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Abstract

In this paper, a new nonlinear control synthesis technique (8 -
D approximation) is presented. This approach achieves
suboptimal solutions to nonlinear optimal control problems in
the sense that it solves the Hamilton-Jacobi- Bellman (HIB)
equation approximately by adding perturbations to the cost
function. By manipulating the perturbation terms both semi-
globally asymptotic stability and suboptimality properties can
be obtained. The convergence and stability proofs are given.
This methed overcomes the large control for large initial
states problem that occurs in some other Taylor expansion
based methods. It does not need time-consuming online
computations like the State Dependent Riccati Equation
(SDRE) technique. A vector problem is investigated to
demonstrate the effectiveness of this new technique.

1. INTRODUCTION

Numerous technigues exist for the synthesis of control laws
for nonlinear systems. Optimal control of nonlinear dynamics
with respect to a mathematical index of performance has also
been extensively investigated in the last few decades [1-5].
One of the difficulties of controlling a nonlinear system is that
optimal feedback control depends on the solution to the
Hamilton-Jacobi-Bellman (HJB) equation. The HIB equation
is extremely difficult to solve in general rendering optimal
control techniques of limited use for nonlinear systems.
Therefore, a number of papers investigated methods to find
suboptimal solutions to the nonlinear control problem.

Al'Brekht [1] has derived a sufficient condition for
obtaining the optimal feedback control of a nonlinear analytic
system and developed a formal recursive procedure to
construct a suboptimal control in a power series in states.
However, a closed form solution for the recursive procedure
has not been developed. Garrard et.al.[2] extended the above
idea by expanding the optimal cost function as a power series
of an artificial variable and utilizing a similar technique to that
for the linear systems. The idea simplified the calculations,
but this technique can only be applied to some certain class of
nonlinear systems in which the nonlinearity can be considered
as some small perturbations. Garrard [3] also formulated
another approach that expanded both optimal cost and
nonlinear dynamics as a power series of the states and used
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the same idea as before. This applied to more general
nonlinear systems. However, finding the coefficients of power
series is an involved process.

Another recently emerging technique which systematically
solves the nonlinear regulator problem is the State Dependent
Riccati Equation (SDRE) method (Cloutier et al.,1996){4]. By
turning the equations of motion into a linear-like structure,
this approach permits the designer to employ linear optimal
control methods such as the LQR methodology and the
H_design technique for the synthesis of nonlinear control

systems. The major problem with SDRE is the time-
consuming online computation of the Riccati equation. Wernli
and Cook [5] proposed a method for solving the state
dependent Riccati equation by expanding the solution of
SDRE as a power series. But the convergence of this series is
not guaranteed and the resulting controf law leads to a large
control effort or even instability when initial states are large.

In this paper, a new suboptimal nonlinear controller
synthesis (¢ -D approximation) based on approximate
solution to the HIB equation is proposed. By introducing an
instrumental variable #, the co-state A can be expanded asa
power series in terms of @. The HIB equation is then reduced
to a set of recursive algebraic equations. By adding
perturbations to the cost function and manipulating these
terms appropriately we are able to achieve semi-globally
asymptotic stability and overcome the large initial control
problem. In Section 2, the formulation of @ -D approximation
method will be introduced. Both convergence and stability
proofs are given. A two dimensional nonlinear regulator
problem is studied and compared with the SDRE technique in
Section 3. Conclusions are given in Section 4.

2. SUBOPTIMAL CONTROL OF A CLASS OF
NONLINEAR SYSTEMS

In this paper we restrict ourselves to the state feedback

control problem for the class of nonlinear time-invariant

systems described by

i=f(x)+gu I
with the cost function:
- %L"[xfgﬁu’ku}d: @



wherexeQc R, f:Q—R . geR7u: QR ,QcR” ReR™.Q
is semi-definite matrix and R is positive definite matrix; gisa
constant matrix and f{(0)=0,
To ensure that the control problem is well posed we assume
that a solution to the optimal control problem (1), (2) exists.
We also assume that f(x) is locally Lipschitz in x on a set
(2 and zero state observable through Q.
The optimal solution of the infinite-horizon nonlinear
regulator problem can be obtained by solving the Hamilton-
Jacobi-Bellman (HJB) partial differential equation [6]:

av’ LoV’

L 0wy Ll O)
where Vi) =
The optimal control is given by
=_r1g7 4)
ox
and V(x) is the optimal cost , i.e.
&)

V{x)=min , %-I(xTQx +u” Ru)dr
Q

The HIB equation is extremely difficult to solve in general,
rendering optimal control techniques of limited use for
nonlinear systems.

