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ABSTRACT

This work studies the effects of disorder on the thermodynamic critical behavior and

dynamical properties of the superfluid-Mott glass quantum phase transition. After a brief

introduction covering relevant fundamentals, we present the dissertation in the form of four

separate but related publications.

In the first two publications, we calculate the thermodynamic critical exponents of the

superfluid-Mott glass quantum phase transition in both two and three spatial dimensions.

The undiluted transition exhibits critical exponents that violate the Harris criterion, and

thus the critical behavior is expected to change upon introducing disorder. We confirm this

behavior via Monte Carlo simulation of a diluted quantum rotor model of the transition,

calculating new phase diagrams and critical behavior for the diluted systems.

In publications three and four, we investigate the dynamical properties of the col-

lective modes near the transition boundary based on scaling arguments. These collective

modes are expected to have energies that follow a power-law relationship governed by

the critical exponents. In these publications, we find that in two spatial dimensions, the

introduction of disorder localizes the Higgs mode, defying this expectation.

In conclusion, the introduction of disorder to the superfluid-Mott insulator system

has a significant effect on the thermodynamic critical behavior. In our calculations, we

see that the disordered case has a new set of critical exponents that govern the power-law

critical behavior of the superfluid-Mott glass transition. Despite the critical behavior of

the transition being of conventional power-law type, when we consider the dynamics of

the collective excitation modes, we see localization behavior that is unaccounted for in

current theoretical descriptions. This shows that in disordered systems one may observe

unconventional dynamical behavior in a system whose underlying thermodynamics is that

of conventional power-law type.
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1. INTRODUCTION

1.1. CLASSICAL PHASE TRANSITIONS

1.1.1. Phase Transition Classification. Phase transitions are characterized by

abrupt changes in the macroscopic thermodynamic properties (the ‘phase’) of a system

in response to a smooth change in some parameter of the system such as temperature,

pressure, magnetic field, or chemical composition. The solid-liquid-gas transitions of water

are abrupt changes in density in response to changes in either temperature or pressure. The

creation of a permanent iron magnet is an abrupt change of the ferromagnetic materials

magnetism in response to an external magnetic field. Formally, phase transitions (or more

precisely phase boundaries) can be defined as non-analyticities (discontinuities, singulari-

ties) in the thermodynamic free energy as a function of the parameters of the system (e.g.

temperature, pressure, magnetic field) [1]. These non-analyticities of the free energy can

come in two types which serve to classify phase transitions into two broad categories:

first-order and continuous.

In first-order (or discontinuous) transitions, the free energy is continuous across

the phase boundary, but features discontinuities in it’s first derivatives. This implies a

latent heat – a certain amount of heat that is required to be absorbed or emitted by the

system to completely cross the phase boundary. Additionally, first-order phase transitions

exhibit phase coexistence, where both phases exist in equilibrium with each other at the

phase boundary. The solid-liquid-gas transitions of water used in everyday life are simple

examples of first-order transitions.

In continuous transitions (or critical points), the free energy as well as it’s first-

derivatives are continuous across the phase boundary. This means no latent heat is required

and the transition occurs continuously as the phase boundary is approached. However, the

free energy exhibits discontinuities in it’s higher-order derivatives, which leads to diverging
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susceptibilities and correlation lengths of fluctuations. A prominent example of a continuous

transition is the ferromagnetic transition of iron, wherein the magnetization continuously

decreases to zero as the critical temperature is approached.

In addition to classification via the non-analyticities of the free energy of the system,

we will see in the following Sections that continuous phase transitions may be further

classified by their critical exponents. These exponents define the way in which the various

observables of a system behave upon approaching a phase boundary and are powerful

analytic tools in understanding phase transition behavior. Further, we will see that these

critical exponents fall into so-called universality classes, within which the relevant systems

all exhibit the same critical behavior and exponents, with the nature of their phase transitions

being dependent only upon the dimensionality and symmetries of the degrees-of-freedom

of the underlying Hamiltonian [2, 3].

1.1.2. Critical Exponents and Universality. Both first-order and continuous phase

transitions are often best described in terms of an order parameter Ψ – a thermodynamic

observable that is zero in the ‘disordered’ phase (Ψ = 0) and finite in the ‘ordered’ phase

(Ψ ≠ 0) [4, 5]. For example, the magnetization in ferromagnetic transitions, density-

differences in solid-liquid-gas transitions, or the density of superconducting electrons in

superconductor-insulator transitions. A key component to understanding the critical be-

havior of phase transitions is the role of fluctuations (in space and time) of this order

parameter. While an order parameter may exhibit a zero average value in the disordered

phase, the fluctuations of the order parameter about this mean value are non-zero. In fact,

for continuous transitions it can be observed that the correlation length 𝜉 of these order

parameter fluctuations becomes long-ranged as the critical point is approached, diverging

at the critical point according to a power-law relationship dependent on the external tuning

parameter. This allows us to write an expression for the correlation length divergence in



3

Table 1.1. Definitions of commonly used critical exponents and the conditions under which
they are valid. ℎ represents a field conjugate to the order parameter.

Observable Exponent Definition Conditions
Specific heat 𝛼 𝐶 ∼ |𝑟 |−𝛼 𝑟 → 0, ℎ = 0
Order parameter 𝛽 Ψ ∼ (−𝑟)𝛽 𝑟 → 0, ℎ = 0
Susceptibility 𝛾 𝜒 ∼ |𝑟 |𝛾 𝑟 → 0, ℎ = 0
Critical isotherm 𝛿 Ψ ∼ ℎ1/𝛿 𝑟 = 0, ℎ → 0
Correlation length 𝜈 𝜉 ∼ |𝑟 |−𝜈 𝑟 → 0, ℎ = 0
Correlation function 𝜂 𝐺 (x) ∼ |x|−𝑑+2−𝜂 𝑟 = 0, ℎ = 0
Dynamic correlation 𝑧 𝜏𝑐 ∼ 𝜉𝑧 𝑟 → 0, ℎ = 0

terms of the dimensionless distance from criticality 𝑟 ≡ (𝑇 − 𝑇𝑐)/𝑇𝑐

𝜉 ∼ |𝑟 |−𝜈 (1.1)

which serves to define the correlation length critical exponent 𝜈 that determines the nature

of the divergence as the critical point 𝑟 = 0 is approached. Not only are spatial correlations

divergent near the critical point, but also the correlation times of these fluctuations. Another

critical exponent may be defined, the dynamical exponent 𝑧, that describes this divergence

of the correlation time 𝜏𝑐 as well,

𝜏𝑐 ∼ 𝜉𝑧 ∼ |𝑟 |−𝑧𝜈 . (1.2)

At the critical point, fluctuations exist on all length and time scales, thus rendering the

system scale-invariant. This scale-invariance results in the observables of the system

obeying power-law relationships dependent on the external parameters of the system. We

may therefore define critical exponents for each relevant observable such as heat capacity,

susceptibility, and order parameter as shown in Table 1.1. These critical exponents uniquely

characterize the critical behavior near a continuous phase transition.
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The scale-invariant nature of critical points leads to the concept of universality

wherein the divergence of the correlation length-scales renders the microscopic details

of the system irrelevant, with the nature of the phase transition depending only upon the

dimensionality and the symmetries of the degrees-of-freedom of the underlying microscopic

Hamiltonian. The symmetries and dimensionality of the system thus serve to classify

continuous phase transitions even further, into so-called universality classes. Within a

particular universality class, the critical behavior is universal among the relevant systems

which share the same critical exponent values (e.g. easy-plane magnets and liquid Helium-

4, two very different physical systems, exhibit the same critical exponents and therefore

belong to the same universality class) [7]!

1.2. THEORETICAL DESCRIPTION OF PHASE TRANSITIONS

1.2.1. Mean-field and Landau Theories. The earliest successful theories describ-

ing phase transitions were mean-field theories, where the mathematical difficulties of inter-

acting many-body systems are eliminated by approximating the many-body interactions as

an external field consisting of the ‘mean’ interactions of the many-body system, reducing

the issue to a much simpler, single-particle problem [5]. These theories have found success

in describing ferromagnetic transitions and even in describing some metal-superconductor

transitions. However, the predictions of mean-field theory are typically limited, providing

only a single set of critical exponents and therefore, cannot account for a large number of

universality classes that are observed in nature.

Perhaps the greatest paradigm shift in the understanding of phase transitions came

from the mind of Landau in the late 1930’s [4]. Landau set out to generalize mean-field like

approaches and his proposal was two-fold. First, was the concept of the order parameter Ψ

– an observable of the system whose value is zero Ψ = 0 on one side of a phase boundary

(in the ‘disordered’ phase) and takes on a finite value Ψ ≠ 0 on the other side (in the

‘ordered’ phase). Some examples include: magnetization in magnetic transitions, density
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difference in solid-liquid-gas transitions of water, density of superconducting electrons for

superconductor-insulator transitions. Second, Landau proposed that the Helmholtz free

energy 𝐹 of the system is an analytic function of the order parameter. Accordingly, near

the critical point (where the order parameter is finite, but small) the free energy can be

expanded in powers of the order parameter

𝐹𝐿 = 𝐹𝐿 (0) − ℎΨ + 𝑟Ψ2 + 𝑣Ψ3 + 𝑢Ψ4 + ... (1.3)

where 𝐹𝐿 (0) is the free energy in the disordered phase (Ψ = 0), ℎ represents an external

field conjugate to the order parameter, and 𝑟, 𝑣, and 𝑢 are system-dependent constants that

are independent of the order parameter.

To see that this form of the free-energy captures the expected behavior of a phase

transition, let us consider a system with no external field (ℎ = 0), close to the phase boundary

(|Ψ| ≪ 1). In this case, the higher order terms of 𝐹𝐿 may be safely ignored. Additionally,

if the free energy is invariant under a sign change of Ψ, then only even powers should

contribute to the free-energy (𝑣 = 0) since it should not depend on the sign of the order

parameter (e.g. the free-energy of a magnet does not depend on the orientation of the north

and south poles without some external field). In this case, the Landau free energy takes the

form

𝐹𝐿 = 𝐹𝐿 (0) + 𝑟Ψ2 + 𝑢Ψ4. (1.4)

The equilibrium value of the order parameter is then determined by minimizing 𝐹𝐿 with

respect to Ψ. Setting the first derivative to zero leads to the equation

𝑟Ψ + 2𝑢Ψ3 = 0 (1.5)
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for which we can see has two solutions Ψ = 0 (for 𝑟 > 0) and Ψ = ±
√︁
−𝑟/2𝑢 (for 𝑟 < 0).

The first solution represents the system in the disordered phase Ψ = 0 and the second

represents the system in the ordered phase Ψ ≠ 0. This allows us to attribute some physical

meaning to the parameter 𝑟 as the distance from criticality 𝑟 = (𝑇 − 𝑇𝑐)/𝑇𝑐, where 𝑇 is

some system parameter that is used to tune through the phase transition (i.e. temperature,

pressure, coupling constant). This result also allows us to determine the critical exponents

of the system. We now have the order parameter in a form dependent on the distance from

criticality 𝑟

Ψ ∼ (−𝑟)𝛽 (1.6)

which allows us to conclude 𝛽 = 1/2. We may also find the critical exponents of the specific

heat (via the second derivative of 𝐹𝐿), susceptibility and external field (by considering ℎ ≠ 0)

through more involved calculations that provide 𝛼 = 0, 𝛾 = 1, and 𝛿 = 3.

Interestingly, these are the exact critical exponents that one would find via mean-field

theory techniques. This is striking, as the system-dependent parameters in the theory capture

the unique structure of each system we may consider, but yet the critical exponents remain

the same. One may think this is a sign of the universality phenomenon we have already

briefly discussed. However, Landau’s theory would suggest that every phase transition

should belong to the same universality class!

1.2.2. Ginzburg-Landau-Wilson Theory. The key component missing from Lan-

dau’s original theory is the role of fluctuations and long-range correlations. The inclusion

of these features in the free energy is relatively straight forward. We must now consider

a spatially dependent order parameter Ψ(x), to capture spatial fluctuations, as well as it’s

gradient ∇Ψ(x), to capture long-range correlations. Calculation of the free energy now

takes the form of an integration across the volume 𝑉 of the system in question

𝐹𝐿
[
Ψ(x)

]
=

∫
𝑉

𝑑𝑑𝑥

[
− ℎΨ(x) + 𝑟Ψ2(x) + 𝑢Ψ4(x) + [∇Ψ(x)]2

]
. (1.7)
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where 𝑑 is the spatial dimensionality of the system being considered. This theory, often

called the Landau-Ginzburg-Wilson theory of phase transitions, is quite useful in the context

of calculating the critical behavior of many systems and serves as a basis for a broad category

of phase transition analysis [8].

1.3. THE SCALING HYPOTHESIS

We have seen already that the critical exponents serve to define the behavior of

various observables as the critical point is approached and their calculation are a central

focus of the study of phase transitions. In this Section, we will see that the long list of

critical exponents are in fact closely related to each other and that only two of the exponents

are required to entirely describe the systems critical behavior.

In Section 1.1.2 we noted that the correlation lengths of fluctuations diverge at the

critical point. This makes the correlation length the only relevant length scale of the system

and the system becomes scale invariant. That is to say, the physical properties of a system

will be invariant if we were to rescale all lengths in the system by a common factor while at

the same time adjusting external parameters such that the correlation length remained the

same. Formally, this takes the form of the homogeneity relation for the singular portion of

the free energy density (the portion of the free energy that exhibits the defining singularity

of a thermodynamics phase transition)

𝑓 (𝑟, ℎ) = 𝑏−𝑑 𝑓 (𝑟𝑏𝑦𝑟 , ℎ𝑏𝑦ℎ) (1.8)

and the correlation lengths

𝜉 = 𝑏𝜉 (𝑟𝑏𝑦𝑟 , ℎ𝑏𝑦ℎ) (1.9)

where 𝑏 is an arbitrary (positive) rescaling factor, 𝑑 is the spatial dimensionality of the

system, and 𝑦𝑟 & 𝑦ℎ are new critical exponents. This scaling form was first derived by

Widom [9] on phenomenological grounds, but may be also derived from first principles using
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renormalization group techniques [10]. From the homogeneity relationship (1.8) we may

derive the thermodynamic observables of the system via differentiation of 𝐹. Accordingly,

we arrive at scaling relations for the order parameter, susceptibility, and specific heat

Ψ ∼ 𝜕 𝑓

𝜕ℎ
= 𝑏𝑦ℎ−𝑑𝑋Ψ (𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ) (1.10)

𝜒 ∼ 𝜕2 𝑓

𝜕ℎ2 = 𝑏2𝑦ℎ−𝑑𝑋𝜒 (𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ) (1.11)

𝐶 ∼ 𝜕2 𝑓

𝜕𝑟2 = 𝑏2/𝜈−𝑑𝑋𝐶 (𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ) (1.12)

where 𝑋Ψ, 𝑋𝜒, and 𝑋𝐶 are scaling functions of the order parameter, susceptibility and

specific heat, respectively, defined via the appropriate derivatives of the free energy 𝐹.

Since the rescaling factor 𝑏 is arbitrary, we may choose it’s value in a convenient way. In

order to fix the first argument in the scaling functions, we choose 𝑏 = 𝑟−𝜈 (this also has

some physical meaning since, in effect, we are choosing the correlation lengths near the

critical point 𝜉 ∼ 𝑟−𝜈). Then, for ℎ = 0, we arrive at relationships for the order parameter,

susceptibility, and specific heat critical exponents

Ψ ∼ 𝑟 (𝑑−𝑦ℎ)𝜈 ≡ 𝑟 𝛽 (1.13)

𝜒 ∼ 𝑟 (𝑑−2𝑦ℎ)𝜈 ≡ 𝑟−𝛾 (1.14)

𝐶 ∼ 𝑟𝑑𝜈−2 ≡ 𝑟−𝛼 . (1.15)

To make a connection to the critical isotherm exponent, we consider equation (1.10) for a

scaling factor 𝑏 = ℎ−1/𝑦ℎ chosen to fix the second argument. This gives another relationship

for the critical isotherm exponent at the critical point 𝑟 = 0

Ψ ∼ ℎ𝑑/𝑦ℎ−1 ≡ ℎ1/𝛿 (1.16)
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and therefore a set of equations relating the thermodynamic critical exponents to one another:

(𝑑 − 𝑦ℎ)𝜈 = 𝛽 (1.17)

(𝑑 − 2𝑦ℎ)𝜈 = −𝛾 (1.18)

𝑑𝜈 − 2 = −𝛼 (1.19)

𝑑/𝑦ℎ − 2 = 1/𝛿 (1.20)

Algebraic manipulation of these equations then provides the scaling relationships that

connect the various critical exponents

𝛼 = 2 − 𝑑𝜈 (1.21)

2𝛽 + 𝛾 + 𝛼 = 2 (1.22)

𝛽(𝛿 − 1) = 𝛾. (1.23)

Based on the generality of the derivation of these scaling relationships, we expect that all

critical systems must have exponents that satisfy these conditions. Given this fact, the above

relationships may be used as checks on the final results of a critical exponent calculation,

as we will see demonstrated in the calculations we perform in the following chapters.

1.4. QUENCHED DISORDER AND THE HARRIS CRITERION

The main focus of this dissertation is on the effects of disorder (e.g. impurities,

doping, lattice vacancies) on the critical behavior of systems. In particular, we are interested

in quenched, or time-independent disorder in these systems. While it may be intuitively

clear that disorder may affect the critical behavior of a system, Harris derived a quantitative
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criterion for the stability of the critical behavior of a clean system against the introduction

of disorder [11]. Here, we will give a sketch of Harris’ original 1974 derivation of his

eponymous criterion.

Introduction of disorder to a system has the effect of modifying the critical temper-

ature so that now we have a critical temperature 𝑇𝑐 (𝑝), where 𝑝 represents the fraction of

missing interactions in the disordered system (i.e. 𝑝 = 1 is the clean, undiluted case). Close

to the critical point, we then have a relationship for the diverging correlation lengths

𝜉 ∼ |𝑇 − 𝑇𝑐 (𝑝) |−𝜈 (1.24)

and our goal is to determine the width (or variance) of the spatial distribution of𝑇𝑐 (𝑝) in our

system (since the disorder is randomly distributed throughout). The first step in determining

this is to divide the system up into blocks of volume 𝜉𝑑 , where 𝑑 is the spatial dimensionality.

Blocks of linear size 𝜉 are chosen so we may treat them as statistically independent entities.

Then, the number of missing interactions in a given block may be written as ⟨𝑛⟩ = 𝑝𝜉𝑑 . We

may then write for the variance of the number of missing interactions in a block as

𝜎2
𝑛 ≡ ⟨𝑛2⟩ − ⟨𝑛⟩2 = 𝜉𝑑 𝑝(1 − 𝑝) (1.25)

Thus, the width of the distribution of the concentration of missing interactions in a given

block is of order 𝜎2
𝑝 ∼ [𝜉𝑑 𝑝(1 − 𝑝)]1/2/𝜉𝑑 . Then, using the linearity of the relationship

between 𝑝 and 𝑇𝑐 (𝑝), we may conclude that the variance 𝜎2
𝑇𝑐

of the distribution of 𝑇𝑐 (𝑝)

throughout the system is of order

𝜎2
𝑇𝑐

𝑇𝑐
∼

√︁
𝜉𝑑 𝑝(1 − 𝑝)

𝜉𝑑
. (1.26)
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From here, we must ask ourselves if the originally chosen correlation lengths 𝜉 ∼ |𝑇 −

𝑇𝑐 (𝑝) |−𝜈 are self-consistent. That is, we must have a correlation length that is not larger

than that which corresponds to a temperature |𝑇 − 𝑇𝑐 |/𝑇𝑐 = 𝜎2
𝑇𝑐
/𝑇𝑐. This gives as the

requirement for self-consistency

𝜉 ≤ |𝜎2
𝑇𝑐
/𝑇𝑐 |−𝜈 = 𝜉𝑑𝜈/2 [𝑝(1 − 𝑝)]−𝜈/2 (1.27)

which can only be satisfied if we have 𝑑𝜈/2 ≥ 1, or as it is typically written

𝑑𝜈 > 2 (1.28)

The ‘equal to’ portion of the expression has been dropped, as Harris’ derivation which we

have sketched here is too imprecise to account for 𝑑𝜈 = 2.

Harris’ criterion indicates that the stability of a sharp, well-defined phase transition

at the clean critical point is dependent on system dimensionality and it’s correlation length

critical exponent. If the Harris’ criterion is not satisfied, then any introduction of disorder to

the system will result in the destruction of the clean critical point and the general expectation

that new critical behavior will emerge, with new critical exponents.

In the calculations to follow in this dissertation, we will see that the systems we

investigate break the Harris criterion (i.e. have critical exponents such that 𝑑𝜈 < 2) and

therefore we expect the system to exhibit new critical phenomenon upon the introduction

of disorder. Additionally, once the new critical exponents have been calculated, the Harris

criterion can also be used as a check for the validity of the new critical exponents (e.g. we

require new exponents to satisfy 𝑑𝜈 > 2) [6].
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1.5. QUANTUM PHASE TRANSITIONS

The discussion so far has been relevant to classical phase transitions which take

place at finite temperatures. Classical phase transitions are the result of the competition

between order parameter and thermal fluctuations of the system and for this reason, are also

often called thermal phase transitions. In recent years, researchers have developed interest

in another class of phase transitions, namely transitions that take place at the absolute zero

of temperature. These zero-temperature phase transitions are transitions in the ground state

of a many-body quantum systems that are a result of quantum fluctuations and therefore

designated as quantum phase transitions [12].

The study of phase transitions that occur at the experimentally inaccessible absolute

zero of temperature may sound like a purely academic issue. However, recent experimen-

tal and theoretical developments have shown that the existence of such zero temperature

quantum critical points is key to understanding the behavior of many real-world condensed

matter systems at low temperatures.

1.5.1. Quantum-to-Classical Mapping. As with most quantum phenomenon, the

study of quantum phase transitions (QPTs) comes with many more theoretical complica-

tions than their classical counterparts. Fortunately, there is a fundamental correspondence

between the thermodynamics of a 𝑑 dimensional quantum system and a 𝑑 + 1 dimensional

classical system that we may take advantage of. Therefore, to study the thermodynamics

of QPTs, we may perform a quantum-to-classical mapping which allows us to study the

thermodynamics of the quantum theory by analyzing a corresponding classical system, at

the cost of an extra dimension in imaginary-time.

To see how the quantum-to-classical mapping works, we start from the central focus

of statistical mechanics: the partition function

𝑍 = tr
(
𝑒−𝛽𝐻

)
(1.29)
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where 𝛽 = 1/𝑘𝐵𝑇 . In a classical system with a Hamiltonian of the form 𝐻 = 𝐻𝑘𝑖𝑛 + 𝐻𝑝𝑜𝑡 ,

the exponential can be factorized and the partition function takes the form 𝑍 = 𝑍𝑘𝑖𝑛𝑍𝑝𝑜𝑡 ,

effectively decoupling the static and dynamic behavior of the system. The kinetic portion

of the partition function is typically in the form of a product of Gaussian integrals and

therefore does not exhibit the singularities of phase transitions. This allows the study of

classical phase transitions via time-independent theories in 𝑑 dimensions.

In the quantum case, the luxury of a decoupled partition function is not present. In

general, the kinetic and potential parts of the Hamiltonian do not commute, and therefore the

partition function cannot be factorized. This means that the static and dynamic portions of

the quantum system are always coupled and a time-dependent theory is required to describe

QPTs accurately.

The key to developing a time-dependent theory which may describe QPTs, is rec-

ognizing that the density operator 𝑒−𝛽𝐻̂ may be rewritten as a time-evolution operator by

introducing an imaginary-time 𝜏

𝛽 = 𝜏 = −𝑖𝑡/ℏ (1.30)

where 𝑡 represents the real time. This maps the inverse temperature onto the imaginary-time

axis, where a zero temperature 𝛽 → ∞ system corresponds to infinity on the imaginary-

time axis. Utilizing the imaginary-time mapping in combination with the Suzuki-Trotter

decomposition of the exponential, the partition function may be factored and evaluated by

allowing the decomposed time-evolution operators to act on the basis states of the quantum

system in question. The end result (after performing the emerging sums and products) is a

partition function whose Hamiltonian takes the form of a classical model in imaginary-time,

with the classical temperature mapped to the ratio of quantum coupling parameters.

In our calculations to follow, this fundamental connection between the quantum and

classical world allows us to investigate the quantum Hamiltonian of our system by means

of a classical spin model for which we may use well-established algorithms to simulate. Of
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course, we are still left with the task of interpreting these results in the extra imaginary-time

dimension. The details of this portion of the calculation will be presented in the following

chapters.

1.5.2. Scaling Revisited. The introduction of the imaginary-time axis in the de-

scription of QPTs has an effect on the homogeneity relationship for the classical free energy

and thus the scaling forms for the observables of the system. We know that times near

the critical point are related to the 𝑧th power of the correlation length 𝜏 ∼ 𝜉𝑧. Therefore,

introducing the imaginary-time axis is equivalent to introducing another dimension which

scales according to the 𝑧th power and generalizing (1.8) to the quantum case is simple. The

quantum homogeneity relationship is then written as

𝐹 (𝑟, ℎ) = 𝑏 (𝑑+𝑧)𝐹 (𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ). (1.31)

Here, 𝑟 now represents the distance to a quantum critical point as a function of some non-

thermal tuning parameter 𝑟 = (𝑔 − 𝑔𝑐)/𝑔𝑐. For many critical points (e.g. clean, undiluted

systems), we have 𝑧 = 1, thus providing a connection to the quantum-to-classical mapping

discussed in the previous Section (i.e. the only difference in the scaling relationship reflects

the correspondence 𝑑 → (𝑑 +1)). We will soon see that in general (e.g. the diluted systems

we focus on) we may have any 𝑧 > 0.

1.6. FINITE-SIZE SCALING

We have seen in Section 1.1.2 that phase boundaries are characterized by singular-

ities in certain observables of a thermodynamic system. However, these singularities only

truly exist in the thermodynamic limit. That is, in a system whose volume 𝑉 → ∞ or

number of particles 𝑁 → ∞ approach infinity, while keeping the density 𝑁/𝑉 constant.

In the remainder of this dissertation, we will be studying the properties of these phase

boundaries via computer simulation, for which the system size is constrained by the limi-



15

tations of computational power. In the finite-sized systems used in simulations, finite-size

effects become a significant factor in the critical behavior, with the singularities becoming

rounded and the critical points being shifted from their true thermodynamic limit values

[1]. Therefore, we must ask ourselves: how do we precisely determine the critical points

and critical exponents in the presence of these finite-size effects?

To answer this question, we return to the classical homogeneity relationship for the

free energy density (1.8). In the case of a finite-size system of linear size 𝐿, at the critical

point 𝑟 = 0 the correlation lengths can no longer diverge to infinity, but rather are restricted

by the linear size of the system 𝜉 ∼ 𝑟−𝜈 → 𝐿. The classical homogeneity relationship may

be generalized to account for finite-size effects as

𝑓 (𝑟, ℎ, 𝐿) = 𝑏−𝑑 𝑓 (𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ , 𝐿𝑏−1). (1.32)

Choosing the arbitrary scale factor in a convenient way 𝑏 = 𝐿 to fix the third argument in

the scaling function, we then arrive at the finite-size scaling form for the free energy

𝑓 (𝑟, ℎ, 𝐿) = 𝐿−𝑑 𝑓 (𝑟𝐿1/𝜈, ℎ𝐿𝑦ℎ) (1.33)

from which we may derive the scaling forms for the remaining observables. Taking the

appropriate derivatives for the order parameter, susceptibility and specific heat and using

the relationships (1.17) - (1.19), we arrive at the finite-size scaling forms for ℎ = 0

Ψ ∼ 𝐿−𝛽/𝜈𝑋Ψ (𝑟𝐿1/𝜈) (1.34)

𝜒 ∼ 𝐿𝛾/𝜈𝑋𝜒 (𝑟𝐿1/𝜈) (1.35)

𝐶 ∼ 𝐿𝛼/𝜈𝑋𝐶 (𝑟𝐿1/𝜈). (1.36)
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With these relationships, it is relatively clear to see that if we perform calculations right at

the critical point 𝑟 = 0, then the values of these observables scales with system size accord-

ing a power-law relationship governed by their respective critical exponents. Therefore,

determining the critical exponents of a system is simply a matter of power-law fits to the

observables as a function of system size with 𝑟 = 0. Of course, to utilize this technique, we

need a way to reliably find the critical points 𝑟 = 0 to suitable accuracy.

