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Abstract: Biomedical datasets distill many mechanisms of human diseases, linking diseases to genes
and phenotypes (signs and symptoms of disease), genetic mutations to altered protein structures, and
altered proteins to changes in molecular functions and biological processes. It is desirable to gain new
insights from these data, especially with regard to the uncovering of hierarchical structures relating
disease variants. However, analysis to this end has proven difficult due to the complexity of the
connections between multi-categorical symbolic data. This article proposes symbolic tree adaptive
resonance theory (START), with additional supervised, dual-vigilance (DV-START), and distributed
dual-vigilance (DDV-START) formulations, for the clustering of multi-categorical symbolic data
from biomedical datasets by demonstrating its utility in clustering variants of Charcot–Marie–Tooth
disease using genomic, phenotypic, and proteomic data.

Keywords: adaptive resonance theory; biomedical data; categorical data; ontologies; knowledge graphs

1. Introduction

Precision medicine depends upon a detailed unraveling of the relationships between
diseases, phenotypes, genes, and the underlying proteins and biological pathways [1–7]. The
ready availability of protein, disease, gene, phenotype, and biological pathway ontologies
makes it possible to construct purpose-specific datasets for studying human disease. These
can take the form of symbolic relationships that can be organized into formal ontologies that
are instantiated as knowledge graphs defining the permissible relationships between classes
and the instances within them [8].

However, many elements in these disease–gene–protein datasets are formatted as
categorical rather than numerical variables, bringing a unique challenge to machine learn-
ing algorithms. Although tools exist to analyze and visualize categorical data [9], the
tools for clustering these datasets depend heavily on recasting categories into real-valued
spaces, which is largely unavoidable due to the definition of the problem statement; all
modalities of machine learning assume distance metrics or similarity measures of their
feature spaces, whereas categorical data contain symbols that do not belong to ordered sets,
and thus, do not inhabit metric spaces. An important design choice then when working
with mixed or fully categorical data is how to recast categorical features into spaces with
similarity measures [10]. This recasting, whether by one-hot encoding, ordinal encoding,
or another encoding scheme, can bring its own deleterious consequences; one-hot encoding
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of categories can generate large sparse feature vectors due to many different categories,
while ordinal encoding can introduce measures of proximity between categories that do not
intrinsically exist. Meta-analyses of symbolic datasets may yield similarity meta-metrics
that are useful for clustering [11,12], but these meta-metrics require domain knowledge
of the categories in the dataset, limiting both their transferability to other datasets and
applicability to streaming learning. While statistical machine learning algorithms can
compensate for some of these input feature space shortcomings through sophisticated
machinery that relies on a large dataset size and a high degree of feature cardinality, these
methods naturally suffer in regimes with small categorical datasets. Furthermore, these
encoding schemes and the machine learning algorithms do not gracefully extend to in-
stances of hierarchical or nested attributes such as occur with the variably sized association
of diseases with phenotypes, genes, and proteins.

Adaptive resonance theory (ART) algorithms principally belong to the class of in-
cremental neurogenesis clustering/unsupervised [13] algorithms, with many additional
variants for use in supervised learning [14,15], reinforcement learning [16,17], and even
self-supervised and multimodal applications [18]. The design of these algorithms allows
them to update existing categories or create new ones from the data alone in a stable,
incremental, and lifelong manner. With the notable exception of the binary-valued ART1
algorithm, most of these algorithms work upon real-valued preprocessed feature datasets
via the use of fuzzy feature membership [19–23]. In contrast, the Gram-ART algorithm was
designed for the meta-optimization of genetic algorithms, and thus, is designed to work
with variable-length symbolic datasets [24], but it too has its shortcomings when tackling
the large numbers of terminal symbols encountered in medical disease datasets.

With these myriad design challenges in mind, this article describes the design of a new
ART algorithm named symbolic tree adaptive resonance theory (START) for the clustering
of variable-length symbolic statements. This formulation of START also includes both
dual-vigilance (DV-START) and distributed dual-vigilance (DDV-START) variants [25,26]
along with their supervised modifications. This article also outlines methods for casting
categorical disease–gene biomedical datasets into symbolic datasets for both unsupervised
clustering and supervised training where labels are available.

The changes in START compared to the Gram-ART algorithm summarize the novel
contributions of this article in addition to the use of this algorithm for the study of biomed-
ical disease-variant data. START extends Gram-ART as a novel approach to analyzing
biomedical disease-variant data in the following ways:

1. Both a match and activation function for the Gram-ART match rule.
2. Optimizations to the prototype-encoding scheme to mitigate memory complexity in

grammars with large sets of terminal symbols.
3. A mechanism to grow prototype tree structures when novel production rule sets

are encountered.
4. Both dual-vigilance and distributed dual-vigilance START variants [25,26].
5. A supervised modification for each unsupervised START variant.

This article is organized into the following sections: Section 2 provides a background of
the literature pertinent to the formulation of START, while Section 3 describes the derivation
and structure of START and its dual-vigilance and supervised variants. Section 4 outlines
the datasets and experimental methodology utilized in the evaluation of START, including
benchmark machine learning datasets and the target biomedical disease-variant datasets
of the article, and Section 5 contains the results of these experiments. Section 6 discusses
the experimental results and their biological plausibility, with Section 7 providing final
conclusions on both START and the biomedical dataset analysis of the previous sections.

2. Background
2.1. Adaptive Resonance Theory

Adaptive resonance theory (ART) is a neurocognitive theory of how biological neural
networks for self-stable representations learn without catastrophic forgetting, online and
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without supervision, through feedback and competitive dynamics [27–35]. Since its incep-
tion, a variety of machine learning models have been implemented using the theory as a
basis [19,36–38]. Though these algorithms in large part belong to the class of incremental
neurogenesis clustering/unsupervised algorithms, they have been adapted for applications
in supervised, reinforcement, and even multimodal learning [19,39], tackling clustering
issues from sample granularity [25,26] to distributed representations [40–42], pattern se-
quences [43], context recognition [44,45], and uncertainties [46–48]. Some algorithms based
upon ART have even been combined with incremental cluster validity indices (ICVIs),
metrics of clustering performance in the absence of supervised labels, to enable a variety of
incremental, online, and multimodal clustering and biclustering applications [49–54]. ART
algorithms are additionally well suited for lifelong learning (L2) applications because they
are derived from theories on how biological neural networks address the stability–plasticity
dilemma to mitigate catastrophic forgetting [55–57].

Nearly all ART formulations trade the explicit coarseness parameters of other clustering
algorithms for a vigilance parameter (ρ ∈ (0, 1)), which behaves as a threshold of agreement
between a sample and expectations to determine whether to update existing knowledge or to
create new categories altogether, a process known as the ART match rule [41]. Furthermore,
nearly all ART formulations are intrinsically prototype-based machine learning algorithms,
meaning that categories are defined by representative prototypes in the sample feature
space. This has two important consequences: ART algorithms theoretically have unlimited
memory because new prototypes may always be instantiated, but they generally have no
representational capacity in the sense of manifold learning, relying instead on the assumption
that the feature space being used for clustering is sufficiently well separated. Samples in
this feature space are provided in a feature representation layer F1, which is compared with
a category representation layer F2 containing these prototypes through ART competitive
dynamics that include a check against this vigilance parameter.

2.2. Gram-ART

Gram-ART is a clustering algorithm, based on ART learning dynamics, that defines
its prototypes and input features as trees of parsed statements adhering to a formal
grammar [24]. Originally designed to tackle the problem of comparing similarity between
symbolic expressions for the meta-optimization of genetic algorithms, it is capable of ac-
cepting statements of an arbitrary length according to a user-defined context-free grammar
(CFG) expressed in the Backus–Naur form (BNF). In the original formulation, Gram-ART
samples are statements adhering to a CFG that are parsed into rooted syntax trees. These
parsed samples are then compared according to ART learning rules to Gram-ART proto-
types that are themselves rooted trees containing distributions of terminal symbols that are
encountered at each node during learning. Gram-ART answers the questions of how to
formulate prototype trees of varied shape, compute similarities of sample statements to
prototypes of differing shapes, and update the terminal symbol distributions at each node
during learning.

Gram-ART is the first ART algorithm capable of clustering inputs samples of arbitrary
length, but it also inherits some problems from working with symbolic data. Terminal
symbols under a grammar have no fuzzy membership or relation without an additional
embedding scheme. Gram-ART tackles this by updating distributions of terminal symbols
at each position along the rooted prototype trees during learning. However, this technique
quickly grows in space and subsequent time complexity in grammars with sets of terminal
symbols larger than the algebraic expressions that they were originally designed for.