Now consider perturbations added to the cost function:

J-—f[x (Q+ZD9‘)x+uTRu]dt (6)
i=]
where 6 and D, are chosen such that z pgt i asmall
number compared to "QH -
Write the origina] state equation as:
f(x)+gu—Ax+9( )x+gu )

where Ay is a constant matrix such that (Ao,g) is a stabilizable
pair.

Define 229" (8
ox
By using (8) in (3), we havea perturbed HIB equation:
A f(x)— ;fgk' i+l xf (Q+ZD€)x 0o
=l
Assume a power series expansion of 4 as
1=316'x (10)

1=l
Here T, s are assumed symmetric and are to be determined.
Substitute Eq. (10) into HIB Eg. (9) and equate the
coefficients of powers of # to zero to get the following
equations:
T,Ag+ 4, T, -T,gR'g’T,+Q =0
LA AT (0L

an
(i2)

-T,gR"g")T, =

E(Ao—gﬂ*g’?;h%’—rogk*g’m=~%—’9—@+Igﬁ*g’r-g (13)

T4 -gRg L) +(4]

T(4-R ' T)+(4"~TgR g T, = *""I) ad A 2@?‘&,04)
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The expression for control can be obtained in terms of the
power series for 1 as

u=-Rg"A=-R"g" 3 T,(x8)f'x (15)
=0

It is easy to find that the equation (11) is an algebraic Riccati
equation. All other equations turn out to be simply L.yapunov
equations which are finear in terms of T, In the rest of this
paper we will call it the & -D approximation technique. The
algorithm without the D, term s cafled the & approximation.

The algorithm in [5] would result in the & approximation.
One of the problems with & approximation is that large initial
conditions may give rise to large control. In order to deal with
this problem, we construct the following expression for D;:

LAx) A (x)To

Dy =he™[- P — (16)
D, = ket z;(r) A4 (X)T]] (17
D, = ke[~ T,-lg(x) 47 (X)T A, (1%)

The idea in constructing D, in this manner is that large

control results from the state dependent term A(x) on the right
hand side of the equations (11)-(14). It happens when there
are some terms in A(x) which could grow to a high magnitude
as x is large. For example, when A(x) includes a cubic term,

the higher initial state would result in higher initial 7; and
consequently higher initial control. So we choose D; such that
_ T,--lg(x) _ AT(;)T,,. _D =] JT..;(:c) _ A’(J;ﬂ?-,] (19)

&) =1-ke™ (20)

is a small number chosen to satisfy some conditions required
in the proof of convergence and stability of the above

where

algorithm, On the other hand, the exponential term ™' is used
to let the perturbation terms in the cost function and HJB
equation diminish as the time evolves. This will guarantee the
HIJB equations to be solved asymptotically.

The following theorem will show that the convergence of the

series expansion of ZT} {(x,@ can be obtained by choosing
i=0
appropriate D; matrices.

Theorem 2.1: Assume that the following conditions hold:
(i) xe,where Q< R" is a compact set.
(ii) f(x) is partitioned such that (4,,g) is controllable,

(iii) A(x) is continuous on €2 .

(iv) D; are chosen according to equations {16)-(18).

Then there exists a set of perturbation matrices D, such that
series ZT}(x,G)B' produced by the algorithm in Egs. (11)-

i=0
(14) is a pointwise convergent series.



Proof. Considering Eq. {12) and the selection of D, in Eq.
(16), Eq. (12) can be written as:

1
(4 -g g ) +(4) TR g M =-a(Fd+A T 1)
with g =1-ke™ {22)
Assume that the solution to the equation
T4 ~gR'g T)+(4 ~TgR gV =6 (GA+ 4T)  (23)
is 7;, with T, =T, (24)

Then using the linearity property of Lyapunov equation (23),
the solution to Eq. (21) is

1 -

= -— 2
Li=gh (25)

Similarly assume that the solution to the equation
L4 R E )4 TR M=+ AT+ TR 'IT (26)
is 7, . Then the solution to Eq. (13) is:

h=T, @7
In the same manner, 7T, = Ly (28)
n 9;, "

where T, is the solution of )
- ~ " ~ - - L] -
TA-R DA TR =5{ T A AT+ Y TeRT, (29)
=
and
g, =1-ke™ (0
Therefore, from Eqs. (24), (25), (27) and (28) we note that

proving the convergence of ZY}‘(x, &8 is equivalent to
i=0

proving the convergence of Zf.(x) where fj satisfy the
i=0

Eqgs. (11),(23), (26) and (29). Here we rewrite them in the

following form for the clarity.