1.6.1. Critical Points. The key to determining the true thermodynamic limit critical

point in the context of finite-size scaling is particular observables that are of scale dimension

zero, or dimensionless. These are observables which, unlike (1.34) - (1.36), only depend on

a homogeneous scaling function. A core example of such dimensionless observables – used

extensively in the remainder of this work – is the Binder cumulant of the order parameter

[13]

𝑔 = 1 − ⟨Ψ4⟩
3⟨Ψ2⟩2 (1.37)

and the reduced correlation length 𝜉/𝐿. The finite-size scaling form for the Binder cumulant

is easy to derive by simply plugging in (1.34) to (1.37)

𝑔(𝑟, 𝐿) = 1 − ⟨Ψ⟩4

3⟨Ψ2⟩2 = 1 − 𝐿−4𝛽/𝜈𝑋Ψ4 (𝑟𝐿1/𝜈)
(𝐿−2𝛽/𝜈𝑋Ψ2 (𝑟𝐿1/𝜈))2 = 𝑋𝑔 (𝑟𝐿1/𝜈). (1.38)

The factors of 𝐿 cancel out in the Binder cumulant, leaving just the homogeneous scaling

function 𝑋𝑔, making the observable scale dimension zero. Similarly, for the correlation

length, the finite-size scaling form is

𝜉 = 𝐿𝑋𝜉 (𝑟𝐿1/𝜈) (1.39)

for which it is easy to see that the reduced correlation length is only dependent on the scaling

function 𝑋𝜉

𝜉/𝐿 = 𝑋𝜉 (𝑟𝐿1/𝜈) (1.40)
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and thus also scale dimension zero.

Crucially, since dimensionless variables are only dependent on their scaling func-

tions, they have the convenient properties that at the critical point 𝑟 = 0

𝑔(0, 𝐿) = 𝑋𝑔 (0) 𝜉/𝐿 (0, 𝐿) = 𝑋𝜉 (0) (1.41)

Therefore, to find the critical point in a numerical simulation of a finite-size system, we

may scan across a range of the tuning parameter 𝑟 for a set of system sizes 𝐿. Since the

dimensionless observables will take on the exact same value at the critical point for different

system sizes, the curves of 𝑔 or 𝜉/𝐿 as a function of 𝑟 for different system sizes will cross

at exactly 𝑟 = 0, allowing us to determine the critical point to essentially arbitrary accuracy

(within computational limits).

1.6.2. Critical Exponents. Once the critical points have been determined to suit-

able accuracy, we are then tasked with finding the critical exponents. To accomplish this,

we note that the finite-size scaling forms of the observables for which the critcal exponents

are defined, take the form of power laws as a function of system size at the critical point

𝑟 = 0

Ψ(0, 𝐿) = 𝐿−𝛽/𝜈𝑋Ψ (0) ∼ 𝐿−𝛽/𝜈 (1.42)

𝜒(0, 𝐿) = 𝐿𝛾/𝜈𝑋𝜒 (0) ∼ 𝐿𝛾/𝜈 (1.43)

𝐶 (0, 𝐿) = 𝐿𝛼/𝜈𝑋𝐶 (0) ∼ 𝐿𝛼/𝜈 . (1.44)

Additionally, we may calculate the correlation length critical exponent 𝜈 directly (more

precisely 1/𝜈), by considering the derivative of the Binder cumulant and reduced correlation

length with respect to 𝑟
𝑑

𝑑𝑟
𝜉/𝐿 = 𝐿1/𝜈𝑋𝜉 (0) ∼ 𝐿1/𝜈 (1.45)

𝑑

𝑑𝑟
𝑔 = 𝐿1/𝜈𝑋𝑔 (0) ∼ 𝐿1/𝜈 . (1.46)
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Therefore, we may simulate the system at 𝑟 = 0 for a range of system sizes and perform

power law fits of the observables to extract the critical exponents 𝜈, 𝛽/𝜈, 𝛾/𝜈 and 𝛼/𝜈.

To summarize, calculating the critical behavior of a (clean, undiluted) system con-

sists of two general steps. First, utilize the crossings of scale dimension zero variables as

a function of the relevant external parameter to find 𝑟 = 0 to a suitable accuracy. Once

the critical point is determined, we may then simulate the system at 𝑟 = 0 for a range of

system sizes 𝐿. Power-law fits to the observables as a function of system size then pro-

vides an estimate for the relevant critical exponent. The precision of the resulting critical

points and exponents is only limited by the system sizes one may reach with the available

computational resources.

1.7. COLLECTIVE EXCITATIONS: HIGGS AND GOLDSTONE MODES

1.7.1. Continuous Symmetry Breaking. Symmetries and the breaking of sym-

metries play a vital role in modern physics from condensed matter to cosmological and

high-energy systems. Phase transitions are great examples of symmetry breaking phenom-

ena. The freezing of water from it’s liquid state into the solid state breaks the translational

symmetry of the liquid. Reducing ferromagnetic materials below their Curie temperature

results in the magnetization spontaneously acquiring a magnitude and direction, breaking

the rotational symmetry of the system above the Curie point. In the case of superfluids,

the transition to the superfluid state breaks the U(1) continuous symmetry of the complex

superfluid order parameter that characterizes the superfluid density.

A fundamental consequence of the breaking of a continuous symmetry of an 𝑁-

component order parameter is the emergence of a massive (or gapped) Higgs mode –

corresponding to fluctuations of the order parameter magnitude – and 𝑁 − 1 massless (or

gapless) Goldstone modes – corresponding to fluctuations in the order parameter phase

[14, 15]. The emergence of these collective excitation modes is easily understood in the

context of the Ginzburg-Landau-Wilson theory, which was discussed in Section 1.2.2.
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We are concerned with the complex superfluid order parameter

Ψ = |Ψ|𝑒𝑖𝜙. (1.47)

The action defining Ginzburg-Landau-Wilson theory (1.7) implies that the order parameter

Ψ(x) experiences a potential 𝑉 that is symmetric in the disordered phase. This permits an

equilibrium order parameter Ψ = 0 with a continuous rotational symmetry (i.e. a change

in the phase 𝜙 leaves the system unchanged). As the critical point is approached, the

symmetric potential begins to evolve into the so-called ‘Mexican hat’ potential. Once the

critical point is crossed, the order parameter spontaneously obtains a magnitude and phase

in accordance with the minimums of this new potential Ψ = |Ψ|𝑒𝑖𝜙 ≠ 0, therefore breaking

the continuous symmetry of the disordered phase. The fluctuations of the order parameter

about the minimums of the ‘Mexican hat’ potential define the Higgs and Goldstone modes.

The energy of the Higgs mode is expected to follow the divergence of the correlation

times 𝜏𝑐 ∼ 𝑟−𝑧𝜈 as the critical point is approached. This implies a Higgs energy 𝜔𝐻

𝜔𝐻 ∼ 𝑟 𝑧𝜈 (1.48)

which softens to zero as the critical point is approached. In the disordered phase the Higgs

and ‘Goldstone’ mode energies are degenerate so that we have 𝜔𝐺 = 𝜔𝐻 and the Goldstone

mode becomes gapless 𝜔𝐺 = 0 in the ordered phase.

1.7.2. Linear Response Theory. Studies of a systems dynamical properties are

most conveniently done in the context of linear response theory [16]. The basis of this

approach assumes that sufficiently weak perturbations to a system at a driving frequency

𝜔 (e.g. by means of AC currents) will invoke a response in the system of equal frequency

𝜔. In others words, observing a response in the system at a frequency different from the

driving frequency ≠ 𝜔 indicates a strong non-linear response. Perturbations of these kind

may be described in terms of a generalized susceptibility 𝜒 which describes a response 𝑋
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as a result of a driving force 𝐹 as

𝑋𝑖 (x, 𝜔) ≈
∫

𝑑𝑑𝑟′𝜒𝑖 𝑗 (x, x′, 𝜔)𝐹𝑗 (𝑟′, 𝜔) (1.49)

where the indices 𝑖 and 𝑗 denote the various components of the driving force and the systems

response. The expression is only considered an approximation as we are neglecting any

non-linear responses higher-order in the driving force (e.g. O(𝐹2) and higher). For trans-

lationally invariant systems, the response function depends only on the difference between

the spatial coordinates 𝜒𝑖 𝑗 (x, x′, 𝜔) = 𝜒𝑖 𝑗 (x − x′, 𝜔) and the spatial Fourier transform of

(1.49) is simplified

𝑋𝑖 (q, 𝜔) = 𝜒𝑖 𝑗 (q, 𝜔)𝐹 (q, 𝜔). (1.50)

In this form it is easy to conceptualize the fact that a peak in the response 𝑋𝑖 (q, 𝜔)

corresponds to an excitation in the system with frequency 𝜔 and momentum q.

1.7.3. Kubo Formula. While linear response theory provides a significant sim-

plification in the conceptual understanding of dynamical responses in condensed matter

systems, it provides very little in terms of methods of calculation. Luckily, a mathematical

connection may be made between the thermal equilibrium properties of a system and it’s

associated response function. This mathematical connection is most well-known as the

fluctuation-dissipation theorem. As the name suggests, this theorem establishes a formal

relationship between the thermal fluctuations of a system and it’s dissipation properties (e.g.

the response function corresponding to the relevant fluctuation). The derivation in terms of

the functional field integral of the system results in defining relationship

𝜒(q, 𝜔) = ⟨𝑋 (𝜏)𝑋 (0)⟩ − ⟨𝑋 (𝜏)⟩⟨𝑋 (0)⟩. (1.51)
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With this formula, we may calculate the susceptibility 𝜒 by calculating thermal expectation

values of the relevant observable and it’s product. This makes calculation of 𝜒 a rather

straight-forward process in the context of Monte Carlo simulations whose central outputs

are typically these thermal expectation values.
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ABSTRACT

We investigate the zero-temperature superfluid to insulator transitions in a diluted

two-dimensional quantum rotor model with particle-hole symmetry. We map the Hamil-

tonian onto a classical (2 + 1)-dimensional XY model with columnar disorder which we

analyze by means of large-scale Monte Carlo simulations. For dilutions below the lattice

percolation threshold, the system undergoes a generic superfluid-Mott glass transition. In

contrast to other quantum phase transitions in disordered systems, its critical behavior is

of conventional power-law type with universal (dilution-independent) critical exponents

𝑧 = 1.52(3), 𝜈 = 1.16(5), 𝛽/𝜈 = 0.48(2), 𝛾/𝜈 = 2.52(4), and 𝜂 = −0.52(4). These values

agree with and improve upon earlier Monte-Carlo results [Phys. Rev. Lett. 92, 015703

(2004)] while (partially) excluding other findings in the literature. As a further test of uni-

versality, we also consider a soft-spin version of the classical Hamiltonian. In addition, we

study the percolation quantum phase transition across the lattice percolation threshold; its

critical behavior is governed by the lattice percolation exponents in agreement with recent

theoretical predictions. We relate our results to a general classification of phase transitions

in disordered systems, and we briefly discuss experiments.
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1. INTRODUCTION

Zero-temperature phase transitions between superfluid and insulating ground states

in systems of disordered interacting bosons are prototypical quantum phase transitions

with experimental applications ranging from helium absorbed in vycor [1, 2] to Josephson

junction arrays [3, 4], superconducting films [5, 6], doped quantum magnets in high fields

[7, 8, 9], and to ultracold atoms in disordered optical lattices [10, 11, 12].

For generic disorder, the two bulk phases, viz. superfluid and Mott insulator, are

separated by another phase, the Bose glass which is a compressible gapless insulator

[13, 14, 15]. It can be understood as the Griffiths phase [16, 17, 18] of the superfluid-

insulator transition in which rare large regions of local superfluid order coexist with the

insulating bulk. The quantum phase transition between superfluid and Bose glass has been

studied in great detail using various analytical and computational techniques. It has recently

reattracted considerable attention because new analytical [19] and numerical [20, 21, 22, 23]

findings have challenged the scaling relation[13, 14] 𝑧 = 𝑑 between the dynamical exponent

𝑧 and the space dimensionality 𝑑 (References [19, 20, 21, 22, 23] also contain long lists of

references to earlier work.)

In the presence of particle-hole symmetry, the glassy Griffiths phase between su-

perfluid and Mott insulator has a different character: it is the incompressible gapless Mott

glass (also called the random-rod glass) [24, 25]. The quantum phase transition between

superfluid and Mott glass has attracted less attention than the Bose glass transition. More-

over, the available quantitative results for two space dimensions do not agree with each

other. Monte Carlo simulations of a link-current model [26] yielded a dynamical critical

exponent 𝑧 = 1.5(2) and a correlation function exponent 𝜂 = −0.3(1). 1 A numerical

strong-disorder renormalization group study of a particle-hole symmetric quantum rotor

model gave 𝑧 = 1.31(7), a correlation length exponent 𝜈 = 1.09(4), and 𝛾/𝜈 = 1.1(2)

where 𝛾 is the order parameter susceptibility exponent [27]. The Fisher relation 2−𝜂 = 𝛾/𝜈

1Here, the numbers in parentheses are the errors of the last digits.
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then implies 𝜂 = 0.9(2). Furthermore, a recent Monte Carlo study of a quantum rotor

model[28] reported good scaling by setting 𝑧 to its clean value 𝑧 = 1 which resulted in

𝜈 = 0.96(6). All these models are expected to be in the same universality class. The critical

behavior of the superfluid-Mott glass quantum phase transition in two dimensions must thus

be considered an open question.

To address this question, we consider a site-diluted two-dimensional quantum rotor

model with particle-hole symmetry. After mapping this Hamiltonian onto a classical

(2+ 1)-dimensional XY model with columnar defects, we perform large-scale Monte Carlo

simulations for lattices with up to 11 million sites, averaging over 10 000 to 50 000 disorder

configurations. The data are analyzed by a finite-size scaling technique[29, 30, 31, 32] that

does not require prior knowledge of the dynamical exponent 𝑧. We also include the leading

corrections to scaling. Our results can be summarized as follows: The system features

two distinct quantum phase transitions. For dilutions 𝑝 below the percolation threshold

𝑝𝑐 of the lattice, we find a superfluid-Mott glass transition characterized by universal

(dilution-independent) critical behavior with exponent values 𝑧 = 1.52(3), 𝜈 = 1.16(5),

𝛽/𝜈 = 0.48(2), 𝛾/𝜈 = 2.52(4), and 𝜂 = −0.52(4). The transition across the lattice

percolation threshold 𝑝𝑐 falls into a different universality class. Its simulation data can be

fitted well with the theory developed in Reference [33] which yields critical exponents that

can be expressed in terms of the classical percolation exponents and take the rational values

𝑧 = 91/48, 𝛽/𝜈 = 5/48, 𝛾/𝜈 = 59/16, and 𝜂 = −27/16.

The rest of the paper is organized as follows. Section 2 introduces the quantum rotor

Hamiltonian, the mapping to the classical XY model, and the finite-size scaling technique.

Monte Carlo simulations for both the generic (𝑝 < 𝑝𝑐) transition and the percolation

transition are discussed in Section 3. We conclude in Section 4.
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2. THEORY

2.1. DILUTED ROTOR MODEL

The starting point is a site-diluted quantum rotor model on a square lattice given by

the Hamiltonian

𝐻 =
𝑈

2

∑︁
𝑖

𝜖𝑖 (𝑛̂𝑖 − 𝑛̄𝑖)2 − 𝐽
∑︁
⟨𝑖 𝑗⟩

𝜖𝑖𝜖 𝑗 cos(𝜙𝑖 − 𝜙 𝑗 ) . (1)

Here, 𝑛̂𝑖 is the number operator at site 𝑖, 𝜙𝑖 is the phase operator, and 𝑈 and 𝐽 represent

the charging energy and the Josephson coupling, respectively. 𝑛̄𝑖 is the offset charge at site

𝑖. In the Josephson term, ⟨𝑖 𝑗⟩ refers to pairs of nearest neighbors. The quenched random

variables 𝜖𝑖 implement the site dilution. They are independent of each other and take the

values 0 (vacancy) with probability 𝑝 and 1 (occupied site) with probability 1 − 𝑝.

As we are interested in the superfluid-Mott glass transition, we set all offset charges

𝑛̄𝑖 to zero and consider commensurate (integer) filling ⟨𝑛̂⟩. In this case, the disorder is purely

off-diagonal, and the model is particle-hole symmetric. The qualitative features of its phase

diagram are well understood [14, 25]. If the charging energy dominates,𝑈 ≫ 𝐽, the ground

state is a Mott insulator. In the opposite limit, 𝐽 ≫ 𝑈, the ground state is a superfluid as

long as the dilution 𝑝 is below the lattice percolation threshold 𝑝𝑐. For 𝑝 > 𝑝𝑐, the lattice

consists of disconnected clusters and a long-range ordered superfluid state is impossible.

In the case of particle-hole symmetry, the quantum rotor model (1) can be mapped

[34] onto a classical (2+1)-dimensional XY model on a cubic lattice having the Hamiltonian

𝐻cl = −𝐽𝑠
∑︁
⟨𝑖, 𝑗⟩,𝑡

𝜖𝑖𝜖 𝑗S𝑖,𝑡 · S 𝑗 ,𝑡 − 𝐽𝜏
∑︁
𝑖,𝑡

𝜖𝑖S𝑖,𝑡 · S𝑖,𝑡+1 (2)

where S𝑖,𝑡 is an O(2) unit vector at the lattice site with spatial coordinate 𝑖 and “imaginary

time” coordinate 𝑡. The coupling constants 𝐽𝑠/𝑇 and 𝐽𝜏/𝑇 are determined by the original

quantum rotor Hamiltonian (1) with 𝑇 being an effective “classical” temperature, not equal
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Figure 1. Sketch of the classical XY model (2).The arrows represent the classical unit
vectors S, and the tubes show the locations of the vacancy columns.

to the real physical temperature. (The physical temperature of the quantum system (1) maps

onto the inverse system size in imaginary time direction of the classical model.) Due to

universality, the exact values of 𝐽𝑠 and 𝐽𝜏 are not important for the critical behavior. We

therefore set 𝐽𝑠 = 𝐽𝜏 = 1 and drive the XY model (2) through the transition by varying the

classical temperature 𝑇 . Because the vacancy positions do not depend on the imaginary

time coordinate 𝑡, the defects in the classical model (2) are columnar, i.e., the disorder is

perfectly correlated in the imaginary time direction (see Figure 1).

In the clean undiluted limit 𝑝 = 0, the Hamiltonian (2) simplifies to the usual three-

dimensional XY model. The correlation length critical exponent of the three-dimensional

XY universality class takes the value 𝜈 ≈ 0.6717 (see, e.g., Reference [35]). This value

violates the Harris criterion [36] 𝑑𝜈 > 2 where 𝑑 = 2 is the number of dimensions in
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which there is randomness. Consequently, the three-dimensional clean XY critical point is

unstable against columnar defects, and we expect the diluted system to feature a different

critical behavior.

2.2. ANISOTROPIC FINITE-SIZE SCALING

Finite-size scaling [37, 38] is a powerful tool for analyzing Monte Carlo data.

Particularly useful are quantities of scale dimension zero such as the (average) Binder

cumulant

𝑔av =

[
1 − ⟨|m|4⟩

3⟨|m|2⟩2

]
dis
, (3)

where m = (1/𝑁)∑𝑖,𝜏 S𝑖,𝜏 is the order parameter (𝑁 denotes the number of lattice sites).

[. . .]dis refers to the disorder average and ⟨. . .⟩ denotes the Monte Carlo average for each

sample. In an isotropic system with a single relevant length scale, it takes the scaling form

𝑔av(𝑟, 𝐿) = 𝑋 (𝑟𝐿1/𝜈). Here 𝐿 is the linear system size, 𝑟 = (𝑇 −𝑇𝑐)/𝑇𝑐 is the distance from

criticality, and 𝑋 is a scaling function. This scaling form implies that 𝑔av vs. 𝑟 curves for

systems of different sizes 𝐿 all cross at criticality, 𝑟 = 0, having the value 𝑔av(0, 𝐿) = 𝑋 (0).

This can be used to find the critical point with high accuracy. Moreover, the slopes of the

𝑔av vs. 𝑟 curves at 𝑟 = 0 vary as 𝐿1/𝜈 which can be used to measure 𝜈.

As the quenched disorder in our Hamiltonian (2) breaks the symmetry between the

space and imaginary time directions, we need to distinguish the linear system size 𝐿 in the

two space directions from the size 𝐿𝜏 in the imaginary time direction. (𝐿𝜏 corresponds

to the inverse physical temperature of the original quantum model (1).) If the putative

disordered critical point fulfills conventional power-law dynamical scaling, the finite-size

scaling form of the average Binder cumulant then reads

𝑔av(𝑟, 𝐿, 𝐿𝜏) = 𝑋𝑔av (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) (4)
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where 𝑧 is the dynamical critical exponent, and 𝑋𝑔av is the dimensionless scaling function

which now depends on two arguments. Note that some quantum phase transitions in

disordered systems feature exotic activated dynamical scaling instead of power-law scaling,

for example the ferromagnetic transition in the random transverse-field Ising model [39, 40],

the pairbreaking superconductor-metal quantum phase transition [41, 42, 43, 44, 45], and

magnetic transitions in itinerant systems [46, 47]. For activated dynamical scaling, the

scaling combination 𝐿𝜏/𝐿𝑧 in Eq. (4) needs to be replaced by ln(𝐿𝜏)/𝐿𝜓 where 𝜓 is the

tunneling exponent. Based on the classification of disordered quantum phase transitions

developed in References [48, 18], we do not expect the superfluid-Mott glass transition to

show activated scaling. We will return to this point in the concluding section.

How can one perform a finite-size scaling analysis of Monte Carlo data based on the

scaling form (4) of the average Binder cumulant? If the value of 𝑧 is known, the analysis is as

simple as in the isotropic case: One chooses system sizes 𝐿 and 𝐿𝜏 such that 𝐿𝜏 = 𝑐 𝐿𝑧 were

𝑐 is a constant. Then the 𝑔av vs. 𝑟 curves for systems of different sizes cross at criticality

[with the value 𝑔av(0, 𝐿, 𝑐 𝐿𝑧) = 𝑋𝑔av (0, 𝑐)] which can be used to locate the critical point.

However, in the absence of a value for 𝑧, this approach breaks down because the correct

shapes (aspect ratios) of the samples are not known.

A method for finding the correct sample shape within the simulations [29, 30, 31, 32]

can be based on the following property of the Binder cumulant: For fixed 𝐿, 𝑔av as a function

of 𝐿𝜏 has a peak at position 𝐿max
𝜏 and value 𝑔max

av . The peak position marks the optimal

sample shape, where the ratio 𝐿𝜏/𝐿 behaves like the corresponding ratio of the correlation

lengths in time and space directions, 𝜉𝜏/𝜉𝑠. (If the aspect ratio deviates from the optimal one,

the system can be decomposed into independent units either in space or in time direction,

and thus 𝑔av decreases.) At criticality, 𝐿max
𝜏 must be proportional to 𝐿𝑧, fixing the second

argument of the scaling function 𝑋𝑔av . This implies that the peak value 𝑔max
av at criticality is

independent of 𝐿 and that the 𝑔av vs. 𝑟 curves of samples of the optimal shape (𝐿𝜏 = 𝐿max
𝜏 )

cross at 𝑟 = 0.
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In our simulations, we use an iterative approach. We start from a guess for 𝑧 and the

corresponding sample shapes. The approximate crossing of the 𝑔av vs. 𝑟 curves for these

samples gives an estimate for 𝑇𝑐. At this temperature, we next analyze 𝑔av as a function of

𝐿𝜏 for fixed 𝐿. The values of 𝐿max
𝜏 give improved estimates for the optimal sample shapes

and thus for 𝑧. After iterating this procedure three or four times, the values of 𝑇𝑐 and 𝑧 will

have converged with reasonable accuracy.

Once 𝑧 and 𝑇𝑐 are determined, the finite-size scaling analysis proceeds as usual,

based on the scaling forms

𝑚 = 𝐿−𝛽/𝜈𝑋𝑚 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) , (5)

𝜒 = 𝐿𝛾/𝜈𝑋𝜒 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) (6)

for the order parameter 𝑚 and its susceptibility 𝜒. Here, 𝑋𝑚 and 𝑋𝜒 are dimensionless

scaling functions, and 𝛽 and 𝛾 are the order parameter and susceptibility critical exponents,

respectively.

In addition to these thermodynamic quantities, we also calculate the correlation

lengths 𝜉𝑠 and 𝜉𝜏 is the space and imaginary time directions, respectively. They are obtained,

as usual, from the second moment of the spin-spin correlation function [49, 50, 51] and can

be expressed in terms of the Fourier transform 𝐺̃ (𝑞𝑠, 𝑞𝜏) of the correlation function,

𝜉𝑠 =


(
𝐺̃ (0, 0) − 𝐺̃ (𝑞𝑠0, 0)

𝑞2
𝑠0 𝐺̃ (𝑞𝑠0, 0)

)1/2dis

, (7)

𝜉𝜏 =


(
𝐺̃ (0, 0) − 𝐺̃ (0, 𝑞𝜏0)
𝑞2
𝜏0 𝐺̃ (0, 𝑞𝜏0)

)1/2dis

. (8)

Here, 𝑞𝑠0 = 2𝜋/𝐿 and 𝑞𝜏0 = 2𝜋/𝐿𝜏 are the minimum values of the wave numbers 𝑞𝑠 and

𝑞𝜏 that fit into a system of linear size 𝐿 and 𝐿𝜏 in space and imaginary time direction,

respectively. The reduced correlation lengths 𝜉𝑠/𝐿 and 𝜉𝜏/𝐿𝜏 have scale dimension zero,
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Figure 2. Phase diagram of the classical XY model (2) as a function of classical temperature
and dilution. MCP is the multicritical point that separates the generic and percolation
transitions. The big dots mark the numerically determined transition points. The lines are
guides for the eye only.

their scaling forms therefore read

𝜉𝑠/𝐿 = 𝑋𝜉𝑠 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) , (9)

𝜉𝜏/𝐿𝜏 = 𝑋𝜉𝜏 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) . (10)

3. MONTE CARLO SIMULATIONS

3.1. OVERVIEW

Our Monte Carlo simulations of the classical XY model (2) combine the Wolff cluster

algorithm [52] with conventional Metropolis updates [53]. Specifically, a full Monte Carlo

sweep consists of a Metropolis sweep over the lattice followed by a Wolff sweep. (A Wolff

sweep is defined as a number of cluster flips such that the total number of flipped spins

equals the number of lattice sites.) The Wolff algorithm greatly reduces the critical slowing
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down, and the Metropolis updates equilibrate small disconnected clusters of sites that are

missed in the construction of the Wolff clusters (this becomes important at higher dilutions

𝑝).

We simulate systems with linear sizes up to 𝐿 = 150 in space direction and up to

𝐿𝜏 = 1792 in the imaginary time direction at dilutions 𝑝 = 0, 1/8, 1/5, 2/7, 1/3, 9/25 and

the percolation threshold 𝑝𝑐 = 0.407253.

The simulation of disordered systems requires a high numerical effort because many

samples with different disorder configurations need to be studied to compute averages,

variances, and distributions of observables. For good performance, one must thus carefully

optimize the number 𝑛𝑠 of samples (i.e., disorder configurations) and the number 𝑛𝑚

of measurements during the simulation of each sample. Based on the consideration in

References [54, 55, 31, 32, 56], we have chosen rather short runs of 𝑛𝑚 = 500 full sweeps per

sample (with a measurement after each sweep) but large numbers of disorder configurations

ranging from 𝑛𝑠 = 10 000 to 50 000 depending on the system size. The equilibration period

is taken to be 100 full sweeps, significantly longer than the actual equilibration times that

reach 30 to 40 sweeps at maximum. Short Monte Carlo runs can lead to biases in some of

the observables. To eliminate these, we have implemented improved estimators along the

lines discussed in the appendix of Reference [56].

The phase diagram resulting from these simulations is shown in Figure 2. The

critical temperature 𝑇𝑐 (𝑝) decreases with increasing dilution from its clean value 𝑇𝑐 (0), as

expected. For dilutions above the percolation threshold 𝑝𝑐 = 0.407253, the lattice consists

of disconnected finite-size clusters. Therefore, long-range superfluid order is impossible.

