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Abstract 

The use of a self-contained dual neural network architecture for 
the solution of nonlinear optimal control problems is 
investigated in this study. The network structure solves the 
dynamic programming equations in stages and at the 
convergence, one network provides the optimal control and the 
second network provides a fault tolerance to the control system. 
We detail the steps in design and solve a linearized and a 
nonlinear, unstable, four-dimensional inverted pendulum on a 
cart problem. Numerical results are presented and compared 
with linearized optimal control. Unlike the previously 
published neural network solutions, this methodology does not 
need extemal training; solves the nonlinear problem 
directly and provides a feedback control. 

I. Introduction 

Optimization has been a field of interest to mathematicians, 
scientists and engineers for a long time. Problems of 
optimization of functions or functionals and optimal control of 
linear or nonlinear dynamical systems can be solved through 
direct or indirect methods pryson and Ho [I]]. In direct 
methods where, in general, the cost function is evaluated or 
indirect methods where, in general, values of the derivatives are 
used to check optimum, separate solutions are obtained for each 
set of parameters or initial conditions. For optimal solutions 
which encompass perturbations to the assumed initial 
conditions or a family of initial conditions, we can use 
neighboring optimal control [ I ]  or dynamic programming [I]. 
Neighboring optimal control allows pointwise solutions of an 
(optimal) two-point boundary value problem (TPBW) to be 
used with a linearized approximation over a range of initial 
conditions. However, the neighboring optimal solution can fail 
outside where linearization is invalid. Dynamic programming 
can handle a family of initial conditions for linear as well as 
nonlinear problems. The usual method of solution, however, is 
computation-intensive. Furthermore, the solution is not 
available in a feedback form either (usually) and for 
implementation, this becomes a drawback. 
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Outside of dynamic programming, currently there is no unified 
mathematical formalism under which a controller can be 
designed for nonlinear systems. Techniques like feedback 
linearization have been used for a few nonlmear problems 
under liinited conditions, such as equal number of inputs and 
outputs. More rigorous and general solutions are available with 
linearized models; however, they are restricted by the 
assumption of linear models. Other available solutions for 
nonlinear controllers are highly problem oriented 
Consequently, we propose a formulation which: 1) solves a 
nonlinear control problem directly without any approximation 
to the system model (in the absence of a good model this 
approach can synthesize a nonlinear model of the states), 2) 
yield a control law in a feedback form as a function of the 
current states, and 3) maintain the same structure regardless of 
the type or problem (handles linear problems as  well) Such a 
formulation is afforded by the field of neural networks 

Several authors have used neural networks to "optimally" solve 
nonlinear systems [Hunt [2], White and Sofge [3]]. Almost all 
these studies fall within four categories: I )  supervised control, 
2) direct inverse control, 3) neural adaptive control, and 4) 
backpropagation through time [ 191. A fifh and rarely studied 
class of controller has the most interesting structure. It is called 
an Adaptive Critic Architecture (Figure 1)  [3,4,8]. The reason 
for choosing this structure for formulating the optimal control 
problems are that this approach needs NO extemal training as 
in other forms of neurocontrollers, this is not an open loop 
optimal controller but a feedback controller, and i t  preseives 
the same structure regardless of the problem (linear or 
nonlinear). Balakrishnan and Biega [4] have shown the 
usefulness of this architecture for finite-time linear problems. 
In this study, we seek to present a general neural framework for 
the study of linear 3s well as nonlinear, infinite-time optimal 
control problems. It is hoped that the two other important 
features associated with a controller, namely robustness and 
identification (observers) with neural networks can be studied 
in a more general way with our network structure since it does 
not have any restrictive assumption (like linearity, etc.). 

The method discussed in this study determines an optimal 



control law for a system by successively adapting two networks. 
an action network and a critic network. This method 
determines the control law for an entire range of initial 
conditions [4]. It simultaneously determines and adapts the 
neural networks to the optimal control policy for both linear 
and nonlinear systems. 

IL Solution Method Development 

A. Neural Network Background 
Neural networks, or in the case of this paper multi-layer 
perceptrons (ML,Ps), are known for their ability to model any 
mapping fiom input to output given a correctly chosen network 
structure. They are also able to adapt to new sets of input 
output pairs. This makes them ideal in adapting to an optimal 
control policy. 

For the problems in this study we will he using MLPs of the 
form shown in Figure 2. In this case, the activation functions 
used are 

2 fi=--1 
1 +e (-net) 

1 
f2=- 
f3 =net . 

Assuming that there is some hc t ion  to be minimized, it is then 
possible to adjust the weights of the MLP to model the 
appropriate mapping using a standard gradient descent 
algorithm [3]. 

