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ABSTRACT 

A computer program, using Evaluated Nuclear Data File (ENDF/B II) 

information, was used to develop energy-exchange kernels which 

delineate the energy transfer probabilities between neutrons and Fe 3Al 

lattice atoms. The kernels combine all available information on 

elastic and inelastic scattering contained in the ENDF/B II data. 

The computer program used to generate the pri~ary recoil spectra 

is SAKI, a modified version of RICE (1). SAKI is designed to calcu

late energy-exchange probabilities in any binary alloy as well as 

damage cross sections and optimum cutoff energies for use in comparing 

displacement effects in different reactor spectra. 
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I. I!JTRODUCTIO!J 

Since the discovery of radiation, man has inquired into the effects 

of this radiation on his environment. Even before the advent of the 

nuclear reactor, many studies were undertaken to provide a greater 

insight concerning radiation induced effects and mechanisms in solids. 

~~ith the discovery of radiation, a keen interest developed 

concerning its effects on order-disorder alloys. 

Utilizing the computer as the tool of investigation, this research 

will determine the primary recoil atom spectra and damage cross section 

of the ordered Fe3Al alloy. 

The primary recoil atom spectra can be helpful in predicting 

the size distribution of displacement spikes and calculations 

concerning the formation of voids in irradiated materials in a 

particular neutron environment. 

Damage cross sections are a measure of tile number of displacements 

produced in the irradiated solid per atom site and is independent of 

the neutron flux spectra in a reactor system. SAKI utilizes EtJDF/B 

cross section data and the Kinchin-Pease model [2] for the displace

ments produced per primary knock-on atom. 



II. REVIEW OF LITERATURE 

The following is a review of the many investigations concerning 

the order-disorder phenomena, the alloy Fe3Al, and the effects of 

radiation bombardment on Fe3Al. Also included are various computer 

studies. 

A. THE ORDERED ALLOY SYSTEM 

An alloy composed of A atoms and B atoms is said to be ordered 

if the composition of the alloy can be expressed in a stoichiometri

cally simple formula AB or AB 3 (or very near to these ratios) and if 

the atoms occupy specific lattice sites in the crystal structure [3]. 

~~hen the alloy has become ordered in some region or 11 domain" then it 
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is said to have acquired a 11 SUperl atti ce 11 v1hi ch describes its geometric 

arrangement. 

Most of the experimental data on ordering have come from x-ray 

diffraction studies or diffraction contrast in the electron microscope 

[4]. The Fourier transform of the alloy's diffraction pattern (the 

Patterson function) describes the probability of finding one atom type 

at some interatomic vector from another. First, neglecting the fact 

that if the different atoms have different sizes in the solid solution, 

each pair may be at a slightly different interatomic vector~ Assume 

a binary alloy composed of A solute atoms and B solvent atoms. The 

Patterson function becomes 

PCr) = N [(xAZA+x 8z 8)
2 

+ xAxB(ZA-z8 )
2 [1 - P~l~ 1 } (1) 



where 

N the total number of A and B atoms 

Z; = the atomic number of i 

x; = the fraction of i atoms in the composition 

the conditional probability that there is a B atom at 
site j if there is an A atom at k 

X + X = 1 
A B 

The Patterson function is composed of two terms. The first is much 

larger than the second and depends on the alloy's average structure. 

It is derived from fundamental peaks of the Fourier transform and is 

not affected by changes in atomic arrangement excluding interatomic 

distance changes and changes in the vibrational spectrum. The second 

term describes local or short ranged order. The term 

is referred to as a , the Warren local order coefficient. The 
lmn 

coordinates of the interatomic vector between sites j,k are lmn. If 

the alloy is completely random then a is zero. The absolute value 
lmn 

of a
1 

also cannot exceed one. Its maximum negative value occurs at 
mn 

a 1- (1/x ), when the atomic fraction is that of the solvent B 
lmn B 

atoms. If the A atoms and B atoms have close atomic numbers then it 
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is difficult to detect diffuse scattering from local order using x-rays. 

Also, there are numerous effects that arise in diffraction patterns due 

to the fact that in close-packed solid solutions atoms of different 

sizes may not be exactly at lattice points. Examples may be modulation 

of the diffuse scattering or peak depressions. These are dependent on 
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the state of local order. It is possible, however, to detect local 

"changes" in atomic arrangement even though the atomic numbers of the 

A atoms and B atoms differ only slightly. Experimental work has been 

done to determine the Warren local order coefficient. It is deter

mined by transforming the diffuse intensity measured in a repeated 

volume of reciprocal space after being corrected for effects due to 

atomic size, temperature, parasitic scattering due to air and equip

ment, and Compton scattering. 

The parameter S is a measure of long range order. When S = 1 

the alloy is completely ordered and when S is zero, the alloy is com

pletely disordered. The critical temperature of the alloy, Tc, is the 

characteristic temperature at which complete disordering occurs. For 

example, assume that a completely ordered alloy is gradually heated. 

As the temperature of the alloy is raised the amplitude of thermal 

vibrations of the atoms about their equilibrium positions is greater. 

When these vibrations become large enough, there may be an interchange 

of atoms causing some disorder introduced into the superlattice. Dis

ordering will increase with temperature until, at some critical tem

perature of the alloy, the superlattice disappears entirely. Some 

local order will still exist due to attraction of unlike atoms. Upon 

cooling at a temperature above Tc, the events occur in reverse. At 

absolute zero the alloy will acquire perfect order. The long range 

order parameter was originally proposed by Bragg and Williams [5] 

as a linear function of the fraction of sites of one sublattice which 

is occupied by the "correct" atoms -- those that occupy the sub

lattice at total order. 
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s a + br (2) a 

where r is the fraction of a sub lattice occupied by right atoms. a 

Let 

XA = the molar fraction of A atoms in the alloy 

Xg = the molar fraction of B atoms in the alloy 

w = the fraction 
a 

of a sublattice occupied by wrong atoms 

wB = the fraction of s sublattice occupied by wrong atoms 

rs = the fraction of s sublattice occupied by right atoms 

There may be a need for more than one order parameter in this descrip-

tion, however. For instance, Fe 3Al has a 003 type superlattice struc

ture which is composed of eight body centered cubic cells. One order 

parameter may be needed to describe the order between sites at 

corners, another for the center of the cells, and another for the iron 

and aluminum atoms on the body centered lattice points. However, the 

overall long range order parameter may be written as 

s = (3) 

For the cu3Au system 

The face centered cubic cu 3Au alloy has four sublattices, three equi

valent ones occupied by copper atoms at full order (S sites at cube 

faces) and one sublattice occupied by gold atoms (a sites at cube 

corners). A number of assumptions have to be made concerning this 

definition. The alloy must be described by a stoichiometric formula 

AB or AB
3

. The ordered domains of the alloy must not be 11 0ut of phase 11 
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with each other. An example of this may be that A atoms occupy one 

sublattice in one domain, another in an adjacent domain, and so on. 

Cowley [6] has investigated free energies by the bond-energy 

approach in terms of the measurable local order parameters. His 

investigations along with the studies of Clapp and Moss [7] were on 

the face centered cubic alloy, cu 3Au. They found the configurational 

energy, H, to be 

where 

H 

A. = is proportional to the square of the structure factor 
J for the superlattice reflections that appear at Kj in 

reciprocal space 

V(Kj) = the Fourier transform of the pair potentials where K. 
is a position in reciprocal space J 

The configurational energy, thus, is a minimum for some atomic 

arrangement for which the K. are at the minima of the V(K) spectrum. 
J 

where 

b. = the axes of the unit cell in reciprocal space 
1 

h. = continuous variables , 
For cubic metals or alloys 

V(K) = I Vlmn cosn£h 1 cosnmh 2 cosnnh 3 
lmn 

( 4) 

( 5) 

( 6) 



The critical temperature can be defined for some K = K as 
m 

1 - -

where k is the Boltzmann constant. 
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There have been a number of computer experiments on generatinq 

the ordered state by a "monte carlo 11 type procedure, mainly for face 

centered cubic alloys. Fosdick, Flinn, and Guttman [8-10] allowed an 

exchange of randomly chosen pairs of AB atoms creating wrong pairs 

(7) 

according to a probability based on a Boltzmann weighing factor. 

Results for Cu3Au [8] were encouraging up to Tc. Around the critical 

temperature their model was inappropriate and a larger model was 

needed. Difficulty was encountered when they attempted to simulate 

order for a body centered cubic type structure. 

B. THE ORDER-DISORDER ALLOY - Fe3Al 

The superlattice structure of Fe3Al is the 003 type shown in 

figure 1. It is composed of eight body centered cubic cells and the 

iron and aluminum atoms occupy specific lattice sites within the super-

1 atti ce. 

Proper heat treatment is needed to insure ordering of the 

disordered phase. Slow cooling from a temperature well above Tc will 

allow the iron and aluminum atoms to select their specific sites in 

the crystal lattice. Rapid cooling or quenching will result in a 82 

or disordered phase. 

