
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Mechanical and Aerospace Engineering Faculty
Research & Creative Works Mechanical and Aerospace Engineering

01 Jun 1994

A Recursive Least Squares Training Algorithm for Multilayer A Recursive Least Squares Training Algorithm for Multilayer

Recurrent Neural Networks Recurrent Neural Networks

Q. Xu

K. Krishnamurthy
Missouri University of Science and Technology, kkrishna@mst.edu

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Wen Feng Lu

Follow this and additional works at: https://scholarsmine.mst.edu/mec_aereng_facwork

 Part of the Computer Sciences Commons, and the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Q. Xu et al., "A Recursive Least Squares Training Algorithm for Multilayer Recurrent Neural Networks,"
Proceedings of the American Control Conference (1994, Baltimore, MD), vol. 2, pp. 1712-1716, Institute of
Electrical and Electronics Engineers (IEEE), Jun 1994.
The definitive version is available at https://doi.org/10.1109/ACC.1994.752364

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Mechanical and Aerospace Engineering Faculty Research & Creative Works by an
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng
https://scholarsmine.mst.edu/mec_aereng_facwork?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F3343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACC.1994.752364
mailto:scholarsmine@mst.edu

~ ~ l n g s a i h
Amtrlmn eontml Conhnnw

Baltlmon. Maryland Juna 1004 TM7 - 150

A RECURSIVE LEAST SQUARES TRAINING ALGORITHM FOR MULTILAYER
RECURRENT NEURAL NETWORKS

Q. Xu? K. Krishnamurthy,t B. McMillin: and W. Lut
t Department of Mechanical and Aerospace Engineering and Engineering Mechanics

4 Department of Computer Science
University of Missouri-Rolla

Rolla, MO 65401-0249

Abstract

Recurrent neural networks have the potential to per-
form significantly better than the commonly used
feedforward neural networks due to their dynami-
cal nature. However, they have received less atten-
tion because training algorithms/architectures have
not been well developed. In this study, a recursive
least squares algorithm to train recurrent neural net-
works with an arbitrary number of hidden layers is
developed. The training algorithm is developed as an
extension of the standard recursive estimation prob-
lem. Simulated results obtained for identification of
the dynamics of a nonlinear dynamical system show
promising results.

1. Introduction

Considerable attention is being focused on using neu-
ral networks for identification and control of dynam-
ical systems [l]. Neural networks are attractive be-
cause they can be trained off-line with very high
accuracy over a large input space without a priori
knowledge of the system equations, and they can
continue to learn (training and learning are used in-
terchangeably here) during on-line application.

Past studies on neural networks have concentrated
on feedforward neural networks because of the
existence of well developed training algorithms.
On the other hand, recurrent neural networks
have received less attention because training algo-
rithms/architectures have not been well developed.
Considerable motivation exists in developing this be-
cause recurrent neural networks have the potential
for better approximation ability, shorter training pe-
riod, and wider range of dynamic behavior due to
their dynamical nature.

In this study, a recursive least squares (RLS) algo-
rithm is developed to train recurrent neural networks
with an arbitrary number of hidden layers. The RLS
trainiig algorithm uses second derivative inform+
tion of the error function and presumably will result
in faster learning. Simulated results are presented
for the identification problem of a nonlinear dynam-
ical system to show the effectiveness of the training
method.

2, Previous Research

Although feedforward neural networks have been
used successfully to solve a wide variety of problems,
they are not without problems. One of the major
problems is in the slow convergence resulting in ex-
cessive training time. This h u been confirmed by
Hecht-Nielsen 121 who has shown that the error sur-
face being minimized is very complicated with local
minima and flat regions.

A number of higher order training algorithms have
been presented to accelerate convergence. Parker
[3], Watrous [4] and Becker and le Cun (51 have
used some form of Newton’s method to include
second-order terms for learning. Kollias and Anas-
tassiou [6] have developed an adaptive training al-
gorithm based on an efficient implementation of
the Marquardt-Levenberg least squares optimization
technique. Singhal and Wu [7], Shah and Palmieri [8]
and Jin, et al. (91 have used the extended Kalman
filter algorithm to train feedforward neural networks.

