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i i 

ABSTRACT 

The narrowing of donor electron spin resonance spectra with 

increasing donor concentration N0 and increasing temperature T has 

been observed in semiconductors in the past. One proposed explana-

tion for this phenomenon has been narrowing due to electron motion 

caused by phonon-induced tunneling (hopping) between donor sites. 

According to the Anderson narrowing theory, the line width of the 

narrowed line can be expressed in terms of the average square spread 
2 of the non-narrowed spectrum, <H > , and the average frequency of ave 

electron motion, wh. Previous work has been done on narrowing by 

hopping, but rigorous expressions for wh or <H2>ave have never been 

derived. In addition, the past treatment has omitted several 

important concepts from the problem which have a direct bearing on 

the theoretical results. 

To rigorously examine if the hopping process was producing the 

spectrum, it was first necessary to derive expressions for wh and 

<H2>ave To find the average hopping frequency, a previous deriva

tion of the transition rate for hopping was averaged over the 

electron ensemble and the donor and acceptor impurity ensemble with 

methods derived in the hopping theory for electrical conductivity 

in a semiconductor containing impurities. These methods had not 

been applied to narrowing in the past. A major portion of this 

derivation was the discussion and calculation of the Fermi energy 

for electrons in donor ground states, s , based, in part, on a 
g 

previous treatment of this quantity. To complete the calculation, 

analytical and numerical solutions for wh and sg were derived. The 



resulting wh was found to be a function of N0 and T. It was also 

found to be a function of the compensation K, the ratio of the 

iii 

acceptor concentration to the donor concentration. This K dependence 

had not been previously predicted, and the N0 and T dependences \Jere 

in disagreement with what earlier treatments had supposed. To 

calculate <H2
> , a mathematical distribution function describing ave 

the shape of the non-narrowed donor ESR spectrum was deduced and 

the square of the spread of the spectrum was subsequently averaged 

over that distribution. This result also disagreed with previous 

expressions for <H2> • ave 

The ne\~ narrov.Jing theory \'las then compared Hith existing 

published data. It was found that hopping could not predict the 

observed N0 dependence of the line width and could not predict all 

of observed T dependence. Thus it VI/as concluded that hopping is not 

the only mechanism causing narrowing and is, in fact, not the 

dominant mechanism. Complete rejection of phonon-induced tunneling 

as a contributing mechanism was not possible, however. This was 

due partly to the lack of data on the direct K dependence of the 

line width and partly to the lack of data on the influence of 

compensation on the temperature dependence of the line width. Thus, 

an experiment was proposed to obtain the necessary data on tile K 

and T dependences to decide conclusively whether or not hopping 

contributes to donor ESR spectral narrowing. 
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I. INTRODUCTION 

Electron spin resonance (ESR) experiments on isolated donor 

impurities in lightly doped silicon 1- 3 and germanium4 ' 5 have yielded 

valuable information concerning the wave function of the donor 

electron as vvell as its spin interactions v.Jith the donor nucleus and 
. 4-13 the surrounding semiconductor nucleii. Additional exper1ments on 

more heavily doped samples have indicated that · the ESR spectrum may 

also hold clues to the interactions betv~teen the donors themselves .. 

In particular, it has been found that at donor concentrations v.Jhere 

the wave functions from neighboring donor electrons begin to overlap, 

the hyperfine structure indicative of isolated donors becomes 

unresolved and a single narroH line appears instead. Hovvever, before 

the full potential of these latter experiments can be realized, a 

1 

deeper understanding is needed of the various interactions between the 

donor electrons and their effects upon the ESR spectra.. This thesis 

will deal primarily with the particular interaction called phonon-

induced tunneling or hopping. This phenomenon is the means by \'lhich 

an electron localized on one donor may make a transition to another 

with the assist of a lattice phonon. The discussion v.Jill study the 

mechanism of hopping itself, determine how it should narrow the ESR 

spectrum of donor electrons, and compare the findings with experiment. 

A. THE OBSERVATIOrJ AND THE THEORY OF ESR SPECTRAL IJARRO~~HJG 

In order to study the influence of hopping on the ESR spectrum of 

a donor electron, the nature of the observed spectrum itself and the 



methods of altering that spectrum must be explored. A typical ESR 

spectrum of donor electrons for low donor concentrations consists of 

2!+1 Gaussian lines, \Jhere I is the spin of the donor nucleus. The 

distinct lines themselves arise from the Fermi contact interaction 

of various electrons with the donor nucleus. The Gaussian line shape 

is due to the Fermi contact and dipole-dipole interactions with the 

surrounding silicon or germanium nucleii. Figure 1(a) shov.Js the 

derivative of such a spectrum with respect to the magnetic field, the 

form in which the spectrum is normally recorded by experimentalists. 

For these donor electrons the spin state may be written as 

2 

,,1 = jm m m'> 
'~"spin s I ( 1) 

where m
5 

is the spin quantum number of the electron itself, mi is the 

spin state of the donor nucleus, and m' represents the composite spin 

state produced by the interactions of the electron with the surround

ing semiconductor nucleii. It can be shown that the effect of the 

latter interactions is to broaden each of the 2I+1 lines, which accounts 

for the Gaussian line shape. 

Moreover, an electron contributes to the spectrum only if it is 

in the donor ground state. It must be in the ground state because the 

major Fermi contact interaction, the one that produces the 2I+1 lines, 

occurs only for electrons in a S state1' 4 and is observed only at 

very lo\'1 temperatures. It is thus assumed in the theory \'Jhich shall 

be used for hopping in the next section that electrons are only in the 

ground state. 
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Figure 1. The ESR spectrum of arsenic-doped germanium for various 

concentrations of the arsenic impurity. 

magnetic field parallel to [100] axis. 

Reference 12, Figure 1. 

T = 4.2 °K; 

Data from 
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The \'ie 11 defined 2 I+ 1 1 i ne spectrum is observed on 1 y at donor 

concentrations where the electron can be considered localized on the 

16 -3 15 3 donor (below 2x10 em in silicon and 5x10 em- · in germanium). 

For fixed temperatures, when the donor concentration is increased, 

the 21+1 hyperfine lines begin to reduce in intensity and a single 

line starts to appear in the center of the spectrum. As the concen-

5 

tration is further increased, this center line increases in intensity 

and finally dominates the spectrum at high concentrations (see 

Figure 1). The most interesting property of this line is that it 

grows narrower with increasing donor concentration and narrows even 

further with increasing temperature (see Figure 2). 

Bloembergen, Purcell, a~d Pound 14 predicted that such narrowing 

could be achieved if the motion of the spin particles (donor 

electrons in this case) between various spin states were rapid 

enough. In the case of the donor electron, those transitions con-

tributing to the narrowing would be ones where 6m
1
10 and/or 6m•1o. 

The transitions where 6m =±1 are the ones which cause the ESR signal s 

and do not contribute to the actual narrowing of the line. Here-

after in this thesis, when the phrase 11 motion between spin states 11 

is used, it will refer to the former transitions and not those with 

6m =±1. s 

Anderson 16 performed a detailed study of this motional narrowing 

process and found that a single line should be observed and the 

breadth (half-width at half-max) of this line should be (see 

Appendix B for more discussion) 
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Figure 2. The ESR spectrum of arsenic-doped germanium for various 

16 -3 temperatures. N0 = 4.6x10 em magnetic field 

parallel to the [100] axis. Drawn to fit linewidth data 

in Reference 12, Figure 3. 



(b) 

(c) 

Ge (As) 
16 N0 =4.6xl0 

Fi gure 2 

7 



if 

~w = 

2 ~ wh >> [ <w > J 2 ave 

( 2) 

where <w2>ave is the average square ~pread of the non-narrowed 

spectrum from its center and wh is the average transition rate or 

hopping rate of the spin particle between the various spin states. 

Since, however, most measurements are made in terms of the magnetic 

field, a more useful form for Equation (2) (for electrons) can be 

written as: 
2 glls<H > ave 

with the rapid motion condition now given by 

2 ~ 
glls[<H > J 2 ave 

where ~H is the breadth of the resonance line in magnetic field, 

g is the Lande g factor for the donor electron, 1-1 8 is the Bohr 

(3) 

t d H2 . th d f th d magne on, an < > 1s e mean square sprea o e non-narrowe ave 
spectrum from its center expressed in magnetic field units. If 

Equation (3) is valid, i.e., if the motion of the donor electrons 

8 

between the many spin states is rapid enough, then the 21+1 ESR lines 

will not be observed and instead a single line of width ~H will be 

seen. 
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Motional narrowing thus appears as a possible mechanism for 

explaining the aforementioned experimental ESR spectra. However, it 

it is to do so, a physical process must be found which causes motion 

of the donor electrons between the many spin states. Moreover, since 

Equation (3) shows that the theoretical line breadth decreases as the 

rate of motion increases, this narrowing process must increase the 

rate of motion of the electrons with increasing donor concentration 

and with increasing temperature, in order to conform with observation. 

B. PHONON-INDUCED TUNNELING AS A NARROWING MECHANISM 

Since phonon-induced tunneling causes physical motion of the 

donor electron, the possibility exists that hopping can cause motion 

between the spin states and hence can narrow the donor ESR spectrum. 

The theoretical model of phonon-induced tunneling should therefore 

be examined and related to these resonant states. The particular 

model presented here is due to Miller and Abrahamsl?b,c whose theory 

on conduction of electrons by hopping has explained the resistivity 

of semiconductors containing impurities. 17 

The crystal in the model is a group IV semiconductor (Si or Ge) 

having dielectric constant k and doped with an n-type atom (donor) 
0 

that is located at substitutional site within the lattice. Acceptors 

are also assumed to be present in the crystal. While the donors and 

acceptors are considered randomly distributed, it is assumed that 

over a large volume the average concentration N0 or NA is constant. 

In addition, the concentration of the acceptors is less than that of 

the donors; hence, NA donors have lost their electrons to acceptors 



while N0-NA are still occupied. The situation is characterized by 

a compensation ratio K=NA/N0<1. 

10 

In Figure 3 two typical potential wells, at an occupied (i) 

donor and a vacant (j) donor, are illustrated along with their energy 

states (not to scale). These levels, given to first order by the 

effective mass theory, have been altered by a random perturbation. 

In the present model the perturbing mechanism is the coulomb field 

of a nearby acceptor. With the unperturbed ground state taken to be 

E=O, the magnitude of the perturbation at i, Ei, gives the energy of 

the ith ground state donor electron. Since the perturbation may 

affect one site more strongly than the other, the i and j ground 

states may differ by an energy 6 .. =E.-E .. As long as 6 .. is large 
lJ 1 J lJ 

compared to the energy of overlap between i and j (see Appendix A for 

a better definition of the overlap energy), the states on i and j 

are localized. In addition, if the electron is in the ground state, 

it is also localized in one of the spin states which produce the ESR 

spectrum in Figure l(a). If the above conditions are met and no 

other perturbation act upon the system, it tends to remain in the 

state with one electron on i and none on j. 

If a phonon arrives at i, however, and has an energy 6 .. , there 
lJ 

is a finite probability per unit time U .. that j may become occupied 
lJ 

by the electron previously localized on i. Furthermore, the Fermi 

contact interaction after the transition may be different from that 

before as signified by the change in orientation of the nuclear spin 

vector in Figure 3. That is, the motional or hopping process can 
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Figure 3. Schematic diagram of the phonon-induced tunneling process, 

Miller and Abraham theory. 17b Phonon must have energy 

6 .. =E.-E. to cause transition. Note that the Fermi 
lJ 1 J 

contact interactions may change upon transition, signified 

by the change in orientation of donor atom spin states m
1

. 

Hence hopping can change the spin state. 
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cause changes in the spin states. Therefore, according to the 

Anderson theory a series of these transitions bet\'.Jeen ground states 

should cause the ESR spectrum to narrm\1. Hopping is thus a narro\<Jing 

process. Furthermore, the average transition rate for hopping wh 

should be related to U .. and a corresponding line breadth should be 
lJ 

calculable from Equation (3). 

Hopping also has two important physical properties. First, 

since it involves a phonon, the probability of a transition should 

increase with temperature. Second, since this transition probability 

should increase as the donors are brought closer together (see 

Section II), it should also increase with donor concentration. Thus 

from a qualitative point of view, phonon-induced tunneling seems a 

likely candidate to explain the observed narrowing of the donor ESR 

spectrum. 

The idea is not new. Several others have attempted to treat 

the problem of motional narrov.Jing by hopping. Their v.Jork and their 

results are discussed in Section II. However, as is noted there, 

most of their conclusions are based upon incorrect expressions for 

both wh and <H 2
> • In particular, wh has not been averaged ave 

properly over the donor electron ensemble and the impurity ensemble. 

Section III is concerned with this averaging process. The definition 

of wh and the model for averaging is presented in Part A of Section 

III. In Part B the electron statistics are discussed and the Fermi 

energy for ground state electrons is calculated. Part C discusses 

the distribution of the inpurities and ho\1 it affects the average 

hopping frequency mathematically. In Part D the results of the 



previous parts in Section III are combined to arrive at a formal 

solution for wh. Part E then approximates the formal solution in 

the region of low compensation and approximates further in various 

regions of temperature. The calculation of wh is finally concluded 

with a discussion in Part F of the results of computer and analytic 

calculations of the average hopping frequency. Next, Section IV 

gives a brief calculation of the correct expression for <H2
> ave 

and thus completes the theoretical portion of the thesis. 

14 

In Section V, Part A, the theory is compared with the theories 

of previous authors. Part B of Section V compares the theory of 

narrowing by hopping and draws conclusions on the possibility that 

such a narrowing process is being observed experimentally. Part C 

proposes an experiment to clear up any uncertainty remaining because 

of the lack of data on the K dependence of the line width. Finally 

Section VI summarizes the findings and conclusions of this work. 

In Appendix A the mathematics of the t1iller and Abrahams model is 

discussed and the transition rate uij for the hopping process is 

briefly rederived. Appendix B integrates the hopping process into 

the formalism of the Anderson narrowing theory and mathematically 

justifies phonon-induced tunneling as a narrowing mechanism. 

Appendix C deals with computer programs used in the calculation of 

the Fermi energy and the average wh. 
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II. REVIEl~ AND CRITIQUE OF PREVIOUS ~~ORI< on PHOrJOf~-Ir~DUCED 

TUNNELING AS A NARROWING PROCESS 

Motion of donor electrons was initially recognized as a possible 

narrowing mechanism by Feher, Wilson, and Gere. 6 Several authors 

have since attempted to apply the theory of hopping to explain the 

observed ESR line narro\hJing in a quantitative manner. The first to 

do so was Wilson. 4 He combined the Anderson formulation, Equation 

(3), with the Miller and Abrahams phonon-assisted tunneling transition 

rate between an occupied and an unoccupied donor. This transition 

rate (Equations II-14 and II-19 of Reference 17b) is 

u .. 
lJ 

1 3/2 (-2r .. /a) 
= B r i j exp , J 

ex p ( S Ill . . I ) -1 lJ 

6 .. 
lJ 

1-exp(-Sll .. ) 
lJ 

phonon absorption 
( 6 .. <0) 

lJ 

phonon emission 
(6 .. >0) 

lJ 

Here r. is the distance between the i and j nucleii, a is the 
1n 

( 4) 

transverse radius of the envelope function for a single donor valley, 

6 .. is as defined earlier (see Figure 3), and 1/l3 is a series of lJ 
constants given in Appendix A. Wilson inserted 

6. .. = 6 
lJ 

(an arbitrary 
constant) ~ 

(5) 

into Equation (4), set Uij(R0,6) = w11 , and with Equation (3) obtained 
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2 ex2(SI6I)-1 
g ~B B(6Hhfs) -3/2 exp(2R0/a) 

161 
6H = RD n (6a) 

1-ex2(-S6) 
6 

or 

2 
6H 

g ~B B(6Hhfs) -3/2 exp(2R0/a) [1-ex2(-S6)] = Ro n 6 (6b) 

for all 6. 2 Note that for <H >ave he used the square of 6Hhfs' 

defined as the entire spread of the non-narrowed spectrum measured 

from the center of the first line on the left (see Figure 1) to the 

center of the last line on the right. Figure 4(a) shows a plot of 

Wilson's data on the experimental line width (6HEXP), measured 

between the inflection points of the narrowed spin resonance 

spectrum, for phosphorus and arsenic-doped germanium. The figure 

shows that the line width does indeed increase exponentially with 

R0 as Equation (6) suggests, but that the slopes of the lines give 
0 0 

a = 100 A for arsenic and a = 260 A for phosphorus, which are much 
0 0 

larger than the effective mass values of 60 A and 70 A, respectively. 

