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ABSTRACT

Despite its remarkable achievements across a multitude of benchmark tasks, deep

learning (DL) models exhibit significant fragility to adversarial examples, i.e., subtle mod-

ifications applied to inputs during testing yet effective in misleading DL models. These

meticulously crafted perturbations possess the remarkable property of transferability: an

adversarial example that effectively fools one model often retains its effectiveness against

another model, even if the two models were trained independently. This research delves

into the characteristics influencing the transferability of adversarial examples from three

distinct and complementary perspectives: data, model, and optimization. Firstly, from the

data perspective, we propose a new method of crafting transferable AE based on random

erasure (RE) which erase part of image with random noise which increases the diversity

of adversarial perturbations and helps stabilize gradient fluctuations. Secondly, we ex-

plore from optimization perspective by penalizing the input gradient norm when optimizing

the objective for generating AE, aim to find AE within flat regions of the loss landscape.

Thirdly, we investigate from the model perspective and propose a novel strategy centered

on transforming surrogate models by Lipschitz regularization. Finally, we introduce the

normalized Hessian trace, a metric capable of accurately and consistently characterizing the

curvature of loss landscapes, based on which we propose CR-SAM, a novel optimization

technique that integrates curvature regularization into the Sharpness-Aware Minimization

(SAM) optimizer aims to bolster the generalizability of deep neural networks across a range

of image classification tasks.

In summary, this research presents three complementary techniques that provide a

comprehensive and practical approach to generating highly transferable adversarial exam-

ples. Furthermore, our exploration of metrics aimed at describing the curvature of the loss

landscape contributes to a deeper understanding of the optimization process and facilitates

the enhancement of deep learning models’ generalizability.
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1. INTRODUCTION

Since the groundbreaking achievements of AlexNet [4] in the ImageNet [5] chal-

lenge, deep learning (DL) has demonstrated remarkable progress in numerous benchmark

tasks and has witnessed a significant increase in its application to solve practical problems in

the real world. The utilization of DL has expanded across various domains, showcasing its

potential for revolutionizing industries and driving innovation in research and development.

Nevertheless, recent findings have highlighted certain issues such as vulnerability to adver-

sarial attacks, absence of interpretability, and difficulties in achieving out-of-distribution

generalization. These emerging challenges highlight that relying solely on benchmark

performance is insufficient for fully understanding the capabilities and limitations of deep

learning algorithms.

1.1. ACHIEVEMENTS AND LIMITATIONS

We provide a brief overview of the achievements and limitations of deep learning,

examining its significant breakthroughs in various fields such as computer vision and natural

language processing, as well as its challenges.

1.1.1. Notable Achievements. Remarkable advancements have marked significant

milestones within the field of deep learning, spanning various domains. Breakthroughs

in Computer Vision: Breakthroughs in the field of Computer Vision have been signifi-

cantly influenced by the advancements in DL, which have brought about a revolutionary

transformation in the accuracy and efficiency of various computer vision tasks. Notably,

Convolutional Neural Networks (CNNs) have emerged as dominant models, showcasing

unparalleled levels of performance in tasks such as image classification [6, 7], object detec-

tion [8, 9], and semantic segmentation [10, 11]. These advancements have paved the way

for the development of cutting-edge applications like autonomous driving [12], medical

imaging diagnostics [13], and facial recognition systems [14], thereby demonstrating the
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far-reaching impact of deep learning in the realm of computer vision. Natural Language

Processing Advancements: Deep learning has significantly advanced the field of natural

language processing (NLP) by leveraging sophisticated models such as recurrent neural

networks (RNNs), transformers [15], and pre-trained language models [16] to reach un-

precedented levels of performance. These models have excelled in various tasks including

machine translation, sentiment analysis, and text generation, setting new benchmarks in the

realm of NLP. Groundbreaking technologies like Google’s BERT [17] and OpenAI’s GPT

series [18, 19, 20, 21] have showcased exceptional language comprehension abilities, open-

ing up avenues for the development of conversational AI systems and language-oriented

applications in diverse domains. Enhancements in Speech Recognition: The utilization of

deep learning techniques has been instrumental in the progression of speech recognition

systems, facilitating the precise conversion of oral language into written text. Noteworthy

advancements have been observed with the integration of models such as RNNs and DNNs,

leading to a substantial enhancement in the accuracy levels of automatic speech recognition

systems [22]. This progress has paved the way for the evolution of virtual assistants, voice-

controlled devices, and various speech-to-text applications, demonstrating the significant

impact of deep learning in the field of speech recognition.

1.1.2. Critical Limitations. Delving into the intricacies of deep learning models,

a myriad of shortcomings that impede their performance and robustness have been discov-

ered. Vulnerability to Adversarial Attacks: Deep learning models have shown vulnerability

to adversarial examples [23, 24], a phenomenon in which barely noticeable alterations to

input data can lead to substantial misclassifications. These adversarial examples present

security concerns in various domains such as image recognition systems and autonomous

vehicles, underscoring the delicate nature of deep learning models in the face of subtle

manipulations. The susceptibility of deep learning models to adversarial attacks raises

important questions about the robustness and reliability of these systems when deployed in

real-world scenarios. Limited Out-of-distribution Generalization: Deep learning models
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frequently encounter difficulties in effectively generalizing beyond the distribution of the

training data, which can result in either overfitting or subpar performance when faced with

unseen data instances. Such a constraint presents noteworthy obstacles when it comes

to implementing deep learning solutions in practical settings, particularly those charac-

terized by diverse or limited data availability, necessitating the development of resilient

methodologies for domain adaptation and transfer learning. These challenges underscore

the importance of devising strategies that enable deep learning models to adapt gracefully

to new data domains, ensuring their reliable performance across a spectrum of real-world

scenarios. Interpretability and Transparency: Deep learning models often face criticism

for their lack of interpretability and transparency, presenting a significant challenge in un-

derstanding the reasoning behind their predictions. This opacity raises concerns, especially

in critical sectors like healthcare and criminal justice, where the need for explainability

and accountability in decision-making is crucial. In such contexts, it becomes essential to

clarify and justify the outcomes of deep learning models, as opaque decision-making can

have profound consequences for individuals and society.

1.2. BACKGROUND

1.2.1. Adversarial Examples. Adversarial examples, initially brought to promi-

nence by the seminal work of [23], are inputs purposefully crafted by applying human im-

perceptible perturbation to the clean inputs which can lead to erroneous predictions by even

the most sophisticated DNNs. As shown in Figure 1.1, starting with a correctly-classified

input image (left), the addition of a meticulously calculateed imperceptible perturbation

(center) leads to the creation of an adversarial example (right). Despite the model’s high

confidence in its prediction, the outcome is erroneous, highlighting the vulnerability of even

advanced classifiers to subtle manipulations.
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Figure 1.1. An adversarial example demonstrates the capability to deceive a state-of-the-art
vision classifier ResNet50. In the world of deep learning, a subtle noise can make a pig fly.

Based on adversary’s knowledge to the model, adversarial attacks can be grouped

into white-box attacks, black-box attacks. In white-box setting, one assumes the attackers

possess perfect knowledge about the target model, including the architecture, parameters,

and gradient of the loss w.r.t. the input. Most methods adopt the gradient information

of the target model to launch adversarial attacks under the white-box setting. However,

white box attacks are almost unrealistic in real applications because the model structure

and parameters are usually hidden from the attackers. Black-box attacks pose a greater

real-world threat to DL systems, which can be grouped into three scenarios, including

score-based, decision-based and transfer-based attack. Score-based black-box attacks can

acquire the output probabilities by querying the target model, and the gradient can be

estimated through queries. Decision-based black-box attacks can only solely rely on the

predicted classes of the queries, this setting is more challenging since the target model only

provides discrete hard-label predictions. Transfer-based black-box attacks require the least

knowledge of the target model which are based on the transferability of adversarial examples

[23]. Transfer-based black-box attacks are the main topic we study in this dissertation where

we generate adversarial examples on surrogate models which are white-box to us, then the

generated adversarial examples are transferred to black-box target models. In this setting,

the most important aspect is to improve the transferability of adversarial examples so that

transfer-based black-box attacks can be made more effective in real world scenarios.
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To be more specific, let 𝑥 be a benign image, 𝑦 the corresponding true label and

𝑓 (𝑥; 𝜃) the classifier with parameters 𝜃 and which outputs the prediction result. Let

ℓ(𝑥, 𝑦; 𝜃) denote the loss function (e.g., cross-entropy loss) of the classifier 𝑓 . We define

an adversarial attack as finding an adversarial example 𝑥𝑎𝑑𝑣 that satisfies ∥𝑥𝑎𝑑𝑣 − 𝑥∥𝑝 ≤ 𝜖

but incurs misclassification to the model, i.e., 𝑓 (𝑥; 𝜃) ≠ 𝑓 (𝑥𝑎𝑑𝑣; 𝜃). Here ∥ · ∥𝑝 denotes

𝑝-norm and we consider 𝑝 = ∞ in this dissertation to be consistent with previous works.

Mathematically, given a benign (clean) example 𝑥, we seek to find an AE 𝑥𝑎𝑑𝑣 as the solution

to the following constrained optimization problem:

arg max
𝑥𝑎𝑑𝑣

ℓ(𝑥𝑎𝑑𝑣, 𝑦; 𝜃), s.t.
𝑥𝑎𝑑𝑣 − 𝑥


∞ ≤ 𝜖 (1.1)

There have seen a large number of adversarial attack methods for solving the above

problem, including gradient-based methods [1, 2, 24, 25, 26], optimization-based methods

[23, 27], score-based methods [28, 29], and decision-based methods [30, 31]. In this

dissertation, we focus mainly on gradient-based methods which have attracted the most

attention.

Fast Gradient Sign Method (FGSM). FGSM [24] is the first gradient-based attack

which crafts an adversarial example 𝑥𝑎𝑑𝑣 by attempting to maximize the loss function

ℓ(𝑥𝑎𝑑𝑣, 𝑦; 𝜃) with a one-step gradient update:

𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖 · sign(∇𝑥ℓ(𝑥, 𝑦; 𝜃)),

where ∇𝑥ℓ(𝑥, 𝑦; 𝜃) is the gradient of loss function with respect to 𝑥, sign(·) denotes the sign

function, and 𝜖 denote the perturbation bound. Many subsequent methods have built upon

and improved FGSM for enhancing adversarial tranferability.
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Iterative Fast Gradient Sign Method (I-FGSM). I-FGSM [25] extends FGSM to an

iterative version:

𝑥𝑎𝑑𝑣𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · sign(∇𝑥𝑎𝑑𝑣𝑡
ℓ(𝑥𝑎𝑑𝑣𝑡 , 𝑦; 𝜃)), (1.2)

𝑥𝑎𝑑𝑣0 = 𝑥,

where 𝛼 = 𝜖/𝑇 is a small step size and 𝑇 is the number of iterations.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM). MI-FGSM [1] inte-

grates a momentum term into I-FGSM and achieves much better transferability:

𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
∇𝑥𝑎𝑑𝑣𝑡

𝐽 (𝑥𝑎𝑑𝑣𝑡 , 𝑦; 𝜃)
∥∇𝑥𝑎𝑑𝑣𝑡

𝐽 (𝑥𝑎𝑑𝑣𝑡 , 𝑦; 𝜃)∥1
, (1.3)

𝑥𝑎𝑑𝑣𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · sign(𝑔𝑡+1),

where 𝑔0 = 0 and 𝜇 is a decay factor.

Nesterov Iterative Fast Gradient Sign Method (NI-FGSM). [2] integrates Nesterov’s

accelerated gradient (NAG) [32] into the iterative attack method, by replacing 𝑥𝑎𝑑𝑣𝑡 in (1.3)

with 𝑥𝑎𝑑𝑣𝑡 which is defined as

𝑥𝑎𝑑𝑣𝑡 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · 𝜇 · 𝑔𝑡 (1.4)

Other notable methods for white-box adversarial attacks include Project Gradient

Descent (PGD) [26] which extends FGSM by iteratively taking multiple small gradient

steps and projecting the generated adversarial example onto the 𝜖-sphere around the clean

sample at each step, and Carlini and Wagner Attack (C&W) [27] which reformulates the

constrained loss into an Lagrangian form and adopts Adam [33] for optimization.
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1.2.2. Defending Against Adversarial Attacks. Due to the threat posed by adver-

sarial examples, extensive research has been conducted to develop robust models capable

of defending against various adversarial attacks. There are roughly three primary research

directions in adversarial robustness.

The first direction is adversarial training [24, 26, 34], which involves injecting

generated adversarial samples into the training data to help the model differentiate between

adversarial and benign examples. For instance, [26] proposes augmenting the training data

with adversarial examples crafted by the PGD attack, which remains the state-of-the-art

defense to date. Despite its promise, adversarial training is computationally expensive and

challenging to scale to large datasets [35].

The second approach involves input transformation. These methods preprocess

input images to mitigate adversarial perturbations without compromising the classification

accuracy on benign images. Examples of input transformation methods include random

resizing and padding [36], JPEG compression [37], bit-depth reduction [38], total variance

minimization [39], and autoencoder-based denoising [40]. However, these defenses can

lead to shattered gradients or vanishing/exploding gradients, which adaptive attacks can

exploit [41].

The third category is certified defenses, which are mathematically proven to be robust

against the worst-case attacks under certain assumptions. The goal of certified defenses is

to end the ongoing arms race between adversarial defenders and attackers. Recent certified

defenses [42, 43] have been scaled to ImageNet, demonstrating the applicability of this

defense type.

Additionally, model ensemble is another effective defense strategy that leverages

the outputs from an ensemble of individual models [44, 45]. Model ensembles can be

integrated with the aforementioned defenses, such as ensemble adversarial training [34],

which significantly enhances the robustness of adversarial training.
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1.2.3. Adversarial Transferability. The transferability of adversarial examples

enables transfer-based black-box attacks [23]. Such attacks require the least knowledge of

target models and thus often pose the biggest threat to AI systems deployed in the real

world. This black-box approach is to apply white-box attacks on surrogate models to find

adversarial examples that can fool as many black-box target models as possible, known as

transferability of the AE. Many works have been proposed to improve the transferability of

AE. Optimization-based approaches focus on finding direction of the gradients towards op-

tima that lead to better transferability. For example, Momentum Iterative Method (MIM) [1]

integrates a momentum term into the gradient calculation to stabilize the update direction.

Reverse Adversarial Perturbation (RAP) [46] seeks targeted AE located at a region with

uniformly low loss value. Smoothing-based approaches smooth gradients by averaging gra-

dients from multiple datapoints around the current AE. Diverse Inputs Method (DIM) [47]

averages the gradients of randomly resized and padded inputs to generate AE. Translation-

invariant Attack (TIM) [48], Scale Invariance Attack (SIM) [2], Smoothed Gradient Attack

(SGM) [49], and Admix Attack (Admix) [50] also fall into this category. Attention-based

approaches modify the important features in attention maps, motivated by the observation

that different deep networks classify the same image based on similar important features.

For instance, Attention guided Transfer Attack (ATA) [51] uses the gradients of an objective

function w.r.t. neuron outputs to derive an attention map and seek AE that maximizes the

difference between its attention map and the corresponding benign sample’s map. Similar

approaches include Jacobian based Saliency Map Attack (JSMA) [52], Attack on Attention

(AoA) [53] and Activation attack (AA) [54]. Ensemble-based approaches take advantage

of an ensemble of surrogate models with the belief that if an AE can attack multiple models,

then it is more likely to transfer to other models as well. For instance, [55] proposes to gen-

erate AE on an ensemble of models with different architectures. Large Geometric Vicinity

(LGV) [56] collects multiple checkpoints along the training trajectory, on which the attack
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was performed on an ensemble of these models. [57] develops an ensemble attack from

a Bayesian formulation which samples multiple models from the posterior distribution of

parameter space.

1.2.4. Loss Landscape of DNNs. Understanding the loss landscape of deep neural

networks (DNNs) plays a crucial role in optimizing model performance and generalization.

The loss landscape, characterized by its complex geometry and optimization dynamics,

influences the behavior and efficacy of optimization algorithms during training. Recent

research into loss surface geometry underscores the strong correlation between generaliza-

tion and the flatness of minima reached by DNN parameters. Among various mathematical

definitions of flatness, including 𝜖-sharpness [58], PAC-Bayes measure [59], Fisher Rao

Norm [60], and entropy measures [61, 62], notable ones include Hessian-based metrics like

Frobenius norm [63, 64], trace of the Hessian [65], largest eigenvalue of the Hessian [66],

and effective dimensionality of the Hessian [67].

1.3. ORGANIZATION OF THE DISSERTATION

In section 2, from the data perspective, we propose a new method of crafting

transferable AE which consists of two techniques: elastic momentum (EM) and random

erasure (RE). This section is based on the work [68].

In section 3, we explore from optimization perspective and propose an approach,

gradient norm penalty (GNP) by penalizing the input gradient norm to identify AE within

flat regions of the loss landscape. This section is based on the work [69].

In section 4, we investigate from the model perspective and propose a novel strategy

centered on transforming surrogate models by Lipschitz regularization. This section is

based on the work [70].
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In section 5, we introduce the normalized Hessian trace, a metric capable of ac-

curately and consistently characterizing the curvature of loss landscapes. Leveraging this

metric, we propose CR-SAM, a novel optimization technique that integrates curvature

regularization into the Sharpness-Aware Minimization (SAM) optimizer to enhance the

generalization of DNNs This section is based on the work [71].