One common feature of the higher order training al-
gorithms is that they are computationally intensive.
The better the Convergence property, the more in-
tense are the computations. Thus the advantage
gained in the need to present the neural network with

1712

the training set fewer times may be negated by the
higher computational requirements. However, if the
computations can be carried out in a parallel envi-
ronment, there is potential for significantly decreas-
ing the training time.

Various approaches to train recurrent neural net-
works have been presented. Rumelhart, e t of. [lo]
have presented the general framework for this prob-
lem. The recurrent neural network is unfolded into
a multilayer neural network that grows by one layer
with each time step. Thus the storage and computa-
tional requirements for a long training sequence can
be prohibitive. Pineda [ll] has generalised the back-
propagation technique to recurrent neural networks.
This method requires a second dynamical system of
the same size as the original system to implement
the backward propagation equation in the weight up-
date process. Pearlmutter (121 has extended Pineda's
work to include time-dependent trajectories. Sud-
harsanan and Sundareshan [131 have recently pre-
sented an elegant approach which does not require
the solution of a second dynamical system and re-
sults in simplified training rules. The three-layer ar-
chitecture (one input layer, one hidden layer and one
output layer) resembles that of feedforward neural
networks. Puskorius and Feldkamp (141 and Ku and
Lee [151 have used similar feedforward type architec-
tures. In these two studies, a discrete time formu-
lation was used compared to the networks in Refs.
[11-13] which evolve continuously in time according
to a set of coupled differential equations.

In this study, a RLS training algorithm is developed
to train recurrent neural networks with an arbitrary
number of hidden layers. The training algorithm is
quite general, and is developed as an extension of the
standard linear recursive estimation problem and is
similar to the one obtained by Kollias and Anastas-
siou 161 using the Marquardt-Levenberg least squares
optimization method. The RLS training algorithm
uses second derivative information of the error func-
tion and presumably will result in faster learning.
This study generalizes and extends the results pre-
sented in Refs. [11-15].

S. Recursive Least Squares Paining
Algorithm

0 1 0 1 / o

&-Jooo

Input Layer Hidden Layer #I Hidden Layer #L-1 Output Layer
(n,neumns) (n, neurons) (nL-, neurons) (n,neurons)

Figure 1: Schematic of a Multilayer Recurrent Neural
Network

a dynamical neural network with sigmoidal process-
ing elements. The dynamics of the network can be
described by

Tk k =-a + Wrk a (xk) +Wk a-1

k = l , ..., L-1, (1)

Y = W L % - 1, (2)

where ~0 E Rno is the input vector, xk =
[q , k , z2,k, . . ., znk,k IT E R"k is a vector describ-
ing the state of the neurons in the kth hidden layer,
a(.) : ?Rnk --+ ?Rnk is a vector-valued function with
sigmoidal elements for the kth hidden layer, wrk =

. . ., Wink,rk 1' E Rnk denote the intra-layer connec-
tion weights from neurons in the kth hidden layer to
the ith neuron within the kth hidden layer, Wk =

I' E 8 " k - l denote the connection weights
from neurons in the (k - 1)th layer to the i th neu-
ron in the kth layer, Tk = diag[TI,&, Tz,~, . . . , T n k , k]

E gZnkxnk is a diagonal matrix of time constants for
the kth hidden layer, denotes the stable equi-
librium state of the neurons in the (L - 1)th layer
for the input ~ 0 , y = [y1, ya,. . . , yn, 1' E 8"'
is the output vector, and the over dot denotes time
derivative. Note that under steady-state conditions,
Eq. (1) can be written as

[Wl,rk, w2,rkj 8 *, wnk,rk IT, Wi,rk = [Wil,rk, wi2,rk,

[~ 1 , k r W Z , ~ , - v wnk,k IT, wi,k = [wil,k, W P , ~ , * 0 ,

jik = Wrk a(&)+ Wk 2k-1, k = 1, . . - 9 L - 1, (3)

