

Missouri University of Science and Technology [Scholars' Mine](https://scholarsmine.mst.edu/)

[Chemistry Faculty Research & Creative Works](https://scholarsmine.mst.edu/chem_facwork) [Chemistry](https://scholarsmine.mst.edu/chem) Chemistry

01 Jan 2024

A Comparative Study Of Cationic Copper(I) Reagents Supported By Bipodal Tetramethylguanidinyl-Containing Ligands As Nitrene-Transfer Catalysts

Suraj Kumar Sahoo

Brent Harfmann

Himanshu Bhatia

Harish Singh

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/chem_facwork/3687

Follow this and additional works at: [https://scholarsmine.mst.edu/chem_facwork](https://scholarsmine.mst.edu/chem_facwork?utm_source=scholarsmine.mst.edu%2Fchem_facwork%2F3687&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the Inorganic Chemistry Commons

Recommended Citation

S. K. Sahoo et al., "A Comparative Study Of Cationic Copper(I) Reagents Supported By Bipodal Tetramethylguanidinyl-Containing Ligands As Nitrene-Transfer Catalysts," ACS Omega, American Chemical Society, Jan 2024.

The definitive version is available at <https://doi.org/10.1021/acsomega.4c00909>

This work is licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/).

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Chemistry Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A Comparative Study of Cationic Copper(I) Reagents Supported by Bipodal Tetramethylguanidinyl-Containing Ligands as Nitrene-Transfer Catalysts

Suraj [Kumar](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Suraj+Kumar+Sahoo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Sahoo, Brent [Harfmann,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brent+Harfmann"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Himanshu](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Himanshu+Bhatia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Bhatia, [Harish](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Harish+Singh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Singh, Srikanth [Balijapelly,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Srikanth+Balijapelly"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Amitava [Choudhury,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amitava+Choudhury"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) and Pericles [Stavropoulos](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pericles+Stavropoulos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-9-0)

(10:2 v/v). Good yields have been obtained for sec-benzylic and tert-C−H bonds of various substrates, especially with the more electron-deficient catalyst $[(\text{TMG}_2\text{biphen}^{\text{N-Ar}})\text{Cu}^{\text{I}}-\text{NCMe}](\text{PF}_6).$ In conjunction with earlier studies, the order of reactivity of these bipodal cationic reagents as a function of the metal employed is established as $Cu > Fe > Co \geq Mn$. However, as opposed to the base-metal analogues, the bipodal Cu reagents are less reactive than a similar tripodal Cu catalyst. The observed fluorophilicity of the bipodal Cu compounds may provide a deactivation pathway.

■ **INTRODUCTION**

Transition-metal-mediated atom/group transfer reactions open avenues toward exploiting ubiquitous C−H and C�C bond feedstock, such as that present in hydrocarbons, to insert new functionalities found extensively in commodity and fine chemicals.¹ Among different atom- (e.g., H, O, S, Halogen)^{2−} or group-transfer processes (e.g., boryl, carbene, nitrene), $8-10$ $8-10$ $8-10$ nitrene insertion/addition to C−H/C�C bonds generates aminated and aziridinated products that are encountered in a plethora of natural products possessing antineoplastic and antibiotic properties or in fine chemicals, pharmaceuticals, and agrochemicals.^{11,[12](#page-10-0)} In addition, highly strained three-membered aziridines can act as valuable intermediates, since they can undergo stereo- or regio-specific transformations via ring opening, expansion, or rearrangement to afford a vast array of chemicals.¹³

Among three commonly employed synthetic strategies (cyclization of 1,2-amino precursors, addition of C_1 sources to imines, addition of N₁ sources to olefins),^{[14](#page-10-0)} the N₁+C₂ methodology is used more frequently than others by means of organocatalytic and metal-dependent reagents, the latter employing middle or late first-row transition-metal ele-
ments,^{[15](#page-10-0)−[20](#page-11-0)} coinage metals,^{[21](#page-11-0),[22](#page-11-0)} and platinum-group ele-ments,^{15–20} coinage metals,^{21,22} and platinum-group ele-
ments.^{[23](#page-11-0)–[25](#page-11-0)} Issues of selectivity (chemo, regio, stereo, or enantio) have been addressed by using suitably developed supporting frameworks, such as porphyrinoid, C₂-symmetric chiral salen, and bis(oxazoline) ligands, as well as by virtue of the more recently developed genetically engineered hemeproteins. 26 The nitrene moiety (NR) transferred with the assistance of these reagents to olefinic substrates or C−H bonds is sourced from a variety of nitrene or nitrenoid precursor groups $(NR, NR(X))$, most commonly by means of iminoiodinanes, 27 organic azides, 28 haloamines, 29 N/O-substituted hydroxyl amines, 30 and N-tosyl carbamates. 31

In previous work from our laboratory,^{[32](#page-11-0)} a Cu(I) cationic reagent supported by an $[N_3N]$ ligand scaffold [\(Figure](#page-2-0) 1, left) featuring superbasic tetramethylguanidinyl arms $(TMG_3$ trphen, relevant to TMG_3 tren)^{33,[34](#page-11-0)} was explored as a versatile catalyst in various olefinic aziridination and hydrocarbon C−H amination reactions. More recently, the

Received: January 28, 2024 Revised: March 2, 2024 Accepted: March 7, 2024 Published: March 21, 2024

Figure 2. Bipodal $[N_2N]$ Copper(I) Compounds Used in This Study (PF₆ \bar{C} Counteranion).

Scheme 1. Synthesis of the Bipodal Ligand TMG₂biphen^{N-Ar} (Ar = 4-CF₃Ph-)

TMG3 trphen ligand and its bipodal analogue TMG₂biphen^{N−Me} (Figure 1, right) were employed to generate a family of cationic reagents featuring divalent base metals $M(II)$ (M = Mn, Fe, Co).^{[35](#page-11-0)} Among these M(II) reagents, the bipodal catalysts are significantly more productive than tripodal congeners in nitrene-transfer chemistry, with an order of reactivity of Fe $>$ Co \geq Mn, applicable to both bipodal and tripodal reagents. The relevant reactivity involves aziridination of olefinic substrates as well as construction of five-membered *N*-heterocycles (imidazolines,^{[36](#page-12-0)} pyrrolidines,³ $oxazolidines³⁸$ $oxazolidines³⁸$ $oxazolidines³⁸$ from olefins and an additional unsaturated cosubstrate (dipolarophile: MeCN, olefin, ketone). However, by comparison to the tripodal $[(TMG_3trphen)Cu^I]^+$ reagent noted above, all of these $M(II)$ reagents are by far inferior as catalysts in C−H amination reactions and more modestly yielding in C�C aziridination reactions.

Incidentally, when the equatorial TMG residues of the $[N_3N]$ ligand scaffold are replaced by N-amido residues featuring alkyl, aryl, or acyl substituents, the resulting library of *anionic* tripodal M(II) reagents ($M = Mn$, Fe, Co)^{[39](#page-12-0),[40](#page-12-0)} is only effective in selective aziridinations of aromatic olefins, presumably due to the diminished electrophilicity of the active metal nitrene moiety.

In the present publication, we explore the missing link in the family of bipodal cationic reagents, i.e., $Cu(I)$ catalysts, which could potentially be most reactive in nitrene-transfer chemistry vis-à-vis alkanes and alkenes, if the trend noted above holds.

For this purpose, novel $Cu(I)$ complexes with the aforementioned TMG₂biphen^{N−Me} bipodal ligand (featuring a terminal N−Me moiety) (Figure 2, left) and a new bipodal congener $(TMG_2biphen^{N-Ar})$ (Figure 2, right) are explored. The latter possesses an N−aryl moiety ($Ar = 4-CF_3Ph$ -), in an attempt to evaluate the effect of an electron-deficient and oxidatively robust terminal group in lieu of the oxidatively vulnerable N−Me alternative. Our investigation of C−H aminations and $C=C$ aziridinations with these new catalysts establishes that although the bipodal $Cu(I)$ reagents are superior to the divalent base-metal bipodal congeners (Cu > Fe > Co > Mn), they are curiously inferior to the tripodal $Cu(I)$ analogue, $[(TMG_3trphen)Cu^I]⁺$.

■ **RESULTS AND DISCUSSION**
 Synthesis of Ligands and Compounds. The synthesis of the bipodal ligand $TMG_2biphen^{N-Me}$ has been previously described.^{[37](#page-12-0)} The new bipodal ligand $(TMG_2biphen^{N-Ar})$ $([(Me₂N)₂C=N-(2-C₆H₄)]₂N-(4-(tribuorometryl)phenyl))$ is synthesized in a similar three-step manner (Scheme 1, ORTEP diagram shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) S1), starting with the synthesis of N-(4-(trifluoromethyl)phenyl)-(2,2′-dinitro) diphenylamine (ORTEP diagram, [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) S2) via a nucleophilic substitution reaction between 4-(trifluoromethyl)aniline and 1 fluoro-2-nitrobenzene in the presence of K_2CO_3 (base) in DMSO. The nitro compound is then reduced to the

Scheme 2. Synthetic Routes for Bipodal Cu(I) Compounds 1−3

Figure 3. ORTEP Diagrams of $[(TMG_2biphen^{N-Me})Cu^I-I]$ (1) , $[(TMG_2biphen^{N-Me})Cu^I-NCMe](PF_6)$ (2) and $[(TMG_2biphen^{N-Ar})Cu^I-P^I]$ NCMe](PF₆) (3) (cations only) drawn with 40% thermal ellipsoids. Selective interatomic distances (Å) and angles (deg) for 1: Cu(1)−N(1) = 2.302(2), Cu(1)-N(2) = 2.076(2), Cu(1)-N(5) = 2.069(2), Cu(1)-I(1) = 2.4978(4), N(1)-Cu(1)-N(2) = 78.14(8), N(1)-Cu(1)-N(5) = 77.31(8), N(2)−Cu(I)−N(5) = 104.88(9), N(1)−Cu(1)−I(1) = 115.26(6), N(2)−Cu(1)−I(1) = 124.10(6), N(5)−Cu(1)−I(1) = 130.70(6). For 2: Cu(1)-N(1) = 2.289(2), Cu(1)-N(2) = 2.069(2), Cu(1)-N(5) = 2.035(2), Cu(1)-N(8) = 1.902(3), N(1)-Cu(1)-N(2) = 78.78(9), $N(1)-Cu(1)-N(5) = 77.85(9), N(1)-Cu(1)-N(8) = 120.48(11), N(2)-Cu(1)-N(5) = 112.2(9), N(2)-Cu(1)-N(8) = 111.53(10),$ and N(5)−Cu(1)−N(8) = 135.20(10). For 3: Cu(1)−N(1) = 2.474(3), Cu(1)−N(2) = 2.004(3), Cu(1)−N(5) = 2.085(3), Cu(1)−N(8) = 1.897(3), $N(1)-Cu(1)-N(2) = 76.71(11), N(1)-Cu(1)-N(5) = 74.42(10), N(1)-Cu(1)-N(8) = 120.44(12), N(2)-Cu(1)-N(5) = 104.65(12),$ $N(2)-Cu(1)-N(8) = 135.23(13)$, and $N(5)-Cu(1)-N(8) = 119.47(12)$.

Scheme 3. Formation of 4 and 5 from "Aged" Samples of 2

corresponding N-(4-(trifluoromethyl)phenyl)-(2,2'-diamino)diphenylamine (ORTEP diagram, [Figure](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) S3) with the assistance of hydrazine over 10% Pd/C in ethanol. The bipodal ligand $TMG_2biphen^{N-Ar}$ can then be obtained in excellent yields by coupling the diamine with chlorotetramethylformamidinium chloride (prepared by chlorination of tetramethylurea with oxalyl chloride) in the presence of triethylamine in acetonitrile.

