 
sinusoids in equation (30) vary as functions of current. The torque 
expression for the case when magnetic saturation is present may 
then be written as 

T(i,B) = a(i) cos(n8 - 4) i + p(i) sin(2ne - 2$) i2 (31) 

(32) 
(33) 

V.a. Toraue -on of 
An experimental procedure has been designed to identify the 

parameters describing the characteristics associated with each line- 
to-line phase winding. In the experiments, one leg of the Y- 
connected stator phase windings is removed and the two remaining 
legs carry the same amount of current at all times. The rotor is 
locked at a fixed position when a prescribed current is supplied to 
the windings; see figure 7. As the current rises and falls, so does 
the torque generated by the motor. During these variations, torque 
and current measurements are taken at discrete points of time. The 
same procedure is repeated for several rotor positions. Finally, a set 
of measured torques at discrete points in the (i-e) plane are 
collected. Since the identification process is based on torque 
measurements, the frequency of the current input is kept low. 

Figures 8 and 9 show the sample data collected at different rotor 
positions and different current values. The curves in the figures 
define various cross sections of the torque surface. Keeping 8 
constant corresponds to the curve generated by intersecting a plane 
parallel to the (T-i) plane with the torque surface, while keeping i 
constant corresponds to the curve generated by intersecting a plane 
parallel to the (T-0) plane with the torque surface. By experimentally determining sets of such curves, the torque surface is 
constructed. Notice that the curves in figures 8 and 9 show the 
presence and degree of hysteresis in the magnetic structure. The 
hysteresis is due to the fact that the current supplied to the windings 
follows a cycle of triangular signal with a peak value. 

. .  

Y.b. In-ce Me- of Y(i) 
The term Y(i) in the coenergy function, equation (28), depends 

only on current and cannot be detemined by torque measurements 
alone. In the case of a linear magnetic smcture, this term appears in 
the flux linkage formulation as the inductance term which is 
independent of rotor displacement, i.e. 

. .  

(34) 
1 Y(i) = -L  2 A  i2 
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The inductance parameters LA and LG may be written in the 
following way[4,9]: 

where KA and Q are constant parameters which are solely 
functions of the gwmetq of the rotor and the windings, and p is the 
permeability factor. Since a piecewise linear model has been 
considered for the case of magnetic saturation, one can write 

(37) 

Since LG(i) has already been determined as a result of identifying 
@(i, e), it is sufficient to determine the value of LA in the linear 
range of operation, and then use equation (37) to evaluate LA(i). To 
measure LA in the linear range, an inductance analyzer is used to 
directly measure the inductance of the windings. 

VI. Experimental Results 
The torque data at discrete values of rotor displacements and 

phase currents are fitted to an analytical torque surface of the form 
given in equation (3 l), where a(i) and p(i) are assumed piecewise 
polynomials of current i. For the BLDCM studied here, three 
polynomials are used to represent a(i) and p(i) for three separate 
intervals of current. The parameters defining the polynomials are 
computed by fitting the best torque surface defined by (31) to the 
torque data in the least square error sense. The piecewise 
polynomial functions are required to be continuous and to have 
continuous f i t  derivatives since 

a[ T(i,0) d0 + Y (ill 

h(i, 0) = (38) 
ai 

which implies that the torque expression must be at least C1 in i. 

square problem as follows 
The torque surface fitting problem may be formulated as a least 

min II T(i,8) - Td(i,e) l l ~  (39) 

where Td is the matrix containing the torque data and F denotes the 
Frobenius matrix norm. The expression defining the torque surface, 
equation (31), may be written in the following form 

T(i,0) = Tl(i,0) + T2(i,0) 
where 

Tl(i,0) = a(i) cos(n0) i 
= (CQ + a 1  i + a 2  i2+ -1 cos(n0) i 

i + p2 i2+ * * * >  sin(2ne) i2 

(41) 

T2(i,0) = p(i) sin(2n0) i2 

= (PO + (42) 

Figures 10 through 13 show the resultant approximating 
functions fitted to the experimental data at various values of 0 and i. 
To see the overall behavior of the torque generated by one phase 
winding as a function of rotor position and phase current, figure 14 
depicts the torque surface generated by the mathematical model. To 
further examine the accuracy of the mathematical model, a set of 
independent experimental data are used. Figure 15 depicts the 
predicted values of the line-to-line phase winding inductance as a 
function of rotor displacement compared with the experimental data. 

Figure 16 shows the torque-current data of the BLDCM at a " a n t  
rotor speed. The agreement between the predicted values and the 
experimental data are quite good, specially considering that this set 
of experimental data is taken from a different motor unit than the one 
used for the construction of the mathematical model. 

VII. Conclusions 
An analytical and experimental study of brushless DC motors has 

been presented. A method for constructing a BLDCM model has 
been presented which accounts for magnetic saturation and 
reluctance variation effects. Based on a piecewise linear magnetic 
structure, an experimental procedure has been outlined and 
implemented to identify the parameters describing the characteristics 
of a BLDCM. Using the experimental data obtained from torque 
and phase current measurements, a mathematical model of the two- 
dimensional torque surface was obtained by solving the 
corresponding least squares problem. The accuracy of the resulting 
mathematical model was successfully checked against independent 
experimental measurements. 
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Figure 1: A typical Brushless DC Motor and its commutation. 
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Figure 2: Torque-speed characteristics of the uniform and non- 
uniform air-gap BLDCM models. 
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Figure 3: Torque-speed characteristics of the uniform air-gap 
BLDCM with and without optimal phase shift in the voltages 
accross the phase windings. 
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Figure 4: Torque-speed characteristics of the non-uniform air-gap 
BLDCM for the normal operation and for the operation when the 
phase shift is computed based on the uniform air-gap model. 
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Figure 6: Torque-speed characteristics of the non-uniform air-gap 
BLDCM with and without optimal phase shift in the voltage 
inputs. 
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Figure 5: Torque-speed characteristics of the non-uniform air-gap 
BLDCM with twice saliency, for the normal operation and when 
the phase shift is computed from the uniform &-gap model. 
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Figure 7: Experimental set-up for torque and current 
measurements. 
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Figure 8: Experimental torque measurements, i=7.5 amperes. 
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Figure 10: Experimental and modelled torque values, i=15 amps. 
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Figure 12: Experimental and modelled torque values, 6=47.0 
degrees. 
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Figure 9: Experimental torque measurements, 6=9.0 degrees. 
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Figure 11: Experimental and modelled torque values, i=25 Amps. 
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Figure 13: Experimental and modelled torque values, 8=83.0 
degrees. 
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Figure 14: Torque surface for a line-to-line phase winding 
corresponding to the mathematical model. 
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Figure 1 6  Experimental and predicted plots of torque vs. current, 
o = 200 rpm. 
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