As shown in Fig. 1, the input layer is layer 0 with
neurons, layers 1 - L - 1 are hidden layere with nl - nh-1 neurons, respectively, and the output layer
is layer L with n~ neurons. The hidden layers form

where the input is now denoted by ji0, for conve-
nience. It is assumed that for an input at the (q-1)th
time instant, the neural network reaches steady state
before the qth time instant. The finite amount of

1713

time allowed for the system to reach steady state is
to facilitate, for example, calculation of the steady-

D~ = DWi,pk (i = 1,. . . , n k , k = 1,. , . ,L - 1)

C (D3n - DYn) DLi , rk state solution in real-time. D 6 =
n= 1 The problem is to find the connection weights such

that the following error function is minimised. O a =

d=l n= 1

where B is a weight factor or forgetting factor al-
lowing a higher weight for the last training p&, fin
and yn are the desired and actual outputs of the
nth neuron in the output layer, respectively, and the
leading superscript denotes the training p& num-
ber. The error function in Eq. (4) can be minimised
by setting its derivative with respect to ~ i , ~ k (i =
1 ,..., n k , k = 1, ..., L - 1) andWi,k (i = l , . . . , n k ,
k = 1,. . . , L) to rero. A recursive method for solv-
ing these equations for the connection weights can be
formulated in the following manner. Note that with
the exception of the partial derivative of D E with
respect to WL, the other equations are nonlinear.
Therefore, the standard recursive estimation can be
employed directly to obtain the weight update rule
for the neurons in the Lth layer. But for the other
partial derivatives, the equations are first linearized
about D - l ~ i , r k (i = 1 ,..., nk, k = 1 ,..., L - 1)
and D-lWi ,k (i = 1 ,...)nk, k = 1 ,..., L - 1).
These weights minimbe D - l E and are assumed to be
known. Then, by following the procedure employed
in standard recursive estimation, one can obtain the
weight update rule for the remaining neurons of the
network (see Xu, et al. [16] for details). The re-
sulting recursive weight update rules for the neurons
have the general form

Dw = D - l ~ + q Dk D6, (5)
where q is a small learning rate, as in gradient de-
scent, the recursive update rule for the Kalman gain
Dk and the approximate error covariance matrix DP
is given by

I 'p, (7)
Dp,-[1-D72 1 Dk DaT D-

B
and expressions for D 6 , O a and D ~ 2 for the various
layers are as follows:

D~ = D w i , L (i = I,. . . , nL)

"6 = D a D

O a = D ~ L - l

D7= = 1

Yn - Yn

n=l

n= 1

Here dini,rk (k = 1,. . . , L - 1) are the steady-state
solution of

nk
d k i , r k = - d h a i , r k + d , k x wli,rk d hal,rk+Ek, (8)

k 1

where ck = cri'=";t' wli ,k+l dhnl . r (k+l) , for
k = 1 ,..., L - 2, €k = w n i , ~ , for k = L- 1, and
d,k (a9i .k (dZi,k)/a d 2 i , k) I C , ~ , ~ = L ~ ~ , ~ . Note that it
is possible to tailor the sigmoidal function such that
&,k in Eq. (8) is small. Under this condition, Eq. (8)

simplifies to di;ni,rk = ek , and thus precludes the
need for integrating F+q. (8), for example, to obtain
the steady-state solution. This idea was exploited by
Sudharsanan and Sundareshan [13] in deriving sim-
plified learning rules for their recurrent neural net-
work.

Training using the RLS algorithm is begun by ini-
tialising the P-matrices to be equal to the identity
matrix multiplied by a large constant. Then, for
each training pair, Eq. (1) is integrated to obtain
the stable equilibrium state of the network. Follow-
ing this, Eq. (8) is integrated to obtain the steady-
state d k i , r k (k = I,. .. , L - 1) values. Finally, the
k-vector, P-matrix and weights for each neuron are
updated. After one pass through the training set,
another pass is begun. This is repeated until the
error at the output is within desirable bounds.