Right at 𝑝𝑐, there is an infinite cluster of dimension 1 + 𝑑 𝑓 where 𝑑 𝑓 = 91/48 is the

dimensionality of the critical percolation cluster in two dimensions, and the extra 1 stems

from the imaginary time direction. As 1 + 𝑑 𝑓 is larger than the lower critical dimension

𝑑−𝑐 = 2 of the XY model, the XY model on the critical percolation cluster orders below

a multicritical temperature 𝑇∗. This implies that the phase boundary coincides with the
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classical percolation threshold for 𝑇 < 𝑇∗ (see also Reference [57]). We thus identify two

different phase transitions, (i) the generic superfluid-Mott glass transition for 𝑝 < 𝑝𝑐 and

(ii) a percolation transition across the lattice percolation threshold.

In the following sections, we discuss the critical behaviors of these transitions in

detail. To test our codes, we have also studied the clean limit 𝑝 = 0 using system sizes up to

2243 sites. By analyzing the crossings of the Binder cumulant and the reduced correlation

length, we find a critical temperature 𝑇𝑐 (0) = 2.201844(4). Finite-size scaling then gives

the critical exponents 𝛽/𝜈 = 0.518(3), 𝛾/𝜈 = 1.961(3), and 𝜈 = 0.673(2). Within their

errors, they agree well with high-precision results for the three-dimensional XY universality

class [35].

As a further test for the universality of the (generic) critical behavior, we also

perform exploratory simulations of a soft-spin version of the classical Hamiltonian. They

are discussed in Section 3.4.

3.2. GENERIC SUPERFLUID-MOTT GLASS TRANSITION

To analyze the critical behavior of the generic transition occurring for 0 < 𝑝 < 𝑝𝑐,

we consider five different dilutions, 𝑝 = 1/8, 1/5, 2/7, 1/3, and 9/25. As described in

Section 2.2, we use an iterative procedure that consists of two types of simulation runs. The

first are runs right at 𝑇𝑐 for systems with several different 𝐿𝜏 for each 𝐿. Finite-size scaling

of the Binder cumulant at 𝑇𝑐 as a function of 𝐿 and 𝐿𝜏 gives the optimal sample shapes and

the dynamical exponent 𝑧. In the second set of simulations, we vary the temperature over a

range in the vicinity of 𝑇𝑐, but we consider only the optimal shapes found in the first part.

Finite-size scaling of the order parameter, susceptibility, Binder cumulant, and correlation

length as functions of 𝐿 and 𝑇 then yields the critical exponents 𝛽/𝜈, 𝛾/𝜈, and 𝜈.

The inset of Figure 3 shows the Binder cumulant 𝑔av as a function of 𝐿𝜏 for several

𝐿 = 10 to 100 at the estimated critical temperature 𝑇𝑐 = 1.577 for dilution 𝑝 = 1/3. As

expected at the critical point, the maximum Binder cumulant 𝑔max
av for each of the curves
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Figure 3. Binder cumulant 𝑔av as a function of 𝐿𝜏 for several 𝐿 at the critical temperature
𝑇𝑐 = 1.577 for dilution 𝑝 = 1/3. The relative statistical error of 𝑔av is between 0.05% and
0.1%. Inset: Raw data 𝑔av vs. 𝐿𝜏. Main panel: Scaling plot 𝑔av/𝑔max

av vs. 𝐿𝜏/𝐿max
𝜏 .

does not depend on 𝐿. (The remaining weak variation visible in the Figure can be attributed

to corrections to scaling, see below.) To generate a scaling plot that tests the scaling form

(4), we now fit each 𝑔av vs. 𝐿𝜏 curve with an inverted parabola in ln 𝐿𝜏. The vertex of

this parabola yields the position 𝐿max
𝜏 of the maximum and its value 𝑔max

av . When plotting

𝑔av/𝑔max
av vs. 𝐿𝜏/𝐿max

𝜏 the data scale very well, as can be seen in the resulting scaling plot in

the main panel of Figure 3. This demonstrates that the Binder cumulant fulfills Eq. (4) with

high accuracy. We have created the corresponding scaling plots for all the other dilutions,

𝑝 = 1/8, 1/5, 2/7, and 9/25, with analogous results. 2

2For low dilutions 𝑝, the parabola fits of 𝑔av vs. 𝐿𝜏 are affected by corrections to scaling for small 𝐿 and
𝐿𝜏 . We thus slightly adjust 𝐿max

𝜏 and 𝑔max
av to further improve the quality of the data collapse onto a common

master curve. This applies to the four smallest system sizes 𝐿 for 𝑝 = 1/8 and 1/5 and the three smallest sizes
for 𝑝 = 2/7. The resulting change of the value of 𝑧 is about 0.01, well below the error due to the uncertainty
in 𝑇𝑐.
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Figure 4. Double logarithmic plot of 𝐿max
𝜏 /𝐿 vs. 𝐿 for several dilutions 𝑝 below the

percolation threshold. Solid lines at fits to 𝐿max
𝜏 = 𝑎𝐿𝑧 (1 + 𝑏𝐿−𝜔) giving 𝑧 = 1.526(5) and

𝜔 = 0.76(2). The statistical errors of the data are well below a symbol size (The statistical
error of 𝐿max

𝜏 is determined by repeating the scaling analysis for 1000 synthetic data sets that
add to the original data set a Gaussian random noise that corresponds to the uncertainties
of the data.)

To determine the dynamical critical exponent 𝑧, we now analyze the dependence

of the positions 𝐿max
𝜏 of the maximum on 𝐿. According to Eq. (4), we expect the power-

law dependence 𝐿max
𝜏 ∼ 𝐿𝑧. In Figure 4, we plot 𝐿max

𝜏 vs. 𝐿 for all dilutions 𝑝 < 𝑝𝑐.

The curves show significant deviations from pure power-law behavior, in particular for the

smaller dilutions, indicating that the crossover from clean to disordered critical behavior is

slow. The resulting corrections to scaling are strong and cannot be neglected. Pure power-

law fits of the data would therefore only yield effective, scale-dependent exponents. To

determine the true asymptotic exponents, we include the leading corrections to scaling via

the ansatz 𝐿max
𝜏 = 𝑎𝐿𝑧 (1 + 𝑏𝐿−𝜔) with universal (dilution-independent) critical exponents

𝑧 and 𝜔 but dilution-dependent prefactors 𝑎 and 𝑏. The exponent values resulting from

a combined fit of the data for all five dilutions are 𝑧 = 1.526(5) and 𝜔 = 0.76(2). The
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Figure 5. 𝑔max
av vs. 𝐿 at the improved estimates for 𝑇𝑐. The statistical errors of the data

points are about a symbol size or smaller. The shading represents the range of 𝑔max
av values

for temperatures 𝑇 within 𝑇𝑐 ± 0.0002 and is intended to illustrate to what extent the
extrapolation depends on 𝑇 . Based on these data we estimate that the error of 𝑇𝑐 does not
exceed 0.001.

fit is of good quality giving 𝜒̃2 ≈ 1.4. [We denote the reduced sum of squared errors of

the fit (per degree of freedom) by 𝜒̃2 to distinguish it from the susceptibility 𝜒.] The fit

is also robust against removing complete data sets or removing points from the upper or

lower end of each set. Interestingly, the leading corrections to scaling appear to vanish

somewhere between 𝑝 = 1/3 and 9/25, as the prefactor 𝑏 of the correction term changes

sign. Correspondingly, pure power-law fits of the 𝑝 = 1/3 and 9/25 data yield 𝑧 = 1.502 and

1.546, respectively. These values are close to the estimate from the combined fit and nicely

bracket it on both sides. An additional significant source of errors is the uncertainty of the

critical temperature. To assess its effect on the dynamical exponent, we repeat the 𝐿max
𝜏 vs.

𝐿 analysis (for dilutions 𝑝 = 1/3 and 9/25) at temperatures slightly above and below our
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estimated 𝑇𝑐 (Δ𝑇𝑐 ≈ 0.003, roughly at the boundaries of our confidence intervals). This

leads to shifts in 𝑧 of about 0.01 to 0.02. Our final estimate for the dynamical critical

exponent therefore reads 𝑧 = 1.52(3).

To find the remaining critical exponents, we now turn to the Monte Carlo runs that

use the optimal sample shapes (𝐿, 𝐿max
𝜏 ). According to Eqs. (5) and (6), 𝛽/𝜈 and 𝛾/𝜈

can be obtained from the 𝐿 dependence of the order parameter and susceptibility at 𝑇𝑐 of

the optimally shaped samples. As we expect corrections to scaling to be important, we

again include subleading terms in our fit functions, 𝑚 = 𝑎𝐿−𝛽/𝜈 (1 + 𝑏𝐿−𝜔) for the order

parameter and 𝜒 = 𝑎𝐿𝛾/𝜈 (1 + 𝑏𝐿−𝜔) for the susceptibility. Here 𝛽/𝜈, 𝛾/𝜈, and 𝜔 are the

universal, dilution-independent critical exponents while the coefficients 𝑎 and 𝑏 are again

non-universal. (Note that 𝑎 and 𝑏 generally differ from quantity to quantity; we use the

same symbols to avoid cluttering up the notation too much.) When performing fits of our

data to these expressions, we noticed, however, that the quality of the fits is extremely

sensitive to small changes of the estimates for 𝑇𝑐 (much more so than in the analysis of the

dynamical exponent 𝑧 above). To determine higher accuracy estimates of 𝑇𝑐, we use the

criterion that the value of 𝑔max
av at criticality should approach a dilution-independent constant

with 𝐿 → ∞ at a universal critical point. Varying 𝑇 until this criterion is fulfilled yields

improved estimates for the critical temperatures, viz. 𝑇𝑐 = 1.9989 for 𝑝 = 1/8, 𝑇𝑐 = 1.8603

for 𝑝 = 1/5, 𝑇𝑐 = 1.6838 for 𝑝 = 2/7, 𝑇𝑐 = 1.5735 for 𝑝 = 1/3, and 𝑇𝑐 = 1.5049 for

𝑝 = 9/25. We estimate the error of these values to be about 0.001. Figure 5 shows the

resulting dependence 𝑔max
av on 𝐿. In the large-𝐿 limit, 𝑔max

av approaches the value 0.599(2).

Note that the non-monotonic behavior of 𝑔max
av for weak dilutions suggests that at least two

corrections to scaling terms contribute at small 𝐿.

Using the improved critical temperatures, we now proceed to determine 𝛽/𝜈 and

𝛾/𝜈. Figure 6 shows the order parameter 𝑚 at 𝑇𝑐 as a function of 𝐿 for all dilutions 𝑝 < 𝑝𝑐.

The combined fit of all data to 𝑚 = 𝑎𝐿−𝛽/𝜈 (1 + 𝑏𝐿−𝜔) is of good quality (𝜒̃2 ≈ 0.64) if

the smallest system sizes are excluded (see Figure). Interestingly, the sizes that need to
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Figure 6. Double logarithmic plot of 𝑚 vs. 𝐿 for several dilutions 𝑝 below the percolation
threshold. Solid lines at fits to 𝑚 = 𝑎𝐿−𝛽/𝜈 (1 + 𝑏𝐿−𝜔) giving 𝛽/𝜈 = 0.480(8) and
𝜔 = 0.82(2). The lines are dotted in the regions not included in the fit. The statistical errors
of the data are well below a symbol size.

be excluded are exactly those for which 𝑔max
av in Figure 5 appears to be dominated by the

second subleading correction to scaling term.) The exponents resulting from the fit read

𝛽/𝜈 = 0.480(8) and 𝜔 = 0.82(2). To assess the error arising from the uncertainty in 𝑇𝑐, we

repeat the analysis for temperatures 𝑇𝑐 ± Δ𝑇𝑐 with Δ𝑇𝑐 = 0.001. This leads to shifts of 𝛽/𝜈

of about 0.01. Our final estimate therefore reads 𝛽/𝜈 = 0.48(2).

The system-size dependence of the order parameter susceptibility 𝜒 at criticality is

presented in Figure 7 for all dilutions 𝑝 < 𝑝𝑐. After excluding the smallest system sizes

(see Figure), the combined fit of all data to 𝜒 = 𝑎𝐿𝛾/𝜈 (1 + 𝑏𝐿−𝜔) is again of good quality

(𝜒̃2 ≈ 1.5) and yields the exponents 𝛾/𝜈 = 2.524(8) and 𝜔 = 0.77(1). After including

potential errors from the uncertainty in 𝑇𝑐 and the fit range, the final exponent estimate is

𝛾/𝜈 = 2.52(4).
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Figure 7. Double logarithmic plot of 𝜒 vs. 𝐿 for several dilutions 𝑝 below the percolation
threshold. Solid lines at fits to 𝜒 = 𝑎𝐿𝛾/𝜈 (1 + 𝑏𝐿−𝜔) giving 𝛾/𝜈 = 2.524(8) and 𝜔 =

0.77(1). The lines are dotted in the regions not included in the fit. The statistical errors of
the data are well below a symbol size.

So far, the analysis has focused on the behavior right at 𝑇𝑐. To find a complete set of

critical exponents, we now determine the correlation length exponent 𝜈 which requires off-

critical data. Figure 8 shows the temperature dependence of the Binder cumulant 𝑔av and the

reduced correlation length 𝜉𝜏/𝐿𝜏 for systems of optimal shape but different sizes at dilution

𝑝 = 1/3. Both quantities have scale dimension zero, therefore, the curves for different

system sizes are expected to cross at the critical temperature 𝑇𝑐. The Figure demonstrates

that the crossings for both quantities shift with increasing 𝐿, reflecting significant corrections

to scaling. According to Eqs. (4) and (8), the slopes (𝑑/𝑑𝑇)𝑔av and (𝑑/𝑑𝑇)𝜉𝜏/𝐿𝜏 at the

critical temperature 𝑇𝑐 vary as 𝐿1/𝜈 with system size. To extract the slopes, we fit straight

lines (for 𝜉𝜏/𝐿𝜏) or quadratic parabolas (for 𝑔av) to the data close to 𝑇𝑐. The resulting slopes

are shown as a function of system size in Figures 9 and 10, respectively.
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Figure 8. Average Binder cumulant 𝑔av and reduced correlation length 𝜉𝜏/𝐿𝜏 as functions
of temperature for dilution 𝑝 = 1/3 and systems of optimal shape. System sizes range from
𝐿 = 10 to 100 (as listed in Figure 3) with increasing slope.
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Figure 9. Slope 𝑥𝐿 = (𝑑/𝑑𝑇)𝜉𝜏/𝐿𝜏 at criticality vs. system size 𝐿 for optimally shaped
samples at different dilutions 𝑝. Solid lines at fits to 𝑥𝐿 = 𝑎𝐿1/𝜈 (1 + 𝑏𝐿−𝜔) giving
𝜈 = 1.165(6) and 𝜔 = 0.74(1). The lines are dotted in the regions not included in the fit.
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The exponent 𝜈 is now obtained from fits of the slopes to the form 𝑎𝐿−1/𝜈 (1+𝑏𝐿−𝜔).

In the case of the reduced correlation length 𝜉𝜏/𝐿𝜏 (Figure 9) a combined fit of all dilutions

𝑝 < 𝑝𝑐 is of good quality after the smallest system sizes have been excluded (𝜒̃2 ≈ 1.2)

and yields 𝜈 = 1.165(6) as well as 𝜔 = 0.74(1). The corresponding fit of the slopes

of the Binder cumulant has a somewhat poorer quality (𝜒̃2 ≈ 5.5) and is not very stable

with respect to adding and removing data points at the ends of the interval. The resulting

exponents 𝜈 = 1.146(16) and 𝜔 = 0.97(23) have therefore larger errors. In addition to

the slopes of the Binder cumulant 𝑔av and the reduced correlation length 𝜉𝜏/𝐿𝜏 at 𝑇𝑐,

we have also studied the slopes of 𝜉𝑠/𝐿 and ln𝑚 (not shown). After we account for the

differences between all these estimates and include potential errors from the uncertainty

in 𝑇𝑐 (by repeating the analysis at temperatures 𝑇𝑐 ± 0.001) we arrive at the final estimate

𝜈 = 1.16(5). This value fulfills the inequality [58] 𝑑𝜈 > 2.

The critical exponents 𝛽/𝜈, 𝛾/𝜈, and 𝑧 are not independent of each other as they must

fulfill the hyperscaling relation 2𝛽/𝜈 + 𝛾/𝜈 = 𝑑 + 𝑧 where 𝑑 = 2 is the space dimensionality.

Our values, 𝛽/𝜈 = 0.48(2), 𝛾/𝜈 = 2.52(4), and 𝑧 = 1.52(3) fulfill this relation within

their error bars. We also note that all our estimates for the leading irrelevant exponent 𝜔

are roughly consistent with each other, giving us confidence that our results represent true

asymptotic rather than effective critical exponents.

3.3. PERCOLATION TRANSITION

We now turn to the percolation transition that occurs when the system is tuned

through the percolation threshold 𝑝𝑐 at low (classical) temperatures (see Figure 2). The

critical behavior of this transition stems from the critical geometry of the percolating lattice

while the dynamical fluctuations of the rotor variables are uncritical and “just go along for

the ride” (the rotor model on each of the percolation clusters is locally ordered). Vojta and
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Figure 10. Slope 𝑥𝐿 = (𝑑/𝑑𝑇)𝑔av at criticality vs. system size 𝐿 for optimally shaped
samples at different dilutions 𝑝. Solid lines at fits to 𝑥𝐿 = 𝑎𝐿1/𝜈 (1 + 𝑏𝐿−𝜔) giving
𝜈 = 1.146(16) and 𝜔 = 0.97(23). The lines are dotted in the regions not included in the fit.

Schmalian [33] developed a theory of this percolation quantum phase transition. It predicts

critical behavior governed by the lattice percolation exponents. For two space dimensions

it yields the exact exponent values 𝛽 = 5/36, 𝛾 = 59/12, 𝜈 = 4/3, and 𝑧 = 91/48.

To test these predictions, we perform simulations at dilution 𝑝 = 𝑝𝑐 = 0.407253

and temperature 𝑇 = 1.0. These calculations require a particularly high numerical effort,

because the large value of 𝑧 leads to a rapid increase with 𝐿 of the optimal system size 𝐿max
𝜏

in imaginary time direction. We have thus restricted the simulations to sizes up to 𝐿 = 56

and 𝐿𝜏 = 1792 using between 10 000 and 50 000 disorder configurations.

The data analysis proceeds in analogy to Section 3.2. We obtain 𝐿max
𝜏 from the

maxima of the Binder cumulant 𝑔av as a function of 𝐿𝜏 at fixed 𝐿. In Figure 11, we present

a plot of 𝐿max
𝜏 vs. 𝐿. The data can be fitted with high quality (𝜒̃2 ≈ 0.4) to the predicted

power law 𝐿max
𝜏 ∼ 𝐿91/48. After having found 𝐿max

𝜏 , we calculate the order parameter

and susceptibility right at criticality for optimally shaped samples of different sizes. The
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Figure 11. Double logarithmic plots of 𝐿max
𝜏 , 𝑚 and 𝜒 for dilution 𝑝 = 𝑝𝑐 = 0.407253

and 𝑇 = 1.0. The lines are fits to the predictions of the Reference [33], namely 𝐿max
𝜏 ∼

𝐿91/48 and 𝜒 ∼ 𝐿59/16. For the order parameter, a subleading correction is included via
𝑚 = 𝑎𝐿−5/48(1+ 𝑏𝐿−𝜔). The statistical errors are of the order of the symbol size or smaller.

resulting data are also presented in Figure 11. The susceptibility data can be fitted well

to the predicted power law 𝜒 ∼ 𝐿59/16 giving 𝜒̃2 ≈ 0.8. The exponent 𝛽/𝜈 = 5/48 is

very small, corresponding to a slow decay of the order parameter 𝑚 with 𝐿. Subleading

corrections are thus much more visible as indicated by the curvature of the 𝑚 vs. 𝐿 curve

in Figure 11. We have therefore fitted the order parameter to 𝑚 = 𝑎𝐿−5/48(1 + 𝑏𝐿−𝜔). This

fit is again of high quality, with 𝜒̃2 ≈ 0.5.

Our simulation data thus agree nearly perfectly with the critical behavior predicted

in Reference [33].
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3.4. SOFT-SPIN MODEL

We also consider a soft-spin version of the classical Hamiltonian to test whether

or not its critical exponents agree with those of the hard-spin model analyzed above, as is

expected from universality. The soft-spin Hamiltonian reads

𝐻soft = −
∑︁
⟨𝑖, 𝑗⟩,𝑡

𝜖𝑖𝜖 𝑗S𝑖,𝑡 · S 𝑗 ,𝑡 −
∑︁
𝑖,𝑡

𝜖𝑖S𝑖,𝑡 · S𝑖,𝑡+1

−1
2

∑︁
𝑖,𝑡

𝜖𝑖 |S𝑖,𝑡 |2 +
∑︁
𝑖,𝑡

𝜖𝑖

(
|S𝑖,𝑡 |2

)2
(11)

where S𝑖,𝑡 now represents an unrestricted two-component vector. We perform Monte-

Carlo simulations of this soft-spin model using the efficient Worm algorithm [59], studying

dilutions 𝑝 = 0.286 and 0.337. The system sizes range from 𝐿 = 8 to 24 with 𝐿𝜏 fixed at

𝐿𝜏 = 𝐿
𝑧 using the dynamical exponent value found in Section 3.2 3.

We now analyze the correlation length 𝜉𝜏 in imaginary time direction (equivalent

to the inverse energy gap of the corresponding quantum model) on the disordered side of

the phase transition. According to Eq. (10), its scaling form for samples of shape 𝐿𝜏 = 𝐿𝑧

can be written as 𝜉𝜏 = 𝐿𝑧𝑋𝜉𝜏 (𝑟𝐿1/𝜈, 1). Thus, if we plot 𝜉𝜏/𝐿𝑧 vs. (𝑇 − 𝑇𝑐)𝐿1/𝜈, the data

for different sizes and temperatures should all fall onto a single master curve. Figure 12

presents such a plot for two site dilutions 𝑝, with the critical exponents 𝑧 and 𝜈 fixed at the

values found in Section 3.2.

Within their statistical errors, the data scale well. Consequently, even though we

have not independently determined the critical exponents of the soft-spin model (11), the

Monte Carlo data are compatible with the critical behavior found earlier.

3We actually use 𝑧 = 1.45 which is close to the effective dynamical exponent found for the system size
range and dilution considered.
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Figure 12. Scaling plot of the correlation length 𝜉𝜏 in imaginary time direction of the
soft-spin model (11). Shown are data for two dilutions 𝑝, several system sizes 𝐿, and
temperatures 𝑇 on the disordered side of the transition. The exponents 𝑧 and 𝜈 are fixed at
the values found in Section 3.2. The data are averages over 100 disorder configurations.
Their statistical errors are about one symbol size.

4. CONCLUSIONS

In summary, we have carried out large-scale computer simulations to determine

the critical behavior of the superfluid-Mott glass quantum phase transition in two space

dimensions. To this end, we have mapped a quantum rotor model with commensurate filling

and off-diagonal disorder onto a (2+1)-dimensional classical XY model with columnar

defects. We have then analyzed this classical system by means of Monte Carlo methods.

The corresponding clean superfluid-Mott insulator transition is in the three-dimensional

XY universality class; its correlation length exponent 𝜈 ≈ 0.6717 violates the Harris cri-

terion 𝑑𝜈 > 2 with 𝑑 = 2. The clean critical behavior is therefore expected to be unstable

against the columnar disorder. Accordingly, we have found that the critical behavior of

the superfluid-Mott glass transition differs from that of the clean superfluid-Mott insulator

transition.
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Table 1. Critical exponents of the superfluid-Mott glass quantum phase transition. Upright
numbers are directly given in the respective papers, italic ones were calculated using scaling
relations such as 2𝛽/𝜈 + 𝛾/𝜈 = 𝑑 + 𝑧 and 𝜂 = 2 − 𝛾/𝜈.

Value This work Reference [26] Reference [27] Reference [28]
𝜈 1.16(5) 1.09(4) 0.96(6)
𝑧 1.52(3) 1.5(2) 1.31(7) fixed at 1
𝛽/𝜈 0.48(2) 0.60(15) 1.1(2)
𝛾/𝜈 2.52(4) 2.3(1) 1.1(2)
𝜂 −0.52(4) −0.3(1) 0.9(2)

In contrast to other quantum phase transitions in disordered systems [39, 40, 41,

42, 43, 44, 45, 46, 47], the superfluid-Mott glass transition features a conventional finite-

disorder critical point whose dynamical scaling is characterized by a power-law relation

𝜉𝜏 ∼ 𝜉𝑧𝑠 between the correlation lengths in the space and time directions (rather than an

infinite-randomness critical point with activated dynamical scaling for which 𝜉𝜏 would grow

exponentially with 𝜉𝑠). This result agrees with the general classification of phase transitions

in disordered systems based on the rare region (or defect) dimensionality [48, 18]. In

terms of the mapped, classical Hamiltonian (2), the rare regions in our problem are one-

dimensional rods with XY order-parameter symmetry. As the lower-critical dimension of

the classical XY model is 𝑑−𝑐 = 2, the rare region dimensionality fulfills 𝑑𝑅𝑅 < 𝑑−𝑐 , putting

the system into the conventional class A of the classification.

For the generic transition occurring at dilutions 𝑝 below the lattice percolation

threshold 𝑝𝑐, our Monte Carlo data are described well by a universal critical behavior with

dilution-independent critical exponents. The numerical estimates of the exponent values

are summarized in Table 1 and compared to earlier results in the literature. Our results are

in reasonable agreement with (but more accurate than) Monte Carlo simulations of a link-

current model [26] that is expected to be in the same universality class as our Hamiltonian.

The results in Reference [27] were obtained using a numerical implementation of the

strong-disorder renormalization group. This method is expected to give approximate rather
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than exact results at a conventional finite-disorder critical point such as the one under

consideration here. In view of this, the agreement of 𝜈 and 𝑧 can be considered satisfactory.

However, the values of 𝛽/𝜈, 𝛾/𝜈, and 𝜂 (that all involve the scale dimension of the order

parameter) are far away from the Monte Carlo results in this work and in Reference [26].

Our findings are also incompatible with the clean value 𝑧 = 1 that was assumed in Reference

[28].

It is interesting to consider the evolution of the dynamical exponent 𝑧 with the

order parameter dimensionality. The deviation of 𝑧 from the clean value, which is 𝑧 =

1 for any number of components, can be understood as a measure of the strength of

the disorder effects. In the (2+1)-dimensional Heisenberg model (three order parameter

components) with columnar defects, the exponent takes the value [31, 32] 𝑧 = 1.31. The

(2+1)-dimensional XY model (two components) studied in the present paper has 𝑧 = 1.52,

while the corresponding Ising model [60] (one component) features activated scaling that

corresponds to 𝑧 = ∞. The value of 𝑧 thus increases monotonically with decreasing order

parameter dimensionality.

In addition to the generic superfluid-Mott glass transition that occurs for dilutions

𝑝 < 𝑝𝑐, we have also investigated the percolation quantum phase transition across 𝑝𝑐. Here,

our Monte Carlo data agree very well with the predictions of the scaling theory by Vojta

and Schmalian [33].

Potential routes to study the superfluid-Mott glass transition in experiment include

disordered bosonic systems in ultracold atoms as well as dirty and granualar superconduc-

tors (for some superconductor-insulator transitions, there is experimental and numerical

evidence for the bosonic nature of the transition). In these systems, it may be hard, though,

to fulfill the condition of exact particle-hole symmetry in the presence of disorder. Statisti-

cal particle hole symmetry may be easier to achieve, but it is not fully resolved whether or

not it would destabilize the Mott glass and turn it into a Bose glass [25, 61, 62].
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Another type of experimental systems that contain Mott-glass physics are diluted

anisotropic spin-1 antiferromagnets [63]. In this case, the particle-hole symmetry appears

naturally as it is a consequence of the up-down symmetry of the spin Hamiltonian in the

absence of an external magnetic field. Such a magnetic realization of a Mott glass (albeit

in three dimensions) was recently observed in bromine-doped dichloro-tetrakis-thiourea-

nickel (DTN) [9].
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ABSTRACT

The superfluid to insulator quantum phase transition of a three-dimensional particle-

hole symmetric system of disordered bosons is studied. To this end, a site-diluted quantum

rotor Hamiltonian is mapped onto a classical (3+1)-dimensional XY model with columnar

disorder and analyzed by means of large-scale Monte Carlo simulations. The superfluid-

Mott insulator transition of the clean, undiluted system is in the 4D XY universality class

and shows mean-field critical behavior with logarithmic corrections. The clean correlation

length exponent 𝜈 = 1/2 violates the Harris criterion, indicating that disorder must be

a relevant perturbation. For nonzero dilutions below the lattice percolation threshold

of 𝑝𝑐 = 0.688392, our simulations yield conventional power-law critical behavior with

dilution-independent critical exponents 𝑧 = 1.67(6), 𝜈 = 0.90(5), 𝛽/𝜈 = 1.09(3), and

𝛾/𝜈 = 2.50(3). The critical behavior of the transition across the lattice percolation threshold

is controlled by the classical percolation exponents. Our results are discussed in the context

of a classification of disordered quantum phase transitions, as well as experiments in

superfluids, superconductors and magnetic systems.
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1. INTRODUCTION

Models of disordered and interacting bosons can be employed to describe a wide

variety of physical phenomena including helium absorbed in porous media [1, 2], super-

conducting thin films [3, 4], Josephson junction arrays [5, 6], ultracold atoms in disordered

optical lattices [7, 8, 9], and certain disordered quantum magnets [10, 11, 12, 13, 14].