3. Method
3.1. START: Symbolic Tree Adaptive Resonance Theory

This paper introduces a new formulation of the Gram-ART algorithm called START for
the clustering of symbolic datasets. START is a prototype-based unsupervised clustering
algorithm that when presented with a new sample utilizes ART dynamics to determine
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whether to update an existing template or to instantiate a new one. START targets symbolic
expressions adhering to a context-free grammar CFG(T, N, P,S) with a complete set of
terminal symbols T, non-terminal symbols N, production rules P, and a statement entry
point S . The prototypes of START are rooted trees containing learned distributions of
the encountered terminal symbols at each node representing a non-terminal position, and
symbolic statements are parsed into rooted constituency parse trees that are subsequently
processed against these prototypes using ART learning dynamics. With such a formulation,
the method is naturally extended to the clustering of purely categorical datasets of variable
length sequences, such as in the myriad categorical fields of disease–gene–protein data.

3.1.1. Motivation

The realm of clustering, and indeed machine learning as a whole, requires a serious
consideration and study of the various forms that data may take [10]. Datasets are often
modeled as samples of the state space defined by some measuring device. Many samples of
data are naturally real-valued, such as the readings from imaging sensors for the purposes
of computer vision, while others are categorical in nature, such as descriptor labels of
the color of an object (e.g., red, blue, yellow). Datasets may have one or more feature
dimensions, and they may even be multimodal, containing a combination of real-valued
and categorical data in each sample. A notion of the proximity of features is critical
to machine learning algorithms that utilize similarity measures to model and interpret
samples; metric spaces are defined as sets that can have such a similarity measure defining
the distance between points in the set, and indeed even categorical features may sometimes
have distance metrics if they have an ordering (e.g., low, medium, high), though they
often only have a strict equivalence relation for comparing categories (e.g., red = red,
red ̸= blue). The presence of a distance metric is especially important in unsupervised
learning scenarios such as clustering where an algorithm has nothing available to model a
dataset aside from the features themselves. As a consequence, the clustering of data with
unordered categorical features is difficult, and many clustering algorithms are designed
with the assumption that at least some ordered features exist in the data [10].

Nevertheless, purely categorical datasets such as those containing only label descrip-
tors do exist, and it is desirable to cluster them to extract meaning and structure. It is even
more challenging when such datasets contain a varying number of features for each sample;
algorithms that tackle real-valued datasets of variable length such as time-series data utilize
techniques like convolutions and pooling to turn a varying number of features at runtime
into a fixed model size, but these techniques are ill-defined for purely categorical data,
especially when individual symbols are sparsely populated throughout the dataset.

Purely categorical datasets of variable feature dimensions arise commonly in human-
annotated datasets, such as those generated from medical research. Human-prescribed
categories of diseases, their variants, and other ontological features can contain missing
entries when data are missing or inapplicable, and categories can even be nested; for
example, the presence or absence of the symptom of pain may be further qualified by pain
in specific regions of the body or of varying intensity according to some pain scale.

One realm that specifically deals with categorical data of variable length is the study of
languages [58,59]. Syntactically, sentences in a language are interpreted as statements that
adhere to a formal grammar that determines the rules of what is or is not a valid statement
in a given language. The study of language also applies in the design of lexers and parsers,
which are used in computer science for the design of programming languages to structure
valid symbolic statements of arbitrary length written by a programmer for compilation or
interpretation. Parsers are especially important as a mechanism of applying the rules of a
grammar to interpret strings of symbolic statements as syntax trees defining their structure.
These grammar rules, however, do not define a notion of how similar or dissimilar two
statements are, so a clustering algorithm working in this space must introduce a mechanism
for comparing statement similarity.
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Given that START shares the objective of Gram-ART to cluster variable-length symbolic
expressions, the key design challenges of START’s design are in how to formulate metrics
of similarity between these symbolic expressions. In such a formulation, statements are
collections of symbols sampled from unordered sets; individual symbols share no fuzzy
membership, so similarity between symbols is dictated by strict equivalence in a set theoretic
sense. Furthermore, though statements of equal length introduce a step-wise fuzziness when
symbols in the same relative positions are identical, many datasets do not satisfy the assumption
of equivalent non-terminal structure across all statements. In the pursuit of creating a clustering
algorithm for variable-length symbolic datasets, START utilizes a prototype method as a proxy
for direct comparison between statements, using ART-based competitive learning dynamics
for determining when to update templates and when to instantiate new ones. As with all
ART algorithms, START therefore inherits both the theoretically unlimited learning capacity of
neurogenesis algorithms and the problems of category proliferation that they bring; though new
prototypes can be instantiated for an arbitrary number of categories, this growing knowledge
base incurs its own search time complexity [19,60].

3.1.2. START Algorithm

START shares the nomenclature of Gram-ART and other ART algorithms from its
structure to its learning dynamics, so existing terminology is preferred where available.
START also follows the procedure of most ART unsupervised clustering algorithms, with
additional considerations for handling symbolic data. As in Gram-ART, START handles
this symbolic data by working in the space of the syntactic trees representing the symbolic
data as statements under a formal grammar. The shared notation of all START variants is
listed in Table 1.

Table 1. Shared START notation. The learning dynamics of START and its variants follow the activation,
competition, match, update, and initialization rules of unsupervised ART algorithms, so the notation
here largely adheres to the elementary ART algorithm notation outlined in [19]. Dual-vigilance lower
bound ρlb and upper bound ρub follow the notation in DVFA [25] and DDVFA [26].

R: set of prototype nodes.
R: a single prototype node.
C: set of prototype node indices.
Λ: subset of active ART module node indices (Λ ⊂ C).
ρ: START vigilance threshold, ρ ∈ (0, 1).
ρlb: dual-vigilance lower-bound vigilance threshold (ρub > ρlb > 0).
ρub: dual-vigilance upper-bound vigilance threshold (1 > ρub > ρlb).
n: number of input dataset statements.
X: statements parsed as syntax trees with terminal metadata.
Parser(·): syntactic parsing algorithm taking a set of statements and a grammar and producing
rooted constituency parse trees.
fT(·): activation function.
fM(·): match function.
fN(·): node initialization function.
fL(·): node weight update function.
fV(·): the vigilance test function.
U : internal supervised category indices.
L: set of cluster indices.

A START module is initialized to contain the CFG(T, N, P,S) rules of the target
symbolic dataset statements. This grammar can be inferred from an existing dataset of
statements if all relevant symbols and production rules are represented in the dataset.
Statements from the dataset are parsed according to the production rules of the grammar
into rooted constituency parse trees, the basic unit of which is known in Gram-ART and
START as a TreeNode. Each parsed statement tree is presented incrementally to the START
module, and each sample either mutates an existing prototype or is used to instantiate
an entirely new prototype [19]. Prototypes in START are themselves rooted trees with a
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structure modified from the statement trees, the basic unit of which is known in Gram-ART
as a ProtoNode. The stateful information of START TreeNodes and ProtoNodes can be seen
in Tables 2 and 3, respectively.

Table 2. A simple UML diagram of the stateful information of one START TreeNode [24]. A symbol
in a TreeNode in START is realized by either a terminal or non-terminal symbol at the syntax tree
position of the node. A rooted tree of TreeNodes in this regard contains the minimum information
necessary to describe the syntax tree of a statement parsed with a prescribed grammar.

TreeNode

Symbol: GrammarSymbol
Children: Vector{TreeNode}

Table 3. A simple UML diagram of the stateful information of one START ProtoNode, which is the
basic element of the rooted trees constituting the prototypes of START [24]. A rooted tree of START
ProtoNodes encodes only through the non-terminal positions of the syntax tree of a TreeNode tree.
Each ProtoNode encodes a PMF of terminal symbols encountered at and below the non-terminal
position of the ProtoNode itself, with instance counts of each terminal encoded for the renormalization
of the PMF when learning occurs at the node itself.

ProtoNode

Symbol: NonTerminalGrammarSymbol
Distribution: Dictionary{TerminalGrammarSymbol, Float}
InstanceCount: Dictionary{TerminalGrammarSymbol, Integer}
Children: Vector{ProtoNode}

Here, START and Gram-ART differ on an important point in formulation: Gram-ART
treats ProtoNodes and TreeNodes as modified dependency relation syntax trees where
each node represents a terminal symbol, the children of which are the dependents of that
symbol. This formulation is most apparent in the case of operators, such as in the algebraic
statement x + y, where the operator terminal + would have branch dependents x and y. In
START, however, ProtoNodes and TreeNodes are defined as relation parse trees with non-
terminal symbols representing non-terminal positions and terminal symbols at the leaves
of the rooted tree. The same algebraic statement x + y is then treated in START as a relation
parse tree with non-terminal symbols for the operation and its three branches represent the
operator and its two arguments, with leaf nodes realizing the terminal symbols at these
non-terminal positions (Figure 1).