Todp+ 4 T, -TgR'g"T, +0 =0 (31)
T4 —gR g T)+(4 ~TygR'g T = (T, 4+ £T;) (23)
LA —gR g )+ (4 ~ToeR e, =—e(Fid+ £+ TR g T (26)

A~ TR+ —TigR 'V =T, v AL+ ST T, (29)
o

Now we want to find the norm bound for each T in order to

prove the convergence of the series ii’: .
Given a continuous Lyapunov equati'oln
ATP+PA=-Q (32)
where 4, P,0 € R™" . If A is a stable matrix, we have the norm
bound for P (Mori [7]).
ol
T

IIPllé_p(A -2 (4) 33)
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where u( A2 %itm (A+AT) (34)

Consider Eq. (31); since (4,,g) is a controllable pair and R

is positive definite and Q is semi-positive definite, we know
that Riecati equation (31) has a positive definite solution

and (4, —gR™'g"T,)is a stable matrix.
Then consider Eq. (23)

e[ A0+ 47 (), ]

”T' < ~u(4, —gR'g"T, )~ u( A4 ~T,gR"'g) e
1

et €= ~u(4, —gR"g’ﬁ)—#(Af —ngR"g’) co

Then  [f]<Caffia+ 45| <cs[[f|l4+4]] 37

Since A(x) is continuous on a compact set €2, it is bounded
on{},

Let C,= @35;("/1 +47 (38)
Thenwe have |ff<C-C, | (39)
Consider Eq. {26); we can obtain a norm-bounded
inequality in fz as
I.| < ce. ”T"lA+AT7=,”+C”flgR"ng']” (40)
- A~ (12
sc{alilaea 1o fif fers)
Since gR™'g" is a constant matrix, let G = || gR™! gT“ (41)
a constant number.
men [t ife-c.ofil
<CCalfi|ac,+cc.a ||7;,”G)
(According to Eq. (39))
=czcig]gz||az;|[i+—~ﬂ—“j|’5”g‘] @
2
C-G-|T|e
Let C = lrsr[lgi;] 1+T (43‘)
Then we get "f”z H <CCi-Coee, “ng (49
In a similar manner we can show for f"ﬂ that
7|2 en-creie,.c, 7| (45)
[ 27c-G|f)| g,]
where C, =max|l+ ———"—"— (46}
70,0} g,

Once we obtain the bound for each f , We can prove the

@
convergence of the series Z]} .

=l



Let S,,, =g 8, .C"C: -C,
S,

7 @7

Then

=s,-CC,C, (48)

n=1

By choosing a proper£, we can make
n=1

@®

ZS,, is a convergent series. Since each ”T',.HSS,. and
i=0

according to Weierstrass’s Theorem [8], Z'f, is also a
i=0

convergent series. The choice of g, actually depends on the

choice of the perturbation terms D, from Egs. (16)-(19). If

the D, matrices are chosen such that

g, < !
cc,C,

49

we can claim that the series E?}{x, ) is convergent. O
=0

Remark: The above proof shows that & is just an

instrumental variable for the convenience of power series

expansion. The value of & does not matter since it turns out

to be cancelled by the choice of D, matrices (Eqgs. (16)-(18)).

Theorem 2.2: Suppose that the conditions in Theorem 2.1 are
satisfied and

(v} f(x) is nontrivial.
(v} f(x) is partitioned such that (4, +A(x)).g] is
pointwise controllable.

(vii) D, are chosen such that Q+ZD,9" is semi-positive
: f=1
definite. There exist perturbation matricés D, such that the
closed-loop feedback control system obtained by controj law

u=-R"! gfi T,(x)8'x 1s semi-globally asymptotically stable.
i=0
Progf.  Let us choose a Lyapunov function

V(x)= %xf i T{xx (50)
i=0

Zﬁ(x) can be obtained as positive definite marix by

choosing appropriate &,.
V(x)=0.

dvx) _ '@,
Codt T &

¥ ;’Z—T’x}[f(xﬂgu] 1

Please refer to [9]. So we have

Now _arT (x)[

S(x)+ gu]

i=1

o

Since (;—V Zf:x satisfy the HIB equation
X i=0

v’

— [/ +&u]+

ox

%urRu+%-xT(Q+iDi8i)x=0 (52)
i=1

We can rearrange (52) to get
= 1
erT,'[f+gu]=——xTQx
i=0

xy_
at

TRu——xT ZDH’x (53)

=l

f - ufm——x* ZD3x+—,\I Z——x[ F+au] (54)

r=l

Since Q0+ ZD,&" is semi-positive definite and R is positive

i=]
definite, ——x Qx-—u’Ru EITZD #'x is negative definite.