The bipodal copper (I) reagents can be obtained via two different synthetic procedures (Scheme 2). The iodide precursor $[(\text{TMG}_2\text{biphen}^{\text{N}-\text{Me}})\text{Cu}^{\text{I}}\text{--}\text{I}]$ (1) was first synthe-

sized from the reaction of ligand TMG₂biphen^{N−Me} and anhydrous copper(I) iodide in acetonitrile, followed by removal of the iodide with the assistance of $TIPF_6$ in MeCN to afford $[(TMG_2biphen^{N-Me})Cu^I-NCMe](PF_6)$ (2). The compound can be recrystallized from MeCN/Ether as colorless crystals under strict anaerobic conditions. A similar procedure has been previously followed in the synthesis of $[(\text{TMG}_2\text{biphen}^{\text{N-Me}})\text{M}^{\text{II}}-(\text{NCMe})_x](\text{PF}_6)_2$ (M = Mn (*x* = 3), Fe $(x = 3)$, Co $(x = 2)$.^{[37](#page-12-0)} Alternatively, compounds $[(TMG_2{\rm biphen}^{N-Me})Cu^I-NCMe](PF_6)$ (2) and $[(\text{TMG}_2 \text{biphen}^{N-Ar})\text{Cu}^I-\text{NCMe}](\text{PF}_6)$ (3) can be obtained

Figure 4. ORTEP diagrams of $[(TMG_2biphen^{N-Me})_2Cu_2(PF_6)](PF_6)_2$ (4) and $[(TMG_2biphen^{N-Me})_2Cu_2(\mu_2-F)_2](PF_6)_2$ (5) species drawn with 40% thermal ellipsoids. Selective interatomic distances (Å) and angles (deg) for 4: Cu(1)−N(1) = 2.043(12), Cu(1)−N(2) = 1.922(11), Cu(1)− $N(5) = 1.942(11)$, Cu(1)−F(1) = 1.992(8), Cu(2)−N(8) = 2.074(11), Cu(2)−N(9) = 1.948(11), Cu(2)−N(12) = 1.898(10), Cu(2)−F(5) = 2.404(7), Cu(2)−F(6) = 1.984(8), N(2)−Cu(1)−N(1) = 84.8(5), N(5)−Cu(1)−N(1) = 86.9(5), N(2)−Cu(1)−N(5) = 154.8(5), N(2)− $Cu(1)-F(1) = 97.2(4)$, N(5)-Cu(1)-F(1) = 98.6(4), F(1)-Cu(1)-N(1) = 160.3(4), N(9)-Cu(2)-N(8) = 86.3(5), N(12)-Cu(2)-N(8) = 86.1(5), N(12)–Cu(2)–N(9) = 151.3(5), N(9)–Cu(2)–F(5) = 112.5(4), N(12)–Cu(2)–F(5) = 95.8(4), N(8)–Cu(2)–F(5) = 96.2(4), $N(9)-Cu(2)-F(6) = 97.3(4)$, $N(12)-Cu(2)-F(6) = 98.9(4)$, $F(6)-Cu(2)-N(8) = 160.6(4)$, $F(6)-Cu(2)-F(5) = 64.7(3)$. For 5: Cu(1) – $N(1) = 2.395(3)$, Cu(1) – $N(2) = 1.959(3)$, Cu(1) – $N(5) = 1.996(3)$, Cu(1)–F(1) = 1.947(2), Cu(1)–F(1)#1 = 1.916(2), F(1)#1–Cu(1)– $F(1) = 77.31(9), F(1) + 1 - Cu(1) - N(2) = 167.10(11), F(1) - Cu(1) - N(2) = 89.81(11), F(1) + 1 - Cu(1) - N(5) = 92.58(10), F(1) - Cu(1) - N(5)$ $= 168.67(10)$, N(2)−Cu(1)−N(5) = 100.17(12), F(1)#1–Cu(1)−N(1) = 106.34(10), F(1)−Cu(1)−N(1) = 112.48 (10), N(2)−Cu(1)−N(1) = 79.12(11), and N(5)–Cu(1)–N(1) = 75.02(11).

more conveniently, and in slightly better yields, via the direct reaction of the ligand with $\left[\text{Cu}(\text{NCMe})_4\right](\text{PF}_6)$ in acetonitrile ([Figure](#page-3-0) 3).

Notably, aged solutions of $[(\text{TMG}_2\text{biphen}^{\text{N-Me}})\text{Cu}^{\text{I}}$ $NCMe$ ^{[(PF₆) (2), even under anaerobic conditions, show} partial decomposition in MeCN/THF, precipitating a small amount of light-brown needles and green-plate crystals ([Scheme](#page-3-0) 3). While no significant samples can be garnered from these solutions for detailed analytical studies, the two phases have been characterized by single-crystal X-ray analysis (Figure 4) to reveal an intriguing dimeric mixed-valent $Cu(I)/$ $Cu(II)$ compound $[(TMG_2biphen^{N-Me})_2Cu_2(PF_6)](PF_6)$ ₂ (4) (light brown) and a dimeric Cu(II) species $[(\text{TMG}_2 \text{biphen}^{\text{N}-\text{Me}})_2 \text{Cu}_2(\mu_2 \text{-F})_2](\text{PF}_6)_2$ (5) (green), featuring progressive PF_6^- activation (defluorination).

Solid-State Structures and Solution Behavior. The three distinct copper(I) compounds $[(TMG_2biphen^{N-Me})$ -Cu^I–I] (1), [(TMG₂biphen^{N–Me})Cu^I–NCMe](PF₆) (2), and $[(\text{TMG}_2\text{biphen}^{\text{N-Ar}})\text{Cu}^{\text{I}}-\text{NCMe}](\text{PF}_6)$ (3) have been crystallographically characterized by single-crystal X-ray diffraction analysis ([Figure](#page-3-0) 3). All three $Cu(I)$ compounds are fourcoordinated by a facially attached $[N_2N]$ ligand and a fourth residue (I or MeCN), demonstrating an overall geometry that according to Houser's *τ*⁴ index (0.75 (1), 0.74 (2, 3)) lies between trigonal pyramidal and seesaw. 41 As expected, slightly tighter Cu−Ngua bond distances are revealed for cationic compounds 2 and 3 by comparison to those of neutral compound 1. The difference of basicity between the diarylmethylamine- (2) and triarylamine-supported (3) frameworks is reflected in the length of the corresponding Cu(1)− N(1) bond distance (2.289(2) (2), 2.474(3) (3) Å). The strong donor character of the superbasic TMG residue upon metalation can be evaluated by the degree of charge delocalization over the CN_3 triangle, as depicted by the structural parameter $\rho = 2a/(b + c)$, where *a* is the C=N bond distance and *b* and *c* are the two C−NMe₂ bond distances.⁴²

Although for the bipodal ligands TMG_2 biphen^{N−Me} and TMG₂biphen^{N−Ar} the length of the C $=N$ bond is 94 and 96%, respectively, of the average C−NMe₂ bonds (i.e., ρ = 0.94, 0.96), for the three $Cu(I)$ compounds that are supported by TMG residues, the corresponding bond lengths are essentially equivalent $(\rho = 0.97 \ (1-3))$.

Compound 4 is a dimeric species with a central PF_6^- unit bridging the two Cu sites via fluorine atoms (Figure 4). Each Cu site is coordinated facially by a $[N_2N]$ ligand scaffold and by two PF₆⁻-derived F atoms, although the two Cu−F bond distances vary considerably (by approximately 0.5 Å), further affecting the corresponding P−F bond distances to a lesser degree. The two Cu sites are related by an approximate pseudoinversion center lying at the central P atom. No significant metrical differences are observed in the coordination sphere of the two Cu centers, suggesting that the oxidation state is rather delocalized. The mean Cu−N bond distance in 4 is shorter than that observed with 2, in accordance with the higher oxidation state of the former compound. Compound 5 features similar characteristics, but in this case, a rigorous inversion center lies in the middle of the $Cu₂(\mu₂-F)₂$ parallelogram (Figure 4). The two Cu–F bond distances only differ by 0.031 Å and are shorter than those encountered in 4, presumably due to the expulsion of the phosphorus core and the higher oxidation state of Cu in 5. The average Cu−N bond distances are a little longer in 4 rather than 5, probably in response to the stronger Cu−F bonds in the latter compound, making 5 a bona fide 5-coordinate species. Summaries of crystallographic data are collected in [Tables](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) $S1 - S3$.

¹H NMR data for Cu(I) complexes 1–3 in CD₃CN solutions show that all eight methyl groups coalesce to a broad signal at 27 °C, indicating exchange due to rotation around all three N−C bonds. The rotation is progressively restricted with decreasing temperature [\(Figures](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) S4 and S5),

Entry No.	Substrates	Products	Yield (%) (2)	Yield (%) (3)
1.		$R = H$	98	93
2.		$R = Me$	92	94
3.		$R = {}^tB u$	94	95
4.		$R = OMe$	80	90
5.	R	NTs $R = OtBu$	90	95
6.		$R = Cl$	97	92
7.		$\mathbf{R}=\mathbf{F}$	98	92
8.		$R = CF_3$	98	91
9.		$R = NO2$	88	86
10.		\sup_{t}	67	65
11.		NHTs ŅTs NTs $\ddot{}$ ᆗ	49, 2, n.d.	50, 4, 6
12.	Ph	Ph -OH - V NTs + NHTs	44, 8, 18	42, 7, 12
13.		NTs NTs	54, 31	55, 30
14.		\neg NTs	74	73
15.	Ph	NTs NTs Ph Ph	40, 39	37, 34
16.	Ph	NTs -Ph	71	65
17.		$\ddot{}$ NHTs	46, 3	42, 5
18.		NTs	58	60
19.		ŅTs NTs	29, 28	31,30
20.		ŅTs	65	61

Table 1. Yields of Aziridination and Amination Products Generated in Cu(I)-Mediated Nitrene Transfer to Various Olefins*^a*

a Catalyst, 0.0125 mmol (5 mol %); PhINTs, 0.25 mmol; olefin, 2.0 mmol; MS 5 Å, 20 mg; MeCN 0.250 g; 30 °C; 2 h.

and eventually, all eight methyl groups resolve to eight distinct peaks ranging from δ 1.2 to 3.5 ppm at -30 °C.

Cyclic voltammograms of $Cu(I)$ compounds 2 and 3 in MeCN are quite complex but similar ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) S6), demonstrating an irreversible anodic event followed by a semireversible wave at higher potentials ($E_{1/2}$ = −0.01 (2) and −0.47 (3) V, referenced versus the Fc^+/Fc couple).^{[43](#page-12-0)} It is not clear at the present time whether these electrochemical changes may encompass defluorination steps as those noted in [Scheme](#page-3-0) 3.

Catalytic Nitrene Transfer to Olefins. Table 1 summarizes the yields of the aziridination of a panel of styrenes (2.0 mmol) by the imidoiodinane PhI = NTs (0.25 mmol) conducted in MeCN in the presence of catalytic amounts of Cu(I) catalysts 2 and 3 (5 mol %) at 30 °C. Molecular sieves are necessary for obtaining good yields.