In START, sample symbolic statements are preprocessed into parse trees via a syntactic
parser such as an Earley parser according to the production rules P of the grammar written
most generally in an extended Backus–Naur form (EBNF) [61,62]. These syntax trees
can be interpreted as concrete constituency relation parse trees belonging to constituency
grammars, also known as phrase structure grammars, where branches of a parse tree are all
non-terminal symbols in the grammar, including the statement entry point, and leaf nodes
are terminal symbols [58,59]. These parse trees are then converted to statement trees via an
inclusion of metadata at each node indicating the symbol to be terminal or non-terminal.
Prototypes in START are rooted trees containing probability mass functions (PMFs) of
terminal symbols encountered at and below the position of each ProtoNode on the tree. In
contrast with Gram-ART, these START prototypes do not contain terminal symbol leaves;
instead, the nodes of the prototypes represent the non-terminal positions of the grammar
production rules applied to the node’s position on the tree, which reduces the effective size
of each prototype tree while still encoding the occurrence of terminal symbols at and below
those positions via their PMFs.
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<oper>

<op> <arg1> <arg2>

‘+’ ‘x’ ‘y’

(a) START relation parse tree TreeNode.

‘+’

‘x’ ‘y’

(b) Gram-ART syntax tree TreeNode.

Figure 1. Comparison of the constituency relation parse trees of START (a) to the dependency parsing
syntax trees of Gram-ART (b) for the simple algebraic statement x + y. START TreeNodes are full
constituency relation parse trees containing terminal symbols at the leaves of the tree, while START
ProtoNodes contain only non-terminal symbols at non-terminal positions on the parse tree. As in the
Grammar Listing 1, non-terminal symbols are surrounded by arrows <·> and terminal symbols are in
single quotations. Here, <oper> denotes “operation,” <op> denotes “operator”, and <arg1> and <arg2>
denote the two “arguments” of the operator.

Listing 1. Formal grammar for parsing Charcot–Marie–Tooth disease–protein flat-file data. EBNF syntax
is used for production rules with the exception of the regular expression symbol ‘+‘, which is used to
denote one or more occurrences of the preceding symbol. Statements are composed of a series of one
or more categorical attributes, all of which are listed in the non-terminal symbol <attribute>. When an
attribute is missing or otherwise unknown for a CMT variant, then it is not included in the parsed syntax
tree and handled accordingly by START. The production rules for two notable multi-category attributes,
<phenotype> and <biologic_process>, are listed to demonstrate how statements formulated from CMT
disease-variant entries illustrate how a gene can be associated with multiple phenotypes and biologic
processes. Other multi-category attributes are not listed for brevity.

⟨S⟩ ::= ⟨attribute⟩+ ;

⟨attribute⟩ ::= ⟨num⟩ | ⟨gene_location⟩ | ⟨disease⟩ | ⟨disease_MIM⟩ | ⟨gene⟩ | ⟨gene_MIM⟩
| ⟨inheritance⟩+ | ⟨protein⟩ | ⟨uniprot⟩ | ⟨chromosome⟩ | ⟨chromosome_location⟩ |
⟨protein_class⟩+ | ⟨biologic_process⟩+ | ⟨molecular_function⟩+ | ⟨disease_involvement⟩+
| ⟨MW⟩ | ⟨domain⟩+ | ⟨motif ⟩+ | ⟨protein_location⟩+ | ⟨length⟩ | ⟨disease_MIM2⟩ |
⟨phenotype⟩+ | ⟨weight_tag⟩ | ⟨length_tag⟩ ;

⟨phenotype⟩ ::= ‘ataxia’ | ‘atrophy’ | ‘auditory’ | ‘autonomic’ | ‘behavior’ |
‘cognitive’ | ‘cranial_nerve’ | ‘deformity’ | ‘dystonia’ | ‘gait’ | ‘hyperkinesia’
| ‘hyperreflexia’ | ‘hypertonia’ | ‘hypertrophy’ | ‘hyporeflexia’ | ‘hypotonia’ |
‘muscle’ | ‘pain’ | ‘seizure’ | ‘sensory’ | ‘sleep’ | ‘speech’ | ‘tremor’ | ‘visual’ |
‘weakness’ ;

⟨biologic_process⟩ ::= ‘Apoptosis’ | ‘Mitosis’ | ‘Lipid_metabolism’ | ‘Symport’
| ‘Ubl_conjugation_pathway’ | ‘Glycolysis’ | ‘Glucose_metabolism’
| ‘Ion_transport’ | ‘Unfolded_protein_response’ | ‘Cell_division’
| ‘DNA_repair’ | ‘Cell_adhesion’ | ‘Notch_signaling_pathway’ |
‘Protein_biosynthesis’ | ‘Stress_response’ | ‘Endocytosis’ | ‘Transcription’
| ‘Sodium_potassium_transport’ | ‘Transcription_regulation’ |
‘Fatty_acid_metabolism’ | ‘Host_virus_interaction’ | ‘Antiviral_defense’
| ‘Lipid_degradation’ | ‘Autophagy’ | ‘Sodium_transport’ | ‘Immunity’ | ‘none’
| ‘Protein_transport’ | ‘Nucleotide_biosynthesis’ | ‘Calcium_transport’
| ‘Transport’ | ‘Phagocytosis’ | ‘Inflammatory_response’ | ‘DNA_damage’
| ‘Potassium_transport’ | ‘Carbohydrate_metabolism’ | ‘Cell_cycle’ |
‘Innate_immunity’ ;
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3.1.3. Derivation of the START Match Rule

A fundamental characteristic of ART algorithms is the use of a match rule, whereby
a process of bottom-up activations drive the evaluation of how much the input sample
matches existing top-down categories [41]. Because of the origins of these algorithms lies
in the analysis of the competitive dynamics of biological neural networks, these activation
and match functions are frequently analogized with bottom-up prediction and top-down
expectation, respectively.

Gram-ART utilizes an activation function, while START introduces separate activation
and match functions. The distinction between the two lies in the normalization scheme of
the activation and match functions; for example, in ART1 the match function (Equation (2))
is the activation function (Equation (1)) normalized by the size of the input [19].

Tj = ∥x ∩wj∥1 (1)

Mj =
∥y(F1)∥1

∥x∥1
=
∥x ∩wj∥1

∥x∥1
(2)

FuzzyART replaces the binary intersection with the fuzzy intersection in both equa-
tions and normalizes the activation by the magnitude of the weight vector [19]. When
evaluated at a single node, an input terminal symbol can be interpreted as a one-hot binary
vector encoding at the terminal symbol position, so the magnitude of the membership
of sample x in weight wj is indeed the fuzzy intersection ∥x ∧wj∥1. This is computed
in START for the terminal distribution of each ProtoNode climbing up from the aligned
leaf representing the terminal symbol. In statements with many branches arising from
non-trivial production rules, this means the evaluation of the activation at each ProtoNode
for potentially multiple terminal descendants.

The activation is then normalized by the size of the input pattern, which can be realized
in multiple manners requiring a design decision; with the rooted tree definition of parsed
input statements, the size of the input pattern could be interpreted as the number of nodes
in the parsed statement, the number of terminal symbols in the unparsed statement, or
a more complex function of the number of terminals that could be realized beneath the
non-terminal position of the node in question according to the production rules of the
grammar of the sample. For simplicity, the remainder of this study utilizes the length of
the unparsed statement itself as a normalizing factor, having the effect of discounting the
disproportional contributions to the match value of increasingly longer statements. In
grammars where statements are of equal length, such as in the processing of tables with
single-category data, each decision trivially scales the required vigilance values to satisfy
the vigilance criterion.

The remainder of the match rule follows the activation, competition, match, and
vigilance test of unsupervised ART algorithms, as can be seen in Algorithm 1, with the
exception of the dual-vigilance variants of START, which can be seen in Section 3.1.5
and Algorithm 2.

3.1.4. Derivation of the Weight Update

When a prototype is selected for learning according to the START match rule, the
input TreeNode and selected ProtoNode are root-aligned and compared, similar to in
the activation and match processes. The terminal symbols contributing to the activation
and match functions of the winning prototype are used for updating the PMF at each
non-terminal symbol position at each ProtoNode up the prototype tree. The instance count
of the observed terminal symbol is incremented, and the PMF update is weighted by the
instance count of each terminal of the distribution to renormalize. In Equation (3), the
weight value w of the PMF indexed at terminal T in node i is updated with instance count
N and a Kronecker delta δT that is satisfied if the terminal symbol x being evaluated is
equivalent to the PMF index T (Equation (4)).
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wT
i =

wT
i ∗ N + δTx

N + 1
(3)

δTx =

{
1 if T = x
0 otherwise

(4)

Algorithm 1: START algorithm. A set of symbolic statements under a formal
context-free grammar are parsed into their syntax trees. Prototypes are defined as
learning dynamics otherwise follow the activation, competition, match, update,
and initialization rules of unsupervised ART algorithms [19]. ART dynamics
notation here largely follow the elementary ART algorithm outlined in [19].
Inference during classification follows the same match rule dynamics without
the instantiation of new categories; in the case of complete mismatch, either
an “unknown” label or the best matching unit (the category that maximizes the
match criterion) may be returned. Please see Table 1 for full notation

Data: Symbolic statements S; CFG grammar G with terminal symbols T,
non-terminal symbols N, production rules P, and statement entry symbol S .