Wilson's data on the temperature dependence of 6HEXP consists of only 

two points for each N0 and hence are not enough for analysis of the 

T dependence of Equation (6). Before discussing Wilson's calcula

tional methods in detail, one should consider the results of other 

authors who essentially used the same equation as Wilson, namely, 

Equation (6). 
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Figure 4. The experimentally observed RD dependence and temperature 

dependence of ~HEXP" Data on the RD dependence (a) was 

taken from Reference 4. Data on the T dependence was 

taken from Reference 5. 
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Morigaki and Mitsuma5 obtained several points on the T dependence 

of 6HEXP for phosphorus-doped germanium (see Figure 4(b)). Upon 

comparing Equation (6) to their data, they concluded that the tempera-

ture dependence as well as the donor concentration dependence of the 

observed 6HEXP could be explained by hopping. That is, they believed 

their data on 6HEXP in Figure 4(b) was proportional to [1-exp(-S6)] 

with the value of 6 needed to fit the data lying between 0.34 meV and 

0.54 meV. 

However, this fairly good agreement of Equation (6) with experi-

ment as found by these authors is misleading. Several assumptions 

made in the derivation of Equation (6) are responsible for the quali

tative agreement of Equation (6) with experiment. One may summarize 

the questions concerning these assumptions as follows: 

1. a) U .. was derived for a single pair of donors, one 
lJ 

occupied and one vacant (see Appendix A). However, the 

Anderson narrowing theory requires wh in Equation (3) to be 

an average frequency of transition per electron. It is not 

appropriate to insert rij = R0 into Equation (4) to find 

this average as is shown briefly in this section and more 

completely in Section III. In fact, an exponential depend-

ence on R0 is not expected. 

b) Insertion of R0 , the average distance between donors, 

implies that hopping between only nearest neighboring donors 

is considered. Tunneling to more distant donors, however, 

is also significant as shown in Section III. 
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2. The distribution of the N0-NA electrons on the N0 donors has 

not been taken into account. For example, the donor j is 

assumed empty and there is no dependence in Equation (6) 

which takes into account the compensating acceptor. The 

distribution of electrons will be shown in Section III to 

have a strong dependence upon the compensation and the 

temperature. 

3. The parameter 6 .. , the energy difference between two sites, 
lJ 

clearly has no unique value, such as 6, for various pairs 

of donors. Some sort of averaging process over the 

possible values of 6 is needed. Hence, as is shown in 

Sections III and V, the final result for 6H will not even 

contain functions of such a microscopic parameter. 

4. The expression 6H~fs is not the same quantity as <H2>ave 

of the Anderson theory and 6HEXP is not precisely the line 

breadth 6H. The confusion over these parameters is 

discussed in detail in Sections IV and V. 

The paragraphs below discuss each of these four points and the need 

for new theoretical calculations of the influence of hopping on the 

donor ESR spectral narrowing. 

First of all, the Anderson narrowing theory requires that an 

average wh per electron be inserted into Equation (3) to find the 

line breadth. However U .. is not an average. It represents only 
lJ 

the microscopic transition rate between two donors. An average of 

U .. over the microscopic parameters r .. and 6 .. can be written as 
lJ lJ lJ 
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U = I d r . . f ( r . . ) I d~ . . G ( ~ . . ) U . . ( r . . , ~ . . ) 1J 1J 1J 1J 1J 1J 1J 
(7) 

where f(r .. ) and G(~ .. ) are appropriate probability distributions for 
1 J 1 J 

r .. and ~. .. It thus appears that the average U in Equation (7) can 1J 1J 
be of the same form as U .. (R0 ,~), the expression used in Equation (6), 

1J 
only if the functions f(r .. ) and G(~ .. ) are sharply peaked at the 

1 J 1 J 

values R
0 

and ~, respectively. 

However, in a randomly ordered distribution, such as the distri-

bution of donors in a semiconductor, one cannot usually consider the 

probability that two donors are separated by a distance r .. to be 1J 
sharply peaked at one value. Hence one should investigate when this 

can be done in Equation (7). (The similar question about~ .. and its 
1J 

imp 1 i cations wi 11 be discussed 1 a ter.) The criterion for f( r .. ) 
1J 

being sharply peaked with respect to r .. is that the width of this 
1J 

function be much smaller than the width of U .. (r .. ). If, as usually 
1J 1J 

done, a Poisson distribution of nearest neighbors is assumed, then 

th . f f ( ) . 17b e express1on or r.. 1s 
1J 

2 3r.. 3 f
1
(r .. ) = _!J_3 exp[-(r .. ;R

0
) ] , (Ba) 

1 J R 1 J 
D 

where the subscript one denotes nearest neighbors. The width at 

half-max of this function is about 0.83 R0 . And the width of the 

3/2 r .. dependent part of U .. a: r .. exp(-2r .. /a) is about 1.54 a. The 
lJ 1J lJ 1J 

criterion for f 1(r .. ) being sharply peaked is then 1J 
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0.83 R0 << 1.54 a 

or 

3.7 X 10-2 
<< No (8b) -3 

a 

For germanium Equation (8b) yields N0 >> 1.6 x 10 17 cm- 3 and for 

silicon N0 >> 4.6 x 1018 cm- 3 At these concentrations, however, the 

wave functions cannot be considered localized and the derivation 

leading to U .. (see Appendix A) is no longer valid. Thus inserting 
lJ 

R0 for rij is not a good method for averaging Uij" 

Another problem with using Equation (6) is that only nearest 

neighbors are taken into account. In fact, transitions to other than 

nearest neighbors are also significant and should be considered. 

For example, a distribution similar to Equation (8a) can be written 

for next nearest neighbors: 

f 2 ( r .. ) lJ 

5 3r.. 3 
= f exp[-(r .. ;R0) ] 

R lJ 
0 

( 9) 

The average nearest neighbor is actually at 0.89 R0 (not R0). 

according to Equation (8a), and the average next nearest neighboring 

donor is at 1.19 R0 from Equation (9). The ratio of the transition 

rate for donors separated by 0.89 R0 to that for a separation of 

1.19 R0 is about exp(-0.60R0/a) from Equation (4). For concentrations 

around 2 x 10 16 cm- 3 in Ge and 5. 3 x 10 17 cm- 3 in Si, this factor is 

10% and even greater for higher concentrations. Since these are 

concentrations for which narrowing occurs, it can be seen that 



nearest neighbors cannot be neglected in motional narrowing by 

hopping. It appears that U .. should have been averaged over the 
lJ 

geometrical distribution of donors in a more accurate manner. 

23 

There is, however, another important idea completely unexpressed 

by Equation (6). Donors i and j were assumed to be occupied and 

unoccupied, respectively. This effectively means that a compensation 

ratio of K = 0.5 was assumed. However, in most of the samples 

examined to date K is around 1% or less. The lack of K dependence 

in Equation (6) seems to indicate that the influence of acceptors on 

the statistics of how electrons are distributed on the donors has not 

been considered. Furthermore, since this distribution should be 

affected by temperature, an important temperature dependent factor 

seems to be lacking in Equation (6) as well. In the Miller and 

Abrahams 17b theory of impurity conduction, the electron distribution, 

density of states, and the coulomb repulsion of nearby acceptors were 

all taken into account, as well as how such an electron distribution 

was affected by temperature. The success of their theory is due to 

this treatment and due to the ensemble averaging of an expression 

similar to Equation (4). If one desires to apply their theory of 

hopping to the ESR line narrowing problem, one should use the entire 

theory, including the electron statistics as well as the methods of 

averaging over the impurity ensemble. These techniques have not been 

employed in any narrowing calculations previous to this thesis. 

The apparent agreement in the temperature dependence of Morigaki 

and Mitsuma•s 5 data with Equation (6) is as misleading as the previous 
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.. agreement .. with the donor concentration dependence. Since the dis-

tribution of acceptors is random, the perturbation upon the ground 

states is also random. Hence~ .. must also be described by a distri
lJ 

bution. Indeed, in the Miller and Abrahams treatment17b G(~ .. ) was 
lJ 

considered to be sharply peaked, but at the value ~ .. = 0, not at the 
lJ 

positive constant Morigaki and Mitsuma needed to fit the data. 

Furthermore the pos~tive ~was chosen because when inserted into 

Equation (6), it produces a curve which approaches a constant as T 

approaches zero, while a curve with ~ < 0 would approach infinity. 

But the observation that the line width data approaches a constant 

as T approaches zero does not even correspond to phonon emission 

when account is taken of the distribution of electrons upon donors. 

This occurs because as the temperature approaches zero, phonons are 

emitted until the vacant donors are those which are as close as 

possible to a negatively ionized acceptor. Then no more emission 

can occur. Thus, the probability of a transition approaches zero as 

T approaches zero. This effect, due to the T dependence of the 

electron distribution, is discussed in greater detail in the new 

derivation of wh in Section III. The expression for ~H should thus 

approach infinity as T goes to zero for the case of emission or 

absorption. (Actually, since Equation (3) is not valid if the hopping 

frequency is low enough, the data should show that the spectrum 

reverts to its normal form, not an infinite line width.) The fact 

that the line width remains narrow and approaches a constant width 

as T approaches zero is the first hint that phonon-induced tunneling 
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cannot be the only narrowing process occurring at these temperatures 

and concentrations. This conclusion is contrary to the suggestions 

of Wilson and Morigaki and Mitsuma. 

Finally there is a question on the substitution of ~H~fs for 

<H 2>ave in Equation (6), since ~H~fs is the square of the entire 

spectral spread, while <H2> is stated by Anderson to be the average ave 
square spread from the center of the spectrum. As will be seen in 

2 Section IV, the use of ~Hhfs yields line breadths about one order of 

magnitude too high. In addition it seems that to be strictly quanti

tative, the Lorentzian line breadth (half-width at half-max) should 

be related to the Lorentzian line width ~HEXP" This relation is 

found in Section V to be ~HEXP = 2 ~H/13. 

Other experimentalists 7-9 applied the incorrect Equation (6) 

to similar results in silicon. The next major addition to the 

motional narrowing theory was from Zhurkin, Penin, and Prem Swarup 10 . 

They inserted the Miller and Abrahams activation energy for phonon

induced impurity conduction 17b E 3 for ~ij' retained R0 for rij in 

the absorption part of Equation (4), and used the resulting 

Uij(R0-E3) as the averaged transition probability for hopping. This 

is also questionable. The E 3 activation energy for hopping conduc

tion was a direct result of the electron statistics for the system 

of donor electrons which, as noted earlier, have been left out of 

Equation (4). Impurity conduction theory 17b states that for low 

compensations 

(lOa) 



where sg' the Fermi energy of the donor ground states, and EA are 

given by 

and 
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2 e 
koRA 

where RA = ( _3_) 1/ 3 . ( 10 b ) 
4nNA 

The interpretation of why Equation (lOa) gives the activation 

energy for impurity conduction (taken in part from Reference 17a) is 

as follows. For low compensations the charge carriers are the 

positively charged hole at the vacant donor sites. During conduc-

tion they travel from donor to donor with the assist of a phonon. 

Although this type of conduction if not entirely free, one might 

term it as "quasi-free" if the phonon energies needed for transition 

6 .. are small enough to be attained by phonons available in large 
lJ 

quantities at relatively low temperatures. Now the acceptors, 

imbedded in this sea of donors, alter the donor ground states with 

their coulomb potentials. As a result the positive carrier has a 

lower energy nearer the negative acceptor and a higher energy 

farther away. (The case for the electron carriers is just the 

reverse.) In addition, because the coulomb field is more intense 

near the acceptor, the 6 .. energies are on the average greater nearby 
lJ 

an acceptor than farther away from it. As far as the carrier is 

concerned, then, the region close to an acceptor is like a "bound 



state .. because of the higher 6 .. •s while the region far from an 
lJ 

acceptor allows quasi-free conduction because the ~ij•s are smaller. 

Therefore at very low temperatures, before the carrier can 

contribute to conduction, it must be excited from its lowest state 

near an acceptor to one which is far from the acceptor so that 
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quasi-free conduction takes place. In the Miller and Abrahams theory, 

the former state is effectively at a distance R0 from the acceptor, 

while the latter is effectively at a distance RA/1.35 from the 

acceptor. Hence, the energy of the excitation for conduction is 
2 2 about e /k

0
R0 - 1.35e /k

0
RA. 

One must note, however, that this excitation is not attained by 

a single hop but consists of many hops of the carrier from a donor 

close to the acceptor to donors successively farther away. Thus s 3 

is not one ~ij but the sum of many ~ij•s. It cannot, therefore, be 

equated with an average~' as Zhurkin, et ~.,have done. If an 

average~ did exist, it would be much smaller than s 3. 

The most recent authors to study the idea of narrowing by 

hopping were Gershenzon, Pevin, and Fogel •son 12 ' 13 . They concluded 

that electron motion produced by any impurity conduction process 

(including hopping) was not an effective narrowing mechanism for two 

reasons. The first reason was obtained by assuming that the T = 0 

intercept of the data was due to the temperature independent exchange 

narrowing phenomenon. (The concept of exchange narrowing is too 

involved to be discussed here. A brief discussion, however, is 

given in Section V.) Then they tested the hypothesis that electron 



motion produced the temperature dependent part of the line width 

over and above the T = 0 exchange narrowed part by using their 

theory (discussed below) of how electron motion is activated by 
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phonons. Comparing this theory with their data, Gershenzon, et ~., 

concluded that electron motion did not predict the proper temperature 

dependence of narrowing. The second reason for rejecting electron 

motion was obtained by noting that the compensation dependence in 

the narrowing in one sample was exactly opposite to what one would 

expect intuitively from impurity conduction. In the next few para

graphs the former reason is discussed in greater detail and critiqued. 

While the latter reason is explained in greater detail belo\~, it is 

more appropriate to defer critiquing their analysis leading to this 

reason until Section V. 

To analyze the temperature dependence, the authors first 

constructed their theory of electron motion. They supposed that no 

matter what process caused the electron to move from donor to donor, 

if it \·Jere phonon-activated and if it \'Jere due to impurity conduction, 

the corresponding transition rate U would be proportional to the 

number of phonons which could stimulate a transition. They then 

supposed that the activation energy for impurity conduction si, 

where the i refers to the ith impurity conduction process, was 

characteristic of the phonon energy ~. .. With these two assumptions, 
1 ,1 

they arrived at the following expression 

(11) 



One should note here that s i, or at least the hopping conduction s 3 
as shown earlier, is not characteristic of the phonon energy ~-. 

lJ 

needed for a single hop from donor to donor. It is the sum of many 

phonon energies necessary to excite a carrier from its lowest state 

near an acceptor to a state of quasi-free conduction. Furthermore, 

the electron statistics which introduce an additional temperature 

dependence are not included in Equation (11). Thus Equation (11) 

does not actually correspond to the transition rate for hopping 

conduction. 

Secondly, Gershenzon, et ~-, converted their line width data 

to frequency values which they then compared with the theoretical U. 

These frequency values, which here shall be called wN' the observed 

narrowing frequency, were obtained by assuming Equation (3), 

replacing wh by wN, solving for wN, and substituting experimental 

values for ~HEXP" Thus, 

2 2 Note that they have used the incorrect ~Hhfs for <H >ave· Their 

wN vs. T curves were similar to those we have derived in Section V, 

Figure 12, except for the change in the scale of the ordinate due 
2 to the correct expression for <H > . They then extrapolated the ave 

wN vs. T curves to T = 0 and found a T = 0 intercept which they 

attributed to temperature independent exchange narrowing. Adding 

this intercept to U in Equation (11), they then compared 

29 
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U' = U + wN(T=O), their theoretical expression for the total narrowing 

frequency to w~.J, the observed va 1 ues for the narrowing frequency. 

They found that the theoretical plot of U' vs. T increased consider-

ably faster with increasing T than the experimental curves of wN vs. T. 

Apparently wN does not have an exp(-SEi) dependence. This discrepancy 

was used to reject electron motion as a mechanism for explaining 

the observed temperature part of the line narrowing. 

The other reason for rejecting electron motion was because it 

did not predict the expected compensation dependence in the line 

width. They noted that an arsenic-doped germanium sample with high 

compensation had the unnarrowed spectrum similar to that of a sample 

with low donor concentration. This sample, however, possessed an 

N0 comparable to that of an uncompensated sample that would exhibit 

narrowing (i.e., 1.2 x 1016 cm- 3). Since higher compensation should 

intuitively increase the mobility of the electron, according to 

impurity conduction theory, they argued that the spectrum should have 

narrowed, not broadened. Combining these results with those pre-

viously discussed, they concluded that electron motion among the 

impurity sites \-'las not the effective narrovling mechanism necessary 

to explain the temperature independent or temperature dependent 

observations. 