Section 6 concludes this dissertation and presents the limitations and future work.
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2. IMPROVING ADVERSARIAL TRANSFERABILITY FROM DATA
PERSPECTIVE: ELASTIC MOMENTUM AND RANDOM ERASURE

2.1. INTRODUCTION

Deep Neural Networks (DNNs) have made resounding success in computer vision

tasks. However, they are vulnerable to adversarial examples (AE), which are data samples

(typically images) that are perturbed by human-imperceptible noises yet result in misclas-

sifications. This can cause serious safety and security consequences in applications such as

autonomous driving and medical diagnosis. The transferability of AE is an active research

area [1, 2, 47, 48, 55, 72, 73, 74, 75, 76, 77] that studies how well an AE created to attack

(fool) a “source” model can successfully fool other “target” models as well. The rationale

of studying this is that (1) from an attacker’s perspective, good transferability implies that

one can launch black-box attacks on target models (without knowing their internal structure,

algorithmic details, or parameters); (2) from a defender’s perspective, studying it provides

insight into understanding the failure and vulnerability of DNNs and how to design DNNs

that are robust to AE.

The techniques proposed in the literature to improve the transferability of AE include

gradient or momentum based methods [1, 2, 72, 73], ensemble methods [55, 74], image

transformations based methods [2, 47, 48, 75], and network architecture alterations [76, 77].

A major issue of these techniques attempt to address is that AE created on a source model

(in order to attack it) can be easily trapped into the exclusive blind spots of the source model

and can hardly generalize to other (target) models; in other words, this can be viewed as an

problem of AE overfitting.

In this section, we propose a new method of crafting AE and thereby improving

their transferability. This method consists of two techniques: elastic momentum (EM) and

random erasure (RE). We first introduce EM into the AE generation process to compute

gradients in a much expedited manner insofar as the training will converge earlier than
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reaching the overfitting region. We also propose to incorporate RE, which is a data aug-

mentation technique, into the AE crafting procedure for the first time. The contributions of

this section are summarized as follows:

• We introduce a new black-box approach of crafting transferable AE by proposing

EM and a new usage of RE. EM generalizes the conventional momentum and the

Nesterov’s momentum methods by computing gradients over a flexible look-ahead

horizon, and RE increases the diversity of adversarial perturbations and helps stabilize

gradient fluctuations.

• Besides transferability, our proposed method is very flexible in that it can be applied

to any existing gradient-based attacks to enhance their effectiveness.

• Through extensive evaluation with 5 recent baseline methods, 7 target deep learning

models, and 9 advanced defense mechanisms, we demonstrate the superior transfer-

ability of our proposed black-box attack approach.

2.2. PROPOSED METHOD

In this section, we introduce our proposed method, which incorporates Elastic

Momentum and Random Erasure in the generation of transferable adversarial examples.

2.2.1. Elastic Momentum. We make two key observations. First, the main reason

why integrating momentum benefits AE computation is because the momentum essentially

combines several steps of (potentially discounted) gradients together to help stablize gra-

dient descent and obtain a more robust direction of convergence. Second, the reason why

Nesterov’s accelerated gradient can benefit it even further is because it computes the gradi-

ents based on an estimated next-step AE, rather than the last-step AE, which speeds up the

training.
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Thus, following the work [78], our basic idea is as follows. First, generalize the

prediction of next-step AE, by allocating a flexible look-ahead horizon for computing an

estimated future AE. Next, compute the gradient using that future AE to obtain a more far-

sighted momentum, which accelerates the convergence (with reduced number of iterations)

and thereby prevents overfitting.

Formally, an AE 𝑥𝑎𝑑𝑣 is computed iteratively as follows:

𝑥𝑒𝑚𝑡 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · 𝜎 · 𝑔𝑡 , (2.1)

𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
∇𝑥𝑒𝑚𝑡

𝐽 (𝑥𝑒𝑚𝑡 , 𝑦; 𝜃)
∥∇𝑥𝑒𝑚𝑡

𝐽 (𝑥𝑒𝑚𝑡 , 𝑦; 𝜃)∥1
, (2.2)

𝑥𝑎𝑑𝑣𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · sign(𝑔𝑡+1). (2.3)

The momentum term 𝑔 accumulates previous gradients with a decay factor 𝜇, while

the gradient is not computed based on the current AE 𝑥𝑎𝑑𝑣𝑡 but a future AE 𝑥𝑒𝑚𝑡 estimated

over a look-ahead horizon. The parameter 𝜎 is critical: although 𝜇 has to be a value

extremely close to 1, as experimentally shown by [1], 𝜎 is independent of 𝜇 (as opposed

to NI-FGSM) and could take a value much larger than 1, which essentially means that we

can use 𝑔𝑡 to approximate 𝑔𝑡+1, 𝑔𝑡+2, ... and tune the length of this look-ahead horizon to

achieve the best transferability. For this reason, we call the momentum term 𝑔 an elastic

momentum (EM). Figure 2.1 illustrates our method EM as compared to NI-FGSM.

Our approach also generalizes MI-FGSM and NI-FGSM which can be viewed as

special cases of ours: When 𝜎 = 0, we obtain the momentum iterative method MI-FGSM;

when 𝜎 = 𝜇, we obtain Nesterov’s momentum method NI-FGSM. Note, however, that

we typically do not use these 𝜎 values in order to achieve acceleration and thus better

performance. In fact, our method gives us flexibility to control the converging process via

𝜎, in order to reach a local optimum before hitting the overfitting region, thereby obtaining

better AE transferability.
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Figure 2.1. Illustration of EM as compared to NI-FGSM. when 𝜎 = 𝜇, we obtain Nesterov’s
momentum method NI-FGSM as a special case of EM-FGSM.

2.2.2. Random Erasure. Previous work [47] has demonstrated that random trans-

formations of input images such as random resizing and random padding could boost the

transferability of adversarial examples. However, what specific type of transformation is

better remains an open question. In our work, we hypothesize that partial occlusion would

make the resulting AE more transferable, and the rationale is as follows. A classification

model usually examines different regions of an image to recognize its category, which is

why a white-box attack could achieve near 100% attack success rate whereas black-box

transferred AE are much less likely to fool target models since those models tend to ignore

the adversarial regions. However, when an image is partially occluded, a model will clas-

sify it based on the overall object structure. Thus, if we use occluded adversarial images

during AE generation, the AE generation process will make the non-occluded region of the

object structure adversarial, and as a result, the generated AE will be more transferable and

more likely to fool other target models. Similar techniques are also proposed in [79, 80]

as a generic data augmentation technique for deep learning to address data insufficiency

which bring benefits to the task of image classification, object detection and person re-

identification. In this section, however, we apply RE to AE generation which has never

been explored before. In addition, we identify that RE is the most suitable candidate for AE
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transferability through our comparison with many other data augmentation techniques such

as translation, scaling, rotation, resizing, padding, weighting, and even a nearest neighbor

method that we created on our own.

Given an image 𝐼 with width 𝑊 and height 𝐻, we apply RE by randomly selecting

a rectangle region 𝐼𝑒 in 𝐼 and removes the pixels in the region 𝐼𝑒. This region is determined

as follows. Denoting by 𝑆𝑒 the area of the region 𝐼𝑒, we randomly generate an erasure ratio

𝑠 in the range [0, 𝑠ℎ] where 𝑠ℎ < 1, and use 𝑠 =
𝑆𝑒
𝑆

to determine the value of 𝑆𝑒, where

𝑆 is the area of the input image 𝐼, i.e., 𝑆 = 𝑊 × 𝐻. Now, denote the aspect ratio of 𝐼𝑒 by

𝑟𝑒. The height and width of 𝐼𝑒 are therefore determined by 𝐻𝑒 =
√
𝑆𝑒 × 𝑟𝑒 and 𝑊𝑒 =

√︃
𝑆𝑒
𝑟𝑒

,

respectively. To determine the location of 𝐼𝑒, we randomly pick a point P = (𝑥𝑒, 𝑦𝑒) ∈ 𝐼,

until 𝑥𝑒 +𝑊𝑒 ≤ 𝑊 and 𝑦𝑒 + 𝐻𝑒 ≤ 𝐻, upon which we finalize the coordinates of the erasure

region 𝐼𝑒 = (𝑥𝑒, 𝑦𝑒, 𝑥𝑒 +𝑊𝑒, 𝑦𝑒 + 𝐻𝑒). An example is given in Figure 2.2.

Raw Image

Figure 2.2. Applying RE to a raw image to generate four images with partial occlusions of
varying sizes and positions.

To remove the pixels in the region 𝐼𝑒, there are three typical choices, namely using

0s, 1s and random noise, to fill the region. Our experiments show that they do not make a

notable difference in performance. Hence, we adopt random noise in this section.
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Now, we reformulate the objective function by incorporating RE, as

arg max
𝑥𝑎𝑑𝑣

1
𝑚

𝑚∑︁
𝑖=0

ℓ(𝑅𝐸𝑖 (𝑥𝑎𝑑𝑣), 𝑦; 𝜃),

s.t.
𝑥𝑎𝑑𝑣 − 𝑥


∞ ≤ 𝜖,

(2.4)

where 𝑚 is the number of erasure copies, and 𝑖 = 0 represents the input image without

erasure.

Thus, our AE crafting process, integrated RE, is as follows. At each iteration 𝑡, with

probability 𝑝, we apply RE to the input image 𝑥𝑎𝑑𝑣𝑡 to generate a collection of 𝑚 erased

images, and compute their losses and the average gradient 1
𝑚

∑𝑚
𝑖=0 ∇𝑥ℓ(𝑅𝐸𝑖 (𝑥𝑎𝑑𝑣), 𝑦; 𝜃),

which will be used to compute the momentum 𝑔. With probability 1− 𝑝, we keep the input

image 𝑥𝑎𝑑𝑣 intact.

To incorporate RE into EM, however, the above 𝑥𝑎𝑑𝑣 needs to be replaced by 𝑥𝑒𝑚

defined by (2.1). Therefore, our final proposed method is formulated as

𝑥𝑒𝑚𝑡 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · 𝜎 · 𝑔𝑡 , (2.5)

𝑔𝑡+1 = 𝜇 · 𝑔𝑡 +
1
𝑚

∑𝑚
𝑖=0 ∇𝑥ℓ(𝑅𝐸𝑖 (𝑥𝑒𝑚𝑡 ), 𝑦; 𝜃)

∥ 1
𝑚

∑𝑚
𝑖=0 ∇𝑥ℓ(𝑅𝐸𝑖 (𝑥𝑒𝑚𝑡 ), 𝑦; 𝜃)∥1

, (2.6)

𝑥𝑎𝑑𝑣𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · sign(𝑔𝑡+1). (2.7)

Algorithm 1 summarizes our proposed method, where 𝑅𝐸 (𝑥; 𝑝) denotes that we

apply RE with probability 𝑝.

2.3. EXPERIMENTS

In this section, we illustrate our experiments, detailing the experimental settings and

presenting the results obtained that validate the effectiveness of our proposed methods.
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Algorithm 1 Proposed Method: EM-RE-FGSM

Input: A clean example 𝑥 with ground-truth label 𝑦; a classifier 𝑓 with loss function ℓ;
Input: Perturbation size 𝜖 ; maximum iterations 𝑇 ; decay factor 𝜇; look-ahead parameter
𝜎; number of random erasure copies 𝑚; random erasure probability 𝑝.

Output: An adversarial example 𝑥𝑎𝑑𝑣

1: 𝛼 = 𝜖/𝑇
2: 𝑔0 = 0; 𝑥𝑎𝑑𝑣0 = 𝑥

3: for 𝑡 = 0 to 𝑇 − 1 do
4: Compute 𝑥𝑒𝑚𝑡 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · 𝜎 · 𝑔𝑡
5: 𝑔 = 0
6: for 𝑖 = 0 to 𝑚 − 1 do
7: Compute gradient ∇𝑥ℓ(𝑅𝐸𝑖 (𝑥𝑒𝑚𝑡 ; 𝑝), 𝑦; 𝜃)
8: Update 𝑔 = 𝑔 + ∇𝑥ℓ(𝑅𝐸𝑖 (𝑥𝑒𝑚𝑡 ; 𝑝), 𝑦; 𝜃)
9: end for

10: Average momentum as 𝑔 =
𝑔

𝑚

11: Update 𝑔𝑡+1 as 𝑔𝑡+1 = 𝜇 · 𝑔𝑡 + 𝑔

∥𝑔∥1

12: Update 𝑥𝑎𝑑𝑣
𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · sign(𝑔𝑡+1)

13: end for
14: return 𝑥𝑎𝑑𝑣 = 𝑥𝑎𝑑𝑣

𝑇

2.3.1. Experiment Setup. Dataset. We use an image dataset [5] which is a curated

portion of ImageNet and is widely used such as by [2, 73]. This dataset randomly selects one

clean and correctly classified images from each of the 1,000 categories of the ILSVRC 2012

validation dataset, and thus contains 1,000 good images with each of the size 299×299×3.

Models to attack. We first consider four widely used state-of-the-art DNNs, namely

Inception-v3 (Inc-v3) [3], Inception-v4 (Inc-v4)[81], Inception-Resnet-v2 (IncRes-v2) [81],

and Resnet-v2-101 (Res-101) [82]. In addition, to increase the difficulty level, we also

include three adversarially trained DNNs (and thus are more robust to AE), namely Inc-

v3𝑒𝑛𝑠3, Inc-v3𝑒𝑛𝑠4 and IncRes-v2𝑒𝑛𝑠1 [83]. The first two models are Inc-v3 trained on AE

generated from an ensemble of 3 and 4 other pretrained DNNs, respectively, and the last

is IncRes-v2 trained on AE generated from a single pretrained DNN (it is still called an

“ensemble” in [83] so we have adopted the same naming convention).
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Defenses to attack. To further increase the difficulty level, we also consider defense

mechanisms in our evaluation. As pointed out by [42], many existing attacks underperform

or even fail when target models are armed with defense mechanisms. Therefore, we select

nine state-of-the-art advanced defenses: the top-3 winners in the NeurIPS defense strategy

competition and 6 recently proposed defense methods. The first group consists of HGD

(rank-1) [40], R&P (rank-2) [36], and NIPS-r3 (rank-3), and the second group consits of

Bit-Red [38], JPEG [39], FD [84], ComDefend [85], RS [42] and NRP [86]. These 9

defense methods have been integrated into their respective DNNs.

Baseline AE-generation methods. We compare our method with five recently pro-

posed attack methods, namely MI-FGSM [1], NI-FGSM [2], Diverse Inputs Method (DIM)

[47], Translation-Invariant attack Method (TIM) [48], and Scale-Invariant attack Method

(SIM) [2]. The first two are momentum-based attacks and the other three are image-

transformation based attacks.

Versatile as a “plug-in”. As mentioned, our method can be applied to any gradient-

based attack method to form a new, stronger attack. We demonstrate this by integrating

our method with DIM, TIM, and SIM, respectively, as well as all of them three combined

together, to obtain two more attacks and include them in our evaluation as well.

Attack setup. We normalize image pixel values in [−1, 1], and set the number of

iterations 𝑇 = 10, the maximum perturbation 𝜖 = 16/255 as in [1]. For parameters related

to EM, we set the decay factor 𝜇 = 1 following [1] and the look-ahead parameter 𝜎 = 2

as indicated by our ablation study. For parameters related to RE, we set 𝑠ℎ = 0.4 and

𝑟𝑒 = 0.3 following [79], the number of erasure copies 𝑚 = 5 and probability 𝑝 = 0.5. We

use attack success rate (ASR) as our evaluation metric, which is the misclassification rate

of a classifier when test samples are AE (we have verified that all the benign images are

classified correctly in all the cases).
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Table 2.1. The attack success rates (ASR) (%) on seven target models in the single-source-
model setting, using EM alone. The AE are generated using a single source model Inc-v3,
Inc-v4, IncRes-v2, or Res-101. ‘*’ indicates white-box attack.

Source model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠1

Inc-v3

MI-FGSM 100.0* 43.6 42.4 35.7 13.1 12.8 6.2
NI-FGSM 100.0* 51.7 50.3 41.3 13.5 13.2 6.0
EM-FGSM 100.0* 55.0 52.7 44.6 11.4 11.5 5.5

Inc-v4

MI-FGSM 56.3 99.7* 46.6 41.0 16.3 14.8 7.5
NI-FGSM 63.1 100.0* 51.8 45.8 15.4 13.6 6.7
EM-FGSM 66.9 100.0* 54.4 47.6 14.7 12.4 6.8

IncRes-v2

MI-FGSM 60.7 51.1 97.9* 46.8 21.2 16.0 11.9
NI-FGSM 62.8 54.7 99.1* 46.0 20.0 15.1 9.6
EM-FGSM 65.2 56.2 99.2* 48.7 18.6 13.1 7.8

Res-101

MI-FGSM 58.1 51.6 50.5 99.3* 23.9 21.5 12.7
NI-FGSM 65.6 58.3 57.0 99.4* 24.5 21.4 11.7
EM-FGSM 65.7 60.9 61.1 99.3* 20.8 17.6 10.0

2.3.2. Experimental Results. In this section, we present our experimental results,

which include evaluations using a single source model, an ensemble of source models,

attacks on advanced defense mechanisms, and an ablation study on hyper-parameters.