Result: Cluster labels Y ∈ Nn

/* Parse statements into constituency parse trees */
1 X← Parser(S, G)
/* Iteration over parsed statement trees */

2 foreach x ∈ X do
/* Compute activations for all nodes */

3 Tj ← fT
(
x,Rj

)
, ∀j ∈ C

/* Perform WTA competition for active nodes */
4 J ← arg max

j∈Λ

(
Tj
)

/* Compute match for the winning category */
5 M← fM

(
x,RJ

)
/* Vigilance test */

6 if M > ρ then
/* Update category */

7 RJ ← fL
(
x,RJ

)
8 else

/* Deactivate category */
9 Λ← Λ− {J}

10 if Λ ̸= ∅ then
/* Continue match search */

11 Goto Line 4
12 else

/* Create and initialize new category */
13 K ← ∥C∥1 + 1
14 RK ← fN(x, G)

If no prototype satisfies the vigilance criterion, a new one is instantiated. START proto-
types do not encode all combinations of non-terminal production evaluations during instan-
tiation, as this would quickly combinatorially explode towards the Catalan number of the
non-terminal production rules, and it could be infinite in some recursive grammars. Instead,
prototypes are instantiated as structural clones of the input TreeNode without the inclusion of
the terminal symbols at their leaves. This design decision is made to mitigate the time and
memory complexity of the ProtoNode evaluation given that the non-terminal node preceding
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a terminal leaf already encodes all of the instances that the terminal symbol encounters. The
new structural clone prototype is then trained upon the input sample, updating the PMFs
of each ProtoNode for the first time. In the case that an existing winning prototype does not
contain the input TreeNode as a structural subset (i.e., it is missing a non-terminal production
rule path describing the parsed TreeNode), these new non-terminal paths are instantiated on
the winning prototype and updated as usual.

Algorithm 2: Dual-Vigilance START algorithm. This algorithm combines
Algorithm 1 with the dual-vigilance procedure of DVFA [25]. The vigilance
test is split into a cascade of two vigilance checks for the current match can-
didate node. Passing the upper vigilance check updates the current category
node, while passing only the lower vigilance check creates a new category node
belonging to the same cluster label. Failing to pass both vigilance checks results
in the instantiation of a new category node belonging to an incrementally new
cluster label. Please see Table 1 for full notation

Data: Symbolic statements S; CFG grammar G with terminal symbols T,
non-terminal symbols N, production rules P, and statement entry symbol S .

Result: Cluster labels Y ∈ Nn

/* Parse statements into constituency parse trees */
1 X← Parser(S, G)
/* Iteration over parsed statement trees */

2 foreach x ∈ X do
/* Compute activations for all nodes */

3 Tj ← fT
(
x,Rj

)
, ∀j ∈ C

/* Perform WTA competition for active nodes */
4 J ← arg max

j∈Λ

(
Tj
)

/* Compute match for the winning category */
5 M← fM

(
x,RJ

)
/* Dual-vigilance tests */

6 if M > ρub then
/* Update current category */

7 RJ ← fL
(
x,RJ

)
8 else if M > ρlb then

/* Create a new category within the same cluster */
9 K ← ∥C∥1 + 1

10 LK ← LJ
11 RK ← fN(x, G)

12 else
/* Deactivate category */

13 Λ← Λ− {J}
14 if Λ ̸= ∅ then

/* Continue match search */
15 Goto Line 4

16 else
/* Create and initialize new category and cluster */

17 K ← ∥C∥1 + 1
18 LK ← max (L) + 1
19 RK ← fN(x, G)
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3.1.5. Dual-Vigilance and Distributed Dual-Vigilance START

The FuzzyART algorithm provides a foundation for how to adapt ART learning rules
to real-valued datasets [19]. Like most ART modules, FuzzyART utilizes the ART match
rule evaluated at a single threshold value that is either the vigilance hyperparameter ρ
or a function thereof. Dual-vigilance FuzzyART (DVFA) utilizes instead two vigilance
parameters for the match rule evaluation, a lower bound ρlb and upper bound ρub, which
separates prototypes in a many-to-one mapping from categories to clusters and introduces
the ability to compensate for differing granularity both within and between clusters [25].
Distributed dual-vigilance FuzzyART (DDVFA) advances this idea by representing entire
clusters with FuzzyART modules governed by a global FuzzyART module, compensating
for even varying granularity within different clusters and enabling the ability to learn
arbitrary cluster shapes [26]. Each node in the global F2 layer competes for assignment of a
provided sample through modified activation and match linkage methods, defining the
relevant proximity measures of the sample to an entire F2 FuzzyART module node.

The principles of dual-vigilance and distributed dual-vigilance are extended here
for START. In the dual-vigilance formulation (DV-START), the same cascading technique
as in DVFA is used for determining category–cluster assignments through upper- and
lower-bound vigilance hyperparameters during the ART match evaluation:

1. MJ > ρub: if the current match candidate satisfies the upper vigilance threshold, then
the winning category is updated according to the START weight update rules.

2. ρub > MJ > ρlb: if the current match candidate only satisfies the lower vigilance
threshold but not the upper, then a new category prototype is instantiated that belongs
to the same cluster as the winning node.

3. ρlb > MJ : if the current match candidate does not satisfy even the lower-bound
vigilance threshold, then the normal mismatch procedure is followed, where a new
category is instantiated belonging to an entirely new cluster.

In the distributed dual-vigilance formulation (DDV-START), additional modifications
are made to accommodate the rooted tree structures of the prototypes. DDVFA utilizes a
global FuzzyART module that represents nodes themselves as FuzzyART modules [26].
The basic units of DDV-START are the rooted ProtoNode trees, but global module dynamics
are not restricted to their use; because the global module of DDV-START is largely agnostic
to the formulation of the input samples, the global module may be approximated as a
FuzzyART module coordinating the learning of its START F2 nodes. With the exception
of the centroid linkage method, which in DDVFA is defined as a function of local Fuzz-
yART weights, all other linkage methods from DDVFA can be utilized in DDV-START; by
independently defining the activation and match values for each ProtoNode within an F2
START module, the global values can be compared using the hierarchical agglomerative
clustering (HAC) methods of DDVFA, as can be seen in Table 4.

3.1.6. Supervised Variants

Most ART algorithms are designed as unsupervised clustering algorithms with vari-
ants and compositions of the elementary ART module motif providing supervised and
reinforcement learning variants [19]. ARTMAP is a formulation of ART, comprised of
two elementary ART modules and an inter-ART map field, that enables multidimensional
mapping between two feature fields [63]. A simplified version of FuzzyARTMAP, where
the second module ARTB is replaced with vectors representing class labels, provides a
basic procedure for adapting unsupervised ART modules to simple supervised ARTMAP
variants [64]. Though START is designed as an unsupervised clustering algorithm, it
utilizes these supervised modifications for evaluation on the supervised machine learn-
ing benchmark datasets in Section 4.2 and in the Supplementary Materials of this paper.
Algorithm 3 outlines this procedure of mapping the internal category representation labels
to supervised labels for any START variant.
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Because these supervised variants are derived from a procedure to modify an ART
module to a simplified ARTMAP variant, their naming follows the same notation (e.g.,
START to Simplified STARTMAP).

Table 4. Distributed dual-vigilance START activation and match linkage methods where hierarchical
agglomerative clustering (HAC) functions and distributed dual-vigilance notation are shared with
DDVFA [26]. Global activation Tg

i and match Mg
i functions are defined via the generic function hg

i
for the global F2 node index i as a function of inner node indices j = 1 . . . k, where k is the number of
F2 nodes in the local START module i. Each HAC method then is a “function of functions” evaluated
at each F2 node in the global module to determine either the match or activation value in the global
module match rule dynamics.

HAC Method hg
i

Single max
j

(
f i
j

)
Complete min

j

(
f i
j

)
Median median

j

(
f i
j

)
Average 1

ki
∑ki

j=1 f i
j

Weighted 1 ∑ki
j=1 pj f i

j

1 pj =
ni

j

ng
i

, where ni
j is the number of samples (i.e., instance count) encoded by j of the local START module at

global F2 index i and ng
i = ∑j ni

j.

