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Abstract 
This paper presents a class of modified Hopfield 

neural networks (MHNN) and their use in solv- 
ing linear and nonlinear control problems. This 
class of networks consists of parallel recurrent net- 
works which have variable dimensions that can be 
changed to fit the problems under consideration. 
It has a structure to implement an inverse trans- 
formation that is essential for embedding optimal 
control gain sequences. Equilibrium solutions are 
discussed. Numerical results for a motivating air- 
craft control problem (linear) are presented. Fur- 
thermore, we formulate the state-dependent Riccati 
equation method ( SDRE) for a class of nonlinear 
dynamical system and show how MHNN provides 
the solution. Two examples that illustrate the po- 
tential of this network for the SDRE method are 
also presented. 

1 Introduction 

There has been a spurt of activities in the area of 
artificial neural networks (ANN) during the last ten 
years. For a survey of ANN work done in the ar- 
eas of identification and control, see bibliography. 
There are two types of networks used in almost all 
ANN applications, the feedforward network and the 
recurrent network. The former where data flow is 
unidirectional are essentially static; the later, on 
the other hand, are based on feedback connections. 
Due to the feedback connections, the recurrent net- 
works are better suited for control problems which 
are based on closed-loop solutions. 

In this paper, a variation of the Hopfield net- 
work is proposed. Similar to the classic Hopfield 
network, it keeps the characteristic of energy mini- 

mization. However, based on the equilibrium anal- 
ysis, these networks can perform an inverse trans- 
formation on matrices and other auxiliary math- 
ematical operations. This feature allows the net- 
works to produce optimal control gain sequences. 
Unlike any other existing neural networks, inputs 
to the networks are the parameters of system dy- 
namics and control matrices. In addition, this class 
of networks has more degrees of freedom than the 
classic Hopfield networks. match the problems at 
hand. 

There has also been an increasing interest in 
nonlinear control. For quite a long time, LQR and 
its variations have been widely used. Other meth- 
ods based on linear systems theory such as dynamic 
inversion, feedback linearization, and sliding mode 
control are becoming more popular due to the in- 
herent limitation of the linear regulator. A recent 
development in the area of nonlinear regulation is 
SDRE[4-5]. This method converts the nonlinear 
structure of a class of nonlinear problems to a lin- 
ear structure. For a quadratic cost function, the re- 
sultant Riccati equation is state-dependent (hence 
the name SDRE method) though its structure is 
the same as that for the linear cases. The formu- 
lation and development of MHNN is such that it 
helps solve the SDRE-based nonlinear problems. 

2 Modified Hopfield Neural Net- 
works(MHNN) 

2.1 Stability 

MHNN is a variant of the classical Hopfield net- 
work. Fig (1) shows its basic features. 
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We will demonstrate its stability by analyzing 
its dynamics and using an energy function. 

m n 

(2 = 1,2 , .  . . , n) (1) 

If defining the following Lyupunov function as 
an energy function E for MHNN 

we can find thie time derivative of the energy 
function as 

n m d E  - = 
d t  $ (ai  + uiGi + wji 

2=1 j=1 
n \ 

Since Ci > 0, and 9-l (vi) is a monotonically in- 
creasing function, the sum on the right sight of (3) 
is nonnegative, and therefore we have d E / d t  5 0, 
unless dui/& = 0, in which case d E / d t  = 0. This 
means that the evolution of dynamic system (1) in 
state space always seeks the minima of the energy 
surface E. and (2) shows that the outputs vj do 
follow gradient descent paths on the E surface. 

2.2 Solution 

In order to get the analytic expression for the con- 
verged value of the networks, we assume small sig- 
nals and that they work in the linear region of the 
amplifier. difference if we denote the connection 
matrices in the left and right adjoint subnets sepa- 
rately. These connection matrices are nothing but 
the weights wi j .  Let the right connection matrix be 
D1, and the left connection matrix be D2, Under 
these mild assumptions, and with Kirchhofs law, 
we can have a relation in a matrix form as 

Substitute Equation ( 5 )  into Equation (4) to get 

+K2Dyb - U 

When the networks reach equilibrium, 
and 

2.3 Discussion 

Equation (8) gives the general solution for MHNN. 
Compared with the classical Hopfield networks, an 
obvious feature is that this network involves more 
parameters. We may find some applications in 
which these parameters can be taken advantage of. 
Also some of them can be nulled out depending 
upon the desired objective. 

Note we get two factors involved in the inverse 
operation. As a result, the structure of this kind of 
recurrent networks is quite flexible. While the clas- 
sical Hopfield is self-recurrent, that is, it feeds back 
its own output; the variation is mutually recurrent, 
that is, it feeds back the outputs of its two-adjoint 
parts. This architecture can be expanded further 
with ease to three or four subnets or several layers 
as needed. The dimensions of parameters a,  b, D1 
and D2 depend on the applications. K1 and K2 
also can be designed to provide appropriate magni- 
tudes. 