It is well established [15, 16, 17] that the Mott-insulating and superfluid phases of

these models are always separated by an insulating “glass” phase in which rare large regions

of local superfluid order (superfluid “puddles”) coexist with the insulating bulk. The glass

phase thus acts as a Griffiths phase [18, 19, 20, 21] of the superfluid-Mott insulator quantum

phase transition.

The nature of the glassy intermediate phase depends on the qualitative properties of

the disorder. For generic disorder (realized, e.g., via a random potential for the bosons), it

is the so-called Bose glass, a compressible gapless insulator. The zero-temperature phase

transition between the superfluid and Bose glass ground states has recently reattracted

lots of attention as new analytical [22], numerical [23, 24, 25, 26, 27], and experimental

[12, 28, 13] work has challenged the scaling relation [16, 17] 𝑧 = 𝑑 between the dynamical

exponent 𝑧 and the space dimensionality 𝑑 as well as the value of the crossover exponent 𝜙

that governs the shape of the finite-temperature phase boundary.

If the system is particle-hole symmetric even in the presence of disorder, the interme-

diate phase between superfluid and Mott insulator is not a Bose glass but the incompressible

gapless Mott glass [29, 30]. (This state is sometimes called random-rod glass because in

a classical representation the disorder takes the form of infinitely long parallel rods.) The

zero-temperature phase transition between the superfluid and Mott glass ground states has

received less attention than the Bose glass transition, perhaps because in some experimental

applications the condition of exact particle-hole symmetry is hard to realize and requires fine
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tuning. Note, however, that the particle-hole symmetry appears naturally in magnetic real-

izations of disordered boson physics due to the up-down symmetry of the spin Hamiltonian

in the absence of an external magnetic field.

We have recently determined the quantum critical behavior of the superfluid-Mott

glass transition in two space dimensions using large-scale Monte-Carlo simulations [31],

resolving earlier contradicting predictions in the literature [32, 33, 34]. However, magnetic

realizations of the Mott glass state have mostly been observed in three-dimensional disor-

dered magnets. To the best of our knowledge, quantitative results for the three-dimensional

superfluid-Mott glass transition do not yet exist.

To investigate this transition, we analyze a site-diluted three-dimensional quantum

rotor model with particle-hole symmetry. We map this quantum Hamiltonian onto a

classical (3 + 1)-dimensional XY model with columnar defects. We then carry out Monte

Carlo simulations for systems of up to 56 million lattice sites, averaging each data set

over 2500 to 20,000 disorder configurations. For dilutions 𝑝 below the lattice percolation

threshold 𝑝𝑐 ≈ 0.688392,[35] we find the superfluid-Mott glass quantum phase transition

to be characterized by universal (dilution-independent) critical exponents. The dynamical

exponent takes the value 𝑧 = 1.67(6), and the correlation length exponent is 𝜈 = 0.90(5),

fulfilling the inequality 𝜈 > 2/𝑑.[36, 37] For the order parameter exponent 𝛽 and the

susceptibility exponent 𝛾, we find 𝛽/𝜈 = 1.09(3) and 𝛾/𝜈 = 2.50(3), respectively. This

gives an anomalous dimension of 𝜂 = −0.50(3). These exponents fulfill the hyperscaling

relation 2𝛽/𝜈 +𝛾/𝜈 = 𝑑 + 𝑧. As a byproduct, our simulations also yield the critical behavior

of the clean (undiluted) four-dimensional XY model with high accuracy. It is characterized

by mean-field exponents with logarithmic corrections (as expected at the upper critical

dimension) and agrees well with the predictions of a generalized scaling theory[38].

Our paper is organized as follows. Section 2 defines the three-dimensional quantum

rotor Hamiltonian and the quantum-to-classical mapping to a (3 + 1)-dimensional classical

XY model. It also introduces our finite-size scaling technique (that does not require prior
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knowledge of the dynamical exponent) as well as the generalized scaling theory [38] for the

clean case. Monte Carlo results for the clean and disordered phase transitions are presented

in Section 3. We summarize and conclude in Section 4.

2. THEORY

2.1. DILUTED ROTOR MODEL

We investigate the superfluid-Mott glass transition by means of a site-diluted quan-

tum rotor model residing on a three-dimensional cubic lattice,

𝐻 =
𝑈

2

∑︁
𝑖

𝜖𝑖 (𝑛̂𝑖 − 𝑛̄𝑖)2 − 𝐽
∑︁
⟨𝑖 𝑗⟩

𝜖𝑖𝜖 𝑗 cos(𝜙𝑖 − 𝜙 𝑗 ), (1)

where 𝑛̂𝑖, 𝑛̄𝑖, 𝜙𝑖 are the number operator, offset charge, and phase operator of site 𝑖,

respectively. 𝑈 and 𝐽 represent, respectively, the charging energy and Josephson junction

coupling of the sites. We define the dilution, or impurity concentration, as the probability

𝑝, that a site is vacant. The independent quenched, random variables 𝜖𝑖 then take on the

values 0 (vacancy) with probability 𝑝 and 1 (occupied site) with probability 1 − 𝑝.

The superfluid and Mott glass states can be modeled by this Hamiltonian when

considering a particle-hole symmetric system with offset charges 𝑛̄𝑖 = 0 and commensurate

(integer) fillings ⟨𝑛̂𝑖⟩. The phase diagram of this Hamiltonian has been extensively studied

[17, 22]. For dominant charging energy, 𝑈 ≫ 𝐽, the ground state is a Mott insulator.

For dominant Josephson junction coupling, 𝐽 ≫ 𝑈, the ground state of the system instead

becomes a superfluid. Of course, this behavior is only relevant for dilutions below the

lattice percolation threshold, 𝑝𝑐 ≈ 0.688392. Dilutions above 𝑝𝑐 cause the lattice to

break down into disconnected finite-size clusters, preventing the establishment of any long-

range ordered superfluid phase. Between the superfluid and Mott insulator phases a third,

intermediate phase emerges. In our particle-hole symmetric case, this is the Mott glass,
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Figure 1. (2+1)-dimensional analog of the system (2). Arrows are the classical spins S.
Columns represent the site-vacancies perfectly correlated in imaginary-time. A true sketch
of the system (2) would be four-dimensional with vacant ’columns’ in the imaginary-time
dimension.

an incompressible, gapless insulator. The quantum phase transition from the superfluid to

the Mott glass state is the focus of the present investigation. A detailed discussion of these

phases and their properties can be found, e.g., in Reference [30].

2.2. QUANTUM-TO-CLASSICAL MAPPING

As we are interested only in universal properties of the transition, we simplify our

study of the critical behavior by mapping the 3-dimensional quantum Hamiltionian (1) onto

a classical Hamiltonian of total dimensionality 𝐷 = 𝑑 + 1 = 4.[39] The mapping gives (see
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Figure 1)

𝐻𝑐𝑙 = −𝐽𝑠
∑︁
⟨𝑖 𝑗⟩,𝜏

𝜖𝑖𝜖 𝑗S𝑖,𝜏 · S 𝑗 ,𝜏 − 𝐽𝜏
∑︁
𝑖,𝜏

𝜖𝑖S𝑖,𝜏 · S𝑖,𝜏+1 (2)

with S𝑖,𝜏 being an O(2) unit vector at space coordinate 𝑖 and imaginary-time coordinate

𝜏. Within this mapping, the ”classical” temperature 𝑇 of the Hamiltonian (2) does not

refer to the physical temperature of the quantum system (which is zero at the quantum

phase transition). Instead, the constants 𝐽𝑠/𝑇 and 𝐽𝜏/𝑇 that appear in the classical partition

function represent the coupling constants 𝐽 and𝑈 of the quantum system, and the ”classical”

temperature is used to tune the couplings and drive the system through the transition.

Additionally, the expected universality of the critical behavior allows us to ignore the exact

numerical values of 𝐽𝑠 and 𝐽𝜏, so we set 𝐽𝑠 = 𝐽𝜏 = 1 in the following.

2.3. CLEAN (UNDILUTED) CRITICAL BEHAVIOR

In the clean limit 𝑝 = 0 (no vacancies) the Hamiltonian (2) becomes isotropic in the

space and imaginary time dimensions, thus simplifying the system to the four-dimensional

classical XY model. This places the clean system at the upper-critical dimension 𝐷+
𝑐 = 4 of

the XY universality class. Renormalization group calculations have shown that the transition

at 𝐷+
𝑐 exhibits mean-field critical behavior with logarithmic corrections to scaling[38].

These calculations yield a scaling form for the free energy

𝑓𝐿 (𝑟, 𝐻) = 𝐿−4F
(
𝑟𝐿2(ln 𝐿)1/10, 𝐻𝐿3(ln 𝐿)1/4

)
(3)
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where 𝑟 = (𝑇 − 𝑇𝑐)/𝑇𝑐 and 𝐻 represent the reduced temperature and field conjugate to the

order parameter, respectively. Appropriate derivatives of 𝑓𝐿 (𝑟, 𝐻) yield the dependencies

of the order parameter 𝑚 and its susceptibility 𝜒 on the system size 𝐿 at criticality

𝑚 ∝ 𝐿−1(ln 𝐿)1/4 (4)

𝜒 ∝ 𝐿2(ln 𝐿)1/2. (5)

This implies 𝛽/𝜈 = 1 and 𝛾/𝜈 = 2 for the order parameter and susceptibility critical

exponents, respectively. The correlation length exponent can also be extracted via the

quantity 𝑑 (ln𝑚)/𝑑𝑇 , which from (3) leads to the scaling form

𝑑 (ln𝑚)
𝑑𝑇

∝ 𝐿2(ln 𝐿)1/10 (6)

implying a correlation length exponent 𝜈 = 1/2. This value, however, violates the Harris

criterion[36] for stability of phase transitions against weak disorder, 𝑑𝜈 > 2, where 𝑑 = 3 is

the number of dimensions with randomness, i.e., the space dimensionality. Thus the clean

XY critical point is unstable against the columnar defects we introduce. As a result, we

expect the diluted system to exhibit new critical behavior and exponents.

2.4. ANISOTROPIC FINITE-SIZE SCALING

Variables of scale dimension zero are especially useful in the determination of a

system’s critical behavior within the framework of finite-size scaling[40]. For example,

central to our study is the Binder cumulant

𝑔𝑎𝑣 =

[
1 − ⟨|m|4⟩

3⟨|m|2⟩2

]
dis

(7)
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where m = (1/𝑁)∑𝑖,𝜏 S𝑖,𝜏 is the order parameter (𝑁 being the total number of lattice sites

of the classical Hamiltonian (2)). Additionally, ⟨...⟩ denotes the Monte Carlo average,

and [...]dis an average over disorder configurations. In the thermodynamic limit, 𝑔𝑎𝑣 is

expected to take the value 2/3 in the superfluid phase and the value 1/3 in both the Mott

glass and Mott insulator phases. We also study the correlation lengths in the space and

imaginary-time directions [41, 42, 43]

𝜉𝑠 =

[(
𝐺̃ (0, 0) − 𝐺̃ (𝑞𝑠0, 0)

𝑞2
𝑠0𝐺̃ (𝑞𝑠0, 0)

)1/2
]

dis

, (8)

𝜉𝜏 =

[(
𝐺̃ (0, 0) − 𝐺̃ (0, 𝑞𝜏0)

𝑞2
𝜏0𝐺̃ (0, 𝑞𝜏0)

)1/2
]

dis

(9)

where 𝐺̃ (𝑞𝑠0, 𝑞𝜏0) is the Fourier transform of the spin-spin correlation function, 𝑞𝑠0 and

𝑞𝜏0 are the minimum wavelengths in the space and imaginary-time directions, respectively.

For an isotropic system of system size 𝐿, and distance 𝑟 = (𝑇 − 𝑇𝑐)/𝑇𝑐 from

criticality, the Binder cumulant has the finite-size scaling form 𝑔𝑎𝑣 (𝑟, 𝐿) = 𝑋 (𝑟𝐿1/𝜈). This

guarantees that at 𝑟 = 0, the 𝑔𝑎𝑣 vs 𝑟 plots for different system sizes will cross at a value

𝑔𝑎𝑣 (0, 𝐿) = 𝑋 (0), allowing us to easily locate 𝑇𝑐. However, the introduction of quenched

disorder in the space dimensions breaks the isotropy between space and imaginary time,

thus requiring us to distinguish the system sizes 𝐿 in the space direction and 𝐿𝜏, in the

imaginary-time direction.

The finite-size scaling form of the Binder cumulant now depends on the relation

between 𝐿 and 𝐿𝜏. For conventional power-law scaling it reads

𝑔𝑎𝑣 (𝑟, 𝐿, 𝐿𝜏) = 𝑋𝑔𝑎𝑣 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) (10)

where 𝑧 is the dynamical exponent, whereas for activated scaling the term 𝐿𝜏/𝐿𝑧 in (10) is

replaced by ln(𝐿𝜏)/𝐿𝜓 with 𝜓 the tunneling exponent. A classification scheme based on

the dimensionality of locally ordered rare regions in the disordered system suggest that we
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should expect power-law scaling [20, 44]. Rare region dimensionality for our XY model is

𝑑𝑅𝑅 = 1 (infinitely extended rare regions in the single imaginary-time direction). The lower

critical dimension of the XY model is𝐷−
𝑐 = 2, thus we have 𝑑𝑅𝑅 < 𝐷−

𝑐 . This puts the system

(2) firmly into class A of the classification implying power-law dynamical scaling[44]. This

also means that our system is not expected to display power-law Griffiths singularities.

Instead observables such as the order parameter susceptibility 𝜒 show conventional behavior.

Specifically, 𝜒will remain finite in the Mott glass phase, and rare regions make exponentially

small contributions.

For anisotropic systems, we must modify our approach to finite-size scaling. Due to

our initial ignorance of the dynamical exponent 𝑧, we do not know the appropriate sample

sizes 𝐿 × 𝐿𝜏 to fix the second argument of the scaling function (10) in the simulations.

We can take advantage of some of the Binder cumulant’s properties to find the appropriate

ratios (“optimal shapes”) of 𝐿𝜏/𝐿 and thus our dynamical exponent 𝑧.[45, 46, 47] For a fixed

spatial size 𝐿, 𝑔𝑎𝑣 as a function of 𝐿𝜏 will exhibit a maximum at the point (𝐿max
𝜏 , 𝑔max

𝑎𝑣 ). At

this point the ratio 𝐿𝜏/𝐿 behaves like the corresponding ratio of correlation lengths 𝜉𝜏/𝜉𝑠

and designates the “optimal shape” for that given 𝐿. For values of 𝐿𝜏 above or below the

maximum, the system can be decomposed into independent blocks which decreases the

value of 𝑔𝑎𝑣. At criticality 𝐿max
𝜏 is proportional to 𝐿𝑧. Samples of optimal shape thus fix the

second argument of the scaling form (10), allowing one to carry out the rest of the finite-size

scaling analysis as usual.

Actually carrying out the calculations requires an iterative approach. An educated

guess is made for an initial value of the dynamical exponent 𝑧 (e.g. the value calculated

for the (2+1)d case)[31]. The (approximate) crossings of the 𝑔𝑎𝑣 vs 𝑟 curves for samples of

the resulting shapes give an estimate for 𝑇𝑐. The temperature is then fixed at this estimate

of 𝑇𝑐 and 𝑔𝑎𝑣 as a function of 𝐿𝜏 is analyzed. The points of maximum value 𝑔max
𝑎𝑣 at 𝐿max

𝜏

can then be calculated and give improved estimates for the optimal shapes and thus an

improved estimate on 𝑧. For 𝑇 > 𝑇𝑐 the 𝑔max
𝑎𝑣 values will tend towards their disordered
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(decreasing) values with increasing system size, for values 𝑇 < 𝑇𝑐 they tend towards their

ordered (increasing) values for increasing system size. Thus, for a given estimate for 𝑇𝑐, the

trends of 𝑔max
𝑎𝑣 with system size allow us to determine how to adjust our 𝑇𝑐 estimate for the

next iteration. Using this procedure the values of 𝑇𝑐 and 𝑧 converge quickly, requiring only

about 3-5 iterations.

Once we have determined the value of 𝑧 for the system, the usual finite-size analysis

can be carried out with the scaling forms

𝑚 = 𝐿−𝛽/𝜈𝑋𝑚 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) (11)

𝜒 = 𝐿𝛾/𝜈𝑋𝜒 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) (12)

where 𝛽 and 𝛾 are the order parameter and susceptibility critical exponents and the functions

𝑋𝑚 and 𝑋𝜒 are scaling functions. Analogously, the reduced correlation lengths 𝜉𝑠/𝐿 and

𝜉𝜏/𝐿𝜏 take the scaling forms

𝜉𝑠/𝐿 = 𝑋𝜉𝑠 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧), (13)

𝜉𝜏/𝐿𝜏 = 𝑋𝜉𝜏 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧). (14)

We can also establish information about the compressibility 𝜅 and superfluid density 𝜌𝑠 of

the system. Under the quantum-to-classical mapping, the compressibility 𝜅 = 𝜕⟨𝑛⟩/𝜕𝜇 and

superfluid density 𝜌𝑠 map, respectively, onto the spinwave stiffnesses in imaginary-time and

space dimensions as

𝜌𝑐𝑙,𝜏 = 𝐿
2
𝜏 (𝜕2 𝑓 /𝜕𝜃2)𝜃=0 (15)

𝜌𝑐𝑙,𝑠 = 𝐿
2(𝜕2 𝑓 /𝜕𝜃2)𝜃=0 (16)
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where 𝑓 is the free energy density for twisted boundary conditions (i.e. the XY spins of

the classical model S𝑖,𝜏 at 𝜏 = 0 (𝑖 = 0) are at an angle 𝜃 with respect to the spins at the

boundary 𝜏 = 𝐿𝜏 (𝑖 = 𝐿)). Explicitly, for the XY model considered here (15) takes the

form[48]

𝜌𝑐𝑙,𝜏 =
1
𝑁

∑︁
𝑖,𝜏

⟨S𝑖,𝜏 · S𝑖,𝜏+1⟩ −
𝛽

𝑁

〈{∑︁
𝑖,𝜏

𝑘̂ · (S𝑖,𝜏 × S𝑖,𝜏+1)
}2〉

(17)

where 𝑘̂ represents the unit vector perpendicular to the XY plane of the spins. The space

stiffness 𝜌𝑐𝑙,𝑠 takes an analogous form. These quantities are expected to exhibit power-law

scaling behavior according to the scaling forms

𝜌𝑐𝑙,𝑠 = 𝐿
−𝑦𝑠𝑋𝜌𝑠 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) (18)

𝜌𝑐𝑙,𝜏 = 𝐿
−𝑦𝜏𝑋𝜌𝜏 (𝑟𝐿1/𝜈, 𝐿𝜏/𝐿𝑧) (19)

where 𝑋𝜌𝑠 and 𝑋𝜌𝜏 are scaling functions, while 𝑦𝑠 = 𝑑 + 𝑧 − 2 and 𝑦𝜏 = 𝑑 − 𝑧 are the scale

dimensions of the spinwave stiffnesses in space and imaginary-time, respectively [30]. Both

stiffnesses are expected to be nonzero in the superfluid phase. In both the Mott insulator

and the Mott glass phases, they are expected to vanish. (Note that the Mott glass is an

incompressible insulator.)

3. MONTE CARLO SIMULATIONS

3.1. OVERVIEW

Our investigation consists of Monte Carlo simulations of the classical XY model

(2) with both the standard single-spin-flip Metropolis[49] algorithm, as well as the cluster-

update Wolff[50] algorithm. Both algorithms are used throughout the simulations and one

“full sweep” is defined as a Metropolis sweep over the entire lattice and a Wolff sweep.

A Wolff sweep in our simulations flips a number of clusters such that the total number of
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Figure 2. Phase diagram of the classical (3+1)-dimensional XY model with respect to
classical temperature 𝑇 and dilution 𝑝. The multi-critical point (MCP) is estimated as the
intersection of a spline interpolation of the numerical critical temperatures (dots) and the
percolation transition at 𝑝𝑐. The errors of the calculated 𝑇𝑐 are smaller than the symbol
size.

spins flipped in the clusters is equal to the number of spins in the system. While the Wolff

algorithm alone is sufficient to equilibrate clean systems, highly dilute systems can exhibit

small disconnected clusters that the Metropolis algorithm can more effectively equilibrate.

We simulate a range of dilutions 𝑝 = 0, 1/3, 1/2, 3/5 and 𝑝 = 𝑝𝑐 ≈ 0.688392 with

system sizes up to 𝐿 = 80 in the space dimensions and 𝐿𝜏 = 320 in the imaginary-time

dimension. All data need to be averaged over a large number of independent dilution

configurations. This increases the computational effort needed for meaningful results. Best

performance can be achieved with a rather small number of measurements sweeps, 𝑁𝑚, but

a large number of disorder realizations (samples), 𝑁𝑠.[51, 52] To this end, we have chosen

𝑁𝑚 = 500 and 𝑁𝑠 = 4000 − 20000 (depending on system size). To eliminate biases due to

the short measurements, we use improved estimators[53]. To ensure complete equilibration

of the system we have chosen 𝑁𝑒𝑞 = 100 equilibration sweeps to be carried out before each
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measurement. We have confirmed that 100 sweeps are sufficient by comparing the results

of the simulations with hot starts (spins initially randomly oriented) and cold starts (spins

initially aligned) and verifying that they agree within their error bars.

The phase diagram resulting from the simulations is presented in Figure 2. As

expected, the transition temperatures𝑇𝑐 (𝑝) decrease with increasing dilution from the clean

value𝑇𝑐 (0). The generic transition ends at the multi-critical point, which we have estimated

from the intersection of a spline fit of the calculated 𝑇𝑐 (𝑝) and the lattice percolation

threshold 𝑝𝑐 = 0.688392.

3.2. CLEAN CRITICAL BEHAVIOR

First, we analyze the phase transition of the clean, undiluted system (𝑝 = 0). Since

the clean system is isotropic, we choose samples with 𝐿 = 𝐿𝜏 between 10 and 80. The

critical temperature is determined from the crossings of the 𝑔𝑎𝑣 vs 𝑇 curves for different 𝐿

and the corresponding crossings of the 𝜉/𝐿 vs 𝑇 curves. Extrapolating to 𝐿 → ∞ yields a

critical temperature 𝑇𝑐 (0) = 3.31445(3).

Figure 3 shows both order parameter and susceptibility as functions of system size

right at the critical temperature. Fits of the order parameter data to the scaling form

𝑚 = 𝑎𝐿−𝛽/𝜈 (ln(𝐿/𝐿0))𝜔 are of good quality (reduced chi-squared 𝜒̃2 ≈ 0.3) and give

critical exponents 𝛽/𝜈 = 1.008(12) and 𝜔 = 0.25(8). Considering the same fits for various

temperatures within the error bars of our critical temperature estimate, leads to variation in

𝛽/𝜈 of around 0.02. Our final estimate for the order parameter exponent is 𝛽/𝜈 = 1.00(2).

Fits of the susceptibility to the scaling form 𝜒 = 𝑎𝐿𝛾/𝜈 (ln(𝐿/𝐿0))𝜔
′ are less stable.

We fit the data to the scaling form with the irrelevant exponent fixed at it’s predicted value

𝜔′ = 1/2 from equation (5). This yields a critical exponent 𝛾/𝜈 = 2.00(2) with reduced chi-

squared 𝜒̃2 ≈ 0.65. Susceptibility fits are more sensitive to errors in critical temperature,

having a variation in 𝛾/𝜈 of about 0.04 for temperatures within our error bar estimates. Our

final estimate for the susceptibility critical exponent is 𝛾/𝜈 = 2.00(6).
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Figure 3. Order parameter 𝑚 and susceptibility 𝜒 vs system size 𝐿 for the clean case
(𝑝 = 0). Solid lines are fits to 𝑚 = 𝑎𝐿−𝛽/𝜈 (ln(𝐿/𝐿0))𝜔 and 𝜒 = 𝑎𝐿𝛾/𝜈 (ln(𝐿/𝐿0))𝜔 that
yield 𝛽/𝜈 = 1.008(12) and 𝛾/𝜈 = 2.00(1), respectively. Statistical errors are of the order
of the symbol size.

Lastly, we find the correlation length critical exponent via slopes of the Binder

cumulant 𝑔𝑎𝑣, reduced correlation length 𝜉/𝐿 and logarithm of the order parameter ln(𝑚),

with respect to temperature. Equation (6) predicts a value of 𝜈 = 1/2 for the correlation

length critical exponent for (𝑑/𝑑𝑇) ln(𝑚) and universality implies the same scaling form

holds for 𝑔𝑎𝑣 & 𝜉/𝐿. Fitting the data for (𝑑/𝑑𝑇) ln(𝑚) to the scaling form 𝑎𝐿1/𝜈 ln(𝐿/𝐿0)𝜔̄

with irrelevant exponent fixed at the theoretical value 𝜔̄ = 1/10 yields the critical exponent

𝜈 = 0.50(2) for an acceptable fit (𝜒̃2 ≈ 4). Similar analysis for (𝑑/𝑑𝑇)𝑔𝑎𝑣 and (𝑑/𝑑𝑇) (𝜉/𝐿)

yields 𝜈 = 0.50(2) and 𝜈 = 0.49(4), respectively. Our final estimate for the correlation

length critical exponent is 𝜈 = 0.50(6).

Finally, we note that pure power-law fits to the data show significantly larger 𝜒̃2

values. This further justifies the logarithmic corrections in the scaling forms (4) - (6). In

summary, all of our Monte Carlo results for the clean case are in good agreement with the

scaling theory of Reference [38].
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Figure 4. Binder cumulant 𝑔𝑎𝑣 as a function of 𝐿𝜏 for several 𝐿 and dilution 𝑝 = 0.5 at the
critical temperature 𝑇𝑐 = 2.037. Plotting 𝑔𝑎𝑣/𝑔max

𝑎𝑣 in the main panel eliminates the leading
additive correction to scaling from the analysis.

3.3. DISORDERED CASE: GENERIC TRANSITION

The finite-size scaling analysis of the generic transition, (0 < 𝑝 < 𝑝𝑐) is carried

out as described in Section 2.4. Determining a full set of critical exponents requires first

finding the optimal shapes and calculating the dynamical exponent 𝑧 in order to fix the

second argument of our scaling forms (10) - (19). This is achieved using the iterative

procedure also outlined in Section 2.4.

Figures 4 and 5 show an example of this analysis. Specifically, Figure 4 presents

the Binder cumulant 𝑔𝑎𝑣 for the dilution 𝑝 = 0.5 as a function of 𝐿𝜏 for system sizes

𝐿 = 10 − 40 at the estimated critical temperature. The raw data are shown in the inset; as

expected, 𝑔max
𝑎𝑣 at the critical point is (roughly) independent of 𝐿 and exhibits a maximum

at 𝐿max
𝜏 for each system size. Remaining variation of 𝑔max

𝑎𝑣 is due to the uncertainty in 𝑇𝑐 for

the large system sizes and corrections to scaling for small system sizes (both of these will

be discussed further below). The main panel is a scaling plot demonstrating that the Binder
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Figure 5. Log-log plots of 𝐿max
𝜏 vs 𝐿. Solid lines are fits to 𝐿max

𝜏 = 𝑎𝐿𝑧 (1 + 𝑏𝐿−𝜔) yielding
𝑧 = 1.672(9) and 𝜔 = 1.18(5). Statistical errors are of the order of the symbol size.

cumulant fulfills the scaling form (10) to a high degree of accuracy and variations due to

uncertainty in 𝑇𝑐 and corrections to scaling simply shift the 𝑔av vs. 𝐿𝜏 curves up or down.