3.1.7. Summary of START Variants

The previous sections have outlined three unsupervised algorithms for the clustering
of categorical data of varying feature dimensionality: START, its dual-vigilance variant DV-
START, and its distributed dual-vigilance variant DDV-START. The core START algorithm
is outlined for clustering this categorical data using the incremental learning and update
rules of ART algorithms with a single vigilance value; if a category match is found, that
prototype is updated according to the ART match rule, and if there is instead a complete
mismatch, a new category is instantiated. The dual-vigilance (DV-START) and distributed
dual-vigilance (DDV-START) variants of this core algorithm follow as extensions of the
algorithm through modifications of the prototype update method in a similar manner as
FuzzyART is extended to DVFA and DDVFA [25,26]. In both dual-vigilance variants, two
vigilance values (upper and lower) are instead used to determine how a single update
should proceed, allowing for differing inter- and intra-cluster granularities. DV-START
utilizes an internal category–cluster map for determining if a single prototype is updated,
if a prototype is updated in an existing cluster, or if an entirely new cluster is instantiated.
DDV-START, on the other hand, distinguishes between global and local nodes, where
global nodes are themselves START modules and local nodes are their prototypes; this
distinction necessitates the use of hierarchical agglomerative clustering (HAC) functions
to determine the distance measures between START modules when evaluating the match
and activation values of a sample, and the upper and lower vigilance values are used to
determine which global and local nodes to update or instantiate.
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Algorithm 3: Simplified supervised modification for all START variants (e.g.,
Simplified STARTMAP). The variation between START variants is captured in
the evaluation of the vigilance test as a function fV ; if some node satisfies the
match rule of the START variant, the sample is said to fall within the vigilance
region of the prototype [19]. Complete mismatch instead occurs when no vigi-
lance test is satisfied, and the prototype initialization procedure of the START
variant is triggered. Inference after training is run through to the vigilance test
procedure, reporting the supervised label mapping to the winning internal node
category. In the case of complete mismatch, where no nodes satisfy the vigilance
test of a supplied inference sample, either the supervised label mapping to the
best matching unit (i.e., the node with the highest match value) or a custom
mismatch signal may be reported depending on the desired application. Please
see Table 1 for full notation

Data: Symbolic statements S; supervisory labels Ω; CFG grammar G with
terminal symbols T, non-terminal symbols N, production rules P, and
statement entry symbol S .

Result: Cluster labels Y ∈ Nn

/* New supervised prototype initialization procedure taking
supervised label ω */

1 Function initialization(ω):
/* Increment the count of unique internal categories */

2 K ← ∥C∥1 + 1
/* Initialize a new prototype according the START variant with

the new internal category label K */
3 RK ← fN(x, G)

/* Map the supervised label the new internal category */
4 UK ← ω

/* Parse statements into syntax trees */
5 X← Parser(S, G)
/* Iteration over parsed statement trees with supervised labels */

6 foreach x, ω ∈ X, Ω do
/* Instantiate a new prototype with the supervised label if the

label is entirely novel */
7 if ω /∈ U then
8 initialization(ω)
9 else

/* Run the vigilance test specific to the START variant */
10 VJ = fV(R, x)

/* Update winning node J if it correctly predicts label ω */
11 if VJ ∧ (ω ∈ U ) then

/* Run START update procedure */
12 fL

(
RJ , x

)
13 else

/* Otherwise, initialize a new category */
14 initialization(ω)

Furthermore, these three unsupervised algorithms are extended to their own super-
vised variants using the procedure of Simplified FuzzyARTMAP to map internal category
labels to supervised labels, and their nomenclature follows the same procedure (e.g., START
to Simplified STARTMAP) [64]. Table 5 arranges the resulting six variants and their names
in a table according to their learning modality and vigilance formulation.
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Table 5. A summary of the START variants and their abbreviations. Three vigilance formulations are
developed, starting with a core START algorithm and extending it with dual-vigilance and distributed
dual-vigilance variants (Section 3.1.5). These three variants are intrinsically incremental, unsuper-
vised clustering algorithms, but a supervised procedure in the vein of Simplified FuzzyARTMAP
(summarized in Section 3.1.6) generates a supervised variant for each of these three algorithms
as well.

Vigilance Formulation Unsupervised Supervised

Single-Vigilance START Simplified STARTMAP
Dual-Vigilance DV-START Simplified DV-STARTMAP

Distributed Dual-Vigilance DDV-START Simplified DDV-STARTMAP

3.1.8. Comparison of START Variants

Similar to the FuzzyART variants that they are inspired by, the six variants of START
each have their own advantages and drawbacks according to the machine learning context
at hand. Each algorithm is designed for learning upon purely categorical datasets where
each sample may have a variable length; as a result, the use of these algorithms necessitates
the design of a parser that may take such a dataset and transform it into a series of
statements and their corresponding relation parse trees according to a context free grammar
(CFG) that describes that dataset, which may be expressed in an a series of production rules
in an extended Backus–Naur form (EBNF). When the entirety of the dataset is available,
the CFG and its production rules may be immediately inferred from the data itself.

ART algorithms such as START are designed to completely learn upon a single sample
at a time, which makes them suitable for streaming clustering applications. Because of its
formulation, START tracks only distributions of symbols that it has encountered, without
requiring full knowledge of the populations or distributions of symbols in advance, so new
symbols may be added naturally in a streaming clustering context.

The unsupervised variants of START are naturally suited to symbolic clustering prob-
lems, and the supervised variants may be used in both supervised and multimodal contexts
because the supervised modification is exterior to the weight update and instantiation
process. When supervised labels are available, the label map is populated as a many-to-one
mapping of internal categories to supervised labels, and when supervised labels are not
available, updates to the label map correspond to updates to the internal labels. When no
supervised labels are available in this scenario, the label map is populated as a one-to-one
mapping of internal labels to supervised labels and is equivalent to running in the original
unsupervised mode.

The selection of which vigilance formulation to use, however, is more nuanced; the
original single-vigilance START formulation only has one hyperparameter to tune according
to the application at hand, whereas DV-START and DDV-START have two. Furthermore,
the use of dual-vigilance variants has a trade-off of variable cluster granularity versus
computational and memory complexity; DDV-START, for example, is capable of capturing
arbitrary cluster shapes, but this comes at the cost of the potential for prototype proliferation
and the added computation necessary to compare global nodes. On the other hand, START
is suited for capturing more globular clusters with fewer computations at the risk of
excessive category proliferation when cluster densities vary. These considerations also
apply to the supervised formulations of each variant, making the selection of which START
variant to use dependent upon both the availability of supervised labels and the availability
of a priori knowledge of the statistics of the dataset in question.

3.1.9. Comparison with Existing Methods

START is most directly comparable with Gram-ART for two important reasons: Gram-
ART is the first and indeed only, prior to START, ART-based categorical data clustering
algorithm, and the design of START uses Gram-ART as a basis with important modifica-
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tions. Details on the design differences between START and Gram-ART can be seen in the
Supplementary Materials section of this paper.

The related Cascade ARTMAP handles symbolic data rather than real-valued or binary
input patterns, but it is designed to handle if–then rule-based knowledge datasets rather
than the variable-length categorical data targeted by START [65].

4. Evaluation

START is evaluated here both on existing benchmark machine learning datasets with
known labels (outlined in Section 4.2) and on a custom biomedical dataset (outlined in
Sections 4.3 and Appendix A).

4.1. Software Implementation

The START algorithm and the experiments outlined in this paper are implemented
in a version-archived software repository [66]. In this repository, the START algorithm is
implemented in the Julia scientific programming language [67] and utilizes the Lerche.jl
package for implementing parsers [62] and AdaptiveResonance.jl for ART post-processing
and analysis tools [39]. Clustering result analysis was also performed on the CMT dataset
using the Python SHAP library (detailed in Sections 4.5 and 5.3) [68]. Visualizations of
the SHAP analysis and additional post-processing were performed with the Orange data
mining toolbox [69] and the IBM SPSS toolbox.

All algorithms and tool dependencies are implemented in serial without parallel or
GPU acceleration. Individual experiments involve parsing and clustering the dataset in
question, and they are run on the scale of seconds with large vigilance parameter values
and minutes with small vigilance parameter values when run with the single-thread
performance of a desktop Ryzen 9 3950X CPU. This variation is a consequence of the
variable number of categories instantiated, where small vigilance parameter values tend
to over-partition the data into many categories and large vigilance parameter values tend
to generalize the data as belonging to a small number of categories. These individual
experiment iterations themselves were run in parallel on a university computing cluster for
hyperparameter sweeps and for gathering performance statistics.

4.2. Benchmark Datasets

Purely categorical machine learning benchmark datasets are not as widespread and
well-studied as real-valued benchmark datasets, and the START algorithm and its variants
are not designed to handle real-valued data without modification. Therefore, START and
its variants are evaluated on a combination of both real-valued clustering datasets and
purely categorical datasets with caveats.

Gram-ART is originally verified upon a discretized version of the UCI Iris dataset, the
UCI Mushroom dataset, and the UCI Unix User dataset [24,70–72]. For comparison, START
is evaluated upon the following open-source machine learning benchmark datasets with
existing labels: a set of real-valued clustering benchmark datasets [73,74], the categorical
UCI Mushroom dataset [71], and a categorical lung cancer patient dataset [75]. Because
benchmark datasets such as the Iris dataset’s elements are real-valued, each feature is
range-normalized and binned into a set of terminal symbols representing each bin.

Both the written procedures for accommodating real-valued benchmark datasets for
evaluation and the results of all real-valued and categorical benchmark evaluations can be
viewed in the Supplementary Material of this paper.