The effect of ordering on an alloy can be derived from electrical 

resistivity measurements at selected temperatures. A perfectly 

periodic lattice structure theoretically will have zero resistance. 
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0 IRON 

® ALUMINUM 

Figure 1. Fe3Al (D03) Superlattice 
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Any departure from perfect periodicity will result in an increase in 

electrical resistance. Therefore, there should be a marked decrease in 

resistivity upon ordering. Bennet [11] studied this effect on Fe 3Al 

as a function of temperature and various cooling rates. Results of his 

studies are shown in figure 2. As expected, the ordered specimen 

recorded a lower resistivity at low temperatures. Both the ordered 

and disordered alloys increased in resistivity as the temperature 

increased until they both converged at T . Rauscher [12] also investic 

gated ordering in Fe
3
Al. His slow cooling curve of resistivity as a 

function of temperature is shown in figure 3. He determined the 

critical temperature of the alloy to be around 540°C. This was 

accomplished by studying the long range order parameter as a function 

of temperature as shown in figure 4. The temperature at which the 

parameter becomes zero was defined to be the critical temperature. 

Leamy, Gibson, and Kayser [13] investigated the elastic stiffness 

coefficients of iron-aluminum alloys. At about 25.05 atomic percent 

aluminum, the density was found to be 6.6436 g/cm3 and the interpolated 

lattice parameter, a , was 2.8964 angstroms. 
0 

Wert and Cupschalk [14] usinq electron microscopy studied the 

antiphase domain structure of Fe 3Al. Rapidly quenched specimens 

exhibited an extremely fine antiphase domain structure which increased 

with subsequent annealing. Marchinkowski and Brown [15] also found 

that the B2 and oo
3 

structures of Fe
3

Al could coexist. They observed 

the antiphase boundaries which separate the two coexisting structures. 

The antiphase boundaries in both the imperfect B2 and 00 3 type lattices 

showed no preference for any particular crystallographic planes. No 
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quenching rate was found to be fast enough to prevent the formation of 

the 82 structure. They also found that 003 domains can form within 

existing and larger B2 type domains. 

C. RADIATION DAMAGE TO ORDERED ALLOYS 

Because of the great difference in electrical properties between 

the ordered and disordered state, these alloys are well suited for 
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radiation damage studies. Bombardment by high energy particles on the 

crystal lattice of the alloy will cause displacements if the particles 

impart sufficient energy to the target atoms [16]. The particles, first, 

will expend their energy by excitation with both conduction electrons and 

inner electrons of the atomic shells. Secondly, the particles transfer 

their energy to the lattice atoms by collision. The relative role of 

both processes will depend on the magnitude of the parameter, s, 

defined as 

m 
s = ___ e_ E 

M 

where 

m the mass of the electron 
e 

M the mass of the heavy particle 

E = the kinetic energy of the heavy particle, eV 

For relatively large values of s, the first process will predominate. 

The energy transferred to the electrons is much greater than the 

energy given to the lattice atoms. The electrons subsequently will 

transfer energy to the alloy by interaction with the lattice atoms, 

thus heating of the crystal. For sufficiently lower values of s, the 

energy of the fast particles is transferred primarily to the lattice 

(8) 
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atoms, thus, the second process predominates. If this energy is not 

sufficient to move a lattice atom from its equilibrium position, only 

vibrations of the crystal lattice atoms are excited. For larger 

energies, displacements will occur creating vacancies and interstitials. 

t~hen a very large energy is given to the lattice atoms, the atoms travel 

rapidly through the crys ta 1, exciting the same type of defects as the 

original particles. A number of vacancy-interstitial defects are also 

created in the region of the crystal which adjoins the trajectory of 

the fast particles. The liberation of energy in this region will 

cause a rather large increase in temperature and may result in melting. 

Rapid cooling of the region occurs because of good thermal transfer with 

the surroundings. In this way a disordered phase may be created and 

subsequently retained in an ordered alloy due to irradiation with fast 

particles. 

A number of conclusions can be derived from experimental results 

on an order-disorder alloy [17]. The rate of ordering in an alloy 

increases with instantaneous flux and increases with temperature. The 

degree of ordering previously obtainea decreases with increasing 

instantaneous flux and increases with increasing temperature. After 

a low or room temperature irradiation, there may be no observable 

change in order, but for subsequent annealing at room temperature or 

higher, some ordering of the alloy occurs. There seems to be a 

competition between the ordering and disordering processes during 

irradiation. The disordering process may result from a replacement 

mechanism, thermal spikes, or displacement spikes. The ordering 

process is due to migration of those simple defects which ~ay produce 



interchange of lattice atoms, the most obvious being the vacancy. 

During a high temperature irradiation and after a transitional state, 

the vacancy concentration is constant due to the equal number of 

vacancies produced and anni hi 1 a ted. For an inters ti ti a 1-v acancy 

annihilation, the vacancy concentration increases as the square root 

of the instantaneous flux, therefore causing the rate of ordering to 

also increase with the flux. The same conclusion may be obtained by 

assuming enhanced diffusion caused by an interstitial mechanism, but 

the interstitial must migrate by a replacement mechanism and not be 

jumping from one interstitial site to a neighboring one. 
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Since neutrons interact very \·~eakly \t>Jith electrons filost of their 

energy is transferred to the lattice atoms along their trajectory [16]. 

Local heating and lattice defects may occur due to neutron bombardment. 

The local heating may change the state of ordering and the lattice 

defects will accelerate the process of approaching the state of 

equilibrium at a given temperature. A relatively small number of 

defects are formed during electron bombardment. The incident electrons 

transfer most of their energy to the conduction and inner electrons 

of the atomic shells, and not to the crystal lattice atoms. In y-ray 

bombardment, energy transfer \lith the electrons also occurs. Fast 

electrons are formed as a result of the Compton effect and the internal 

photoelectric effect. These fast electrons will interact with other 

electrons in the same manner as the primary electrons during irradiation. 
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D. RADIATION DAMAGE TO Fe3Al 

Saenko [18] studied the effects of neutron irradiation on Fe 3Al 

using fluences up to about 1020 n/cm2. The effect on neutron bombard

ment at a temperature of about 80°C in both the annealed and quenched 

states were investigated by measuring electrical resistivity, crystal 

lattice parameter and the intensity of superstructural lines from 

x-ray diffraction patterns. He found that the superlattice diffraction 

lines decreased and ultimately vanished due to irradiation. This 

irradiation resulted in the destruction of a perfect long range order 

(D03 type) in a previously annealed alloy and of a less perfect lonq 

range order (82 type) in a previously quenched alloy. Both the ordered 

and disordered specimens come to some quasiequilibrium condition at a 

fluence of about 1.5 x 10 19 n;cm2. Irradiation in a high neutron flux 

does not create profound structural changes. The state formed is 

metastable, thus, slight heating of the specimen resulted in a partial 

recovery of the state which existed in the alloy before irradiation. 

Betts [19] made electrical resistivity measurements of ordered, 

disordered, and intermediate states of Fe3Al while being irradiated by 

neutrons. All specimens were irradiated at a temperature of about 

35°C. Both the ordered and near ordered specimens increased in 

resistivity indicating disordering whereas the disordered and near 

disordered specimens decreased in resistivity due to ordering. An 

equilibrium condition was estimated at 130 - 135 wohm-cm resistivity 

at a fluence of 1.02 x 1o20 n/cm2 . This was noted to be the resistivity 

that would remain constant during irradiation since the ordering and 

disordering effects of neutron irradiation would be in equilibrium. 
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Toma [20] investigated the ordering process from the 82 to the 

003 state and studied the fast neutron irradiation effects on the 

ordered superlattice. The specimen temperatures ranged from 100 to 

300oc. The fast neutron flux was 5.34 x 109 n/cm2-sec. Ordered 

specimens showed an advancement toward disorder and the disordered 

specimens indicated an advancement toward order. At a temperature of 

300°C, the resistivities of both ordered and disordered samples tended 

to become constant as the fluence reached 1.92 x 1014 n/cm2 . He found 

that this temperature was sufficient to cause an equilibrium between 

the ordering and disordering processes. During the determination of 

long range order parameters, he noted that the point defects produced 

during irradiation were annealed as the specimens were cooled from an 

elevated temperature to room temperature. 

Artsishevskii and Selisskii [21] studied neutron irradiation 

effects in annealed, quenched, and work hardened specimens. The effects 

in the annealed and quenched alloys were similar to those reported by 

other authors. The work hardened alloy exhibited an increase in 

electrical resistivity at low temperatures and a decrease at high 

temperatures caused by neutron damage. It was suggested that disorder

ing occurs at low temperatures and ordering takes place during recovery 

or recrystallization at high temperatures. 

Artsishevskii, Vasil 'ev, Kosheliaev, and Selisskii [22] studied 

the effect of deuteron bombardment on the electrical resistivity of 

Fe
3
Al. The bombardment was carried out with a beam of deuterons of 

energy 4 MeV from a cyclotron. Thickness of the samples ranged from 

20 - 30 microns to ensure interaction between the incident particles 
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and the lattice atoms throughout the voJhole volume of the sample. The 

ordered specimen was obtained by cooling at a rate of 25°/hr over the 

temperature range 550-250°C. The disordered specimen was act1ieved by 

rapid quenching from 850°C. In both the ordered and disordered 

irradiated samples, the change in resistivity were nearly identical. 

This seems to support the hypothesis of an intermediate degree of order 

being achieved due to bombardment. The change in the electrical 

resistivity due to bombardment may be connected with the formation of 

specific radiation damage, with change in the degree of order of the 

alloy, and vdth change in the Debye characteristic temperature. 

E.. RADIATION DAMAGE COt~PUTER STUDIES HlCLUOif~G Fe3A1 

In recent years there have been many investigations in the field 

of radiation damage utilizing the computer to simulate the various 

events which may occur due to radiation bombardment. 

Gibson, Goland, Milgram, and Vineyard [23] studied the dynamics 

of radiation damage in the face centered cubic lattice of copper. The 

damage events were studied at low and moderate energies (up to 400 eV). 

