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Analytical Derivation of a Coupled-Circuit Model
of a Claw-Pole Alternator With Concentrated Stator

Windings
Hua Bai, Student Member, IEEE, Steven D. Pekarek, Member, IEEE, Jerry Tichenor, Member, IEEE, Walter Eversman,

Duane J. Buening, Gregory R. Holbrook, Michael L. Hull, Ronald J. Krefta, and Steven J. Shields

Abstract—A lumped-parameter coupled-circuit model of a
claw-pole alternator is derived. To derive the model, analytical
techniques are used to define a three-dimensional (3-D) Fourier-se-
ries representation of the airgap flux density. Included in the
series expansion are the harmonics introduced by rotor saliency,
concentrated stator windings, and stator slots. From the airgap
flux density waveform, relatively simple closed-form expressions
for the stator and rotor self- and mutual-inductances are obtained.
The coupled-circuit model is implemented in the simulation of an
alternator/rectifier system using a commercial state-model-based
circuit analysis program. Comparisons with experimental results
demonstrate the accuracy of the model in predicting both the
steady-state and transient behavior of the machine.

Index Terms—Fourier series, power conversion harmonics, syn-
chronous machines, torque measurement.

I. INTRODUCTION

CLAW-POLE, or so-called “Lundell” alternators are
often used as the power source in finite inertia systems,

including automobiles and aircraft. Although of similar func-
tion, the Lundell alternator is different than machines used in
bulk-power utility applications. In particular, the rotor poles
are shaped in the form of claws and the field winding is wound
concentrically around a cylindrical rotor core. In addition, to
minimize cost, many Lundell machines are constructed using
concentrated stator windings (1 slot/pole/phase).

Over the past several decades significant effort has been
placed on deriving circuit-based models of standard syn-
chronous machines that can be used to evaluate machine
and system performance. Although reasonably accurate for
standard machines, due to the claw-type rotor geometry and the
use of concentrated stator windings, these equivalent-circuit
representations are limited in their ability to characterize
the dynamics of Lundell machines. In particular, a Park’s
circuit cannot be readily used to determine voltage or current
harmonics that result from the claw design or a nonsinusoidal
winding distribution. To obtain an accurate model most analysts
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have relied on finite element (FE) analysis [1]–[4]. Although
FE techniques have been shown to be effective, the computation
time required to obtain a state model can limit their utility. For
example, once a mesh has been generated it requires over 8 h
of CPU time on a 2 552 MHz processor workstation to derive
the model of a claw-pole machine using a three-dimensional
(3-D) FE approach [5]. Thus, although valuable in final-stage
design verification, an FE approach is inefficient for design
iterations that may include selecting winding patterns, pitch
and skew angles, or claw geometry.

As an alternative, some analysts have chosen magnetic equiv-
alent circuit (MEC) analysis to establish models of the Lundell
alternator [6], [7]. In a MEC approach, the principal flux paths
are identified and a magnetic circuit is established that relates
winding currents to flux in all parts of the machine. Although a
valuable tool, significant experience is required to formulate the
model and structure it in a form compatible with commercial cir-
cuit-analysis software. Further, due to the complex geometry of
the rotor claw, partitioning the claw segments and establishing
closed-form permeance expressions for the segmented sections
requires considerable effort. In addition, to model the magnetic
circuit requires the solution of a sizeable system of algebraic
equations at each numerical time step.

In this paper, analytical techniques are used to derive a
fourth-order coupled-circuit model of a three-phase Lundell
alternator. To derive the model, a 3-D Fourier-series represen-
tation of the airgap flux density is established. Included in the
series expansion are the harmonics that are introduced by rotor
saliency, concentrated stator windings, and stator slots. The
airgap flux density waveform is used to obtain closed-form
expressions of the self- and mutual-inductances that are easily
incorporated in commercial circuit-analysis software. Although
several assumptions are required to develop the model, it is
reasonably accurate and provides an efficient means to evaluate
the performance of a claw-pole machine in complex power sys-
tems. In addition, machine dimensions, winding configuration,
skew and pitch angles, and claw geometry are easily modified
to investigate alternative machine designs. To demonstrate
its utility, the coupled-circuit model is implemented in the
simulation of a six-pulse alternator/rectifier system using a
state-model-based circuit analysis program. Comparisons with
experimental results demonstrate the accuracy of the model
in predicting the steady state and transient performance of the
system.

0885–8969/02$17.00 © 2002 IEEE
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Fig. 1. Rotor structure of claw-pole alternator.

Fig. 2. Illustration of reference axes, angles, and dimensions.

II. DEFINITIONS, ASSUMPTIONS, AND MODEL DESCRIPTION

The machine modeled has three wave-wound concentrated
stator windings, 12 poles, 36 stator slots, and rotor poles shaped
in the form of a claw. The rotor structure is shown in Fig. 1. A
simplified diagram of a single pole of the stator/rotor with the
angles and dimensions that are used in the machine analysis is
shown in Fig. 2. They are defined as follows.