4.3. Charcot–Marie–Tooth Disease Dataset

To test the ability of START to cluster rows in a complex dataset with various multi-
category fields of varying length, we created a test dataset based on Charcot–Marie–Tooth
disease (CMT). CMT, also known as hereditary motor and sensory neuropathy, is one of
the most common neurogenetic diseases, with a population prevalence of 1 in 2500 [76]. As
a starting point, we began with 81 variants of CMT in the Online Mendelian Inheritance of
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Man (OMIM) phylogenetic series. A known genetic mutation characterizes each variant.
The protein associated with the mutation is known in all but three variants. For each CMT
variant, we added a row to a flat file with the following columns: variant name, OMIM
number, gene, gene location, chromosome, mode of inheritance, phenotype, protein name,
UniProtKB number, protein location, biological process in which the protein participates,
protein molecular function, protein length, and protein weight. External data sources
were identified to populate the dataset (Table 6), including the Online Inheritance in Man
(OMIM), the Human Phenotype Ontology (HPO), UniProtKB, and the Human Protein Ref-
erence Database (HPRD) [77–80]. The final dataset had 81 rows and 17 columns, as shown
in (Table 6). Seven columns were multi-categorical. Gene number (OMIM), phenotype
number (HPO), protein number (UniProtKB), and variant number (OMIM) were not used
in the clustering.

Example production rules resulting from the interpretation of this dataset as state-
ments sampled from a grammar can be found in Appendix A. The following clustering
methodology and analysis was performed on this CMT dataset using the original START
unsupervised variant.

Table 6. Table of features and their characteristics in CMT flat file. Protein numbers were from
UniProtKB [79]. Variant and gene numbers were from OMIM [77]. The phenotype numbers were from
HPO [1,81]. Since genes, proteins, and diseases have multiple names, the names were normalized
to the standard form. Most of the features were categorical, and some were multi-categorial. The
features were formatted as integers or strings of variable or fixed length.

Feature Type Format Length Multi-Category

variant name categorical string variable no

variant number categorical string fixed no

gene name categorical string variable no

gene number categorical integer fixed no

protein name categorical string variable no

protein number categorical string fixed no

protein length numerical integer variable no

protein weight numerical integer variable no

protein location categorical string variable yes

protein molecular function categorical string variable yes

protein biological process categorical string variable yes

protein class categorical string variable yes

mode of inheritance categorical string variable yes

phenotype categorical string variable yes

phenotype number categorical string variable yes

chromosome categorical string variable no

chromosome location categorical string variable no

chromosome location categorical string variable no

Each row of the flat file was interpreted as a statement of symbols corresponding to
each column entry. In this manner, each statement was of variable length due to some rows
missing entries while other entries contained more than one element. These statements of
sequential symbols were then used to infer the grammar and production rules of the dataset;
a statement could have one or more attributes (e.g., names of the columns containing data
entries), which themselves could have one or more terminal symbols, to reflect how a
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disease variant could be associated with multiple different phenotypes, biologic processes,
etc. The resulting grammar production rules seeded a parser that was used to process
each statement into a parse tree. These trees were then interpreted as START TreeNodes
(Figure 1) for clustering according to the prototype instantiation, comparison, and update
procedures of the START algorithm (Figure 2, Algorithm 1), clustering in a single pass and
updating weights or instantiating new prototypes at each incremental sample presentation.
A hyperparameter sweep of the vigilance parameter with statistics generated by shuffled
presentation order was performed to determine the most meaningful vigilance parameter
selection for subsequent cluster analysis (Section 5.1).

<oper>
p(+, x, y)

<op>
p(+)

<arg1>
p(x)

<arg2>
p(y)

(a) START prototype before update.

<oper>

<op> <arg1> <arg2>

‘+’ ‘x’ <oper>

<op> <arg1> <arg2>

‘·’ ‘m’ ‘n’

(b) Relation parse tree of x + m · n.

<oper>
p(+, x, y)

<op>
p(+)

<arg1>
p(x)

<arg2>
p(y, ·, m, n)

<oper>
p(·, m, n)

<op>
p(·)

<arg1>
p(m)

<arg2>
p(n)

(c) START prototype after update.

Figure 2. A set of figures demonstrating the evaluation and update of a START prototype on a new
sample. (a (left)) demonstrates a START prototype as a rooted tree of ProtoNodes instantiated on the
algebraic statement x + y (a). ProtoNodes are labeled by a non-terminal symbol, and they contain a
probability mass function (PMF) of the terminal symbols generated both by that non-terminal and
by any descendant non-terminals, where p(x, y) is shorthand for the PMF of the set of outcomes
S = {x1, x2, . . . xn} that gives p(x1, x2, . . . xn) = {P(X = x)|x ∈ S}. (b (center)) demonstrates the
relation parse tree of a new algebraic statement x + m · n. The rooted trees of the prototype and
parsed statement are aligned and compared as a graph intersection at the non-terminal positions.
The START match rule (Section 3.1.3) then determines the activation and match values of this graph
intersection as a function of the PMFs at each non-terminal position and the terminal symbols at
the leaf nodes of the sample, and the hypothetical prototype of (a) is selected from a pool of other
candidate prototypes. (c (right)) demonstrates the prototype after update, accommodating the new
non-terminal symbol positions of the sample and updating the PMFs at each non-terminal position
according to the START weight update rule (Equations (3) and (4)).

4.4. Cluster Feature Means and Heat Maps

After clustering by START, a cluster membership (between 1 and 9) was assigned to
each row. Multi-categorical features (see Table 6) were flattened into individual features by
one-hot encoding. Feature means for each cluster were calculated using the AGGREGATE
procedure from SPSS (version 29.0, IBM). The features were visualized using heat maps
from Orange 3.35 [69]. For the heat maps, raw feature means were used for the categorical
variables, and normalized feature means (in the interval [0, 1]) were used for the numerical
variables (see Table 6).
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4.5. SHAP Values

SHAP summary values were calculated using the method of Lundberg et al. [68].
START cluster membership was added to the flattened feature array (see above). The
cluster configuration was fitted to the HistGradientBoostingClassifier (scikit-learn). The
shap.TreeExplainer and the shap.summary_plot procedures were used to compute SHAP
values and create the SHAP summary plot.

5. Results
5.1. Selection of Cluster Configuration for the CMT Dataset

The vigilance parameter ρ was varied between 0.0 and 1.0 in a Monte Carlo of shuffled
sample presentation order (Figure 3). To minimize the size of the largest cluster and mini-
mize the number of clusters with one member, ρ = 0.6 was selected, yielding nine clusters
(Figure 4).

Figure 3. Effect of vigilance parameter ρ on number of clusters. A Monte Carlo of shuffled sample
presentation order was run to generate 1σ intervals of the results at each vigilance parameter value.
As ρ was increased from 0.0 to 1.0, the maximum cluster size decreased, the number of clusters
increased, and the number of singleton clusters increased. A value of ρ = 0.6 (yellow dashed line)
was selected to yield 9 clusters with only two singleton clusters. Larger ρ values gave too many
singleton clusters, and smaller ones put too many cases into one cluster.

5.2. Cluster Characterization by Feature Composition

We used heat maps to visualize the features that characterized each cluster. The
clusters differed in mode of inheritance, protein localization within the cell, protein par-
ticipation in biological processes, protein length, molecular weight, motifs and domains
in amino acid chains, phenotype, and protein molecular function (Figures 5–12). The heat
maps were used to create a narrative summary of each cluster’s most important feature
characteristics (Table 7).

5.3. Identifying Features that Contributed the Most to Cluster Configuration

We used SHAP [68] to find the features that drove the cluster configuration. The SHAP
summary plot (Figure 12) showed that protein length, chromosome number (autosomes
1− 22 and X and Y), mode of inheritance (autosomal recessive and autosomal dominant),
protein localization in the cell (cytoplasm and plasma membrane), and phenotype (hyper-
tonia, auditory and cognitive) contributed the most to cluster formation.
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Figure 4. With ρ = 0.6, clustering by START yielded nine clusters from 81 variants of CMT. Each
cluster is a different color on the heat map. Order of clusters on heat map is 7, 9, 8, 2, 1, 6, 5, 3, 4, with
ordering by Euclidean distance between cluster centroids [69]. The largest cluster is 4 (dark green),
with 53 members. Singleton clusters are 9 (white) and 6 (pea green). A shortened variant name is
shown in the right margin. Dejerine–Sottas disease appears four times in the heat map because it is
caused by four distinct mutations in the MPZ, PMP22, PRX, and EGR2 genes.
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Table 7. Summary of features that characterize CMT clusters. k is the cluster number and N is the
count of members in each cluster. Phenotype Plus lists signs and symptoms in addition to weakness,
atrophy, deformities, sensory loss, and hyporeflexia that characterize most cases of CMT. AD is
autosomal dominant inheritance; AR is autosomal recessive; XLR is X-linked recessive. TM is the
transmembrane protein domain. GNRF is the guanine nucleotide-releasing factor. Note that some of
the characteristics identified by the SHAP analysis, including cognitive, hypertonia, auditory, plasma
membrane, autosomal recessive, and autosomal dominant (Figure 12), recur in this summary table.