2.3.2.1. Single source model. In this section, we evaluate the case that AE are

trained on a single source model and then used to attack multiple target models. We test

four source models: Inc-v3, Inv-v4, IncRes-v2, and Res-101, and the target models are these

four as well as the three ensemble models, i.e., Inc-v3𝑒𝑛𝑠3, Inc-v3𝑒𝑛𝑠4 and IncRes-v2𝑒𝑛𝑠1.

Using EM alone (without RE). We first evaluate the EM approach only, without

using RE. The results are presented in Table 2.1. First, under white-box attacks (source

model is also the target model), all the methods achieve close to 100% ASR as expected.

These mean that, although our method focuses on improving black-box performance (due

to transferability), we do not sacrifice any white-box performance either. Second, let us

look at black-box attacks (target model is different from the source model), which are more

important since they particularly reflect the transferability of AE. We see that EM achieves

the higher ASR in about 60% of the cases while MI-FGSM and NI-FGSM perform the

best in about 30% and 10% of the cases, respectively. Note that we have not activated RE
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Raw Image MI-FGSM NI-FGSM EM-FGSM

Figure 2.3. Adversarial images crafted by MI-FGSM [1], NI-FGSM [2] and our EM
approach on the Inc-v3 model [3] with the maximum perturbation 𝜖 = 16/255.

yet. Taking a closer look, one can observe that the cases where our proposed EM method

outperforms MI-FGSM and NI-FGSM are normally trained models, and the cases in which

it does not (but still keeps a comparable performance) are those three adversarially trained

models. The reason behind this is that, for normally trained models, EM achieves better

optimum in the constrained iterative steps and hence demonstrates better transferability;

but on the other hand, the three ensemble adversarially trained models, i.e., Inc-v3𝑒𝑛𝑠3,

Inc-v3𝑒𝑛𝑠4 and IncRes-v2𝑒𝑛𝑠1, augmented their training data with AE crafted on other static

pre-trained models, and hence were trained to resist transferable AE, making black-box

attacks ineffective. Therefore, to achieve higher ASE against such adversarially trained

models, we need to increase the diversity of perturbations in AE, which precisely motivated

our introduction of our second technique, Ransom Erasure (RE). By combining with RE,

our method achieves much higher ASR against ensemble adversarially trained models, as

shown later. To offer a visual intuition, we also give some example AE images generated

by all these methods, in Figure 2.3. It shows that all the adversarial images are very similar

to the original raw image as perceived by human eyes.

Using RE alone (without EM). We then evaluate the RE approach only, without

using EM. The results are presented in Table 2.2. The results indicate that in all the cases

our proposed RE consistently outperforms DIM, TIM and SIM by a large margin, which

means RE yields higher transferablity on all the black-box models while maintaining high
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Table 2.2. The attack success rates (ASR) (%) on seven target models in the single-source-
model setting, using RE alone. The AE are generated using a single source model Inc-v3,
Inc-v4, IncRes-v2, or Res-101. ‘*’ indicates white-box attack.

Source model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠1

Inc-v3

DIM 99.0* 64.3 60.9 53.2 19.9 18.3 9.3
TIM 100.0* 48.8 43.6 39.5 24.8 21.3 13.2
SIM 100.0* 69.4 67.3 62.7 32.5 30.7 17.3
RE 100.0* 71.1 68.7 64.3 33.1 31.6 19.0

Inc-v4

DIM 72.9 97.4* 65.1 56.5 20.2 21.1 11.6
TIM 58.6 99.6* 46.5 42.3 26.2 23.4 17.2
SIM 80.6 99.6* 74.2 68.8 47.8 44.8 29.1
RE 82.3 99.8* 76.3 71.5 49.6 45.9 31.4

IncRes-v2

DIM 70.1 63.4 93.5* 58.7 30.9 23.9 17.7
TIM 62.2 55.4 97.4* 50.5 32.8 27.6 23.3
SIM 84.7 81.1 99.0* 76.4 56.3 48.3 42.8
RE 86.2 83.3 99.4* 78.7 59.1 50.6 46.2

Res-101

DIM 75.8 69.5 70.0 98.0* 35.7 31.6 19.9
TIM 59.3 52.1 51.8 99.3* 35.4 31.3 23.1
SIM 75.2 68.9 69.0 99.7* 43.7 38.5 26.3
RE 78.2 71.5 72.8 99.8* 45.2 39.8 28.7

attack success rates on the white-box setting. For instance, if we craft adversarial examples

on IncRes-v2 model where our white-box attack achieves 99.4% success rate, RE yields

78.7% ASR on Res-101 which is a black-box setting; in comparison, TIM only achieves an

ASR of 97.4% and 50.5%, respectively, in the same two settings. This set of results validate

the effectiveness of our proposed RE method.

2.3.2.2. Ensemble source model. Crafting AE on an ensemble of models has been

shown to be effective to improve AE transferability [1, 55]. In this section, we evaluate the

performance over an ensemble model of four: Inc-v3, Inc-v4, IncRes-v2 and Res-101, by

averaging their logit outputs when calculating the gradients [1]. The results of using EM

alone are summarized in Table 2.3. We observe that EM achieves the highest ASR in all

the black-box attack scenarios.

Next, we apply both EM and RE to DIM, TIM and SIM, respectively, to form three

new models. In addition, we create a new attack Composite by combining DIM, TIM and

SIM together which forms the strongest baseline. On top of that, we apply EM and RE to
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Table 2.3. ASR (%) on seven target models in the ensemble-source-model setting, using
EM alone. The source model is the ensemble of {Inc-v3, Inc-v4, IncRes-v2, Res-101}. ‘*’
indicates white-box attack.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠1
MI-FGSM 99.9* 98.2* 95.3* 99.9* 39.4 35.3 24.2
NI-FGSM 99.8* 99.8* 98.9* 99.8* 41.0 33.5 23.1
EM-FGSM 99.9* 99.8* 98.4* 99.9* 43.6 36.1 25.9

Table 2.4. ASR (%) on seven target models in the ensemble-source-model setting, using
both EM and RE. The source model is the ensemble of {Inc-v3, Inc-v4, IncRes-v2, Res-
101}. Composite model is the combination of DIM, TIM, and SIM. ‘*’ indicates white-box
attack.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠1

DIM 99.4* 97.4* 94.9* 99.8* 58.1 51.1 34.9
EM-RE-DIM 99.7* 99.1* 97.5* 99.8* 64.3 59.7 41.6

TIM 99.7* 98.9* 97.7* 99.9* 62.2 56.8 48.0
EM-RE-TIM 99.9* 99.3* 98.9* 100.0* 68.9 64.1 56.4

SIM 99.7* 99.0* 97.6* 100.0* 78.8 73.9 59.5
EM-RE-SIM 99.8* 99.3* 98.4* 100.0* 84.3 79.5 66.8
Composite 99.6* 98.9* 97.8* 99.7* 91.1 90.3 86.8

EM-RE-Composite 99.8* 99.3* 98.4* 99.8* 92.3 91.6 88.6

Composite to obtain an enhanced attack using our method. We evaluate these 8 attacks and

report their performance in Table 2.4. It shows that our proposed method again yields the

best ASR in all the white-box and black-box attacks (4 × 7 cases), outperforming all the

baselines by up to 17.5%.

2.3.2.3. Attacking advanced defense mechanisms. Although our proposed method

exhibits superior performance on both regularly and adversarially trained deep models, there

is still a question left as to whether it will perform well against models that are protected

by more sophisticated mechanisms. As pointed out by [42], many existing attacks under-

perform or even fail when target models have additional defense mechanisms. Motivated

by this, we select 9 advanced defense mechanisms to attack, as described in our experiment

setup, for the purpose of a more thorough evaluation.
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Table 2.5. ASR (%) on 9 advanced defense mechanisms. Composite refers to the combina-
tion of DIM, TIM, and SIM.

Source Attack HGD R&P NIPS-r3 Bit-Red JPEG FD ComDefend RS NRP Average

Inc-v3

MI-Composite 56.6 44.9 52.5 36.2 77.3 60.0 80.1 40.3 29.3 53.0
NI-Composite 50.4 39.4 47.4 34.3 76.0 58.6 77.7 36.9 24.8 49.5

EM-RE-Composite 59.6 48.3 55.9 39.6 81.1 65.5 82.3 45.4 33.1 56.8

Ensemble

MI-Composite 91.0 87.7 89.0 75.9 94.2 88.8 95.1 68.1 76.1 85.1
NI-Composite 91.3 85.6 89.0 72.3 95.9 89.5 95.4 63.2 69.5 83.5

EM-RE-Composite 92.9 89.6 91.8 79.3 96.9 92.4 96.4 74.3 80.1 88.2

We use Inc-v3 and the ensemble of {Inc-v3, Inc-v4, IncRes-v2, Res-101} as the

source models to train AE, and attack the above 9 advanced defense mechanisms. We further

create more baseline attacks by combining MI and NI respectively with the Composite (MI

and NI do have this similar “plug-in” kind of advantage as our method, but most other

methods in the literature do not have). The results are given in Table 2.5. In this case, there

is no white-box attack and all attacks are black-box. We observe that our proposed EM-RE

approach is the best performer in all the scenarios, with a substantial winning margin, up to

25.4%.

2.3.2.4. Ablation study on hyper-parameters. We also conduct ablation exper-

iments to study the impact of the hyper-parameters on the performance of our approach.

Two key parameters are 𝜎 which determines the look-ahead horizon in EM, and 𝑠ℎ which

determines the maximum erasure area in RE. In this ablation study, the source model is

chosen to be Inc-v3 and the generated AE are then used to attack the other six models, and

hence all the attacks are black-box.

The results as shown in Fig. 2.4, where we vary 𝜎 from 0.0 to 4.0 with step size

1.0, and vary 𝑠ℎ from 0.1 to 0.5 with step size 0.1. The perturbation 𝜖 = 16/255 and the

number of iterations 𝑇 = 10. The results indicate that the best ASR is achieved at 𝜎 = 2.0,

yet is insensitive to the choice of 𝑠ℎ (which is a good thing since it implies robustness of our

erasure). Therefore, we have chosen 𝜎 = 2.0 and 𝑠ℎ = 0.4 in our experiments.
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Figure 2.4. Ablation study on 𝜎 (look-ahead horizon) and 𝑠ℎ (max. erasure area). The
source model is Inc-v3 and the 6 target models under attack are indicated by the legend.

2.4. SUMMARY

In this section, we propose a new black-box approach of crafting transferable adver-

sarial examples (AE) to attack deep learning based image classifiers. As such deep models

are increasingly being deployed in autonomous driving, medical diagnosis, and many other

computer vision applications, studying this topic plays an important role in deepening our

understanding of AI security. Our proposed method consists of a gradient-based elastic

momentum (EM) technique, and a random erasure (RE) data augmentation technique. EM

introduces a flexible look-ahead horizon to estimate future momentum during AE com-

putation, which speeds up the process of finding local optima and thus prevents hitting

the overfitting region. RE creates an ensemble of transformed images that increases the

diversity of perturbations and helps stablize gradient updates, which optimize the adver-

sarial perturbations. We have performed extensive experiments to evaluate our proposed

EM-RE method by attacking 7 modern deep learning classifiers and 9 advanced defense

mechanisms, in comparison with 5 recently proposed baseline methods (and an additional

Composite method). The results demonstrate superior transferability of the adversarial

examples generated by our proposed method for black-box attacks.
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3. IMPROVING ADVERSARIAL TRANSFERABILITY FROM OPTIMIZATION
PERSPECTIVE: GRADIENT NOEM PENALTY

3.1. INTRODUCTION

Deep Neural Networks (DNNs) are the workhorse of a broad variety of computer

vision tasks but are vulnerable to adversarial examples (AE), which are data samples

(typically images) that are perturbed by human-imperceptible noises yet result in odd

misclassifications. This lack of adversarial robustness curtails and often even prevents

deep learning models from being deployed in security or safety critical domains such as

healthcare, neuroscience, finance, and self-driving cars, to name a few.

Adversarial examples are commonly studied under two settings, white-box and

black-box attacks. In the white-box setting, adversaries have full knowledge of victim

models, including model structures, parameters and weights, and loss functions used to

train the models. Therefore, they can directly obtain the gradients of the victim models

and seek adversarial examples by misleading the loss function toward incorrect predictions.

White-box attacks are important for evaluating and developing robust models and serve as

the backend method for many black-box attacks, but is limited in use due to its requirement

of having to know the internal details of target models. In the black-box setting, adversaries

do not need specific knowledge about victim models other than their external properties

(type of input and output). Two types of approaches, query-based and transfer-based, are

commonly studied for black-box attacks. The query-based approach attempts to estimate

the gradients of a victim model by querying it with a large number of input samples and

inspecting the outputs. Due to the large number of queries, it can be easily detected and

defended. The transfer-based approach uses surrogate models to generate transferable AE

which can attack a range of models instead of a single victim model. Hence it is a more

attractive approach to black-box attacks.



26

This section takes the second approach and focuses on designing a new and effective

method to improve the transferability of AE. Several directions for boosting adversar-

ial transferability have appeared. Dong et al. [1] proposed momentum based methods.

Attention-guided transfer attack (ATA) [51] uses attention maps to identify common fea-

tures for attacking. Diverse Input Method (DIM) [47] calculates the average gradients of

augmented images. [55] generates transferable AE using an ensemble of multiple models.

Despite the efforts of previous works, there still exists a large gap of attack success

rate between the transfer-based setting and the ideal white-box setting. In this section, we

propose a novel method to boost adversarial transferability from an optimization perspective.

Inspired by the concept of “flat minima” in the optimization theory [87] which improves

the generalization of DNNs, we seek to generate AE that lie in flat regions where the

input gradient norm is small, so as to “generalize” to other victim models that AE are not

generated on. In a nutshell, this section makes the following contributions:

• We present a novel transfer-based black-box attack that targets adversarial examples

(AE) from a novel perspective, seeking to locate them in flat regions of the loss

landscape by penalizing the input gradient norm.

• Our method, the input gradient norm penalty (GNP), enhances adversarial transfer-

ability across a broad spectrum of deep networks. Through extensive experiments,

we have shown that GNP consistently outperforms existing methods, establishing a

new benchmark for transfer-based black-box attacks.

• Furthermore, we demonstrate that GNP can be effortlessly integrated with existing

transfer-based attacks, yielding even better performance. This indicates not only the

superior effectiveness of our method but also its exceptional flexibility and compati-

bility with a wide range of existing attack techniques.
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3.2. METHOD

Given a classification model 𝑓 (𝑥) : 𝑥 ∈ X → 𝑦 ∈ Y that outputs a label 𝑦 as

the prediction for an input 𝑥, we aim to craft an adversarial example 𝑥∗ which is visually

indistinguishable from 𝑥 but will be misclassified by the classifier, i.e., 𝑓 (𝑥∗) ≠ 𝑦. The

generation of AE can be formulated as the following optimization problem:

arg max
𝑥∗

ℓ (𝑥∗, 𝑦) , s.t. ∥𝑥∗ − 𝑥∥𝑝 ≤ 𝜖, (3.1)

where the loss function ℓ(·, ·) is often the cross-entropy loss, and the 𝑙𝑝-norm measures the

discrepancy between 𝑥 and 𝑥∗. In this work, we use 𝑝 = ∞ which is commonly adopted in

the literature. Optimizing Eq. (4.1) needs to calculate the gradient of the loss function, but

this is not feasible in the black-box setting. Therefore, we aim to create transferable AE on

a source model yet can attack many other target models.

3.2.1. Motivation. We develop a new method to boost adversarial transferability

from a perspective inspired by “flat optima” in optimization theory. See Figure 3.1. If an

AE is located at a sharp local maximum, it will be sensitive to the difference of decision

boundaries between the source model and target models. In contrast, if it is located at a

flat maximum region, it is much more likely to result in a similar high loss on other models

(which is desired).

Thus, we seek to generate AE in flat regions. To this end, we introduce a gradient

norm penalty (GNP) term into the loss function, which penalizes the gradient norm of the

loss function with respect to input. The reason is that flat regions are characterized by

small gradient norms, hence penalizing the gradient norm will encourage the optimizer to

find an AE that lies in a flat region. We thus enhance the adversarial transferability since

a minor shift of decision boundary will not significantly change the loss value (prior work

has shown that different networks often share similar decision boundaries).
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Figure 3.1. The loss function landscape: sharpness vs. flatness, which leads to different
levels of transferability.

3.2.2. GNP Attack. As explained in method, we aim to guide the loss function

optimization process to move into a flat local optimal region. To this end, we introduce

GNP to penalize large gradient norm, as

𝐿 (𝑥, 𝑦) = ℓ(𝑥, 𝑦) − 𝜆 ∥∇𝑥ℓ(𝑥, 𝑦)∥2 (3.2)

where ℓ(·) is the original loss function of the source model, and the regularization term is

our GNP, which encourages small gradient norm when finding local maxima.