However, since their theory of electron motion did not contain 

the proper temperature factors nor was it proper to use E. where they 
1 

did, it cannot be concluded from their discussion that hopping is 

not involved in the temperature dependence. But it does appear from 
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their argument on the compensation dependence that hopping may not 

be the dominating narrowing mechanism and is certainly not the only 

one. However, no one has deduced the compensation dependence of the 

average hopping rate as yet, so a definite conclusion on the matter 

cannot be reached. Since such compensation dependence is derived 

in Section III of this thesis, further comparison with experiment 

is deferred until after such a derivation (in Section V). 

The intent of this thesis should be re-emphasized at this point. 

Before any further meaningful conclusions can be reached concerning 

phonon-induced tunneling as a possible narrowing process, the 

correct equation for the average hopping transition rate wh should 

be found. It is evident from the discussion of Equations (4) - (6) 

that transitions between other than nearest neighbors must be 

considered and that the geometrical distributions of these neighbors 

must be considered. Moreover, the averaging process must take into 

account the distributions of electrons on donors. Finally, before 

any quantitative comparison with data can be done, the correct 

expression for <H2
> must be found. Then theory and experiment ave 

can be compared, and more meaningful conclusions can be determined. 
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III. CALCULATION OF THE AVERAGE HOPPING TRANSITION RATE 

A. THE MODEL AND THE METHOD 

The major portion of this thesis deals with the calculation of 

an average hopping transition rate wh' characteristic of the 

electron ensemble. Before performing that calculation, the ensemble 

must first be described, wh must be defined, and methods used in 

the averaging process must be explained. 

Due to the success of the Miller and Abrahams 17b theory of 

impurity conduction, an effort will always be made to stay as close 

as possible to the model of phonon-induced tunneling used in that 

theory. Thus, the crystal is a group IV semiconductor with 

dielectric constant k
0 

and doped with ND donors and NA acceptors 

randomly distributed. The compensation ratio K = NA/ND is less than 

unity, implying that ND-NA donors are occupied and NA are vacant. 

Because of the negative charge of the nearest acceptors, the ground 

states of the donors are perturbed. If the unperturbed ground state 

is taken as E=O, then the ground state energy of the ith donor is 

obtained from Equations A-6 as 

2 
E. = <~.IV ~~-> ~ ~k_e ___ 

1 1 a 1 r.A 
0 1 

where riA is the distance from donor i to the nearest acceptor. 

(13) 

The definition of the average transition rate over this 

ensemble must be in agreement with the concepts of motional 

narrowing. Since the 2I+1 line spectrum in Figure 1(a) is typical 
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4 of donor electrons in the donor ground state and since this is the 

spectrum presumed to be narrowed by motion, only electrons in the 

donor ground state are considered. In addition, the transitions of 

interest which are considered to contribute to motional narrowing are 

those from one ground state directly to another ground state. Effects 

of intermediate transitions through the excited states are assumed 

to be small at low temperatures since they reauire a relatively 

large phonon energy. 

Combining these ideas, wh can be formally defined as the total 

number of direct hops between ground states per unit time per 

electron in the donor ground state. If U .. is the transition rate 
lJ 

of an electron from the ground state on a specific donor i to the 

ground state on a donor j, then wh is the summation of Uij over all 

pairs of occupied ground state donors and unoccupied donors, divided 

by the number of electrons in the ground state. That is, 

L, 
i(ground state 

occupied) 

I 
j(vacant) 

1 I 
i(ground state 

occupied) 

u .. 
lJ 

(14) 

As stated earlier, Miller and Abrahams 17 b have calculated U .. and a 
lJ 

brief rederivation is given in Appendix A. For convenience the 

results are restated here as 

u .. 
lJ 

1 
= 8 

3/2 r .. 
lJ exp(-2r .. /a) 

lJ 
(15) 



\-Jhere 

1 
}~ 

The values of the constants in 1/B are enumerated in Appendix A; 

r .. is the distance between the two sites and a is the transverse 
lJ 

Bohr radius of a single valley wave function; 6 .. == E.-E. is the 
1J 1 J 

energy difference between the ground states of i and j. 

The first step in reducing wh to a form vJhich can more easily 

be interpreted is to take the electron ensemble into account mathe-

matically. If a function f~ is defined as the probability that the 
1 

a state on i is occupied by an electron, then Equation (14) can be 

re\-Jri tten as 

r~o No 
f~ (1-I f~) I I u .. 

1 lJ 
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i==1 j==1 cS J 
wh ::: 

No 
(16) 

I f~ 
i=1 1 

where f~ assures that the ground state on i is occupied and 

(1-If~) makes certain that donor j is completely vacant. Equation 
cS J 

(16) now contains the statistics of the electrons distribution, 

which have been left out of all previous treatments of the narrowing 

problem. u~ote, however, that these statistics were not left out 

of Miller and Abrahams• calculation of the contribution of hopping 

to the resistivity. Equation (16) is in many ways similar to 



Equation III-2 in Reference 17b. 19 ) In Part B of this section the 

f~ distribution functions are discussed in greater detail and 
1 
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shown to have strong temperature and compensation dependences. Thus, 

their inclusion in the calculation will significantly alter the 

final form of wh from the previously used expression of Uij(R0 ,~) 

(see Part II). 

The second method for simplifying wh involves a mathematical 

treatment of the impurity ensemble to perform the i and j summations 

over all donors. Since the impurities are randomly distributed and 

since they number so many, the range of values \"'hich a microscopic 

parameter, such as r .. , ~ .. ,or E., may take on is nearly continuous. 
1J 1J 1 

The summations over i and j can thus be changed to integrals over 

the parameters of which w .. = [(1-L'f ~ )U .. ] and f~ are a function, if 
1J c5 J 1J 1 

the integrands are weighted by the probability distributions of 

these parameters. This concept can be expressed abstractly as 

follows 

I dA 1 dA2 dA3 ···F(A 1 )F(A2 )F(A3 )···f~wij(A 1 ,A 2 ,A 3 ,···) 
=> (17) 

I dAl dA2 dA3···F(Al)F(A2)F(A3)···f~(Al,A2,A3,···) 
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where the F functions represent the probability distributions of the 

~ parameters. The actual parameters are, as will be shown, rin' ~in' 

and Ei. Part C of this section is concerned with the means of 

changing the summations into integrations and with finding valid 

probably distributions for r. , ~. , and E .. 
1 n 1 n 1 

At each stage of this derivation it is useful to state the 

current form for wh. The result of the present section is 

ND ND .s: 1 3/2 ~ .. 
l l f~(1-If~) -8 r .. exp(-2r .. /a) 1

J 
= i= 1 j= 1 1 0 J 1J 1J [1-exp(-s~ij)] 

wh N~ 

B. THE ELECTRON STATISTICS 

l' f~ 
i=1 1 

1. Application of the Electron Distribution 

The distribution of electrons and vacancies on donors is 

(18) 

a embodied in the fi. By considering the deta i 1 ed ba 1 ance, f·1i 11 er17c 

has already evaluated this function as 

exp(-S(E~-c;)) 
f~ = 1 

1 1 + I exp(-S(E~-c;)) 
0 1 

where E~ is the energy of the electron in the a state on donor i. 

Equation (19) can also be written as the product of a t1axwell

Boltzman distribution of the excited states and a simple Fermi 

distribution of the ground state energies or 

(19) 



1 
[1+exp S(E.-~ )] 

1 g 
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(20) 

where h.a == EC:-E. is the difference in the energy of the ath excited 
e 1 1 

state from the ground state energy. The first factor in Equation 

(20) corresponds to the occupation probability of a particular state 

a on donor i, while the second corresponds to the probability that 

donor i is occupied. 

The symbol ~ stands for the Fermi energy for the entire electron 

ensemble, v1hile ~g is the Fermi energy if the ground states~ Here 

considered. The two are related by 17b,c 

cS exp(-S£'1 ) e 
(21) 

Noting that the total number of electrons on the donors is N0-NA, one 

may determine ~g by solving the following equation 

or 

1 
l+exp(S(E.-~ )) == rJD- NA 

1 g 

Consequently, ~may then be obtained from Equation (21). 

From Equations (20) and (23) it can easily be shown that the 

three quantities f~, (1-If~), and 
1 cS J 

If~ needed to evaluate wh in 
i 1 

(22) 

(23) 
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Equation (18) are 

f~ 
1 

1 1 
ZTfT 1 +ex p ( f3 (E.- s ) ) 

1 g 
(24a) 

(1 - I f~) 1 1 
1+exp(-G(E.-£; )) = 1 +eX p ( - S (E . - .6 . · - s ) ) 

cS J J g 1 1 J g 
(24b) 

and 

r f~ 1 I 1 N0-IJA 
= ZTfT 1+exp(S(Ei-sg)) 

= Z(T) 
1 

1 i 
(24c) 

where Z(T) = Iexp(-G-6°) is the partition function for the levels on 
cS e 

a single donor atom. The expression for wh then becomes 

1 
wh = (N -N ) D A 

N0 li0 1 1 
L L [l+exp(B(E.-s ))] [1+exp(-S(E.-.6 .. -£; ))] i=1 j=1 1 g 1 1J g 

x l r 3/ 2 exp(-2r .. /a) 
13 ij 1J 

.6 . . 
1J 

[ 1-ex p (- 13 .6 .. ) ] 
1J 

2. Calculation of the Fermi Energy 

Because the ground state Fermi energy in Equation (25) is 

(25) 

unkno\vn at the present time, it is necessary to evaluate sg as a 

function of the three important sample parameters n0 , nA(or K), and 

T. The calculation is almost identical to that done by Miller and 

Abrahams. 17b Rewriting Equation (23) and considering the E. to be 
1 

close together, one obtains 
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00 

-
r~A - No 

K--- 1 L 
No No i=1 

1 
1+exp(-S(E.-c;: )) 

1 g f F(E) dE 
1+exp(- S(E-c;: )) 

g 
(26) 

0 

where 

F(E) 3 4 3 = (3EA /E ) exp(-(EA/E) ) 

and 

The density of states, F(E), is obtained by assuming a Poisson 

distribution of nearest neighbor acceptors. It is discussed in 

detail in Part C of this section. Equation (26) may be evaluated 

analytically, using certain approximations which will be useful 

later in the evaluation of wh. It may also be evaluated numerically 

using a relatively simple computer program . 

In the analytical calculation, two regions of interest afford 

conditions which allow Equation (26) to be approximated . The first 

is the low temperature region, the one used by Miller and Abrahams. 

Integrating Equation (26) once by parts, they obtained 

00 

(1-K) = f3 f 
- sc::g 

3 ex p (- ( E A/E) ) dE 
(27) [l+exp( S(E-c;:9 ))][1+exp(- S(E- c;: g))] 

Since for low temperatures the denominator is peaked at E=c;:
9

, removal 

of the numerator from under the integral, evaluating it at E=c;:
9

, and 

integration of the denominator yields 
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( 1- K) (28) 

In order to use this method the exp(-(EA/E) 3) function must be 

slowly varying in the region of E spanned by the product of the 

electron distribution functions in Equation (27), which is peaked 

at E=t;;g. t,1athematically, this means the following inequality must 

be valid 

d 3 dE [exp(-(EA/E) )] 

exp(-(EA/E) 3 ) 
(29a) 

since the width at half-maximum of the denominator in energy is 

3.52k8T. Evaluating Inequality (29a) and substituting the appro

priate t;;
9

, Equation (30) below, one can obtain a statement of what 

the phrase "low T" means, 

T << 
[ ( )]

4/3 - Tc 
10.6 k8 -ln 1-K 

For a typical acceptor concentration of 1014 cm- 3 , Tc is about 

340°K for N0 = 1016 cm- 3 in Ge and about 1.06 x 104 °K for 

(29b) 

N0 = 1017 cm-3 in Si. The experiments at liquid helium temperatures 

are well below these temperatures. 



Finally, solving Equation (28) for positive ~g and considering 

exp(-S~g) small, one obtains for this low T approximation 
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~g = [-ln(l-K)]l/3 (30) 

which is the Fermi energy one would obtain if he evaluated equation 

(26) at T=O. Note that as long as Inequality (29b) is satisfied, 

S~g>>O is also satisfied. Thus the dropping of the exp(-S~g) term 

in the denominator in Equation (28) is a good approximation for 

low T. Equation (30) should be consistent with the fact that as 

the compensation becomes closer to unity, the f~(T=O) should sho\vr 
1 

that fewer donors with energies from 0 to ~g are occupied. 

Substitution of Equation (30) into Equation (20) shows that this is 

indeed the case. Finally, if the compensation remains fairly small, 

the Fermi energy can be approximated using Equation (30) as 

(31) 

which is the value quoted previously in Equation (10). 

The second region of interest in which Equation (26) may be 

approximately solved for ~ is a high temperature region. Here an g 

inequality similar to Inequality (29a) must be satisfied, namely, 



{k ln[l+exp(-S(E-z;
9

))] J (0.66 EA) « 1 

Eo 

This guarantees that the distribution of the holes given by 

Equation (26) must be slO\<Jly varying in the energy region near 

the peak of F(E), which is peaked at a value 

2 
E = (3/4) 113 E = ~ (nrJ ) 1/ 3 
o A k

0 
A 

Note that the width of the density of states at half-maximum is 

0.66 EA. Evaluating Inequality (32a) and using the high T value 

for s
9

, Equation (34), one obtains the high T condition 

T >> 
0.66 E 
_..,._..__A (1-K) - T' 

kg c 
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(32a) 

(32b) 

For the typical NA of 1014 cm- 3 chosen earlier, T~ = 5.1°1< forGe 

and T' = 7.3°K for Si. Hence, for the high T approximation to hold, c 
the temperature must be much higher than liquid helium temperatures, 

according to Inequality (32b). 

To proceed with the high T approximation, the 

[l+exp(- S(E-sg))] function can be removed from the integral in 

Equation (26) and evaluated at E • One then obtains 
0 
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00 

1 
K = 1+exp(-S(E -~ )) 

0 g 
J F(E) dE 

1 
1 +ex p (- B ( E - ~ ) ) 

0 g 
(33) 

0 

Thus, 

(34) 

Substitution of Equation (34) into Equation (24a) or (24b) and 

evaluating at Ei = E
0 

shows the significance of the high T approxi

mation. For higher temperatures the probability that a donor is 

occupied is simply (1-K) and the probability that one is vacant is 

about K. 

Finally, Equation (26) can be solved numerically for ~ . The g 

details of the method are presented in Appendix C. Figures 5, 6, 

and 7 plot the exact solutions for ~g for hypothetical samples of 

n-type germanium. Figure 5 shows how ~g varies with donor concentra

tion at various temperatures if each sample with a different IJ0 is 

assumed to have the same acceptor concentration NA = 5. 0 x 1013 cm- 3 

Figure 6 shows the dependence of ~g on temperature for various N0 ; 

13 -3 again all the samples are assumed to have N = 5. 0 x 10 em . The 

T=O intercepts of the curves give the low T approximations . Note 

how this approximation fails forT > 4 °K. The high T approximation 

(Equation (34)) for all these curves is also shown . rJote that it 

is still not a very good approximation forT = 12 °K . Lastly, 

Figure 7 shows the dependence of ~g on compensation for a sample with 
16 -3 N0 = 4.6 x 10 em for various temperatures. Note that ~g -+ - oo 
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Figure 5. The Fermi energy of the ground states vs. the donor concen-

tration in n-type germanium calculated by a computer from 
13 -3 Equation (26). A constant NA of 5.0 x 10 em was 

chosen. The curves shown correspond to: (a) T 

(b) T = 6 °K, and (c) T = 10 °K. All curves for T>O 

go to ~g = -oo at N0 = NA, as they should. If T=O, 

~9 = o for N0 = NA. 
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Figure 6. The Fermi energy of the ground states vs. temperature for 

various donor concentrations in n-Ge as calculated by 

computer from Equation (26). A constant tiA of 5.0 x 1013 

-3 em was chosen for all hypothetical samples. The curves 

16 -3 correspond to: (a) N0 = 3.4 x 10 em , 

16 -3 ( ) 16 -3 (b) N0 = 4.6 x 10 em c N0 = 7.0 x 10 em , and 

(d) 1017 -3 N0 = 1.8 x em The T=O intercepts are given 

by Equation (30), the low T approximation. Also 

illustrated is the high T approximation (dashed curve) 

valid for curves (a) through (d). 
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Figure 7. The Fermi energy of the ground states vs. compensation 

for various temperatures in n-Ge as calculated uy 

computer from Equation (26). A constant N0 = 4.6 x 1016 

-3 em was chosen. The curves correspond to: (a) T=0°K 

(also low T approximation, given by Equation (30)), 

(b) T=8°K, and (c) T=16°K. Also illustrated is the 

high T approximation from Equation (34) (dashed curve) 

for 16°K. Note that it becomes a better approximation 

for curve (c) at high K and low K. 
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as K ~ 1 if T > 0. Also note how the high T approximation only 

begins to approximate s even at T = 16 °K. 
g 

C. THE DISTRIBUTION OF THE H1PURITIES 
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The summations in Equation (25) may be converted to more easily 

handled integrals. To gain physical insight into these methods, it 

is very useful to break the ensemble average into tHo operations. 