In their model, no assumptions \AJere required concerning what geometrical 

form the damaged configuration would take .. A vJide variety of initial 

conditions representing both static and dynamic events were used. For 

the static calculations the positions of the atoms in the defect were 

estimated and these coordinates were given to the computer generated 

crys ta 11 i te atoms. The dynamic motion of these atoms was fo ll ovJed 

until a stable, or equilibrium, configuration was attained. A rather 

large lattice of atoms (about 500 to 1000) was considered. The atoms 

interact with two-body, central repulsive forces, and v.Jith the 
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stability of the lattice maintained by supplying additional forces to 

the surface atoms to simulate the binding effect of the crystallite 

being imbedded in a very large crystal lattice. 

The results of this investigation provided evidence to support 

certain mechanisms that had been presented to explain radiation damage 

phenomena and evidence to disprove others. Damage at low energies 

consisted of vacancies and interstitials. Stability studies indicated 

that the interstitials reside in a split configuration in which it 

shares a lattice site with another atom. This configuration was 

originally proposed by Huntington and Seitz [24]. The character of 

the damage events are influenced by the regular arrangement of the 

lattice atoms. Certain directional chains focused at low energies and 

defocused at higher energies. Certain collision chains propagated 

with especially low loss of energy. A chain with energy above 25 or 

30 eV carried matter, as well as energy, somewhat in the fashion of 

the "dynamic crowdion 11 which produces an interstitial near its end. 

In no case was this crowdion found to be stable. The decay rate of 

this defect, however, was rather slow and the authors felt that a 

slight change in the interatomic potential might make it stable. This 

••dynamic crowdion 11 action produced interstitials at a distance from 

the primary knock-on leaving vacancies behind in fairly compact groups. 

Another experimental result of the collision chains was the production 

of many more replacements than displacements. In alloys of nearly 

identical mass this would produce more disordered atoms than displaced 

atoms. The stability and threshold measurements of interstitial

vacancy pair formation was analyzed. The threshold energy for pro

ducing a single pair was found to be very directional dependent. 



Also, the interstitial-vacancy pairs were found to be somewhat 

unstable. 
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Erginsoy, Vineyard, and Englert [25] modified the version of the 

Gibson et al. program to represent the body centered cubic alpha iron 

lattice. Low energy events were extensively investigated. Much of 

the experimental results closely paralleled the information gained 

from the face centered cubic copper program. The key mechanism of 

displacement at these low primary knock-on energies is a dynamic 

replacement mechanism in which the knock-on replaces one of the lattice 

atoms in the crystal. This replacement causes an extended sequence 

of correlated replacements, and an interstitial is formed a few atomic 

distances from the vacancy. This sequence is probably the most impor

tant mechanism in separating the interstitial and the vacancy. The 

stable interstitial form was found to be a split configuration oriented 

along <110>. Interstitial-vacancy pairs were unstable against recom

bination when they are closely packed. The threshold energy for dis

placement was highly directional dependent. The energy thresholds for 

the <100>, <110>, and <111> directions were 17 eV, 34 eV, and 38 eV, 

respectively. Actually, the lowest thresholds associated with each of 

the above directions occurred a few degrees off the axis. The 

thresholds exactly along the axes were sionificantly higher. At such 

directions the energy threshold is limited by replacements outside the 

sphere of third neighbors. Also, the knock-on may displace one 

neighbor and replace another creating a divacancy. Results have shown 

that this takes place very easily if the two crystal axes involved 

have a relatively small angle between them as in the case of the <110> 

and the <111> directions. 
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Vineyard [26] subsequently made a third modification to the 

program of Gibson et al. to incorporate the order-disorder concept 

represented by Cu 3Al. Though only a few computer runs were made, the 

disordering effect was apparent under all conditions. 

Erginsoy, Vineyard, and Shimizu [27] investigated the dynamics 

of radiation damage in a body centered cubic alpha iron lattice at 

energies up to 1.5 KeV. A primary knock-on with energy, E = 100 eV, 

created an average 1.37 interstitial-vacancy pairs and for higher 

energies, the number of pairs increased as approximately, E/2Ed, where 

Ed was 50-55 eV. At energies around 100 eV, calculations on the 

eventual outcome of a single collision must allow for 11 many-body 11 

aspects of the process to give even a fair approximation. Thus, this 

process must take into account the other atoms of the lattice as well 

as interactions between neighboring atoms. At all energies considered, 

damage consisted of vacancies and interstitials. Channeling did not 

appear to have any significance at low and intermediate energies. 

Channeling effects along <100> and <111> directions were significant 

when an iron atom of energy 1 KeV was introduced into the lattice 

from the outside. The rate of energy loss increased rapidly as the 

trajectory is displaced from the channel axis. Also, the change of 

energy with respect to time was found to be approximately constant, 

thus, the range of the channeled atom was approximately proportional 

to E
0

3/ 2 where E
0 

is the initial energy. 

Jackson, Leighly, and Edwards [28] used this same computer pro

gram to investigate radiation damage in Fe 3Al at low and intermediate 

energies. In all cases, the final damaged state consisted of vacancy

interstitial pairs. The distance of separation between these pairs 
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was a function of both energy and the direction of the primary knock-on. 

Again, the interstitial resided in a split configuration oriented in 

the <110> direction. Also, as before, the threshold energies for dis

placement was found to be very directional dependent. The enerqy 

thresholds for the <100> and <110> directions are 22 eV, and 44 eV, 

respectively. The threshold for the <111> direction was not determined 

due to its complex behavior. Replacement chains were found to be 

prevalent in the <100> and <110> directions. Focusing was observed in 

<100> and <111> directions and served as the primary mechanism for the 

dissipation of energy from the collision chain. Several events were 

greatly influenced by the presence of the aluminum atoms in the crystal 

lattice. The smaller mass of the aluminum atom present in the <111> 

directional chain impeded the progress of the replacement chain. 

Defocusing events in the <100> and <111> directions were enhanced by 

the aluminum atom•s low mass and high mobility. Disordering, prevalent 

in the defocusing chains, occurred from the general mixing of the lat

tice atoms along the chain and especially in a .. plasticity spike'' 

region near the end of the chain. 

Jenkins [29] utilized Evaluated Nuclear Data File (ENDF/B) 

information to predict the primary recoil atom spectra of several 

elements in different reactor neutron spectra. The elements studied 

were nickel, niobium, and iron. Also generated were damage cross 

sections and optimum cutoff energies for use in comparing displacement 

damage in varying reactor spectra. No further details or method of 

calculation will be explained here since this program is similar to 

the one used by this study. Further details may be found in the 

following section on experimental procedure. 
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Doran [30-32] has investigated different models describing radia

tion damage in iron, chromium, nickel, stainless steel, and tantalum. 

Also described were different models used in simulating the production 

and short term behavior of defects due to fast ion bombardment. The 

energy dependent displacement cross section, generated for stainless 

steel, was based on the theory of slowing down of energetic atoms in 

solids due to Lindhard, et al. [33] rather than the Kinchin-Pease model 

for displacement efficiency per knock-on atom. In general, 

where 

D(E) 

o(E) 

K(E,T) 

D(E) 
Tmax 

cr(E) J K(E,T)vl (T) dT 

T . m1n 

the energy dependent displacement cross section. 

the energy dependent scattering cross section. 

the probability that a neutron of energy E transfers 
enErgy T to the knock-on atom. 

the total number of displacements produced by a 
knock-on atom of energy T and is based on the 
Lindhard theory. 

( 9) 

Knock-on atoms produced by fast neutrons are sufficiently energetic 

that appreciable energy is lost to electrons. The Lindhard model is a 

more realistic treatment of such ionization losses. The Kinchin-Pease 

model accounts for these losses only by designating a threshold energy 

above which all energy loss is by ionization (no displacements) and 

below which all energy loss results in displacements. The total 

number of displacements per knock-on atom based on the theory of Lind-

hard was taken to be 



where 

L (s) T 
E""2-E

d 
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(10) 

L(s) a function which is kinetic energy in dimensionless 
form that is transferred to the atoms of a cascade 
initiated by a knock-on atom having initial dimension
less energy. 

L(s)/s = the fraction of knock-on atom energy available to 
cause displacements. The remainder is lost in 
electronic excitation. 

T = the kinetic energy of the knock-on atom in the 
laboratory system. 

Ed the effective displacement enerqy. 

0.8853 A 
ev- 1 

AL = 2 
(27 2)Z z (z 213 + z213)\(A + A2) . 1 2 1 2 1 

A1 = the atomic weight of the moving particle. 

z1 the atomic number of the moving particle. 

A2 the atomic weight of the lattice atoms. 

z2 = the atomic number of the lattice atoms. 

( 11) 

The expression for L(s) due to the work of Robinson [34] was used for 

convenience: 

L(s) = s[1 + KL g(s)]- 1 

g(s) = E + 0.40244 s 3/ 4 + 3.4008 El/ 6 

From the theory of Lindhard 

(0.0793) z213 z112 (A + A ) 312 
1 2 1 2 

K 
L 

(12) 

( 13) 

(14) 
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ENDF/B data was the source of information concerning anisotropic 

elastic and isotropic inelastic neutron scattering along with contri

butions from (n,y) recoils and {n,2n) reactions. The major uncertainty 

in the study, aside from the question of the correctness of the pro

gram model, was in the low energy scattering cross sections and the 

energy dependence of the anisotropy at high energies which were 

obtained from the ENDF/B data. 
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III. COMPUTATIONAL PROCEDURE 

A. INTRODUCTION 

The computer code RICE [1] was furnished by Oak Ridge National 

Laboratories. This code served as a body for SAKI. Also furnished 

were the ENDF/B II cross section libraries used by tl1e code as well as 

GAM-II energy boundaries, damage cross sections of iron, and two 

neutron spectra for code input data. Tt1e two neutron spectra supplied 

are the unmodified fission neutron source spectrum and an HFIR 

spectra, which is a light water moderated, enriched uranium neutron 

spectrum. (See figure 5.) 