3 Linear Control Application 

3.1 Problem Formulation 
Let the plant to be controlled be described by the 
linear equation 
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with xk E R" and U k  E Rm. The associated per- 
formance index is the quadratic function 

defined over the time interval of interest [i, NI. ma- 
trices can be time-varying. The initial plant state 
is given as xi. We assume that Q k ,  Rk and SN 
are symmetric positive semidefinite matrices, and 
in addition that l R k l  # 0 for all k. 

The Hamiltonian procedure leads to the control, 

where the Kalman gain K k  is given by 

In terms of the Riccati variable S k ,  now 

3.2 Missile Roll Control Problem 

We consider the synthesis of an optimal missile roll 
autopilot in this section. The performance index in 
this application is an infinite-time quadratic cost 
function. The minimizing control is expected to 
maintain the roll orientation close to zero, while 
the roll rate p does not exceed the maximum p,,, 
and the aileron deflection 6, does not exceed the 
limit SmaX . 

The elements of the state space x are 

The matrix A represents the dynamic stability 
derivatives and is given by 

A = [  :: L:] 

The matrix B represents the control derivatives 
and is given by 

B = [0 L61T 

The control variable U represents aileron deflec- 
tion 6. 

The performance index, J ,  is formulated so as 
to keep 4,  p and 6 low and penalize if they exceed 
the prespecified maximum values. i.e. 

+ (2J2] dt (14) 

This performance index can be easily trans- 
formed into an optimal control problem with 

J = 1- (xTQ'x + uTR'u) d t  

The values of the parameters are Lp = -2 
rad/sec, L6 = 9000/ sec2 , a m a x  = 10 deg, p,a, = 
300 deg/sec and Smax = 0.524 rad. 

The controls which are calculated by networks, 
compared with LQR results are shown in Fig (3). 
The states trajectories are shown in Fig (2). We 
can observe that for various initial conditions, the 
control and the state histories for the LQR results 
using MATLAB and MHNN outputs are the same. 
Note that the solid lines in these plots are LQR 
histories, and the dashed lines are results using 
MHNN. 

4 SDRE-Based Nonlinear Control 

4.1 Overview of the Method 

Consider the general infinite-horizon nonlinear reg- 
ulator problem of the form: 

Minimize 

J = Iw (x'Q(x)z + u'R(z)u) d t  
(15) 2 t o  

with respect to the state z and control U subject to 
the nonlinear differential constraint 

According to SDRE [4-51, a suboptimal solution 
of (15)-(16) can be obtained by: 

1. Bring the nonlinear dynamics to the form 

j: = A(x )x  + B(x)u (17) 
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2. Solve the state-dependent Riccati equation 

AT(z)S -t SA(z) 
-SB(z)R-l(z)BT(z)S + Q(z) = 0(18) 

3. Construct the nonlinear feedback controller 
via 

U =: -R-l(z)BT(z)S(z)z (19) 

The properties of this approach are discussed in 
[51. 

4.2 Nonlinear Regulator Examples 

In this section MH:NN approach is applied to two 
nonlinear regulator problems set in SDRE form. 

Example 1 
The first example is the scalar problem found in 

Freeman and KokotoviC [6] and illustrates the fact 
that, in scalar case, the new method produces the 
optimal solution of the nonlinear regulator problem 
( 15)- ( 16). 

Minimize 

J = I- -' lom (x2 + U') dt 
2 

with respect to z and U subject to the constraint 

X = z - .  + U  (21) 3 

The optimal control for this problem is given 
by [61 

Uopt = -(. - .3) - zdz4 - 2.2 + 2 
(22) 

For this problern, 
we use a parameterization of a(x) and b ( z )  in 

Eqn (17) as 

a(.) = 1 - x2 b ( s )  = 1 (23) 

(24) are presented in Fig (4). The MHNN-based 
solution is identical to the exact result. 

Example 2 
Minimize 

J = fp [o 1 0  z+uT [o 2 0  2] U dt 

(25) 

subject to the constraints 

For this problem, 
we select the parameterization as 

1 .f-1 
1 -xf A(.) = 

The numerical results using an exact method 
and MHNN approach with SDRE are presented in 
Fig. (5). We can observe that the SDRE method 
with MHNN produces the nearly the same trajec- 
tories as the exact optimal control. The control his- 
tories are also almost overlapping for most of the 
time. These results show the potential of MHNN 
with SDRE to be an accurate nonlinear controller. 

5 Conclusions 

A class of MHNN has been presented to solve op- 
timal control problems raised in linear and nonlin- 
ear systems. Similar to the Hopfield network, the 
stability of MHNN is guaranteed. But they pro- 
vide more degrees of freedom and flexibility to ac- 
commodate different applications. Optimal control 
is obtained for a four-dimensional aircraft control 
problem. The results for nonlinear control demon- 
strate the potential of this method for online ap- 
plications. Future work on this topic will investi- 
gate the robustness of such network controllers and 
the use of these methods for other relevant appli- 
cations. 

The control is given by * * * *  
U(.) = -s(z)z (24) 

where s(z) is obtained by solving Eqn (18) online 
with MHNN. Numerical results using Eqs (22) and 
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Figure 1: Modified Hopfield Networks 
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