Corresponding scaling plots were also constructed with analogous results for the remaining

dilutions 𝑝 = 1/5, 1/3, and 3/5.

Determining 𝑧 requires analyzing the position 𝐿max
𝜏 of these maxima which we have

found via quadratic fits of 𝑔𝑎𝑣 vs ln 𝐿𝜏. Plots of 𝐿max
𝜏 vs 𝐿 are shown in Figure 5. As can

be seen, the data show significant corrections to scaling (deviations from straight lines),

especially for smaller dilutions. Neglecting them by fitting the data via pure power laws

would yield only effective, scale-dependent exponents. Therefore, we include the leading-

order correction to scaling via the ansatz 𝐿max
𝜏 = 𝑎𝐿𝑧 (1 + 𝑏𝐿−𝜔) with dilution-independent

critical exponents 𝑧 and 𝜔 but dilution-dependent prefactors 𝑎 and 𝑏. This yields true

asymptotic, scale-independent critical exponents. Combined fits of all four dilution data

sets gives exponents 𝑧 = 1.672(9) and 𝜔 = 1.18(5) with an acceptable reduced chi-squared

𝜒̃2 ≈ 2.69. If we consider the robustness of the combined fits against removal of upper and
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Figure 6. 𝑔max
𝑎𝑣 vs 𝐿 for the improved estimates for 𝑇𝑐. Shaded regions represent the the

range values for which the criterion is also satisfied. From this we estimate an error on 𝑇𝑐
of no more than 0.0003. Statistical errors are of the order of the symbol size or smaller.
The remaining variation of 𝑔max

𝑎𝑣 likely stems from the discreteness of 𝐿𝜏.

lower data points from each set as well as removal of entire dilution sets, we come to an

estimate for the dynamical critical exponent of 𝑧 = 1.67(4). We also note that the leading

corrections to scaling vanish close to 𝑝 = 1/2 where the prefactor 𝑏 changes sign and is

effectively zero for our fits of 𝑝 = 1/2. The vanishing of these corrections is also reinforced

by the comparison of pure power-law fits and fits to scaling forms including subleading

corrections. For the 𝑝 = 1/2, power-law fits yield 𝑧 = 1.671(3), where the fits including the

subleading corrections yields 𝑧 = 1.66(1). The global, dilution independent value for the

dynamical exponent is also bracketed nicely by the values obtained upon pure power-law fits

of the largest system sizes for the dilutions 𝑝 = 1/3 and 𝑝 = 3/5, which yield 𝑧 = 1.592(6)

and 𝑧 = 1.767(7), respectively. To estimate the error of 𝑧 stemming from the uncertainty

in 𝑇𝑐, we have repeated the analysis for appropriately chosen temperatures slightly above
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and below our estimate for 𝑇𝑐. Variation of the dynamical exponent within this range of

temperatures is about 0.03. After considering this uncertainty in 𝑇𝑐, statistical error and the

robustness of our fits, we come to our final estimate of the dynamical exponent 𝑧 = 1.67(6).

To complete our set of critical exponents, we now analyze the Monte Carlo runs for

systems of optimal shape and in the vicinity of their critical temperature 𝑇𝑐 (𝑝). With 𝐿𝜏/𝐿𝑧

fixed by the optimal shapes found above, the scaling forms (11) and (12) are then used to

extract 𝛽/𝜈 and 𝛾/𝜈 from the 𝐿 dependence of the order parameter 𝑚 and susceptibility

𝜒 at 𝑇𝑐 (𝑝). We again fit the data with leading corrections to scaling included via the

ansatz 𝑚 = 𝑎𝐿−𝛽/𝜈 (1 + 𝑏𝐿−𝜔) and 𝜒 = 𝑎𝐿𝛾/𝜈 (1 + 𝑏𝐿−𝜔) with universal exponents but

dilution-dependent prefactors. However, the combined fits of these data proved to be very

sensitive to small changes in𝑇𝑐 (𝑝) (much more so than the fit determining 𝑧). This indicates

that our critical temperature estimates (originally found from the crossings of the curves of

dimensionless quantities versus temperature) are not the true critical temperatures. Thus,

to improve our critical temperature estimates, we impart the criterion that at criticality

the value of 𝑔max
𝑎𝑣 should approach a dilution-independent value as 𝐿 −→ ∞. We can

adjust our estimates for 𝑇𝑐 (𝑝) until this criterion is satisfied, with 𝑔max
𝑎𝑣 approaching dilution

and system size independent values, as is shown in Figure 6.[31] This adjustment of the

critical temperatures yields our final estimates: 𝑇𝑐 (1/5) = 2.837, 𝑇𝑐 (1/3) = 2.4973,

𝑇𝑐 (1/2) = 2.0332, 𝑇𝑐 (3/5) = 1.7103. The data can also be seen to satisfy this criterion for

a small range of temperatures, thus we assign an error to our estimated critical temperatures

of no more than ±0.0003. The data in Figure 6 clearly demonstrates that the systems with

dilutions 𝑝 = 1/3 and 𝑝 = 1/2 show pronounced corrections to scaling. They are still

crossing over from the clean critical fixed point to the asymptotic regime even at the largest

𝐿. Moreover, 𝑔max
𝑎𝑣 for small system sizes exhibits non-monotonous behavior, from which

we conclude that there are at least two corrections to scaling contributing for the smallest

dilutions and system sizes.



72

Figure 7. Log-log plot of 𝑚 vs 𝐿 at the critical temperature. Solid lines are fits to
𝑚 = 𝑎𝐿−𝛽/𝜈 (1 + 𝑏𝐿−𝜔) that yield 𝛽/𝜈 = 1.087(11) and 𝜔 = 1.22(7). Lines are dashed in
regions that are not included in the fit. Statistical errors are of the order of the symbol size
unless shown explicitly in the plot.

With the improved estimates for 𝑇𝑐, we proceed to fit the three largest dilutions

(𝑝 = 1/5, 1/3, 3/5) with the above scaling ansatz to find 𝛽/𝜈 and 𝛾/𝜈. Order parameter 𝑚

versus system size 𝐿 for the three dilutions is shown in Figure 7. We perform a combined

fit with 𝑚 = 𝑎𝐿−𝛽/𝜈 (1 + 𝑏𝐿−𝜔). Leaving out the system sizes most affected by the second

sub-leading corrections to scaling mentioned above, we get good fits (𝜒̃2 ≈ 0.43) that result

in a critical exponent 𝛽/𝜈 = 1.087(11) and correction exponent 𝜔 = 1.22(7). Fits to the

same data for slightly adjusted temperatures within the estimated error (𝑇𝑐 ±0.0003) lead to

variation in the critical exponent of about 0.02. Our final estimate for the order parameter

critical exponent then reads 𝛽/𝜈 = 1.09(3).

Figure 8 shows the order parameter susceptibility 𝜒 as a function of system size 𝐿

at criticality. Fitting to the ansatz with leading-order corrections 𝜒 = 𝑎𝐿𝛾/𝜈 (1+ 𝑏𝐿−𝜔), and

again dropping the system sizes most affected by sub-leading order corrections, we arrive
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Figure 8. Log-log plot of 𝜒 vs 𝐿 at the critical temperature. Solid lines are fits to
𝜒 = 𝑎𝐿𝛾/𝜈 (1 + 𝑏𝐿−𝜔) that yield 𝛾/𝜈 = 2.495(7) and 𝜔 = 1.16(2). Lines are dashed in
regions that are not included in the fit. Statistical errors are of the order of the symbol size.

at a good fit (𝜒̃2 ≈ 1.3) that yields the critical exponent 𝛾/𝜈 = 2.495(7) and correction

exponent 𝜔 = 1.16(2). After considering the uncertainties in 𝑇𝑐 and fit range, as we did for

𝛽/𝜈, we come to the final estimate for the susceptibility exponent 𝛾/𝜈 = 2.50(3).

We now move to determining the correlation length critical exponent. This can be

determined by considering the slopes of 𝑔𝑎𝑣 and 𝜉𝜏/𝐿𝜏 as functions of temperature. Figure

9 shows off-critical data 𝑔𝑎𝑣 and 𝜉𝜏/𝐿𝜏 for dilution 𝑝 = 1/3, as functions of temperature.

Since both quantities have scale dimension zero, they should cross directly at the critical

temperature. However, it is clear in the data that a shift occurs in these crossings for

increasing system size 𝐿, thus we still expect significant corrections to scaling. Equations

(10) and (13) show that the correlation exponent can be extracted from finite-size scaling

of (𝑑/𝑑𝑇)𝑔𝑎𝑣 and (𝑑/𝑑𝑇)𝜉𝜏/𝐿𝜏, which each vary as 𝐿1/𝜈 with system size. Extracting the

slopes of each of these functions is done by linear fits to the data in the vicinity of the critical

temperature. Figure 10 shows the slopes of the Binder cumulant 𝑔𝑎𝑣 as a function of system

size. Again, to account for the corrections to scaling, we fit this data with the ansatz scaling
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Figure 9. Binder cumulant 𝑔𝑎𝑣 and reduced correlation function 𝜉𝜏/𝐿𝜏 for systems of
optimal shape and dilution 𝑝 = 1/3. Plotted are system sizes 𝐿 = 10 − 56 with increasing
slope.

form 𝑎𝐿1/𝜈 (1 + 𝑏𝐿−𝜔). Combined fits to (𝑑/𝑑𝑇)𝑔𝑎𝑣 lead to 𝜈 = 0.90(2) and 𝜔 = 1.17(8)

with a reduced chi-squared 𝜒̃ ≈ 2.2. Similar fits of the reduced correlation length 𝜉𝜏/𝐿𝜏 are

of good quality (𝜒̃2 ≈ 1.15) when the smallest system sizes are left out giving a correlation

exponent of 𝜈 = 0.894(4) and correction exponent 𝜔 = 1.16(10). Similar analysis carried

out on (𝑑/𝑑𝑇)𝜉𝑠/𝐿 yields nearly identical results. Considering the robustness of the fits

against removal of upper and lower data points, we are led to a somewhat larger error,

leading to a final estimate that reads 𝜈 = 0.90(5).

The critical exponents must satisfy the hyperscaling relationship 2𝛽/𝜈+𝛾/𝜈 = 𝑑+ 𝑧,

where 𝑑 = 3 is the spatial dimension. Our values 𝛽/𝜈 = 1.09(3), 𝛾/𝜈 = 2.50(3), and

𝑧 = 1.67(6) fulfill this relationship nicely within the error bars. We can also assign a value

to the anomalous dimension 𝜂, defined via the decay of the critical correlation function in

space, 𝐺 (x) ∼ |x|−(𝑑+𝑧−2+𝜂) . It measures the deviation of 𝐺 from a hypothetical Gaussian
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Figure 10. Log-log plot of (𝑑/𝑑𝑇)𝑔𝑎𝑣 vs 𝐿. Solid lines are fits to 𝑔𝑎𝑣 = 𝑎𝐿1/𝜈 (1 + 𝑏𝐿−𝜔)
that yield 𝜈 = 0.90(2) and 𝜔 = 1.17(8). Lines are dashed in regions that are not included
in the fit. Statistical errors are of order of the symbol size.

theory 4. This anomalous dimension 𝜂 can be calculated via the relationship 𝜂 = 2 − 𝛾/𝜈,

giving the result 𝜂 = −0.50(3). Additionally, the inequality 𝑑𝜈 > 2 is now fulfilled for our

correlation exponent 𝜈 = 0.90(5). Because the critical exponents satisfy the hyperscaling

relationship and the values of the exponent 𝜔 that governs the corrections to scaling are

consistent across the range of fits, we can conclude that the critical exponent estimates that

we have obtained are the true asymptotic critical exponents.

3.4. SUPERFLUID DENSITY

A final result from our simulations is the critical behavior of the compressibility 𝜅

and superfluid density 𝜌𝑠. This is determined by considering the behavior of the spinwave

stiffness of the classical Hamiltonian (2) in space and imaginary-time dimensions for opti-

4A purely Gaussian theory would predict a correlation function that decays as 𝐺 ∼ |x|−(𝑑+𝑧)+2 with 𝑧
the dynamical exponent of the system. The anomalous dimension is the deviation of the exponent from this
power-law behavior.
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Figure 11. Log-log plot of 𝜌𝜏 vs 𝐿. Solid lines are fits to 𝜌𝜏 = 𝑎𝐿−𝑦𝜏 (1 + 𝑏𝐿−𝜔) that yield
𝑦𝜏 = 1.32(2) and 𝜔 = 1.19(6).

mally shaped systems right at the critical temperatures for the dilutions 𝑝 = 1/3, 1/2, 3/5.

Both observables, 𝜌𝑐𝑙,𝑠 and 𝜌𝑐𝑙,𝜏, are very close to zero and thus, noisy. A plot of 𝜌𝑐𝑙,𝜏 vs

𝐿 is shown in Figure 11. Corrections to scaling are clearly relevant still, so we perform fits

with first-order corrections 𝜌𝑐𝑙,𝜏 = 𝑎𝐿−𝑦𝜏 (1 + 𝑏𝐿−𝜔). Good fits can be obtained over the

entire data set despite the noisy large system sizes (𝜒̃2 ≈ 1.03), yielding 𝑦𝜏 = 1.32(1) and

𝜔 = 1.19(6). The fit is surprisingly stable against removal of data points and dilution sets.

We quote our final estimate of this exponent as 𝑦𝜏 = 1.32(2). This satisfies the generalized

Josephson relation [17] for the compressibility 𝑦𝜏 = 𝑑 − 𝑧 within error bars.

Spinwave stiffness in the space dimensions is much smaller and thus has larger

statistical errors. Independent fits were not possible for this data set. However, we fit the

data with the functional form 𝑦𝑠 = 𝑎𝐿
−𝑦𝑠 (1+𝑏𝐿−𝜔) fixing the exponents via the generalized

Josephson relations 𝑦𝑠 = 𝑑 + 𝑧 − 2. Fixing 𝑦𝑠 = 2.67 and 𝜔 = 1.18 (from earlier fits) yields

a reasonable fit to the data (𝜒̃2 ≈ 0.03), in agreement with expectations.
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3.5. PERCOLATION TRANSITION

So far, we have analyzed “generic” transitions that are driven by tuning of the (classi-

cal) temperature for dilutions 𝑝 < 𝑝𝑐. Another type of transition – the percolation transition

– can occur by tuning the dilution concentration 𝑝 through the percolation threshold 𝑝𝑐

of the lattice at very low temperature. The critical behavior of these transitions is entirely

dependent on the critical geometry of percolating lattice with the dynamics of the rotor

model unaffected, remaining locally ordered on each percolating cluster. A theory has

been developed [54] that predicts the critical behavior of this percolation quantum phase

transition. These predictions give exponents 𝛽 = 0.417, 𝛾 = 4.02, 𝜈 = 0.875, and 𝑧 = 2.53.

Note that the static exponents 𝛽 and 𝜈 as well as the percolation threshold 𝑝𝑐 agree with the

corresponding 3D classical percolation values (see, e.g., References [55],[56],[57])

To test these predictions we perform simulations with dilution right at the percolation

threshold 𝑝 = 𝑝𝑐 = 0.688392 and temperature 𝑇 = 1.0, well below the estimated multi-

critical temperature 𝑇𝑀𝐶𝑃 ≈ 1.35. The large value of the predicted 𝑧 leads to the need

for very large system sizes 𝐿𝜏 to confirm the dynamical critical exponent. To reduce the

numerical effort, we simulated systems with the dynamical exponent fixed at its predicted

value 𝑧 = 2.53 and used these optimally shaped systems to confirm the remaining critical

exponents. Figure 12 shows both order parameter𝑚 and susceptibility 𝜒 for these systems up

to 𝐿 = 28. Considering the small system sizes in our data, we fit both sets to their predicted

scaling forms with first-order corrections included. For the order parameter exponent,

theory predicts 𝛽/𝜈 ≈ 0.47657. Fitting the data to the form 𝑚 = 𝑎𝐿−𝛽/𝜈 (1 + 𝑏𝐿−𝜔) with

the critical exponent 𝛽/𝜈 fixed at the predicted value, leads to a good fit (𝜒̃2 ≈ 1.41) with

irrelevant exponent 𝜔 = 0.99(12). Similarly, for the susceptibility exponent theory predicts

𝛾/𝜈 ≈ 4.59429. Fitting this data to 𝜒 = 𝑎𝐿𝛾/𝜈 (1 + 𝑏𝐿−𝜔) while fixing the critical exponent

𝛾/𝜈 to it’s predicted value, leads to fits of lesser quality (𝜒̃2 ≈ 5.31), but still within

reasonable agreement with the theory, and giving an irrelevant exponent 𝜔 = 1.26(58).
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Figure 12. Log-log plot of observables 𝑚 and 𝜒 for the percolation transition at 𝑝𝑐 =

0.688392 and 𝑇 = 1.0. Dashed lines are fits to the expectations [54]. Statistical errors are
of the order of the symbol size.

4. CONCLUSIONS

In conclusion, we have carried out large-scale Monte Carlo simulations to determine

the critical behavior of the superfluid-Mott glass quantum phase transition in three space

dimensions. To do so we have mapped a site-diluted quantum rotor model with commen-

surate filling and off-diagonal disorder onto a (3+1)-dimensional classical XY model, and

simulated it via the standard Metropolis and Wolff algorithms.

In the absence of disorder, the superfluid-Mott insulator transition falls into the

four-dimensional XY universality class which features mean-field critical behavior with

logarithmic corrections. The correlation exponent takes the value 𝜈 = 1/2 that violates the

Harris criterion 𝑑𝜈 > 2. As a consequence, the superfluid-Mott glass transition occurring

in the disordered case shows critical behavior differing from that of the clean case.
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Table 1. Critical exponents found in this work. Italic values are not calculated directly but
represent theoretical values that we have used and/or confirmed in the simulations.

Our results 𝑧 𝛽/𝜈 𝛾/𝜈 𝜈 𝜂

Clean 1 1.00(2) 2.00(6) 0.50(5) 0.00(5)
Diluted 1.67(6) 1.09(3) 2.50(3) 0.90(5) −0.50(3)
Percolation 2.53 0.477 4.594 0.875 −2.594

This superfluid-Mott glass transition exhibits a conventional finite-disorder quantum

critical point with power-law dynamical scaling 𝜉𝜏 ∼ 𝜉𝑧𝑠 between the correlation time and

length. This agrees with a general classification of disordered quantum phase transitions

based on rare region dimensionality in the system [20, 54]. For the classical (mapped)

Hamiltonian (2), the rare regions are infinitely-long rods in the time-dimension, giving a

rare region dimensionality 𝑑𝑅𝑅 = 1. Comparing this to the lower critical dimension of the

classical XY model 𝐷−
𝑐 = 2 we can see that 𝑑𝑅𝑅 < 𝐷−

𝑐 , putting the system into class A (of

conventional power-law scaling), as designated by the classification scheme.

For the generic transition occurring for dilutions 𝑝 below the lattice percolation

threshold 𝑝𝑐, we find universal, dilution-independent critical exponents from our Monte

Carlo data. These exponents, summarized in Table 1, satisfy the hyperscaling relation

as well as the Harris criterion. We have also considered the percolation transition that

occurs across the percolation threshold 𝑝𝑐 at low temperature. The critical behavior of this

transition is also of conventional power-law type and our Monte Carlo data can be fitted well

with theoretical behavior predicted within the scaling theory by Vojta and Schmalian[54].

An experimental realization of the three-dimensional superfluid-Mott glass transi-

tion can be found in diluted anisotropic spin-1 antiferromagnets. These systems are typically

three-dimensional and exhibit particle-hole symmetry naturally as a consequence of the up-

down symmetry of the Hamiltonian in the absence of external magnetic field. Such a

realization was recently observed in bromine-doped dichloro-tetakic-thiourea-nickel[12].
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Further experimental studies can be carried out in disordered bosonic systems such

as ultracold atoms in optical lattices as well as granular superconductors. However, often

only statistical particle-hole symmetry can be achieved in these systems. Whether or not

this statistical particle-hole symmetry will destabilize the Mott glass into a Bose glass

remains still unresolved.
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ABSTRACT

We study the collective excitations, i.e., the Goldstone (phase) mode and the

Higgs (amplitude) mode, near the superfluid–Mott glass quantum phase transition in a two-

dimensional system of disordered bosons. Using Monte Carlo simulations as well as an

inhomogeneous quantum mean-field theory with Gaussian fluctuations, we show that the

Higgs mode is strongly localized for all energies, leading to a noncritical scalar response. In

contrast, the lowest-energy Goldstone mode undergoes a striking delocalization transition

as the system enters the superfluid phase. We discuss the generality of these findings and

experimental consequences, and we point out potential relations to many-body localization.

Understanding the rich behavior that arises when many quantum particles interact

with each other remains one of the major challenges of modern condensed matter physics.

Zero-temperature phase transitions between different quantum ground states have emerged

as a central ordering principle in this field [1, 2, 3, 4, 5, 6]. These quantum phase transitions

(QPTs) control large regions of a material’s phase diagram and lead to unconventional

thermodynamic and transport properties. Moreover, fluctuations associated with these

transitions can induce novel phases, increasing the complexity of quantum matter.

Since impurities, defects, and other types of quenched disorder are unavoidable

in most condensed matter systems, the effects of randomness on QPTs have been studied

intensively over the last two decades, leading to the discovery of exotic phenomena such as
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infinite-randomness critical points [7, 8], smeared phase transitions [9, 10], and quantum

Griffiths singularities [11, 12]. Today, the thermodynamics of many disordered QPTs is

well understood, and classification schemes [13, 14, 15] have been established based on the

scaling of the disorder strength under coarse graining as well as on the importance of rare

disorder fluctuations (see, e.g., Reference [16, 17, 18] and references therein).

Much less is known about the character and dynamics of excitations at disordered

QPTs even though excitations are crucial for a host of experiments ranging from inelastic

neutron scattering in magnetic materials to various electrical and thermal transport mea-

surements. Of particular interest are the collective excitations that emerge in systems with

spontaneously broken continuous symmetries. These include one or more Goldstone modes

that are related to oscillations of the order parameter direction and an amplitude (Higgs)

mode that is related to oscillations of the order parameter magnitude. Examples of such

modes can be found in superfluids, superconductors, incommensurate charge density waves,

as well as planar and Heisenberg magnets (see, e.g., References [19, 20]).

In this Letter, we therefore investigate the excitations close to a paradigmatic disor-

dered QPT, the superfluid-Mott glass transition of disordered bosons, by means of Monte

Carlo simulations and an inhomogeneous mean-field theory with Gaussian fluctuations.

Our results can be summarized as follows. Even though the thermodynamic critical behav-

ior of the superfluid-Mott glass transition is of conventional power-law type [21, 22], the

Higgs and Goldstone modes feature unconventional dynamics that violates naive scaling.

Specifically, the Higgs mode is strongly localized, resulting in a broad, noncritical spectral

density close to the QPT. In contrast, the incipient Goldstone mode features a striking de-

localization transition as the system enters the superfluid phase, irrespective of the disorder

strength.
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In the remainder of this Letter, we first introduce our model and then discuss

the Monte Carlo simulations. To explain the unusual, noncritical response observed in

these simulations, we study Gaussian fluctuations about an inhomogeneous quantum mean-

field theory. We also discuss possible experiments, and consider relations to many-body

localization.

We start from a square-lattice Bose-Hubbard Hamiltonian

𝐻 =
1
2

∑︁
𝑖

𝑈𝑖 (𝑛𝑖 − 𝑛̄)2 −
∑︁
⟨𝑖 𝑗⟩

𝐽𝑖 𝑗 (𝑎†𝑖 𝑎 𝑗 + h.c.) (1)

with large integer filling 𝑛̄. Here 𝑎†
𝑖

and 𝑎 are the boson creation and annihilation operators

at site 𝑖, and 𝑛𝑖 = 𝑎†𝑖 𝑎𝑖 is the number operator. If the interactions𝑈𝑖 and the nearest-neighbor

hopping terms 𝐽𝑖 𝑗 are spatially uniform, the system undergoes a QPT between a superfluid

ground state (for 𝐽 ≫ 𝑈) and a gapped, incompressible Mott insulator (for 𝐽 ≪ 𝑈). In the

presence of quenched disorder, these two bulk phases are separated by the Mott glass phase,

a gapless but incompressible insulator [23, 24]. In the following, we introduce the disorder

via site dilution, i.e., we randomly remove a nonzero fraction 𝑝 of lattice sites while the𝑈𝑖

and 𝐽𝑖 𝑗 of the remaining sites stay uniform.

To study the collective modes across the superfluid-Mott glass transition, we map

the Bose-Hubbard model (1) onto a (2 + 1)-dimensional XY model [25] with columnar

defects. We then perform large-scale Monte Carlo simulations for lattices with linear sizes

of up to 𝐿 = 256 and 𝐿𝜏 = 512 in the space and imaginary time directions. The phase

diagram and the thermodynamic critical behavior (which is of conventional power-law type)

are known accurately from earlier studies [22, 26]. For details of the simulations and the

data analysis see the Supplemental Material.5

5See Supplementary Material with References [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] for details
of the Monte Carlo simulations, the scaling form of the scalar susceptibility, the maximum-entropy method,
and the quantum mean-field theory.
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To analyze the Higgs mode, we compute the (disorder-averaged) imaginary-time

scalar susceptibility,

𝜒𝜌𝜌 (x, 𝜏) = ⟨𝜌(x, 𝜏)𝜌(0, 0)⟩ − ⟨𝜌(x, 𝜏)⟩⟨𝜌(0, 0)⟩ (2)

and its Fourier transform 𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚). Here, 𝜌(x, 𝜏) is the local order parameter amplitude,

obtained as the average of the XY variables over a small (five-site) cluster. The dynamic

susceptibility is given by the analytic continuation from imaginary Matsubara frequencies

𝑖𝜔𝑚 to real frequencies 𝜔,

𝜒𝜌𝜌 (q, 𝜔) = 𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚 → 𝜔 + 𝑖0+) . (3)

Unfortunately, the analytic continuation is an ill-posed problem and sensitive to Monte

Carlo noise. To overcome this problem, we employ a maximum-entropy (MaxEnt) method

[40]. Its technical details and robustness are discussed in the Supplementary Material. Gen-

eralizing scaling arguments of Podolsky and Sachdev [41] to the disordered case suggests

that the singular part of the scalar susceptibility in 𝑑 space dimensions has the form

𝜒𝜌𝜌 (q, 𝜔) = 𝜔[(𝑑+𝑧)𝜈−2]/(𝜈𝑧)𝑋 (q𝑟−𝜈, 𝜔𝑟−𝜈𝑧) (4)

where 𝑟 is the distance from criticality, 𝜈 is the correlation length exponent, 𝑧 is the

dynamical exponent, and 𝑋 is a universal scaling function.

We now turn to the results of the Monte Carlo simulations. Figure 1 shows the

spectral function 𝜒′′𝜌𝜌 (q, 𝜔) at q = 0 on superfluid side of the QPT, contrasting the clean

case (𝑝 = 0) with a diluted case (𝑝 = 1/3). The clean spectral function features a pronounced

low-energy Higgs peak that softens as the transition is approached. The low-energy part of

𝜒′′𝜌𝜌 fulfills the scaling form (4) in good approximation, using the exponents 𝜈 = 0.671 and
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Figure 1. Spectral function 𝜒′′𝜌𝜌 (q = 0, 𝜔) for different distances 𝑟 from criticality on the
superfluid side of the transition. Main panel: dilution 𝑝 = 1/3, results averaged over 10,000
samples of sizes 𝐿 = 100, 𝐿𝜏 = 452. Inset: clean case (𝑝 = 0), 𝐿 = 𝐿𝜏 = 128. Statistical
errors are small, about one symbol size; variations of the MaxEnt parameters can shift the
peak positions systematically by up to about 10%. 𝑇 is the Monte Carlo temperature, not
the physical temperature of the Bose-Hubbard Hamiltonian.

𝑧 = 1 of the clean 3d XY universality class [42] (see Figure S1 in the Suppl. Material). These

findings agree with previous simulations of the Higgs mode at the clean superfluid-Mott

insulator transition [43, 44].