Entries 1−9 feature a series of electron-diverse, parasubstituted styrenes, which undergo facile aziridination with excellent yields, achieving reaction completion under 2 h, even if electron-withdrawing para-substituents are employed (entries 8, 9). Good but more moderate yields are observed in the aziridination of the bulky ortho-substituted 2,4,6-trimethylstyrene (entry 10). This substrate is also electronically hampered due to the orthogonal orientation of the aromatic/

olefinic planes.^{[44](#page-12-0)} Good yields are further observed in the aziridination of *α*-substituted styrenes (entries 11 and 12). Small amounts of allylic amination are observed with *α*methylstyrene as noted in previous studies. $32,37$ $32,37$ Interestingly, minute amounts of a 2,4-substituted 2-imidazoline^{[45](#page-12-0)} are observed with the more acidic catalyst 3, most likely resulting from MeCN insertion upon aziridine ring opening, as discussed in a previous publication from our lab.[37](#page-12-0) For *α*phenylstyrene (entry 12), the corresponding aziridine remains the main product, but small amounts of enamine (due to aziridine ring-opening and rearrangement) 46 and a hydroamination byproduct (apparently via nucleophilic attack by residual water on an intermediate ring-opened benzylic carbocation) are also observed. The mechanistically instructive *β*-substituted styrenes (entries 13−16) afford good to high yields of the corresponding aziridines, although poor retention of stereochemistry is observed with the diagnostic cis-*β*-Rstyrenes (cis/trans = 1:0.57 (2), 1:0.55 (3), R = Me; 1:0.98 (2) , 1:0.92 (3) , R = Ph). By way of contrast, previously studied Fe(II) sites supported by TMG₂biphen^{N-Me} provide lower yields but higher retention of stereochemistry (up to 93%) in the aziridination of cis- β -methylstyrene.³⁷ Entry 17 provides an example in which both aziridination and allylic amination occur, although the aziridinated product dominates the product profile with both copper reagents. Certain electronrich, alkyl-substituted olefins (entries 18−20) have also been subjected to aziridination. Gratifyingly, they provide good aziridination yields but no further improvement in the retention of stereochemistry (entry 19). Overall, catalysts 2 and 3 do not show any significant variations in product yields or selectivity outcomes.

Catalytic Nitrene Transfer to Alkanes. Initial investigations involving C−H bond aminations, mediated by catalysts 2 and 3, were carried out by employing the benchmark substrate ethylbenzene and two different nitrene
sources (PhINTs, PhINTces^{[47](#page-12-0)−52}), in several solvents. Although PhINTs proved to be a good nitrene source for aziridination reactions, it provided rather moderate yields in ethylbenzene amination under various conditions (Table 2).

Table 2. Optimization of Ethylbenzene Amination Using PhINTs and PhINTces*^a*

	н	Catalyst (5 mol%) PhI= $NR(0.50$ mmol) solvent, mol. sieves,		NHR	
	0.25 mmol	30 °C, 16 h			
				$R = Ts$ or Tces	
	yield $(\%)$ catalyst 2			yield $(\%)$ catalyst 3	
entry no	solvent	PhINTs	PhINTces	PhINTs	PhINTces
1.	DCM	20	37	22	38
2.	HFIP	53	55	44	56
3.	PhCl	35	38	18	32
4.	PhCF ₃	36	39	25	38
5.	benzene	20	46	10	33
6.	PhCl:HFIP $(1:1 v)$ $\mathbf{v})$	46	59	40	51
7.	$PhCl: HFIP$ (10:2 v/v)	38	49	35	42
8.	benzene:HFIP $(10:2 \text{ v/v})$	35	53	30	50

a Catalyst, 0.0125 mmol (5 mol %); PhINTs or PhINTces, 0.50 mmol; ethylbenzene, 0.25 mmol; MS 5 Å, 20 mg; solvent 0.250 g; 30 $^{\circ}$ C; 16 h.

On average, the more electrophilic and significantly more soluble PhINTces (presynthesized)^{[50](#page-12-0)} afforded better yields, as shown in Table 2. Interestingly, PhINTces can be crystallized from acetonitrile or acetone to afford XRD-quality crystals (Figure 5), but it is known to be sensitive to light and heat, especially in halogenated solvents.

The most productive reaction stoichiometry was proven to be with an excess of $PhI = NR$ (2 equiv) over substrate and 5 mol % catalyst (2 or 3) in a variety of halogenated and nonhalogenated solvents at 30 °C over a period of 16 h. In one instance, TFE (trifluoroethanol) was used as a solvent in the presence of catalyst 2 and PhINTs, and the solvent was found to undergo nitrene insertion preferentially, to form the hemiaminal N-(1-hydroxy-2,2,2-trifluoroethyl)−4-methyl-benzenesulfonamide 53 in 50% yields (Scheme 4). Further trials indicated that HFIP (entry 2) was beneficial with both catalysts, affording \geq 50% yields. This can be attributed to the fact that HFIP offers better solubility to the nitrene sources (especially with PhINTces) but may also offer moderate Lewis-acid characteristics in enhancing the electrophilicity of the putative metal nitrene oxidant.⁵⁴ It was further found that

Figure 5. ORTEP diagram of PhINTces drawn with 40% thermal ellipsoids. Selective interatomic distances (Å) and angles [°]: I(1)– $N(1) = 2.011(4), I(1) - C(1) = 2.091(5), S(1) - N(1) = 1.578(5),$ $S(1)-O(1) = 1.419(4), S(1)-O(2) = 1.416(4), S(1)-O(3) =$ 1.618(4), and O(3)–C(7) = 1.422(6), Cl(1)–C(8) = 1.742(6), $Cl(2)-C(8) = 1.769(6), Cl(3)-C(8) = 1.772(6), N(1)-I(1)-C(1)$ $= 98.00(19)$, N(1)–S(1)–O(3) = 107.1(2), and O(1)–S(1)–N(1) $= 115.2(2), O(2) - S(1) - N(1) = 107.6(2), O(2) - S(1) - O(1) =$ 118.8(2), and $O(3) - C(7) - C(8) = 107.5(4)$, Cl(1)–C(8)–Cl(3) = 109.7(3), and Cl(2)–C(8)–Cl(3) = 109.0(3).

Scheme 4. Preferential Nitrene Insertion into 2,2,2- Trifluoroethanol

yields can be improved more economically by employing small amounts of HFIP in solvents such as benzene or chlorobenzene (entries 6−8). Since PhINTces has poor stability in chlorobenzene over a period of 24 h, we chose to explore benzene/HFIP (10:2 v/v) for further experimentation.

Other benzylic substrates indicate that both prim and tert sites (entries 1 and 2, [Table](#page-7-0) 3) are aminated in low yields, presumably due to stronger C−H bonds (toluene, 90 kcal/ mol)^{[55](#page-12-0)} and steric encumbrance, respectively. Indeed, secbenzylic sites are preferentially aminated, with yields increasing crudely with decreasing BDE values (diphenylmethane, 82 kcal/mol, entry 3).^{[56](#page-12-0)} Slightly better yields are obtained with catalyst 3 for these benzylic substrates, potentially because of the higher electrophilicity anticipated for the metal nitrene oxidant with this catalyst. Tertiary sites of polycyclic alkanes undergo amination in good yields as opposed to any competing secondary sites (entry 4). In general, sec-C−H bonds of cycloalkanes (entries 5 and 6) are low yielding, even if a higher mol % of catalyst is used. Competition between tert/sec/prim−C−H bonds in acyclic hydrocarbons (entry 7) affords only tert-C−H aminations, albeit in low yields. Finally, competition between sec-benzylic and tert-C−H bonds (entry 8) indicates exclusive amination of the benzylic site. Overall, catalyst 3 affords slightly better yields for the entire panel of

Entry No.	Substrate	Products	$\overline{2}$ Yield $(\%)$	$\overline{\mathbf{3}}$ Yield (%)
$1.$		NHTces	11	17
$\mathbf{2}$		NHTces	18	25
3.		NHTces	54	61
4.		NHTces + NHTces	50,6	52, 6
5.		NHTces	12^b	15^b
6.		NHTces	13^b	$20^b\,$
7.		NHTces	7 ^b	12^b
8.		NHTces	36	40

"Reaction conditions: catalyst, 0.0125 mmol (5 mol %); substrate, 0.25 mmol; PhI = NTces, 0.50 mmol; benzene/HFIP (10:2 v/v), 0.15 mL;
molecular sieves (5 Å), 20 mg; t = 16 h; T = 30 °C. ^bCatalyst, 0.0187 mmol (7.5 mol

Figure 6. Linear free energy correlation of $\log(k_x/k_H)$ as a function of σ_p (left) and σ^* (right) for the competitive amination of para-substituted ethylbenzenes versus ethylbenzene catalyzed by $[(TMG_2biphen^{N-Ar})Cu^1-NCMe](PF_6)$ (3).

substrates shown in Table 3. However, previous studies with $Cu(I)$ sites supported by the analogous tripodal TMGcontaining ligand $([(TMG₃trphen)Cu](PF₆))$ provide significantly higher yields for the amination (PhI = NTs) of all types of C−H bonds examined in this study, best highlighted with the challenging sec-C−H bonds (50% yield for the amination of cyclohexane).^{[32](#page-11-0)}

Mechanistic Studies: Hammett Plots. Hammett plots (Figure 6 and [Table](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) S4) have been constructed by conducting competitive amination reactions with the assistance of a panel of seven para-substituted ethylbenzenes (0.125 mmol) versus ethylbenzene (0.125 mmol) by PhI=NTces (0.50 mmol) mediated by 3 (5 mol %) in benzene/HFIP (10:2 v/v) ([Table](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf) [S4](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf)). Liner free energy correlations of $log(k_x/k_H)$ as a function

of σ_p provide marginally acceptable fits ($R^2 = 0.88$), which can be further improved with σ^+ parameters ($R^2 = 0.92$). No significant improvement was realized by invoking both polarand spin-delocalization substituent parameters, confirming the predominance of polar vs spin effects as anticipated for C−H bond cleavage processes. The corresponding ρ^+ value of -0.89 suggests that a significant positive charge develops en route to the transition state at the benzylic position, most likely associated with the frequently turnover-limiting hydrogenatom abstraction. Slightly more negative ρ^+ values were previously calculated for the amination of toluene by the tripodal $[(TMG_3trphen)Cu^T](PF_6)$ catalyst $(\rho^+ = -1.16$ (NTs) , – 0.91 (NNs) ,³² probably reflecting the more modest electrophilic nature of these nitrenes. These sizable negative *ρ*⁺

values are in general agreement with those reported for stepwise C−H aminations ($\left[\text{Ru}_2(\text{hp})_4\text{Cl}\right]$, $\rho^+ = -0.90$; $[\text{Ru}_2(\text{esp})_2\text{SbF}_6]$, $\rho^+ = -1.49$.^{23b} In contrast, more modest negative ρ^+ values are encountered in Rh-catalyzed concerted asynchronous benzylic aminations $(-0.47,57 - 0.55,24a - 1)$ $0.66^{58} - 0.73^{48} - 0.90^{24d}$ $0.66^{58} - 0.73^{48} - 0.90^{24d}$.

■ **CONCLUSIONS**

The following are the most significant findings and insights garnered from this investigation:

- (a) Two cationic bipodal Cu (I) compounds $[(\texttt{TMG}_2\texttt{biphen}^{\text{N}-\texttt{Me}})\texttt{Cu}^{\texttt{I}}-\texttt{NCMe}](\texttt{PF}_6)$ (2) and $[(\text{TMG}_2 \text{biphen}^{\text{N-Ar}}) \text{Cu}^{\text{I}}-\text{NCMe}](\text{PF}_6)$ (3) have been synthesized, featuring coordinated ligation composed of an apical diarylmethyl- (2) and triaryl-N_{amine} residue (3) , respectively, and two N_{imine} residues associated with superbasic TMG arms. The general stoichiometry of these reagents has been confirmed by single-crystal X-ray diffraction analysis, revealing in both cases fourcoordinate Cu(I) sites with a geometry between trigonal pyramidal and seesaw. $^1\mathrm{H}$ NMR data suggests that partial rotation of the TMG moieties is encountered under ambient temperatures, which can be arrested with decreasing temperature.
- (b) Aziridination (PhINTs) of a panel of aromatic olefins by either catalyst indicates that para- and *α*- or *β*substituted styrenes afford excellent yields that are only slightly curbed by the presence of olefinic substituents. On the other hand, modest levels of stereochemical retention are observed with cis olefins. The usually less reactive aliphatic olefins also provide good aziridination yields with only modest stereocontrol. In combination with previous work, 35 the order of reactivity of the cationic metal reagents that are supported by the same bipodal ligand TMG₂biphen^{N−Me}, is established as $Cu > Fe > Co \ge$ Mn.
- (c) Amination of largely sec-benzylic-C−H bonds and tert-C−H bonds of polycyclic substrates can be achieved in better yields with a more electrophilic and soluble Ndonor source (PhINTces), as well as in solvent matrices that contain low amounts of HFIP. As opposed to the previously studied tripodal catalyst $[(TMG_3trphen) Cu^I](PF₆)$, the present bipodal catalysts are rather low yielding with cycloalkanes and acyclic hydrocarbon substrates, as well as with prim- and tert-C−H bonds of benzylic sites. The observed reactivity trend is unexpected, as it is the reverse of what has been previously established for the dicationic base-metal congeners ($M = Mn$, Fe, Co),^{[35](#page-11-0)} as well as in similar iron-oxo chemistry with the assistance of TMG_3 tren and TMG_2 dien ligands.^{[59](#page-12-0)} It is conceivable that the observed fluorophilicity of the bipodal Cu reagents may limit their stability.
- (d) Mechanistic studies carried out with the more reactive catalyst 3 provide reasonably linear free energy correlations with Hammett's *σ*⁺ parameters, featuring negative ρ^+ coefficients within the range expected for stepwise rate-determining hydrogen-atom abstraction by a putative metal nitrene oxidant, generating an intermediate carboradical (or carbocation). The latter

recombines with the incipient Cu−• NHR to form the new C−N bond.