The equations used by the code are now described. The symbols 

used are the same as the ones used in references [1] and [29]. 

B. CALCULATION OF THE ENERGY TRANSFER KERNEL 

The energy transfer kernel, os(E)K(E,T) is derived basically from 

the ENDF/B II cross section libraries. o is the scattering cross 
s 

section and K(E,T) describes the probability that a neutron scattering 

at energy E will transfer energy T to the target atom. 

The elastic scattering cross sections are used with energy depen

dent Legendre coefficients to give the elastic-scattering energy 

transfer to the system. The Legendre coefficients are derived from 

Legendre expansions of the scattered-neutron angular distributions in 

the center-of-mass system. The energy, T, transferred to the target 

atom from a neutron of energy, E, is given as 

T = (1-a)E (1-cos¢) 
2 

(15) 
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\vhere 

a = (~1-m) 
2 

M+m 

the mass of the target atom 

m = neutron mass 

¢ = angle of scatter in the center-of-mass system 

The scattered-neutron angular distributions are given in the form 

os(E,cos~) = os(E) I 22~ 1 f 2 (E) P2 (cos¢) 
Q, (_ 

(16) 

Subsequently, the elastic-scattering energy transfer kernel becomes 

J ( 17) 

The inelastic-scattering energy transfer kernel is derived from 

two components: the component from resolved resonance 1 evel s and the 

component from unresolved resonance levt::ls. In addition to total ine

lastic cross sections o~n(E), energies of resolved excited levels of the 

target nucleus are given, together with the energy dependent fractions 

of the cross section which contribute to specific level excitations. 

For example, the inelastic-scattering cross section, \·lhich results in 

the excitation of the k-th level of the target nucleus to energy Qk' is 

given by the expression o!n(E)Pk(E) \'!here Pk(E) is the fraction of the 

cross section contributing to the k-tl1 level excitation. The contribu

tion of the unresolved levels to the inelastic-scattering process is 

a l so g i v en as a f r act i on of the tot a 1 c ro s s sect i on , P I( ( E ) , and t ll e 

scattered neutrons are assumed to be emitted from the compound nucleus 

with an energy distribution in the center-of-mass sys.tem described l;y 

the evaporation model. The emitted neutron spectrum is taken to be 



where 

e(E) =energy dependent nuclear temperature supplied by 
ENDF/B II libraries 

Em = the emitted neutron energy 

In this representation there are K-1 r·esolved levels and 

K 
l Pk(E) = 1 

k=1 
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(18) 

(19) 

For the excitation of a resolved level \'lith energ,y Qk, tlte energy 

transferred to the target atom is 

where 

T k = \;a {E - cos<j>[E(E-Qk/v2d"} -Qk v1 

lJ 1 m/t1+m 

lJ 2 = ~·1/ r~1+m 

The upper and lower limits are designated T+ and T-, respectively. 

They are obtained by setting cos¢ to equal +1 and -1, respectively. 

Assuming isotropic emission in the center-of-mass system and 

summing over the contributions of all the resolved levels gives the 

expression for the energy transfer kernel due to resolved level 

excitation: 

. K 
o1 n(E) L Pk(E)Kkr(E,T) 

s k=l 

where K~(E,T) is the kernel for the k-th resolved level. Also, the 

k-th term in the sum is non-zero only for the situation where T is 

between or equal to the upper and lower limits on T. 

(20) 

(21) 
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The unresolved level situation is somewhat more complicated so 

the evaporation model is needed. If the neutron enters with an enerqy 

E in the center-of-mass system then the probability that the energy 

transferred will lie in dT about T is 

~ 
P(E,E ,T)dT = dT/4fJ1(EE ) 2 

m m 

Using equation 22 and the evaporation spectrum gives: 

where 

o!n(E)PK(E) 

41Jl /E 

h: 
(E ) 2 exp[-E /8(E)]dEm dT m m 

Kur(E,T) the energy transfer kernel for the unresolved levels 

(22) 

(23) 

(24) 
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This is the equation for the energy transfer kernel due to inelastic 

scattering by unresolved levels. 

The complete transfer kernel is taken to be 

() · K-1 
= o~N(E) Ke£(E~T) + o~n(E) I Pk(E) Kr(E,T) 

k=1 

+ o~n(E) PK(E) Kur(E,T) ( 25) 

where the terms on the right hand side are defined by equations 17, 21, 

and 24, respectively. The complete transfer kernel also makes full use 

of all data on anisotropic elastic scattering and inelastic scattering 

given by the ENDF/B II data. 

The incident-neutron-energy mesh supplied by Oak Ridge National 

Laboratories was that of the GAM-II [35] program. There are one-tenth 

lethargy intervals from 14.9 to 0.11 MeV and one-quarter lethargy 

intervals from 0.11 MeV to 0.414 eV. The energy recoil mesh was 

defined by taking two hundred equal lethargy intervals betv~een 25 eV 

and the maximum possible recoil energy, (1-a) x 14.9 MeV. The elements 

of the transfer matrix were defined by weighing the transfer kernel 

with an assumed 1/E neutron spectrum over each neutron-energy group. 

The group-averaged quantities were found to be insensitive to the 

weighing function in the high-energy range when a 1/E weighting is 

inappropriate. Thus, 

K .. = 
lJ 

-f- os(E) K(E,T) dE dT 

1 
E dE 

( 26) 



This defines the energy transfer kernel. 

C. PRIMARY RECOIL ATOM SPECTRA 

The primary recoil atom spectra per unit collision given a 

certain type neutron spectra, ¢(E) is: 

00 

J os(E) ¢(E) K ( E, T) dE 

K(T) = 0 
00 

J os (E) ¢(E) dE 

0 
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(27) 

and the fraction of recoils above energy T can be obtained in the form 

00 

J K(T) dT 

Fraction above T = T ( 2 8) 
00 

J K(T) dT 

0 

This information may be used to estimate the size distribution of 

displacement spikes and also in the calculation of void formations. 

D. DAMAGE CROSS SECTIONS AND ENERGY CUTOFFS 

The damage cross section, D(E), describes the number of disolace

ments per atom per neutron incident with energy E. 

00 

D(E) = o
5

(E) f K(E,T) v(T) dT 
0 

where v(T) represents the total number of displacements caused by a 

(29) 

primary neutron with energy T and is generated from the Kinchin and 

Pease [2] model. The total number of displacements caused by a given 

neutron spectrum is given by the expression 
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Displacements 
Unit Flux 

I D(E) <P(E) dE 

I <P(E) dE 
( 30) 

Equivalent damage energy cutoff calculations are obtained from the 

equation 

CXJ cc 

I I ¢(E) cr
5

(E) K(E,T) v(T) dT dE 

0 0 
CXJ 

I ¢(E) dE 

E 

(31) 

where DE is the number of displacements per unit flux above E. For 

many irradiated elements or alloys a certain value of E = EL can be 

found for which the displacement damage per exposure unit is almost 

independent of the neutron spectrum. The optimum cutoff energy for 

a given element or alloy can be calculated by evaluating DE for 

several different spectra and locating the energy at which the plots 

of DE vs. E approach each other. 

E. COMPOUND CALCULATIONS 

The compound energy mesh primary recoil atom spectrum may be 

defined as 

K (T) 
c 

1 

CXJ 

I ~! ( E J K 
1 

( E • r J + l: ~ ( E J i< 
2 

( E • n] d> ( E l dE 

0 
co 

I ¢(E) dE 

0 

(32) 
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vvhere 

N = the atom density of element 1 1 

N2 -- the atom density of element 2 

l:1 = the macroscopic cross section for scatter for element 1 s 

I2 = the macroscopic cross section for scatter for element 2 C' 

K~. 
lJ 

The 

-.) 

compound composite 

1 i+1 

1 

I 
T. 

1 
E. 

J 

energy transfer kernel can be defined as 

Ei+1 

I v f dE 

(33) 

E. 
J 

Calculation of the atom Jensities for iron and aluminum are 

needed. 

\vhere 

i~a PFe3.A.l 
=----

t'1F e
3
A 1 

Na 6.025 x 1023 molecules per mole of Fe3Al 

M 194.56 grams per mole 

p = 6.84 grams per cubic centimeter 

At.%Fe = 0.75 

At . ~U\1 = 0 . 2 5 

For the comround FP. 3Al, there are four atoms per molecule. 

Subsequently, 

(34) 



3S 

[ ?2 22 1 
L:F {\l -- 6. 369 x 10~ aFe + 2. 123 x 10 ~~Al] Cl:l-e3r, -

therefore, 

NFe = 6.369 x 10
22 atoms per cubic centirneter 

NAl = 2.123 x 1022 atoms per cubic centimeter 

Also, the averaged atomic weight is found from: 

The atomic weight was founrl to be equal to 49.624. The atomic 

number was found to be 22 .. 75. These t'AJO values were usod in cal cul a-

tion of damage cross sections. 