Due to the higher order nature, the RLS training
algorithm is much more computationally intensive.
For a single update of the network weights, the RLS
algorithm requires exactly the same calculations of
response and backpropagated errors as gradient de-
scent. In addition, the RLS algorithm requires the

1714

2.61 , , , , i

Figure 2: Response of the System

calculation and storage of a P-matrix for each neuron
in the network. Although these calculations are com-
putationally intensive, an important point to note is
that they can be done independently. This can be
exploited in a parallel environment. In fact, in Ref.
[17] it has been shown that the computation time
of the RLS algorithm approaches that of standard
backpropagation, the latter not being parallelisable,
as more processors me applied to the matrix calcu-
lations in a multiple processor machine, such as the
Intel iPSC/2 multicomputer.

Pineda [18] has noted that training a recurrent neu-
ral network requires O(mN) calculations, where m
is the number of time steps required to integrate the
network differential equations, and N is the number
of connection weights. The standard backpropaga-
tion training of a feedforward neural network, on the
other hand, requires O (N) calculations. Although
training the recurrent neural network is computa-
tionally more intensive than a feedforward neural
network, one can argue that the recurrent neural net-
work will generally need to be presented with the
training set fewer times. Thus the overall comput-
ing time will be less, resulting in faster learning. Of
course, this can be further improved upon by solving
the network differential equations and implementing
the RLS training algorithm on a parallel computer.

4. Simulated Results

The effectiveness of the RLS training algorithm will
be shown by solving the identification problem for a
nonlinear dynamical system. The dynamical system

1 00 10' 1 0 2 10"
Training Cycles (Log Scale)

Figure S: Learning Curves

considered is given by the difference equation [13]

Y(k + 1) = f[+), Y(k)l, (9)

where z(.) is the input, y(.) is the system output,
and k is the discrete time instant. A recurrent neural
network is trained to identify the unknown function

dom numbers between fl were chosen for the input
t(k). Training sets of 100 points each were created.
The recurrent neural network was trained using these
training sets starting with random values between
f O . l for the connection weights, r)=0.25, @=0.96,
and O P = l @ I. The forward and backward propa
gation equations were numerically integrated using a
4th-order Runge-Kutta method with sero initial val-
ues. The input layer included one bias neuron with
its value set equal to 1 and two hidden layers with 3
neurons each were chosen. The diagonal elements of
TI and T2 were chosen to be 1/400 and the sigmoidal
function chosen was g(z) = -1 + 2/(1 + e-=).
Figure 2 shows the desired and actual outputs for the
tenth training cycle (set). As can be seen, the two
curves are almost identical showing that the recur-
rent neural network has been trained to identify the
nonlinear system dynamics. The sum of the squared
error in this case was calculated to be 8 x Fig-
ure 3 shows that the sum of the squared error de-
creases rapidly during the first few training cycles.

To evaluate the performance of the recurrent neu-
ral network, the identification problem was solved
by training a 4-layer feedforward neural network
(3-6-5-1 neurons) using the standard backpropaga-
tion (BP) algorithm. The same parameters as in the
recurrent neural network case were chosen. Figure 3

f[~(k), ~ (k)] = l.lsin(cos(y(k))) + 1.5 ~(k). Ran-

1715

shows the training results. It is clear that a very
large number of training cycles (in excess of 2000)
are required to reduce the sum of the squared error
to the level achieved by the recurrent neural network
in a small number of training cycles.

6. Concluding Remarks

A recursive least squares algorithm to train recur-
rent neural networks with an arbitrary number of
hidden layers is developed in this study. Simulated
results obtained for identification of the dynamics
of a nonlinear dynamical system show that the pro-
posed training scheme could potentially reduce the
training time considerably. Parallel implementation
of the RLS training algorithm on an Intel iPSC/2
multicomputer is currently being investigated.

Acknowledgement

This work was supported by the National Science
Foundation under Grant Number MSS-9216479 and
the Missouri Department of Economic Development
through the Manufacturing Research and Training
Center-UMR.

References

111 K. S. Narendra and K. Parthasarathy, "Iden-
tification and Control of Dynamical Systems Using
Neural Networks," IEEE Itans. on Neural Networks,
Vol. 1, No. 1, pp. 427, 1990.

(21 R. Hecht-Nielsen, "Theory of the Backpropa-
gation Neural Network," Proc. ofthe Int. Joint Conf.
on Neural Networks, pp. 1-593 - 1-607, 1989.