Further experimental and computational studies will address more precisely the geometric and electronic nature of the elusive metal nitrene entity in the bipodal Cu reagents vis-a-vis ̀ that of the tripodal congeners and establish its mode of operation with typical C−H bonds of substrates. Moreover, the fluorophilicity of the present Cu catalysts will be studied in greater detail.

■ **EXPERIMENTAL SECTION**

Safety Warning. *Thallium salts are highly toxic and need to be handled with care*.

Synthesis of Copper Compounds. *[(TMG₂biphen^N^{Me})*-*Cu^I*−*I]* (1). The ligand TMG₂biphen^{N-Me} (0.2047 g, 0.5 mmol) was dissolved in degassed MeCN (15.0 mL), and CuI (0.095 g, 0.5 mmol) was added to this solution. The mixture was stirred overnight to give a pink solution, which was then filtered on an anaerobic frit. Diethyl ether was carefully layered over the MeCN solution, and the solvents were allowed to slowly mix over a period of several days at −35 °C, to afford pale pink to colorless crystalline material suitable for X-ray diffraction analysis. Yield: 0.276 g, 92%. ¹H NMR (243 K, CD₃CN, 1.96 ppm): *δ* 7.55−7.60 (m, 1H), 6.89−7.00 (m, 1H), 6.63−6.49 (m, 1H), 6.30−6.36 (m, 1H), 2.96−3.13 (m, 12H), 2.86 (d, 3H, *J* = 4.6 Hz), 2.69 (d, 3H, *J* = 6.5 Hz), 2.62 (d, 3H, *J* = 5.1 Hz), 2.32 (s, 3H), 1.20 (d, 3H, *J* = 16.8 Hz). 13C NMR (CD3CN): *δ* 158.46, 138.41, 136.71, 128.12, 123.28, 120.67, 119.56, 44.68, 34.35. IR (KBr, cm[−]¹): 3439, 3061, 3012, 2930, 2792, 1626, 1557, 1521, 1488, 1399, 1333, 1265, 1231, 1161, 1035, 859, 745, 691, 520. UV−vis (MeCN): *λ*max (*ε* (M[−]¹ cm⁻¹)) 275 (40120). Elem. Anal. for C₂₃H₃₅CuIN₇: C, 46.04; H, 5.88; N, 16.34. Found: C, 45.99; H, 5.81; N, 16.23.

[(TMG ² biphen ^N ‑ M e)Cu ^I − *MeCN](PF ⁶) (2) .* $[(\text{TMG}_2 \text{biphen}^{\text{N-Me}}) \text{Cu}^{\text{I}} - 1]$ (1) (0.300 g, 0.5 mmol) was dissolved in degassed CH₃CN (10.0 mL), to which TlPF₆ (0.349 g, 1 mmol) was added. Immediate precipitation of a light-yellow solid was observed, indicating the formation of thallium (I) iodide. The mixture was stirred for 6 h and then filtered on an anaerobic frit. Diethyl ether was carefully layered over the MeCN solution, and the solvents were allowed to slowly mix over a period of several days at −35 °C, to afford colorless crystalline material suitable for X-ray diffraction analysis. Yield: 0.420 g, 75%.

Alternatively, the ligand TMG_2 biphen^{N-Me} (0.204 g, 0.5) mmol) was dissolved in degassed MeCN (15.0 mL), and $[Cu(NCMe)₄](PF₆)$ (0.186 g, 0.5 mmol) was added to this solution. The mixture was stirred overnight to give a pale pink solution, which was then filtered on an anaerobic frit. Diethyl ether was carefully layered over the MeCN solution, and the solvents were allowed to slowly mix over a period of several days at −35 °C, to afford colorless crystalline material suitable for X-ray diffraction analysis. Yield: 0.309 g, 90%. ¹ H NMR (243 K, CD₃CN, 1.96 ppm): *δ* 7.58–7.61 (m, 1H), 6.95–7.02 (m, 3H), 6.90 (d, 1H, *J* = 7.8 Hz), 6.68 (t, 1H, *J* = 7.0 Hz), 6.49 (d, 1H, *J* = 7.9 Hz), 6.35 (dd, 1H, *J* = 1.8, 7.3 Hz), 3.08 (s, 3H), 3.07 (s, 3H), 2.99 (s, 3H), 2.96 (s, 3H), 2.86 (s, 3H), 2.71 (s, 3H), 2.63 (s, 3H), 1.98 (s, 3H), 1.18 (s, 3H). ¹³C NMR (CD₃CN): δ 164.01, 147.35, 126.42, 121.39, 121.23, 118.05, 117.87, 117.68, 44.85, 39.43. ¹⁹F-NMR (CDCl₃): − 71.99, − 73.87. FT-IR (KBr, cm[−]¹): 3002, 2934, 2891, 1530, 1479, 1423, 1410, 1393, 1343, 1155, 1027, 834, 757, 557, 526,

498. UV−vis (MeCN): *λ*max (*ε* (M[−]¹ cm[−]¹)) 280 (26583), 220 (46658). Elem. Anal. Calcd for $C_{25}H_{38}CuF_6N_8P$: C, 45.56; H, 5.81; N, 17.00. Found: C, 45.59; H, 5.87; N, 17.05.

[(TMG2biphen^N−*Ar)CuI* −*MeCN](PF6) (3).* The ligand TMG₂biphen^{N−Ar} (0.269 g, 0.5 mmol) was dissolved in degassed MeCN (15.0 mL), and $\left[Cu(NCMe)₄\right](PF₆)$ (0.186 g, 0.5 mmol) was added to this solution. The mixture was stirred overnight to give a pale gray solution, which was then filtered on an anaerobic frit. Diethyl ether was carefully layered over the MeCN solution, and the solvents were allowed to slowly mix over a period of several days at −35 °C, to afford colorless crystalline material suitable for X-ray diffraction analysis. Yield: 0.306 g, 85%. ¹H NMR (243 K, CD₃CN, 1.96 ppm): *δ* 7.51 (d, 1H, *J* = 8.8 Hz), 7.46 (d, 1H, *J* = 8.3 Hz), 7.03−7.17 (m, 5H), 6.81−6.91 (m, 2H), 6.57 (d, 2H, *J* = 8.2 Hz), 6.49 (d, 1H, *J* = 9.0 Hz), 3.07 (s, 3H), 3.05 (s, 3H), 2.85 (s, 3H), 2.82 (s, 3H), 2.73 (s, 3H), 2.66 (s, 3H), 2.21 (s, 3H), 1.98 (s, 3H), 1.20 (s, 3H). ¹³C NMR (CD₃CN): δ 164.79, 153.75, 148.65, 127.88, 126.73, 126.29, 126.25, 124.05, 122.76, 122.44, 122.17, 121.93, 117.88, 65.86, 39.77. 19F-NMR $(CDCl_3):$ – 62.04, – 72.04,, – 73.91. FT-IR (KBr, cm⁻¹): 2935, 2893, 1613, 1530, 1483, 1422, 1394, 1324, 1279, 1158, 1103, 1064, 1028, 833, 752, 556, 509. UV−vis (MeCN): *λ*max $(\varepsilon (M^{-1} \text{ cm}^{-1}))$ 294 (28082). Elem. anal. for $C_{31}H_{39}CuF_9N_8P$: C, 47.18; H, 4.98; N, 14.20. Found: C, 47.09; H, 4.93; N, 14.15.

Catalytic and Mechanistic Studies. *General Catalytic Olefin Aziridination Procedure.* All catalytic reactions were carried out under nitrogen atmosphere in an MBraun Drybox $(O_2, H_2O < 1$ ppm). In a typical experiment, a 20 mL screwcap vial containing a small magnetic bar was charged in sequence with the catalyst (0.0125 mmol with respect to Cu), N-(*p*-tolylsulfonyl)imido-phenyliodinane (93.3 mg, 0.25 mmol), molecular sieves (5 Å) (20 mg), olefin (2.0 mmol), and acetonitrile (0.250 g) (as stated in [Table](#page-5-0) 1). The reaction mixture was stirred vigorously at 30 °C for 2 h (unless otherwise stated). After completion of the reaction, the products were isolated by column chromatography (silica gel) and quantified by ¹H NMR (in CDCl₃ or CD₃CN) versus an internal standard (4′-methoxyacetophenone). All aziridines, $32,39,40$ $32,39,40$ $32,39,40$ $32,39,40$ any allylic/benzylic amination products $39,40,60$ $39,40,60$ and insertion products 35 [\(Table](#page-5-0) 1) are known compounds. They have been identified with the assistance of $^{\mathrm{I}}\mathrm{H}$ NMR, by comparison with spectroscopic features reported for authentic samples in the literature.

General Procedure for Amination of Hydrocarbons. All catalytic reactions were carried out under nitrogen atmosphere in an MBraun Drybox $(O_2, H_2O < 1$ ppm). In a typical experiment, a 20 mL screw-capped vial containing a small magnetic stir-bar was charged with the catalyst (0.0125 or 0.01875 mmol with respect to Cu), N-(p-tolylsulfonyl)iminophenyliodinane (186.6 mg, 0.50 mmol), or 2,2,2 trichloroethyl(phenyl-*λ*³ -iodanylidene)sulfamate (215.24 mg, 0.50 mmol), molecular sieves (5 Å) (20 mg), substrate (0.25 mmol), and the specified solvent (0.15 mL), added sequentially. The reaction mixture was stirred vigorously for 16 h. After completion of the reaction, the products were isolated by column chromatography (silica gel) and quantified by ¹H NMR (in CDCl₃ or CD₃CN) versus an internal standard (4′-methoxyacetophenone). All amination products are known compounds 32 ([Tables](#page-6-0) 2 and [3](#page-7-0)), and were identified with the assistance of ¹H NMR, by comparison to their literature-reported spectroscopic signatures.

General Procedure for Competitive Aminations of p-X-Ethylbenzenes/Ethylbenzene. The same reaction as that described above for the general amination of hydrocarbons was conducted, with the exception that a mixture of ethylbenzene and *p*-X-ethylbenzene (X = MeO, Me, F, I, Br, CF_3 , NO_2) was present (0.125 mmol each). The nitrene source employed was PhI = NTces (0.50 mmol). The reaction was allowed to run for 5 h and was then flash chromatographed on silica gel with methylene chloride. The solvent was then evaporated, and the residue was quantitatively evaluated by using ${}^{1}H$ NMR analysis (CDCl₃).