The spectral function of the diluted system behaves very differently. Instead of a

narrow low-energy peak, it features a broad maximum at higher energies. Importantly, the

position of this maximum is only weakly dependent on the distance 𝑟 from criticality; it

does not vanish for 𝑟 → 0. This behavior violates the scaling form (4), implying that the

scalar susceptibility is dominated by a noncritical contribution.

We also study the dispersion 𝜔𝐻 (q) of the peak position as a function of the wave

vector q; the results are presented in Figure 2. In the clean case, the data show the behavior

expected for a 𝑧 = 1 quantum critical point. The low-energy dispersion is linear, 𝜔𝐻 ∼ |q|,
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Figure 2. Peak position 𝜔𝐻 of the spectral function 𝜒′′𝜌𝜌 (q, 𝜔) vs. wave vector |q| (along
the coordinate directions) for different distances 𝑟 from criticality. (a) dilution 𝑝 = 0. (b)
𝑝 = 1/3. The simulation parameters agree with Figure 1. Statistical errors are about a
symbol size or less.

at criticality. As 𝑟 increases, it crosses over to the quadratic form 𝜔𝐻 = 𝑚𝐻 + 𝑐q2. In

contrast, the dispersion of the diluted system does not change much with the distance from

criticality, and the peak energy 𝜔𝐻 is almost independent of q for small wave vectors.

What causes the broad, uncritical scalar response near the superfluid-Mott glass

transition? Potential reasons include increased damping and localization effects. To gain

further insight and to disentangle these possibilities, we complement the Monte Carlo

simulations by an inhomogeneous mean-field theory with Gaussian fluctuations. Our

approach generalizes the theories of References [45, 46] to the disordered case. It is also

related to the bond-operator method for disordered magnets [47].

Close to the Mott phase, particle number fluctuations are small. We thus truncate

the local Hilbert space at site 𝑗 to three basis states, |− 𝑗 ⟩, |0 𝑗 ⟩, and |+ 𝑗 ⟩, corresponding to

the boson numbers 𝑛 𝑗 = 𝑛̄ − 1, 𝑛̄, and 𝑛̄ + 1, respectively. The mean-field theory derives
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from the variational ground state wave function |Φ0⟩ =
∏

𝑗 |𝜙0 𝑗 ⟩ with

|𝜙0 𝑗 ⟩ = cos(𝜃 𝑗/2) |0 𝑗 ⟩

+ sin(𝜃 𝑗/2)
(
𝑒𝑖𝜂 𝑗 |+ 𝑗 ⟩ + 𝑒−𝑖𝜂 𝑗 |− 𝑗 ⟩

)
/
√

2 . (5)

It captures both the Mott state, 𝜃 𝑗 = 0, and the superfluid state, 𝜃 𝑗 > 0, with the local

superfluid order parameter ⟨𝑎†
𝑗
⟩ ∝ 𝜓 𝑗 = sin 𝜃 𝑗𝑒−𝑖𝜂 𝑗 .

The variational ground state energy 𝐸0 = ⟨Φ0 |𝐻 |Φ0⟩ is minimized by uniform

phases 𝜂 𝑗 = 𝜂 = const (which we set to zero in the following) and mixing angles 𝜃𝑖 that

fulfill the mean-field equations

𝑈𝑖 sin 𝜃𝑖 − 4𝑛̄ cos 𝜃𝑖
∑︁
𝑗

𝐽𝑖 𝑗 sin 𝜃 𝑗 = 0 . (6)

To describe excitations on top of the mean-field ground state, we rotate the basis in

the three-state local Hilbert space of site 𝑗 to |𝜙0 𝑗 ⟩, |𝜙𝐻 𝑗 ⟩, |𝜙𝐺 𝑗 ⟩ where

|𝜙𝐻 𝑗 ⟩ = sin(𝜃 𝑗/2) |0 𝑗 ⟩ − cos(𝜃 𝑗/2)
(
|+ 𝑗 ⟩ + |− 𝑗 ⟩

)
/
√

2

|𝜙𝐺 𝑗 ⟩ = 𝑖
(
|+ 𝑗 ⟩ − |− 𝑗 ⟩

)
/
√

2 (7)

are related to changes of order parameter magnitude and phase, respectively, compared to

|𝜙0 𝑗 ⟩. The boson operators 𝑏†0 𝑗 , 𝑏
†
𝐻 𝑗

, and 𝑏†
𝐺 𝑗

create these states out of the fictitious vacuum

and fulfill the local constraint
∑
𝛼 𝑏

†
𝛼 𝑗
𝑏𝛼 𝑗 = 1. We now rewrite the Hamiltonian (1) in terms

of the 𝑏 bosons, using the constraint to eliminate (“fully condense”) 𝑏0 𝑗 such that 𝑏†
𝐻 𝑗

and

𝑏
†
𝐺 𝑗

create excitations on top of the mean-field ground state. To quadratic (Gaussian) order

in 𝑏, the Hamiltonian decouples into Higgs and Goldstone parts, 𝐻 = 𝐸0 +𝐻𝐻 +𝐻𝐺 , which
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both take the form

𝐻𝛼 =
∑︁
𝑖

𝐴𝛼𝑖𝑏
†
𝛼𝑖
𝑏𝛼𝑖 +

∑︁
⟨𝑖 𝑗⟩

𝐵𝛼𝑖 𝑗 (𝑏†𝛼𝑖 + 𝑏𝛼𝑖) (𝑏
†
𝛼 𝑗

+ 𝑏𝛼 𝑗 ) , (8)

(𝛼 = 𝐻,𝐺). The coefficients 𝐴𝛼𝑖 and 𝐵𝛼𝑖 𝑗 are nonuniform and depend on the mixing angles

𝜃𝑖. 𝐻𝐻 and 𝐻𝐺 can be diagonalized numerically by bosonic Bogoliubov transformations,

𝑏𝛼 𝑗 =
∑
𝑘 (𝑢𝛼 𝑗 𝑘𝑑𝛼𝑘 + 𝑣∗𝛼 𝑗 𝑘𝑑

†
𝛼𝑘
).

We now present the results of the mean-field theory. In the absence of dilution,

𝑝 = 0, the mean-field equation (6) can be solved analytically. A superfluid solution appears

for 𝑈 < 𝑈0
𝑐 = 4𝑛̄𝐽𝑧 where 𝑧 = 4 is the coordination number of the lattice; it has a uniform

mixing angle cos 𝜃 = 𝑈/𝑈0
𝑐 and order parameter 𝜓 = (1 − 𝑈/𝑈0

𝑐 )1/2. As the system is

translationally invariant, all excitations have plane wave character. In the superfluid phase,

the Goldstone mode is gapless while the gapped Higgs mode softens at the QPT. In the

insulating phase the two modes are gapped and degenerate. All clean mean-field results

agree with earlier work [45].

The behavior changes dramatically in the presence of disorder. Figure 3 shows the

average and typical order parameter for site dilutions 𝑝 = 1/8 and 1/3, resulting from a

numerical solution of the mean-field equations (6) 6. As expected, the onset of superfluidity

is suppressed compared to the clean case, 𝑝 = 0. The large difference between the average

and typical order parameter for𝑈/(𝑛̄𝐽) slightly below the onset of superfluidity indicates the

coexistence of superfluid puddles with insulating regions, characteristic of a Griffiths phase

(which is wider for stronger dilution). At lower 𝑈, the order parameter is only moderately

inhomogeneous.

Turning to excitations on top of the mean-field ground state, Figure 4a visual-

izes examples of the lowest-energy eigenstates in both the Higgs and Goldstone chan-

nels for dilution 𝑝 = 1/3. Clearly, these states show nontrivial localization proper-

6For each lattice, we only consider the infinite percolation cluster as finite clusters cannot support superfluid
long-range order.
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Figure 3. (a) Local order parameter 𝜓 𝑗 for several 𝑈/(𝑛̄𝐽) for for a system of 1282 sites
with dilution 𝑝 = 1/3. (b) Average and typical (geometric average) local order parameter 𝜓
as function of 𝑈/(𝑛̄𝐽) for dilutions 𝑝 = 0, 1/8, and 1/3, using 1000 disorder realizations.
Statistical errors are comparable to the line widths.
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Figure 4. (a) Wave functions of the lowest-energy Goldstone and Higgs modes for 𝑝 = 1/3
and several 𝑈/(𝑛̄𝐽), visualized as |𝑢𝛼 𝑗0 |2 − |𝑣𝛼 𝑗0 |2. (b) Generalized dimension 𝜏2 of the
lowest-energy Goldstone and Higgs modes vs. interaction 𝑈/(𝑛̄𝐽) for 𝑝 = 1/8 and 1/3
(averaged over 1000 disorder realizations). Statistical errors are smaller than the symbol
size.
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ties. To characterize the localization, we calculate the inverse participation number

𝑃−1(0) = ∑
𝑗 ( |𝑢𝛼 𝑗0 |2 − |𝑣𝛼 𝑗0 |2)2 [47] and the corresponding generalized dimension 𝜏2(0) =

ln 𝑃(0)/ln 𝐿 7. The dependence of 𝜏2 on the interaction𝑈 for the lowest-energy eigenstates

in the Higgs and Goldstone channels is presented in Figure 4b. For both weak and strong

dilutions, 𝑝 = 1/8 and 1/3, we observe the same behavior. In the insulating phase, both

excitations are degenerate and strongly localized as indicated by the rapid drop of 𝜏2 towards

zero with increasing 𝐿.

Upon entering the superfluid phase with decreasing𝑈, the two excitations evolve in

opposite direction. The Higgs mode becomes even more localized, reflected in a further

decrease of 𝜏2. In contrast, the lowest Goldstone excitation undergoes a rapid delocalization

transition. Its dimension 𝜏2 increases quickly, and its 𝐿-dependence changes sign. It now

increases towards 𝜏2 = 2 with increasing 𝐿, indicating an extended state. Within our

numerical accuracy, the crossing of the 𝜏2 vs. 𝑈/(𝑛̄𝐽) curves coincides with the onset of

superfluid order. In fact, we have derived an analytic expression for the wave function of the

lowest Goldstone excitation in the superfluid phase that proves that it is extended whenever

the system features a macroscopic order parameter.

We also study the dependence of the localization on the excitation energy (see

Supplementary Materials). On the insulating side, the excitations are strongly localized for

all energies, and the same is true for the Higgs mode in the superfluid phase. Goldstone

excitations with nonzero energy appear to be localized as well, with a localization length

that diverges with vanishing energy. We do not find any evidence for a mobility edge at

nonzero energy, in contrast to the Bose glass results reported in Reference [48].

To establish a connection to the Monte Carlo simulations, we compute the spec-

tral densities of the Higgs and Goldstone Green functions 𝜒𝛼 𝑗 𝑘 (𝑡) = −𝑖Θ(𝑡)⟨[𝑏†
𝛼 𝑗
(𝑡) +

𝑏𝛼 𝑗 (𝑡), 𝑏†𝛼𝑘 (0) +𝑏𝛼𝑘 (0)]⟩ with 𝛼 = 𝐺, 𝐻. Figure 5 shows the spectral densities at zero wave

vector for several interactions 𝑈/(𝑛̄𝐽), comparing the clean case with dilution 𝑝 = 1/3.

7In our numerical calculations, we compute 𝜏2 via the box-counting method, see the Suppl. Material.
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Figure 5. Spectral functions 𝜒′′(q = 0, 𝜔) of the Goldstone (solid lines) Higgs (dashed
lines) excitations for several interactions 𝑈/(𝑛̄𝐽). The curves are shifted upwards with
increasing𝑈. Dotted lines mark the position of the Higgs peak in 𝜒′′. (a) Dilution 𝑝 = 1/3
(240 disorder realizations, statistical errors are comparable to the line widths). (b) Clean
case, 𝑝 = 0; here the peaks in the figure represent 𝛿 functions.

The spectral densities of the diluted system are very broad, even though the eigenmodes

are noninteracting within the Gaussian approximation and thus have no intrinsic width.

This demonstrates that the broadening of 𝜒′′ is due to disorder-induced localization effects.

Moreover, the peak in the Higgs spectral function does not soften at the superfluid-Mott

glass transition, mirroring the Monte Carlo results in Figure 1. In contrast, the clean spectral

functions show the expected 𝛿 peaks at energies corresponding to the Higgs and Goldstone

masses.

To summarize, we found the Higgs mode to be strongly localized across the

superfluid-Mott glass QPT; the scalar response is thus noncritical and violates naive scal-

ing. The lowest Goldstone excitation, in contrast, delocalizes upon entering the super-

fluid phase. Higher-energy Goldstone excitations are localized, implying the absence of a

nonzero-energy mobility edge for the excitations.
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The mean-field theory used in the second half of this Letter provides only an

approximate description of the superfluid-Mott glass transition. In particular, it does

not correctly capture rare regions effects because it cannot describe the fluctuations of

large superfluid puddles in an insulating matrix. Whereas rare regions are known to be

unimportant for the thermodynamics of this QPT [16, 17, 18], their effects on excitations

are less well understood. Moreover, the Gaussian approximation for 𝐻𝐻 and 𝐻𝐺 neglects

anharmonic effects (which could be included by keeping higher-order terms in the expansion

of 𝐻). However, the agreement between the mean-field results and the numerically exact

Monte Carlo simulations gives us confidence in their validity.

Potential routes to analyze the superfluid-Mott glass transition experimentally in-

clude ultracold atoms, dirty and granular superconductors, as well as diluted quantum

antiferromagnets. Recently, the effects of the Higgs mode on the dynamical conductivity

in disordered superconducting thin films were modeled by a bosonic Hamiltonian similar

to ours [49, 50]. The Monte Carlo data in these papers appear to be compatible with a

more conventional scenario in which the Higgs response sharpens and softens as the QPT

is approached. We believe that this may stem from the comparatively weak disorder used

in References [49, 50] which causes a slow crossover to the disordered behavior 8.

In conclusion, our work demonstrates that disordered QPTs can feature unconven-

tional collective excitations even if their thermodynamic critical behavior is completely

regular. This implies a number of important general questions about collective modes at

disordered QPTs: Can one classify the excitation dynamics along similar lines as the ther-

modynamics? What is the character (and critical behavior) of the delocalization transition

of the Goldstone mode? Under what conditions does a mobility edge appear? Is it related to

many-body localization? What role is played by the space dimensionality? These questions

remain tasks for the future.

8This is supported by the fact that the critical behavior found in Reference [49] agreed with a clean
dynamical exponent 𝑧 = 1 rather than the disordered value 𝑧 = 1.52 [22].
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SUPPLEMENTARY MATERIALS

In the following sections, we provide technical details about the Monte Carlo simu-

lations, the scaling form of the scalar susceptibility, the maximum-entropy method used to

analytically continue the imaginary-frequency susceptibilities, and the quantum mean-field

theory.

1. DETAILS OF THE MONTE CARLO SIMULATIONS

The Monte Carlo simulations follow the approach used in References [22, 26] to

study the thermodynamic critical behavior. For large integer filling 𝑛̄, the square-lattice

Bose-Hubbard Hamiltonian

𝐻 =
1
2

∑︁
𝑖

𝑈𝑖 (𝑛𝑖 − 𝑛̄)2 −
∑︁
⟨𝑖 𝑗⟩

𝐽𝑖 𝑗 (𝑎†𝑖 𝑎 𝑗 + h.c.) (9)

can be mapped [25] onto a classical (2+1)-dimensional XY model on a cubic lattice. If the

disorder is introduced by means of site dilution, the resulting classical Hamiltonian reads

𝐻cl = −𝐽𝑠
∑︁
⟨𝑖, 𝑗⟩,𝜏

𝜖𝑖𝜖 𝑗S𝑖,𝜏 · S 𝑗 ,𝜏 − 𝐽𝑡
∑︁
𝑖,𝜏

𝜖𝑖S𝑖,𝜏 · S𝑖,𝜏+1 (10)
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Figure 6. (a) Equilibration of energy and order parameter for a single disorder realization
of size 𝐿 = 100, 𝐿𝜏 = 452, dilution 𝑝 = 1/3, and temperature 𝑇 = 𝑇𝑐 = 1.577. The solid
lines are fits to 𝐸𝑛 = 𝐸𝑎𝑣 + 𝑎 exp(−𝑛/𝑡𝑒𝑞) (and analogously for 𝑚). (b) Histograms of the
order parameter 𝑚 and the order parameter susceptibility 𝜒 for 𝐿 = 44, 𝐿𝜏 = 132, 𝑝 = 1/3,
𝑇 = 𝑇𝑐 = 1.577, using 20,000 disorder realizations. To obtain accurate values for each
individual sample, 4000 measurements per sample were used in this calculation.

where S𝑖,𝜏 is a two-component unit vector at the lattice site with spatial coordinate 𝑖 and

“imaginary-time” coordinate 𝜏. The independent quenched random variables 𝜖𝑖 take the

values 0 (vacancy) with probability 𝑝 and 1 (occupied site) with probability 1− 𝑝. Because

the vacancy positions do not depend on the imaginary-time coordinate 𝜏, the defects in

the classical model (10) are columnar. The values of the coupling constants 𝐽𝑠/𝑇 and

𝐽𝑡/𝑇 depend on the parameters of the original Bose-Hubbard model. 𝑇 is the “classical”

temperature of the Hamiltonian (10) whereas the physical temperature of the Bose-Hubbard

model (9) maps onto the inverse system size in imaginary-time direction of the classical

model. As we are interested in universal properties, the values of 𝐽𝑠 and 𝐽𝑡 are not important

for the qualitative behavior. We therefore set 𝐽𝑠 = 𝐽𝑡 = 1 and vary the classical temperature

𝑇 to tune through the transition.
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We perform simulations of the classical Hamiltonian (10) by employing a combi-

nation of Wolff cluster updates [27] and Metropolis single-spin updates [28] for dilutions

𝑝 = 0, 1/8, 1/5, and 1/3. Specifically, a full Monte Carlo sweep consists of a Metropolis

sweep followed by a Wolff sweep (a number of cluster flips such that the total number of

flipped spins equals the system size). The Wolff updates greatly reduce the critical slowing

down, and the Metropolis updates help equilibrate small disconnected clusters of lattice

sites. The resulting equilibration and correlation times are very short. This can be seen

in Figure 6(a) which shows the equilibration of the energy 𝐸 and the order parameter 𝑚

for a “worst-case example”, i.e., high dilution, large system size, and a temperature right at

criticality, 𝑇 = 𝑇𝑐.

The figure demonstrates that the data for a hot start (random S) and a cold start

(all S perfectly aligned) rapidly overlap. Fits of the energy to 𝐸𝑛 = 𝐸𝑎𝑣 + 𝑎 exp(−𝑛/𝑡𝑒𝑞)

(and analogously for the order parameter) give equilibration times 𝑡𝑒𝑞 of about 5 sweeps or

shorter, depending on the quantity and initial conditions.

Due to the large computational effort required for simulating disordered systems, one

must carefully choose the number 𝑁𝑆 of disorder realizations (samples) and the number 𝑁𝑀

of measurements during the simulation of each sample for optimal performance. Assuming

statistical independence between different measurements (quite possible with a cluster

update), the variance 𝜎2
𝑇

of the final result (thermodynamically and disorder averaged) for

a particular observable can be estimated as

𝜎2
𝑇 ≈ (𝜎2

𝑆 + 𝜎
2
𝑀/𝑁𝑀)/𝑁𝑆 (11)

where 𝜎2
𝑆

is the disorder-induced variance between samples and 𝜎2
𝑀

is the variance of

measurements within each sample [33, 34]. Because the numerical effort is roughly propor-

tional to (𝑁𝑀 + 𝑁𝐸 )𝑁𝑆 (where 𝑁𝐸 is the number of equilibration sweeps per sample), the

optimum value of 𝑁𝑀 is quite small. We therefore employ a large number 𝑁𝑆 of disorder
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realizations, ranging from 10 000 to 20 000, and rather short runs of 𝑁𝑀 = 500 sweeps,

with measurements taken after every sweep. The equilibration period for each sample is

𝑁𝐸 = 100 Monte Carlo sweeps, many times longer than the longest observed equilibration

times 𝑡𝑒𝑞. The combination of short Monte Carlo runs and large sample numbers can lead

to biases in some observables, at least if the usual estimators are employed. We have cor-

rected these biases by means of improved estimators, as discussed, e.g., in the appendix of

Reference [34]. Moreover, for selected parameters, we have compared runs using as little

as 250 and as many as 4000 measurement sweeps per sample and confirmed that they agree

within their error bars.

To ascertain the importance of rare events, we compute the probability distributions

of key observables. Figure 6(b) shows histograms of the order parameter and the order

parameter susceptibility for dilution 𝑝 = 1/3 right at the critical temperature. The distribu-

tions are moderately broad and do not feature long tails. This agrees with what is expected

based on the classification of disordered phase transitions [14, 15]. The thermodynamic

critical behavior of the superfluid-Mott glass transition is of conventional power-law type

[22], implying a finite-disorder fixed point.

As the disorder breaks the symmetry between space and imaginary time, we need

to distinguish the system sizes 𝐿 (in the space directions) and 𝐿𝜏 (in the imaginary-time

direction). Appropriate sample shapes can be found from the maxima of the Binder

cumulant as described in References [29, 30, 31, 32]. This method yields combinations of

𝐿 and 𝐿𝜏 with constant scaling ratio 𝐿𝜏/𝐿𝑧. To ensure that our results are not affected by

finite-size effects, we use large systems with linear sizes up to 𝐿 = 256 and 𝐿𝜏 = 512 in

the space and imaginary time directions. These sizes are much larger than the correlation

lengths (in the space and imaginary time directions) of the studied excitations. For example,

the smallest Higgs mass (peak frequency) for the clean system shown in the inset of Figure

1 of the main paper is 𝑚𝐻 ≈ 0.14 corresponding to a characteristic time of 2𝜋/𝑚𝐻 ≈ 45,

much smaller than the system size 𝐿 = 𝐿𝜏 = 128. To gain further confidence, we have
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nonetheless confirmed that the results do not change for a system of size 𝐿 = 𝐿𝜏 = 256.

In the presence of disorder, finite-size effects are even less of a problem because the Higgs

mode localizes. (The maximum of the spectral density in the main panel of Figure 1 of the

main paper is at a frequency of about 1.25 corresponding to a characteristic time of about

5). We have confirmed this by comparing the results for sizes between 𝐿 = 68, 𝐿𝜏 = 256

and 𝐿 = 109, 𝐿𝜏 = 512 for dilution 𝑝 = 1/3.

To calculate the scalar susceptibility 𝜒𝜌𝜌, we need to measure the local order pa-

rameter magnitude. In a “soft-spin” model, one could simply use |S𝑖,𝜏 | for this purpose.

However, in our XY model, |S𝑖,𝜏 | is fixed at unity. We therefore define the local order-

parameter magnitude via an average over a small five-site cluster,

𝜌(x𝑖, 𝜏) =
1
5

����𝜖𝑖S𝑖,𝜏 + ∑︁
𝑗

𝜖 𝑗S 𝑗 ,𝜏
���� (12)

where the sum is over the four (space) neighbors of lattice site 𝑖.

2. SCALING FORM OF THE SCALAR SUSCEPTIBILITY

Podolsky and Sachdev [41] derived a scaling form of the scalar susceptibility 𝜒𝜌𝜌 at

the clean superfluid-Mott insulator transition. We generalize this derivation to the Mott glass

case by including quenched (random-mass) disorder and a dynamical exponent 𝑧 different

from unity. We start from a 𝑑-dimensional quantum field theory for an 𝑀-component vector

order parameter 𝜓; it is defined by the action

𝑆 =

∫
𝑑𝑑𝑥𝑑𝜏

[
(𝜕x𝜓)2 + (𝜕𝜏𝜓)2 + (𝑟 + 𝛿𝑟 (x))𝜓2 + 𝑢𝜓4] . (13)

Here, 𝛿𝑟 (x) represents the quenched random mass disorder and 𝑢 is the standard quartic

coefficient. For 𝑑 = 2 and 𝑀 = 2, the quantum phase transition of this field theory is in the

same universality class as the superfluid-Mott glass transition of the Bose-Hubbard model
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(9). The corresponding free-energy density is given by

𝑓 = − 1
𝛽𝑉

ln 𝑍 = − 1
𝛽𝑉

ln
∫

𝐷 [𝜓]𝑒−𝑆 (14)

where 𝑉 is the system volume and 𝛽 the inverse temperature. We take two derivatives of 𝑓

w.r.t. the distance 𝑟 from criticality yielding

𝜕2 𝑓

𝜕𝑟2 =
1
𝛽𝑉

∫
𝑑𝑑𝑥𝑑𝜏

∫
𝑑𝑑𝑥′𝑑𝜏′ (15)

×
[
⟨𝜓2(x, 𝜏)𝜓2(x′, 𝜏′)⟩ − ⟨𝜓2(x, 𝜏)⟩⟨𝜓2(x′, 𝜏′)⟩

]
.

This is the q = 0, 𝜔𝑛 = 0 Fourier component of the scalar susceptibility 𝜒𝜌𝜌. (Actually, the

expression yields the correlation function of the square of the order parameter magnitude

rather than the magnitude itself. However, as the magnitude has a nonzero average at

criticality, both these correlation functions have the same scaling behavior.)

The singular part of the free-energy density fulfills the homogeneity relation 𝑓 (𝑟) =

𝑏−(𝑑+𝑧) 𝑓 (𝑟𝑏1/𝜈) where 𝑏 is an arbitrary scale factor. Taking two derivatives w.r.t. 𝑟 gives

the scale dimension of 𝜒𝜌𝜌 as −(𝑑 + 𝑧) + 2/𝜈. This implies the homogeneity relation

𝜒𝜌𝜌 (𝑟, q, 𝜔) = 𝑏−(𝑑+𝑧)+2/𝜈𝜒𝜌𝜌 (𝑟𝑏1/𝜈, q𝑏, 𝜔𝑏𝑧) . (16)

Setting 𝑏 = 𝑟−𝜈 yields the scaling form

𝜒𝜌𝜌 (𝑟, q, 𝜔) = 𝑟 (𝑑+𝑧)𝜈−2𝑌 (q𝑟−𝜈, 𝜔𝑟−𝜈𝑧) (17)

or, equivalently

𝜒𝜌𝜌 (𝑟, q, 𝜔) = 𝜔[(𝑑+𝑧)𝜈−2]/(𝜈𝑧)𝑋 (q𝑟−𝜈, 𝜔𝑟−𝜈𝑧) (18)

as given in Eq. (4) of the main text. Setting 𝑧 = 1 and 𝑑 = 2, we recover the result of

Podolsky and Sachdev for the clean superfluid-Mott insulator transition.
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Figure 7. Scaling plot of the spectral function 𝜒′′𝜌𝜌 (𝑟, q = 0, 𝜔) on the superfluid side of the
quantum phase transition in the undiluted case, 𝑝 = 0. The results are averages over 2,000
samples of size 𝐿 = 𝐿𝜏 = 256. Inset: Energy of the Higgs peak in 𝜒′′𝜌𝜌, i.e., the Higgs mass
𝑚𝐻 vs. distance from criticality 𝑟. The solid line is a fit of the expected power-law behavior
𝑚𝐻 ∼ |𝑟 |𝜈𝑧 using the exponent values 𝜈𝑧 = 0.671 of the 3d XY universality class [42].

As an illustration, Figure 7 presents a scaling plot of our Monte Carlo data for the

spectral function 𝜒′′𝜌𝜌 (𝑟, q = 0, 𝜔) in the undiluted case, 𝑝 = 0. The figure shows that the

low-energy part of 𝜒′′𝜌𝜌 fulfills the scaling form (17) in good approximation. For 𝑟 ≲ 0.02,

the collapse of the Higgs peaks is nearly perfect. For larger 𝑟 , the peak positions continue to

follow the expected power-law behavior (as is also demonstrated in the inset of the figure)

but the peak amplitudes show some deviations. This can be attributed to uncertainties of

the maximum-entropy method, as is discussed in the next section.

It is interesting to analyze the scale dimension of 𝜒𝜌𝜌 or, equivalently, the power

of 𝜔 in front of the scaling function 𝑋 in Eq. (18). In a disordered system, the correlation

length exponent 𝜈 is known to fulfill the inequality 𝑑𝜈 > 2 [35]. The exponent of 𝜔 thus

fulfills the inequality

[(𝑑 + 𝑧)𝜈 − 2]/(𝜈𝑧) > 1 . (19)
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This positive exponent implies that, in the presence of disorder, the amplitude of the singular

part of 𝜒𝜌𝜌 is strongly suppressed to zero as the quantum critical point is approached. Using

the numerical values for 𝑧 and 𝜈 found in Reference [22], the exponent takes the value

[(𝑑 + 𝑧)𝜈 − 2]/(𝜈𝑧) = 1.18 in our problem.