First a quantity wi is defined as 

w. = , 
N D 
I ( 1-If~ ) u . . = 

j=1 0 J lJ 

N D 
I 

j=1 
w .. 

lJ 
(35a) 

The j index in this summation enters w .. through the spacial para
lJ 

meter r .. and the phonon energy parameter 6 .. [see Equation (25)]. 
lJ lJ 

Thus, it is possible to evaluate wi by integrating over the distri-

butions of these two parameters. To calculate wh' wi must be 

averaged over the sites whose ground states are occupied. Hence, 

(35b) 

The i index enters the functions f~w. and f~ through the parameter , , , 
Ei. Therefore these summations can be performed by integrations over 

the distribution function of the E.'s, commonly called the density , 
of states function. 

This procedure has an interesting physical interpretation. If 

one thinks of wi as the total transition probability per unit time 



51 

from donor i, then the right side of Equation (35a) corresponds to a 

summation of the transition probability U .. over final states (over 
lJ 

all possible vacant donors) and the right side of Equation (35b) 

corresponds to averaging over the initial states. 

1. The First Summation--The Spacial and Phonon Energy 

Distributions 

If the j sum is performed first, then for the moment only a 

single donor i is being considered. The j index can then be thought 

of as the neighbor number n, which denotes the ordinal proximity of 

a certain neighboring donor. For a specific donor i, the distance 

to the nth nearest neighbor rin and the ground state energy difference 

llin will vary. However , s i n c e w . ( r . , ll . ) v-Ii 11 be summed over a 11 1n 1n 1n 

i, only an average win over all possible rin and llin in the random 

distribution of donors is needed. 

To average over all possible r. and fl. , one needs the 1n 1n 
probability, f (r. ), that the nth nearest neighbor is at a distance 

n 1n 
r. . For a random Poisson distribution of particles with average 1n 
concentration r~ 0 = ( 3/ 4rrR~), the probabi 1 i ty that the nth nearest 

donor to the donor i is in a spherical shell with radius r. and 1n 
. dth d d b t d . . llb Wl rin' centere a ou onor 1, 1s 

3 r~n-l exp(-(r. /R
0

)3 ) 
1n 1n (36) 

Two forms for Equation (36) have already been used in Equations (8a) 

and (9). The nearest neighbor form, n=l, will also be needed for 

calculation of the density of states later on. 
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Since win is a function of 6in' a distribution for this parameter 

must also be derived. In general, since .6in will vary over the afore

mentioned spherical shell of radius r. , this distribution will be 1n 

a function of both the ori entation and magnitude of r. • It vd 11 1n 

also be a function of E .• The method used to calculate such a dis-, 
tribution is to consider the donor n (at a particular point on the 

shell of radius rin), the donor i, and the nearest acceptor to form 

a triangle. Then, one fixes the distance from i to the acceptor 

riA = e2/k
0

Ei and fixes the separation rin· This fixing of the two 

sides of the triangle assures that .6. is a function of only the 1n 

angle between these sides, denoted by e . 

One may calculate the normalized probability distribution for 

6in' G(.6in)' by first finding a normalized distribution g( e ) and 

then changing variables to the phonon energy parameter through an 

appropriate relation between e and .6. . This change in variables is 1n 

performed by a common mathematical technique 

= I g (e ) de d6 . 
1n 

(37) 

The absolute value sign is used since all probability distributions 

are positive functions . The function g( e ) may be derived by noting 

th that in a random distribution of donors, the n donor can be in any 

element of solid angle on the rin sphere. The probability of the 

nth donor being in dQ is then 

dQ sine de dtJ.. 
4n = 4n 't' 

0 < e < 1T 

0 < <P < 2n 
(38) 
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and zero elsewhere, where ¢ is the azimuthal angle about riA· Since 

~- is not a function of ¢, the right side of Equation (38) may be 1n 
integrated over ¢. The probability that r. makes an angle between 1n 
8 and 8+d8 then becomes 

g(8) 

= 

sin 8 
2 

0 

Combining Equations (37) and (39), one 

G(.6in) 
1 I d (cos e) 1 
2 d.6. 1n 

= 0 

0 < 8 < 7T 

(39) 
elsewhere 

obtains 

0 < 8 < 7T 

(40) 

elsev-~here 

The final step to perform before one can calculate G(.6. ) is to 1n 
determine the relation between 8 and .6. • This is done by using the 1n 
law of cosines with the expression 

.6. = E. E 1n 1 n 

1 -----------------------] 
~ r~A + r~n - 2riArincose 

Equation (41) yields 

case 
2 

= 1 [-:-----:e~- + 2 k E.r. 
o 1 1 n 

k E.r. o 1 1 n 
2 

e 
k E.r. 
o 1 1 n 

1 J 
.6. 2 

( 1- __2!),_) E. 
1 

(41) 

(42) 



Thus, using Equations (40) and (42) one finds that 

e2 G(ll. ) = _........,..._ 
1 n 2 2k E.r. 

o 1 1 n 

= 0 

1 
fl. 3 

(1- -l!l) 
E. 

1 

el se\vh ere 
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( 43) 

By inserting the limits of 8=0 and 8=1T into Equation (41), the limits 
2 on G(llin) can be found. e /k

0
Ei, then 

and 

ll+ 
E. r. 1 1n = 

e2 
(~+ r. ) 

0 1 1n 

(44) 

If e2/k
0

Ei < r. < 00 then 1n , 

2 2 
r. ) -E.(rr.-1 k . 1n 

ll - 0 1 = 2 
(r - keE.) 

0 1 

and 

ll+ 
E. r. 

= 1 1n 
2 ( 45) 

<IT+ 
0 1 

r. ) 1n 

Equations (36) and (43) now give normalized distributions which 

allow the calculation of~- Since G(ll. ), ll-, and ll+ are functions 1n 1n 
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of rin'the llin integral must occur inside the rin integral. Thus 

co 

dr. 1n f (r. ) G(ll. ,r. ) w. (fl. ,r. ,E.) n 1n 1n 1n 1n 1n 1n 1 (46) 

Noting that In win may be substituted for L w .. and inserting 
j lJ 

Equation (46) into Equation (35) one obtains for wh 

1 1 
I,. l+exp(S(E.-~ )) 

1 g 
I 
n 

co 

J 
0 

3/2 6 in 
rin exp(-2rin/a) [1-exp(-Sll. )] 

1n 

dr. 1n 

2. The Second Summation--The Density of States 

( 4 7) 

The sum over all i donors may be performed by summing over all 

energies E .. This approach then allows a change from tile summation 
1 

over i to an integration over a density of states, provided that the 

energy states are close together. The appropriate density of states 

is found by using Equation (13) to relate riA to an energy E .. 1 The 

probability that the nearest acceptor is in a spherical shell of 

radius riA about i can be obtained by setting n=1 in Equation (36) 

and using RA for acceptors instead of RD. 
17b Thus, 

(48) 



The variable change to E. is performed using a relation similar to 
1 

Equation (37). Hence, 
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(49) 

To sum over all i, one simply multiplies by rJ 0 and integrates the 

normalized F(E) over the appropriate function. (r,Jote that this is 

the same method used in Part B to sum the distribution over all the 

donors to find the ground state Fermi energy.) 

D. THE FORr·1AL EXPRESSION FOR THE AVERAGE HOPPII'JG TRANSITION RATE 

The final step in deriving an integral expression for wh involves 

performing the summation over neighbor numbers n. Since the sub

scripts on the integration variables in Equation (46) may be dropped, 

and since the limits on these integrals do not vary vlith n, the sole 

function which remains under the I sign is fn(r). r~ote ho\vever that 
n 

00 3 2 3 00 

= -}- exp[-(r/R0 ) ] I 
R0 n=l 

3(n-l) r 

R~(n- 1 ) (n-1)! 

(50) 

Using Equation (47) for wh' Equation (49) to change the sum over i 

to an integral over F(E)dE, and Equation (50) to perform the sum 

over neighbor numbers, one obtains the final expression for the 

average transition rate 



wh 

co 
3E3 

= 1 f dE A 
B ( 1- K) 7 

0 

[ l 
e2/k E 

0 

dr 4nN
0 

2 r 

X 

co 

+ J dr 4rrN0 r
2 

e2; k
0

E 

1 
x [l+exp( B (E-~ ))] 

g 

X 6 } 1-exp(-66) 

57 

exp[-(EA/E) 3] 

Er/ (e2;k
0

E+r) 
2 

f 2 
d6 e 1 

2k
0

E2r (1- 6)3 
-Er/(e /k E-r) E 

0 

[ 1 ] r 312 exp(-2r/a) 1+exp(..: 6(E-6-r; ) g 

1-exp(-66) 

1 

[ 1 ] r 312 exp(-2r/a) 1+exp(- 6(E-6-r; )) g 

(51) 

Equation (51) represents the complete expression for the average 

transition rate one obtains by using the ~1iller and Abrahams model 

and their calculational techniques over the electron and impurity 

ensembles. It is still not in a very desirable form and it appears 



that the expression cannot be reduced further without approximating 

it or numerically performing the integrations. 

However, before examining wh under certain approximations, a 
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few points concerning the N0, K (or NA) and T dependences should be 

made. The N0 dependence is in the multiplicative factor of N0 in the 

second integral and an indirect dependence which occurs through sg· 

The K dependence of wh is in the 1/(1-K) function, the Fermi energy 

sg' the density of states, and the energy distribution G(6). 

The temperature dependence of wh is determined solely by the 

function 

h(E,6,T) = 6{[l+exp(S(E-~ ))][l+exp(-B(E-~ -6))][1-exp(- G6 )]}-l (52) g g 

as inspection of Equation (51) shows. Of the three terms in square 

brackets, the first is the occupied donor distribution function, the 

second is the unoccupied donor distribution function, and the third 

is a term from the phonon distribution function. Furthermore, it is 

now possible to mathematically prove that wh ~ 0 in the T=O limit as 

was intuitively developed in Section II. To do this, wh will be found 

from h(E,6,T). Now h(E,6,T) can be calculated from the values of the 

above three mentioned terms. To evaluate these terms, it is 

convenient to classify the possible range of values that E, 6, and 

(E-6) can assume. These range of values can clearly be expressed as: 

for E, [E > ~g] or [E < sgJ (53a) 

for 6, [6 > 0] or [6 < 0] (53b) 

and for (E-6), [(E-6) > ~ ] or [(E-6) < ~ ] (53c) g g 
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Then, the resulting expressions for h(E, ~ ,T) in the T=O limit are 

given below. 

Case 1 (E > s ): g 
if 6 > 0 and ( E-6) > s g' then 

h ~ 6exp[- B(E-c: )J g 

if 6 > 0 and (E-6) < c:g' then 

h ~ 6exp(- B6) 

and if 6 < 0 and (E-6) > c:
9

, then 

(r~ote that 6 < 0 

this combination 

Case 2 (E < s ): g 

h- -6exp[-B(E-s )- SI6IJ g 

and (E-6) < c:
9 

are not compatible with 

has been omitted from Case 1.) 

if 6 > 0 and (E-6) < s , then g 

h - 6exp[- S(s -E)- 66] g 

if 6 < 0 and (E-6) > sg' then 

h - -6exp(- SI6I) 

and if 6 < 0 and (E-6) < sg' then 

h - - 6ex p [- S ( s - E ) ] g 

(Note that 6 > 0 and (E-6 ) > c;: are not compatible v/ith g 
this combination has been omitted from Case 2.) 

(54a) 

( 54b) 

(54c) 

E > s g and 

(55a) 

(55b) 

( 55c) 

E < s g and 



Examining Equations (54) and (55) one sees that for any 

combination of E, 6, and (E-6), h(E,6,T) is an exponential function 

of a negative number divided by k8T at low temperatures. Thus, 

h(E,6,T) goes to zero for all E and 6 as T approaches zero. Since 

the integral of a function whose values are all zero is zero, 

Equation (51) shows that 
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as T -+ 0 (56) 

E. THE LOW COt1PENSATION APPROXIMATION FOR THE AVERAGE HOPPING 

TRANSITION RATE 

1. The Low~ Aeproximation Valid for all Temeerature 

The integrals in Equation (51) are relatively complicated and 

do not appear to yield a closed form solution. Thus, either a 

numerical solution may be attempted or analytic approximations of 

the integral in certain regions of interest may be obtained. The 

complete numerical solution has the advantage of giving an exact 

answer for wh. However, the amount of computer time involved in 

performing a triple integral to find each value for wh is great. 

Approximations to the integral, on the other hand, might not yield 

as accurate an answer as the numerical solution. Hov;ever, they are 

much easier to derive and easier to vvork with. They have the added 

advantages that a reader can tell with a glance approximately how 

the original integral behaves under changing conditions and no 

numerical computations need to be done. Hence it is desirable to 

seek useful approximations for wh in Equation (51). 
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The Miller and Abrahams 17b treatment of the resistivity assumed 

that G(6) was sharply peaked near 6=0. In other words, it was 

assumed that in the impurity ensemble, the arrangement of atoms was 

such that most energy differences between donor ground states were 

close to the value 6=0. However, this assumption was somewhat 

arbitrary on the part of t1iller and Abrahams since they did not 

specifically calculate the G(6) function. Before using the methods 

of a similar approximation to evaluate wh, one should determine under 

what conditions it may be valid in the present calculation since a 

function for G(6) is now available in Equation (43). 

It shall be shown here that the criterion for the approximation 

that G(6) is sharply peaked at 6=0 is that the compensation ratio 

must be small. One would expect this intuitively since a low 

compensation implies a low number of acceptors. This, in turn, 

implies that the perturbation of the acceptor coulomb field on a 

typical donor ground state is small. Hence, most of the differences 

in energy 6 between the various donor ground states would have 

values close to 6=0. A quantitative statement of the low compensation 

approximation may be derived by initially determining how G(6), wl1ich 

appears to be slowly varying in Equation (43), can be considered 

sharply peaked at 6=0. This is done by showing that the difference 

between the limits (6+-6-) must be made smaller than k8T and that the 

average value of 6 is, in many cases, zero. Then an inequality for 

K as a function of N0 and T may be obtained which shows how low the 

compensation must be for the above criteria to be met. 
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Because of the limits on G(6)=e2/2k E2r(1-6/E) 3 , the average value 
0 

of 6 is not zero in the integral over the upper range (i.e . , 

e2/k E<r <oo) in Equation (51). That is, for e2;k E<r <oo 
0 0 

6+ 

f_ (57a) 

6 

Hence, one certainly cannot consider G(6) peaked near 6=0 in this 

case. And although the average value of 6 is zero for the lower 

range (O<r <e2/k
0

E) since in this case 

6+ 

f_ G(6) 6 d6 = 0 

6 

it would appear that one could not consider 6 to have an average 

(57b) 

value of zero in general. However this integral over the lower 

range in Equation (51) is the only one of interest for the following 

reasons. Unless the parameter e2/k
0

E is of the order of the 

transverse Bohr radius a or smaller, the integral over the upper 

range of r is very small compared with the one over the lower r range 

because of the factor exp(-2r/a). Furthermore, even though the upper 

range r integral is larger than tt1e lower range one when E>e2/k
0
a, 

the 1/E4 dependence in the density of states makes energies this 

large extremely improbable and consequently shows that the term with 

the density of states times the large r integral can be neglected for 

large E. That is, the probability that E is in the range 

e2/k a<E<oo is 
0 
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00 

EA 3 
1 [ ( ) J -- exp - 2 (58) 

e /k
0

a 

17 -3 . For NA less than 2.7 x 10 em 1n silicon and NA less than 

1.1 x 10 16 cm- 3 in germanium, this probability is less than 1%. 

Hence, unless K is of the order of unity for donor concentrations 

that exhibit narrowing, the second half of the right side of Equation 

(51) is small in comparison with the first for large or small E and 

may be dropped. Thus, Equation (57b) allows one to always consider 

to have an average value of zero. 