The damage cross section calculation for the compound is 

evaluated from 

0 

where 

v1(T) the total number of displacements in element 1 

v2(T) = the total number of displacements in element 2 
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IV. C0t·1PUTAT IOfU\L RESULTS 

Using the computer program previously described, the Fe
3

Al damage 

cross section, and the primary recoil atom spectra in selected reactor 

environments, have been investigated. 

A. DAr~AGE CROSS SECT IOii FOR F e
3

A 1 

The energy dependent total iron damage cross section and the 

inelastic cross section generated by SAKI, are shovm in figure 6. The 

inelastic scattering contribution contains the effect of nineteen 

resolved levels vJhich range from 0.846 to 4.116 rieV. Determination of 

the damage cross section is based on Ef-JDF/B data using the Kinchin

Pease model [2] for displacement calculations. From 0.01 to 5 f·1eV 

there is a general increase in tile damage cross section follO\·Jed L>y a 

sharp decrease which is characteristic of the Kinchin-Pease model. 

The inelastic component contributes to the total cross section above 

0.846 MeV. A rapid increase followed by a sharp decline is typical 

of the inelastic component. 

The aluminum damage cross section vJitn its inelastic component is 

sho\'.m in figure 7. Contributions of inelastic scattering contain the 

effect of thirty-four reso 1 ved levels ranging from 0. 943 to 15.25 rleV. 

These damage cross sections are also based on ENDF/b data and tile 

Kinchin-Pease model. From 0.028 to 0.175 r"1eV there is a general 

increase in the total cross section follovJed by a general leveling off 

and a moderate decline from 2.6 to 15 f1eV. The inelastic component 

contribution begins at 0.843 MeV and increases moderately to 15 ileV. 

The damage cross section of Fe3A 1 v..Jas determined and is shovm in 

figure 8 along \·lith its inelastic component. In the energy r·ange, 
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0.02 to 5 f1eV, there is a general increase in the total cross section 

followed by a rapid decrease to 15 r,1eV. The inelastic component 

contribution begins at 0.843 ~1eV and increases rapidly to 5 t1eV 

followed by a sharp decline. At the lower energy levels, the Fe
3

/\l 

curve generally predicts a larger cross section than the pure iron 

curve, while above 1 t .. 1eV 10\ver values are observed. It also exhibits 

more pronounced peaks as compared with the iron curve. This is the 

result of two effects: the presence of the lighter aluminum atoms 

in the alloy and the Kinchin-Pease model. Since the aluminum atom 

has about half the mass of the iron atom, it vJould be reasonable to 

assume that more displacements are expected. The aluminum curve 

shows a decline in cross section beginning at 2.6 rleV; the iron curve 

at about 5 r·1eV. These reductions are characteristic of the Kinchin-

Pease model. Therefore, in the energy range from 2. 6 to 15 r1eV, the 

Fe 3Al damage cross section will be smaller than that of iron. 

Tabulation of the damage cross sections of iron, aluminum, and 

Fe 3A1 is found in Appendix B. 

B. PRIMARY RECOIL ATOM SPECTRA 

This information is useful in estimating the size distribution 

of displacement spikes and can be used in calculations of void 

formations in irradiated materials. 

Two neutron spectra were used to show the dependence of primary 

recoil energy distributions on the incident neutron distribution. 

They represent an unmoderated fission neutron source and a light I·Jater 

moderated, enriched uranium system (the HFIR reactor). 

The resulting energy distributions are plotted as the fraction of 

recoils above the recoil atom energy as shown in figure 9. The effect 

40 
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of the incident neutron spectra is evident. For Fe 3Al, 90% of the 

primary recoils lie above 5 keV in a fission reactor spectra, while 

only 24% are produced above that energy by the HFIR spectra. 

Tabulation of the primary recoil spectra for Fe 3Al is found in 

Appendix C. 

42 
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V. DISCUSSION OF RESULTS 

The Fe 3Al damage cross section, shown in figure 8, describes the 

influence of elastic and inelastic scattering of iron and aluminum 

atoms under the influence of neutron radiation. It should be noted 

that the damage cross section gives only the number of primary colli

sions capable of producing damage and not the total number of atom dis

placements in a neutron system. For the latter it is necessary to take 

into account the additional displacements caused by secondary and ter

tiary collisions in a solid under the influence of a specific neutron 

spectra. The predominance of iron is readily apparent by comparing 

the shape of the iron and Fe 3Al curves. The additional resonance peaks 

in the Fe 3Al plot are due to the influence of the aluminum atoms in the 

alloy. These effects should be expected since Fe 3Al is composed of 

three times as many atoms of iron as aluminum. As stated before, the 

aluminum atom is about half the mass of the iron atom. It would be 

expected that for a given neutron energy a collision with an aluminum 

atom would produce a much larqer number of displacements than a colli

sion with an iron atom. Though this reasoning is not entirely correct 

since the lighter aluminum atoms will lose more energy by electronic 

excitation than iron atoms and in fact, limits the energy available for 

displacement. This effect, however, is less dominant in the Fe 3Al 

alloy than in a pure aluminum solid since the aluminum atom is 

surrounded by much heavier iron atoms. The aluminum atoms in Fe 3Al 

are more mobile and susceptible to displacement than the iron 

atoms. Because of this the Fe 3Al curve predicts a slightly larger cross 
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section than that of iron at low and intermediate energies. Only at 

high energies above 1 MeV does the Fe 3Al cross section show a smaller 

value than that of iron. Again, this is due predominantly to the effect 

of the Kinchin-Pease secondary displacement model used by SAKI. 

The Kinchin-Pease model [2] is a bona fide description of the 

number of displacements produced by primary knock-on atoms of variable 

energies, T. 

0 for 0 < T < Ed - -

1 for Ed s T s 2Ed 
v(T) = 

T/2Ed for 2Ed < T < E. - - l 

Ei/2Ed for T > E. - l 

where Ed is the effective displacement energy, 25 eV. The main 

criticism [31] of this model is in the assumption of an upper PKO 

ionization energy threshold, E;, above which all energy is lost in 

electronic excitation, and below which all energy is used either in 

producing displacements or generating lattice vibrations. This 

(37) 

threshold for iron is 56 keY; aluminum is 27 keY. If a neutron with 

energy in excess of the PKO threshold hits the lattice atoms, not all 

of the energy received by the struck atoms is used in displacement 

production. In reality the sharp difference in mechanism of energy 

loss does not occur. A significant, decreasing fraction of the energy 

is used in producing displacement collisions at any primary energy 

above the threshold. The Kinchin-Pease model predicts a constant 

value of 1,120 displacements in iron produced by a primary displacement 

of energy above the PKO threshold; 540 atom displacements in aluminum. 



Although this model is a convenient one, it is only approximate since 

the energy range of overlap of the ionization and collision loss 

processes may be appreciable. Thus, the main uncertainty in the 

correctness of the model lies mainly in the interpretation of events 

which lie above the PKO threshold energies for ionization in iron and 

aluminum. 

The energy distributions of the primary recoil atoms of Fe3Al in 

a fission and HFIR spectra are shown in figure 9. There is a profound 

effect on the fraction of recoils above the recoil atom energy due to 

the neutron environment. The neutrons emitted on fissioning of a 

u235 atom are distributed in energy from about 0.5 to 20 MeV with an 

average energy of 1.5 MeV. In the HFIR system, the energies of the 

neutrons are degraded as they pass through the light water moderator 

until they are thermalized. Thus, fewer fast neutrons are expected 
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than in a fission spectra. In reactors the presence of thermal neutrons 

can lead to property changes due to artificial nuclear transmutations. 

However, in low cross section materials, such as iron and aluminum, this 

problem is dominant only after prolonged irradiation times. Interactions 

of fast neutrons with the lattice atoms produce several hundred vacancy

interstitial pairs due to the momentum which is transferred to the 

knock-on atom. As expected, the unmodified fission spectra indicates 

a more dynamic effect than that of the HFIR spectra. These energy 

distributions are of considerable importanceto the total rate of damage 

in Fe
3
Al. The difference in the curves is due entirely to the incident 

neutron spectra used in SAKI calculations and the information derived 

from the ENDF/B libraries. 
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This was the first extensive computer study of the damage cross 

section and primary recoil atom spectra of Fe 3Al, therefore, the results 

of this study could not be compared directly to similar work. However, 

there were a number of points in this study that could be compared with 

the work on iron damage cross sections by Jenkins [29], Sheely [35], and 

Doran [31]. 

A comparison of the iron damage cross sections determined by Jenkins 

and Sheely is shown in figure 10. The data was generated by techniques 

similar to those described in this study. The curves are in essential 

agreement, with the results of Jenkins predicting a higher displacement 

cross section for high energy neutrons and more fluctuations over the 

entire energy range. The difference in the curves are due to the 

additional detail available in the ENDF/B scattering cross sections. 

The inelastic scattering contribution calculated from ENDF/B data con

tains the effect of seven resolved levels and an unresolved contribution 

whereas Sheely•s data attribute all the inelastic scattering to a single 

resolved level at 0.846 MeV. 

Iron damage cross sections determined by Jenkins and Doran are 

shown in figure 11. The results of Doran predict a relatively lower 

damage cross section except at higher energies where a significant 

increase occurs. The difference in the curves are due to the two 

distinct models used for total displacements per primary knock-on 

atom. Jenkins used the Kinchin-Pease model [2] for the displacements 

produced per PKO and a displacement energy of 25 eV. Doran used the 

Lindhard model [33] based on the theory of energetic atoms in solids 

and is a more realistic treatment of ionization losses. He assumed a 
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displacement energy of 33 eV which is equivalent to 40 eV in the work 

of Jenkins. The relative decrease in Jenkins' cross section at high 

neutron energies is due to the Kinchin-Pease assumption of a primary 

knock-on ionization threshold energy of 56 keV above which all energy 

is dissipated in ionizing collisions that cause no displacements. In 

the Lindhard model a significant, although decreasing, fraction of the 

energy is lost in displacement producing collisions even at the 

highest primary knock-on energy of interest. 