■ **ASSOCIATED CONTENT**

\bullet Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/acsomega.4c00909.](https://pubs.acs.org/doi/10.1021/acsomega.4c00909?goto=supporting-info)

Experimental details: additional synthetic protocols, NMR data, X-ray crystallography data, and additional figures and tables as noted in the text [\(PDF\)](https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c00909/suppl_file/ao4c00909_si_001.pdf)

Accession Codes

CCDC 2304246−2304254 contain the supplementary crystallographic data for this paper. This data can be obtained free of charge via [www.ccdc.cam.ac.uk/data_request/cif,](http://www.ccdc.cam.ac.uk/data_request/cif) by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

■ **AUTHOR INFORMATION**

Corresponding Author

Pericles Stavropoulos − *Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States;* ● orcid.org/0000-0003-0985-6203; Phone: (+1) 573-341-7220; Email: pericles@mst.edu; Fax: (+1) 573-341-6033

Authors

- Suraj Kumar Sahoo − *Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States;* ● orcid.org/0000-0003-3835-1706
- Brent Harfmann − *Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States*
- Himanshu Bhatia − *Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States*
- Harish Singh − *Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States*
- Srikanth Balijapelly − *Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States;* ● orcid.org/0000-0003-2720-8568
- Amitava Choudhury − *Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States;* ● orcid.org/0000-0001-5496-7346

Complete contact information is available at: [https://pubs.acs.org/10.1021/acsomega.4c00909](https://pubs.acs.org/doi/10.1021/acsomega.4c00909?ref=pdf)

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**

The authors are grateful for the generous funding awarded by NIH/NIGMS (R15GM117508 and R15GM139071). Dr. Steven Kelley is acknowledged for collecting single-crystal Xray diffraction data at the University of Missouri-Columbia.

■ **REFERENCES**

(1) (a) *Aziridines and Epoxides in Organic Synthesis*; Yudin, A. K.,, Ed.; Wiley-VCH: Weinheim, 2006. (b) Padwa, A. Aziridines and Azirines: Monocyclic. In *Comprehensive Heterocyclic Chemistry III*; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds.; Elsevier Science: Amsterdam, 2008; Vol. *1*, pp 1−104.

(2) (a) Chanda, B. M.; Vyas, R.; Landge, S. S. [Synthesis](https://doi.org/10.1016/j.molcata.2003.09.039) of aziridines using new catalytic systems with [bromamine-T](https://doi.org/10.1016/j.molcata.2003.09.039) as the nitrene source. *J. Mol. Catal. A: Chem.* 2004, *223*, 57−60. (b) Chanda, B. M.; Vyas, R.; Bedekar, A. V. [Investigations](https://doi.org/10.1021/jo000013v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in the Transition Metal Catalyzed [Aziridination](https://doi.org/10.1021/jo000013v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Olefins, Amination, and Other Insertion Reactions with [Bromamine-T](https://doi.org/10.1021/jo000013v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) as the Source of Nitrene. *J. Org. Chem.* 2001, *66*, 30−34.

(3) Mayer, J. M. [Understanding](https://doi.org/10.1021/ar100093z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Hydrogen Atom Transfer: From Bond [Strengths](https://doi.org/10.1021/ar100093z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) to Marcus Theory. *Acc. Chem. Res.* 2011, *44*, 36−46. (4) (a) Hojilla Atienza, C. C.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. Photolysis and Thermolysis of [Bis\(imino\)pyridine](https://doi.org/10.1021/ja107288x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Cobalt Azides: C−H Activation from Putative Cobalt Nitrido [Complexes.](https://doi.org/10.1021/ja107288x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2010, *132*, 16343−16345. (b) DuBois, J.; Tomooka, C. S.; Hong, J.; Carreira, E. M. [Nitridomanganese\(V\)](https://doi.org/10.1021/ar960222v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Complexes: Design, Preparation, and Use as Nitrogen [Atom-Transfer](https://doi.org/10.1021/ar960222v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reagents. *Acc. Chem. Res.* 1997, *30*, 364−372. (c) Scepaniak, J. J.; Vogel, C. S.; Khusniyarov, M. M.; Heinemann, F. W.; Meyer, K.; Smith, J. M. Synthesis, Structure, and [Reactivity](https://doi.org/10.1126/science.1198315) of an Iron(V) Nitride. *Science* 2011, *331*, 1049−1052.

(5) (a) Que, L., Jr.; Tolman, W. B. [Biologically](https://doi.org/10.1038/nature07371) inspired oxidation [catalysis.](https://doi.org/10.1038/nature07371) *Nature* 2008, *455*, 333−340. (b) McDonald, A. R.; Que, L., Jr. [High-valent](https://doi.org/10.1016/j.ccr.2012.08.002) nonheme iron-oxo complexes: Synthesis, structure, and [spectroscopy.](https://doi.org/10.1016/j.ccr.2012.08.002) *Coord. Chem. Rev.* 2013, *257*, 414−428. (c) Chen, M. S.; White, M. C. Combined Effects on Selectivity in [Fe-Catalyzed](https://doi.org/10.1126/science.1183602) [Methylene](https://doi.org/10.1126/science.1183602) Oxidation. *Science* 2010, *327*, 566−571. (d) Nam, W.; Lee, Y.-M.; Fukuzumi, S. Tuning Reactivity and [Mechanism](https://doi.org/10.1021/ar400258p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Oxidation Reactions by Mononuclear Nonheme [Iron\(IV\)-Oxo](https://doi.org/10.1021/ar400258p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Complexes. *Acc. Chem. Res.* 2014, *47*, 1146−1154.

(6) (a) Donahue, J. P. [Thermodynamic](https://doi.org/10.1021/cr050044w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Scales for Sulfur Atom Transfer and [Oxo-for-Sulfido](https://doi.org/10.1021/cr050044w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Exchange Reactions. *Chem. Rev.* 2006, *106*, 4747−4783. (b) Yang, L.; Tehranchi, J.; Tolman, W. B. Reactions of $Ph_3Sb = S$ with Copper(I) [Complexes](https://doi.org/10.1021/ic102449m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Supported by N-Donor Ligands: [Formation](https://doi.org/10.1021/ic102449m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Stable Adducts and S-Transfer [Reactivity.](https://doi.org/10.1021/ic102449m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2011, *50*, 2606−2612.

(7) Matyjaszewski, K. Atom Transfer Radical [Polymerization](https://doi.org/10.1021/ma3001719?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) (ATRP): Current Status and Future [Perspectives.](https://doi.org/10.1021/ma3001719?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Macromolecules* 2012, *45*, 4015−4039.

(8) (a) Hartwig, J. F. [Borylation](https://doi.org/10.1021/ar200206a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Silylation of C−H Bonds: A Platform for Diverse C−H Bond [Functionalizations.](https://doi.org/10.1021/ar200206a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Acc. Chem. Res.* 2012, *45*, 864−873. (b) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C−H Activation for the [Construction](https://doi.org/10.1021/cr900206p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of C−B [Bonds.](https://doi.org/10.1021/cr900206p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Rev.* 2010, *110*, 890−931.

(9) (a) Davies, H. M. L.; Morton, D. Guiding [principles](https://doi.org/10.1039/c0cs00217h) for site selective and stereoselective intermolecular C−H [functionalization](https://doi.org/10.1039/c0cs00217h) by [donor/acceptor](https://doi.org/10.1039/c0cs00217h) rhodium carbenes. *Chem. Soc. Rev.* 2011, *40*, 1857− 1869. (b) Deng, Y.; Qiu, H.; Srinivas, H. D.; Doyle, M. P. [Chiral](https://doi.org/10.2174/1385272819666150714182732) [Dirhodium\(II\)](https://doi.org/10.2174/1385272819666150714182732) Catalysts for Selective Metal Carbene Reactions. *Curr. Org. Chem.* 2015, *20*, 61−81. (c) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Modern Organic [Synthesis](https://doi.org/10.1021/acs.chemrev.5b00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) with *a*[-Diazocarbonyl](https://doi.org/10.1021/acs.chemrev.5b00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Compounds. *Chem. Rev.* 2015, *115*, 9981− 10080. (d) Ebner, C.; Carreira, E. M. [Cyclopropanation](https://doi.org/10.1021/acs.chemrev.6b00798?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Strategies in Recent Total [Syntheses.](https://doi.org/10.1021/acs.chemrev.6b00798?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Rev.* 2017, *117*, 11651−11679.

(10) (a) Zalatan, D. N.; Du Bois, J. Metal-Catalyzed Oxidations of C−H to C−N Bonds. *Top. Curr. Chem.* 2010, *292*, 347−378. (b) Roizen, J. L.; Harvey, M. E.; Du Bois, J. [Metal-Catalyzed](https://doi.org/10.1021/ar200318q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Nitrogen-Atom](https://doi.org/10.1021/ar200318q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Transfer Methods for the Oxidation of Aliphatic C−

H [Bonds.](https://doi.org/10.1021/ar200318q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Acc. Chem. Res.* 2012, *45*, 911−922. (c) Gephart, R. T., III; Warren, T. H. [Copper-Catalyzed](https://doi.org/10.1021/om300840z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) sp3 C−H Amination. *Organometallics* 2012, *31*, 7728−7752. (d) Collet, F.; Lescot, C.; Dauban, P. Catalytic C−H amination: the [stereoselectivity](https://doi.org/10.1039/c0cs00095g) issue. *Chem. Soc. Rev.* 2011, *40*, 1926−1936. (e) Dequirez, G.; Pons, V.; Dauban, P. [Nitrene](https://doi.org/10.1002/anie.201201945) [Chemistry](https://doi.org/10.1002/anie.201201945) in Organic Synthesis: Still in Its Infancy? *Angew. Chem., Int. Ed.* 2012, *51*, 7384−7395. (f) Díaz-Requejo, M. M.; Pérez, P. J. Coinage Metal Catalyzed C−H Bond [Functionalization](https://doi.org/10.1021/cr078364y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Hydro[carbons.](https://doi.org/10.1021/cr078364y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Rev.* 2008, *108*, 3379−3394.

(11) (a) Tomasz, M.; Mitomycin, C. Small, fast and [deadly](https://doi.org/10.1016/1074-5521(95)90120-5) (but very [selective\).](https://doi.org/10.1016/1074-5521(95)90120-5) *Chem. Biol.* 1995, *2*, 575−579. (b) Coleman, R. S.; Li, J.; Navarro, A. Total Synthesis of [Azinomycin](https://doi.org/10.1002/1521-3773(20010504)40:9<1736::AID-ANIE17360>3.0.CO;2-#) A. *Angew. Chem., Int. Ed.* 2001, *40*, 1736−1739. (c) Zhao, Q.; He, Q.; Ding, W.; Tang, M.; Kang, Q.; Yu, Y.; Deng, W.; Zhang, Q.; Fang, J.; Tang, G.; Liu, W. [Characterization](https://doi.org/10.1016/j.chembiol.2008.05.021) of the Azinomycin B Biosynthetic Gene Cluster Revealing a Different Iterative Type I [Polyketide](https://doi.org/10.1016/j.chembiol.2008.05.021) Synthase for Naphthoate [Biosynthesis.](https://doi.org/10.1016/j.chembiol.2008.05.021) *Chem. Biol.* 2008, *15*, 693−705. (d) Ogasawara, Y.; Liu, H.-W. [Biosynthetic](https://doi.org/10.1021/ja907307h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Studies of Aziridine Formation in [Azicemicins.](https://doi.org/10.1021/ja907307h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2009, *131*, 18066−18068.

(12) (a) Ismail, F. M. D.; Levitsky, D. O.; Dembitsky, V. M. Aziridine alkaloids as potential [therapeutic](https://doi.org/10.1016/j.ejmech.2009.05.013) agents. *Eur. J. Med. Chem.* 2009, *44*, 3373−3387. (b) Ballereau, S.; Andrieu-Abadie, N.; Saffon, N.; Génisson, Y. Synthesis and biological [evaluation](https://doi.org/10.1016/j.tet.2011.02.019) of aziridinecontaining analogs of [phytosphingosine.](https://doi.org/10.1016/j.tet.2011.02.019) *Tetrahedron* 2011, *67*, 2570− 2578. (c) Dorr, R. T.; Wisner, L.; Samulitis, B. K.; Landowski, T. H.; Remers, W. A. Anti-tumor activity and [mechanism](https://doi.org/10.1007/s00280-011-1784-8) of action for [acyanoaziridine-derivative,](https://doi.org/10.1007/s00280-011-1784-8) AMP423. *Cancer Chemother. Pharmacol.* 2012, *69*, 1039−1049.

