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Abstract 

Dynamic Programming is an 
determining oDtimal control 

solve for in higher dimension and nonlinear 
systems. 

exact method of 
for a discretized 

system. Uiforhnately , for nonlinear systems the 
computations necessary with this method become 
prohibitive. This study investigates the use of 
adaptive neural networks that utilize dynamic 
programming methodology to develop near optimal 
control laws. First, a one dimensional infinite 
horizon problem is examined. Problems involving 
cost functions with final state constraints are 
considered for one dimensional linear and 
nonlinear systems. A two dimensional linear 
problem is also investigated. In addition to these 
examples, an example of the corrective capabilities 
of critics is shown. Synthesis of the networks in 
this study needs no external training; they do not 
need any apriori knowledge of the functional form 
of control. Comparison with specific optimal 
control techniques show that the networks yield 
optimal control over the range of training. 

I. Introduction 

Optimization is a primary concern in most real 
world processes. Simple methods, such as that of 
linear quadratic regulators, can only be used to 
solve control mappings for infinite time linear 
problems. Typically there are two methods of 
solving nonlinear and finite time problems, two 
point boundary value problem (TPBVP) methods 
and Dynamic Programming. Each of these, 
however, has limitations. 

TPBVP methods provide exact solutions, but 
sometimes they may be very difficult to solve for 
with nonlinear systems. In addition, the TPBVP 
methodology must be solved for each set of initial 
conditions. This requires determining a separate 
solution for each possible initial condition for a 
given system. Dynamic programming is, usually, 
an exact method of determining optimal control. 
This method of solution becomes very difficult to 
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Other methods of solution also have their 
advantages and disadvantages. Neighboring 
optimal control is beneficial in that the solution of 
a single TPBVP allows an approximate solution 
over a range of initial conditions. The 
disadvantage is that it can fail at a distance from 
the original TPBVP solution. Several authors 
have used neural networks to "optimally" solve 
nonlinear systems [ 1-41. 

The method discussed in this study determines an 
optimal control law for a system by successively 
adapting two networks, an action and a critic 
network. This method determines the control law 
for an entire range of initial conditions. In 
addition the control law does not need to be 
determined mathematically. This method 
simultaneously determines and adapts the neural 
networks to the optimal control policy for both 
linear and nonlinear systems. In addition, it is 
important to know that the form of control does 
not need to be known in order to use this method. 

11. Solution Method Development 

A. Neural Network Background 

Neural networks, or in the case of this study 
multi-layer perceptrons (MLP's), are known for 
their ability to model any mapping from input to 
output given a correctly chosen network structure. 
They are also able to adapt to new sets of input 
output pairs. This makes them ideal in adapting 
to an optimal control policy. For the problems in 
this study, we will be using MLP. The activation 
functions used are 

-1 f 2 = 0 . 5 ( f 1 + l )  f ,=net  l+e ( -net)  
fl= 

Assuming that there is some function to be 
minimized, it is then possible to adjust the weights 
of the MLP to model the appropriate mapping 
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using a standard gradient descent algorithm. 

B. Problem Formulation 

X=f (x, U )  (3) 

are being considered (tr and x, are assumed given). 
The first step taken is to discretize them into the 
form 

N-1 
J=+,(x(N) 1 +E Jrl,(x(k) I u ( k )  ) (4) 

k=O 

We assume N is known. The method which will 
be investigated in this study has advantages over 
the previous methods in that solutions are found 
over any user specified range of x, and these 
solutions are then available for the entire span of 
x. In addition, the user need not assume any 
predetermined form or function for the control 
law. 

C. Dynamic Programming Background 

The cost function in Eq. 4 can be written as 

(Exact Results) 

J(x(t) ) =V(x(t), u(x(t) ) ) +<J(x(t+l) ) > 
(6) 

Here, J(x(t)) is the cost associated with going from 
time t to the final time. U(x(t),u(x(t))) is the 
utility, which is the cost from going from time t to 
time t + 1. Finally, < J(x(t + 1)) > is assumed to be 
the minimum cost associated with going from time 
t + 1 to the final time. 