k N Process Function Location Domain Inherit Phenotype Plus

1 6 apoptosis hydrolase AD auditory, visual

2 3 cytoplasm AD hypertonia

3 7 protein transferase AD, AR
synthesis

4 53 plasma TM AD,AR
membrane

5 4 plasma TM AD cognitive, auditory
membrane

6 1 immunity transferase plasma AD cognitive, ataxia,
transcription membrane seizure, hypertonia,

speech, hyperreflexia

7 4 transcription DNA binding plasma AD, AR cognitive, hypotonia
membrane

transferase

8 2 autophagy hydrolase nucleus AR cognitive, auditory,
apoptosis GNRF hypertonia

9 1 transferase mitochondrion TM XLR cognitive, auditory

Figure 5. Heat map of molecular function for proteins in CMT clusters. Kinase function is associated
with cluster 9, hydrolase function with clusters 1 and 8, DNA binding with cluster 7, activator
function with cluster 7, and transferase function with cluster 9.
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Figure 6. Heat map of biological process for proteins by CMT cluster. Cluster 1 is apoptosis, cluster 8
is autophagy and apoptosis, cluster 3 is protein synthesis, cluster 6 is transcription and immunity,
and cluster 7 is UBL protein conjugation and transcription.

Figure 7. Heat map of protein locations by CMT cluster. Cluster 2 is cytoplasm, clusters 5, 6, and 7
are plasma membrane, cluster 8 is nucleus, and cluster 9 is mitochondrion.
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Figure 8. Heat map showing protein motifs and domains by CMT cluster. Motifs and domains
are characteristics of configurations of the amino acid chains that make up proteins and are often
associated with a specific function. Note the over-representation of the transmembrane (TM) domains
in clusters 5, 6, and 9 (red arrow). The CC motif is found in most proteins except for cluster 7.

Figure 9. Heat map of molecular weights and amino acid chain lengths for proteins for CMT clusters.
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Figure 10. Phenotype scores for each of the nine clusters for the 81 variants of CMT. Scores have been
normalized to the interval [0, 1], where 1 indicates 100% and 0 indicates 0%. Note, as expected, that gait,
atrophy, deformity, hyporeflexia, weakness, and sensory loss are common features in most cases (red
bracket). Cluster 6 with one case and cluster 9 with one case are different because they manifest auditory
and cognitive symptoms (cluster 9) or ataxia, cognitive, hyperreflexia, hypertonia, seizures, and speech
symptoms (cluster 6). Cluster 6 is also of interest because it lacks weakness and atrophy, two of the core
symptoms of CMT. Cluster 2 (3 cases) is also interesting because subjects have hypertonia. Cluster 4,
with 53 cases, is the most common pattern and shows a typical phenotype of gait, atrophy, deformity,
hyporeflexia, weakness, and sensory symptoms, which is characteristic of CMT.

Figure 11. Modes of inheritance for the nine CMT clusters. Cluster 8 is largely autosomal recessive.
Cluster 9 is X-linked recessive. Clusters 5, 6, and 7 are autosomal dominant inheritance.
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Figure 12. SHAP cluster summary plot for the 9 clusters derived from CMT dataset with ρ = 0.6.
The SHAP plot shows which features contributed the most to the cluster configuration by cluster.
Important features are protein length, chromosome, mode of inheritance (autosomal dominant and
recessive), protein location (cytoplasm and plasma membrane), and certain phenotypes (auditory,
cognitive, and hypertonia). The domain expert rated these features as highly biologically plausible.
SHAP plots were created using the method of Lundberg et al. [68].

6. Discussion
6.1. Feasibility of Clustering Multi-Categorical Biomedical Data with START

START demonstrates several important capabilities that make it particularly useful
for the clustering of multi-categorical data. Firstly, it directly represents the categorical
data without an intermediate encoding representation and all the problems introduced
therein; categorical data by definition does not define distance metrics or fuzzy membership
between categories and feature dimensions. The problem is circumvented here by the
definition of prototype parse trees tracking the distributions of symbols from learned
statements using the ART match and learning rules.

Secondly, it naturally compensates for data points with missing elements entries in
its fields; rather than requiring a special encoding scheme for missing fields or removing
data points altogether, START can represent missing fields as unused non-terminal posi-
tions when representing multi-categorical datasets as statements containing one or more
attributes, which has the effect of penalizing the degree to which samples with missing
features match existing prototypes while still accommodating prototypes of varying sizes.

Thirdly, and as a consequence of the previous point, START can handle symbolic data
of varying length when interpreted as statements under a grammar; in fact, this paper
demonstrates an analysis of multi-categorical datasets of depth 2 due to the nature of the
CMT data available, but categorical datasets of arbitrary depth can be analyzed with START
when treating categories as themselves non-terminal symbols with production rules map-
ping to other sets of categories. This can be interpreted as processing hierarchical symbolic
databases where individual fields can themselves link to other symbolic database tables.
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6.2. Biological Interest and Plausibility of Derived Clusters

When the START vigilance parameter was set to ρ = 0.6 (Figure 3), we obtained
nine clusters (Table 7). Cluster 4, the largest, had 53 members, and clusters 6 and 9 were
singleton clusters. The fact that cluster 4 is large is not surprising since most cases of
CMT are similar and have similar core symptoms of weakness, sensory loss, hyporeflexia,
orthopedic abnormalities, atrophy, and gait abnormalities in common [76]. Although it
is usual to differentiate clinically between axonal forms (involving the neuron axon) and
demyelinating forms (involving the myelin sheath of the axon) of CMT, it is not surprising
that we did not find axonal and demyelinating clusters of CMT since we did not input
electromyographic data into the clustering algorithm. The finding of small clusters of CMT
variants with auditory, hypertonic, or cognitive phenotypes is interesting and plausible
biologically and is consistent with clinical observations.

The clusters differed in inheritance (Table 7) in biologically plausible ways and consis-
tent with clinical practice. Since each variant of CMT was due to a gene mutation and since
each gene coded for a unique protein, protein weight, protein length, protein configura-
tion (motifs and domains), protein involvement in biological processes, protein molecular
function, and protein locations could be examined for each CMT cluster and compared
to the observed phenotype (Figures 5–12, and Table 7). Although these observations are
intriguing, they do not offer a precise path to connect protein function, location, and process
to the neurological phenotype in CMT. As an example of explainable AI [82], the SHAP
plots in Figure 12 provide biologically plausible explanations for how START relied on
certain features to form clusters.

6.3. Limitations

One limitation of this work is that START is used to cluster a small biomedical dataset
without ground truth labeling. Although the diagnosis of each row (CMT disease variant)
is known, cluster membership for the dataset as a whole is unknown. As a result, this work
cannot contain an analysis of either truth in cluster membership and structure or performance
of START with respect to such a ground truth. The reader is referred to the Supplementary
Materials of this article for a study of the START algorithm on various other machine learning
benchmark datasets, including fully symbolic and real-valued datasets including details of
the procedure necessary to adapt the START algorithm to real-valued data.

Another limitation of this work is that all available features are used as inputs to
the START clustering algorithm. A separate study is warranted to study how with-
holding some of the features as meta-features would allow potentially interesting cluster
composition analyses.

Furthermore, the results of clustering and analyzing the CMT dataset with START
has limited generalizability to other diseases datasets. It is seldom expected of clustering
models or indeed machine learning models as a whole to generalize to distinct domains
from which they were trained, outside of research areas such as lifelong machine learning
that tackle this specific issue [83]. Nevertheless, some transferability should be expected
to related datasets of the class of neurogenetic diseases that CMT belongs to, but this
transferability is limited in two ways: by the format of the selected data and the START
methodology itself. Biomedical data are themselves notoriously multifaceted, and the
creation of generalizing models in this field depends on the narrowed problem statement
and subsequent dataset at hand. For example, this work considers the clustering of data
with categorical membership in specifically phenotype–gene relationships; with respect
to the OMIM elements, each entry in the CMT dataset subsumes a variable number of
clinical studies that generate the datapoints, discarding the qualitative aspects of the various
individuals studied and the other clinical features that are inconsistently included between
entries. This is a consequence not of the quality of the OMIM database but rather of the
project of aggregating vastly disparate clinical data.

In addition to this, an ontological level of granularity is necessarily selected by the
researcher when working with any clinical features; for example, a full hierarchy of pain
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may be studied as symptoms of a disease with respect to an individual patient from the
location, duration/periodicity, and subjective intensity according to some pain scale, etc.
Taking the location of pain as an example, some studies describe the location of pain with a
varying degree of specificity; in the hierarchy of location on the human body, should one
hypothetical study citing simply pain and another citing leg pain be considered the same
by virtue of belonging on the same hierarchy or different by virtue of being two different
points on that hierarchy? If neither is true, then what is the distance metric along this
hierarchy until two points are considered distinct? Even clinical definitions of the term
pain itself vary and are subject to debate [84]. As a result, simplifying assumptions must
be made for any learned model of clinical data, such as the ontological subsumption of
the phenotype of pain in this study, and the interpretation of clustering results and its
usefulness for the treatment of a disease is tied to the selection of ontological granularity.