(13) (a) Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. [Small](https://doi.org/10.1021/cr400615v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Heterocycles in [Multicomponent](https://doi.org/10.1021/cr400615v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reactions. *Chem. Rev.* 2014, *114*, 8323−8359. (b) Huang, C.-Y.; Doyle, A. G. The [Chemistry](https://doi.org/10.1021/cr500036t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Transition Metals with [Three-Membered](https://doi.org/10.1021/cr500036t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Ring Heterocycles. *Chem. Rev.* 2014, *114*, 8153−8198. (c) Cardoso, A. L.; Pinho e Melo, T. M. V. D. Aziridines in Formal $[3 + 2]$ [Cycloadditions:](https://doi.org/10.1002/ejoc.201200406) Synthesis of Five-Membered [Heterocycles.](https://doi.org/10.1002/ejoc.201200406) *Eur. J. Org. Chem.* 2012, *2012*, 6479−6501.

(14) (a) Degennaro, L.; Trinchera, P.; Luisi, R. Recent [Advances](https://doi.org/10.1021/cr400553c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in the [Stereoselective](https://doi.org/10.1021/cr400553c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Synthesis of Aziridines. *Chem. Rev.* 2014, *114*, 7881−7929. (b) Pellissier, H. Recent [Developments](https://doi.org/10.1002/adsc.201400312) in Asymmetric [Aziridination.](https://doi.org/10.1002/adsc.201400312) *Adv. Synth. Catal.* 2014, *356*, 1899−1935. (c) Singh, G. S.; D'hooghe, M.; De Kimpe, N. Synthesis and [Reactivity](https://doi.org/10.1021/cr0680033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of C-[Heteroatom-Substituted](https://doi.org/10.1021/cr0680033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Aziridines. *Chem. Rev.* 2007, *107*, 2080− 2135.

(15) For Mn: (a) Zdilla, M. J.; Abu-Omar, M. M. [Mechanism](https://doi.org/10.1021/ja0665489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Catalytic [Aziridination](https://doi.org/10.1021/ja0665489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) with Manganese Corrole: The Often Postulated [High-Valent](https://doi.org/10.1021/ja0665489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Mn(V) Imido Is Not the Group Transfer [Reagent.](https://doi.org/10.1021/ja0665489?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2006, *128*, 16971−16979. (b) Du Bois, J.; Tomooka, C. S.; Hong, J.; Carreira, E. M. [Nitridomanganese\(V\)](https://doi.org/10.1021/ar960222v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Complexes: Design, Preparation, and Use as Nitrogen [Atom-Transfer](https://doi.org/10.1021/ar960222v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Reagents.](https://doi.org/10.1021/ar960222v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Acc. Chem. Res.* 1997, *30*, 364−372.

(16) For Fe: (a) Damiano, C.; Intrieri, D.; Gallo, E. [Aziridination](https://doi.org/10.1016/j.ica.2017.06.032) of alkenes promoted by iron or ruthenium [complexes.](https://doi.org/10.1016/j.ica.2017.06.032) *Inorg. Chim. Acta* 2018, *470*, 51−67. (b) Fingerhut, A.; Serdyuk, O. V.; Tsogoeva, S. B. *Non-heme iron* catalysts for epoxidation and [aziridination](https://doi.org/10.1039/C4GC02413C) reactions of challenging terminal alkenes: towards [sustainability.](https://doi.org/10.1039/C4GC02413C) *Green Chem.* 2015, *17*, 2042−2058. (c) Hennessy, E. T.; Liu, R. Y.; Iovan, D. A.; Duncan, R. A.; Betley, T. A. Iron-mediated [intermolecular](https://doi.org/10.1039/C3SC52533C) N-group transfer chemistry with olefinic [substrates.](https://doi.org/10.1039/C3SC52533C) *Chem. Sci.* 2014, *5*, 1526− 1532. (d) Patra, R.; Coin, G.; Castro, L.; Dubourdeaux, P.; Clémancey, M.; Pécaut, J.; Lebrun, C.; Maldivi, P.; Latour, J.-M. Rational design of Fe catalysts for olefin [aziridination](https://doi.org/10.1039/C7CY01283G) through DFTbased [mechanistic](https://doi.org/10.1039/C7CY01283G) analysis. *Catal. Sci. Technol.* 2017, *7*, 4388−4400. (e) Blatchford, K. M.; Mize, C. J.; Roy, S.; Jenkins, D. M. [Towards](https://doi.org/10.1039/D2DT00772J) asymmetric [aziridination](https://doi.org/10.1039/D2DT00772J) with an iron complex supported by a D_2 symmetric [tetra-NHC.](https://doi.org/10.1039/D2DT00772J) *Dalton Trans.* 2022, *51*, 6153−6156.

(17) For Co: (a) van Leest, N. P.; Tepaske, M. A.; Venderbosch, B.; Oudsen, J.-P. H.; Tromp, M.; van der Vlugt, J. I.; de Bruin, B. Electronically [Asynchronous](https://doi.org/10.1021/acscatal.0c01343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Transition States for C−N Bond Formation by Electrophilic $[Co^{III}(TAML)]$ -Nitrene Radical Complexes Involving [Substrate-to-Ligand](https://doi.org/10.1021/acscatal.0c01343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Single-Electron Transfer and a

[Cobalt-Centered](https://doi.org/10.1021/acscatal.0c01343?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Spin Shuttle. *ACS Catal.* 2020, *10*, 7449−7463. (b) Jiang, H.; Lang, K.; Lu, H.; Wojtas, L.; Zhang, X. P. [Asymmetric](https://doi.org/10.1021/jacs.7b05778?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Radical Bicyclization of Allyl Azidoformates via [Cobalt\(II\)-Based](https://doi.org/10.1021/jacs.7b05778?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Metalloradical](https://doi.org/10.1021/jacs.7b05778?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Catalysis. *J. Am. Chem. Soc.* 2017, *139*, 9164−9167.

(18) For Ni: (a) Waterman, R.; Hillhouse, G. L. Group [Transfer](https://doi.org/10.1021/ja0381914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) from Nickel Imido, [Phosphinidine,](https://doi.org/10.1021/ja0381914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Carbene Complexes to Ethylene with Formation of Aziridine, [Phosphirane,](https://doi.org/10.1021/ja0381914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Cyclopropane [Products.](https://doi.org/10.1021/ja0381914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2003, *125*, 13350−13351. (b) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. [Interactions](https://doi.org/10.1021/ja017652n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Aziridines with Nickel Complexes: [Oxidative-Addition](https://doi.org/10.1021/ja017652n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Reductive-[Elimination](https://doi.org/10.1021/ja017652n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reactions that Break and Make C−N Bonds. *J. Am. Chem. Soc.* 2002, *124*, 2890−2891.

(19) For historic examples of Cu-based enantioselective aziridinations, see: (a) Li, Z.; Quan, R. W.; Jacobsen, E. N. [Mechanism](https://doi.org/10.1021/ja00126a044?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of the [\(Diimine\)copper-Catalyzed](https://doi.org/10.1021/ja00126a044?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Asymmetric Aziridination of Alkenes. Nitrene Transfer via [Ligand-Accelerated](https://doi.org/10.1021/ja00126a044?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Catalysis. *J. Am. Chem. Soc.* 1995, *117*, 5889−5890. (b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. [Bis\(oxazoline\)-copper](https://doi.org/10.1021/ja00065a068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) complexes as chiral catalysts for the [enantioselective](https://doi.org/10.1021/ja00065a068?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) aziridination of olefins. *J. Am. Chem. Soc.* 1993, *115*, 5328−5329.

(20) For Cu: (a) Pérez-Ruíz, J.; Pérez, P. J.; Díaz-Requejo, M. M. (NHC)M Cores as Catalysts for the Olefin [Aziridination](https://doi.org/10.1021/acs.organomet.2c00310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reaction (M = Cu, Ag, Au): Evidencing a Concerted [Mechanism](https://doi.org/10.1021/acs.organomet.2c00310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for the Nitrene [Transfer](https://doi.org/10.1021/acs.organomet.2c00310?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Process. *Organometallics* 2022, *41*, 3349−3355. (b) Maestre, L.; Sameera, W. M. C.; Díaz-Requejo, M. M.; Maseras, F.; Pérez, P. J. A General Mechanism for the Copper- and [Silver-Catalyzed](https://doi.org/10.1021/ja307229e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Olefin Aziridination Reactions: [Concomitant](https://doi.org/10.1021/ja307229e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Involvement of the Singlet and Triplet [Pathways.](https://doi.org/10.1021/ja307229e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2013, *135*, 1338−1348. (c) Lam, T. L.; Tso, K. C.-H.; Cao, B.; Yang, C.; Chen, D.; Chang, X.-Y.; Huang, J.-S.; Che, C.-M. Tripodal S-Ligand [Complexes](https://doi.org/10.1021/acs.inorgchem.7b00226?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Copper(I) as Catalysts for Alkene Aziridination, Sulfide [Sulfimidation,](https://doi.org/10.1021/acs.inorgchem.7b00226?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and C−H [Amination.](https://doi.org/10.1021/acs.inorgchem.7b00226?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2017, *56*, 4253−4257. (d) Comba, P.; Haaf, C.; Lienke, A.; Muruganantham, A.; Wadepohl, H. [Synthesis,](https://doi.org/10.1002/chem.200802682) Structure, and Highly Efficient [Copper-Catalyzed](https://doi.org/10.1002/chem.200802682) Aziridination with a [Tetraaza-Bispidine](https://doi.org/10.1002/chem.200802682) Ligand. *Chem. - Eur. J.* 2009, *15*, 10880−10887. (21) For Ag: (a) Mat Lani, A. S.; Schomaker, J. M. [Site-Selective,](https://doi.org/10.1055/s-0037-1609858) [Catalyst-Controlled](https://doi.org/10.1055/s-0037-1609858) Alkene Aziridination. *Synthesis* 2018, *50*, 4462− 4470. (b) Ju, M.; Weatherly, C. D.; Guzei, I. A.; Schomaker, J. M. Chemo- and [Enantioselective](https://doi.org/10.1002/anie.201704786) Intramolecular Silver-Catalyzed Azir[idinations.](https://doi.org/10.1002/anie.201704786) *Angew. Chem., Int. Ed.* 2017, *56*, 9944−9948. (c) Llaveria, J.; Beltrán, Á .; Díaz-Requejo, M. M.; Matheu, M. I.; Castillón, S.; Pérez, P. J. Efficient [Silver-Catalyzed](https://doi.org/10.1002/anie.201003167) Regio-and Stereospecific [Aziridination](https://doi.org/10.1002/anie.201003167) of Dienes. *Angew. Chem., Int. Ed.* 2010, *49*, 7092− 7095. (d) Cui, Y.; He, C. Efficient [Aziridination](https://doi.org/10.1021/ja038668b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Olefins Catalyzed by a Unique Disilver(I) [Compound.](https://doi.org/10.1021/ja038668b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2003, *125*, 16202−16203.

(22) For Au: (a) Li, Z.; Ding, X.; He, C. Nitrene Transfer [Reactions](https://doi.org/10.1021/jo060016t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Catalyzed by Gold [Complexes.](https://doi.org/10.1021/jo060016t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2006, *71*, 5876−5880. (b) Deng, X.; Baker, T. A.; Friend, C. M. A Pathway for NH [Addition](https://doi.org/10.1002/anie.200602876) to Styrene [Promoted](https://doi.org/10.1002/anie.200602876) by Gold. *Angew. Chem., Int. Ed.* 2006, *45*, 7075− 7078.