B. Problem Formulation 
In this study, problems of the form 

5 
J = s J l ( w u ( w T  

0 

t f -8  = iven x,Egiven (4) 

are being considered. The first step taken is to discretize them 
into the form (for use with the neural networks) 

N-1 

.='E *&(k) ,u(k)) 
k-0 

(5) 

Nzgiven x(0) =given (7) 

In these equations, w(-) is a scalar, nonlinear time-varying 
function of the n-dimensional state vector, x and m-dimensional 
control vector, U The system model is given by fD(.). The final 
time, b is discretized into N equal steps. The initial conditions 

X(O) are ~med known. N - large represents an infinite-time 
problem. 

C. Dynamic Programming Background [Bryson [l]] 
Assuming the cost function in Eqn. 5, one can rewrite J(.) as 

JM4)  = WM40)) 
+cr(:r(t+ I))> . (8) 

(Here, J(x(t)) is the cost associated with going from time t to 
the final time. U(x(t),u(x(t)) is the utility, which is the cost 
from going from time it to time t+l. Finally, Cr(x(t+l))> is 
assumed to be the minimum cost associated with going from 
time t+l to the final time. 

If both sides of the equation are differentiated and we define 

(9) 

then 

From tllls it can he seen that if-=A(x(t+l))~, U(x(t),u(t)) and the 
system model derivatives are known then k(x(t)) can be found. 

Next the optimality equation is defined as 

Dynamic progmiming uses these equations to aid in solving an 
infinite horizon policy oir to determine the control policy for a 
finite horizon problem. 

D. Training Methods (Approximation Techniques) 
As mentioned earlier, this study uses Eqn. 10 in order to 
determine the optimal control policy. The basic training takes 
place in two stages, the: training of the action network (the 
network modeling u(x(t))) and the training of the critic network 
(the network modeling h(x(t))). Both networks are assumed to 
be feedforward MLP's. 

In order to train the action network for time step t, first x(t) is 
randomized and the action network outputs u(t). The system 
model is then used to find x(t+l) and (6x(t+1))/(6u(t)). Next 
the critic from t+l is used to find A(x(t+l)). This information 
and Eqn. 1 1  are used to update the action network. This 
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process is continued until a predetermined level of convergence 
is reached. 

e ( n + l )  

x ( n + l )  

i ( n + l )  

f I ( n + l )  

To train the critic network for the time step t, x(t) is randomized 
and the output of the critic A(x(t)) is found. The action network 
from step t calculates u(t) and (8u(t))/(bx(t)). (Note that the 
functions which determine u(t) from x(t) are known for the 
MLP action network, therefore (8u(t))/(bx(t)) can he found 
using ordered derivatives.) The model is then used to find 
(Sx(t+l))/(Sx(t)), (6x(t+1))/(6u(t)) and x(t+l). The critic from 
step t+l is then used to find A(x(t+l)). After this, Eqn. 10 is 
used to find A'(x(t)), the target value for the critic. The 
d8erence between A(x(t)) and A'(x(t)) is then used to update 
the critic using a standard backpropagation algorithm. This 
pnxess is mtinued until a predetermined level of convergence 
is reached. Training of the critic network is presented 
schematically in Figure 3. This twestep process is repeated till 
the control network outputs show no difference ahove a 
specified tolerance. 

2s u(n) (14) o i.ms o 10002a-2 e(n) -500&-5 

* 1 1 -4.9e-5 le-7. -1.6334e-7 +<n) 

0 -9.8018~-3 1 -4.9004e-5 i+?) le-2 
0 10782-1 0 1.OWS B(n) -1.ooo2e- 

IIL Applications 

0 0 l o x  
o o o l e  - - 
0 -0.98 0 0 f 

0 10.78 0 0 e 

The frs t  application is an infinite horizon four dimensional 
linear problem, specifically, that of the linearized system for an 
inverted pendulum and a cart. Second, this method is applied 
to finding the optimal control policy for the nonlinear equations 
describing the inverted pendulum problem, and the 
corresponding cost improvement from the linear equations is 
shown. 

0 

o 
+ U  (1  2) 1 

-1 

A. First Application (Infinite Time 4-D Linear) 

The classic inverted pendulum on a moving cart (Figure 4) is 
concerned with the infinite horizon problem, i.e. steady state 
solution. 