[3] D. B. Parker, "Optimal Algorithms for Adap
tive Networks: Second Order Back Propagation, Sec-
ond Order Direct Propagation, and Second Order
Hebbian Learning," Proc. ofthe Int. Conf. on Neu-
ral Networks, pp. 11-593 - 11-600, 1987

[4] R. L. Watrous, "Learning Algorithms for Con-
nectionist Networks: Applied Gradient Methods for
Nonlinear Optimisation," Proc. of the Int. Conf. on
Neural Networks, pp. 11-619 - 11-628, 1987.

[5] S. Becker and Y. le Cun, "Improving the Con-
vergence of Back-Propagation Learning with Second
Order Methods," Proc. of the Connectionist Models
Summer School, pp. 29-37, 1988.

[6] S. Kollias and D. Anastassiou, "An Adaptive
Least Squares Algorithm for the Efficient Training of

Artificial Neural Networks," IEEE Itans. on Circuits
and Systems, Vol. 36, No. 8, pp. 1092-1101, 1989.
[7) S. Singhal and L. Wu, "Training Feed-Forward
Networks with the Extended Kalman Filter," Proc.
of 1989 Int. Conf. on ASSP, pp. 1187-1190, 1989.
[8] S. Shah and F. Palmieri, "MEKA - A Fast, Lo-
cal Algorithm for Training Feedforward Neural Net-
works," Proc. ofthe Int. Joint Conf. on Neural Net-
works, pp. 111-41 - 111-46, 1990.
[9] L. Jin, P. N. Nikiforuk and M. M. Gupta, "De-
coupled Recursive Estimation Training and Train-
able Degree of Feedforward Neural Networks," Proc.
of the Int. Joint Conf. on Neural Networks, pp. 1-894

[lo] D. E. Rumelhart, G. E. Hinton and R. J.
Williams, Parallel Distributed Processing, Vol. 1,
MIT Press, Cambridge, Massachusetts, 1986.
[ll] F. J. Pineda, "Dynamics and Architecture for
Neural Computation," Journal of Complezity, Vol.
4, pp. 218245, 1988.
[12] B. A. Pearlmutter, "Learning State Space aa-
jectories in Recurrent Neural Networks," Neural
Computation, Vol. 1, pp. 263-269, 1989.
[13] S. L. Sudharsanan and M. K. Sundareshan,
"Training of a Three-Layer Dynamical Recurrent
Neural Network for Nonlinear Input-Output M a p
ping," Proc. ofthe Int. Joint Conf. on Neural Net-
works, pp. 11-111 - 11-115, 1991.
1141 G. V. Puskorius and L. A. Feldkamp, "Model
Reference Adaptive Control with Recurrent Net-
works Trained by the Dynamic DEKF Algorithm,"
Proc. of the Int. Joint Conf. on Neural Networks, pp.

[15] C.-C. Ku and K. Y. Lee, "Nonlinear System
Identification Using Diagonal Recurrent Neural Net-
works," Proc. ofthe Int. Joint Conf. on Neural Net-
works, pp. 111-839 - 111-844, 1992.
[IS] Q. Xu, K. Krishnamurthy, B. McMillin and W.
Lu, "A Recursive Least Squares 'haining Algorithm
for Multilayer Recurrent Neural Networks," Tech.
Memo. MACTM-28, Dept. of Mech. & Aero. Eng.
& Eng. Mech., University of Missouri-Rolla, 1993.
[17] J. E. Steck, B. McMillin, K. Kriihnamurthy
and G. Leininger, "Parallel Implementation of a
Recursive Least Squares Neural Network Training
Method on the Intel iPSC/2," J. of Parallel and Dis-
tributed Computing, Vol. 18, pp. 89-93, 1993.
[18] F. J. Pineda, "Recurrent Backpropagation and
the Dynamical Approach to Adaptive Neural Com-
putation," Neural Computation, Vol. 1, pp. 161-172,
1989.

- 1-900, 1992.

11-106 - 11-113, 1992.

1716

	A Recursive Least Squares Training Algorithm for Multilayer Recurrent Neural Networks
	Recommended Citation

	A recursive least squares training algorithm for multilayer recurrent neural networks