Secondly, one may determine how G(~) can be considered sharply 

peaked by initially noting that finite values for G( ~ ) are attained 

+ only between the limits~- and~ [see Equation (43)]. Thus, if the 

limits are close together, near ~=0, then G(6) takes on a sharply 

peaked character at that value. How close together the limits need 

to be is determined by how rapidly varying the function of 6 being 

averaged is. Inspection of Equation (51) shows that 

6/[1+exp(- 8 (E-6-~g))][1-exp(- S~ )] varies slowly with ~ if ~ is small 

in relation to k
8
T. So if the width of the entire range of ~ is less 

than k8T, one is assured that he can consider G( ~ ) sharply peaked. 

The relevant criterion is thus 

2E << kBT 
e2 k0 rE 

(59a) 

l<"E"r- -2~ 
o e 

It turns out that the compensation must also be low to satisfy this 

condition. 



64 

To obtain a quantitative form of Inequality (59a) in the low T 

limit (i.e., T<<Te, as given by Inequality (29b)) one should inspect 

Equation (51). From the r 712 exp(2r/a) function one may conclude 

that most transitions occur between donors separated by a distance 

of the order of a. Furthermore, if the temperature is low, most 

transitions occur between donors with energies very close to ~g' the 

approximate peak of the product of the electron distribution functions 

1/3 ( J in Equation (51). Inserting the low T value of ~g=EA/[-ln 1-K) 

for E and assuming a value of 3a for r in Inequality (59a), one may 

determine a typical low T value for (6+-6-) to be 

(59b) 

Since Inequality (29b) must hold at low T, combination of it vlith 

Inequality (59b) yields 

K1/3[-ln(1-K)]2/3 << RD 
63.6 a 

or, if K is not close to unity, 

R 
K << D =- K 

63.6 a c (59c) 

Thus, at temperatures lower than T , if the compensation is lower 
c 

than Kc, then (6+-6-) is small and G(6) can be considered sharply 

peaked near 6=0. Since Kc decreases with increasing 1~ 0 , one can 

find the lowest relevant value for Kc by choosing the upper limit 
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of N0 in the region of N0 where line narrowing is observed, i.e., 

2 x 1017 cm- 3 in Ge and 3 x 1018 cm- 3 in Si. (Above these concen

trations the line broadens; 5 ' 9 , 12 , 13 consequently such concentrations 

are not germane to the present problem). Thus, one obtains for 

2 -2 germanium Kc = 2.8 x 10- and for silicon Kc = 3.2 x 10 as the 

upper limit on K useable in the low K approximation at low tempera-

tures. 

One may also obtain an upper limit on the compensation for the 

case when the temperature is high (i.e., T>>T' as given by Inequality c 

(32b)). Again inspecting Equation (51), one finds that for high T, 

most transitions occur between donors with energies E=E
0
=(3/4) 113EA, 

the peak of the density of states. Inserting E
0 

forE in Inequality 

(59a) and again assuming 3a for r, one finds that a typical value for 

(6+-6-) at high temperatures is 

Consequently, the inequality for Kat high Tis 

Thus, if the compensation is lower than K~, then G(6) can be 

considered sharply peaked for high temperatures. (For Ge with 

N0=2 x 1017 cm- 3 K~=2.2 x 10- 4 r312 and for Si with 

(59d) 

(59e) 

N0=3 x 1018 cm- 3 K~=4.1 x 10- 5 r312.) However since the tempera

ture must be high, Inequality (59e) sho\vs that K' must be larger 
c 



than Kc for the same sample. This means that Inequality (59e) \'Jill 

be valid, if Inequality (59c) is valid. Thus, Inequality (59c) 

gives the low K condition for either high or low T. 

One can now compute wh in the low K approximation by applying 

the sharply peaked condition on G(6) to the first term on the right 

hand side of Equation (51). Removing the electron distribution 
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function of vacant donors and the phonon energy distribution times 

~from the 6 integral, evaluating these functions at 6=0, and 

integrating G(6) (the integral of which is normalized to unity), one 

obtains 

00 3r3 3 
1 

J dE 
c. A ex p [- ( E A/E) ] 

wh = B{l-K) 7 [l+exp(S(E-s ))][l+exp(- S(E-s ))] 
0 

g g 

e2/k E 
4n N

0 
f 0 7/2 

X Jr r exp(-2r/a) 
0 

The integral over r is found to be proportional to 

[r(9/2) - r(9/2,e2/k
0

Ea)] . However, the second term in this 

expression is small since, for high T, the parameter inside the 

incomplete gamma function is approximately the large ratio 

(60) 

e2;k
0

E
0

a=1.1RA/a and, for low T, it is approximately the large ratio 

2 e /k
0

E0a=R0;a. Thus the expression for the hopping frequency is 

00 3 3 

J 
3EA exp[-( EA/E) ] 

dE 4 ~ . (61) 
E [ 1 +exp ( B ( E- sg))] [ 1 +exp(-B( E- sg ))] 

0 
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Equation (61) is the average hopping frequency for all temperatures 

in the limit that the compensation is low. 

2. The LovJ Temperature and High Temperature Approximations 

The average hopping frequency in Equation (61) may be calculated 

either by numerical techniques or by further approximations . Since 

Equation (61) has only one restriction, that K be well below Kc' and 

yet since it involves only one integration, it is well worth ones 

while to attempt a numerical calculation of wh with the methods 

discussed in Appendix C. Furthermore, since it is possible to 

numerically calculate sg and wh in one step (see Appendix C), the 

value of wh may be determined as accurately as possible for any N0, 

T, and K<<Kc' without an approximation for the Fermi energy. The 

results of a numerical calculation on hypothetical samples of 

arsenic-doped germanium are discussed in the next part of this 

section. Alternatively, an attempt to reduce wh to a closed form 

algebraic expression may also be done. Since Equation (61) is valid 

for high or low temperatures, the expression for wh may be simplified 

by using the same high and low T approximations used to derive the 

expressions for s in Equation (34) and (31), respectively . g _ 

Upon examining Equation (61), one finds that the product of the 

two electron distribution functions may be considered slowly varying, 

if an inequality similar to Inequality (32b) holds, that is, if 

T>>T~~0.66EA/k8 • This then allows one to consider F(E) sharply 

peaked at E
0

, remove the other functions of E from the integral, 

evaluate them at E=E
0

, and integrate F(E). The result of this 

process is 
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DND 1 1 
wh = B(l-K) (kBT) [l+exp( B(E -1'; ))] [1+exp(- B(E - 1'; ))] ( 62 ) 

0 g 0 g 

where D=4n(a/2) 912r(9/2). If the high temperature sg from Equation 

(34) is inserted into Equation (62), this becomes 

(63) 

Hence, for low K and high T, wh is a linear function ofT with slope 

Dk 8NA/B. It is also important to note that the average probability 

of a transition is simply proportional to r~A' the number of acceptors. 

As the number of acceptors is reduced, one would expect intuitively 

that wh should approach zero because there are fewer vacant sites 

available for a hop. Equation (63) is consistant with that 

expectation. This dependence of wh upon compensation, while expected, 

h d . . . f 4,5,9,10,13 as never appeare 1n any prev1ous express1on or wh. 

Finally, one may derive the low T dependence of Equation (61) 

by considering the electron distribution functions in Equation (61) 

to be sharply peaked at E=sg' integrating over E, and inserting the 

lov-J temperature s given by Equation (30). One obtains with this 
g 

procedure 

( 64) 

The important point to note here is that the linear K dependence in 

this approximation is similar to the linear K dependence in the high 

T approximation, Equation (63). Apparently wh varies fairly 
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linearly with K for any range of temperature, if the compensation is 

1 ow. There is no guarantee, ho\-Jever, that this 1 i near K dependence 

would continue for K higher than Kc. To study wh for K>> Kc, one 

would have to return to the exact solution, Equation (51), and 

evaluate it directly. 

F. RESULT OF NUt·1ERICAL AND ANALYTIC CALCULATIO!·JS--EXAt1PLE HJ Ge(As) 

To obtain an idea of how wh depends upon N0, T and K and to 

see how well Equations (63) and (64) approximate wt
1

, both numerical 

and analytic calculations were done using parameters relevant to 

arsenic-doped germanium. To study the donor concentration dependence, 

it was assumed that one had tvm sets of Ge(As) samples at T=4 ° K. 

In one set all the samples were assumed to have the same concentra

tion of acceptors, r~A = 5 x 1013 em - 3 In the second set the samp 1 es 

were allowed to have different NA, but only under the condition that 
-3 each sample had the same compensation ratio, K = 1.087 x 10 . In 

18 -3 15 3 both sets, N
0 

ranged from 1.08 x 10 em to 2.11 x 10 cm-

(l<R0/a<8). (Note that the constant NA and constant K v;ere chosen 

16 -3 so that a sample with N0 = 4.6 x 10 em would be a member of both 

sets.) It is not certain Hhich case, constant f,JA or K (if either 

one), occurs in actual sets of samples, \-Jhicll are grovJn from the 

same germanium melt, but not deliberately compensated. Hence, both 

cases were examined in the calculation. 

The resulting plot of the average transition rate of hopping 

electrons vs. R0/a as calculated numerically from Equation (61) is 

shown for both sets of samples in Figure 8 (solid lines). Also 
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Figure 8. Plot of the theoretical log wh vs. R0/a for arsenic-doped 

germanium at 4°K. Note the difference in R0 dependence 

between the assumption of constant NA and the assumption 

of constant K. Solid curves are the numerical solutions 

for low K [Equation (61)] and dot-dashed lines are the 

low K, low T analytic solutions of Equation (64). 
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shov1n are the low T approximation curves, (dot-dashed lines), 

calculated from Equation (64). As shown in Figure 8 the low T 

approximation for w11 is a very good approximation for lovJ R0/a 
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(high N0) and remains fairly good throughout the region investigated. 

It begins to fail for high R
0
;a (low N

0
) because the 4°K temperature 

does not satisfy Inequality (29b) for lm1 1~ 0 • These plots also shO\v 

that assuming constant NA causes wh to decrease \'.Jith decreasing R0 

(or with increasing N0 ) while assuming constant K causes wh to 

increase with decreasing R0• Equation (64) shows that for low T the 

constant NA dependence is approximately wh ex: R0 and the constant K 

dependence is wh ex: 1/R~. 

Such interesting results can be explained physically by showing 

that the assumption of constant K or NA affects the N
0 

dependence 

of the number of available vacant donors (holes) to which an electron 

can hop, which in turn affects wh. Essentially Equation (16) states 

that the hopping frequency of an electron is approximately equal to 

the transition rate to a single vacant donor times the total number 

of available vacant donors. Now if 6 is small and T is low, the 

number of holes available for transition is equal to the number of 

holes with ground state energies in the region where the product 

distribution of electrons and holes has a significant value, i.e. 

in the region (r;g-k 8T) :S E :S (r;g+k
8
T). Hence, the number of available 

vacant donors is simply N
0 

times the density of states at r;g, all 

3 4 times 2 k8 T. But, at low T and K r; =E and F( r; ) = F(E ) ~ 3EA/E0. 
' g D g D 

So 



Thus, 

w11 ex: # available holes 

ex: 2ND F(z;:g) k8T 

~ 6N 0 E~ k 8T;E6 
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(65a) 

or 

(65b) 

If NA is constant, then the numbers of available holes depends only 

on the value of the density of states at E=E0. Since F(E) decreases 

with increasing E and since E0 increases as R0 decreases (as N0 

increases), the number of available holes decreases with decreasing 

R0. Hence, wh also decreases as R0 decreases if I~A is assumed 

constant; as shown in the first result of the above expression, wh 

is proportion a 1 to R0. On the other hand, if K is constant, the 

number of available holes also depends on the fact that decreasing 

R0 (increasing N0 ) creates new holes to keep K fixed. The R0 

dependence of this creation of new available holes (1/R~ ex: IJ0) is 

more rapid than the decrease due to the density of states. Hence, 

wh increases as R0 decreases (or N0 increases) for constant K and is 

proportional to l/R6 as shown in the second result of the above 

expression. 

The temperature dependence of wh can also be studied. In this 

case, each set of Ge(As) samples were chosen to have four donor 



concentrations: (1) N0=3.4 x 1016 cm- 3 (2) r~ 0=4.6 x 1016 cm- 3 

( ) 16 -3 ( ) 17 -3 3 N
0

=7.0 x 10 em ; and 4 N
0
=1.8 x 10 em Plots of the 

average hopping frequency vs. the temperature for the constant NA 

set and the constant K set are shown in Figures 9(a) and 9(b) 

res p e c t i vel y . A l so s h ov-1n on both p l o t s are the l o vJ T and h i g h T 
16 -3 approximations for the hypothetical sample with N0=4.6 x 10 em . 
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{Recall that this sample is the same in the constant K and the 

constant NA sets. Hence curves 9(a2) and 9(b2) are identical as are 

the approximate curves. Note, in addition, that in Figure 9(a) the 

dashed line is the high T approximation for all curves on that graph 

since NA is constant [see Equation (63)]}. The low T curve is a good 

approximation for T less than or of the order of 8°K. In addition, 

the steepness of the wh vs. T curves as a function of 1~0 reflects 

the earlier mentioned point that w11 decreases with increasing N0 for 

NA constant and increases with increasing N0 for K constant. More 

importantly, however, the wh vs. T curves all go to zero as T 

approaches zero, a point shown earlier for the formal expression of 

w11 , Equation (51). For low temperatures, the low compensation wh is 

proportional to T2, as shown in Equation (64). Physically, the T2 

comes from t\vo factors of T, each of \vhich originate from two 

different sources. One source is the phonon involvement described 

by the 6/[l-exp(-B6)] factor vJhich reduces to k8T in the low K 

approximation. The other source is from the product distribution 

of electrons and holes discussed in the last paragraph. 

Finally, the K dependence of w11 v1as studied by considering a 

single set of hypothetical samples at T=4°K with N0 = 4.6 x 1016 

cm-3 Then, K was assumed to vary from zero to the value 
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Figure 9. Plot of the theoretical wh vs. temperature for arsenic

doped germanium samples of varying concentration. Graph (a) 

is for constant NA and Graph (b) is for constant K. The 

solid curves are the numerical solutions for low K 

[Equation (61)]. In each graph the various curves are for 

( ) 16 -3 1 N0 = 3.4 x 10 em 

( ) 16 -3 2 N0 = 4.6 x 10 em 

(3) N
0 

= 7.0 x 1016 cm- 3 and 

( ) 17 -3 4 N0 = 1.8 x 10 em 

The dashed line on each graph is the low K, high T approxi

mation [Equation (63)] for Curve (2), N0 = 4.6 x 1016 cm- 3. 

The dot-dashed line on each is the low K, low T approxima-

tion [Equation (64)] for Curve (2). 



5 
.........-. -•u 4 Cl) 

Cl) 
CJ) 

3 0 
)( .........., 2 ..c 

3 
0 

~5 -I 

~ 4 
Cl) 

CJ) 

03 -)( 
~ 

..c2 
3 

, 
0 

Ge(As) (a) 

CONSTANT NA 

,--/(1) 
, ;', --(2) 

," ~(3) 
.,,,-' ~(4) , 

,--' 
,-" 

;' , , 
;' 

4 8 
T (°K) 

Ge(As) 
CONSTANT K 

4 

Figure ~ 

12 

(b) 

12 

76 



77 

-2 K = 4.56 x 10 for the various samples within the set. The 
c 

resulting numerical wh vs. K curve is plotted in Figure 10 (solid 

line). The drawing shows that for low K, that the low T approximation 

(Equation (64)) is a very good approximation for chosen N0, T and K 

values. The physical interpretation of this linear K dependence is 

that the probability of an electron hopping to another donor should 

be approximately proportional to the number of available vacant 

donors NA, which is proportional to K, for constant N0. 



78 

Figure 10_ Plot of the theoretical wh vs_ the compensation ratio 

for a Ge(As) sample with T=4°K and N0 = 4.6 x 1016 cm-3. 

Such linear K dependence by wh, at low K, has not been 

predicted by previous theories. 
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IV . CALCULATION OF <H2> ave 
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Now that the calculation of wh is complete, one final computa

tion is necessary before the narrowed line breadth may be predicted 

from Equation (3). The exact form for <H2>ave must be determined. 