Lastly, the methodology of the START algorithm successfully tackles the clustering of
the resulting variable-size categorical datasets, but it does so at the level of the symbols
themselves without forming a feature-transformed intermediate representation of them.
Additional similar phenotype–gene datasets could be clustered with an existing model
trained on this CMT dataset, but relationships between them would only be found if
they shared exactly the same symbols, such as gene locations and disease phenotypes.
Completely disparate datasets with no shared symbols may indeed be clustered by the
same START model after appropriate modifications to its parser’s grammar, but this would
be functionally equivalent to clustering with two separate START models; this benefit of
START is also to its detriment, as if there are no shared symbols between data points, they
are treated as having no shared features for computing similarities.

6.4. Future Work

This paper demonstrates that START can work with data from a knowledge graph
or ontology when flattened into a rectangular file, even with missing or nested elements.
Alternatively, knowledge graphs and ontologies can be converted into triplets as subject–
object–predicate triplets, which retains the underlying graph architecture. In the future,
we plan to determine whether START can successfully cluster these triplets derived from
knowledge graphs into meaningful clusters.

Additional future work includes an evaluation of START clustering on large multi-
categorical datasets with a known ground truth cluster membership and further experi-
ments on datasets in which some features are withheld from input and retained as meta-
features for post-clustering analysis.

7. Conclusions

This work introduces the START algorithm for the clustering of symbolic data with
arbitrary length statements. This work also introduces dual-vigilance and distributed
dual-vigilance variants of START along with a supervised modification for each. Because
START is designed for symbolic datasets, it is naturally suited for the clustering of both
categorical and multi-categorical datasets where each sample feature may realize multiple
values. This multi-categorical clustering capability is demonstrated on a curated biomedical
dataset of Charcot–Marie–Tooth disease variants and their disease–gene attributes, such as
disease phenotypes and protein molecular functions.

For a dataset such as the CMT dataset used here, START is useful as a tool for studying
structural relationships between disease variants for guiding future clinical research or in
the formulation of useful models of those diseases via the hierarchies, clusters, and outliers
identified during the clustering process; for example, distinct gene locations with shared
phenotypes between two groups of disease variants may illustrate to a researcher some
other shared molecular mechanism for future research, which could guide drug research in
a data-driven manner.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/info15030125/s1, Listing S1: Discretized Iris dataset grammar
illustrating the symbolic binning procedure of real-valued data used to evaluate START and Gram-
ART; Table S1: Hyperparameters for each START variant during supervised train/test evaluation.
Table S2: Performance statistics of the supervised implementations of each START variant derived in
the original paper on a set of benchmark real-valued and categorical machine learning datasets.
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Abbreviations
The following abbreviations are used in this manuscript:

ART Adaptive resonance theory
BNF Backus–Naur form
CFG Context-free grammar
CMT Charcot–Marie–Tooth disease
DDVFA Distributed dual-vigilance FuzzyART
DDV-START Distributed dual-vigilance symbolic tree adaptive resonance theory
DVFA Dual-vigilance FuzzyART
DV-START Dual-vigilance symbolic tree adaptive resonance theory
EBNF Extended Backus–Naur form
F1 ART Feature input layer (field 1)
F2 ART Category representation layer (field 2)
HAC Hierarchical agglomerative clustering
L2 Lifelong learning
ML Machine learning
PMF Probability mass function
START Symbolic tree ART
WTA Winner-take-all

Appendix A. Charcot–Marie–Tooth Dataset Grammar

An analysis of the Charcot–Marie–Tooth (CMT) dataset a posteriori demonstrates the
process used in this article for interpreting tabular multi-categorical data as statements
sampled from a context-free grammar that can be expressed as a set of EBNF production
rules, which can be seen in Grammar Listing 1. Gene–protein disease data are gathered
for 81 variants of CMT with categorical attributes (Table 6). Categories such as phenotype
are subsumed where hierarchically relevant to reduce attribute feature dimensionality
(e.g., variants of “pain" symptomology are subsumed to one feature belonging to the
“phenotype" attribute). This process results in a 81-row flat-file dataset of features with

https://www.mdpi.com/article/10.3390/info15030125/s1
https://www.mdpi.com/article/10.3390/info15030125/s1
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multi-categorical attributes represented as piped entries for each disease variant, including
attributes with missing entries.
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Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353.
70. Fisher, R.A. Iris. UCI Machine Learning Repository: Irvine, CA, USA, 1988. [CrossRef]
71. Mushroom; UCI Machine Learning Repository: Irvine, CA, USA, 1987. [CrossRef]
72. Lane, T. UNIX User Data; UCI Machine Learning Repository: Irvine, CA, USA, 1988. [CrossRef]
73. Ilc, N. Datasets Package. Available online: https://www.researchgate.net/publication/239525861_Datasets_package (accessed

on 5 January 2024)
74. Fränti, P.; Sieranoja, S. K-Means Properties on Six Clustering Benchmark Datasets. Appl. Intell. 2018, 48, 4743–4759 [CrossRef]
75. Ahmad, A.S.; Mayya, A.M. A new tool to predict lung cancer based on risk factors. Heliyon 2020, 6, e03402. [CrossRef]
76. Rossor, A.M.; Polke, J.M.; Houlden, H.; Reilly, M.M. Clinical implications of genetic advances in Charcot–Marie–Tooth disease.

Nat. Rev. Neurol. 2013, 9, 562–571. [CrossRef]
77. Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.org: Leveraging knowledge across phenotype–gene relationships.

Nucleic Acids Res. 2019, 47, D1038–D1043. [CrossRef]
78. Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.;

Brower, A.M.; et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [CrossRef]
79. The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531.

[CrossRef] [PubMed]
80. Keshava Prasad, T.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen,

B.; Venugopal, A.; et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009, 37, D767–D772. [CrossRef]
[PubMed]

81. Robinson, P.N.; Mungall, C.J.; Haendel, M. Capturing phenotypes for precision medicine. Mol. Case Stud. 2015, 1, a000372.
[CrossRef] [PubMed]

82. Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019,
4, eaay7120. [CrossRef]

83. New, A.; Baker, M.; Nguyen, E.; Vallabha, G. Lifelong Learning Metrics. arXiv 2022. arXiv:2201.08278.
84. Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The

revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020,
161, 1976–1982. [CrossRef]

85. Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005, 33, D514–D517. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0893-6080(91)90012-T
http://dx.doi.org/10.5281/zenodo.8117081.
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
http://dx.doi.org/10.24432/C56C76.
http://dx.doi.org/10.24432/C5959T.
http://dx.doi.org/10.24432/C5302K
https://www.researchgate.net/publication/239525861_Datasets_package
http://dx.doi.org/10.1007/s10489-018-1238-7
http://dx.doi.org/10.1016/j.heliyon.2020.e03402
http://dx.doi.org/10.1038/nrneurol.2013.179
http://dx.doi.org/10.1093/nar/gky1151
http://dx.doi.org/10.1093/nar/gkaa1043
http://dx.doi.org/10.1093/nar/gkac1052
http://www.ncbi.nlm.nih.gov/pubmed/36408920
http://dx.doi.org/10.1093/nar/gkn892
http://www.ncbi.nlm.nih.gov/pubmed/18988627
http://dx.doi.org/10.1101/mcs.a000372
http://www.ncbi.nlm.nih.gov/pubmed/27148566
http://dx.doi.org/10.1126/scirobotics.aay7120
http://dx.doi.org/10.1097/j.pain.0000000000001939
http://dx.doi.org/10.1093/nar/gki033

	Analyzing Biomedical Datasets With Symbolic Tree Adaptive Resonance Theory
	Recommended Citation

	Introduction
	Background
	Adaptive Resonance Theory
	Gram-ART

	Method
	START: Symbolic Tree Adaptive Resonance Theory
	Motivation
	START Algorithm
	Derivation of the START Match Rule
	Derivation of the Weight Update
	Dual-Vigilance and Distributed Dual-Vigilance START
	Supervised Variants
	Summary of START Variants
	Comparison of START Variants
	Comparison with Existing Methods


	Evaluation
	Software Implementation
	Benchmark Datasets
	Charcot–Marie–Tooth Disease Dataset
	Cluster Feature Means and Heat Maps
	SHAP Values

	Results
	Selection of Cluster Configuration for the CMT Dataset
	Cluster Characterization by Feature Composition
	Identifying Features that Contributed the Most to Cluster Configuration

	Discussion
	Feasibility of Clustering Multi-Categorical Biomedical Data with START
	Biological Interest and Plausibility of Derived Clusters
	Limitations
	Future Work

	Conclusions
	Appendix A
	References