[Friedland 1511 

The linearized equations of motion for this system are (with the 
mass of the pendulum as 0.1 kg, the mass of the cart as 1 kg, 
the length of the inverted pendulum as I m and gravitational 
acceleration as 9.8 m/s*.) 

where x is the horizontal distance of the center of gravity of the 
cart from a reference point and 0 is the angle of the inverted 
pendulum to the vertical. Dots denote differentiation with 
respect to time. The mass of the pendulum is assumed to he 
concentrated at a point and the length is assumed constant. The 
problem is to find the control which minimizes the cost 
functions, J, given by 

J = (x(n)2 s 

As a first step, some control must he specified. For this 
prohleni the original controller was chosen by defining 
A(n+l)=O and training an action network using a gradient 
descent algorithm. 

As a next step, a neural network is randomized to act as the 
critic network. Now Eqn. I O  can be used to train the critic. (It 
is important to note that during the steady state operation of a 
system, the cost associated with a specific state at time (n+ I ) is 
equivalent to the cost associated with that same state at time 
(n). Therefore the values for both A(n) and A(n+l) are taken 
fi-om the same critic.) 

After the critic has converged, a new neural network is 
randomized to act as the action network. The previously 
determined critic and the utility function have been specified, 
therefore it is possible to adapt the action network using a 
gradient descent algorithm. 

After the action network has converged, the critic network is 
trained using the action network as the new control law. Thls 
method is repeated until the critic and action networks have 
completely converged (i.e. repetition of this process does not 
change controller network) 

Figure 5 shows a plot of the trajectory of x l  (position) for the 
control law determined by the neural network method and the 
control law determined by LQR (Ricatti Equation) [1,2] 
methodology. As desired, the trajectories are very nearly 
identical. Likewise, Figures 6-8 show that the same 
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c1x”stics are exhibited in the plots of angle of the inverted 
pendulum, cart velocity, and the angular velocity of the inverted 
pendulum. All neural- network controlled trajectories agree 
closely with the LQR determined trajectories. The closeness of 
the single neural network generated control for a span of initial 
conditions throughout the trajectory to several separate LQR 
generated trajectories is seen in Figure 9. It should also be 
noted that the cost of the neural network determined trajectories 
for a randomly generated set of initial conditions agree within 
1.5% with the costs calculated using LQR hased control. Note 
that the control law can be determined for any point in the 
training range and it will be optimal. This is a unique and 
extremely usefid feature of this methodology since it represents 
the approximate dynamic programming solutions. 

B. Second Application (Infinite Time 4-D Nonlinear) 
The second application once again deals with the nonlinear 
motion of the inverted pendulum on a cart, except that the exact 
nonlinear equations are used without any linearization. 

Anderson [6] and Barto, et al. 171 have investigated the control 
of the inverted pendulum on a cart using neural networks. 
Their objectives, though, are different as compared with this 
study. They are concemed with a stable control of the 
pendulum, not optimal control. It is assumed that the system 
model is not known and that the only feedback signal is a 
failure signal when the angle exceeds some given maximum. 
The following problem wilI involve the use of a neural network 
to directly solve for the optimal solution of the nonlinear 
equations for the inverted pendulum on a cart problem, 
assuming a given model. Introduction of an identification 
network in the loop is not difficult. 

The problem which is being examined consists of the system 
described by the following equations 

1 
1.1 

x = - (u + 0.1 b2 sin(6) - 

0.1 1 - cos(0) - (0.98 sin(6) 
1.1 1.1 

The cost function assigned to this problem is 

J = J’(x(f)2 + 6(r)2 
U1 

+ q.Ct)2+O(r>” + u(r)2)dt 

Once again, it is assunned that the optimal discrete control for 
a time period of 0.0 1 s i i n d s  is desired. In order to use Eqn. 
10, some modification:r have to be made. First, it is important 
to note that the nonlinear system is modeled in a discrete 
manner by a fourth order Runga-Kutta simulation on a 0.01 
secund interval. All derivatives are determined using forward 
estimation with the system model. The discrete utility function 
used is the same as lhat used in the linear problem. Th~s 
provides the derivatives necessary for use of Eqn. 10. 

The first step in this process is to define an arbitrary initial 
control. The initial control will be assumed to be the same as 
that in the linear problem. Next, a neural network must be 
randomized to act as the critic network. This is carried out by 
using Eqn. 10. 

When the critic network converges, a new neural network is 
randomized to act as the action network. The appropriate 
control law is determined using a gradient descent algorithm. 
The training then proceeds exactly as in the linear case. 
(Notice that the training using the nonlinear equations is no 
more difficult than using the linear system equations.) 

Figure 10 shows a plot of the trajectories for x 1 (position) for 
the neural network determined nonlinear control and the LQR 
based optimal control. Note that unlike the linear case, the 
neural network hased trajectory is noticeably different than that 
of the optimal LQR tra,jectory. Figures 1 1-1 3 show the same 
trajectories for the pendulum angle, cart velocity and pendulum 
angular velocity. In eac;h case the trajectory varies slightly. 