As shown in Appendix B <H 2>ave corresponds to the mean square spread 

of the non-narrowed magnetic field spectrum from its center . This 

average is determined by integrating that spectrum as over a 

normalized probability distribution P(H) vJhich describes the shape 

of the non-narrowed spectrum. For convenience the center of P(l1) is 

chosen to be H=O. The particular spectral distribution of interest 

here is the ESR spectrum of localized donor electrons consisting of 

n=2I+1 Gaussian lines. These lines are assumed to be equal in 

strength and of the same Gaussian shape, each having a mean square 

spread of bH
0

, and spaced at regular intervals of 2H
0 

(see Figure 

1a). ~~i th the above i n form at i on a normalized distribution for 

this spectrum can be \"' ri tten as 

(n-1) 2 
1 -(li-mH ) 

P(H) = I exp [ 0 J 
rn=-(n-1) nv"2TT bH 2 (bH ) 2 

(m odd) 0 0 

(66) 

Thus, <H2> 
ave is 

(X) 

<H2> 
ave - J H2P(H) dH (67a) 

- = 

(n-1) 
(X) 2 

1 J dH H2 
-(H-mH ) 

= I exp[ 0 
] 

n/27T bH
0 

m=-(n-1) 2(bH
0

)
2 

(m odd) -= 

(67b) 
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1 ( n-1) 
= n I 

m=-(n-1) 
(67c) 

(m odd) 

'"> (n-1) 
= (6H

0
)
2 

+ ~ L 
m=1,3,5,··· 

(67d) 

The summation over m can be changed to a sum over both even and odd 

integers and then evaluated. The result is 

n-1 
L m2 

m=1,3,5,··· 

n/2 
I ( 2j -1 )2 

j=1 

2 
n [n -1] 2 -3- (68) 

Inserting Equation (68) into Equation (67d) and substituting n=2I+1, 

one obtains 

(69) 

Table I shows values of 6H
0 

and H
0 

obtained from data in References 

1 and 4 along with other pertinent information on isolated donor 

ESR spectra in silicon and germanium. Table II gives the values of 

<H2>ave for these donors computed from Equation (69) and the resulting 

numerator 

cases the 

l~i th 

of Equation 

(6H )2 term 
0 

<H2> 
ave 

(3) needed in the computation of 6H. In most 

can be neglected except for donors with I=~. 

computed, one may now compare its value with the 

2 previous value of 6Hhfs used by others (see Equations (6)). Since the 

total hyperfine structure is given by 

(70) 
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Table I. Data on the non-narrowed ESR spectra of various donor 

impurities. 



Table I 

(a) G . 4 erman1um 

Doping As Bi p Sba 
Element 

I 3/2 9/2 1/2 5/2 or 7/2 

Number 4 10 2 14 Lines 
g 1.5700±.0002 1.5671±.0004 1.5631±.0002 1.60 

D.Ho 5.5±0.5 5.0±0.5 5.0±1 

H 
0 

17.9 52.4 10.5 

No 
(cm-3) 5 X 1015 5 X 1015 8 X 1014 5 X 1015 

(b) Si 1 icon 1 

Doping As Bi p Sb121 Sb123 
Element 

I 3/2 9/2 1/2 5/2 7/2 

Number 4 10 2 6 8 Lines 

g 1.99837 2.0003 1.99850 1.99858 1.99858 

D.Ho 1 .. 6 2.2 1.4 1.3 1.3 

H 0 35.3 21 34 . 5b 19° 

No 
(cm-3) 1.8x1o16 2x1o16 1. 5x1o16 4x1o17 4x1o17 

aNon-narrowed spectrum not observable in Ge(Sb) because of 
strain broadening effects.4 
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be. Kittel, Introduction to Solid State Physics (John Wiley & 
Sons, New York, 1971), 4th ed . , p. 593 . The Sb isotopes are observed 
simultaneously. Their abundances are sb121 (56%) and sb1L3 (44%) . 
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Table II. Calculated values of crucial parameters needed to predict 

the line breadth and the lower bound on w .• m1n 
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Table II 

(a) Germanium 

As Bi p 

<H2> 
ave 

(02) 
e 1.63x1o3 9.05x104 135 

2 
g llB <H > 

2.25xlo 10 1.25xlo12 1.86x109 ave (Oe/sec) 
l"l 

wmin (sec-1) 5.58xlo8 4.16xlo9 1.60xl08 

(b) Silicon 

As p Sb121 Sb123 

<H2> 
ave 

{02) 
e 6.23xl03 443 1.39xlo4 7.57x1o3 

g lls <H2> ave {Oe/sec) 
1i 

2.19x1o 11 1.56x1o10 4.90xlo11 1.33x1o11 

wmin (sec-1) 1.39xl09 3.70x108 2.08x109 1.53x109 
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2 the ratio of 6Hhfs to Equation (69) is about 

121 
~ 

1+1 (71) 

or 4.00, 7.20, and 9.82 for phosphorus, arsenic and bismuth donors, 

respectively. Thus, a point stated earlier has now been shown. 

Namely, that the original assumption of <H
2

>ave = 6H~fs would yield 

line breadths a little less than an order of magnitude too high when 

used with Equation (3). 

Finally, Equation (3) can only be used when the narrowing is 

strong, that is, when wh is rapid. The condition is expressed by 

the inequality 

wh >> w . m1n = 

= 

2 k 
g llg[ <H > ] 2 

ave 

given in the discussion of Equation (3) and in Appendix B. When 

(72) 

(73) 

wh is much less than this value, the narrowing is weak and a 

spectrum similar to the non-narrowed one should be observed. Table 

II gives the computed values of w . for the various donors. m1n 
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V. DISCUSSION OF THEORY AND EXPERir1ENTS OfJ ESR LirJE fJARRO~Hf~G 

4-13 There are many papers which have presented data on donor 

ESR line widths in semiconductors. However, these authors compared 

the influence of phonon-induced tunneling to their data using 

incorrect expressions for w and <H2
> needed in Equation (3). h ave 

Hence the conclusions based upon such comparisons are in doubt. To 

correct the situation, the new expression for 61~ will be presented 

in this section and then compared with previous expressions used for 

6H (or wh). Next the new expression will be compared with data 

published by these authors, their conclusions vJill be analyzed, and 

f u r the r con c l us i on s \vi l l be d r a \'m • F i n a l l y , an ex peri men t w i l l be 

proposed which will hopefully decide whether or not hopping is 

influencing the donor ESR spectra in Group IV semiconductors. 

A. Cot1PARISON ~HTH PREVIOUS THEORIES 

The new theoretical expression for the width between the 

inflection points on the narrovJed line shall be called 6HTHEORY to 

distinguish it from the experimental values .6HEXP" The expression 

may be obtained by first noting that the narrowed line has a 

Lorentzian shape \vhen the field is along the [100] axis 4 , \vhich is 

true for all the experiments considered in this section. For a 

Lorentzian function the ratio of the vvidth at half-maximum to the 

width betvJeen the inflection points is 10 /3. Since 611 in Equation 

{ 3 ) i s the h a l f- \vi d t h at h a 1 f- maxi mum , one has 

( 74) 
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Combining Equations (3), (69), and (74) one obtains 

2 4 2 
2 g~ 8 [6H + -3 I(I+1)H ] 

6H = - · o o THEORY 13 . . wh (75) 

Because most samples tested to date were uncompensated (i.e., not 

deliberately compensated) and thus the compensation ratio should be 

low, the expression used for wh in this section will be considered 

only in the low K approximation. Then, w11 has the form given in 

Equation (61) or 

~ 3 3 
0 J dE 3EA exp[-(EA/E) ] 

wh = B(l-K) ND(kBT) E4[1+exp(S(E-~ ))][1+exp(-S(E-~ ))] (61) 
0 g g 

The asymptotic form at low T for Equation (61) is Equation (64) or 

The asymptotic form for high T [Equation (63)] is 

T << T 
c 

T >> T 
c 

(64) 

(63) 

The new Equation (75) for 6HTHEORY differs markedly from that 

used in References 4 and 5, i.e., Equation (6). The major difference 

is between their expression for wh' 

(76) 
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and the new expression for wh given above in Equation (61). First 

note the difference in the donor concentration dependence. The new 

expression is approximately proportional to N0 (or 1/R~) while the 

old one falls off much faster with R0 because of the nearly exponen

tial dependence. The difference is caused mainly by the integration 

over the donor distribution function. One might suppose, erroneously, 

that this less drastic R0 dependence is due to the fact that hopping 

to other than nearest neighbors was taken into account. However, if 

only transition to other than nearest neighbors is taken into 

account, wh would fall off with R0 at an even slower rate than 1/R~, 

in worse agreement with Equation (76) than when all donors are 

included. (This fact can be shown by comparing the distribution 

function for nearest neighbors, Equation (Ba), to the total distribu

tion 3r~.;R03 used to derive wh. For a given r .. , Equation (Ba) falls 
lJ lJ 

off slower with increasing R0 than the latter expression.) Thus the 

R0 dependence in Equation (76) is not that exhibited by the hopping 

frequency derived \•Ji th the t1i 11 er and Abrahams methods. 

The second difference between Equations (61) and (76) is in the 

temperature dependence. Because of the Miller and Abrahams low K 

approximation, the phonon influence on w11 , via the term 

6/[1-exp(-66)], has become a (k8T) factor in front of the integral in 

Equation (61). In addition, there is a temperature dependence from 

the electron distribution, which contributes a factor of 3k8T;E0 at 

low temperatures. Thus, w11 goes to zero as T goes to zero, unlike 

the old wh = Uij(R0,6) for positive 6. This property of wh will be 

important when the experimental data is analyzed. 
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Thirdly, a new factor has appeared in the hopping frequency which 

has never appeared in any previous expression for wh. This is the 

compensation dependence arising because of the electron distribution 

functions (shown better in Equation (63) or (64)). Thus, the compen-

sation ratio K is a third measurable parameter, besides T and N0, 

which can be used to compare the effect hopping should have on the 

ESR spectrum, as one intuitively expects. 

Comparison can also be made between Equation (61) and the 

expressions for the hopping frequency used in Reference 10, where 

or in Reference 13, where 

1 
wh ex -ex_p_(~S~E-...... )~-.,...1 

1 

(78) 

These expressions depend on some activation energy, which does not 

appear in Equation (61). Furthermore, the temperature dependence 

of Equations (77) or (78) could easily be incorrect because it is 

strongly influenced by the choice of activation energy. Also, the 

electron distribution functions contribute an additional temperature 

dependence to wh which is not expressed. 

Thus, it is clear that the expression for wh, Equation (61), 

obtained with the Miller and Abrahams techniques, bears little 

resemblance to the previous expressions used for the hopping 

frequency, i.e., Equations (76), (77), and (78). 
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B. COMPARISON WITH EXPERIMENTAL DATA 

The most striking result one notices upon combining Equations 

(75) and (61) is that, for constant temperature and compensation, 

6HTHEORY should be approximately proportional to R~. Yet Wilson•s4 

data (see Figure 4(a)) shows that 6HEXP actually has an exp(R0/R
0

) 

dependence, where R
0 

depends upon the doping element. Thus, while 

the old theory of the donor concentration dependence of narrowing by 

hopping roughly agreed with experiment (see Section II). the neH, 

more accurate theory of hopping does not agree at all. Hence, since 

the expected R~ dependence is not observed in the data, it seems that 

the previous conclusion of Reference 4 that hopping causes the 

variation of 6HEXP with donor concentration is probably mistaken. 

One might attempt to resolve the matter by noting that the 

compensation K might not be constant in the samples. (Wilson did not 

mention values for this parameter.) It might happen that if K were 

allowed to vary, this variation might account for the seeming failure 

of motional narro\-Jing by hopping to explain the t~ 0 dependence in 

If the compensation is allowed to increase with N0 sucl1 that 

exp~R0/R0 ), then the data can be fit. However, there is no 

physical reason to adjust K in this manner. In fact, there is strong 

evidence against doing so since Wilson's samples were not deliberately 

compensated. Thus, any acceptor atoms in the samples would presumably 

have come from impurities in the germanium prior to doping. Impurities 

in the doping element are much fewer since the concentration of the 

doping element is many orders of magnitude below the germanium 



concentration in the samples. Hence, if the samples came from the 

same germanium melt, they would all have the same concentration of 

acceptors. As N0 increases, then, the compensation ratio tJA;r~ 0 
\voul d be expected to decrease, not increase. Hence, the abi 1 i ty of 

narrowing by hopping to explain the donor concentration dependence 

still remains in serious doubt. 
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The other important dependence observed in 6HEXP is a temperature 

dependence. To study this function ofT, it is convenient to convert 

the 6HEXP data to frequency va 1 ues wr~, Hhere wr~ is defined as the 

experimentally observed narrowing frequency and calculated from 

experimental data as 

= CONSTANT 
6HEXP 

(79a) 

(79b) 

In view of Equation (75), one sees that a comparison of wN and wh is 

similar to a comparison of 6HEXP and 6HTHEORv· 

The data of Morigaki and Mitsuma5, presented in Figure 4(b), 

yields wN values as plotted in Figure 11. If hopping V.Jere the only 

mechanism causing the narrowing of the ESR spectrum, wN would be 

equal to wh according to the Anderson narrovo~ing theory. 8ut, as 

stated in Sections II and III and as shovm in Equation (61), wh 

approaches zero as T approaches zero. However, in Figure 11 one sees 

that wN does not do so. It appears to approach a constant in the 
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Figure 11. Plot of wN versus T for phosphorus-doped germanium. 

Equation (79) is used to define wN and the seven 

6HEXP data values are from Reference 5 (see Figure 

4(b)). Note that wN extrapolates to a constant 

as the temperature approaches zero. 
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T=O limit. Hence, narrowing by hopping also does not predict the 

proper temperature dependence, or at least it does not predict the 

T=O intercept. Some other mechanism seems to be contributing to the 

narrowing. 

One might digress for a moment to note here that other 

authors4 ,lO,l 2,l3, 23 have treated the problem of narrowing of the 

donor ESR spectrum, by employing the exchange interaction between 

donor electrons and the exchange narrovJi ng theory of Anderson and 

Weiss. 18 However, the treatment of narroHing by most of the former 

authors involved insertion of parameters such as R0 into previously 

derived microscopic equations for the exchange interaction from 

References 17b or 24. The use of this technique of .. averaging .. llas 

been shown in this thesis to lead to the wrong equations for wh. It 

is far from clear that it is a valid method for averaging the 

exchange interaction. 

If, in the future, the contribution of exchange to the ESR 

spectral narrowing is to be compared with experiment, or possibly 

used to explain the T=O intercept or possibly also the temperature 

dependence (see Reference 23) of the wN versus T curves, the proper 

method of averaging the exchange interaction over the entire electron 

and donor ensembles must be used. This technique should include the 

electron distributions plus an average over donor separations rij 

similar to the analytical calculation used in Section III of this 

thesis or techniques similar to the computer technique used by Cullis 

and Marko25 to average the temperature independent exchange inter-

action. 



In addition, if the theories of hopping and exchange narrov~ing 

are to be applied simultaneously to the case of donor ESR spectra, 
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one must investigate in detail how both these interactions work 

together to narrow the line. The result of such an investigation 

might depend upon whether the two narrowing processes are independent, 

competing, or complementary. It would also depend upon the fact that 

hopping and the exchange interaction narrow the spectrum in slightly 

different manners. That is, hopping is a Markhoffian modulation 

process while exchange is a Gaussian process. (The reader should 

f h A d 16 f d f. . t. f ~1 kh ff. d re er to t e n erson paper or e 1n1 1ons o 1 ar o 1an an 

Gaussian modulation processes.) Preliminary calculations of Parks 26 

using the Anderson theory show that if the exchange interaction is 

much stronger than hopping, that wN can be obtained by adding wh 

times a constant to the exchange frequency, we=Je/li. The constant is 

of the order of 1/n. 

Returning to the discussion at hand, one finds that the most 

extensive data on donor ESR spectral narrowing in germanium have been 

12 13 taken by Gershenzon, Pevin, and Fogel 'son ' using arsenic-doped 

samples. Conversion of their data on uncompensated samples from 

LlHEXP to wN yields curves (see Figure 12) very similar to those of 

Morigaki and Mitsuma's data for phosphorus-doped germanium. Each 

curve increases with temperature and each has a T=O intercept. rJote 

that the difference between wN and wN (T=O) for this range of T, rJ 0 , 

and K is small compared to the value wN(T=O). It thus appears that 

the greater part of the narro~'ling is caused by the "T=O mechanism ... 

Since hopping predicts no T=O intercept, it can be concluded that 
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Figure 12. Plot of wN versus T for arsenic-doped germanium. 

Equation (79) is used to define wN and the ~HEXP data 

is from Reference 12 . Note the factor of ten difference 

in the ordinate and factor of two difference in the 

absicissa from Figure 11 . The difference in the 

ordinates is mainly due to the difference in the constant 
2 4 2 

[~H0 + 3 I(I+1)H
0

] between arsenic and phosphorus donors 

(see Table II) . The various curves are for 

(a) No 3.4 X 1016 -3 em 

(b) No 4.6 X 1016 em -3 

(c) No 7.0 X 1016 -3 and = em , 

(d) N 1.8 X 1017 -3 = em 
0 



98 

3 

Ge (As) 

4 

,...._. 