Angular position on the stator relative to-axis.
Angular position on the rotor relative to-axis.
Angular position between - and -axis.
Rotor angular velocity (rad/s).
Length of airgap.
Axial position in the airgap.
Axial length of stator.
Number of conductors in a stator slot.
Number of turns of the field winding.
Radius from center of rotor core to the midpoint of the
airgap.

In general, models of electrical machinery are expressed in
terms of so-called “electrical” angles and angular velocities.
These are defined as

(1)

(2)

(3)

(4)

where is the number of poles.
The coupled-circuit model is structured with the electrical dy-

namics of the stator and rotor circuits represented in a form

(5)

(6)

where , , and represent voltage, current, and flux linkages
of respective windings and . The matrices ,

, and contain the self- and mutual-induc-
tances between respective windings. The scalar
represents the self-inductance of the field winding.

The dynamics of the rotor are represented in state model form
as

(7)

(8)

where is the input torque applied to the rotor,the rotor
inertia, and the electromagnetic torque. The electromagnetic
torque can be expressed in terms of the co-energy of the cou-
pling field as [8]

(9)

where

(10)

In order to derive the coupled-circuit model, it is assumed that
1) the iron is of sufficiently high permeability that the drop in
magnetic potential across stator and rotor can be neglected and
2) only the radial component of the flux density is modeled in
the airgap, yielding

(11)

For simplicity, and without loss in generality, only the self- and
mutual-inductances of the phase-a winding are derived herein.
Thus, in subsequent sections represents the airgap flux den-
sity resulting from energization of the phase-a winding.

III. D ERIVATION OF COUPLED-CIRCUIT MODEL

The critical components of the coupled-circuit model are the
self- and mutual-inductances of the respective windings. As-
suming a concentrated winding, the phase-aself-inductance can
be expressed as the sum of a leakage inductance and an in-
ductance that is obtained by integrating over the surface
spanned by a single coil of a single pole of the winding and
multiplying by the number of coil turns and the number of pole
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pairs. In particular, assuming a full-pitch winding with the angle
defined in Fig. 2 and

(12)
where is normalized to the value of winding current and

is defined as the stator leakage inductance. It is important
to note that does not include what some analysts refer to as
leakage due to winding harmonics. These are included within
the integral in (12). Evaluation of is described in Section IV.

Neglecting end-turn mutual inductance, the phase-b to phase-
amutual inductance is found by integrating over the surface
spanned by a single coil of a single pole of the phase-b winding
and multiplying the result by the number of coil turns and the
pole pairs. In particular, for a full-pitch winding that is displaced
from the phase-a winding by 120 electrical degrees

(13)

The field- to phase-a mutual-inductance is obtained by inte-
grating the airgap flux density over the span of a single claw
and multiplying by the number of field turns and pole pairs. As-
suming the base of a claw spans 180 electrical degrees

(14)

In machines with stator and rotor teeth that have uniform di-
mensions along the-axis of the machine, the airgap flux den-
sity is often expressed in a form

(15)

where is a magnetomotive force andis the airgap per-
meance, defined as the permeability of free space over the length
of the airgap [8]. Changes in permeance that result from
variance of the airgap length due to rotor saliency and stator slots
are accounted for by expressingin terms of angular positions
on the stator and rotor [14].

For a claw-pole machine it is difficult to represent the airgap
flux density as an multiplied by a single permeance
function . In particular, not only is the airgap length a func-
tion of the circumferential position on the stator and rotor, the
respective alignment of a stator tooth and a rotor claw is a func-
tion of the axial position . To include the 3-D effects of rotor
saliency and stator slots the airgap flux density is expanded in a
form

(16)

where is an airgap permeance function that is used to ac-
count for changes in airgap length due to rotor saliency, and
is a function that represents the reduction of the flux density
around stator slots. It is noted that if slot harmonics are not of
interest the reduction of the flux density due to stator slots can
be approximated using a Carter-coefficient, in which casebe-
comes a constant. However, in this analysis, the influence of the
slot harmonics on the machine and system performance is ap-
proximated in more detail.

Fig. 3. MMF (normalized) of the phase-a winding.

Derivation of an expression for is accomplished by eval-
uating the three terms on the right-hand side of (16) indepen-
dently. Assuming concentrated stator windings, the magneto-
motive force can be represented as a square wave
function as one traverses the stator of the machine. This is shown
in Fig. 3, where a normalized is plotted with respect
to the electrical position on the stator. is normal-
ized to the value of stator current. In reality, the conductors are
distributed across a slot opening, and, therefore, may
have a more gradual change than that represented by a square
wave. However, this discrepancy has only a minor influence on
determining the overall machine performance.