For gradient based attacks (e.g., FGSM, I-FGSM, MI-FGSM, etc.), we need to

calculate the gradient of the new loss (3.2). To simplify notation, we omit 𝑦 in the loss

function since we are calculating gradient with respect to 𝑥. Using the chain rule, we have

∇𝑥𝐿 (𝑥) = ∇𝑥ℓ(𝑥) − 𝜆∇2
𝑥ℓ(𝑥)

∇𝑥ℓ(𝑥)
∥∇𝑥ℓ(𝑥)∥

(3.3)

This equation involves the calculation of Hessian matrix𝐻 = ∇2
𝑥ℓ(𝑥). This is often infeasible

because of the curse of dimensionality (such a Hessian matrix in DNNs tends to be too large

due to the often large input dimension). Therefore, we take the first-order Taylor expansion
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Algorithm 2 I-FGSM+GNP

Input: A clean sample 𝑥 with ground-truth label 𝑦; source model 𝑓 (·) with loss function
ℓ(·);
Input: Perturbation size 𝜖 ; maximum iterations 𝑇 ; step length 𝑟; regularization coefficient
𝛽

Output: A transferable AE 𝑥𝑎𝑑𝑣

1: 𝛼 = 𝜖/𝑇 ; 𝑔0 = 0; 𝑥𝑎𝑑𝑣0 = 𝑥

2: for 𝑡 = 0 to 𝑇 − 1 do
3: 𝑔1 = ∇𝑥ℓ(𝑥)
4: Compute 𝑟 ∇𝑥ℓ(𝑥)

| |∇𝑥ℓ(𝑥) | |

5: 𝑔2 = ∇𝑥ℓ

(
𝑥 + 𝑟

∇𝑥ℓ(𝑥)
| |∇𝑥ℓ(𝑥) | |

)
6: 𝑔𝑡 = (1 + 𝛽)𝑔1 − 𝛽𝑔2
7: Update 𝑥𝑎𝑑𝑣

𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · sign(𝑔𝑡)
8: end for
9: return 𝑥𝑎𝑑𝑣 = 𝑥𝑎𝑑𝑣

𝑇

together with the finite difference method (FDM) to approximate the following gradient:

∇𝑥𝐿 (𝑥 + 𝑟Δ𝑥) ≈ ∇𝑥ℓ(𝑥) + 𝐻𝑟Δ𝑥 (3.4)

where Δ𝑥 =
∇𝑥ℓ(𝑥)
∥∇𝑥ℓ(𝑥)∥ , and 𝑟 is the step length to control the neighborhood size. Thus we

obtain the regularization term of (3.3) as:

𝐻
∇𝑥ℓ(𝑥)
∥∇𝑥ℓ(𝑥)∥

≈
∇𝑥ℓ

(
𝑥 + 𝑟

∇𝑥ℓ(𝑥)
∥∇𝑥ℓ(𝑥)∥

)
− ∇𝑥ℓ(𝑥)

𝑟
(3.5)

Inserting (3.5) back into (3.3), we obtain the gradient of the regularized loss function

as:

∇𝑥𝐿 (𝑥) = (1 + 𝛽)∇𝑥ℓ(𝑥) − 𝛽∇𝑥ℓ

(
𝑥 + 𝑟

∇𝑥ℓ(𝑥)
∥∇𝑥ℓ(𝑥)∥

)
(3.6)

where 𝛽 = 𝜆
𝑟

is the regularization coefficient. We summarize the algorithm of how GNP is

integrated into I-FGSM in Algorithm 3, but I-FGSM can be replaced by any gradient based

attack.
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Table 3.1. Attack success rates when GNP is integrated with baselines to attack 11 target
models (’*’ denotes white-box attack).

Method 𝜖 ResNet50* VGG19 ResNet152 Inc v3 DenseNet MobileNet SENet ResNeXt WRN PNASNet MNASNet Average

I-FGSM

16/255 100.00% 61.50% 52.82% 30.86% 57.36% 58.92% 38.12% 48.88% 48.92% 28.92% 57.20% 48.35%
8/255 100.00% 38.90% 29.36% 15.36% 34.86% 37.66% 17.76% 26.30% 26.26% 13.04% 35.08% 27.46%
4/255 100.00% 18.86% 11.28% 6.66% 15.44% 18.36% 5.72% 9.58% 9.98% 4.14% 17.02% 11.70%

I-FGSM
+GNP

16/255 100.00% 75.96% 68.89% 48.23% 73.68% 74.05% 55.46% 62.36% 70.60% 45.06% 76.98% 67.12%
8/255 99.96% 68.56% 60.65% 38.58% 62.05% 63.23% 43.69% 50.36% 59.32% 33.62% 60.28% 53.97%
4/255 99.98% 25.96% 22.35% 15.86% 26.89% 28.66% 15.62% 21.93% 23.06% 13.69% 30.21% 22.38%

MI-FGSM

16/255 100.00% 73.01% 67.62% 47.51% 73.16% 72.42% 54.53% 61.78% 60.96% 44.10% 71.46% 62.75%
8/255 100.00% 52.50% 41.52% 25.56% 47.25% 48.96% 28.06% 35.81% 37.56% 20.41% 47.62% 38.53%
4/255 99.94% 25.74% 16.68% 9.95% 22.54% 24.89% 9.56% 14.20% 15.38% 7.23% 23.27% 16.94%

MI-FGSM
+GNP

16/255 100% 89.65% 83.69% 65.86% 87.96% 90.06% 69.74% 79.12% 77.36% 58.60% 88.25% 79.04%
8/255 99.91% 65.28% 55.63% 39.69% 61.42% 63.26% 42.03% 48.65% 51.07% 35.03% 58.93% 52.20%
4/255 100.00% 39.62% 33.25% 15.62% 37.96% 40.04% 20.35% 30.27% 30.05% 15.23% 37.92% 30.03%

3.3. EXPERIMENTS

In this section, we detail our experiments, describing the experimental settings and

presenting the results that validate the effectiveness of our proposed methods.

3.3.1. Experiment Setup. In this section, we provide an overview of our experi-

ment setup, including details about the dataset, the models employed, and the implementa-

tion specifics.

Dataset and Models. We randomly sample 5,000 test images that can be correctly

classified by all the models, from the ImageNet [5] validation set. We consider 11 SOTA

DNN-based image classifiers: ResNet50 [88], VGG-19 [89], ResNet-152 [88], Inc v3 [90],

DenseNet [91], MobileNet v2 [92], SENet [93], ResNeXt [94], WRN [95], PNASNet [96],

and MNASNet [97]. Following the work in [98], we choose ResNet50 as the source model

and the remining 10 models as target models.

Implementation Details. In experiments, the pixel values of all images are scaled to

[0, 1]. The adversarial perturbation is restricted by 3 scales 𝜖 = 4/255, 8/255, 16/255. The

step length is set as 𝑟 = 0.01 and regularization coefficient 𝛽 = 0.8, we run 100 iterations

for all attacks and evaluate model misclassification as attack success rate.
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3.3.2. Experimental Results. In this section, we present our experimental results,

which include evaluations of integration with baseline attacks, integration with existing

transfer-based attacks and attacking “secured” models.

3.3.2.1. Integration with baseline attacks. We first evaluate the performance of

GNP by integrating it with baseline attacks including I-FGSM and MI-FGSM. The results

are shown in Table 3.1. We use a pre-trained ResNet50 as the source model and evaluate the

attack success rate (ASR) of the generated AE on a variety of target models under different

scales of perturbation 𝜖 . GNP achieves significant and consistent improvement in all the

cases. For instance, taking the average ASR of all the 10 target models under perturbation

𝜖 = 8/255, GNP outperforms I-FGSM and MI-FGSM by 26.51% and 13.67%, respectively.

In addition, the improvements of the attack success rates on a single model can be achieved

by a large margin of 33.06%.

3.3.2.2. Integration with existing transfer-based attacks. Here we also evalu-

ate the effectiveness of GNP when incorporated into other transfer-based attacks such as

DIM [48] and TIM [47]. The results are given in Table 3.2 and show that DIM+GNP

and TIM+GNP are clear winners over DIM and TIM alone, respectively. Specifically,

DIM+GNP achieves an average success rate of 91.95% under 𝜖 = 16/255 for the 10 target

models, and TIM+GNP outperform TIM by a large margin of 16.28% under 𝜖 = 8/255.

We note that we only present the integration of GNP with two typical methods here, but our

method also apply to other more powerful gradient-based attack methods.

3.3.2.3. Attacking “secured” models. For a more thorough evaluation, we also

investigate how GNP will perform when attacking DNN models that have been adversarially

trained (and hence are much harder to attack). We choose three such advanced defense

methods to attack, namely, JPEG [39], R&P [36] and NRP [86]. In addition, we choose

another three ensemble adversarially trained (AT) models, which are even harder than

regular AT models, and attack them: Inc-v3𝑒𝑛𝑠3, Inc-v3𝑒𝑛𝑠4 and IncRes-v2𝑒𝑛𝑠1 [83]. We

craft AE on the ResNet50 surrogate model with 𝜖 = 16/255, and use DIM+TIM as the
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Table 3.2. ASR when GNP is integrated with transfer-based attacks to attack 11 target
models (’*’ denotes white-box attack).

Method 𝜖 ResNet50* VGG19 ResNet152 Inc v3 DenseNet MobileNet SENet ResNeXt WRN PNASNet MNASNet Average

DIM

16/255 100.00% 93.70% 93.62% 72.96% 94.32% 91.68% 79.41% 91.65% 91.17% 76.34% 89.07% 87.47%
8/255 100.00% 74.01% 71.32% 40.58% 74.65% 71.63% 44.32% 63.38% 64.32% 40.29% 67.27% 61.28%
4/255 100.00 % 39.21% 31.65% 15.93% 38.35% 36.74% 15.42% 25.53% 28.68% 12.40% 33.56% 27.76%

DIM
+GNP

16/255 100.00% 96.49% 97.38% 76.89% 97.86% 95.73% 84.56% 95.38% 96.04% 81.69% 93.51% 91.95%
8/255 100.00% 85.63% 84.21% 49.65% 85.32% 80.59% 56.24% 72.39% 75.52% 51.68% 78.16% 72.24%
4/255 100.00% 51.36% 45.69% 27.96% 51.39% 49.29% 28.13% 40.08% 39.64% 25.97% 45.23% 40.96%

TIM

16/255 100.00% 79.90% 76.28% 54.41% 85.42% 77.68% 55.02% 74.15% 73.86% 62.07% 74.38% 73.34%
8/255 100.00% 54.91% 44.76% 28.29% 58.17% 51.02% 24.16% 41.70% 46.08% 29.05% 48.92% 41.71%
4/255 99.92% 24.31% 17.23% 12.67% 28.42% 23.24% 6.56% 15.03% 18.25% 9.94% 22.76% 18.95%

TIM
+GNP

16/255 100.00% 93.61% 90.39% 68.43% 96.89% 91.23% 69.01% 87.32% 84.69% 76.25% 85.39% 84.30%
8/255 100.00% 70.03% 61.29% 45.12% 71.35% 66.23% 41.03% 55.46% 60.12% 46.20% 62.97% 57.99%
4/255 100.00% 35.96% 35.03% 25.16% 43.17% 36.95% 20.36% 30.31% 32.01% 23.68% 39.05% 32.27%

Table 3.3. Attacking 6 “secured” models either are adversarially trained or with advanced
defense strategies.

Source model Attack Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠1 JPEG R&P NRP

ResNet50 DIM+TIM 52.13% 48.79% 38.96% 54.85% 49.75% 39.44%
DIM+TIM+GNP 65.69% 63.16% 52.89% 66.31% 62.04% 52.81%

“backbone” to apply GNP. The results are presented in Table 3.3, where we can see that

GNP again boosts ASR significantly against the six “secured” models, achieving consistent

performance improvements of 11.46–14.37%.

3.3.3. Ablation Study. We conduct ablation study on the hyper-parameters of the

proposed GNP attack, i.e., step length 𝑟 and regularization coefficient 𝛽. Since 𝑟 represents

the radius of neighborhood that is flat around current AE, a larger 𝑟 is preferred; on the

other hand, setting it too large will increase the approximation error of Taylor expansion and

thus mislead the AE update direction. The 𝛽 is to balance the goal of fooling the surrogate

model and finding flat optima. 4.3 reports the results of our ablation study, where ASR

is averaged over 10 target models (excluding the source ResNet50) attacked by I-FGSM +

GNP with 𝜖 = 8/255. We observe that adding the GNP regularization term clearly improves

performance (as compared to 𝛽 = 0) and the performance gain is rather consistent for 𝛽 in
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a wide range of 0.6–1.6. The step length 𝑟 does not affect the performance gain too much

either, and 𝑟 = 0.01 seems to be the most stable. Thus, the ablation study reveals that GNP

is not hyper-parameter sensitive and works well in a variety of conditions.

Figure 3.2. Average attack success rate (ASR) under different values of hyperparameters
step length 𝑟 and regularization coefficient 𝛽.

3.4. SUMMARY

In this section, we have proposed a new method for improving the transferability of

AE from an optimization perspective, by seeking AE located at flat optima. We achieve this

by introducing an input gradient norm penalty (GNP) which guides the AE search toward

flat regions of the loss function. This GNP method is very flexible as it can be used with any

gradient based AE generation methods. We conduct comprehensive experimental study and

demonstrate that our method can boost the transferability of AE significantly. This section

focuses on untargeted attacks, but GNP can be rather easily applied to targeted attacks as

well, by making a small change to the loss function.



34

4. IMPROVING ADVERSARIAL TRANSFERABILITY FROM MODEL
PERSPECTIVE: LIPSCHITZ REGULARIZED SURROGATE

4.1. INTRODUCTION

Adversarial attacks are commonly launched under two settings, white-box and black-

box attacks. In the white-box setting, adversaries have full knowledge of target models,

including model structures, parameters and weights, data and loss functions used to train

the models. Therefore, they can add such perturbation to benign images that the loss

on the perturbed images is maximized. An efficient way to do this involves iteratively

incorporating the gradient of the loss w.r.t. input [24, 26] into perturbations. White-box

attacks are important for evaluating and developing robust models, and also serve as the

backend method for many black-box attacks. However, they are limited by the requirement

of having to know the internal details of target models. In the black-box setting, adversaries

do not need insider knowledge about target models other than their external interface

(type/format of input and output), and usually take two types of approaches, query-based

or transfer-based. Query-based approaches attempt to estimate the gradients of a target

model’s loss function by querying it with a large number of input samples and inspecting

the outputs. Such frequent queries make it easy to be detected and defend them. On the

other hand, transfer-based approaches use surrogate models to generate transferable AE

which can attack a wide range of models, and hence are more effective to form stronger and

more covert black-box attacks.

The transferability of AE is of central importance for transfer-based attacks. Unveil-

ing principles of adversarial transferability provides insight into understanding the working

mechanism of DNNs and designing robust DNNs. In the literature, several directions have

been explored to improve the transferability of AE from the attackers’ perspective. These

include optimization-based [1, 2], smoothing-based [47, 48, 76, 77], attention-based [51],

and ensemble-based [74] methods. Despite these efforts, a large gap of attack success rate
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Figure 4.1. The loss landscape of original and transformed surrogate model: corrugated
vs. smooth. Transformed surrogate models offer more stable input gradients and make the
generated AE more generalizable, enabling more potent attacks.

still exists between the transfer-based black-box setting and the ideal white-box setting. The

major reason is that AE created on a surrogate model can easily be trapped into the surrogate

model’s exclusive blind spots, resulting in poor generalization to fool other target models

— a phenomenon known as AE overfitting.

Prior work on boosting adversarial transferability has focused on the AE crafting

process itself, either by (1) manipulating the input images [47] or their attention maps

[54], or (2) tuning the AE optimization steps such as applying momentum [1] or variance

reduction [99]. However, the surrogate model, on which AE crafting is hinged, has been

taken as given and not adequately explored. Specifically, what internal properties of a

surrogate model are important to produce transferable AE, and (how) are they achievable?

Answering this question points toward a new direction to adversarial machine learning.

We were inspired by the intricate terrain of the loss landscape w.r.t. inputs, which

is characterized by peaks, valleys, and plateaus, profoundly influencing the behavior of

optimization algorithms that generate AE. Thus, we propose to impose local Lipschitz

regularization on the loss landscape of surrogate models, striving to alleviate notorious

challenges in optimization posed by sharp gradients, vanishing or exploding gradients,

and chaotic oscillations of gradient descent within the loss landscape. Upon that, the

optimization process can traverse terrains with ease, not encountering steep slopes, cliffs,

narrow valleys, etc., thereby allowing for creating stronger (i.e., more generalizable) transfer-
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based black-box attacks. As shown in Figure 4.1, such regularized surrogate models offer

more stable input gradients and flatter local optima which help avoid AE overfitting and

create more transferable AE.

The contributions of this section are summarized below:

• Unlike prior work which all focuses on the AE generation process per se, we transform

surrogate models on which that process is based, such that any existing transfer-based

black-box AE generation methods can simply run on our LRS-transformed surrogate

models, like a “cushion”, without any change yet achieving much better performance.

• To the best of our knowledge, this is the first work that establishes a connection

between the inner properties of surrogate models and AE transferability. We identify

three such properties that would favor adversarial transferability, namely smaller local

Lipschitz constant, smoother loss landscape, and stronger adversarial robustness,

offering further insights into understanding adversarial transferability.

• We conduct extensive evaluation on ImageNet and demonstrate that, by applying LRS

to a basic AE generation method (PGD), it yields superior adversarial transferability

for 7 state-of-the-art black-box attacks on 10 target models.