There is a general agreement between the iron damage cross section 

generated by SAKI and the data determined by Jenkins, except at neutron 

energies above 5 MeV. The difference is due to the additional resolved 

and unresolved resonance data above 5 MeV contained in Jenkins• ENDF/B 

libraries. 

SAKI assumes an overall effective displacement energy, Ed, of 25 

eV throughout its computer run for all solids. Due to the configuration 

of nearest neighbors in the crystal lattice [28], the assumption of a 

discrete displacement energy threshold is a good approximation. Not 

only does Ed depend on the incident direction of the PKO but it may 

also vary from site to site within the lattice due to the mass differ

ence of the alloying constituents. 

A significant point to bring out is the inability of this investi

gation to predict the type and magnitude of certain damage mechanisms 

induced by radiation. Only an overall effect is presented describing 

the results due to elastic and inelastic scattering contributions. 

SAKI makes no distinction between the geometrical or sequential atomic 

arrangements in a given alloy system. Only the atomic percents of the 
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constituents of the alloy are considered here; this is analogous to the 

model of Doran [31]. It is therefore difficult to discern the effects, 

if any, that would be caused by the order-disorder phenomena. 

The effect of high energy neutrons above 15 MeV cannot presently 

be stated with assurance, since the effect of other nuclear reactions, 

such as the (n,2n) reaction, is not known precisely. The (n,2n) reaction 

was neglected in this study. Energy thresholds in iron are 11-12 MeV 

but contributions were found to be minimal below 15 MeV [31]. Therefore, 

the omission of this contribution should not affect the results to any 

significant extent. 

The tabulated values of the iron total damage cross section as 

determined by SAKI, Jenkins, and Doran are given in Appendix D. 



VI. CONCLUSIONS 

The objectives of this study were to determine the energy 

dependent damage cross section and the primary recoil atom spectra of 

Fe3A1 in certain reactor environments. 

An accurate description of the displacement process in Fe3Al 

requires both the correct primary recoil atom spectra including the 

damage cross section and a valid secondary displacement model. The 

success of the Kinchin-Pease model [2], especially for low and inter

mediate energy neutrons, lends credence to tile validity of the 

damage cross sections as v-Jell as the PKO spectra of Fe3J\l. This 

investigation removed a good bit of data uncertainty by correctly 

utilizing all available information contained in the E!·JDF/8 lilJra~·y. 

The energy dependent Fe 3Al damage cross section curve, as 

shown in figure 8, is successful in predicting the overall effect of 

neutron bombardment. The results presented are in reasonable 

agreement with the literature and certainly suggest the validity of 

this technique in calculating displacement cross sections for binary 

alloys. 
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As expected from the ratios of the cross sections, the iron atoms 

are the dominant influence in the alloy. Effects due to the aluminum 

atoms arise mainly from resonance peaks associated with the aluminum 

curve in figure 7. Contributions due to inelastic scattering has a 

very important additive effect at high incident neutron energies and 

is caused almost entirely by the iron atoms in the alloy. 

Accurate representation of the primary recoil atom spectra of 

Fe
3

Al required full utilization of ErJDF/B neutron scatter·ing uata. 
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The PkO spectra is a means of measuring the relative merit of n reactor 

neutron environment. It is evident from the results of this stuuy that 

the PKO spectra of Fe3Al is a sensitive function of the two incident 

neutron spectra. 

Valuable information has been derived from this stuuy even though 

damage mechanisms due to radiation could not be deterr11ined. Tile exact 

mechanism by which displacements take place cannot be predicted by 

this computer program. It is felt, however, that there has been 

sufficient research in this area to establish primary displacement 

mechanisms in Fe3A1. For example, see reference 28. iiuch more expcri

menta 1 VJO rk needs to be done to further our insight into dar11age pro-

cesses in irradiated materials, such as Fe~Al. 
,) 



New data should be derived as supplemental information is avail

able on the ENDF/B libraries .. There is much uncertainty in the high 

neutron energy portion of the iron damage cross section curve vJhich 

must be adequately described for a clearer understanding of displace

ment processes in Fe 3Al. 

The choice of a good secondary displacement model must be made. 

As new investigations follow, this decision will be made clearer. 

The damage cross section of Fe3Al should be calculated using the 

Lindhard model [33] to give a comparison between existing results. 

Contributions due to (n,2n) reactions, though small, should be 

included in subsequent investigations as Hell as other rossible 

reactions. 

Experiments using controlled laboratory procedures may IJe 

performed to compare actual data to the predicted, as calculated by 

the computer. This is especially true when examining order-disorder 

alloys. The effect of ordering on the overall displacement process 

is an important part of the radiation damage explication. 
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APPEfJDTX A 

COt1PUTEH Ir4PUT DATA 

The order and description of the input data for SAKI, except for 

the compound calculations, conform closely to reference [1]. 

Execution of the section on compound calculations is initiated l~y 

assigning an integer value of twenty-five to ISEC. The next card 

indicates whether or not the compound total damage cross sections are 

desired to be punched. A non-zero value for IPOKE v1ill punch the r.ross 

sections. A title or comment card \·vas included in this section for 

the purpose of describing the alloy being considered. !\tom densities 

are needed in the calculation of the compound•s composite energy 

transfer kernal, PKO energy mesh, and da.r.1age cross sections. It shoul cl 

be noted that atom ratios may be used as input instead of ato~ 

densities. For example, there are three atoms of i•Aon for every at'Jm 

of aluminum in Fe
3

A1. The input in this case vJOuld be 0.75 and 0.2S 

instead of the atom densities. 

T~vo parameters used in Section T\·Jo of SAKI have been modified. A 

negative value for rJDAt1 indicates that :here is one set of damage cross 

sections on logical 4 which is to be used in calculating opti~u~ cutoff 

energies and PKO spectras. These cross sections \'Jere generated in 

Section One of SAKI and until novJ, could not be used in Section TvJO in 

the same computer run. Also, there is no plotting option in Sl\f~I 

since no CRT plotter is available. 

The SAKI inout data follows. 



1. GAH-II Energy Boundaries. EG(I), I=1,100. FORr1AT(6El?..5). 

1.491824+7 

1.000000+7 

6.703200+6 

4.493289+6 

3.011942+6 

2.018965+6 

1.353352+6 

9.071796+5 

6.081007+5 

4.076221+5 

2.732372+5 

1.831564+5 

1.227734+5 

5.247520+4 

1.930500+4 

7.101746+3 

2.612586+3 

9.611168+2 

3.535751+2 

1.300730+2 

4.785119+1 

1.760346+1 

6.475954+0 

2.382370+0 

8.764252-1 

1.349859+7 

9. 048374+6 

6.065306+6 

4.065696+6 

2.725318+6 

1.826835+6 

1.224564+6 

8.208501+5 

5.502322+5 

3.688317+5 

2.472353+5 

1.657267+5 

1.110900+5 

4.086772+4 

1.503400+4 

5.530845+3 

2.034684+3 

7 .485185+2 

2.753646+2 

1.013009+2 

3.726654+1 

1.370959+1 

5.043478+0 

1.855392+0 

6.825606-1 

1.220413+7 

8.187307+6 

5.488116+6 

3.678794+6 

2.465969+6 

1.652989+6 

1.108031+6 

7.427358+5 

4.978707+5 

3.337327+5 

2.237077+5 

1. 499558+5 

8.65JG98+4 

8.182800+4 

1.170500+4 

4.307427+3 

1.534613+3 

5.829463+2 

2.144541+2 

7.889327+1 

2.902321+1 

1.067704+1 

3.927864+0 

1.444980+0 

5.315787-1 

1.105171+7 

7 .408182+6 

4.965853+6 

3.328711+6 

2.231301+6 

1.495686+6 

1. 002588+6 

f>.720552+5 

4.504921+5 

3.019738+5 

2.024191+5 

1. 356856+5 

G . 7 3 7 94 9 1-4 

2.478800+4 

9.118088+3 

3.354627+3 

1. 234098+3 

4.539994+2 

1.670170+2 

6.144214+1 

2.260330+1 

8.315290+0 

3.059024+0 

1.125352+0 

4.139939-1 

2. Section One Execution for Iron. ISEC=1. FORtiAT(I4). 

3. Control Parameters for Section One. FOR11AT(15I4). 

a. f•1ATN0=4124 

b. IDTAP=O 

c. t'·10DE=2 

d. IPIC=1 

r1aterial identification on Ei~DF/B tape. 

Identification numLer of EUlJF/B tape. 

Mode of ENDF/B data tape is BCD. 

Calculate elastic, inelastic, and partial 
inelastic damage cross sections and energy 
exchange matrix. 

S9 



e .. IRAS=O 

f. I WRIT= 1 

g. IPUNCH=O 

Get smooth scattering cross sections from 
ENDF/B tape. 

Maximum printed output desired. 

No punched output desired. 
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h. IREC=l ~1ake the energy exchange matrix the first entry 
on logical 12. 

i . IV ERS=2 Version type of ENDF/B data. 