Substituting y =_R-'gTZr;x into (54) we get

i=0
L rotir LS por=—10|0: TR ST+ 506 Ik (55)
2 2 23 2 P P
According to Courant-Fischer theorem [8],

——x {Q+ZTgR ‘gTZT +ZD9 ]

i=0

<__,1m[g+2'rg -t Tifa-ib,.e’}”x"i (56)
=0 =0 i

i=]
Then we get

dV(x)<_Ahm[Q+ZTgR_IgTZT+ZDBjI

o,
s
where C, Am,[QwLZTgR 'gTZT+ZD8’]>0 (58)

T, [ ] (59)
2

According to the linearity property of Egs. (23), (26) and (29),
we know that f‘" can always be written.in the form of

T,=¢-¢,T,(x) (60)

-

x’Z 1{f+8"1

(57

1 1
<o

4 +A4-gR'e" T
=0

2

oy A+ A-gR'g" YT,
A 0

i=t

n = ...g n
& " ox

Thus by choosing & +-&, properly we can always make

and

x (61)

<

RS

(62)

A, + A—gR” 'ngT

im0

2
avi(x . . .
Then - < (. Here we do not limit the proof in a specified

region for X. As long as x lies in a compact set with A(x}
bounded, we can always choose a set of & such that
dV{x)
dt
asymptotically stable. w}

< 0. Therefore the underlying system is semi-globally

3. ILLUSTRATIVE EXAMPLE [4]
Find control 1 to minimize the cost function:



J='I'J-:xr Lo x+u’ 2.0 udt (63)
2 0 1 0 2

with a system defined by

.. 3
X, = X, =X, + X, *+u, (64)
X, = x, + xlzxz— X, + u,
We reorganize f(x) as
1o -x> 0
= A= (65
o [1 "1j| [0 xlz] )

Figure 1 shows the state and control response when the initial
condition is 1 (using only & approximation). Figure 2 shows
the results when the initial states are [10,10]. We find that the
initial control effort increases to —1.859 x 10° . Please note
that the control response in Figure 2 is a zoomed plot for
comparison with the SDRE results.

Figure 3 demonstrates the effect of the D; terms (&-D
The parameters in this case are:
D, =diog il 0000t (- D _ AWy ooop o D) AT, (66)

) ] ) [

TAL)_ AT,
[} [
We only pick the first three terms, e.g. up to T, terms in the
A expansion. Usually three terms are enough for a good
approximation. More terms could be added if needed. In
Figure 3, the initial control magnitude is reduced to [-95, -22].
The SDRE solution produces [-75, -17]. Although SDRE
achieves less effort on the control, it needs on line solution of
Riccati Equation. In addition, our method results in a small
cost compared to the SDRE. The cost of the ¢ — D method is
about 400 while the cost of the SDRE is over 800, This
pattern of lower cost for the § - D method was observed in

all the cases we tried.
When implementing the ¢ — D method, we need it to be
insensitive to the initial states. Notice that initial states come
into play when t=0 and we can take care of large initial
control problem by manipulating the D matrix. Since large
control is always due to the ra)+47(r, term
andg, (¢ = 0) = 1- k,, wepick oo1e ! such that
! [rodtz) + 47T,
k; is a function of the initial states to help alleviate the large
initial control problem,
Figure 4-5 show the responses under different large initial
states. We can see that they are not sensitive to the variation
of xg. Compared to SDRE method, our approach can keep low
cost and small initial control.
Another advantage of this method is that once we find one set
of appropriate parameters of the exponential terms in D matrix
that give satisfactory transient performance, they are also not
sensitive to the variation of the initial states. In Figure 4-5, we
keep the same parameters in (66) and (67), These parameters
in the D matrix can be adjusted off~/ire to achieve the desired
performance.
As for the implementation, @-D algorithm needs a matrix
inverse operation only one time offline when solving the linear

approximation).

D, =diag{1.00001e™ ¥

],1_000015*'[.@ - AT(;)I] (67)
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Lyapunov equations (12)-{14) and sclution to the first
algebraic Riccati equation (11) only one time, offfine, That is
to say, when solving (12)-(14), we only need to rearrange the
left hand side of the equations such that they form a linear

matrix equation: 4,7, = Q, (x,t) and then T, = 4,0, (x,1)

where ,30 is a constant matrix and ¢ (x,#)is the right hand

side of (12)-(14). When implemented online, this method
involves only two 2x2 matrix multiplications and three
2x2 matrix additions if we take three terms, However, in
comparison, SDRE needs computation of the 2x2 algebraic
Riccati equation at each sample time. The number of
computations will become significant if we want to solve
higher order problems.

4. CONCLUSIONS

In this paper, a new suboptimal nonlinear control synthesis
technique was proposed. This method can solve the HIB
equation asymptotically by adding some perturbations to the
cost function. The recursive solution for control does not need
complex on-line computations compared to the SDRE
technigue, In addition, the large initial control problem
encountered in [5] was overcome by manipulating the
perturbation terms appropriately. An illustrative example
demonstrated the good results and comparisons with other
methods. This technique can be applied to a broad class of
nonlinear control problems.
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