If both sides of the equation are differentiated and 
we define 

then 

From this it can be seen that if <A(x(t+l))>, 
U(x(t),u(t)) and the system model derivatives are 
known then A(x(t)) can be found. 

Next, the optimality equation is defined as 

Dynamic programming uses these equation to aid 
in solving an infinite horizon policy or to 
determine the control policy for a finite horizon 
problem. 

D. Training Methods (Approximation 
Techniques) 

As mentioned earlier, this study uses Eq. 8 in 
order to determine the optimal control policy. 
The basic training takes place in two stages, the 
training of the action network (the network 
modeling u(x(t))) and the training of the critic 
network (the network modeling, or approximating 
A(x(t))). Both networks are assumed to be 
feedforward MLP’s. Training of the action 
network can be described by the diagram shown in 
Figure 1. 

To train the action network for time step t, first 
x(t) is randomized and the action network outputs 
u(t). The system model is then used to find 
x(t + 1) and (dx(t + l))/(&(t)). Next, the critic 
from t + l  is used to find A(x(t+l)). This 
information is used to update the action network. 
This process is continued until a predetermined 
level of convergence is reached. 

To train the critic network for the time step t, x(t) 
is randomized and the output of the critic A(x(t)) 
is found. The action network from step t 
calculates u(t) and (du(t))/(dx(t)). The model is 
then used to find (dx(t+l)) / (dx(t)) ,  
(dx(t + l))/(du(t)) and x(t + 1). The critic from 
step t+  1 is then used to find A(x(t + 1)). After this, 
Eq. 8 is used to find A*(x(t)), the target value for 
the critic. This process is continued until a 
predetermined level of convergence is reached. 

III. Applications 

In this section of the study, four specific examples 
will be dealt with. The first of these is an infinite 
horizon one dimensional linear problem. The 
second of these is a finite horizon one dimensional 
problem. Next a finite horizon nonlinear one 
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dimensional problem is investigated. Finally this 
method is applied to finding the optimal control 
policy for a two dimensional linear finite horizon 
problem. In addition to these examples, an 
example of the corrective capabilities of the critics 
that have been developed is shown. 

A. First Application (Infinite Time 1-D Linear) 

The first application deals with a problem 

x( t+l) =x( t) +2U( t) (10) 

and a cost function of the form 

As a first step in the solution, any stabilizing 
controller is defined. In the case of this problem, 
the initial control will be defined as 

U ( t) =-0 .ax( t) (12) 

Next, a neural network is designed and the initial 
weights of this network are randomized. This 
network functions as the adaptive critic. 

For this infinite horizon problem the cost 
associated with state x(t) at time t should be equal 
to the cost associated with state x(t) at time t + 1, 
therefore a single critic can be used to calculate 
both A(x(t)) and A(x(t+ 1)). Defining U(x(t),u(t)) 
as 

U( U ( t) , x ( t) ) EX2 ( t) + u2 ( t) (13) 

allows us to obtain the derivatives of the utility 
function. This, in combination with the critic 
outputs and the system model derivatives, allows 
the use of Eq. 8 to determine the target value for 
the critic A*(x(t)). This target value is calculated 
for random values of x(t) until the critic network 
converges. 

After the critic converges, a new neural network is 
initialized to act as the action network. For this 
problem a neural network with two hidden layers 
and three neurons per layer is chosen. The action 
network is then trained using a gradient descent 
algorithm. After the action network converges, the 
critic is again trained using the new action 
network. (Note that the weights of the critic are 
not randomized. Instead, the weights from the 
previous critic are used as the initial weights.) 
This process is repeated until optimal control has 
been reached. 