4. Section One Execution for .t\luminum. ISEC=l. FORt1AT(I4). 

5. Control Parameters for Section One. FORMAT(15I4). 

a. t1ATN0=4135 

b. IDTAP=O 

c. t·10DE=2 

d. IPIC=l 

e. I RAS=O 

f. IWRIT=l 

g. IPUNCH=O 

h .. IREC=2 

i . IVERS=2 

6. Compound Calculation Execution for Iron and Aluminun. ISEC=25. 

FORt~AT ( 14). 

7. Input for Compound Cal cul ati ons. 

a. IPOKE=l Punchout of compound total damage cross 
sections. FORMAT(Il). 

b. Title or comment card. "Calculations on Fe3f\l". FORt1l\T(20A4). 

c. Atom Densities. FORMAT(2E20.10). 

AN1=6.369 

AN2=2.123 

Atom density of iron in the compound x lo-
22

. 

Atom density of aluminum in the compound x lo-
22

. 



8. Section Two Execution. ISEC=2 .. FORt1AT(I4). 

9. Parameters for Section T\'!O .. FORt1AT(lOI4). 

a. NTAP= 1 Process one set of energy exchange matrices 
from log i ca 1 12. 
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b. NDAM=-1 Process one set of damage cross sections from 
logical 4. 

c. tWLUX=2 Read two sets of fluxes from cards. 

d. IPUNCI~=U IJo punchout requested. 

e. IPLOT=O fJo plotting option available. 

f. NREC= 1 One matrix to be selected from logical 12. 

10. Parameters used in Computing the Total Number of Displacements, 

v(T). FORt·1AT(6E12.5). 

EXPRAM(l,1)=22.75 

EXPRAM(1,2)=49.624 

11. T\·Jo Sets of Input rl uxes. First is the HFIR Spectra and the 

Second Set is the Fission Spectra. 

a. HFTR SPECTRA - Flux per Unit Lethargy. 99 Points. 

0.56110E-02 0.16310E-Ol 0.40830E-01 0.91490E-Ol 

0.17990E 00 0.31710E 00 0.52810E 00 0.80830E 00 

0.12010E 01 0.16600E 01 0.21550E 01 0.28370E 01 

0.33030E 01 0.36310E 01 0.42760£ 01 0.53730E 01 

0.61160E 01 0.66870E 01 0. 74790E 01 0.69330E 01 

0.70410E 01 0.70330E 01 0.67120E 01 0.72980E 01 

0.65620f 01 0.66110[ 01 0.61320E 01 0.59280E 01 

0.60320E 01 0.66050[ 01 0.65260E 01 0.57520E 01 

0.53190E 01 0.50120E 01 0.42120E 01 0.36440[ 01 

0.42520E 01 0.43530E 01 0.39200[ 01 0.36570E 01 

0.39390E 01 0.33120E 01 0. 30080[ 01 0.32200E 01 

0.29160E 01 0.23180E 01 0.26000[ 01 0.32430E 01 

0.23910E 01 0.19160E 01 0.24980E 01 0.20250E 01 

0.17960E 01 0. 14890E 01 0.20000[ 01 0.16680[ 01 
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0.16090E 01 0.15710E 01 0.15410E 01 0.15190E 01 
0.13750E 01 0.15800E 01 0.14880E 01 0.14770E 01 
0.14700E 01 0.14610E 01 0.14510E 01 0.14410E 01 
0.14310E 01 0.14200E 01 0.14100E 01 0.13990E 01 
0.13870E 01 0.13680E 01 0 .. 13610E 01 0.13500E 01 
0.13410E 01 0.13300E 01 0.13190E 01 0.12710[ 01 

0 .. 12720E 01 0.12190E 01 0 .. 12300E 01 0.11650E 01 

0.12020E 01 0 .. 11360E 01 0.10980E 01 0.11250E 01 

0.10920E 01 0.11150E 01 0.10920E 01 0.11010E 01 

0.10870E 01 0.10860E 01 0.10520E 01 0.10150E 01 

0.10050E 01 0.99690E 00 0.92360E 00 

b. FISSION SPECTRA - Flux per Unit Lethargy. 99 Points. 

0.40580E-02 0.11260E-01 0.27460E-Ol 0.59380E-01 

0.11720E 00 0.21440E 00 0.35990E 00 0.57310E 00 

0.85040E 00 0.11960E 01 0.16100E 01 0.20G90E 01 

0.25520E 01 0.30370E 01 0.35330E 01 0.40040E 01 

0.43750E 01 0.46570E 01 0.49560E 01 0.52970E 01 

0.57850E 01 0.61510E 01 0.63460E 01 0.67440E 01 

0.71900E 01 0 .. 76470[ 01 0.84450E 01 0.96490E 01 

0.11360E 02 0.12030E 02 0.12120E 02 0.14530E 02 

0.15950E 02 0 .. 18400E 02 0.16860E 02 0.16410E 02 

0.16140E 02 0.17160E 02 0.15940E 02 0.15870[ 02 

O.l3800E 02 0.12930E 02 0.11730E 02 0.11820E 02 

0.11270E 02 0.97060E 01 0.87290E 01 0.77740E 01 

0.68560E 01 0.53600E 01 0.39120E 01 0.22720E 01 

0.27510E 01 0.15820E 01 0.88120£ 00 0.52210E 00 

o.27n50E oo 0.13090E 00 0.81940E-01 0.59490t:-Ol 

0.24690E-Ol 0~14200E-Ol 0.50890£-02 0.19520E-02 

0. 48440E-02 0.67110E-02 0.25970E-02 0.85550E-03 

0.37030E-03 O.llOOOE-03 0.16320E-03 0.91670E-04 

0.61750E-04 0.10210E-04 0.22230£-05 0.22920E-05 

0.11590E-04 0~41580E-04 0.14670£-04 0.26080E-05 

O.l0820E-05 0.64950[-06 0.20080E-05 0.11870E-05 

0.22520[-05 0.73480E-06 0.48210E-06 O.l1760E-05 



0.58280E-06 

0.51310E-06 

0.72760E-07 

O~llOOOE-05 

0.55420E-06 

0.47430E-07 

0.54350E-06 

0.16880E-06 

0.27150E-07 

12. End of Job Indicator. ISEC=O. FORMAT(I4). 

0.90300E-06 

0.68940E-07 
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APPENDIX B 

DAMAGE CROSS SECTIONS OF IRON, ALUMINUM, AND Fe3Al 

CALCULATED FROM SAKI 

A. Total Damage Cross Sections 

Total Damage Cross Sections 
1024) (displacements per atom/unit flux x 

Energ.l", f"leV Iron Aluminum Fe3Al 

14.208 854.92 731.37 824 .. 08 

12.851 912.03 759.90 874.00 

11.627 980.80 765.70 927.03 

10.525 1059.78 769.50 987.21 

9.524 1153.51 772.27 1058.20 

8.618 1251.26 810.93 1141.18 

7.797 1422.65 860.55 1282.13 

7.055 1633.25 908.02 1451.94 

6.384 1880.75 973.61 1653.96 

5.776 2143.40 1006.23 1859.11 

5.227 2386.60 1054.50 2053.58 

4.729 2577.25 1063.61 2198.84 

4.279 2589.12 1115.79 2220.79 

3.872 2534.48 1190.77 2198.55 

3.504 2363.44 1234.54 2081.22 

3.170 2375.39 1214.23 2085.10 

2.868 2243.12 1297.06 2006.60 

2.595 2340.08 1539.15 2139.85 

2.348 2146.55 1293.50 1933.29 
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Energy, MeV Iron Aluminum Fe3Al 

2.125 2154.10 1493.26 1988.89 

1.923 2031.64 1366.08 1865.25 

1.740 1787.80 1374.61 1684.50 

1.574 1912.15 1382.23 1779.67 

1.424 1778.53 1424.24 1689.96 

1.288 1932.12 1328.29 1781.17 

1.166 1364.02 1682.41 1443.62 

1.055 1325.28 1270.45 1311.57 

0.955 1029.70 1225.80 1078.73 

0.864 1070.16 1671.28 1220.45 

0.782 1657.56 1894.57 1716.81 

0.707 1371.09 1290.61 1350.97 

0.640 778.80 1661.45 999.46 

0.579 888.55 1542.04 1051.92 

0.524 993.42 1570.65 1137.72 

0.474 913.71 1503.58 1061.18 

0.429 1263.05 1947.88 1434.26 

0.388 1048.78 1284.26 1107.65 

0.351 496.31 1246.99 683.98 

0.317 584.38 1448.73 800.47 

0.287 544.86 1657.15 822.93 

0.260 422.33 742.76 502.43 

0.235 496.97 1102.41 648.34 

0.213 443.40 1734.83 766.26 

0.193 745.53 1104.73 835.33 
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Energy, MeV Iron Aluminum Fe 3Al 