Since is an even function with respect to, it can
be represented in the form of a series as

(17)

To evaluate it is assumed that the airgap length between
claws is sufficiently large that the airgap permeance is zero.
Using this assumption, the permeance has two possible values

above a rotor claw
between rotor claws.

(18)

The reliance on both the angular positionand axial position
results from the claw structure. To establish a closed-form

expression that represents (18) a one-dimensional (1-D) series
evaluation is first considered. In particular, at any given axial
position it is possible to establish a Fourier-series representa-
tion of as a function of . To illustrate, the permeance versus
the angular position on the rotor at the midpoint of the claw
length is shown in Fig. 4. The angles and de-
fined in Fig. 4 form the intervals of integration in the evaluation
of the Fourier coefficients. Using these angles a series expres-
sion for the permeance at can be written

(19)

where

(20)
In general, a 1-D series expansion for permeance can be defined
at any axial position by rederiving expressions for the angles
and . Therefore, a 2-D Fourier-series expression for the per-
meance can be derived by establishing a closed-form expression
relating and to .



BAI et al.: ANALYTICAL DERIVATION OF A COUPLED-CIRCUIT MODEL OF A CLAW-POLE ALTERNATOR 35

Fig. 4. Airgap permeance as a function of� at z = l=2.

If the rotor is symmetric, and is defined from the -axis,
the angles are given by

(21)

(22)

Using (21) and (22) to evaluate the Fourier coefficients, a 2-D
permeance can be expressed in a general form

(23)

where

(24)

(25)

(26)

The angle is one-half the width at the tip of the claw as shown
in Fig. 4. It is noted that close inspection of the claw structure
in Fig. 1 shows chamfering of a single side of the claw pro-
ducing a general asymmetry in the rotor structure. Although
complicating the derivation slightly, asymmetries of the rotor
are readily accounted for and result in only a slight change in
the coefficients in (23).

The result of the multiplication of (17) and (23) is a represen-
tation of the airgap flux density around the machine at all an-
gles except the location of stator slots. At the location of stator
slots, the flux density is reduced. Methods of accounting for flux
pulsation around stator teeth have been established using sev-
eral analytical, graphical, and experimental techniques [13]. In
the design of electric machines, the most common method is to

Fig. 5. Stator slot function.

multiply the actual airgap by a Carter coefficient to establish an
effective airgap length. Although accurate, accounting for stator
slots using an effective airgap length does not provide informa-
tion regarding slot harmonics or cogging torque.

To account for slot harmonics, a quasibinary slot function
is used. The function is illustrated using the diagram shown in
Fig. 5. is defined as having a value of 1 at the position where
there is a tooth, and a value ofat the position at the location
of a slot. The value of represents the ratio of the flux density
at the center of the slot to the flux density at the center of the
stator tooth assuming a uniform rotor structure. Its value can be
obtained from the graphical analysis of flux pulsation around
slots [13]. For the machine modeled . It is noted that
using this technique the average value of the slot function is
equal to the Carter coefficient. In reality, the tips of the stator
teeth may saturate, and the airgap flux density does not contain
the abrupt transitions of a square wave. However, this approx-
imation represents a worst case scenario in terms of slot har-
monics and cogging torque amplitude. The slot function can be
expanded in terms of a Fourier series as

(27)

Multiplication of (17), (23), and (27) results in the expression
for airgap flux density that is used in the evaluation of (12)–(14).
Direct evaluation of the integrals is difficult due to the com-
plexity of the series components. As an alternative, the solution
can be found using numerical integration.

The numerical values can be used to establish lookup tables of
inductance and derivatives of inductance versus rotor position.
Alternatively, a curve-fitting routine can provide closed-form
expressions of the self- and mutual-inductance. For the machine
considered, curve-fits to the general forms

(28)

(29)

(30)



36 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 17, NO. 1, MARCH 2002

Fig. 6. Calculated and fitted stator self- and mutual-inductance.

were sufficient to approximate the numerically calculated stator
self- and mutual-inductance and their respective derivatives.
The fitted inductances are shown along with the calculated
values in Fig. 6.

It is interesting to note that in the claw-pole machine with
concentrated stator windings, the phase-a self-inductance is
nearly constant with respect to rotor position. In contrast,
the mutual-inductance has a much more significant variation.
Typically, in the derivation of models of standard salient-pole
machines, the amplitude of the variation of the self- and
mutual-inductances with respect to rotor position is assumed
to be equal, i.e., [8]. Here the difference results
from flux density harmonics introduced by the claw-pole
saliency. It is also interesting to note that in standard machines

[8]. However, the harmonics introduced by the
concentrated stator windings produce a relation .
This difference becomes important when considering the stator
leakage inductance.