Figure 2 shows the action network output used in 
the problem as well as the optimal control 
determined from the ricatti equation and the initial 

control. Notice that as the action network is 
refined it converges to the optimal solution. 
Figure 3 shows the critic network output for the 
infinite horizon problem. Notice that once again 
as the critic network is refined, it converges to the 
optimal value for the critic. Figure 4 shows a 
comparison of the system state being controlled by 
both the optimal control and the control 
determined by this adaptive critic based method 
for x(0)=-20. Note that this initial condition was 
chosen arbitrarily. The neural network has 
determined the near optimal control law for each 
point within its training range. 

B. Second Application (Finite Time 1-D Linear) 

The second application considers a one- 
dimensional linear finite horizon problem with a 
system of the form 

x( t+l) = O w  3679x( t) +O .6321u ('t) (14) 

and a cost function of the form 

Initial value of x is unity. The first step with this 
problem is to define the appropriate utility 
functions. After this, Eq. 8 is used in order to 
adapt the critics and the action networks. Figure 
5 shows the optimal control for step 9, and the 
adaptive critic determined control for step 9. The 
critic for step 9 is shown in Figure 6. Steady state 
control is reached at a few time steps later. Figure 
7 shows the application of both the optimal control 
law and the adaptive critic based control law to the 
initial condition x(0)=2. Once again, the initial 
condition is arbitrary. It could be chosen to be 
any point within the training range. 

C. Third Application (Finite Time 1-D Nonlinear) 

The third application of the adaptive critic based 
control investigates a one dimensional nonlinear 
finite horizon problem with a system of the form 

x( t+l) =x( t) +o . 1x2 ( t) +o . 1U ( t) (16) 

and a cost function of the form 

As in the linear problem, a network is first 
initialized to act as the action network. In this 
case the network structure contained two hidden 
layers with four neurons each. After convergence 
of the action network a new network is initialized 

337 



for the critic network. The critic network is then 
trained using Eq. 8. The process of training the 
action and critic networks is then repeated for the 
remainder of the time steps. 

In order to compare the adaptive critic method 
with another control policy, Figure 8 shows the 
trajectory for the system controlled with an optimal 
control, the system controlled by the adaptive critic 
method, and the system controlled by neighboring 
optimal control determined from point x(0) =0.95. 
As usual, the initial condition is arbitrary. It is 
chosen to be any point in the range for which the 
neural network was trained. 

D. Fourth Application (Rendezvous Problem- 

The fourth problem involves what could be 
considered a typical rendezvous problem. The 
system is described by the equation 

Finite Time 2-D Linear) 

IV. Conclusions 

It has been shown that neural networks cm be 
used to determine near optimal control policies for 
low order linear and nonlinear systems. In the 
case of nonlinear systems, this-could be beneficial 
as an alternative to the TPBVP methodology. This 
architecture requires external training data and 
yields optimal control through the entire range of 
operation. This study has also shown how critics 
can be used as a redundancy to check and correct 
nonoptimal control. 
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and the cost function is 

The one step cost functions and utility functions 
are defined as in the previous problems. Figure 9 
shows a comparison between the optimal control 
determined by conventional methods and the 
control law determined by the adaptive critic. 
Once again, the initial condition chosen is 
arbitrary. 

E. Adaptive Capabilities of Critics 

One of the additional benefits of adaptive critic 
based control is that the critics can be used to 
update a control which has become nonoptimal. 
This is done by allowing the critic to constantly 
update the control network after the correct critic 
has been determined. 

To demonstrate this, the control from the 
rendezvous problem was multiplied by random 
factors between 0.8 and 1.2. (This was done by 
multiplying the final matrix in the neural network 
by the random factor.) After this, the critic was 
allowed to use 100 points from the system model 
in order to update the control policy. The altered 
control path and the corrected control path are 
shown along with the optimal control policy in 
Figure 10. 
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Figure 1: Action Network Training Diagram 
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