' u 
Q) 
en 5 

0) 

0 
)( r t f t 

,...._. 

'-' 

~ 
._ 
z 

.........,_ 

ct B. 

Q.. 

~ ~ b 2 CJ) )( 

)( 

z I&J 

"" 
0 :I: 

:J: 

u <] 
(c) 

<l 

10 
II 

3z (b) 

• .... 4. 
• • 4 • .. A i 

• • • • • • • • 
20 

(a) 
30 
50 

12 

Figure 12 



phonon-induced tunneling is not the main contributor to the N0 

dependence of wN. 

Using preliminary results on highly compensated samples in 

. 13 ( d t. . .1 1 t . .1 . 27 '28) . I t german1um an no 1ng s1m1 ar resu s 1n s1 1con , one m1g1 
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also infer that hopping is not the primary contributor to the 

narrowing because of the compensation dependence. The experimental 

results of Gershenzon, et ~., show that highly compensated samples 

exhibit hyperfine structure while uncompensated samples of similar 

donor concentration exhibit narrowing. Since Equation (61) predicts 

an increase in wh with K, one might tentatively conclude that hopping 

cannot account for the compensation dependence of the strength of 

donor ESR line narrowing. However, the data is sparse and, as 

discussed in the next paragraph, the possibility still remains that 

hopping could account for the compensation dependence of the slope of 

the wN versus T curves. 

None of the conclusions so far has completely ruled out phonon

induced tunneling as a contributing factor in the narrowing of donor 

ESR spectrum, although they provide strong evidence that it is not 

the main contributor. It is possible that hopping is causing 

narrowing over and above what is caused by the mechanism producing 

the T=O intercept. To test if hopping is providing all the tempera

ture dependence, one may employ the same technique used by Gershen

zon, et ~., (see Section II). Supposing that the T=O mechanism 

is temperature independent, one adds its value to the theoretical 

curves for the hopping fre~uency and compares the experimental wN 

curves to 
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where wh is calculated numerically from Equation (61). Unfortunately, 

the compensation ratio in Gershenzon•s, et ~., samples was too small 

to be measured, 12 , 13 i.e., below 10- 2• 

Hence, K can be treated as an adjustable parameter to fit w~ to 

the experimental wN curves. The results of the curve fit are shown 

in Figure 13, and Table III gives the values needed in the fit for 

the adjustable parameters, wN(T=O) and K (or NA). While all the K 

values are below 10- 2, they stay constant or even increase as the 

donor concentration is increased. As discussed earlier in this 

section, one normally expects the compensation ratio to decrease with 

increasing N0 for samples not deliberately compensated and grown from 

the same germanium melt. 

The fact that the compensation must increase with N0 to fit the 

data indicates that hopping would have serious difficulty in explain-

ing the observed narrowing if one made the normal assumption of 

example, if NA = 7.5 x 1012 em -3 is chosen for all constant NA. For 

the samples, then the theoretical curve for w~ would fit the 

experimental data for No 
16 -3 = 3.4 x 10 em • However, as the donor 

concentration increases, the theoretical curves tend to flatten out 

while the slope of the experimental data increases. Thus at higher 

N0, w~ would not fit the data. Similar attempts to choose an NA 

from Table III would always yield one curve that fit the data and 

three others that did not. Thus it appears that if all the samples 

indeed had the same concentration of acceptors, hopping could not 

even explain the temperature dependence. 
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Figure 13. Plot of the fit of w~ (solid lines) to the data for wN 

in Figure 12. The parameters used to calculate w~ from 

Equation (80) are listed in Table III. Note that straight 

lines can fit the data at least as well as the theoretical 

curves. 
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Table III. Values of the adjustable parameters wN (T=O) and K (or r~A) 

needed to fit the data points with the curves shown in 

Figure 13. l~ote that K must increase with r~ 0 in order to 

fit, contrary to what one would expect for samples not 

deliberately compensated . 
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Table III 

N
0 

(cm- 3) WN (T=O) (sec- 1) K ~~A (em -3) 

3.4 X 1016 8.5 X 108 2.2 X 10-4 7.5 X 1012 

4.6 X 1016 1.09 X 109 2.2 X 10-4 1.0 X 1013 

7.0 X 1016 2.90 X 109 9.0 X 10-4 6.3 X 1013 

1. 8 X 1017 5.25 X 109 2.0 X 10- 3 3.6 X 1014 
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However, the fact that the theoretical K does not follov.J \vhat 

is expected from residual acceptors in the germanium is not conclusive 

proof that hopping is not causing the temperature dependence of 

6HExP· The compensation may not be due to substitutional acceptors 

alone. Other centers, such as dislocations, might also trap 

electrons and cause an effective compensation ratio. 

There is still another reason, though, for casting doubt on the 

explanation for the T dependence of 6HEXP by narrowing due to hopping. 

The wN versus T curves are almost linear in temperature. Yet w~ 

versus T rises slowly from T=O and does not exhibit a linear T 

dependence until the temperature is fairly high (see Figure 8 or 9). 

However, the error bars on the data in Figure 13 are such that one 

cannot be certain that wN does indeed vary linearly \vi th T. Hence, 

the possibility still exists that hopping can cause the temperature 

dependence. This conclusion is contrary to that of Gershenzon, 

et ~., 13 who concluded that hopping cannot be causing any of the 

narrowing of the donor ESR line width. 

Having studied ESR line narrowing data in germanium, one might 

also attempt to quantitatively study similar data in silicon. 

However, due to the fact that there is about a factor of five 

discrepancy in the 6HEXP data on phosphorus-doped silicon between 

Reference 7 and Reference 9, only a few qualitative statements can 

be made about donor ESR spectral narrowing in silicon. Figure 14 

shows some data taken from Reference 9 on 6HExP· The main point to 

note is the similarity between Figures 4 and 14, even though one plot 
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Figure 14. Plot of data on ~HEXP' the line width between the 

inflection points of the narrowed line, for phosphorus-

doped silicon. Data taken from Reference 10. 

Plot (a): 

Plot (b): 

curve 

curve 

curve 

Donor concentration dependence (i.e., RD 

dependence where R0=(3/4nN0) 113 ) vs ~HEXP 

Temperature dependence vs ~HEXP for 

(1) N = 1.54 x 1018 cm- 3 for D 
(2) N = 1.74 x 1018 cm- 3 

D 

( ) 18 -3 3 N0 = 1.77 x 10 em . 

and for 
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is for germani urn and the other is for s i 1 icon. Hov~ever, the concen-

tration range in which these effects occur is much higher in silicon 

(10 17 1018 -3) h . . ( 16 17 -3) to em t an 1n german1um 10 to 10 em • This 

effect has been attributed to the fact that electrons are more 

tightly bound to donors in silicon. 12 That is, whatever the narrow-

ing mechanism, if it depended upon the interaction of the donor 

electron wave functions, the concentration at which this mechanism 

would become significant would be much higher in silicon than in 

germanium. Except for the concentration differences, donor ESR 

narrowing appears to be caused by the same mechanism at liquid helium 

temperatures no matter which Group IV semiconductor is chosen for the 

host crystal. . 11a b Additional exper1ments ' in other n-type semicon-

ductors (InSb) indicate that the narrowing of donor ESR spectra is 

not unique to Group IV semiconductors and can probably be explained 

. h h h . 12 w1t t e same mec an1sms. 

C. A POSSIBLE EXPERIMENT FOR RESOLVING THE PROBLEt1 OF NARROHIUG BY 

HOPPING 

There is one experiment which can be performed which should 

decide whether or not hopping is a factor in the narrowing of the 

donor ESR spectrum in semiconductors. A set of samples with the same 

N0 should be grown such that each sample contains a low, but measur

able, compensation ratio. Then ESR should be performed upon these 

samples to determine the temperature dependence of the narrowed donor 

line and the data should be converted to wN versus T plots with 

Equation (76). Presumably, the T=O intercepts should decrease with 
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increasing compensation if the preliminary results or higher compen

sated samples 13 , mentioned earlier, are valid. If the compensation 

ratio is not too large, then Equation (63) or (64) may be used to 

predict the K dependence of wh. If hopping is res pons i b 1 e for the 

temperature dependence, then the slopes of the wr~ versus T curves 

should agree with the predictions, and increase approximately 

linearly with K. If this is not the case, hopping can be ruled out . 

One must be careful to keep the compensation low in the experi

ment (i.e., K<< Kc)' if good comparisons with theory are to be made. 

If it becomes too high the low K approximation, does not hold and 

the average transition rate wh must be obtained from the complicated 

expression in Equation (51). It is fairly evident from the K 

dependent G(6) function and the phonon factor in Equation (51) that 

wh would not be proportional to K for the case of higher K. 
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VI. SUMMARY OF FINDINGS AND CONCLUSIONS 

This thesis, on the effects of phonon-induced tunneling on the 

ESR spectrum of donor electrons, has discussed the phenomenon in a 

wide variety of theoretical and experimental contexts. In particular, 

past work in the area has been revi ev.Jed, a ne\'1 theory for narrO\'Ji ng 

by hopping has been derived and related to the existing data, and a 

few possibilities for future research have been proposed. Because 

of this diversity, this last section summarizes the progression of 

the work and the major results which can be derived from the discus-

sian. 

First of all, it was shown that the narrowing of ESR spectra of 

donor electrons had been observed experimentally and that a basic 

theory of how narrowing might be caused had been introduced. It V.Jas 

found that the degree of narrowing of the observed spectrum increased 

with increasing donor concentration and increasing temperature for 

concentrations below impurity banding concentrations (2 x 1017 cm- 3 

in Ge and 3 x 1018 cm- 3 in Si) and for low temperatures (20 °K or 

below). It subsequently was shown that a possible means for 

achieving such narrowing was motion of the spin particles partaking 

in the ESR experiment. As the motion becomes more rapid, a new ESR 

line appears in the spectrum and becomes increasingly narrow. (A 

similar process of narrowing caused by the exchange interaction 

between the spin particles \-vas not of foremost interest in this \"'ark. 

It became necessary to discuss it only when all the experimental 

results could not be explained by motion due to hopping.) The source 
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for a quantitative description of this process was the Anderson theory 

of motional narrov.Jing. 16 His theory yielded an equation [Equation 

(3)] for the line breadth in terms of the non-narrO\-Jed spectrum and 

the average rate of motion of the electrons, which was valid if the 

motion was sufficiently rapid. 

Next, the mechanism for causing motion of the electrons, phonon-

induced tunneling, was introduced in detail. The main theory used 

to describe this hopping process was the Miller and Abrahamsllb,c 

calculation of the transition rate for a specific pair of occupied 

and unoccupied donors (the 11 microscopic 11 hopping rate) and their 

mathematical description of the donor electron ensemble and donor 

and acceptor impurity ensembles. Miller and Abrahams had used the 

model and methods of this theory to successfully derive the 

resistivity of a semiconductor containing substitutional impurities. 

It was assumed that the same model and methods could be used to 

calculate an average hopping frequency, the essential quantity 

needed in the Anderson theory to quantitatively describe the line 

breadth of an ESR spectrum narrowed by hopping motion. 

Before performing any calculations, an extensive survey \'Jas 

conducted of previous work which treated ESR spectral narrowing by 

hopping. It was found that by not taking several effects into 

account, previous theories of narrowing were, at best, approximate 

and in many cases incorrect. While expressions in these earlier 

theories included a form of the t1iller and Abrahams microscopic 

transition rate, none had treated the problem completely by averaging 
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this hopping rate over the electron and impurity ensembles. In 

addition, a minor mistake had been made by not calculating the 

2 average square spread of the non-narrowed spectrum <H > , a constant ave 
needed in the Anderson narrowing theory to describe the theoretical 

line width. As a result the conclusions these authors derived from 

a comparison of their approximate theories with their experiments 

could not be considered valid. Indeed, some authors had concluded 

that hopping could definitely explain all the data on ESR spectral 

narrowing at low temperatures and pre-banding concentrations; others 

had concluded that motional narrowing by hopping could not in any way 

explain the line width data. 

To resolve the situation, it was necessary to calculate in 

detail the average transition rate, w11 , and the average square spread 

of the non-narrowed spectrum. In the calculation of wh, an attempt 

was made to adhere as closely as possible to the methods of f1iller 

and Abrahams. However, since these authors calculated the resistivity, 

not the average transition rate, first a definition of w11 commensurate 

with the concepts of motional narrowing had to be formulated. Then, 

the electron statistics and the distributions of the impurities \vere 

used to arrive at a formal expression for wh. (The value of one 

parameter in this expression, the ground state Fermi energy s
9

, could 

not be immediately obtained. It was necessary to devise techniques, 

based on the r·1i 11 er and Abrahams method used for the same purpose, 

to calculate s
9 

for use in the wh expression.) Since the formal 

ex pres s i on f o r w h , a t r i p 1 e i n t e g r a 1 vii t h v a r i a b 1 e 1 i m i t s , \'1 as very 

complex, useful approximations were sought which would be valid for 



the ranges of N0, NA, and T on which previous data had been taken. 

The results of the calculation of wh and ~g are summarized in 

Table IV. However, before these results were used to analyze the 
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experimental data, it V!as necessary to calculate the proportionality 

constant <H 2>ave needed in Equation (3). The derivation was based 

on the definition of this quantity extracted from the Anderson theory 

of motional narrowing and the results have been summarized in Table II. 

The expression for the average hopping frequency was then mated 

with the equation for the line width to arrive at the new narrowing 

theory for donor ESR spectra. Subsequent analysis shov.Jed major 

differences between the new theory and the previous theories for the 

line width. These differences are as follows: 

1. The donor concentration dependence (R0 dependence) of the 

line width is, from Equations (3) and (63), at constant K, 

for fairly high temperatures. This is contrary to the 

earlier belief that the line width should be proportional 

to exp(2R0/a). The comparison \vith previous theory is even 

worse at lower temperatures, where the dependence of the 

ne\'·1 theory is, from Equations (3) and (64), at constant 1<, 

6HTHEORY ex EDR~ ex R6 
In fact, the R~ dependence at high T is the strongest 

dependence of wh on R0. No exponential term in R0/a has 

been found. 
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Table IV. A summary of various expressions for wh and s
9

. Listed 

are their descriptive names, their equation reference, 

the conditions under which they are valid, and the 

reference to the inequality in which this condition is 

expressed. 



Name 

Formal Expression 

Low K Approximation, 
valid for all T 

Low K, High T 
Approximation 

LovJ K, Low T 
Approximation 

Name 

Forma 1 Definition 

Low T Approximation, 
valid for all K 

L0\'1 T, Low K 
Approximation 

High T Approximation 

Table IV 
wh 

Equation 
Number 

(51) 
[see also (A-15)] 

(61) 

(63) 

( 64) 

r;;g 

Equation 
r~umber 

(26) 

(30) 

(31) 

(34) 
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Restrictive Inequality 
Conditions Number 

t1i 11 er and 
Abrahamsl7b 
framev/ork 

K<< I< c 

K< < Kc, 
T>>T• c 

K<< Kc, 
T<<Tc 

Restrictive 
Conditions 

~1iller and 
Abrahams 
frame\'/Ork 

T<<T c 

T<<T c 
[-ln(l-K)]:::;K 

T>>T1 

c 

(59 c) 

(59c) 
(32b) 

(59c) 
(29b) 

Inequality 
r~umber 

(29b) 

(29b) 

(32b) 



2. As the temperature approaches zero, wh apfJroaches zero. 

Thus ~HTHEORY should approach infinity. (That is, the 

spectrum should revert to its nonnarrowed form in the T=O 

limit.) This is contrary to the form for the line width 

used by many to show agreement with experiment. This 

former expression [Equation (6)] approached a constant in 

the T=O limit. 

3. The theoretical line Hidth has a strong dependence on the 

compensation. In particular, for low compensations, it 

is about 

1 
~HTHEQRY ex K 

This fact is contrary to previous authors \'lhose formulas 

for the line width predicted no significant dependence on 

the compensation. 

4. The new theory predicts line widths for a given hopping 

frequency a little less than one order of magnitude 

smaller than those predicted by older expressions for the 

line V.Jidth. This result is due to the proper calculation 

of <H 2
> • ave 

The nev.J expression for ~~~THEORY was then compared \vi th the 

116 

experimental data on the line widths observed. It was also conven

ient at times to compare the inverse of ~HTHEORY and the inverse of 

~HExP· These comparisons produced some interesting results, many in 

conflict with earlier findings. The conclusions are as follows: 
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1. Motional narrowing by phonon-induced tunneling is not the 

only mechanism causing the ESR spectrum of donor electrons 

to narrow. The observed spectrum remains narrowed as T 

approaches zero, contrary to the predictions of na rrov1i ng 

by hopping only. 