4.2. METHODOLOGY

Given a classification model 𝑓 (𝑥) : 𝑥 ∈ X → 𝑦 ∈ Y that outputs a predicted label 𝑦

for an input 𝑥, we aim to craft an adversarial example 𝑥∗ which is visually indistinguishable

from 𝑥 but will be misclassified by the classifier, i.e., 𝑓 (𝑥∗) ≠ 𝑦. This objective can be

formulated as the following optimization problem:

arg max
𝑥∗

ℓ (𝑥∗, 𝑦) , s.t. ∥𝑥∗ − 𝑥∥𝑝 ≤ 𝜖, (4.1)
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where the loss function ℓ(·, ·) is often the cross-entropy loss, and the 𝑙𝑝-norm measures the

discrepancy between 𝑥 and 𝑥∗. We adopt 𝑝 = ∞ as is common in the literature. Optimizing

Eq. (4.1) needs to calculate the gradient of the loss function, which unfortunately is not

accessible in the black-box setting. Therefore, we seek a surrogate model on which we aim

to create transferable AE that can attack many other unknown target models.

The choice of surrogate model plays a critical role in generating transferable AE.

However, previous works have focused on selecting pretrained surrogate models in terms of

network architecture, model capacity and accuracy [49], and attacking them as given. Those

models’ internal properties such as loss geometry and robustness have been overlooked. In

our work, we set to alter any given surrogate model towards desired internal properties that

favor adversarial transferability.

4.2.1. LRS-1: Lipschitz Regularization on the First Order of Loss Landscape.

Definition 1 A function 𝑓 (𝑥) is locally 𝐿𝑐-Lipschitz continuous on an open set Ω ⊂ R𝑚 if

there exists a constant 0 ≤ 𝐿𝑐 < ∞ satisfying

∀𝑥1, 𝑥2 ∈ Ω, ∥ 𝑓 (𝑥1) − 𝑓 (𝑥2)∥2 ≤ 𝐿𝑐 ∥𝑥1 − 𝑥2∥2.

The smallest 𝐿𝑐 for which the above inequality is satisfied is called the Lipschitz

constant of 𝑓 (·). Without loss of generality, we assume that the loss function of surrogate

model is a locally Lipschitz function around a datapoint 𝑥 (i.e., in the neighborhood B𝜖 (𝑥) =

{𝑥′ : ∥𝑥 − 𝑥′∥2 ≤ 𝜖}). Our aim is to restrict the local Lipschitz constant 𝐿𝑐. The rationale

is that if the loss function of the surrogate model has a small local Lipschitz constant 𝐿𝑐,

the change of loss will be small in the neighborhood of 𝑥; thus for any adversarial examples

𝑥∗ that incurs a large loss ℓ(𝑥∗), datapoints around 𝑥∗ are also likely to incur large loss, and

hence tend to be adversarial on other unknown target models as well since neural network

classifiers generally share similar decision boundaries and loss landscape [55].
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To constrain the local Lipschitz constant 𝐿𝑐, we derive a regularization term that is

specifically designed to modify the loss landscape of surrogate models. This regularization

term aims to ensure that the surrogate models adhere to the desired smoothness properties,

thereby controlling the sensitivity of the model’s predictions to small changes in the input.

By reshaping the loss landscape, the regularization term helps in achieving more stable and

reliable predictions, ultimately aligning the model’s behavior with the goal of maintaining

a controlled Lipschitz constant. According to the mean value theorem, for all 𝑥′ ∈ B𝜖 (𝑥),

∥ℓ (𝑥′) − ℓ (𝑥)∥2 = ∥∇ℓ(𝜁) (𝑥′ − 𝑥)∥2 , (4.2)

where 𝜁 = 𝑐𝑥 + (1 − 𝑐)𝑥′, 𝑐 ∈ [0, 1]. Then the Cauchy-Schwarz inequality gives that

∥ℓ (𝑥′) − ℓ (𝑥)∥2 ≤ ∥∇ℓ(𝜁)∥2 ∥(𝑥′ − 𝑥)∥2 . (4.3)

When 𝑥′ → 𝑥, the corresponding Lipschitz constant 𝐿𝑐 = ∥∇ℓ(𝜁)∥2 approximates to

∥∇ℓ (𝑥)∥2. Therefore, we transform our original aim of constraining the Lipschitz constant

𝐿𝑐 into constraining ∥∇ℓ (𝑥)∥2 so that the crafted AE would reach a smoother and flatter

optimum when maximizing the loss.

𝐿𝑐∥∇ 𝑓 (𝑥)∥2 ≥ 𝑓 (𝑥 + ∇ 𝑓 (𝑥)) − 𝑓 (𝑥) ≥ ⟨∇ 𝑓 (𝑥),∇ 𝑓 (𝑥)⟩ = ∥∇ 𝑓 (𝑥)∥2
2 (4.4)

To this end, we impose the constraint of small Lipscitz constant to the loss of

surrogate model by optimizing the following new objective:

𝐿 (𝑥, 𝑦) = ℓ(𝑥, 𝑦) + 𝜆1 ∥∇𝑥ℓ(𝑥, 𝑦)∥2
2 (4.5)

where ℓ(·) is the original loss function of the surrogate model, and we square the gradient

norm in order to penalize more on larger norms.
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4.2.2. LRS-2: Lipschitz Regularization on the Second Order of Loss Land-

scape.

Definition 2 A function 𝑓 (𝑥) is said to have a Lipschitz continuous gradient on an open set

Ω ⊂ R𝑚 if there exists a constant 0 ≤ 𝐿𝑠 < ∞ satisfying

∀𝑥1, 𝑥2 ∈ Ω, ∥∇ 𝑓 (𝑥1) − ∇ 𝑓 (𝑥2)∥2 ≤ 𝐿𝑠 ∥𝑥1 − 𝑥2∥2.

From the convex optimization theory, we know that for a twice differentiable strongly

convex 𝑓 (·), the largest eigenvalue of the Hessian of 𝑓 is uniformly upper bounded by 𝐿𝑠

everywhere on Ω. That is,

𝐿𝑠 𝐼 ⪰ ∇2 𝑓 (𝑥) (4.6)

Also we have
𝑛∑︁
𝑖=1

𝜆2
𝑖 =

∇2 𝑓 (𝑥)
2
𝐹

(4.7)

Our aim is to restrict the Lipschitz continuous gradient of 𝑓 , such that the largest

eigenvalue of the Hessian of 𝑓 will be small. The rationale is that the local curvature

geometry of a function is measured by its Hessian, whose eigenvectors and eigenvalues

describe the directions of principal curvature and the amount of curvature in each direction,

respectively. Thus, limiting the eigenvalues will lead to smaller curvature which translates

to a more linear behaviour of the surrogate network. Besides, this regularization penalizes a

steep loss surface, encouraging the optimization to move towards regions of flatter curvature,

where the generated AE will have a better ability to generalize to new, unseen models [46].

Thus, we propose a regularization on the second-order of the loss landscape as

follows by “linearlizing” the surrogate model:

𝐿 (𝑥, 𝑦) = ℓ(𝑥, 𝑦) + 𝜆2
∇2

𝑥ℓ(𝑥, 𝑦)
2
𝐹
. (4.8)
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Remark: Note that the above two regularization formulations (4.5) (4.8) concern

local Lipschitzness with respect to the input space instead of the parameter space. This is

an important distinction from conventional neural network optimization.

4.2.3. Optimizing the Regularized Loss. In view of practical implementation, we

also consider reducing the computational overhead and make our attack scalable to large

neural networks and datasets. To this end, instead of training a surrogate model using our

proposed regularized objective from scratch, we propose to fine-tune a pretrained network

with only a few extra epochs (10 epochs in our implementation).

To efficiently calculate the regularization terms in (4.5) and (4.8), we approximate

them with finite difference methods (FDM), because computing the full Hessian matrix

would incur prohibitive cost for high-dimensional datasets.

Let 𝑑 be the input gradient direction,gradient direction i.e., 𝑑 = sign(∇𝑥ℓ(𝑥, 𝑦)), ℎ

be the finite difference step size. Then, the input gradient norm is approximated by

∥∇𝑥ℓ(𝑥, 𝑦)∥2
2 ≈

(
ℓ(𝑥 + ℎ1𝑑, 𝑦) − ℓ(𝑥, 𝑦)

ℎ1

)2
(4.9)

Similary,

∇2
𝑥ℓ(𝑥, 𝑦)

2
𝐹
≈
(
∇𝑥ℓ(𝑥 + ℎ2𝑑, 𝑦) − ∇𝑥ℓ(𝑥, 𝑦)

ℎ2

)2
(4.10)

This approximation significantly reduces the computational overhead associated

with directly calculating the Hessian matrix. Moreover, it provides the additional benefit

of controlling large variations in both the loss function and its gradient. This is achieved

through the step size ℎ, which defines the neighborhood size around the datapoint 𝑥. By

adjusting ℎ, we can effectively manage the extent of variations, leading to a more stable and

efficient optimization process.
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Algorithm 3 LRS-1 (using PGD as an example base)

Input: A clean sample 𝑥 with ground-truth label 𝑦; a pretrained surrogate model 𝑓 (·);
Hyper-parameters: Finetune epochs 𝑛; batch size 𝑚; learning rate 𝜂; training dataset 𝐷;
step size ℎ; perturbation size 𝜖 ; maximum iterations 𝑇 ; regularization coefficient 𝜆
Output: A transferable AE 𝑥𝑎𝑑𝑣

1: Pretrained surrogate model 𝑓0 with weight 𝑤0
2: for epoch = 0 to 𝑛 − 1 do
3: for t = 0 to 𝑙𝑒𝑛(𝐷)/𝑚 do
4: sample minibatch {(𝑥𝑖, 𝑦𝑖)}𝑖=1,...,𝑚
5: 𝑔𝑖 = ∇𝑥ℓ (𝑥𝑖, 𝑦𝑖;𝑤𝑡)
6: 𝑑𝑖 = sign(𝑔𝑖)
7: 𝑧𝑖 = 𝑥𝑖 + ℎ𝑑𝑖
8: L(𝑤𝑡) =

∑𝑚
𝑖=1 ℓ (𝑥𝑖, 𝑦𝑖;𝑤𝑡)

9: R(𝑤𝑡) =
∑𝑚

𝑖=1 (ℓ (𝑧𝑖, 𝑦𝑖;𝑤𝑡) − ℓ (𝑥𝑖, 𝑦𝑖;𝑤𝑡))2

10: 𝑤𝑡+1 = 𝑤𝑡 − 1
𝑚
𝜂∇𝑤

(
L (𝑤𝑡) + 1

ℎ2𝜆R (𝑤𝑡)
)

11: end for
12: end for
13: save finetuned surrogate model 𝑓𝑛 with weight 𝑤𝑛

14: 𝛼 = 𝜖/𝑇 ; 𝑥𝑎𝑑𝑣0 = 𝑥

15: for 𝑡 = 0 to 𝑇 − 1 do
16: 𝑔𝑡 = ∇𝑥ℓ(𝑥, 𝑤𝑛)
17: 𝑥𝑎𝑑𝑣

𝑡+1 = 𝑥𝑎𝑑𝑣𝑡 + 𝛼 · sign(𝑔𝑡)
18: 𝑥𝑎𝑑𝑣

𝑡+1 = clip
(
𝑥𝑎𝑑𝑣
𝑡+1 , 0, 1

)
19: end for
20: return 𝑥𝑎𝑑𝑣 = 𝑥𝑎𝑑𝑣

𝑇

Algorithm 3 presents LRS-1 in its entirety, employing Projected Gradient Descent

(PGD) [26] as a simple base to substantiate the attack. Notably, LRS serves as a versatile

“cushion” where any transfer-based black-box attack can run on top of it (applied to that

attack’s chosen surrogate model) without change, yet reaping performance gains. The

application of LRS-2 mirrors that of LRS-1.
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The LRS approach is flexible whereby it allows the combined use of LRS-1 and

LRS-2 as a “double cushion.” Achieving this simply involves a weighted sum of the two

regularization terms applied to the loss function. We refer to this scenario as LRS-F. In our

experiments, we demonstrate the enhanced performance of LRS-F.

4.3. EXPERIMENTS

Datasets. We test untargeted ℓ∞ black-box attacks on CIFAR-10 [100] and ImageNet

[5] datasets as the common benchmark [1, 48, 57, 77]. For CIFAR-10, we perform attacks

on all test data. For ImageNet, we randomly sample 5,000 test images that are correctly

classified by all the target models from the ImageNet validation set. Inputs to all models

are re-scaled to [0.0, 1.0].

Models under attack. We take CIFAR-10 dataset for quick experiments verification,

DenseNet [91] is chosen as surrogate model due to its small model size and high classifi-

cation accuracy, and five other networks serving as target (victim) models: VGG-19 with

batch normalization [89], ResNet-18 [88], WRN [95], ResNeXt [94], PyramidNet [101].

For ImageNet, we choose ResNet-50 [88] as the surrogate model and 10 state-of-the-art

classifiers as target victim models: VGG-19 [89], ResNet-152 [88], Inception v3 [90],

DenseNet [91], MobileNet v2 [92], SENet [93], ResNeXt [94], WRN [95], PNASNet [96],

and MNASNet [97]. For the above victim models, we follow their official pre-processing

pipelines in our evaluation.

Implementation details on ImageNet. For LRS-1 regularization, we set 𝜆1 = 5.0,

ℎ1 = 0.01. For LRS-2 regularization, we set 𝜆2 = 5.0, ℎ2 = 1.5. When use LRS-F as

regularization, we keep the same 𝜆 and ℎ values. We use an SGD optimizer with momentum

0.9 and weight decay 0.0005, the learning rate is fixed at 0.001, and the surrogate model

is run for 10 epochs which is a tradeoff between efficiency and efficacy. With PGD as the

back-end method, we run it for 50 iterations on ImageNet with perturbation range 8/255

and step size of 2/255. All experiments are performed on an NVIDIA V100 GPU.
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Table 4.1. Attack success rates of adversarial examples crafted on CIFAR10 dataset using
original and transformed surrogate model under ℓ∞ constraint with 𝜖 = 4/255 and 𝜖 =

8/255, PGD serves as the backbone method. ‘*’ denotes white-box attacks.

𝜖 Transformed? DenseNet* VGG19 ResNet18 WRN ResNeXt PyramidNet Average

4/255

No 100.00% 29.79% 19.04% 54.41% 69.41% 21.53% 38.84%
LRS-1 99.73% 55.97% 42.16% 72.66% 80.93% 42.64% 58.87%
LRS-2 99.82% 59.86% 48.98% 77.81% 88.63% 46.78% 64.21%
LRS-F 99.93% 65.16% 54.23% 81.49% 92.76% 51.07% 68.94%

8/255

No 100.00% 60.13% 35.54% 86.41% 95.60% 46.62% 64.85%
LRS-1 100.00% 93.41% 77.82% 98.79% 99.75% 88.09% 91.57%
LRS-2 100.00% 95.26% 81.43% 99.27% 99.87 % 92.69% 93.71%
LRS-F 100.00% 96.21% 86.41% 99.45% 99.84% 95.46% 95.48%

4.3.1. Experimental Results. We conducted several sets of experiments in order

to thoroughly evaluate the proposed approach.

Validation on small scale. We first experiment on the relatively smaller CIFAR-

10 using DenseNet as surrogate to evaluate LRS. In Table 4.1, we compare adversarial

transferability over the original pretrained surrogate model and that over LRS-transformed

surrogate models, all using PGD as the base attack. The evaluation involved two perturbation

scales 𝜖 (4.1). We observe that: (1) overall, applying LRS results in clear improvement by

large margins; (2) LRS-2 boosts adversarial transferability more than LRS-1; (3) the best

surrogate model is achieved by using both the first and second order regularization together,

i.e., LRS-F, while at the cost of slightly higher computation overhead. Specifically, when

𝜖 = 4/255, we see an absolute value increase in the average attack success rate (ASR) of

20.03%, 25.37% and 30.10% when the surrogate model is transformed by LRS-1, LRS-2

and LRS-F, respectively; when 𝜖 = 8/255, the corresponding improvements are 26.72%,

28.86% and 30.63%, respectively. All of these are significant enhancements. In particular,

when attacking PyramidNet with LRS-F transformed surrogate model under 𝜖 = 8/255, we

achieved an increase of ASR by a remarkable 48.84% in absolute value.



44

Table 4.2. Attack success rates of SOTA transfer-based untargeted attacks on ImageNet
using ResNet-50 as the surrogate model and PGD as the backend attack method, under the
ℓ∞ constraint with 𝜖 = 8/255. ‘*’ denotes white-box attack.