(23) For Ru: (a) Uchida, T.; Katsuki, T. [Asymmetric](https://doi.org/10.1002/tcr.201300027) Nitrene Transfer Reactions: [Sulfimidation,](https://doi.org/10.1002/tcr.201300027) Aziridination and C−H Amination Using Azide [Compounds](https://doi.org/10.1002/tcr.201300027) as Nitrene Precursors. *Chem. Rec.* 2014, *14*, 117−129. (b) Harvey, M. E.; Musaev, D.; Du Bois, J. A [Diruthenium](https://doi.org/10.1021/ja203576p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Catalyst for Selective, [Intramolecular](https://doi.org/10.1021/ja203576p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Allylic C−H Amination: Reaction [Development](https://doi.org/10.1021/ja203576p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Mechanistic Insight Gained through [Experiment](https://doi.org/10.1021/ja203576p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Theory. *J. Am. Chem. Soc.* 2011, *133*, 17207−17216. (c) Chan, K.-H.; Guan, X.; Lo, V. K.-Y.; Che, C.-M. [Elevated](https://doi.org/10.1002/anie.201309888) Catalytic Activity of Ruthenium(II)−[Porphyrin-Catalyzed](https://doi.org/10.1002/anie.201309888) Carbene/ Nitrene Transfer and Insertion Reactions with [N-Heterocyclic](https://doi.org/10.1002/anie.201309888) [Carbene](https://doi.org/10.1002/anie.201309888) Ligands. *Angew. Chem., Int. Ed.* 2014, *53*, 2982−2987.

(24) For Rh: (a) Fiori, K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J. A mechanistic analysis of the Rh-catalyzed [intramolecular](https://doi.org/10.1016/j.tet.2008.11.073) C− H [amination](https://doi.org/10.1016/j.tet.2008.11.073) reaction. *Tetrahedron* 2009, *65*, 3042−3051. (b) Boquet, V.; Nasrallah, A.; Dana, A. L.; Brunard, E.; Di Chenna, P. H.; Duran, F. J.; Retailleau, P.; Darses, B.; Sircoglou, M.; Dauban, P. [Rhodium\(II\)-Catalyzed](https://doi.org/10.1021/jacs.2c07337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Enantioselective Intermolecular Aziridination of [Alkenes.](https://doi.org/10.1021/jacs.2c07337?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2022, *144*, 17156−17164. (c) Müller,

P.; Baud, C.; Jacquier, Y. The rhodium(III)-catalyzed aziridination of olefins with {[(4-Nitrophenyl)-sulfonyl]imino}phenyl-*λ*³ -iodane. *Can. J. Chem.* 1998, *76*, 738−750. (d) Nägeli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Müller, P. [Rhodium\(II\)-Catalyzed](https://doi.org/10.1002/hlca.19970800407) CH Insertions with [{\[\(4-Nitrophenyl\)-sulfonyl\]imino}phenyl-](https://doi.org/10.1002/hlca.19970800407)*λ*³ -iodane. *Helv. Chim. Acta* 1997, *80*, 1087−1105.

(25) For Pd: (a) Grünwald, A.; Goswami, B.; Breitwieser, K.; Morgenstern, B.; Gimferrer, M.; Heinemann, F. W.; Momper, D. M.; Kay, C. W. M.; Munz, D. Palladium Terminal Imido [Complexes](https://doi.org/10.1021/jacs.2c02818?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) with Nitrene [Character.](https://doi.org/10.1021/jacs.2c02818?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2022, *144*, 8897−8901. (b) Okamoto, K.; Oda, T.; Kohigashi, S.; Ohe, K. [Palladium-catalyzed](https://doi.org/10.1002/anie.201105153) [Decarboxylative](https://doi.org/10.1002/anie.201105153) Intramolecular Aziridination from 4*H*-Isoxazol-5 ones Leading to [1-Azabicyclo\[3.1.0\]hex-2-enes.](https://doi.org/10.1002/anie.201105153) *Angew. Chem., Int. Ed.* 2011, *50*, 11470−11473.

(26) (a) Coin, G.; Latour, J.-M. Nitrene transfers [mediated](https://doi.org/10.1016/j.jinorgbio.2021.111613) by natural and artificial iron [enzymes.](https://doi.org/10.1016/j.jinorgbio.2021.111613) *J. Inorg. Biochem.* 2021, *225*, No. 111613. (b) Yang, Y.; Arnold, F. H. [Navigating](https://doi.org/10.1021/acs.accounts.0c00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) the Unnatural Reaction Space: Directed [Evolution](https://doi.org/10.1021/acs.accounts.0c00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Heme Proteins for Selective Carbene and Nitrene [Transfer.](https://doi.org/10.1021/acs.accounts.0c00591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Acc. Chem. Res.* 2021, *54*, 1209−1225.

(27) Darses, B.; Rodrigues, R.; Neuville, L.; Mazurais, M.; Dauban, P. Transition metal-catalyzed [iodine\(III\)-mediated](https://doi.org/10.1039/C6CC07925C) nitrene transfer reactions: efficient tools for [challenging](https://doi.org/10.1039/C6CC07925C) syntheses. *Chem. Commun.* 2017, *53*, 493−508.

(28) (a) Driver, T. G. Recent advances in transition [metal-catalyzed](https://doi.org/10.1039/c005219c) *N*-atom transfer [reactions](https://doi.org/10.1039/c005219c) of azides. *Org. Biomol. Chem.* 2010, *8*, 3831−3846. (b) Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E. [Organic](https://doi.org/10.1039/C4CC03016H) azides: *"energetic reagents"* for the *inter*molecular [amination](https://doi.org/10.1039/C4CC03016H) of C−H [bonds.](https://doi.org/10.1039/C4CC03016H) *Chem. Commun.* 2014, *50*, 11440−11453.

(29) Liu, L.; Wang, X.; Xiao, W.; Chang, W.; Li, J. [Divergent](https://doi.org/10.1002/chem.202202544) [Copper-salt-controlled](https://doi.org/10.1002/chem.202202544) Reactions of Donor-Acceptor Cyclopropanes and [N-Fluorobenzene](https://doi.org/10.1002/chem.202202544) Sulfonimide: Access to the 1,3-Haloamines and [Aminoindanes.](https://doi.org/10.1002/chem.202202544) *Chem. - Eur. J.* 2023, *29*, No. e202202544.

(30) (a) Ma, Z.; Zhou, Z.; Kürti, L. Direct and [Stereospecific](https://doi.org/10.1002/anie.201705530) Synthesis of N-H and N-Alkyl Aziridines from [Unactivated](https://doi.org/10.1002/anie.201705530) Olefins Using [Hydroxylamine-O-Sulfonic](https://doi.org/10.1002/anie.201705530) Acids. *Angew. Chem., Int. Ed.* 2017, *56*, 9886−9890. (b) Yu, J.; Luan, X. [Hydroxylamines](https://doi.org/10.1055/s-0040-1706017) as One-Atom Nitrogen Sources for [Metal-Catalyzed](https://doi.org/10.1055/s-0040-1706017) Cycloadditions. *Synthesis* 2021, *53*, 1423−1433.

(31) Lebel, H.; Huard, K.; Lectard, S. *N*[-Tosyloxycarbamates](https://doi.org/10.1021/ja0552850?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) as a Source of Metal Nitrenes: [Rhodium-Catalyzed](https://doi.org/10.1021/ja0552850?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) C−H Insertion and [Aziridination](https://doi.org/10.1021/ja0552850?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reactions. *J. Am. Chem. Soc.* 2005, *127*, 14198−14199. (32) Bagchi, V.; Paraskevopoulou, P.; Das, P.; Chi, L.; Wang, Q.; Choudhury, A.; Mathieson, J. S.; Cronin, L.; Pardue, D. B.; Cundari, T. R.; Mitrikas, G.; Sanakis, Y.; Stavropoulos, P. A [Versatile](https://doi.org/10.1021/ja503869j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Tripodal Cu(I) Reagent for C−N Bond Construction via [Nitrene-Transfer](https://doi.org/10.1021/ja503869j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Chemistry: Catalytic [Perspectives](https://doi.org/10.1021/ja503869j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Mechanistic Insights on C−H [Aminations/Amidinations](https://doi.org/10.1021/ja503869j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Olefin Aziridinations. *J. Am. Chem. Soc.* 2014, *136*, 11362−11381.

(33) (a) Stanek, J.; Rösener, T.; Metz, A.; Mannsperger, J.; Hoffmann, A.; Herres-Pawlis, S. uanidine Metal [Complexes](https://doi.org/10.1007/7081_2015_173) for Bioinorganic Chemistry and [Polymerisation](https://doi.org/10.1007/7081_2015_173) Catalysis. *Top. Heterocycl. Chem.* 2017, *51*, 95−164. (b) Cui, X.-Y.; Tan, C.-H.; Leow, D. [Metal](https://doi.org/10.1039/C8OB02240B)catalysed reactions enabled by [guanidine-type](https://doi.org/10.1039/C8OB02240B) ligands. *Org. Biomol. Chem.* 2019, *17*, 4689−4699.

(34) (a) Comba, P.; Löhr, A.-M.; Pfaff, F.; Ray, K. Redox [Potentials](https://doi.org/10.1002/ijch.202000038) of High-Valent Iron-, Cobalt-, and [Nickel-Oxido](https://doi.org/10.1002/ijch.202000038) Complexes: Evidence for Exchange Enhanced [Reactivity.](https://doi.org/10.1002/ijch.202000038) *Isr. J. Chem.* 2020, *60*, 957−962. (b) Liu, J. J.; Siegler, M. A.; Karlin, K. D.; Moënne-Loccoz, P. Direct Resonance Raman [Characterization](https://doi.org/10.1002/anie.201904672) of a Peroxynitrito Copper Complex Generated from O_2 and NO and [Mechanistic](https://doi.org/10.1002/anie.201904672) Insights into [Metal-Mediated](https://doi.org/10.1002/anie.201904672) Peroxynitrite Decomposition. *Angew. Chem., Int. Ed.* 2019, *58*, 10936−10940. (c) Speelman, A. L.; White, C. J.; Zhang, B.; Alp, E. E.; Zhao, J.; Hu, M.; Krebs, C.; Penner-Hahn, J.; Lehnert, N. Non-heme High-Spin {FeNO}6[−]⁸ [Complexes:](https://doi.org/10.1021/jacs.8b06095?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) One Ligand [Platform](https://doi.org/10.1021/jacs.8b06095?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Can Do it All. *J. Am. Chem. Soc.* 2018, *140*, 11341− 11359.

(35) Sahoo, S. K.; Harfmann, B.; Ai, L.; Wang, Q.; Mohapatra, S.; Choudhury, A.; Stavropoulos, P. [Cationic](https://doi.org/10.1021/acs.inorgchem.3c01209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Divalent Metal Sites (M = Mn, Fe, Co) Operating as Both [Nitrene-Transfer](https://doi.org/10.1021/acs.inorgchem.3c01209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Agents and Lewis Acids toward Mediating the Synthesis of Three- and [Five-Membered](https://doi.org/10.1021/acs.inorgchem.3c01209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [N-Heterocycles.](https://doi.org/10.1021/acs.inorgchem.3c01209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2023, *62*, 10743−10761.

(36) Mehedi, M. S. A.; Tepe, J. J. Recent [Advances](https://doi.org/10.1002/adsc.202000709) in the Synthesis of [Imidazolines](https://doi.org/10.1002/adsc.202000709) (2009−2020). *Adv. Synth. Catal.* 2020, *362*, 4189− 4225.

(37) Li Petri, G.; Raimondi, M. V.; Spano, ̀ V.; Holl, R.; Barraja, P.; Montalbano, A. [Pyrrolidine](https://doi.org/10.1007/s41061-021-00347-5) in Drug Discovery: A Versatile Scaffold for Novel Biologically Active [Compounds.](https://doi.org/10.1007/s41061-021-00347-5) *Top. Curr. Chem.* 2021, *379*, No. 34, DOI: [10.1007/s41061-021-00347-5](https://doi.org/10.1007/s41061-021-00347-5?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as).