2. t~otional narrovling by phonon-induced tunneling is not the 

dominant mechanism causing narrowing. Apparently the 

mechanism defined at T=O is. The line width for a given T 

exhibits donor concentration and compensation dependences 

not predicted by hopping. 

3. However, motional narrov.Jing by hopping cannot yet be totally 

ruled out as a contributing factor. The possibility still 

exists that hopping is causing narrowing over and above the 

11 T=0 11 mechanism. In addition, the uncertainty in the 

compensation ratio in samples, when K is less than 1%, 

destroys the hope of using existing data (which is almost 

all taken in this range of K) to completely decide if 

hopping is contributing to narrowing or not. 

An experiment was proposed which should resolve the uncertainty in 

whether or not hopping is contributing to narrowing. It is based 

upon the assumption that hopping is causing the temperature dependence 

in ~HEXP and that the 11 T=0 11 mechanism is independent of temperature. 

Since hopping predicts a linear K dependence in wh for low K, the 

slope of the 1/~HEXP versus T curves should reflect this dependence, 

if hopping is still contributing to the narrowing. 



Finally, a conclusion with respect to theoretical techniques 

was also drawn: 
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4. Whether or not the ensembles over which a microscopic 

quantity varies are taken into account can make a signifi

cant difference in the final expression used for such a 

quantity. If the microscopic quantity Q is a function of 

a certain parameter p vJhich has a certain probability 

distribution function in the ensemble and if the distri

bution is not sharply peaked at a particular value of p, 

it often happens that the mathematical formula for the 

macroscopic average of Q will bear little resemblance to 

that of the original microscopic quantity. 

One must be aware of this fact when dealing with other narrowing 

mechanisms which involve interacting donors. Their effects, as 

with the effects of hopping, must also be averaged over the electron 

and impurity ensembles. 
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Appendix A 

THE TRANSITION RATE FOR THE HOPPING PROCESS 

To find the average frequency with which an electron leaves a 

donor site due to phonon-induced tunneling, the transition rate for 

this process must be calculated. Using the model presented in 

Section I.B. (see Figure (3)) Miller and Abrahams 17b have performed 

such a calculation and applied their results to determining the low 

temperature resistivity of a semiconductor containing donor and 

acceptor impurities. To calculate the hopping transition rate, they 

assumed the Kohn and Luttinger21 , 22 effective mass theory to describe 

the isolated donor states. They then allowed i and j to interact 

through a Hamiltonian involving one electron, positively charged 

centers i and j, and a negatively ionized acceptor. States in which 

the electron could be localized on i or j were then found by 

performing a variational calculation on the above Hamiltonian with 

a linear combination of the Kohn and Luttinger wave functions for i 

and j. Finally the transition rate was found from the matrix 

element of the electron-phonon interaction between these two 

localized states. The mathematics and the results of these steps 

will be briefly reviewed in this appendix. 

The unperturbed wave functions on a donor are given by the 

effective mass theory of Kohn and Luttinger21 ,22 

n 
I 

p=l 
(A-1) 



where ¢p(R) is the Bloch function for the pth conduction band mini-
-+ 

mum. The F (R) are the hydrogen-like functions 
p 
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(A-2) 

Here Z is in the direction of the pth minimum and a and b are the 

transverse and longitudinal radii of the orbit. The ap determine the 

various linear combinations of the FP¢P products that are eigen

functions of the total Hamiltonian (including the crystal field). 
!.::: In the Si and Ge ground states ap=l/n 2 where n is the number of 

conduction band minima. 

Now if i and j are two nearby donors, i neutral and j ionized, 

and are in the presence of an ionized acceptor, then the Hamiltonian 

for the donor electron is 

(A-3) 

T is the kinetic energy operator, Va is the acceptor potential, 

e2;k R.( .) is the potential due to the donor nucleus at i(j), and 
0 1 J 

k
0 

is the dielectric constant of the semiconductor. To find the 

wave functions which diagonalize this Hamiltonian a variational 

calculation is done using the trial functions 

'¥. = a.l)J. + a .lJJ . 1 1 1 J J 

(a.+a.S . . )lJ; . - (a .+a . S .. )lJ;. 
'¥. 1 J 1J J J 1 1J 1 (A-4) J g 

J 
where 

s .. = <l)J ·llJJ .> 1J 1 J 
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These constitute an orthonormal set. The variational calculation 

yields 17b 

where 

w .. 
\f. ~1J;. +__]_J_lj; 

1 1 f.,. . j 
1J 

w .. 
\f.~ lj;.- ___!_J_lj;. 

J J f., . . 1 
1J 

w .. i s .. j 
~ L .. J .. 

1J 1J 1J 11 

/1 .. = E. E. 
1J 1 J 

i 2 
L .. = - <1/J i I k e R .11/J j > 1J 0 1 

j 2 
J .. = - <1/J i I k e R .11/J i > 11 

0 J 

E. = <lJ;.jV I1JJ. > 
1 1 a 1 

(A-5) 

(A-6) 

Equation (A-5) is valid only if W . . <<t-:. . .• Often W .. is called the 
1J 1J 1J 

resonance energy and is the 11 0Verlap energy 11 referred to in Section 

I.B. The quantity Ei is the energy perturbation due to the acceptor. 

Its value for the ground state is approximately the value of the 

coulomb potential of that acceptor at site il?b 

2 e E. ~ ..,.--
1 k r.A 

0 1 

(A-7) 



if the unperturbed ground state is taken to be E=O. As is seen 

above, the energy difference between sites ~-. must be much larger 
lJ 

than the resonance energy to have localized states on i and j. 
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To find the hopping transition rate, the matrix element of the 

electron-phonon interaction is needed. In the deformation potential 

approximation the electron-phonon perturbation for absorption 

(~ .. <0) is17b 
lJ 

(A-8) 

and 

<'¥-I H' I'¥.> 
J 1 

(A-9) 

vJhere nk is the number of phonons in the k state; p
0

, V, and c are 

the density, volume, and speed of sound of the crystal; 

r .. =(x .. , y .. , z .. ) is the vector separating i and j; and E1 is the 
lJ lJ lJ lJ 

relevant deformation potential constant. Using the 11 Fermi golden 

rule 11
, r·,1iller and Abrahams 17b arrived at the follov.Jing expression 

for the transition rate for absorption 

(A-10) 

-1 

Since 1~- ·I lJ 
is the phonon energy, (exp( 6 1~- -I )-1)- 1 has been 

lJ 
substituted for nk where k6 is the magnitude of the wave vector of 

~ 

the phonon with energy 6 ... 
lJ 

For emission ( 6 .. >0) 
lJ 

the resulting 

transition rate . 17b lS 



u~~m) 
lJ 
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(A-ll) 

2 The remaining quantity to be determined is H... Using Equations 
lJ 

(A-1), (A-2). and (A-6), Miller and Abrahams find that 

2 jw. ·I lJ 

, 2 2 n 2 
= ( c...e_ ) \ ( 2 I ) 

2 p--Ll rp exp - rp a 
3nk

0
a 

(A-12) 

2 2 2 2 2 k where r =a((x .. +y .. )/a + z . . jb ) 2
• If the effective mass is very 

p lJ lJ lJ 

anisotropic then an angular average over the conduction band minima 

can be computed 

2 
< IW. ·I > lJ 

If the mass is isotropic, then the quantity in braces is replaced 

by unity. 

Summarizing, then, the transition rate bet\<Jeen the ground state 

on i to the ground state on j, regardless of the sign of 6 .. , is 
lJ 

(A-14) 

\'Jhere 

(/\-15) 
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Table A-I gives all the pertinent constants used in the calculation 

of 1/B for various host crystals and doping elements. 

In summary, Uij is the transition rate for a hopping electron, 

given that i is occupied and j is not, that i and j are separated by 

a distance r .. , 
lJ 

and that their ground state energies differ by an 

energy 6ij· To find the average transition rate, distributions of 

electrons on donors and distributions of r .. and 6 .. must be taken 
lJ lJ 

into account. 
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Table A-I. Transverse and longitudinal radii (a and b, respectively) 

fo~ some donor ground states in germanium (a) and 

silicon (b). Values for the deformation potential 

constant, density, speed of sound, dielectric constant, 

and number of conduction band minima are also given. 



(a) 

Doping Element 

As 

Sb 

(b) 

[1=6.25 eV p
0

=2.33 

Doping Element 

As 

p 

Sb 

Table A-I 

Germanium15 

c=3.83x1o5 em/sec k
0

=16.1 

g/cm3 

0 

a (A) 

60.5 

69.5 

Silicon 15 

c=G.60x105 

0 

a (/\) 

20.2 

21.2 

22.6 

0 

b (A) 

13.6 

15.6 

em/sec k = 11 2 0 . 

0 

b (A) 

8.9 

9.3 

9. 9 
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n=4 

n=6 
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Appendix B 

HOPPING APPLIED TO THE ANDERSON fV\RRO~Jif~G THEORY 

Since the Anderson 16 model of motional narrowing is to be used 

and since it was not derived precisely for the case of phonon-

induced tunneling, it is of interest to determine if hopping can 

narrow the donor ESR spectrum in the manner described by Anderson . 

In this appendix it is shown that the relationships between phonon

induced tunneling of donor electrons and the ESR spectrum of donor 

electrons required by Anderson for application of his theory exist 

and therefore that hopping is a narrowing process. Without rederiva

tion, the results of the Anderson narrov.Jing theory pertinent to the 

present problem are then presented and discussed. 

If H
0 

is the unperturbed Zeeman Hamiltonian, Hp is the hyperfine 

splitting term, Hm is the motional Hamiltonian, and if H=H
0

+HP+Hm 

is the spin Hamiltonian of the donor electron, then three assumptions 

must be verified in order to apply the Anderson model: 

A A 

[Hm,~l0 ] = 0 

where ~ = radiation dipole moment, 

A 

in aH 
~ = [H,H J = at p 

[n ,H J + en ,H J o p m p 

that is, 
A A 

[ H , II ] f 0 m p 

(8-1) 

( 13-2) 

(B-3) 
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The first two assumptions (B-1) and (B-2) are that the motion can 

change neither the Zeeman interaction nor the radiation involved in 

the ESR experiment. Assumption (B-3) is equivalent to saying that 

hopping causes motion between the hyperfine spin states of the 

donor electron. That is, electron motion between donors can change 

the hyperfine interaction term of the electron. 

The 11 unperturbed 11 Hamiltonian can be written as 

A 

Ho - - ( B-4) 

where the magnetic field is taken in the [100] or z direction. The 

subscripts i and a denote the donor and the electronic state in which 

the electron is localized. The hyperfine structure terms contain the 

Fermi contact term at the donor nucleus plus the Fermi contact term 

at the surrounding semiconductor nucleii: 

A 

Hp = A 
-+ -+ 2 2 s. •I.I1P· (O)I +A 

. 1a 1 1a 
la. 

(l3-5) 

-+ -+ 
Here I; is the spin of the donor nucleus i VJhile I£ is the spin of 

one of the surrounding semiconductor nucleii and A is the Fermi 

contact constant. The factor I1P· (0)1 2 is non-zero only for S 
1a 

states. 4 Hence when considering the hyperfine spectrum and how it 

narrows at low temperatures one need consider only the ground state 

electrons. This is done in the text (see Section III). Finally the 

motional Hamiltonian is the electron-phonon interaction: 
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-+-+ 

e 
ik•R. 

1 (a -at ) 
k -k (B-G) 

R. is the position of the ith donor electron. This expression is 
1 

equivalent to the Hamiltonian in Equation (A-8). 

Since the electron-phonon interaction does not couple Hith the 

spin of the tunneling electron, one readily sees that the spacial 

Hm commutes with the spin H
0

. Thus Equation (B-1) is satisfied. 

Likewise Hm commutes with the radiation dipole moment, the [010] or 

[011] component of the electron spin, and thus satisfies Equation 
-+ -+ 

(B-2). However the nuclear spin vectors I; and I£ are randomly 

distributed over the donors and semiconductor nucleii in their 

respective quantum states. Hence the nuclear spin vectors vary from 

donor to donor, causing the HP term to have a spacial dependence. In 

general, then, Hm and HP do not commute. Thus, Equations (B-1) 

through (B-3) have been satisfied. 

The final condition that must be met is that the average 

probability wh of hopping to a particular spin state (to a particular 

frequency, in Anderson terminology) in the spectrum is independent 

of the state in \vhich the electron may have been previously. This 

is easily seen to be the case with hopping, since the vectors I. 
1 

and I£ are randomly oriented, independent of any other nuclear spin 

vectors .. Thus the particular hyperfine interaction \vhich results 

after a hop depends only upon the donor on which the electron finally 

becomes localized. 
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With the above conditions, the results of the Anderson narroHing 

theory can be applied to the ESR spectrum in the presence of hopping. 

Accordingly, a single line of breadth (half-Hidth at half-max) f:::.w 

wi 11 be observed if the hopping is rapid enough, i.e. , if wh>>f:::.w. 

Then f:::.w is given by 16 

<w2> 
f:::.w = ___ a_v_e 

wh 
(B-7) 

With Equation (B-7) the rapid motion condition is 

(l3-8) 

The quantity <w2> is the mean square breadth of the non-narrovJed ave 

spectrum and is found by integrating the expression 

00 

(B-9) 
-00 

where P(w) is a normalized distribution describing the shape of the 

non-narrowed spectrum and has been shifted along the frequency axis 

so that its center is at w=O. 

Since the frequency spectrum and magnetic field spectrum are 

related by 

nw = g lls H (B-10) 

where 118 is the Bohr magneton and g is the Land~ g-factor, the above 

equations may be expressed in terms of the magnetic field. The 

result is that the narrowed line breadth is 



2 
g 11 B <H >ave 

6H = 1i (Jjh 

and the rapid motion condition is that 
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(B-11) 

( B-12) 

where <H2>ave is defined in a manner similar to that of <w2>ave 

with a corresponding P(H) which describes the non-narrowed magnetic 

field spectrum. Expression (B-11) determines the breadth of the 

narrowed line. Theoretically one calculates the two quantities 

w
1 

and <H2> v and compares 6H with the observed line breadth. 
1 a e 
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Appendix C 

COMPUTER METHODS USED IN CALCULATING ~g AND wh 

Some attention should be given to the numerical methods of 

solving Equation (26) for ~g or for integrating Equation (61). In 

Equation (26) the equation for the Fermi energy is 

00 

K = J -S(E-~ ) 
[1 + e g ] 

F (E) dE ( C-1) 

0 

where K, EA, and S=1/k8T are given. A convenient method of solving 

a transcendental equation of this sort is by a variation of Ne\~Jton's 

approximation method. If ~~ is the new approximation to ~g and ~go 

is the first approximation then 

d~ 
~I = ~ + _Jl ( K- I( ) g go al<- o (C-2) 

where K
0 

is the value obtained from Equation (C-1) if ~go is used in 

the integration. Now 

00 

J 
F(E) SdE - 1 

{ -G(E-~ ) G(E-~ ) } 
o [ 1 +e g ] [ 1 +e g ] 

(C-3) 

Hence integrating Equations (C-1) and (C-3) and iterating on 

Equation (C-2) until IK-K
0

j is small enough Hill yield ~9 . A conven

ient first approximation is ~90=EA/(-in(1-K)) 113 , the T=O Fermi 

energy. 



The integration process is very important since very accurate 

integrals must be performed quickly. The method most suited to 

integrating from zero to infinity rapidly is to split the integral 

into two parts and change variables on one: 

00 oo 3 -(E /E) 3 
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I 
0 

z;:go 
__ F__,(.....,..,E ,;,.....) _d__,E r- = I 

-s(E-z;: ) 
[l+e g ] o 

F(E) dE I 3EA e A dE 
-S(E-z;: ) + ~ -S(E-z;: J 

[1+e g ] z;:go [l+e g ] 

____ F..,...,(r-o:::E~) ....,.;;d;.;;E,_ + I 
[l+e-S(E-z;:g)] 0 

0 

E 1 
(-L)3 

z;:go -x 
~-----e ,_,_ ..... do:-~~- • ( C-4 ) 

3 -S( EA/x -z;: ) 
[l+e g ] 

These integrals over finite intervals can then easily be performed 

using ten-point Gaussian quadrature on small subintervals of (O,z;:g
0

) 

and of (O,(EA/z;:g
0

)
113 ), doubling the number of subintervals until 

a desired accuracy is achieved. A typical integration time is 

between ten and tvJenty seconds on a HP 2114 mini computer, yi e 1 ding 

a calculation time for z;:g of about one or two minutes. Note that 

after the iteration process the final value obtained from Equation 

(C-3) can be substituted into Equation (61) for calculation of the 

averaged transition rate wh. 
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