3. MAXIMUM-ENTROPY METHOD

Within the Monte Carlo simulations, we compute the scalar susceptibility in imagi-

nary time. The real-frequency susceptibility is given by the analytic continuation

𝜒𝜌𝜌 (q, 𝜔) = 𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚 → 𝜔 + 𝑖0+) (20)

from imaginary Matsubara frequencies 𝑖𝜔𝑚 to real frequencies𝜔. This amounts to inverting

the relation

𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚) =
1
𝜋

∫ ∞

0
𝑑𝜔𝜒′′𝜌𝜌 (q, 𝜔)

2𝜔
𝜔2
𝑚 + 𝜔2

(21)

between the Matsubara susceptibility and the real-frequency spectral function 𝐴(q, 𝜔) =

𝜒′′𝜌𝜌 (q, 𝜔). Unfortunately, the kernel of this transformation, 𝐾 (𝜔𝑚, 𝜔) = (2/𝜋)𝜔/(𝜔2
𝑚 +

𝜔2), is an ill-conditioned operator. This renders the inversion extremely sensitive to the

unavoidable noise in the numerical data.

To overcome this problem, we employ a version of the maximum-entropy method

[40]. To find the spectral function 𝐴, we minimize (with respect to the spectral function 𝐴

that we wish to determine) the cost function

𝑄 = Δ − 𝛼𝑆 . (22)

The first term in 𝑄, the error sum

Δ = ( 𝜒̃ − 𝐾𝐴)𝑇Σ( 𝜒̃ − 𝐾𝐴) , (23)
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Figure 8. Maximum-entropy method for the Higgs spectral function. (a) Error sum Δ vs.
ln𝛼 for a clean (𝑝 = 0) system with 𝐿 = 𝐿𝜏 = 256 and distance 𝑟 = −0.018 from criticality.
The optimal ln𝛼 = 6.4 is marked by a dashed line. (b) Δ and 𝑑2Δ/𝑑 (ln𝛼)2 vs. ln𝛼 for
dilution 𝑝 = 1/3, 𝐿 = 68, 𝐿𝜏 = 256 at 𝑟 = −0.049. The optimal ln𝛼 = 8.3 is marked by
a dashed line. (c) Spectral density 𝜒′′𝜌𝜌 for 𝑝 = 0 and several values of ln𝛼. (d) Spectral
density 𝜒′′𝜌𝜌 for 𝑝 = 1/3 and several values of ln𝛼.

evaluates how well the spectral function fits the numerical data. Here, 𝜒̃ represents the

numerical data for the Matsubara susceptibility, 𝐾𝐴 is a shorthand for the transformation

(21), and (Σ−1)𝑚𝑛 = ⟨𝜒̃(𝑖𝜔𝑚) 𝜒̃(𝑖𝜔𝑛)⟩ is the covariance matrix in Matsubara space of the

numerical data. The second term in 𝑄 contains the entropy

𝑆 = −
∑︁
𝜔

𝐴(𝜔) ln 𝐴(𝜔) (24)

of the spectral function; it regularizes the inversion. The relative weights of the two terms

in 𝑄 is determined by the parameter 𝛼 which we fix by a version of the L-curve method

[36, 37].
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The details of the maximum-entropy method, as applied to our data, are illustrated

in Figure 8. Panel (a) of the figure shows the error sum Δ as a function of 𝛼 for an

example of a clean system, and panel (b) does the same for a diluted system with 𝑝 = 1/3.

Within the L-curve method, the optimal 𝛼 is determined by the maximum of the curvature

𝑑2Δ/𝑑 (ln𝛼)2 which marks the crossover from fitting the data (at larger 𝛼) to fitting the

Monte Carlo noise (at lower 𝛼). As a consistency check, we verify that the value of Δ at the

optimal 𝛼 approximately equals the number of degrees of freedom, i.e., the number 𝐿𝜏/2

of independent Matsubara frequencies.

Panel (c) of Figure 8 presents the resulting spectral densities for the clean example

for a range of 𝛼 around the optimal value, and panel (d) does the same for the diluted system.

The sharp Higgs peak in the clean spectral density is affected by the value of 𝛼, but only for

sizable deviations of 𝛼 from its optimum value. In these cases the peak amplitude is more

sensitive than the peak frequency which changes by less than 10%. In contrast, the broad

“hump” in the spectral density of the diluted system remains essentially unchanged over a

broad range of 𝛼 values.

We have further tested the robustness of the maximum-entropy method by varying

the ranges of included real and Matsubara frequencies. As long as the included frequencies

cover the main features of the spectral density, this leads to small changes in 𝜒′′𝜌𝜌 of just a

few percent.

We estimate the statistical error of the spectral density 𝜒′′𝜌𝜌 by means of an ensemble

method. We create an ensemble of artificial data sets from the Monte Carlo data for

𝜒𝜌𝜌 (q, 𝑖𝜔𝑚) by adding Gaussian noise to the data points, with the variance of the noise

identical to the statistical uncertainties of the Monte Carlo data. We then determine 𝜒′′𝜌𝜌 for

each of the data sets by a separate maximum-entropy calculation. A statistical analysis of

all these results yields the error bars of 𝜒′′𝜌𝜌. Applying this method to our data, we find that

the statistical errors of 𝜒′′𝜌𝜌 are small, about one symbol size in Figures 8(c) and (d).
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4. INHOMOGENEOUS MEAN-FIELD APPROACH

We start from the square-lattice Bose-Hubbard Hamiltonian (9) with large integer

filling 𝑛̄. We truncate the local Hilbert space at each site 𝑗 to the three basis states |− 𝑗 ⟩,

|0 𝑗 ⟩, and |+ 𝑗 ⟩, corresponding to occupation numbers 𝑛 𝑗 = 𝑛̄ − 1, 𝑛̄, and 𝑛̄ + 1, respectively.

We now perform a basis transformation in each local Hilbert space by introducing

new basis states

|𝜙0 𝑗 ⟩ = cos (𝜃 𝑗/2) |0 𝑗 ⟩ + sin (𝜃 𝑗/2)
(
𝑒𝑖𝜂 𝑗 |+ 𝑗 ⟩ + 𝑒−𝑖𝜂 𝑗 |− 𝑗 ⟩

)
/
√

2 , (25)

|𝜙𝐻 𝑗 ⟩ = sin (𝜃 𝑗/2) |0 𝑗 ⟩ − cos (𝜃 𝑗/2)
(
𝑒𝑖𝜂 𝑗 |+ 𝑗 ⟩ + 𝑒−𝑖𝜂 𝑗 |− 𝑗 ⟩

)
/
√

2 , (26)

|𝜙𝐺 𝑗 ⟩ = 𝑖(𝑒𝑖𝜂 𝑗 |+ 𝑗 ⟩ − 𝑒−𝑖𝜂 𝑗 |− 𝑗 ⟩)/
√

2 . (27)

The inhomogeneous mean-field theory is based on a product ansatz for the ground-state wave

function, |Φ0⟩ =
∏

𝑗 |𝜙0 𝑗 ⟩. It interpolates between the Mott limit (𝜃 𝑗 = 0) and the superfluid

limit (𝜃 𝑗 = 𝜋/2). The local superfluid order parameter reads ⟨𝑎†
𝑗
⟩ ∝ 𝜓 𝑗 = sin 𝜃 𝑗𝑒−𝑖𝜂 𝑗 . The

other two basis states, |𝜙𝐻 𝑗 ⟩ and |𝜙𝐺 𝑗 ⟩, correspond to changes of the order parameter

amplitude and the order parameter phase, respectively, compared to the local ground state

|𝜙0 𝑗 ⟩. The local variational parameters, i.e., the mixing angles 𝜃 𝑗 and the phases 𝜂 𝑗 are

obtained by minimizing the ground state energy

𝐸0 = ⟨Φ0 |𝐻 |Φ0⟩ (28)

=
1
2

∑︁
𝑗

𝑈 𝑗 sin2 𝜃 𝑗

2
−

∑︁
⟨𝑖 𝑗⟩

𝑛̄𝐽𝑖 𝑗 sin 𝜃𝑖 sin 𝜃 𝑗 cos(𝜂𝑖 − 𝜂 𝑗 ),

leading to constant phases 𝜂 𝑗 = const (which we set to zero) and mixing angles that fulfill

the coupled mean-field equations

4𝑛̄ cos(𝜃𝑖)
∑︁
𝑗

𝐽𝑖 𝑗 sin(𝜃 𝑗 ) = 𝑈𝑖 sin(𝜃𝑖) . (29)
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To describe excitations on top of the mean-field solution, we introduce boson oper-

ators 𝑏†0 𝑗 , 𝑏
†
𝐻 𝑗

, and 𝑏†
𝐺 𝑗

that create the local basis states |𝜙𝐻 𝑗 ⟩, |𝜙𝐻 𝑗 ⟩ and |𝜙𝐺 𝑗 ⟩ out of the

fictitious vacuum state. They fulfill the local constraint 𝑏†0 𝑗𝑏0 𝑗 + 𝑏†𝐻 𝑗𝑏𝐻 𝑗 + 𝑏
†
𝐺 𝑗
𝑏𝐺 𝑗 = 1. We

now rewrite the Bose-Hubbard Hamiltonian in terms of the 𝑏 bosons and use the constraint

to eliminate 𝑏0 𝑗 . To quadratic order in 𝑏, the excitation modes decouple and the Hamiltonian

becomes the sum of a Higgs Hamiltonian and a Goldstone Hamiltonian, 𝐻 = 𝐸0+𝐻𝐻 +𝐻𝐺 ,

with

𝐻𝐻 = −
∑︁
⟨𝑖 𝑗⟩

𝑛̄𝐽𝑖 𝑗 cos 𝜃𝑖 cos 𝜃 𝑗 (𝑏†𝐻𝑖 + 𝑏𝐻𝑖) (𝑏
†
𝐻 𝑗

+ 𝑏𝐻 𝑗 ) +
∑︁
𝑖

𝜛𝐻,𝑖𝑏
†
𝐻 𝑗
𝑏𝐻 𝑗 , (30)

𝐻𝐺 = −
∑︁
⟨𝑖 𝑗⟩

𝑛̄𝐽𝑖 𝑗 cos (𝜃𝑖/2) cos (𝜃 𝑗/2) (𝑏†
𝐺𝑖

+ 𝑏𝐺𝑖) (𝑏†𝐺 𝑗 + 𝑏𝐺 𝑗 ) +
∑︁
𝑖

𝜛𝐺,𝑖𝑏
†
𝐺 𝑗
𝑏𝐺 𝑗 .(31)

Each Hamiltonian describes a set of coupled harmonic oscillators with local frequencies

𝜛𝐻𝑖 = 𝑈𝑖 cos(𝜃𝑖)/2+2𝜁𝑖 and𝜛𝐺𝑖 = 𝑈𝑖 cos2(𝜃𝑖/2)/2+ 𝜁𝑖 where 𝜁𝑖 = sin(𝜃𝑖)
∑
𝑗 𝑛̄𝐽𝑖 𝑗 sin(𝜃 𝑗 ).

The Hamiltonians 𝐻𝐻 and 𝐻𝐺 can each be diagonalized by Bogoliubov transforma-

tions (𝛼 = 𝐺, 𝐻)

𝑏𝛼 𝑗 =
∑︁
𝑘

(𝑢𝛼 𝑗 𝑘𝑑𝛼𝑘 + 𝑣∗𝛼 𝑗 𝑘𝑑
†
𝛼𝑘
) (32)

where the 𝑑 bosons correspond to the collective mode eigenstates of our disordered system.

The transformation coefficients 𝑢 and 𝑣 turn out to be real, they are given by

𝑢𝛼 𝑗 𝑘 =
1
2
V𝛼 𝑗 𝑘

(√︃
𝜛𝛼 𝑗/𝜈𝛼𝑘 +

√︃
𝜈𝛼𝑘/𝜛𝛼 𝑗

)
, (33)

𝑣𝛼 𝑗 𝑘 =
1
2
V𝛼 𝑗 𝑘

(√︃
𝜛𝛼 𝑗/𝜈𝛼𝑘 −

√︃
𝜈𝛼𝑘/𝜛𝛼 𝑗

)
. (34)
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The matrix V𝛼 𝑗 𝑘 contains the eigenvectors (as columns) of the collective-mode eigenvalue

problem

∑︁
𝑗

𝑋𝛼𝑖 𝑗V𝛼 𝑗 𝑘 = 𝜈
2
𝛼𝑘V𝛼𝑖𝑘 (35)

where 𝜈𝛼𝑘 are the nonnegative excitation eigenfrequencies (energies). The coupling matrix

𝑋 reads

𝑋𝐺𝑖 𝑗 = 𝜛2
𝐺𝑖𝛿𝑖 𝑗 − 2 cos (𝜃𝑖/2) cos (𝜃 𝑗/2)𝑛̄𝐽𝑖 𝑗

√
𝜛𝐺𝑖𝜛𝐺 𝑗

𝑋𝐻𝑖 𝑗 = 𝜛2
𝐻𝑖𝛿𝑖 𝑗 − 2 cos 𝜃𝑖 cos 𝜃 𝑗 𝑛̄𝐽𝑖 𝑗

√
𝜛𝐻𝑖𝜛𝐻 𝑗 (36)

for the Goldstone and Higgs mode, respectively.

In terms of the 𝑑 bosons, 𝐻𝐻 and 𝐻𝐺 are diagonal,

𝐻𝐻 =
∑︁
𝑖

𝜈𝐻𝑖𝑑
†
𝐻𝑖
𝑑𝐻𝑖 , 𝐻𝐺 =

∑︁
𝑖

𝜈𝐺𝑖𝑑
†
𝐺𝑖
𝑑𝐺𝑖 (37)

Using this mean-field approach, we analyze systems with site dilutions 𝑝 = 0, 1/8, 1/5,

and 1/3. We consider square lattices with up to 2562 sites as well as quasi-onedimensional

strips of up to 128 × 106 sites.

5. LOCALIZATION PROPERTIES OF THE HIGGS AND GOLDSTONE
EXCITATIONS

To study the localization properties of the Bogoliubov states, we analyze both the

participation number 𝑃 and the effective fractal dimension 𝜏2 of the eigenstates. The inverse

participation number 𝑃−1 of state number 𝑘 is given by [47]

𝑃−1(𝑘) =
∑︁
𝑗

( |𝑢𝛼 𝑗 𝑘 |2 − |𝑣𝛼 𝑗 𝑘 |2)2 =
∑︁
𝑗

|V𝛼 𝑗 𝑘 |4 . (38)
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To define the fractal dimension, we divide the system into boxes of linear size 𝑙. We define

a measure

𝜇𝑏 =
∑︁
𝑗∈𝑏

( |𝑢𝛼 𝑗 𝑘 |2 − |𝑣𝛼 𝑗 𝑘 |2) =
∑︁
𝑗∈𝑏

|V𝛼 𝑗 𝑘 |2 (39)

characterizing the probability of state 𝑘 in box 𝑏 as well as its second moment

𝑃−1
𝑙 (𝑘) =

∑︁
𝑏

𝜇2
𝑏 . (40)

Note that we recover the participation number for box size 𝑙 = 1, i.e., 𝑃(𝑘) = 𝑃1(𝑘). The

corresponding fractal dimension reads

𝜏2(𝑘) = ln 𝑃𝑙 (𝑘)/ln(𝐿/𝑙) . (41)

The asymptotic value of 𝜏2 is obtained in the limit 𝐿/𝑙 → ∞.

Figure 9 illustrates the energy dependence of the effective dimension 𝜏2 for Higgs

and Goldstone excitations for dilution 𝑝 = 1/3 at 𝑈/(𝑛̄𝐽) = 12, slightly on the superfluid

side of the transition. For the Higgs mode, 𝜏2 decreases with system size 𝐿 for all energies

indicating that the entire band is localized. The same holds for the Goldstone mode at

any nonzero excitation energy. In contrast, the lowest energy Goldstone mode (𝜈𝐺 = 0)

shows the opposite scaling behavior. 𝜏2 increases towards 2 with increasing 𝐿, indicating an

extended state. Note that the Higgs and Goldstone modes show almost identical behavior

for larger excitation energies, 𝜈 ≳ 3, reflecting that they are still almost degenerate close to

the quantum phase transition. The sharp features at energies around 𝜈 = 6 are the result of

the discrete character of the site dilution used to implement the disorder.

In addition to the multifractal analysis of the eigenstates, we also apply the iterative

Green’s function method [38, 39] to quasi-onedimensional strips. Within this methods, the

localization length 𝜆 is calculated from the decay of the Green’s function between the two

ends of the strip. Normalizing 𝜆 by the strip width 𝐿 yields a dimensionless quantity suitable
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Figure 9. Generalized fractal dimension 𝜏2 of Goldstone (a) and Higgs (b) excitations
vs. excitation energy 𝜈 for 𝑈/(𝑛̄𝐽) = 12, dilution 𝑝 = 1/3 and several system sizes 𝐿 with
𝐿/𝑙 = 8. The solid lines represent averages of 𝜏2 over small energy windows (width 0.1) and
100 to 400 disorder configurations, depending on 𝐿. The values of 𝜏2 of the lowest-energy
excitation (averaged over all disorder configurations) are shown as open symbols.

for finite-size scaling. Figure 10 presents the energy dependence of the Goldstone mode

localization length for systems slightly in the superfluid phase for dilutions 𝑝 = 1/3 and 1/8.

Specifically, it shows the scaled inverse localization length 𝐿/𝜆 as function of the excitation

energy 𝜈𝐺 and several strip widths 𝐿. The data for both weak and strong dilution display

the same qualitative behavior. At all nonzero energies, 𝐿/𝜆 increases with increasing strip

width indicating that the Goldstone mode is localized. However, 𝐿/𝜆 decreases rapidly

as the energy 𝜈𝐺 approaches zero, and for 𝜈𝐺 = 0 the inverse localization length vanishes

for all strip width. These results confirm the findings of the multifractal analysis of the

eigenstates above.
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Figure 10. Scaled inverse localization length 𝐿/𝜆 of the Goldstone excitations vs. excitation
energy 𝜈𝐺 , calculated using the iterative Green’s function method on strips of 𝐿 × 106

sites (the data are averages over 12 strips). For dilution 𝑝 = 1/3 the data are taken at
𝑈/(𝑛̄𝐽) = 12), for dilution 𝑝 = 1/8 the data are for𝑈/(𝑛̄𝐽) = 14.

6. ANALYTIC EXPRESSION FOR THE LOWEST GOLDSTONE EXCITATION

According to Goldstone’s theorem, the lowest eigenstate of the Goldstone Hamil-

tonian 𝐻𝐺 must have zero energy, 𝜈𝐺0 = 0, in the superfluid phase because the superfluid

ground state spontaneously breaks the 𝑈 (1) order-parameter symmetry. For this state, the

corresponding eigenvalue problem

∑︁
𝑗

𝑋𝐺𝑖 𝑗V𝐺 𝑗0 = 𝜈2
𝐺0V𝐺𝑖0 = 0 (42)

simplifies to a system of linear equations. A non-trivial solution of this system is given by

V𝐺 𝑗0 = 𝛶
sin(𝜃 𝑗/2)
√
𝜛𝐺 𝑗

(43)
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as can be easily checked by inserting it back into the system (42). Here,𝛶 is a normalization

constant. Thus, the lowest Goldstone eigenstate depends on the order parameter sin(𝜃 𝑗 )

and local interactions (via 𝜛𝐺 𝑗 ) only.

The denominator in (43) is bounded from both below and above. Specifically, in

our site-diluted system, 𝜛𝐺 𝑗 ≥ 𝑈/4 and 𝜛𝐺 𝑗 ≤ 𝑈/2 + 4𝑛̄𝐽. Consequently, the localization

character of V𝐺 𝑗0 agrees with that of the order parameter.

Let us now assume the the system features a nonzero macroscopic order parameter𝜓,

i.e., an average order parameter that is nonzero in the thermodynamic limit). This implies

either a more-or-less homogeneous superfluid or at lest a nonzero density of superfluid

puddles. According to Eq. (43), this means that the wave function of the lowest Goldstone

excitation is nonzero on a finite fraction of the sites, i.e., it is extended.

In the Mott phase, where sin(𝜃 𝑗 ) vanishes on all sites, the state (43) is not nor-

malizable, indicating the absence of a zero-energy mode. It is also interesting to note that

sin(𝜃 𝑗 ) = 0 in the Mott phase implies that the disorder in the coupling matrix 𝑋𝐺𝑖 𝑗 is

produced by 𝑈𝑖 and 𝐽𝑖 𝑗 only. The disorder is thus uncorrelated in space guaranteeing that

all states are localized in two dimensions.
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J. J. Ruiz-Lorenzo. Critical exponents of the three-dimensional diluted ising model.
Phys. Rev. B, 58:2740–2747, Aug 1998. doi: 10.1103/PhysRevB.58.2740.



116

[34] Qiong Zhu, Xin Wan, Rajesh Narayanan, José A. Hoyos, and Thomas Vojta. Emerging
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ABSTRACT

The amplitude (Higgs) mode near the two-dimensional superfluid-Mott glass quan-

tum phase transition is studied. We map the Bose-Hubbard Hamiltonian of disordered

interacting bosons onto an equivalent classical XY model in (2+1) dimensions and compute

the scalar susceptibility of the order parameter amplitude via Monte Carlo simulation. Ana-

lytic continuation of the scalar susceptibilities from imaginary to real frequency to obtain the

spectral densities is performed by a modified maximum entropy technique. Our results show

that the introduction of disorder into the system leads to unconventional dynamical behavior

of the Higgs mode that violates naive scaling, despite the underlying thermodynamics of the

transition being of conventional power-law type. The computed spectral densities exhibit a

broad, non-critical response for all energies, and a momentum-independent dispersion for

long-wavelengths, indicating strong evidence for the localization of the Higgs mode for all

dilutions.

1. INTRODUCTION

Zero-temperature phase transitions between quantum ground states of interacting

many-body systems have become a central focus of modern condensed matter physics. The

interest in these quantum phase transitions (QPTs) is justified by the rich physics that they

exhibit, from unconventional thermodynamics and transport properties, to novel phases

of matter. [1, 2, 3, 4] The effects of the inevitable disorder in condensed matter systems
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(impurities, defects, etc.) on these QPTs have also been intensely studied in the past two

decades. Disorder leads to additional interesting physics, including infinite-randomness

critical points [5], Griffiths singularities[6, 7, 8], and smeared phase transitions[9, 10] (for

reviews see e.g. References [11, 12, 13]).

While much is understood about the thermodynamics of disordered QPTs, much

less is known about the properties and dynamics of excitations near these critical points. Of

particular interest are collective excitations in systems with spontaneously broken continous

symmetry. A fundamental consequence of the breaking of the continuous symmetry of an

𝑁-component order parameter is the emergence of two distinct types of collective modes;

the (𝑁 − 1) massless Goldstone modes – fluctuations of the order parameter phase – and a

massive amplitude (Higgs) mode – fluctuations of the order parameter amplitude.[14, 15]

Prominent examples of condensed matter systems that exhibit this continuous symmetry

breaking include Heisenberg and XY spin systems, superfluids, superconductors, and optical

lattice bosons. Higgs excitations have also been observed experimentally in a number of

these systems including: the superconductor NbSe2 [16], the antiferromagnetic TiCuCl3

[17], and some incommensurate charge density wave compounds [18, 19].

In Lorentz-invariant systems without disorder the Higgs mode is a sharp excitation

in the ordered (broken symmetry) phase sufficiently close to the QPT, with a peak in the

spectral density centered at the Higgs energy 𝜔𝐻 . This energy softens as the critical

point is approached. At zero wave vector, it obeys a power-law relationship controlled by

the correlation length critical exponent 𝜔𝐻 ∼ |𝑟 |𝜈, where 𝑟 is the reduced distance from

criticality. Higgs excitations in these clean systems have been widely studied.[20, 21] While

the existence of a sharp Higgs peak in two-dimensions was initially in doubt, it was later

proven by both analytic and numerical techniques. However, the fate of Higgs modes in the

presence of disorder is much less understood.
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Figure 1. Phase diagram of the classical (2+1)-dimensional XY model (3) determined
from Monte Carlo simulation.[22] The emergence of the Mott glass phase is seen for
arbitrarily small dilutions. Large dots mark the numerically calculated transitions, lines
are spline fits that only serve as a visual guide. Here, we consider the Higgs mode for
𝑝 = 1/8, 1/5, 2/7, 1/3 across these numerically determined generic transition points.

In this article we therefore consider the effects of disorder on the Higgs mode

excitation near the prototypical superfluid-Mott glass transition of disordered bosons. We

model this transition using a particle-hole symmetric diluted quantum rotor model. This

model is mapped onto an equivalent (2+1) dimensional classical XY model, which is then

simulated via large-scale Monte Carlo methods. The imaginary (Matsubara) frequency

scalar susceptibility of the order parameter is calculated. The associated spectral densities

are found via analytic continuation of the Matsubara frequency data to the real-frequency

axis via maximum entropy methods.

Our results show that despite the critical behavior of the superfluid-Mott glass

transition being of conventional power-law type, the Higgs mode shows unconventional

dynamics that violates naive scaling. Specifically, the Higgs mode becomes strongly
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Table 1. Critical exponents for the (2+1)d XY model. Clean exponents are from Reference
[24]. Disordered exponents are from Reference [22].

𝑧 𝛽/𝜈 𝛾/𝜈 𝜈 𝜂

Clean 1 0.5189(2) 1.961(4) 0.6717(1) 0.0381(2)
Diluted 1.52(3) 0.48(2) 2.52(4) 1.16(5) −0.52(4)

localized below the critical point for all dilutions, resulting in a broad non-critical response

in the spectral densities arbitrarily close to the critical point. A short account of part of this

work has already been published in Reference [23].

The remainder of the article is organized as follows. In Section 2 we introduce the

model Hamiltonian, the mapping to an equivalent classical model, and briefly discuss the

thermodynamics of the corresponding superfluid-Mott glass transition. Section 3 discusses

the Monte Carlo simulations. Analytic continuation of the Matsubara frequency Monte

Carlo data is detailed in Section 5 and the results discussed in Section 6. We conclude and

discuss experimental ramifications in Section 7.

2. SUPERFLUID-MOTT GLASS TRANSITION

We start from the Bose-Hubbard Hamiltonian describing bosons hopping between

nearest-neighbor sites of a two-dimensional (𝑑 = 2) square-lattice of linear size 𝐿

𝐻BH =
1
2

∑︁
𝑖

𝑈𝑖 (𝑛̂𝑖 − 𝑛̄𝑖)2 −
∑︁
⟨𝑖 𝑗⟩

𝐽𝑖 𝑗 (𝑎†𝑖 𝑎 𝑗 + ℎ.𝑐.) (1)

where 𝑎†
𝑖

and 𝑎𝑖 are bosonic creation and annihilation operators at a lattice site 𝑖 with

[𝑎𝑖, 𝑎†𝑗 ] = 𝛿𝑖 𝑗 and 𝑛̂𝑖 = 𝑎†𝑖 𝑎𝑖 as the number operator. Site-dependent interaction energy 𝑈𝑖,

hopping amplitudes 𝐽𝑖 𝑗 , and average filling 𝑛̄𝑖 allow for a rich phase diagram. The phases

and phase boundaries of this model have been well established via analytic methods.[25]

In the clean case of spatially uniform on-site interactions 𝑈𝑖 = 𝑈, hopping amplitude

𝐽𝑖 𝑗 = 𝐽, and average filling 𝑛̄𝑖 = 𝑛̄ (excepting half-integer 𝑛̄), the system exhibits a direct
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quantum phase transition between a superfluid (𝐽 ≫ 𝑈) and a Mott insulating (𝑈 ≫ 𝐽)

ground state. Allowing spatially varied distributions (disorder) of𝑈𝑖, 𝐽𝑖 𝑗 and 𝑛̄𝑖 introduces a

third, intermediate phase that separates the bulk superfluid and Mott insulating phases. The

character of this intermediate phase is dependent on the qualitative nature of the distributions

of 𝑈𝑖, 𝐽𝑖 𝑗 , and 𝑛̄𝑖. For generic disorder (realized, e.g., by random on-site potentials 𝑛̄𝑖) the

intermediate phase is the Bose glass, a compressible gapless insulator. If the disorder is

such that the system is particle-hole symmetric (uniform integer 𝑛̄𝑖 = 𝑛̄ and random𝑈𝑖, 𝐽𝑖 𝑗 ),

this intermediate phase instead becomes the incompressible gapless Mott glass.