The costs are calculated by integration of the performance 
indes in Eqn. 19. The neural network controlled trajectories 
shown in Figures 10- 1 3 result in a reduction of overall cost by 
5.7%. By repeating the process for a random set of initial 
states, the overall cost is found to be reduced from between 
2.5% and 8.5% compared to the cost determined by the 
linearized system based control for the same conditions. This 
clearly shows that a nonlinear neural controller is more efficient 
than a gain-scheduled liinear controller. The neural network 
structure in this study can handle either type of controller 
Furthennore, it should be noted that the critic network functions 
as a check to see whether the controller outputs are optimal, 
thereby, providing a measure of fault tolerance. Unlike the 
LQR controller, the sime network contains the nonlinear 
feedhack gains to a span of initial conditions since the 
network represents the solution to a dynamic programming 
formulation. 
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N. Conclusions 

A dual neural network architecture, called the 'adaptive critic' 
has been presented in this study to detemiine optimal control 
for a linear and a nonlinear inverted pendulum. The dual 
network, which does not need external target data, emheds the 
dynamic programming solutions and offers a feedhack type 
optimal controller for an entire range of initial conditions. The 
network structure is invariant to linear or nonlinear prohlems. 
Therefore, it is hoped that we have obtained a general 
framework for neural network on which we can base stahility 
and robustness studies. It is also easily extendable to 
identification problems. 

This studywas funded by National Science Foundation of the 
United States, Grant ECS-9313946, and by the Missouri 
Department of Economic Development Center for Advanced 
Technology Program. The authors thank Dr. Paul Werbos for 
his d and inSighthl technical interactions during this study. 
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Figure 3. Critic Network Training Diagram 

Flrmre 1. 
INVERTED PENDULUM ON A CART 

-4 -3 0 + 20 40 60 80 100 

Time Step (0.01 sec/dii) Flrmre 5. 
Plot of Values for Position for Random initial Conditions 
solid- Neural NetwMk Determined Value 
dashed- Optimal 

Figure 1. Adaptive Critic for Control 
61 8 



-0.4 I 1 
0 20 40 60 80 100 

Time Slep (0.01 seddiv) 
FIPUIC 6. 
Plot of values lor Angle fw Rendom IniUal CondRlons 
solid- Neural N e W k  Determined Value 

.-__. I 

dashed- Optlmal - 

. - __ .- . . 
4 

3 

-3 I I 
0 20 40 60 80 100 

Time Step (0.01 sed&) 
Flqure 7. 
Plot of Values for Cart Velodty for Random lnllial C o n d i h  
d i d -  Neural Network Determined Value 
dashed- Optimal 

1 ,  1 
0.75 I r t  I 

2 0.251 ! I 

4.5 

-0.75 I 
0 20 , 4 0  60 80 100 

?he Slep (0.01 seddlv) 
FlWrs 8 .  

Plot of Values lor Angular Velocity for Random Initial Conditions 
solid- Neural Nelwork Determined Value 
deshed- Optimal 

10 '" I, I 

-1 -lo 5 0 J 20 40 60 80 100 

Time Step (0.01 seudiv) 
Figure 9. 

Plot of Values for Control for Random Initial Conditions 
solid- Neural Network Delermined Value 
dashed- Optimal 

Flwrc 10. Time Step (0.01 secJdivision) 
Statexl (pmltbn) U s i i  
System Model and from OpUmai Control of Uneamsd Sysiem lor Penduium 

hom NN with 

- -  _._ .I_ ..____._ - -- 

/ E  
r! 

a3 

oa 

0.2 

ais 

ai 

o m  

0 

400 800 800 ImO 
.".U 

4M 
Flwrc 11. 
Stated (ale)  Using Conbol from NN with Nonhnear Syslem 
Model and lrom OpUmal Control of Uneadzed System for Pendulum 

mm slap pat a d a d h l )  

-2.5- I' I ' ' 3  

I 

0 200 400 €00 800 11 
Flwre 12. Time Slep (0.01 sec4dvislon) 
Stale x3 (veiocity) Uslng Control from NN with NonCureac 
System Model and fm Pplhial Control of Unearhed Syslem for Pendulum 

Flpure IS. 
State x4 (angular velocity) Usiing Control from NN wilh Nonlinear 
Syslem Model and from Optimal Control of Uneanzed Syslem for Pendulum 

Tirns Slep (0.01 aec/dMsion) 

61 9 


	A Dual Neural Network Architecture for Linear and Nonlinear Control of Inverted Pendulum on a Cart
	Recommended Citation

	A dual neural network architecture for linear and nonlinear control of inverted pendulum on a cart