Method ResNet-50* VGG-19 ResNet-152 Inception v3 DenseNet MobileNet

PGD (2018) 100.00% 39.22% 29.18% 15.60% 35.58% 37.90%
TIM (2019) 100.00% 44.98% 35.14% 22.21% 46.19% 42.67%
SIM (2020) 100.00% 53.30% 46.80% 27.04% 54.16% 52.54%

LinBP (2020) 100.00% 72.00% 58.62% 29.98% 63.70% 64.08%
Admix (2021) 100.00% 57.95% 45.82% 23.59% 52.00% 55.36%
TAIG (2022) 100.00% 54.32% 45.32% 28.52% 53.34% 55.18%
ILA++ (2022) 99.96% 74.94% 69.64% 41.56% 71.28% 71.84%

LRS-1 (ours) 100.00% 76.02% 72.36% 42.01% 71.23% 69.36%
LRS-2 (ours) 100.00% 78.24% 75.96% 46.14% 73.01% 73.45%
LRS-F (ours) 100.00% 80.64% 78.21% 50.10% 75.19% 76.24%

Method SENet ResNeXt WRN PNASNet MNASNet Average

PGD (2018) 17.66% 26.18% 27.18% 12.80% 35.58% 27.69%
TIM (2019) 22.47% 32.11% 33.26% 21.09% 39.85% 34.00%
SIM (2020) 27.04% 41.28% 42.66% 21.74% 50.36% 41.69%

LinBP (2020) 41.02% 51.02% 54.16% 29.72% 62.18% 52.65%
Admix (2021) 30.28% 41.94% 42.78% 21.91% 52.32% 42.40%
TAIG (2022) 24.82% 38.36% 42.16% 17.20% 54.90% 41.41%
ILA++ (2022) 53.12% 65.92% 65.64% 44.56% 70.40% 62.89%

LRS-1 (ours) 54.27% 66.85% 67.21% 45.29% 72.03% 64.53%
LRS-2 (ours) 57.19% 69.48% 71.13% 48.39% 75.68% 67.57%
LRS-F (ours) 59.68% 71.96% 74.61% 52.43% 76.87% 69.91%

Comparison with SOTA on large scale. We compare the attacking performance of

LRS on 10 target models with state-of-the-art (SOTA) attacking methods, on the relatively

large ImageNet dataset (the same comparison on CIFAR10 is reported in supplementary

material). The SOTA attack methods for comparison include TIM [48], SIM [2], LinBP

[77], Admix [50], TAIG [102] and ILA++ [103]. The results are presented in Table

4.2, which shows that all the LRS-cushioned attacking methods (LRS-1, LRS-2, LRS-F)

outperform all the SOTA methods considerably. For example, looking at the Average

ASR column of Table 4.2, LRS-F achieves an improvement over all the SOTA methods of

between 7.02–35.91%.
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Table 4.3. Attack success rates by combining SOTA transfer-based untargeted attacks
with our methods, on CIFAR-10 using DenseNet as the surrogate model and PGD as the
backbone attack method, under the ℓ∞ constraint with 𝜖 = 4/255. ‘*’ denotes white-box
attack.

Method DenseNet* VGG19 ResNet18 WRN ResNeXt PyramidNet Average

TIM (2019) 100.00% 33.96% 23.46% 56.49% 72.38% 23.14% 41.89%
TIM+LRS-1 100.00% 64.23% 53.19% 81.03% 86.95% 50.62% 67.80%
TIM+LRS-2 100.00% 69.21% 57.39% 86.98% 90.12% 55.13% 71.17%
TIM+LRS-F 100.00% 73.86% 61.48% 90.11% 93.48% 60.42% 75.87%

Admix (2021) 100.00% 44.09% 34.80% 64.36% 76.24% 27.65% 49.43%
Admix+LRS-1 100.00% 66.49% 58.96% 85.69% 89.65% 55.48% 71.05%
Admix+LRS-2 100.00% 74.39% 63.59% 88.94% 93.56% 62.47% 76.39%
Admix+LRS-F 100.00% 78.12% 68.04% 94.23% 95.37% 67.96% 80.14%

TAIG (2022) 100.00% 41.69% 30.23% 64.12% 75.89% 25.96% 47.78%
TAIG+LRS-1 100.00% 62.38% 51.29% 80.33% 84.68% 51.46% 66.03%
TAIG+LRS-2 100.00% 73.18% 62.08% 84.39% 92.04% 60.03% 74.34%
TAIG+LRS-F 100.00% 75.98% 65.21% 89.11% 93.16% 63.49% 77.99%

Easily integrating with and supporting other attacks. As previously noted, LRS is a

flexible “cushion” on which any other transfer-based black-box attack can execute without

any change. In Table 4.3, we report the results when applying LSR to TIM, Admix and

ILA++ (besides PGD which has been shown). It can be seen that the transferability is

enhanced significantly by 20–34% on average due to the use of LRS.

Attacking “secure” models. Besides attacking regularly trained models, we also

conduct experiments on attacking adversarially trained models and models equipped with

advanced defense methods—which are hence more “secure”—for a thorougher evaluation

of our proposed LRS method. We consider six such secure models, Inc-v 3ens3, Inc-v

3ens4 and IncRes-v 2ens [83], JPEG [39], R&P [36] and NRP [86]. Specifically, we craft

adversarial examples on ResNet50 with 𝜖 = 16/255 on our selected ImageNet dataset and

test the transferability on the six secure target models. The results are shown in Table 4.4.

It shows that LRS remarkably improves the transferability of the backbone attack methods
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Table 4.4. Attacking “secure” models which underwent adversarial training or are equipped
with advanced defense methods.

Source model Attack Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠1 JPEG R&P NRP Average

ResNet50

PGD 4.3% 5.0% 2.3% 6.9% 2.2% 2.5% 3.87%
PGD + LRS-1 25.1% 24.7% 21.9% 38.6% 26.3% 29.4% 27.67%
PGD + LRS-2 26.7% 25.3% 23.0% 41.2% 28.4% 31.8% 29.40%
PGD + LRS-F 28.3% 27.6% 25.2% 44.1% 29.8% 33.1% 31.35%

ResNet50

TIM 21.3% 19.8% 12.6% 33.6% 18.4% 15.2% 20.15%
TIM + LRS-1 40.8% 41.0% 26.9% 51.4% 39.6% 34.1% 38.97%
TIM + LRS-2 43.6% 45.2% 30.4% 55.3% 43.5% 37.1% 42.52%
TIM + LRS-F 45.7% 48.2% 32.8% 59.4% 45.8% 40.3% 45.37%

on all the six presumably more robust models. On average, the performance is improved

by 23.80–27.48% and 18.82–25.22%, respectively, when using I-FGSM and TIM as the

backbone attack methods.

4.3.2. Exploring Further: Factors Enhancing Adversarial Transferability in

Regularized Surrogate Models. In this section, we explore the factors that enhance ad-

versarial transferability in regularized surrogate models. Our analysis delves into the mech-

anisms and conditions that improve the effectiveness of adversarial attacks across different

model architectures.

Smaller local Lipschitz constant. A reduced Lipschitz constant indicates a smoother

classifier. Therefore, we delve into whether our transformed surrogate models indeed

exhibit increased smoothness through a smaller local Lipschitz constant. While computing

the precise Lipschitz constant remains a open challenge, we can empirically gauge the

surrogate models’ local Lipschitzness using the empirical Lipschitz constant [104]:

𝐿𝑒𝑚𝑝 =
1
𝑛

𝑛∑︁
𝑖=1

max
𝒙′
𝑖
∈B∞ (𝒙𝑖 ,𝜀)

 𝑓 (𝒙𝑖) − 𝑓
(
𝒙′
𝑖

)
2𝒙𝑖 − 𝒙′

𝑖


2

(4.11)

We estimate this value using a PGD-like approach and calculate the average es-

timation across all test data points. Refer to Table 4.5 for the empirical local Lipschitz

constants. It clearly shows that our transformed surrogate models display significantly re-
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Table 4.5. Empirical local Lipschitz constant of surrogate model estimated via Eq. (4.11).
The constants of DenseNet and ResNet50 are evaluated on CIFAR10 and ImageNet, re-
spectively.

Surrogate model DenseNet100 ResNet50
Original pretrained 5.53 976.59

Transformed by LRS-1 0.79 57.62
Transformed LRS-2 0.67 53.21
Transformed LRS-F 0.59 49.64

duced local Lipschitz constants (by more than an order of magnitude). This contributes to

a notably smoother loss landscape, minimizing the likelihood of the AE generation process

being confined to undesirable local optima. Such optima yield low loss values yet possess

complex non-smooth geometries that are challenging to navigate away from.

Smoother loss landscape. Research has extensively explored flat optima’s role in

model generalization [62, 105, 106], highlighting how optimizing weights toward flat optima

can improve neural network generalization due to their robustness against shifts in the loss

function between training and test data. In our context of developing first-order Lipschitz

regularization, we propose that adversarial examples positioned within flat optima exhibit

robustness against shifts in the loss function between surrogate and target models, thus

enhancing AE transferability.

To verify our hypothesis, we visualize the loss landscape of a surrogate model

before and after transformation in Figure 4.1. The original pretrained surrogate model

features a highly non-linear and jagged loss surface. Conversely, regularization results in

a notably smoother loss surface with flatter local optima. This visualization confirms our

regularization strategy’s effectiveness in smoothing out sharp optima in the loss landscape.

Consequently, AEs generated using regularized surrogate models are more likely to reside

within flat optima, boosting their transferability.
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Figure 4.2. The loss of surrogate model (DenseNet) and target model (ResNet18), w.r.t.
PGD-generated AE. It reveals that LRS-transformed models demonstrate more robustness
and enable more transferable attacks.

More robust against attacks. Another perspective explaining the favorability of

Lipschitz-regularized surrogate models for adversarial transferability is their increased ro-

bustness against adversarial attacks. When a neural network possesses a small Lipschitz

constant, it signifies a strict control over changes in network output amidst input pertur-

bations, leading to certified robustness guarantees [107, 108]. Consequently, generating

AEs on such robust surrogate models enhances the effectiveness of the resulting AEs in

deceiving less robust target models. The robustness contributes to adversarial transferabil-

ity. [109] also demonstrate that enhancing the robustness of the source classifier against

small-magnitude adversarial examples, significantly enhances the transferability of targeted

adversarial attacks.
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Figure 4.3. Ablation studies on average ASR under different hyperparameters ℎ and 𝜆, the
performance gains are consistent in a wide range of hyper-parameter values.

In line with this notion, Figure 4.2 illustrates that adversarial examples generated

by PGD yield significantly lower losses on regularized surrogate models, indicating their

enhanced robustness. However, their loss on target models is higher, signifying stronger

black-box attacks and improved transferability.

4.3.3. Ablation Studies. We perform ablation studies on two crucial hyperparam-

eters in our proposed LRS approach: the step size and regularization coefficient, denoted

as ℎ1 and 𝜆1 for LRS-1, and ℎ2 and 𝜆2 for LRS-2. These parameters influence the locally

enforced Lipschitz radius around the current AE. Larger values of ℎ1 and ℎ2 are gener-

ally preferred to enhance the neighborhood radius. Conversely, excessively large values

can introduce finite difference method approximation errors, potentially misleading the AE

update direction. The values of 𝜆1 and 𝜆2 serve to balance the trade-off between model

accuracy and Lipschitz regularization.

Figure 4.3 presents the outcomes of our ablation studies. The ASR is computed

by averaging over 5 target models on CIFAR10. The attacks are executed using PGD as

the backend method with 𝜖 = 4/255. Our observations indicate that AE generated using
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LRS have significantly enhanced transferability compared to the case with 𝜆 = 0. These

performance improvements remain consistent across a reasonably broad range of 𝜆 and ℎ

values. This ablation study underscores the non-sensitive nature of LRS to hyperparameters,

establishing its effectiveness across diverse conditions.

4.4. SUMMARY

This section introduces a novel approach to enhancing adversarial transferability

by transforming surrogate models via regularization, unlike in previous research where a

pretrained model is chosen as is to serve as the (fixed) surrogate. We present Lipschitz

Regularized Surrogate (LRS), a technique that imposes Lipschitz regularization to surrogate

models for just a few training epochs. We show that this technique enables any existing

transfer-based black-box AE generation method to produce highly transferable adversarial

examples. This is validated through comprehensive experiments involving comparisons

with numerous benchmark models, attack methods, and datasets. Our findings affirm the

remarkable efficacy and superiority of LRS. Moreover, we offer insights into what and how

properties of surrogate models promote adversarial transferability.
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5. IMPROVING GENERALIZATION OF DNNS: CURVATURE REGULARIZED
SHARPNESS-AWARE MINIMIZATION

5.1. INTRODUCTION

Over the past decade, rapid advancements in deep neural networks (DNNs) have

significantly reshaped various pattern recognition domains including computer vision [6],

speech recognition [110], and natural language processing [111]. However, the success of

DNNs hinges on their capacity to generalize—how well they would perform on new, unseen

data. With their intricate multilayer structures and non-linear characteristics, modern DNNs

possess highly non-convex loss landscapes that remain only partially understood. Prior land-

scape analysis has linked flat local minima to better generalization [58, 59, 112, 113, 114].

In particular, [59] conducted a comprehensive empirical study on various generalization

metrics, revealing that measures based on sharpness exhibit the highest correlation with

generalization performance. Recently, [87] introduced Sharpness-Aware Minimization

(SAM), an efficient technique for minimizing loss landscape sharpness. This method has

proven highly effective in enhancing DNN generalization across diverse scenarios. Given

SAM’s remarkable success and the significance of DNN generalization, a substantial body

of subsequent research has emerged [115, 116, 117, 118, 119].

Specifically, the SAM approach formulates the optimization of neural networks as

a minimax problem, where it aims to minimize the maximum loss within a small radius

𝜌 around the parameter 𝒘. Given that the inner maximization problem is NP-hard, SAM

employs a practical sharpness calculation method that utilizes one-step gradient ascent as an

approximation. However, our experimentation reveals a notable decline in the accuracy of

this one-step approximation as training progresses (see 5.1). This phenomenon likely stems

from the heightened non-linearity within the loss landscape during later stages of training.

Our further investigation highlights a limitation in conventional curvature measures like
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the Hessian trace and the top eigenvalue of the Hessian matrix. These measures diminish

as training advances, incorrectly suggesting reduced curvature and overlooking the actual

non-linear characteristics.

Consequently, we posit that the escalating non-linearity in SAM training undermines

the precision of approximating and effectiveness of mitigating sharpness. Building upon

these insights, we introduce the concept of a normalized Hessian trace. This novel metric

serves as a dependable indicator of loss landscape non-linearity and behaves consistently

across training and testing datasets. Guided by this metric, we propose Curvature Reg-

ularized SAM (CR-SAM), a novel regularization approach for SAM training. CR-SAM

incorporates the normalized Hessian trace to counteract excessive non-linearity effectively.

To calculate the normalized Hessian trace, we present a computationally efficient

strategy based on finite differences (FD). This approach enables parallel execution without

additional computational burden. Through both theoretical analysis and empirical evalua-

tion, we demonstrate that CR-SAM training converges towards flatter minima, resulting in

substantially enhanced generalization performance.

The main contributions of this section can be summarized as follows:

• We identify that the one-step gradient ascent approximation becomes less effective

during the later stages of SAM training. In response, we introduce normalized Hessian

trace, a metric that can accurately and consistently characterize the non-linearity of

neural network loss landscapes.

• We propose CR-SAM, a novel algorithm that infuses curvature minimization into

SAM and thereby enhance the generalizability of deep neural networks. For scalable

computation, we devise an efficient technique to approximate the Hessian trace using

finite differences (FD). This technique involves only independent function evaluations

and can be executed in parallel without additional overhead. Moreover, we also the-

oretically show the efficacy of CR-SAM in reducing generalization error, leveraging

PAC-Bayes bounds.
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• Our comprehensive evaluation of CR-SAM spans a diverse range of contemporary

DNN architectures. The empirical findings affirm that CR-SAM consistently out-

performs both SAM and SGD in terms of improving model generalizability, across

multiple datasets including CIFAR10/100 and ImageNet-1k/-C/-R.

5.2. BACKGROUND AND RELATED WORK

Empirical risk minimization (ERM) is a fundamental principle in machine learning

for model training on observed data. Given a training dataset S = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 drawn i.i.d.

from an underlying unknown distribution D, we denote by 𝑓 (𝑥; 𝒘) a deep neural network

model with trainable parameters 𝒘 ∈ R𝑝, where a differentiable loss function w.r.t. an input

𝑥𝑖 is given by ℓ ( 𝑓 (𝑥𝑖; 𝒘) , 𝑦𝑖) and is taken to be the cross entropy loss in this section. The

empirical loss can be written as 𝐿S (𝒘) = 1
𝑛

∑𝑛
𝑖=1 ℓ ( 𝑓 (𝑥𝑖; 𝒘) , 𝑦𝑖) whereas the population

loss is defined as 𝐿D (𝒘) = E(𝑥,𝑦)∼𝐷 [ℓ ( 𝑓 (𝑥; 𝒘) , 𝑦)]. The generalization error is defined as

the difference between 𝐿D (𝒘) and 𝐿S (𝒘), i.e., 𝑒( 𝑓 ) = 𝐿D (𝒘) − 𝐿S (𝒘).

5.2.1. SAM and Variants. Sharpness-Aware Minimization (SAM) [87] is a novel

optimization algorithm that directs the search for model parameters within flat regions.

Training DNNs with this method has demonstrated remarkable efficacy in enhancing gener-

alization, especially on transformers. SAM introduces a new objective that aims to minimize

the maximum loss in the vicinity of weight 𝒘 within a radius 𝜌:

min
𝒘

𝐿SAM(𝒘) where 𝐿SAM(𝒘) = max
∥𝒗∥2≤1

𝐿S (𝒘 + 𝜌𝒗). (5.1)

Through the minimization of the SAM objective, the neural network’s weights

undergo updates that shift them towards a smoother loss landscape. As a result, the

model’s generalization performance is improved. To ensure practical feasibility, SAM

adopts two approximations: (1) employs one-step gradient ascent to approximate the inner

maximization; (2) simplifies gradient calculation by omitting the second and higher-order
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terms, i.e.,

∇𝐿SAM(𝒘) ≈ ∇𝐿S

(
𝒘 + 𝜌

∇𝐿S (𝒘)
∥∇𝐿S (𝒘)∥2

)
. (5.2)

Nevertheless, behind the empirical successes of SAM in training computer vision

models [87, 120] and natural language processing models [121], there are two inherent

limitations.