0.174 378.99 1276.70 603.42 

0.158 275.07 2297.16 780.59 

0.143 573.93 1619.54 835.33 

0.129 279.59 344.61 295.85 

0.116 170.22 779.37 322.51 

9.88 X 10-2 287.12 1151.71 503.27 

7.69 X 10-2 375.87 469.04 399.16 

5.99 X 10-2 171.21 149.14 165.69 

4.67 X 10-2 167.09 229.69 182.74 

3.63 X 10-2 210.52 797.75 357.33 

2.83 X 10-2 615.28 49.89 473.94 

2.20 X 10-2 11.10 21.67 13.74 

1.71 X 10-2 23.99 24.43 24.10 

1.33 X 10-2 29.12 24.42 27.95 

1.04 X 10-2 36.72 19.20 32.34 

8.11 X 10-3 88.31 15.78 70.18 

6.31 X 10-3 39.02 24.58 35.41 

4.91 X 10- 3 19.27 10.27 17.02 

3.83 X 10- 3 18.35 7.85 15.72 

2.98 X 10- 3 13.78 6.20 11.89 

2.32 X 10- 3 11.88 4.89 10.13 

1.81 X 10- 3 10.14 3.82 8.56 

1.41 X 10- 3 8.55 2.97 7.15 

1.09 X 10-3 7.06 2.31 5.87 

8.54 X 10-4 5.60 1.79 4.65 
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Energy, MeV Iron Aluminum Fe 3Al 

6.65 X 10-4 4.55 1.39 3.76 

5.18 X 10-4 3.13 1.08 2.62 

4.04 X 10-4 
1.10 0.84 1.03 

3.14 X 10-4 0.0 0.63 0.16 

2.45 X 10-4 
0.0 0.39 0.09 

1.91 X 10-4 0.0 0.09 0.02 

1.48 X 10-4 0.0 0.0 0.0 

B. Inelastic Damage Cross Sections 

Inelastic Damage Cross Sections 
(displacements per atom per unit flux x 1024) 

Energy, ~1eV Iron Aluminum Fe 3A 1 

14.208 125.84 363.88 185.35 

12.851 134.80 401.51 201.48 

11.627 149.70 426.01 218.77 

10.525 165.07 432.67 231.97 

9.524 202.92 426.10 258.71 

8.618 279.31 427.18 316.28 

7.797 399.92 433.23 408.25 

7.055 559.73 435.23 528.61 

6.384 756.44 433.82 675.79 

5.776 983.70 428.99 845.02 

5.227 1217.37 414.65 1016.69 

4.729 1376.76 384. 15 1112.86 

4.279 1404.77 400.56 1153.72 

3.872 1331.72 386.64 1095.45 
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Energy, MeV Iron Aluminum Fe 3Al 

3.504 1145.95 340.33 944.55 

3.170 1049.92 288.41 859.54 

2.868 867.62 260.80 715.92 

2.595 751.15 241.40 623.71 

2.348 743.08 181.89 602.79 

2.125 687.64 161.03 555.98 

1.923 542.40 159.27 446.62 

1.740 436.95 155.28 366.53 

1.574 474.73 149.70 393.47 

1.424 442.92 139.51 367.07 

1.288 324.89 119.33 273.50 

1.166 351.59 82.07 284.21 

1.055 228.88 41.23 181.96 

0.955 119.64 16.43 93.84 

0.864 42.34 0.98 32.00 

0.782 0.0 0.0 0.0 
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APPENDIX C 

ENERGY DISTRIBUTION OF Fe 3Al RECOIL ATOMS FROM TWO NEUTRON SPECTRA 

Fraction of Recoils with Energy > T 

T, Recoil En erg~ (eV) HFIR S~ectra Fission S~ectra 

0.2638 X 102 0.9994 0.9999 

0.3457 X 102 0.9973 0.9997 

0.4530 X 102 0.9908 0.9995 

0.5937 X 102 0.9643 0.9991 

0.7780 X 102 0.9185 0.9990 

0.1019 X 103 0.8325 0.9989 

0.1336 X 103 0.7583 0.9986 

0.1751 X 103 0.6774 0.9983 

0.2296 X 10
3 0.6609 0.9980 

0.3010 X 10
3 0.5730 0.9974 

0.3946 X 103 0.5497 0.9961 

0.5173 X 103 0.4948 0.9950 

0.6783 X 103 0.4563 0.9938 

0.8894 X 103 0.4191 0.9926 

0.1166 X 104 0.3812 0.9912 

0.1529 X 104 0.3457 0.9880 

0.2006 X 104 0.3037 0.9805 

0.2630 X 104 0.2886 0.9557 

0.3450 X 104 0.2642 0.9371 

0.4526 X 104 0.2334 0.9125 

0.5937 X 104 0.2221 0.8643 



70 

Fraction of Recoils with Energy > T 

T, Recoil Energt ( eV) HFIR Spectra Fission S12ectra 

0.7789 X 104 0.1890 0.8326 

0.1021 X 105 0.1755 0.7954 

0.1340 X 105 0. 1448 0.7110 

0.1759 X 105 0.1383 0.6602 

0.2308 X 105 0.1025 0.5523 

0.3029 X 105 0.0864 0.5044 

0.3976 X 105 0.0700 0.4399 

0.5218 X 10
5 0.0455 0.3623 

0.6849 X 105 0.0381 0.2350 

0.8991 X 105 0.0201 0.1452 

0.1180 X 106 0.0074 0.0906 

0.1549 X 106 0.0024 0.0265 

0.2034 X 106 0.0008 0.0086 

0.2671 X 106 0.0001 0.0022 



APPENDIX D 

IRON DAMAGE CROSS SECTIONS AS DETERMINED BY SAKI, JENKINS, AND DORAN 

Total Damaqe Cross Sections for Iron 
(displacements per~atom per unit neutron flux x 1024) 

Energy, MeV 

14.208 

12.851 

11.627 

10.525 

9.524 

8.618 

7.797 

7.055 

6.384 

5.776 

5.227 

4.729 

4.279 

3.872 

3.504 

3.170 

2.868 

2.595 

2.348 

2.125 

1.923 

SAKI 

854.92 

912.03 

980.80 

1059.78 

1153.51 

1251.26 

1422.65 

1633.25 

1880.75 

2143.40 

2386.60 

2577.25 

2589.12 

2534.48 

2363.44 

2375.39 

2243.12 

2340.08 

2146.55 

2154.10 

2031.64 

Jenkins 

2151.01 

2245.36 

2332.53 

2430.52 

2541.07 

2575.88 

2582.56 

2630.41 

2884.34 

2971.85 

2797.65 

2874.88 

2971.11 

2746.00 

2387.74 

2297.58 

2116.23 

2333.24 

2293.98 

2128.36 

1994.05 

Doran 

3370.76 

3138.16 

3011.40 

2958.80 

2898.55 

2866.85 

2885.82 

2797.94 

2671.78 

2570.30 

2513.63 

2459.12 

2379.08 

2241.60 

2078.39 

2086.23 

1929.55 

1867.49 

1762.76 

1588.99 

1528.61 
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Energy, MeV SAKI ~.Jenkins Doran 

1.740 1787.80 1829.69 1240.32 

1.574 1912.15 1995.42 1197.43 

1.424 1778.53 1674.37 1146.98 

1.288 1932.12 1702.27 1096.33 

1.166 1364.02 1329.36 991.66 

1.055 1325.28 1332.48 781.48 

0.955 1029.70 975.10 747.16 

0.864 1070.16 1099.82 670.53 

0.782 1657.56 1597.34 769.19 

0.707 1371.09 1251.37 743.12 

0.640 778.80 860.42 576.50 

0.579 888.55 799.59 502.45 

0.524 993.42 856.30 524.30 

0.474 913.71 993.72 537.48 

0.429 1263.05 1100.47 632.13 

0.388 1048.78 1031.35 648.68 

0.351 496.31 561.32 363.37 

0.317 584.38 578.39 383.87 

0.287 544.86 466.96 2 78. 10 

0.260 422.33 459.94 281.59 

0.235 496.97 467.81 299.33 

0.213 443.40 445.12 260.07 

0.193 745.53 495.10 393.55 

0.174 378.99 512.35 257.06 

0.158 275.07 544.74 251.02 
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Energy, MeV SAKI Jenkins Doran 

0.143 573.93 612.42 387.82 

0.129 279.59 366.91 238.82 

0.116 170.22 274.18 125.94 

9.88 X 10-2 287.12 332.99 232.47 

7.69 X 10-2 375.87 298.14 165.63 

5.99 X 10-2 171.21 169.70 105.28 

4.67 X 10-2 167.09 155.24 99.08 

3.63 X 10-2 210.52 192.96 97.07 

2.83 X 10-2 615.28 475.06 73.79 

2.20 X 10-2 11.10 15.40 21.29 

1.71 X 10-2 23.99 33.42 42.60 

1.33 X 10-2 29.12 39.20 36.48 

1.04 X 10-2 36.72 46.07 26.10 

8.11 X 10- 3 88.31 87.71 52.77 

6.31 X 10-3 39.02 36.64 30.46 

4.91 X 10- 3 19.27 17.33 27.80 

3.83 X 10-3 18.35 15.96 18.68 

2.98 X 10- 3 13.78 10.82 10.89 

2.32 X 10- 3 11.88 9.82 7.68 

1.81 X 10- 3 10.14 8. 74 5.91 

1.41 X 10-3 8.55 7.64 4.78 

1.09 X 10- 3 7.06 6.62 16.50 

8.54 X 10-4 5.60 5.56 2.97 

6.65 X 10-4 4.55 4.49 2.39 

5.18 X 10-4 3.13 3.07 1.89 
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Energy, MeV SAKI Jenkins Doran 

4.04 X 10-4 1.10 1. 02 0.17 

3.14 X 10-4 0.0 0.0 0.19 

2.45 X 10-4 0.0 0.0 0.21 

1.91 X 10-4 0.0 0.0 0.24 

1.48 X 10-4 0.0 0.0 0.27 

1.15 X 10-4 0.0 0.0 0.30 

1.00 X 10-4 0.0 0.0 0.32 

9.90 X 10-5 0.0 0.0 0.0 
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