IV. L EAKAGE INDUCTANCE CALCULATIONS

The stator and field leakage inductances play an important
role in the dynamic performance of the machine. To calculate
the stator leakage inductance, standard expressions for slot and
end turn leakage were applied [14]. The calculated value was
found to be mH. Out of curiosity the stator leakage
inductance was measured with the rotor in place using a two
step experiment. As a first step, the zero-sequence inductance
was determined.1 By definition, the zero-sequence flux link-
age is obtained by taking one-third the sum of the phase flux
linkages

(31)

1Ideas for a zero-sequence test were obtained from discussions with Dr. S. D.
Sudhoff of Purdue University.

Fig. 7. Circuit for zero sequence inductance measurement.

From the derivations in Section III, adding the phase flux link-
ages results in the expression

(32)

To determine the value of zero-sequence inductance, step
changes in input voltage were applied to series-tied stator
windings as shown in Fig. 7. The input current was measured
during the entire transient, providing an expression for the
derivative of the zero-sequence flux linkage. In particular

(33)

The steady-state zero-sequence flux linkage was obtained by
the numerical integration of (33). The ratio of the calculated

versus measured provided the zero-sequence induc-
tance. Using the calculated value of, the measured leakage
inductance was found to be 0.2 mH, which agreed reasonably
well with the calculated value.

Using analytical expressions for the claw–claw and rotor core
leakage paths, the field winding leakage inductance was calcu-
lated to be 45 mH. To compare with a measured value, the rotor
was removed from the stator housing and the field winding in-
ductance was measured to be 53 mH, which matched well with
the calculated value.

V. MODEL IMPLEMENTATION

In many applications, the claw-pole alternator is connected to
a 6-pulse rectifier as shown in Fig. 8. To validate the lumped-pa-
rameter model, a machine/rectifier simulation was implemented
using the state-model-based simulation language ACSL [9]. The
state model of the machine/rectifier was established using the
Automated State Model Generation Algorithm (ASMG) derived
in [10]. In the application of the ASMG, a system is described by
pertinent branch parameters and circuit topology, similar to the
syntax used in commercial circuit analysis programs, including
Saber [11] and Spice [12]. The composite-system state equa-
tions are established algorithmically, and are solved using stan-
dard numerical integration algorithms.

In the initial study, the stator windings were connected in
a delta-configuration and the rotor speed was held constant at
1800 rpm. A load resistance of 0.24 was connected to the
dc output terminals. The measured and simulated steady-state
field current, phase current, and dc current are shown in Fig. 9.
The measured and simulated electromagnetic torque is shown in
Fig. 10. The measured torque was obtained using a two step pro-
cedure. In the first step, the rotor speed was held fixed with the
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Fig. 8. Alternator/rectifier system.

Fig. 9. Steady-state field current, phase current, and dc current.

Fig. 10. Steady-state electromagnetic torque.

0.24 load connected to the dc terminals. The stator and field
currents were then measured with respect to rotor position. Once
the measured values of current versus rotor position were ob-
tained, the machine was stopped and the rectifier disconnected
from the terminals. Individual power supplies were then placed
across each of the stator windings and the field winding. The
rotor was then locked at an arbitrary angle. Using the individual
power supplies, the stator and field currents were adjusted to the
values that were measured at the respective angle when the ma-
chine was running with the rectifier connected. The torque was

Fig. 11. Measured field, phase, and dc currents.

Fig. 12. Simulated field, phase, and dc currents.

then measured using an in-line torque transducer. The measure-
ment was repeated at one degree (mechanical) increments. From
Fig. 10 it can be seen that the torque is not constant in steady
state. Rather, a torque ripple, resulting from harmonics intro-
duced by rectification, current and back emf harmonics, as well
as cogging torque is apparent. Nonetheless, comparing the mea-
sured and simulated responses it is seen that the torque ripple is
well predicted.

In calculating the response, a fourth-order Runge–Kutta–
Fehlberg algorithm was used with a maximum and minimum
time step of 1 10 and 1 10 , respectively. The local
truncation error, which is used to determine the actual time
step, was set to 1 10 for all state variables. The simulation
required approximately 1 s of CPU time to obtain 0.02 s of the
dynamic response using a 450 MHz Pentium PC.

In the second study, it was assumed that the system was ini-
tially operating in the steady state with a base load resistance of
1 connected to the dc output terminals. A second load resis-
tance of 0.2 was then connected in parallel with the original
load. The measured response is shown in Fig. 11. The simu-
lated response is depicted in Fig. 12. As shown, the measured
and simulated transient responses are in very good agreement.
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VI. SUMMARY

A lumped-parameter coupled-circuit model of a claw-pole al-
ternator is derived. The machine model is implemented in the
simulation and analysis of an alternator/rectifier system using a
state-model-based circuit analysis program. Comparisons with
experimental results demonstrate the accuracy of the model in
predicting the steady state and transient performance of the ma-
chine.
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