Firstly, SAM introduces a twofold computational overhead to the base optimizer

(e.g., SGD) due to the inner maximization process. In response, recent solutions such as

LookSAM [115], Efficient SAM (ESAM) [116], Sparse SAM (SSAM) [122], Sharpness-

Aware Training for Free (SAF) [117], and Adaptive policy SAM (AE-SAM) [118] have

emerged, which propose various strategies to reduce the added overhead.

5.2.2. Regularization Methods for Generalization. The work [123] contends that

model generalization hinges primarily on two traits: the model’s support and its inductive

biases. Given the broad applicability of modern DNNs to various datasets, the inductive

biases is the remaining crucial factor for guiding a model towards the true data distribution.

From a Bayesian standpoint, inductive bias can be viewed as a prior distribution over the

parameter space. Classical ℓ1 and ℓ2 regularization, for instance, correspond to Laplacian

and Gaussian prior distributions respectively. In practice, one can employ regularization

techniques to instill intended inductive biases, thereby enhancing model generalization.

Such regularization can be applied to three core components of modern deep learning

models: data, model architecture, and optimization.

Data-based regularization involves transforming raw data or generating augmented

data to combat overfitting. Methods like label smoothing [124], Cutout [125], Mixup [126],

and RandAugment [127] fall under this category. Model-based regularization aids feature

extraction and includes techniques such as dropout [128], skip connections [6], and batch

normalization [129]. Lastly, optimization-based regularization imparts desired properties

like sparsity or complexity into the model. Common methods include weight decay [130],
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gradient norm penalty [131, 132], Jacobian regularization [133], and confidence penalty

[61]. Our proposed curvature regularizer in this work aligns with the optimization-based

strategies, fostering flatter loss landscapes.

5.2.3. Flat Minima. Recent research into loss surface geometry underscores the

strong correlation between generalization and the flatness of minima reached by DNN

parameters. Among various mathematical definitions of flatness, including 𝜖-sharpness

[58], PAC-Bayes measure [59], Fisher Rao Norm [60], and entropy measures [61, 62],

notable ones include Hessian-based metrics like Frobenius norm [63, 64], trace of the

Hessian [65], largest eigenvalue of the Hessian [66], and effective dimensionality of the

Hessian [67]. In this work, our focus is on exploring the Hessian trace and its connection to

generalization. Akin to our objective, [134] also proposes Hessian trace regularization for

DNNs. However, [134] utilizes the computationally demanding Hutchinson method [135]

with dropout as an unbiased estimator for Hessian trace. In contrast, our method employs

finite difference (FD), offering greater computational efficiency and numerical stability.

Moreover, our rationale and regularization approach significantly differ from [134].

5.3. METHODOLOGY

In this section, we provide a detailed description of our methodology. We begin by

discussing two key observations derived from our analysis of Sharpness-Aware Minimiza-

tion (SAM) training. These observations highlight specific challenges and opportunities

within the SAM framework that informed our approach.

5.3.1. Our Empirical Findings about SAM Training. In this section, we discuss

two key empirical findings related to Sharpness-Aware Minimization (SAM) training.

Declining accuracy of one-step approximation. The optimal solution to the inner

maximization in SAM’s objective is intractable, which led SAM to resort to an approxima-

tion using one-step gradient ascent. However, we found that this approximation’s accuracy

diminishes progressively as training advances. To show this, we introduce the approxima-



56

0 50 100 150
epochs

0.2

0.4

0.6

0.8

1.0

AR

AR
Hessian trace
top eigen value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

He
ss

ia
n 

tra
ce

×103

0

20

40

60

80

100

to
p 

ei
ge

n 
va

lu
e

(a) ResNet-18 on CIFAR10
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(b) ResNet-18 on CIFAR100

Figure 5.1. The evolution of approximation ratio (AR), Hessian trace and top eigenvalue
of Hessian (the two Y axes on the right) during SAM training on CIFAR10 and CIFAR100
datasets.

tion ratio (AR) for sharpness, approximated by one-step gradient ascent, defined as:

AR = E(𝑥,𝑦)∼𝐷

[
ℓ ( 𝑓 (𝑥; 𝒘 + 𝜹) , 𝑦) − ℓ ( 𝑓 (𝑥; 𝒘) , 𝑦)
ℓ ( 𝑓 (𝑥; 𝒘 + 𝜹∗) , 𝑦) − ℓ ( 𝑓 (𝑥; 𝒘) , 𝑦)

]
(5.3)

where 𝜹 represents one-step gradient ascent perturbation, and 𝜹∗ denotes the optimal per-

turbation. An AR closer to 1 indicates a better approximation. Given the infeasibility of

obtaining the optimal 𝜹∗, we employ the perturbation from a 20-step gradient ascent as 𝜹∗

and approximate its expectation by sampling 5000 data points from the training set and

calculating their average. Our assessment of AR through multiple experiments, illustrated

in Figure 5.1, reveals its progression during training. The continuously decreasing AR in-

dicates an enlarging curvature whereas both of the Hessian-based curvature metrics (which

are expected to continuously increase) fail to capture the true curvature of model loss land-

scape. Notably, the one-step ascent approximation for sharpness demonstrates diminishing

accuracy as training unfolds, with a significant decline in the later stages. This suggests an

increasing curvature of the loss landscape as training advances. In the realm of DNNs, the

curvature of a function at a specific point is commonly assessed through the Hessian matrix

calculated at that point. However, the dependence on gradient scale make Hessian metrics
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fail to measure the curvature precisely. Specifically, models near convergence of training

exhibit smaller gradient norms and inherently correspond to reduced Hessian norms, but

does not imply a more linear model.

We show the evolution of conventional curvature metrics like Hessian trace and

the top eigenvalue of the Hessian in 5.1, both metrics increase initially and then decrease,

which fail to capture true loss landscape curvature since AR’s consistent decline implies a

higher curvature. This phenomenon also verify their dependence on the scaling of model

gradients; as gradients decrease near convergence, Hessian-based curvature metrics like

Hessian trace and top eigenvalue of the Hessian also decrease.

The degrading effectiveness of the one-step gradient ascent approximation can be

theoretically confirmed through a Taylor expansion. The sharpness optimized by SAM in

practice is represented as:

𝑅SAM(𝒘) = 𝐿S

(
𝒘 + 𝜌

∇𝐿S (𝒘)
∥∇𝐿S (𝒘)∥2

)
− 𝐿S (𝒘)

= 𝜌∥∇𝐿S (𝒘)∥2 +𝑂

(
𝜌2
)

(5.4)

Eq. (5.4) highlights that as training nears convergence, the gradient ∇𝐿S (𝒘) tends toward

0, causing 𝑅SAM(𝒘) to approach 0 as well. Consequently, sharpness ceases to be effectively

captured, and SAM training mirrors standard training behavior.

A new metric for accurate curvature characterization. Our initial observation

underscores the limitations of the top Hessian eigenvalue and Hessian trace in capturing loss

landscape curvature during SAM training. These metrics suffer from sensitivity to gradient

scaling, prompting the need for a more precise curvature characterization. To address this

challenge, we introduce a novel curvature metric, normalized Hessian trace, defined as

follows:

C(𝒘) =
Tr

(
∇2𝐿S (𝒘)

)
∥∇𝐿S (𝒘)∥2

(5.5)
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Figure 5.2. Evolution of the three curvature metrics during SAM training of ResNet-18 on
CIFAR-10 and CIFAR-100.

This metric exhibits continual growth during SAM training, indicating increasing curvature.

This behavior aligns well with the decreasing AR of one-step gradient ascent, as depicted

in Figure 5.2. An additional advantage of the normalized Hessian trace is its consistent

trends and values across both training and test sets. A similar phenomenon was observed

in the domain of adversarial robustness [136]. In contrast, plain Tr
(
∇2𝐿S (𝒘)

)
display

inconsistent behaviors between these sets, as evidenced in Figure 5.2 (a,b,c). This discrep-

ancy questions the viability of solely utilizing Hessian trace or the top Hessian eigenvalue

for DNN regularization based on training data. Subfigs. (a) (b) show that the top Hessian
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eigenvalue and Hessian trace exhibit large discrepancy on train and test sets where values

calculated on test set can be 50x more than those on training set. Subfig (c) shows that

our proposed normalized Hessian trace shows consistent trends which implies that it well

captures the true model geometry. Finally, subfig (d) illustrates that the normalized Hessian

trace also reflects (inversely) the phenomenon of decreasing approximation ratio (AR) since

they both indicate a growing curvature throughout training.

5.3.2. Curvature Regularized Sharpness-Aware Minimization (CR-SAM). For

the sake of generalization, it is preferable to steer clear of excessive non-linearity in deep

learning models, as it implies highly non-convex loss surfaces. On such models, the chal-

lenge of flattening minima (which improves generalization) becomes considerably harder,

potentially exceeding the capabilities of gradient-based optimizers. In this context, our

proposed normalized Hessian trace (5.5) can be employed to train deep models with more

manageable loss landscapes. However, a direct minimization of C(𝒘) would lead to an el-

evation in the gradient norm |∇𝐿S (𝒘) |2, which could adversely affect generalization [132].

Therefore, we propose to optimize Tr
(
∇2𝐿S (𝒘)

)
and ∥∇𝐿S (𝒘)∥2 separately. Specifically,

we penalize both Tr
(
∇2𝐿S (𝒘)

)
and ∥∇𝐿S (𝒘)∥2 but with different extent such that they

jointly lead to a smaller C(𝒘). Thus, we introduce our proposed curvature regularizer as:

𝑅𝑐 (𝒘) = 𝛼 log Tr
(
∇2𝐿S (𝒘)

)
+ 𝛽 log ∥∇𝐿S (𝒘)∥2 (5.6)

where 𝛼 > 𝛽 > 0 such that the numerator of C(𝒘) is penalized more than the denominator.

This regularizer is equivalent to𝛼 log C(𝒘)+(𝛼+𝛽) log ∥∇𝐿S (𝒘)∥2, which is a combination

of normalized Hessian trace with gradient norm penalty regularizer. Our regularization

strategy can also be justified by analyzing the sharpness:

𝑅True(𝒘) = max
∥𝒗∥2≤1

𝐿S (𝒘 + 𝜌𝒗) − 𝐿S (𝒘)

= max
∥𝒗∥2≤1

(
𝜌𝒗⊤∇𝐿S (𝒘) +

𝜌2

2
𝒗⊤∇2𝐿S (𝒘)𝒗 +𝑂

(
𝜌3
))
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We can see that max∥𝒗∥2≤1 𝜌𝒗
⊤∇𝐿S (𝒘) = 𝜌∥∇𝐿S (𝒘)∥2 (cf. (5.2)). Under the

condition that 𝒗 ∼ 𝑁 (0, 𝐼), we have E𝒗∼𝑁 (0,𝐼)𝒗
⊤∇2𝐿S (𝒘)𝒗 = Tr

(
∇2𝐿S (𝒘)

)
for the second

term. However, the first-order term ∥∇𝐿S (𝒘)∥2 vanishes at the local minimizers of the

loss 𝐿, and thus the second-order term will become prominent and hence be penalized.

Therefore, introducing our regularizer will have the effect of penalizing both the Hessian

trace and the gradient norm and thereby reduce the sharpness of a loss landscape.

Informed by our heuristic and theoretical analysis above, our CR-SAM optimizes

the following objective:

min
𝒘

𝐿CR-SAM(𝒘)

where 𝐿CR-SAM(𝒘) = 𝐿SAM(𝒘) + 𝑅𝑐 (𝒘) (5.7)

5.3.3. Solving Computational Efficiency. Computing the Hessian trace as in

𝑅𝑐 (𝒘) for very large matrices is computationally intensive, especially for modern over-

parameterized DNNs with millions of parameters. To address this issue, we first propose a

stochastic estimators for 𝑅𝑐 (𝒘):

𝑅𝑐 (𝒘) = 𝛼 log Tr
(
∇2𝐿S (𝒘)

)
+ 𝛽 log ∥∇𝐿S (𝒘)∥2

= E𝒗∼𝑁 (0,𝐼)
[
𝛼 log 𝒗⊤∇2𝐿S (𝒘)𝒗 + 𝛽 log 𝒗⊤∇𝐿S (𝒘)

]
which reduces Hessian trace computation to averages of Hessian-vector products. However,

the complexity of computing the Hessian-vector products in the above estimator is still high

for optimizers in large scale problems. Hence, we further propose an approximation based

on finite difference (FD) which not only reduces the computational complexity, but also

makes the computation parallelizable.
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Theorem 1 If 𝐿S (𝒘) is 2-times-differentiable at 𝒘, with 𝒗 ∼ 𝑁 (0, 𝐼) , by finite difference

we have 
𝒗⊤∇𝐿S (𝒘) = 1

2𝜌 (𝐿S (𝒘 + 𝜌𝒗) − 𝐿S (𝒘 − 𝜌𝒗)) + 𝑜
(
𝜖2) ;

𝒗⊤∇2𝐿S (𝒘)𝒗 =
1
𝜌2 (𝐿S (𝒘 + 𝜌𝒗) + 𝐿S (𝒘 − 𝜌𝒗)

− 2𝐿S (𝒘)) + 𝑜

(
𝜖3
)
.

Proof: Using Taylor polynomial expansion of 𝐿S (𝒘+ 𝜌𝒗) and 𝐿S (𝒘− 𝜌𝒗) centered

at 𝒘. We have


𝐿S (𝒘 + 𝜌𝒗) = 𝐿S (𝒘) + 𝜌𝒗∇𝐿S (𝒘) + O

(
𝜌2) ;

𝐿S (𝒘 − 𝜌𝒗) = 𝐿S (𝒘) − 𝜌𝒗∇𝐿S (𝒘) + O
(
𝜌2) . (5.8)

Thus rearranging the above two qwuation we can obtain 𝒗⊤∇𝐿S (𝒘) = 1
2𝜌 (𝐿S (𝒘 +

𝜌𝒗) − 𝐿S (𝒘 − 𝜌𝒗)) +𝑂
(
𝜌2) .

We rewrite 𝒗⊤∇2𝐿S (𝒘)𝒗 as directional derivatives as ∇2
𝒗𝐿S (𝒘). Reapply the above

formulation gives

∇2
𝒗𝐿S (𝒘) =

1
𝜌
(∇𝒗𝐿S (𝒘 + 0.5𝜌𝒗) − ∇𝒗𝐿S (𝒘 − 0.5𝜌𝒗))

+𝑂

(
𝜌2
)

=
1
𝜌2 (𝐿S (𝒘 + 0.5𝜌𝒗 + 0.5𝜌𝒗) − 𝐿S (𝒘

+ 0.5𝜌𝒗 − 0.5𝜌𝒗) − 𝐿S (𝒘 − 0.5𝜌𝒗 + 0.5𝜌𝒗)

+ 𝐿S (𝒘 − 0.5𝜌𝒗 − 0.5𝜌𝒗)) +𝑂

(
𝜌2
)

=
1
𝜌2 (𝐿S (𝒘 + 𝜌𝒗) + 𝐿S (𝒘 − 𝜌𝒗) − 2𝐿S (𝒘))

+𝑂

(
𝜌2
)
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Figure 5.3. Computing the gradient of 𝑅𝑐 (𝒘). The two gradient steps are independent of
each other and can be perfectly parallelized.

By Theorem 1, we can instantiate 𝑅𝑐 (𝒘) as:

𝑅𝑐 (𝒘) = E𝒗∼𝑁 (0,𝐼)
[
𝛼 log

(
𝐿S (𝒘 + 𝜌𝒗) + 𝐿S (𝒘 − 𝜌𝒗)

− 2𝐿S (𝒘)
)
+ 𝛽 log

(
𝐿S (𝒘 + 𝜌𝒗) − 𝐿S (𝒘 − 𝜌𝒗)

) ]
+ 𝑐𝑜𝑛𝑠𝑡. (5.9)

The above formulation involves an expectation over 𝒗, which uniformly penalizes

expected curvature across all directions. Previous studies [137, 138] highlight that gradient

directions represent high-curvature directions. Hence, we choose to optimize over pertur-

bations solely along gradient directions, approximating 𝑅𝑐 (𝒘) by considering 𝒗 = ∇𝐿S (𝒘).

Additionally, the terms 𝐿S (𝒘 + 𝜌𝒗) and 𝐿S (𝒘 − 𝜌𝒗) can be computed in parallel as shown

in Figure 5.3.