(38) (a) Gandhi, S.; Bisai, A.; Prasad, B. A. B.; Singh, V. K. [Studies](https://doi.org/10.1021/jo062564c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) on the Reaction of Aziridines with Nitriles and [Carbonyls:](https://doi.org/10.1021/jo062564c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Synthesis of Imidazolines and [Oxazolidines.](https://doi.org/10.1021/jo062564c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2007, *72*, 2133−2142. (b) Kang, B.; Miller, A. W.; Goyal, S.; Nguyen, S. T. $Sc(OTf)_{3}$ catalyzed condensation of 2-alkyl-*N*[-tosylaziridine](https://doi.org/10.1039/b902647a) with aldehydes or ketones: an efficient synthesis of [5-alkyl-1,3-oxazolidines.](https://doi.org/10.1039/b902647a) *Chem. Commun.* 2009, 3928−3930.

(39) Bagchi, V.; Kalra, A.; Das, P.; Paraskevopolou, P.; Gorla, S.; Ai, L.; Wang, Q.; Mohapatra, S.; Choudhury, A.; Sun, Z.; Cundari, T. R.; Stavropoulos, P. Comparative [Nitrene-Transfer](https://doi.org/10.1021/acscatal.8b01941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Chemistry to Olefinic Substrates Mediated by a Library of Anionic Mn(II) [Triphenylamido-](https://doi.org/10.1021/acscatal.8b01941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)Amine Reagents and $M(II)$ [Congeners](https://doi.org/10.1021/acscatal.8b01941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) ($M = Fe$, Co, Ni) Favoring [Aromatic](https://doi.org/10.1021/acscatal.8b01941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) over Aliphatic Alkenes. *ACS Catal.* 2018, *8*, 9183−9206.

(40) Kalra, A.; Bagchi, V.; Paraskevopolou, P.; Das, P.; Ai, L.; Sanakis, Y.; Raptopoulos, G.; Mohapatra, S.; Choudhury, A.; Sun, Z.; Cundari, T. R.; Stavropoulos, P. Is the [Electrophilicity](https://doi.org/10.1021/acs.organomet.1c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of the Metal Nitrene the Sole Predictor of [Metal-Mediated](https://doi.org/10.1021/acs.organomet.1c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Nitrene Transfer to Olefins? Secondary [Contributing](https://doi.org/10.1021/acs.organomet.1c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Factors as Revealed by a Library of [High-Spin](https://doi.org/10.1021/acs.organomet.1c00267?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Co(II) Reagents. *Organometallics* 2021, *40*, 1974−1996.

(41) Yang, L.; Powell, D. R.; Houser, R. P. [Structural](https://doi.org/10.1039/B617136B) Variation in Cu(I) Complexes with [Pyridylmethylamide](https://doi.org/10.1039/B617136B) ligands: Structural Analysis with a new [four-coordinate](https://doi.org/10.1039/B617136B) geometry index, τ₄. Dalton *Trans.* 2007, *9*, 955−964.

(42) Raab, V.; Harms, K.; Sundermeyer, J.; Kovačević, B.; Maksić, Z. B. [1,8-Bis\(dimethylethyleneguanidino\)naphthalene:](https://doi.org/10.1021/jo034906+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Tailoring the Basicity of [Bisguanidine](https://doi.org/10.1021/jo034906+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) "Proton Sponges" by Experiment and [Theory.](https://doi.org/10.1021/jo034906+?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2003, *68*, 8790−8797.

(43) (a) Cheung, P. M.; Berger, R. F.; Zakharov, L. N.; Gilbertson, J. D. Square Planar Cu(I) Stabilized by a [Pyridinediimine](https://doi.org/10.1039/C6CC00271D) Ligand. *Chem. Commun.* 2016, *52*, 4156−4159. (b) Liang, W.; Loke, J.; Hu, C.; Fan, W. Y. Tetrahedral Cu(I) complexes as electrocatalysts for the reduction of protons to dihydrogen gas. *Eur. J. Inorg. Chem.* 2021, 2499−2504.

(44) Al-Ajlouni, A. M.; Espenson, J. H. [Epoxidation](https://doi.org/10.1021/ja00141a016?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Styrenes by Hydrogen Peroxide As Catalyzed by [Methylrhenium](https://doi.org/10.1021/ja00141a016?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Trioxide. *J. Am. Chem. Soc.* 1995, *117*, 9243−9250.

(45) Chen, J.-Q.; Yu, W.; Wei, Y.; Li, T.; Xu, P. [Photoredox-Induced](https://doi.org/10.1021/acs.joc.6b02377?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Functionalization](https://doi.org/10.1021/acs.joc.6b02377?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Alkenes for the Synthesis of Substituted Imidazolines and [Oxazolidines.](https://doi.org/10.1021/acs.joc.6b02377?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2017, *82*, 243−249.

(46) Müller, P.; Baud, C.; Jacquier, Y.; Moran, M.; Nägeli, I. [Rhodium\(II\)-Catalyzed](https://doi.org/10.1002/(SICI)1099-1395(199606)9:6<341::AID-POC791>3.0.CO;2-5) Aziridinations and CH Insertions with [*N*-(*p*-[Nitrobenzenesulfonyl\)Imino\]](https://doi.org/10.1002/(SICI)1099-1395(199606)9:6<341::AID-POC791>3.0.CO;2-5) Phenyliodinane. *J. Phys. Org. Chem.* 1996, *9*, 341−347.

(47) Liang, J.-L.; Yuan, S.; Huang, J.; Che, C. [Intramolecular](https://doi.org/10.1021/jo0358877?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) C−N Bond Formation Reactions Catalyzed by Ruthenium [Porphyrins:](https://doi.org/10.1021/jo0358877?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Amidation of Sulfamate Esters and [Aziridination](https://doi.org/10.1021/jo0358877?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Unsaturated [Sulfonamides.](https://doi.org/10.1021/jo0358877?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Org. Chem.* 2004, *69*, 3610−3619.

(48) Fiori, K. W.; Du Bois, J. Catalytic [Intermolecular](https://doi.org/10.1021/ja0650450?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Amination of C−H Bonds: Method [Development](https://doi.org/10.1021/ja0650450?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) and Mechanistic Insights. *J. Am. Chem. Soc.* 2007, *129*, 562−568.

(49) Combee, L. A.; Raya, B.; Wang, D.; Hilinski, M. K. [Organocatalytic](https://doi.org/10.1039/C7SC03968A) nitrenoid transfer: metal-free selective intermolecular C(sp3)−H [amination](https://doi.org/10.1039/C7SC03968A) catalyzed by an iminium salt. *Chem. Sci.* 2018, *9*, 935−939.

(50) Clark, J. R.; Feng, K.; Sookezian, A.; White, M. C. [Manganese](https://doi.org/10.1038/s41557-018-0020-0)catalysed benzylic C(*sp*³)−H amination for late-stage [functionaliza](https://doi.org/10.1038/s41557-018-0020-0)[tion.](https://doi.org/10.1038/s41557-018-0020-0) *Nat. Chem.* 2018, *10*, 583−591.

(51) Liu, Z.; Lu, Y.; Huo, J.; Hu, W.; Dang, Y.; Wang, Z. [DFT](https://doi.org/10.1021/acs.orglett.9b04215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Mechanistic Account for the Site Selectivity of [Electron-Rich](https://doi.org/10.1021/acs.orglett.9b04215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) C(sp $^3)-$ H Bond in the [Manganese-Catalyzed](https://doi.org/10.1021/acs.orglett.9b04215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Aminations. *Org. Lett.* 2020, *22*, 453−457.

(52) Van Leest, N. P.; Grooten, L.; van der Vlugt, J. I.; de Bruin, B. Uncatalyzed Oxidative C−H Amination of [9,10-Dihydro-9-Hetero](https://doi.org/10.1002/chem.201900377)[anthracenes:](https://doi.org/10.1002/chem.201900377) A Mechanistic Study. *Chem. - Eur. J.* 2019, *25*, 5987− 5993.

(53) Petrik, V.; Roschenthaler, G.; Cahard, D. [Diastereoselective](https://doi.org/10.1016/j.tet.2011.03.001) synthesis of [trans-trifluoromethyl-](https://doi.org/10.1016/j.tet.2011.03.001)*β*-lactams and *α*-alkyl-*β*-trifluoro[methyl-](https://doi.org/10.1016/j.tet.2011.03.001)*β*-amino esters. *Tetrahedron* 2011, *67*, 3254−3259.

(54) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. [Hexafluoroisopropanol](https://doi.org/10.1038/s41570-017-0088) as a highly versatile solvent. *Nat. Rev. Chem.* 2017, *1*, No. 0088, DOI: [10.1038/s41570-017-0088.](https://doi.org/10.1038/s41570-017-0088?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)

(55) Nam, P.-C.; Nguyen, M. T.; Chandra, A. K. [The](https://doi.org/10.1021/jp0534030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) C−H and α (C−X) Bond [Dissociation](https://doi.org/10.1021/jp0534030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Enthalpies of Toluene, C₆H₅-CH₂X (X = F, Cl), and Their Substituted [Derivatives:](https://doi.org/10.1021/jp0534030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) A DFT Study. *J. Phys. Chem. A* 2005, *109*, 10342−10347.

(56) Trung, N. Q.; Mechler, A.; Hoa, N. T.; Vo, Q. V. [Calculating](https://doi.org/10.1098/rsos.220177) bond [dissociation](https://doi.org/10.1098/rsos.220177) energies of X−H (X = C, N, O, S) bonds of aromatic systems via density functional theory: a detailed [comparison](https://doi.org/10.1098/rsos.220177) of [methods.](https://doi.org/10.1098/rsos.220177) *R. Soc. Open Sci.* 2022, *9*, No. 220177.

(57) Huard, K.; Lebel, H. *N*[-Tosyloxycarbamates](https://doi.org/10.1002/chem.200702027) as Reagents in [Rhodium-Catalyzed](https://doi.org/10.1002/chem.200702027) C−H Amination Reactions. *Chem. - Eur. J.* 2008, *14*, 6222−6230.

(58) Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S. Mechanistic Studies of the [Rhodium-Catalyzed](https://doi.org/10.1021/ja411072a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Direct C−H [Amination](https://doi.org/10.1021/ja411072a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reaction Using Azides as the Nitrogen Source. *J. Am. Chem. Soc.* 2014, *136*, 2492−2502.

(59) England, J.; Guo, Y.; Van Heuvelen, K. M.; Cranswick, M. A.; Rohde, G. T.; Bominaar, E. L.; Münck, E.; Que, L., Jr. A [More](https://doi.org/10.1021/ja2040909?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reactive [Trigonal-Bipyramidal](https://doi.org/10.1021/ja2040909?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) High-Spin Oxoiron(IV) Complex with a [cis-Labile](https://doi.org/10.1021/ja2040909?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Site. *J. Am. Chem. Soc.* 2011, *133*, 11880−11883.

(60) (a) Zhong, C.-Z.; Tung, P.; Chao, T.; Yeh, M. P. [Gold-](https://doi.org/10.1021/acs.joc.6b02479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)Catalyzed [Stereoselective](https://doi.org/10.1021/acs.joc.6b02479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Synthesis of Bicyclic Lactams and Ketones from [N-Tosylynamidomethyl-Tethered](https://doi.org/10.1021/acs.joc.6b02479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Cyclohexenes. *J. Org. Chem.* 2017, 82, 481–501. (b) Walker, P. R.; Campbell, D.; Suleman, A.; Carr, G.; Anderson, E. Palladium- and [Ruthenium-Catalyzed](https://doi.org/10.1002/anie.201304186) [Cycloisomerization](https://doi.org/10.1002/anie.201304186) of Enynamides and Enynhydrazides: A Rapid Approach to Diverse Azacyclic [Frameworks.](https://doi.org/10.1002/anie.201304186) *Angew. Chem. Int. Ed.* 2013, *52*, 9139−9143.