We offer a meaningful interpretation of the finite difference regularizer (5.9): The

second term within 𝑅𝑐 (𝒘), i.e., [𝐿S (𝒘 + 𝜌𝒗) − 𝐿S (𝒘 − 𝜌𝒗)], resembles the surrogate

gap [𝐿S (𝒘 + 𝜌𝒗) − 𝐿S (𝒘)] as introduced in [139]. However, unlike solely focusing on

optimizing the ridge (locally worst-case perturbation) within the 𝜌-bounded neighborhood
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Algorithm 4 Training with CR-SAM

Input: Training set S; DNN model 𝑓 (𝑥; 𝒘); Loss funtion ℓ ( 𝑓 (𝑥𝑖; 𝒘) , 𝑦𝑖); Batch size 𝐵;
Learning rate 𝜂; Perturbation size 𝜌; regularizer coefficients 𝛼 and 𝛽

Output: model trained by CR-SAM

1: Parameter initialization 𝒘0.
2: while not converged do
3: Sample batch B = {(𝑥𝑖, 𝑦𝑖)}𝐵𝑖=0 from S;
4: Compute 𝒗 =

∇𝐿S (𝒘)
∥∇𝐿S (𝒘)∥2

;
5: Compute 𝐿S (𝒘 + 𝜌𝒗) and 𝐿S (𝒘 − 𝜌𝒗) ;
6: Compute ∇𝑅𝑐 (𝒘) per equation 5.9;
7: 𝒘𝑡+1 = 𝒘𝑡 − 𝜂(∇L (𝒘𝑡) + 𝑅𝑐 (𝒘𝑡));
8: end while
9: return 𝒘𝑡

around the current parameter vector, our proposed regularizer also delves into the valley

(locally best-case perturbation) of the DNN loss landscape, with their loss discrepancies

similarly constrained by 𝑅𝑐 (𝒘). Additionally, by expressing the first term within 𝑅𝑐 (𝒘) as

[𝐿S (𝒘 + 𝜌𝒗) − 𝐿S (𝒘)] − [𝐿S (𝒘) − 𝐿S (𝒘 − 𝜌𝒗)], our approach encourages minimizing the

disparity between the worst-case perturbed sharpness and the best-case perturbed sharpness.

In essence, our strategy jointly optimizes the worst-case and best-case perturbations within

the parameter space neighborhood, promoting a smoother, flatter loss landscape with fewer

excessive wavy ridges and valleys.

The full pseudo-code of our CR-SAM training is given in Algorithm 4.

5.4. EXPERIMENTS

To assess CR-SAM, we conduct thorough experiments on prominent image classifi-

cation benchmark datasets: CIFAR-10/CIFAR-100 and ImageNet-1k/-C/-R. Our evaluation

encompasses a wide array of network architectures, including ResNet, WideResNet, Pyra-
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midNet, and Vision Transformer (ViT), in conjunction with diverse data augmentation

techniques. These experiments are implemented using PyTorch and executed on Nvidia

A100 and V100 GPUs.

5.5. DETAILS OF EXPERIMENTAL SETUP

5.5.1. Training from Scratch on CIFAR-10 / CIFAR-100. In this section, we

evaluate CR-SAM using the CIFAR-10/100 datasets [100]. Our evaluation encompasses a

diverse selection of widely-used DNN architectures with varying depths and widths. Specif-

ically, we employ ResNet-18 [6], ResNet-50 [6], Wide ResNet-28-10 (WRN-28-10) [140],

and PyramidNet-110 [141], along with a range of data augmentation techniques, including

basic augmentations (horizontal flip, padding by four pixels, and random crop) [87], Cutout

[125], and AutoAugment [142], to ensure a comprehensive assessment. Following the setup

in [117, 119], we train all models from scratch for 200 epochs, using batch size 128 and

employing a cosine learning rate schedule. We conduct grid search to determine the optimal

learning rate, weight decay, perturbation magnitude (𝜌), coefficient (𝛼 and 𝛽) values that

yield the highest test accuracy. To ensure a fair comparison, we run each experiment three

times with different random seeds. Our experimental setup for training CIFAR10/100 from

scratch is detailed in Table 5.1.

Results. Refer to Table 5.2 for a comprehensive overview. CR-SAM consistently

outperforms both vanilla SAM and SGD across all configurations on both CIFAR-10 and

CIFAR-100 datasets. Notable improvements are observed, such as a 1.11% enhancement

on CIFAR-100 with ResNet-18 employing cutout augmentation and a 1.30% boost on

CIFAR-100 with WRN-28-10 using basic augmentation. Furthermore, we empirically

observe that CR-SAM exhibits a faster convergence rate in comparison to vanilla SAM.

This accelerated convergence could be attributed to CR-SAM’s ability to mitigate excessive

curvature, ultimately reducing optimization complexity and facilitating swifter arrival at

local minima.
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Table 5.1. Hyperparameters of models ResNet-18, ResNet-101, Wide-28-10 and
PyramidNet-110 for training from scratch on CIFAR10 and CIFAR100.

CIFAR-10 CIFAR-100
ResNet-18 SGD SAM CR-SAM SGD SAM CR-SAM

Epoch 200 200
Batch size 128 128

Data augmentation Basic Basic
Peak learning rate 0.05 0.05

Learning rate decay Cosine Cosine
Weight decay 5 × 10−3 5 × 10−3

𝜌 - 0.05 0.10 - 0.10 0.15
𝛼 - - 0.1 - - 0.5
𝛽 - - 0.01 - - 0.01

ResNet-101 SGD SAM CR-SAM SGD SAM CR-SAM

Epoch 200 200
Batch size 128 128

Data augmentation Basic Basic
Peak learning rate 0.05 0.05

Learning rate decay Cosine Cosine
Weight decay 5 × 10−3 5 × 10−3

𝜌 - 0.05 0.10 - 0.10 0.15
𝛼 - - 0.2 - - 0.5
𝛽 - - 0.05 - - 0.05

Wide-28-10 SGD SAM CR-SAM SGD SAM CR-SAM

Epoch 200 200
Batch size 128 128

Data augmentation Basic Basic
Peak learning rate 0.05 0.05

Learning rate decay Cosine Cosine
Weight decay 1 × 10−3 1 × 10−3

𝜌 - 0.10 0.10 - 0.10 0.15
𝛼 - - 0.5 - - 0.5
𝛽 - - 0.1 - - 0.1

PyramidNet-110 SGD SAM CR-SAM SGD SAM CR-SAM

Epoch 200 200
Batch size 128 128

Data augmentation Basic Basic
Peak learning rate 0.05 0.05

Learning rate decay Cosine Cosine
Weight decay 5 × 10−3 5 × 10−3

𝜌 - 0.15 0.20 - 0.15 0.20
𝛼 - - 0.5 - - 0.5
𝛽 - - 0.1 - - 0.1
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Table 5.2. Results on CIFAR-10 and CIFAR-100. The base optimizer for SAM and CR-
SAM is SGD with Momentum (SGD+M).

CIFAR-10 CIFAR-100

Model Aug SGD SAM CR-SAM SGD SAM CR-SAM

Basic 95.29±0.16 96.46±0.18 96.95±0.13 78.34±0.22 79.81±0.18 80.76±0.21
ResNet-18 Cutout 95.96±0.13 96.55±0.15 97.01±0.21 79.23±0.13 80.15±0.17 81.26±0.19

AA 96.33±0.15 96.75±0.18 97.27±0.12 79.05±0.17 81.26±0.21 82.11±0.22

Basic 96.35±0.12 96.51±0.16 97.14±0.11 80.54±0.13 82.11±0.12 83.03±0.17
ResNet-101 Cutout 96.56±0.18 96.95±0.13 97.51±0.24 81.26±0.21 82.39±0.27 83.46±0.16

AA 96.78±0.14 97.11±0.16 97.76±0.16 81.83±0.37 83.25±0.47 84.19±0.23

Basic 95.89±0.21 96.81±0.26 97.36±0.15 81.84±0.13 83.15±0.14 84.45±0.09
WRN-28-10 Cutout 96.89±0.07 97.55±0.16 97.98±0.21 81.96±0.40 83.47±0.15 84.48±0.13

AA 96.93±0.12 97.59±0.06 97.94±0.08 82.16±0.11 83.69±0.26 84.74±0.21

Basic 96.27±0.13 97.34±0.13 97.89±0.08 83.27±0.12 84.89±0.09 85.68±0.14
PyramidNet-110 Cutout 96.79±0.13 97.61±0.21 98.08±0.11 83.43±0.21 84.97±0.17 85.86±0.21

AA 96.97±0.08 97.81±0.13 98.26±0.11 84.59±0.08 85.76±0.23 86.58±0.14

5.5.2. Training from Scratch on ImageNet-1k/-C/-R. This section details our

evaluation on the ImageNet dataset [143], containing 1.28 million images across 1000

classes. We assess the performance of ResNet [6] and Vision Transformer (ViT) [144]

architectures. Evaluation is extended to out-of-distribution data, namely ImageNet-C [145]

and ImageNet-R [146]. ResNet50, ResNet101, ViT-S/32, and ViT-B/32 are evaluated with

Inception-style preprocessing. For ResNet models, SGD serves as the base optimizer.

We follow the setup in [116], training ResNet50 and ResNet101 with batch size 512 for 90

epochs. The initial learning rate is set to 0.1, progressively decayed using a cosine schedule.

For ViT models, we adopt AdamW [147] as the base optimizer with parameters 𝛽1 = 0.9

and 𝛽2 = 0.999. ViTs are trained with batch size 512 for 300 epochs. Our experimental

setup for training ImageNet from scratch is detailed in Table 5.3.

Results. Summarized in Table 5.4, our results indicate substantial accuracy improve-

ments across various DNN models, including ResNet and ViT, on the ImageNet dataset.

Notably, CR-SAM’s performance surpasses that of SAM by 1.16% for ResNet-50 and by

1.77% for ViT-B/32. These findings underscore the efficacy of our CR-SAM approach.
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Table 5.3. Hyperparameters of models ResNet-50, ResNet-101, ViT-S/32 and ViT-B/32 for
training on ImageNet from scratch.

ResNet-50 ResNet-101
ImageNet SGD SAM CR-SAM SGD SAM CR-SAM

Epoch 90 90
Batch size 512 512

Data augmentation Inception-style Inception-style
Peak learning rate 1.3 1.3

Learning rate decay Cosine Cosine
Weight decay 3 × 10−5 3 × 10−5

𝜌 - 0.10 0.15 - 0.10 0.15
𝛼 - - 0.1 - - 0.2
𝛽 - - 0.01 - - 0.01

ViT-S/32 ViT-B/32
ImageNet SGD SAM CR-SAM SGD SAM CR-SAM

Epoch 300 300
Batch size 512 512

Data augmentation Inception-style Inception-style
Peak learning rate 3 × 10−3 3 × 10−3

Learning rate decay Cosine Cosine
Weight decay 0.3 0.3

𝜌 - 0.05 0.10 - 0.05 0.10
𝛼 - - 0.05 - - 0.05
𝛽 - - 0.01 - - 0.01

5.5.3. Model Geometry Analysis. CR-SAM aims to reduce the normalized trace

of the Hessian to promote flatter minima. Empirical validation of CR-SAM’s ability to

locate optima with lower curvature is presented through model geometry comparisons

among models trained by SGD, SAM, and CR-SAM (see Table 5.5). Our analysis is based

on ResNet-18 trained on CIFAR-100 for 200 epochs using the three optimization methods.

Hutchinson’s method [135, 148] is utilized to compute the Hessian trace, with values

obtained from the test set across three independent runs. Notably, the results reveal that

CR-SAM significantly reduces both gradient norms and Hessian traces throughout training

in contrast to SGD and SAM. This reduction contributes to a smaller normalized Hessian

trace, affirming the effectiveness of our proposed regularization strategy.
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Table 5.4. Results on ImageNet, the base optimizer for ResNets and ViTs are SGD+M and
AdamW, respectively.

Model Datasets Vanilla SAM R-SAM CR-SAM

ImageNet-1k 75.94 76.48 76.89 77.64
ResNet-50 ImageNet-C 43.64 46.03 46.19 46.94

ImageNet-R 21.93 23.13 22.89 23.48

ImageNet-1k 77.81 78.64 78.71 79.12
ResNet-101 ImageNet-C 48.56 51.27 51.35 51.87

ImageNet-R 24.38 25.89 25.91 26.37

ImageNet-1k 68.40 70.23 70.39 71.68
ViT-S/32 ImageNet-C 43.21 45.78 45.92 46.46

ImageNet-R 19.04 21.12 21.35 21.98

ImageNet-1k 71.25 73.51 74.06 75.28
ViT-B/32 ImageNet-C 44.37 46.98 47.28 48.12

ImageNet-R 23.12 24.31 24.53 25.04

Table 5.5. Model geometry of ResNet-18 models trained with SGD, SAM and CR-SAM,
values are computed on test set.

Optimizer ∥∇𝐿S (𝒘)∥2 Tr
(
∇2𝐿S (𝒘)

)
C(𝒘) Accuracy (%)

SGD 19.97 ±0.52 32673.88 ±1497.56 1674.89 ±78.69 78.34 ±0.22
SAM 11.51 ±0.31 14176.52 ±327.69 1193.87 ±59.18 79.81 ±0.18

CR-SAM 8.26 ±0.19 7968.19 ±145.73 884.95 ±23.59 80.76 ±0.21

5.5.4. Visualization of Landscapes. We visualize the flatness of minima obtained

using CR-SAM by plotting loss landscapes of PyramidNet110 trained with SGD, SAM,

and CR-SAM on CIFAR-100 for 200 epochs. Employing the visualization techniques from

[149], we depict loss values along two randomly sampled orthogonal Gaussian perturbations

around local minima. As depicted in 5.4, the visualization illustrates that CR-SAM yields

flatter minima compared to SGD and SAM.
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(a) SGD (b) SAM (c) CR-SAM

Figure 5.4. CR-SAM yields flatter loss landscape which is consistent with better general-
ization as verified in experiments.

5.5.5. Faster and Smoother Convergence. The convergence in a single run of

SAM vs. CR-SAM is presented in 5.5. From the figure, we observe that CR-SAM achieves

much faster and stabler convergence, which can be explained by the fact that CR-SAM

discourages excessive curvature and thus reduces optimization complexity, making the

local minimum easier to reach.
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Figure 5.5. Evolution of training and testing loss/accuracy on CIFAR100 trained with
ResNet18 by SAM and our proposed CR-SAM.
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5.6. SUMMARY

In this section, we identify the limitations of the one-step gradient ascent in SAM’s

inner maximization during training due to the excessive non-linearity of the loss landscape.

In addition, existing curvature metrics lack the ability to precisely capture the loss function

geometry. To address these issues, we introduce normalized Hessian trace, which offers

consistent and accurate characterization of loss function curvature on both training and

test data. Building upon this metric, we present CR-SAM, a novel training approach for

enhancing neural network generalizability by regularizing our proposed curvature metric.

Additionally, to mitigate the overhead of computing the Hessian trace, we incorporate

a parallelizable finite difference method. Our comprehensive experiments that span a

wide variety of model architectures across popular image classification datasets including

CIFAR10/100 and ImageNet-1k/-C/-R, affirm the effectiveness of our proposed CR-SAM

training strategy.
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6. CONCLUSION

This research delves deeply into investigating the transferability of adversarial ex-

amples, approaching the subject from data, optimization, and model perspectives. Through

an intricate exploration, we aim to unravel the underlying mechanisms that govern the phe-

nomenon of adversarial transferability, shedding light on its intricacies and implications

across various dimensions of machine learning research and practice.

In section 2, from the data perspective, we propose a new method of crafting

transferable AE which consists of two techniques: elastic momentum (EM) and random

erasure (RE). EM generalizes the conventional momentum and the Nesterov’s momentum

methods by computing gradients over a flexible look-ahead horizon, and RE erase part of

image with random noise which increases the diversity of adversarial perturbations and helps

stabilize gradient fluctuations. Through extensive evaluation with 5 recent baseline methods,

7 target deep learning models, and 9 advanced defense mechanisms, we demonstrate the

superior transferability of our proposed approach.

In section 3, we explore from optimization perspective by penalizing the input

gradient norm, aim to identify AE within flat regions of the loss landscape. Our approach,

known as the input gradient norm penalty (GNP), has been demonstrated to substantially

enhance adversarial transferability across a diverse array of deep networks. Furthermore,

we illustrate that GNP can seamlessly integrate with existing transfer-based attacks, yielding

even more impressive performance, thus showcasing its highly desirable flexibility.

In section 4, unlike previous approaches that primarily focus on the AE generation

process itself, we investigate from the model perspective and propose a novel strategy

centered on transforming surrogate models. By modifying these surrogate models to

possess specific properties conducive to adversarial transferability, existing transfer-based

black-box AE generation methods can operate on our transformed surrogate models without

any modifications. To our knowledge, this is the first work to establish a connection
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between the inner properties of surrogate models and AE transferability. We identify three

such properties that enhance adversarial transferability: smaller local Lipschitz constant,

smoother loss landscape, and stronger adversarial robustness. This approach offers valuable

insights into understanding the factors influencing adversarial transferability.

In section 5, we introduce the normalized Hessian trace, a metric capable of ac-

curately and consistently characterizing the curvature of loss landscapes. Leveraging this

metric, we propose CR-SAM, a novel optimization technique that integrates curvature reg-

ularization into the Sharpness-Aware Minimization (SAM) optimizer. By doing so, we

enhance the generalizability of deep neural networks, leading to improved performance

across various tasks and datasets.

Overall, this research contributes to a deeper understanding of adversarial transfer-

ability and generalization, offering novel insights and techniques that advance the field of

machine learning and contribute to the development of more robust and reliable AI systems.
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