We introduce disorder into the system with site-dilution by considering 𝑈𝑖 = 𝑈𝜖𝑖

and 𝐽𝑖 𝑗 = 𝐽𝜖𝑖𝜖 𝑗 where 𝑈 and 𝐽 are constants. The site-dilution is controlled then by the

quenched random variables 𝜖𝑖 that take on the values 0 (creates a vacancy) with probability

𝑝 and 1 (creates an occupied lattice site) with probability 1 − 𝑝. If we consider the limit

of large integer filling 𝑛̄𝑖 = 𝑛̄, the Hamiltonian (1) becomes equivalent to the Josephson

junction (or quantum rotor) Hamiltonian

𝐻JJ =
𝑈

2

∑︁
𝑖

𝜖𝑖𝑛̂
2
𝑖 + 𝐽

∑︁
⟨𝑖 𝑗⟩

𝜖𝑖𝜖 𝑗 cos(𝜙𝑖 − 𝜙 𝑗 ) (2)

where 𝑛̂𝑖 now represents the fluctuations on top of the (uniform) filled background and 𝜙𝑖 is

the phase operator of a boson at site 𝑖. This model exhibits particle-hole symmetry for our

site-dilution disorder and undergoes a QPT between the superfluid and Mott glass phases

at a critical ratio𝑈/𝐽.

To facilitate the study of the dynamics near the QPT via Monte Carlo simulation,

we map the 2D quantum rotor Hamiltonian 𝐻JJ onto an equivalent classical model 𝐻𝐶

that is in the same universality class.[26] This mapping yields a Hamiltonian with total

dimensionality 𝐷 = 𝑑 + 1 = 3,

𝐻𝐶 = −𝐽𝑠
∑︁
⟨𝑖 𝑗⟩,𝜏

𝜖𝑖𝜖 𝑗S𝑖,𝜏 · S 𝑗 ,𝜏 − 𝐽𝜏
∑︁
𝑖,𝜏

𝜖𝑖S𝑖,𝜏 · S𝑖,𝜏+1 (3)
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with S𝑖,𝜏 as an 𝑂 (2) unit vector at space coordinate 𝑖 and imaginary-time coordinate 𝜏.

The coupling constants are defined such that 𝛽𝐶𝐽𝑠 ∼ 1/𝑈 and 𝛽𝐶𝐽𝜏 ∼ 𝐽 where 𝛽𝐶 = 1/𝑇

is the inverse temperature of the classical model. This mapping allows us to interpret the

quantum model in two dimensions as a classical model at the inverse temperature 𝛽𝐶 = 1/𝑇

in three-dimensions. The temperature of the classical model is not the physical temperature

of the quantum system (which is at absolute zero), but represents the ratio of the quantum

coupling constants 𝑈 & 𝐽 of the quantum system. Therefore, we can study the universal

properties of the zero-temperature superfluid-Mott glass transition tuned by the ratio of

couplings𝑈/𝐽, by tuning the classical temperature 𝑇 through the transition in the classical

Hamiltonian 𝐻𝐶 . For the remainder of this article, we will discuss the transition in 𝐻𝐶

in terms of the reduced distance from criticality 𝑟 = (𝑇 − 𝑇𝑐)/𝑇𝑐, for which the transition

corresponds to 𝑟 → 0.

The thermodynamic critical behavior of 𝐻𝐶 falls into the 3D XY universality class

for the undiluted case (𝑝 = 0). The critical behavior in the presence of disorder was

studied in Reference [22]. It is of conventional finite-disorder type with a dynamical

scaling characterized by a power law relation 𝜉𝜏 ∼ 𝜉𝑧𝑠 between the correlation lengths in

space and imaginary-time. This is in contrast to many other disordered quantum phase

transitions that feature “infinite-randomness” critical points featuring activated dynamical

scaling characterized by an exponentially growing relationship between the space and

imaginary-time correlation lengths.

The phase diagram of 𝐻𝐶 resulting from the simulations in Reference [22] is pre-

sented in Figure 1. The critical exponents for both the clean and diluted case can be found

in Table 1. The numerically calculated critical exponents are used as inputs throughout the

remainder of the article and careful consideration of their calculation, as well as the details

of the phase diagram calculations can be found in our previous work.[22]
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Figure 2. Comparison of ‘hot’ (randomly aligned spins) and ‘cold’ (aligned spins) start
equilibration times for a.) energy per particle 𝜀 = 𝐸/𝑉 (where𝑉 is the number of spins), and
c.) order parameter 𝑚 for a highly-dilute system (𝑝 = 1/3) at criticality 𝑇 = 𝑇𝑐 = 1.5735.
Calculated from a single disorder realization of size 𝐿 = 100 and 𝐿𝜏 = 452. Fits of the
energy and order parameter data (solid lines) to an exponential form yields equilibration
times 𝜏𝑒𝑞 ∼ 3 − 7. Histograms of the energy per particle and order parameter for 6000
disorder realizations of the same system are shown in b.) and d.), respectively. Each disorder
realization was averaged over 1000 Monte Carlo sweeps to obtain accurate estimates.

3. MONTE CARLO SIMULATION

We study the Higgs mode by means of Monte Carlo simulation of the classical

XY model Hamiltonian 𝐻𝐶 . We consider a range of dilutions 𝑝 = 0, 1/8, 1/5, 2/7, 1/3

below the lattice percolation threshold 𝑝𝑐 ≈ 0.407253. Dilutions higher than 𝑝𝑐 cause the

lattice to form disconnected clusters and do not allow for any long range order formation.

Both Metropolis[27] single-spin and Wolff[28] cluster algorithms are used throughout the

simulation and one Monte Carlo sweep is defined by a Wolff cluster sweep plus a Metropolis

sweep over the entire lattice. A single Wolff sweep flips a number of clusters such that

the total number of flipped spins is equal to the number of spins in the lattice. While the

Wolff algorithm alone is sufficient in clean systems, highly dilute systems can exhibit small

dangling clusters that the Metropolis algorithm can more effectively bring to equilibrium.
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We estimate equilibration times by directly analyzing the evolution of the energy

per particle 𝐸/𝑉 and order parameter 𝑚 = 1
𝑉

∑
𝑖 S𝑖 as a function of Monte Carlo sweep 𝑛

(where 𝑉 the number of occupied lattice sites). Figures 2a and 2c shows this evolution for

a case where equilibration is expected to take the longest – a large, highly-dilute system

right at criticality. The energy and order parameter reach equilibrium values for both a ‘hot

start’ (all spins randomly oriented) and a ‘cold start’ (all spins aligned) after only 𝑛 ≈ 30

Monte Carlo sweeps. Fitting the energy data to 𝐸𝑛 = 𝐸𝑎𝑣 + 𝑎 exp(−𝑛/𝜏𝑒𝑞) (and analogously

for order parameter) results in equilibration times not exceeding 𝜏𝑒𝑞 = 8. We choose a

number of equilibration sweeps many times larger than any measured equilibration times

𝑁𝑒𝑞 = 100 to ensure measurements are taken on properly equilibrated systems for even the

most extreme disorder realizations.

Distributions of key thermodynamic observables has also been considered to as-

certain the significance of rare events. Histograms of the energy per particle and order

parameter are presented in Figure 2b and 2d. While the distributions are moderately broad,

they feature no long tails. This is in agreement with what is expected for a finite-disorder

fixed point[29, 30], for which the conventional power-law type critical behavior is the

superfluid-Mott glass transition implies.[22]

Due to the large computational effort required to simulate disordered systems, we

carefully consider the balance of measurement steps 𝑁𝑀 and disorder realizations (samples)

𝑁𝑆.[31] The final variance 𝜎2 of a given observable after both the thermodynamic (Monte

Carlo) and disorder averaging can be estimated as

𝜎2 ≈ (𝜎2
𝑆 + 𝜎

2
𝑀/𝑁𝑀)/𝑁𝑆 (4)

where 𝜎2
𝑆

is the disorder-induced variance and 𝜎2
𝑀

is the variance of single measurement for

a given disorder realization. Computational effort is roughly proportional to (𝑁𝑀 +𝑁𝑒𝑞)𝑁𝑆,

thus we can achieve best performance with a reasonably small 𝜎2 by considering a large
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number of disorder realizations with a relatively small number of measurement steps. In our

simulations we choose 𝑁𝑀 = 500 with a number of disorder realizations 𝑁𝑆 = 5000−10000

(dependent on system sizes).

The small number of measurement steps comes at the cost of introducing biases to

traditional estimators of the required correlation functions. Without the need for disorder

averaging the bias decays much faster (∼ 𝑁−1
𝑀

) than the statistical error (∼ 𝑁−1/2
𝑀

) and can be

neglected for long Monte Carlo runs. Averaging short runs over a large number of disorder

realizations suppresses the decay of the statistical error by another factor of 𝑁−1/2
𝑆

, thus

the bias may become commensurate to the statistical error and must be considered. To

eliminate these biases we utilize improved estimators as discussed e.g. in Reference [32].

As the introduction of quenched disorder breaks the isotropy between the space

and imaginary-time dimensions in the Hamiltonian (3), the standard finite-size scaling

techniques to calculate critical exponents breaks down in the disordered case. There are

two characteristic length scales we must consider in the simulations: the spatial correlation

length 𝜉𝑠 and the correlation length in imaginary-time 𝜉𝜏. Correspondingly, the system

sizes in the spatial dimensions 𝐿 and the imaginary-time dimension 𝐿𝜏 are independent

parameters. Anisotropic two-parameter finite-size scaling needs to be used to find the

“optimal” aspect ratios 𝐿𝜏/𝐿𝑧 (equivalently determining the dynamical exponent 𝑧), by

considering system sizes that maximize the Binder cumulant at the quantum critical point

(QCP). We utilize the results for the “optimal shapes” obtained in our previous simulations of

the thermodynamic critical behavior.[22] Further technical details can be found in Reference

[22], as well as other works on the critical behavior of Ising spin glasses. [33]

To suppress any finite-size effects, we consider only the largest system sizes ac-

cessible within our computational limits. We consider spatial sizes up to 𝐿 = 100 and

imaginary-time sizes up to 𝐿𝜏 = 452 for diluted systems. These system sizes exceed the

correlation lengths and times of the excitations we examine. For example, the smallest

Higgs energy calculated for the clean case is 𝜔𝐻 ≈ 0.21 giving a characteristic time of
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2𝜋/𝜔𝐻 ≈ 30, much smaller than any of the imaginary-time system sizes used. Finite-size

effects in the disordered case are of even lesser concern as our results suggest that the Higgs

mode localizes, and the energy of the Higgs spectral peak remains microscopic (see Figure

5).

4. SCALAR SUSCEPTIBILITY AND SPECTRAL DENSITIES

The amplitude mode is a collective excitation of the order parameter magnitude.

The local degrees of freedom of the system defined by (3) are of fixed magnitude |S𝑖,𝜏 | = 1,

so we must define a local order parameter that can fluctuate. We define our order parameter

by considering a course-graining of the local degrees of freedom. This is calculated as the

vector sum of the S𝑖,𝜏 at the site 𝑖 with its nearest (spatial) neighbors.9 It’s magnitude reads

𝜌(x𝑖, 𝜏) =
1
5

����𝜖𝑖S𝑖,𝜏 + 𝑛.𝑛.∑︁
𝑗

𝜖 𝑗S 𝑗 ,𝜏
����. (5)

Information about the Higgs mode is contained in the imaginary-time scalar susceptibility

of the local order parameter magnitude 𝜌(x, 𝜏)

𝜒𝜌𝜌 (x, 𝜏) = ⟨𝜌(x, 𝜏)𝜌(0, 0)⟩ − ⟨𝜌(x, 𝜏)⟩⟨𝜌(0, 0)⟩ (6)

and it’s Fourier transform 𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚) =
∫
𝑑x𝑑𝜏𝑒−𝑖q·x−𝑖𝜔𝑚𝜏𝜒𝜌𝜌 (x, 𝜏) in terms of Matsubara

frequencies 𝜔𝑚 = 2𝜋𝑚/𝛽 and wave vector q. The real-frequency dynamic susceptibility is

obtained via analytic continuation

𝜒𝜌𝜌 (q, 𝜔) = 𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚 → 𝜔 + 𝑖0+). (7)

9We have also considered an alternative definition of the order parameter which includes the next-nearest-
neighbors. Qualitative behavior of the Higgs mode is unaffected in both the clean and disordered systems.



128

The spectral density, which is related to many experimental probes, is then proportional to

the imaginary part of the dynamic susceptibility

𝜒′′𝜌𝜌 (q, 𝜔) = Im 𝜒𝜌𝜌 (q, 𝜔). (8)

A scaling form for the real-frequency susceptibility at the clean superfluid-Mott

insulator transition has been derived by Podolsky and Sachdev.[34] This can be generalized

to include the quenched disorder and an appropriate dynamical exponent for the diluted

transition we are interested in. We start from a 𝑑-dimensional, quantum field theory for an

𝑁-component order parameter 𝜓 defined by the action

𝑆 =

∫
𝑑𝑑𝑥𝑑𝜏[(𝜕x𝜓)2 + (𝜕𝜏𝜓)2 + (𝑟 + 𝛿𝑟 (x))𝜓2 + 𝑢𝜓4] (9)

where 𝑟 is the reduced distance from criticality, 𝛿𝑟 (x) represents a quenched random-mass

disorder and 𝑢 is the quartic interaction strength. For the parameters of our system, 𝑑 = 2 and

𝑁 = 2, the action (9) is a coarse-grained, long-wavelength approximation of the quantum

rotor model (2) and exhibits a QPT in the same universality class.

The free energy is given as

𝑓 = − 1
𝛽𝑉

ln 𝑍 = − 1
𝛽𝑉

ln
∫

𝐷 [𝜓]𝑒−𝑆 . (10)

We then notice that with two derivatives of this free energy with respect to the distance

from criticality, we arrive at the expression

𝑑2 𝑓

𝑑𝑟2 =
1
𝛽𝑉

∫
𝑑𝑑𝑥𝑑𝜏

∫
𝑑𝑑𝑥′𝑑𝜏′

×[⟨𝜓2(x, 𝜏)𝜓2(x′, 𝜏′)⟩ − ⟨𝜓2(x, 𝜏)⟩⟨𝜓2(x′, 𝜏′)⟩]
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which is the exact expression for the q = 0, 𝜔𝑚 = 0 Fourier components of the scalar

susceptibility of the order parameter 𝜒𝜌𝜌. More precisely, this yields the susceptibility of

the square of the order parameter amplitude, however as the order parameter magnitude is

non-zero at criticality, the scaling behavior of both correlation functions is the same. The

singular part of the free energy fulfills the homogeneity relationship

𝑓 (𝑟) = 𝑏−(𝑑+𝑧) 𝑓 (𝑟𝑏1/𝜈) (11)

with 𝑏 as an arbitrary scale factor. From the argument above, taking two derivatives of the

free energy (11) with respect to 𝑟 gives the scaling behavior of the scalar susceptibility, thus

implying the scaling form

𝜒𝜌𝜌 (𝑟, q, 𝜔) = 𝑏−(𝑑+𝑧)+2/𝜈𝜒𝜌𝜌 (𝑟𝑏1/𝜈, q𝑏, 𝜔𝑏𝑧) (12)

from which we identify the scale dimension of 𝜒𝜌𝜌 as −(𝑑 + 𝑧) + 2/𝜈. Setting 𝑏 = 𝑟−𝜈 we

arrive at the scaling form

𝜒𝜌𝜌 (𝑟, q, 𝜔) = 𝑟 (𝑑+𝑧)𝜈−2𝑋 (q𝑟−𝜈, 𝜔𝑟−𝑧𝜈) (13)

or equivalently, with 𝑟 ∼ 𝜔1/𝑧𝜈

𝜒𝜌𝜌 (𝑟, q, 𝜔) = 𝜔[(𝑑+𝑧)𝜈−2]/(𝜈𝑧)𝑌 (q𝑟−𝜈, 𝜔𝑟−𝑧𝜈) (14)

where 𝑋 and 𝑌 are scaling functions, and 𝑧 is the dynamical critical exponent. If we set

the dynamical exponent to the clean value 𝑧 = 1 in two-dimensions 𝑑 = 2 in equation (13),

we arrive at the scaling form derived by Podolsky & Sachdev for the clean superfluid-Mott

insulator transition

𝜒𝜌𝜌 (q, 𝜔) = 𝑟3𝜈−2𝑋 (q𝑟−𝜈, 𝜔𝑟−𝜈). (15)
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Considering the critical exponents calculated for the two-dimensional superfluid-

Mott glass transition, the scaling form (14) makes some interesting predictions about the fate

of the Higgs mode in the diluted case. For our case, using the critical exponents calculated

for the diluted transition, 𝑧 = 1.52 and 𝜈 = 1.16 (see Table 1), we see that we have

[(𝑑 + 𝑧)𝜈 − 2]/(𝜈𝑧) ≈ 1.18 > 0. (16)

This positive scaling dimension suggests that the amplitude of the singular part of the scalar

susceptibility becomes strongly suppressed as the critical point is approached. Thus, the

introduction of disorder may destroy a sharp, well-defined Higgs mode excitation near the

QCP.

This argument can be extended to any quantum system with random mass disorder.

The condition for a strongly suppressed Higgs peak near the QCP [(𝑑 + 𝑧)𝜈 − 2]/(𝜈𝑧) > 1

is equivalent to the condition 𝑑𝜈 > 2. It is well known that general disordered systems must

satisfy the inequality 𝑑𝜈 ≥ 2.[35] Thus it is guaranteed that we have a scaling dimension

[(𝑑 + 𝑧)𝜈 − 2]/(𝜈𝑧) > 1 for the scalar susceptibility, strongly suppressing the singular part

of 𝜒𝜌𝜌 in the excitation spectra as the QCP is approached.

5. MAXIMUM ENTROPY METHODS

The Monte Carlo simulations output the scalar susceptibility 𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚) as a

function of Matsubara frequency 𝜔𝑚 = 2𝜋𝑚/𝛽. The spectral densities 𝜒′′𝜌𝜌 (q, 𝜔) we are

interested in are related to the scalar susceptibilities by the Kramers-Kronig relationship

𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚) =
1
𝜋

∫ ∞

0
𝑑𝜔𝜒′′𝜌𝜌 (q, 𝜔)

2𝜔
𝜔2
𝑚 + 𝜔2

. (17)
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In principle, one could invert this relationship to extract the spectral densities from the

computed scalar susceptibility directly. Unfortunately, this inversion is ill-conditioned and

the inevitable noise of Monte Carlo data only exaggerates the problem (small errors in the

input data can create large features in the spectral density).

To overcome this issue, we use a modified maximum entropy (MaxEnt) method.[36,

37] The method utilizes Bayesian inference to transform the integral inversion problem

(17) into finding the most probable spectral density given the input quantum Monte Carlo

(QMC) data. This reduces the problem to minimizing a cost function

𝑄 = Δ − 𝛼𝑆. (18)

The first term in 𝑄,

Δ = ( 𝜒̃𝜌𝜌 − 𝐾𝜒′′𝜌𝜌)𝑇Σ−1( 𝜒̃𝜌𝜌 − 𝐾𝜒′′𝜌𝜌) (19)

serves as a measure of how well the fitted spectral density 𝜒′′𝜌𝜌 reproduces the input data

𝜒̃𝜌𝜌. Here, 𝐾 is a discretized version of the integration kernel 𝐾 (𝜔, 𝜔𝑚) = 2𝜔/(𝜔2
𝑚 + 𝜔2)

and Σ𝑚𝑛 = ⟨𝜒̃𝜌𝜌 (𝑖𝜔𝑚) 𝜒̃𝜌𝜌 (𝑖𝜔𝑛)⟩ − ⟨𝜒̃𝜌𝜌 (𝑖𝜔𝑚)⟩⟨𝜒̃𝜌𝜌 (𝑖𝜔𝑛)⟩ is the covariance matrix of the

scalar susceptibility data. The second term is an entropy of the spectral density

𝑆 = −
∑︁
𝜔

𝜒′′𝜌𝜌 (𝜔) ln 𝜒′′𝜌𝜌 (𝜔) (20)

that serves to regularize the inversion process, preventing over-fitting of Monte Carlo noise.

This regularization is achieved because large entropy values favor a smooth spectral density,

thus punishing over-fitting of the unphysical noise in the minimization of 𝑄.

This leaves an additional free parameter 𝛼 that controls the relative weight between

the goodness-of-fit term Δ and the entropy term in 𝑄. There are a number of choices in the

literature concerning the determination of the value of 𝛼 for a given fit. In our calculations

we choose the value of 𝛼 by a version of the L-curve method (see Figures 3a-b) which
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maximizes the curvature 𝜅 = 𝑑2Δ/𝑑 (ln𝛼)2.[38, 39] This maximum marks a crossover from

the fitting of information to the fitting of noise. Additional methods of determining the

optimal fit parameter choose 𝛼 such that Δ is roughly equal to the number of independent

Matsubara frequencies 𝜔𝑚 being fit. In our simulations, we use this condition as a check

for the suitability of the optimal alpha found by maximizing the curvature.

5.1. DISCRETE TIME-STEP MODIFICATIONS OF THE MAXENT METHOD

The integral relationship (17) we seek to invert in the maximum entropy method

assumes continuous time or, equivalently, an infinite set of Matsubara frequencies. How-

ever, our quantum Monte Carlo method works in discrete imaginary-time. Some previous

implementations of this method have used spline interpolation of the discrete time Monte

Carlo data to best approximate a continuous input 𝜒̃𝜌𝜌.[38] While this choice allows sim-

ple numerical integration when calculating (19), the interpolation method may introduce

additional uncertainties that are not accounted for. In our calculations we take a different

approach, instead modifying the integral kernel in (17) to account for both the discrete

nature of the data as well as the periodic boundary conditions imposed on the system in the

simulations. [37]

The QMC data from simulation are time discrete with imaginary-time values 𝜏𝑘 =

𝑘Δ𝜏 with 𝑘 ∈ {0, 1, ..., 𝑁 − 1} where 𝑁 = 𝛽/Δ𝜏. For a given general imaginary-time

Green’s function 𝐺 (𝜏𝑘 ) the discrete Fourier transform in terms of Matsubara frequencies

𝜔𝑚 = 2𝜋𝑚/𝛽 = 2𝜋𝑚/Δ𝜏𝑁 is given by

𝐺 (𝑖𝜔𝑚) =
𝑁−1∑︁
𝑘=0

𝑒𝑖2𝜋𝜔𝑚𝜏𝑘𝐺 (𝜏𝑘 )Δ𝜏 = Δ𝜏

𝑁−1∑︁
𝑘=0

𝑒𝑖2𝜋𝑚𝑘/𝑁𝐺 (𝜏𝑘 ) (21)
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The spectral (Lehmann) representation of an arbitrary imaginary-time Green’s function

involving operators 𝐴 and 𝐵 is given by

𝐺 (𝜏𝑘 ) = −⟨𝐴(𝜏𝑘 )𝐵(0)⟩ =
1
𝑍

∑︁
𝑙,𝑚

𝐴𝑙𝑚𝐵𝑚𝑙𝑒
𝜏𝑘 (𝐸𝑙−𝐸𝑚)𝑒−𝛽𝐸𝑙 (22)

where 𝑍 = Tr(𝑒−𝛽𝐻) is the partition function of the system and 𝐸𝑛 the energy of eigenstate

|𝑛⟩. If we insert this into (21), and carry out the sum over 𝑘 , we arrive at

𝐺 (𝑖𝜔𝑚) =
Δ𝜏

𝑍

∑︁
𝑙,𝑚

𝐴𝑙𝑚𝐵𝑚𝑙

[
𝑒−𝛽𝐸𝑙 − 𝑒−𝛽𝐸𝑚

𝑒Δ𝜏(𝑖𝜔𝑚+𝐸𝑙−𝐸𝑚)−1

]
(23)

which allows the identification of the spectral density

𝜒′′𝜌𝜌 (𝜔) =
1
𝑍

∑︁
𝑙,𝑚

𝐴𝑙𝑚𝐵𝑚𝑙 [𝑒−𝛽𝐸𝑙 − 𝑒−𝛽𝐸𝑚]𝛿(𝜔 − 𝐸𝑚 − 𝐸𝑙). (24)

Equation (24) is the same result as one would find in the continuous time case. This justifies

expressing the discrete Matsubara frequency Green’s function in terms of the continuous

time spectral density such that we have

𝐺 (𝑖𝜔𝑚) =
∫ ∞

−∞
𝑑𝜔𝜒′′𝜌𝜌 (𝜔)

Δ𝜏

𝑒Δ𝜏(𝑖𝜔𝑚−𝜔)−1 . (25)

We now take advantage of expected properties of the spectral density 𝜒′′𝜌𝜌 (𝜔). For

bosonic operators we have 𝜒′′𝜌𝜌 (−𝜔) = −𝜒′′𝜌𝜌 (𝜔). This allows us to split the integration for

(25) into

𝐺 (𝑖𝜔𝑚) =
∫ ∞

0
𝑑𝜔𝜒′′𝜌𝜌 (𝜔)

[
Δ𝜏

𝑒Δ𝜏(𝑖𝜔𝑚−𝜔)−1 − Δ𝜏

𝑒Δ𝜏(𝑖𝜔𝑚+𝜔)−1

]
. (26)

which simplifies to the form used in the MaxEnt procedure

𝐺 (𝑖𝜔𝑚) =
∫ ∞

0
𝑑𝜔𝜒′′𝜌𝜌 (𝜔)

[
Δ𝜏 sinh(Δ𝜏𝜔)

cos(Δ𝜏𝜔𝑚) − cosh(Δ𝜏𝜔)

]
(27)
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We can verify that this simplifies to the appropriate continuous time case forΔ𝜏 → 0,

by expanding the trigonometric functions for Δ𝜏 ≪ 0

𝐺 (𝑖𝜔𝑚)
Δ𝜏→0−−−−−→ −

∫ ∞

0
𝑑𝜔𝜒′′𝜌𝜌 (𝜔)

2𝜔
𝜔2
𝑚 + 𝜔2

. (28)

The convergence to the continuous time case also holds along each step of the derivation.

Applying these modifications to (17) one arrives at the relationship that is used in

our MaxEnt procedure

𝜒̃𝜌𝜌 (q, 𝑖𝜔𝑚) =
1
𝜋

∫ ∞

0
𝑑𝜔𝜒′′𝜌𝜌 (q, 𝜔)

Δ𝜏 sinh(Δ𝜏𝜔)
cos(Δ𝜏𝜔𝑚) − cosh(Δ𝜏𝜔) (29)

It is straight forward to confirm that if one takes Δ𝜏 → 0, we arrive back at the continuous

time form (17).

5.2. MAXIMUM ENTROPY ERROR

The maximum entropy technique is notoriously sensitive to both the noise of the

QMC data and the choice of weight parameter 𝛼. To understand the extent to which the

output spectral densities are sensitive to these two sources of error, we have utilized two

methods to make estimates of the total error introduced in this numeric analytic continuation.

First, we utilize an ensemble method to estimate the sensitivity of the method to

the input QMC error bars 𝜎𝑖. In addition to the analytic continuation of the output QMC

data, we generate a set of synthetic data by adding random variables drawn from a Gaussian

distribution with width equal to the error bar 𝜎𝑖 of the calculated data point. A separate

Maxent procedure is performed for each of these synthetic data sets. A statistical error

is then calculated from an ensemble average and variance of the resulting set of spectral

densities. This gives an estimate of the statistical error introduced in the maximum entropy

process from the QMC data. These error bars will be presented in each figure in Section 6,
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Figure 3. Maximum entropy method and it’s sensitivity to variation with respect to the
fit parameter 𝛼. a.) the error sum Δ and it’s curvature 𝑑2Δ/𝑑 (ln𝛼)2 vs. ln𝛼 for a clean
system of size 𝐿 = 𝐿𝜏 = 128 a distance 𝑟 = −0.01 from criticality. Dashed lines represent
our chosen optimal fit parameter ln𝛼 = 6.3, dotted lines represent the range of variation
we consider in error estimations. b.) Similar data for a diluted (𝑝 = 1/3) system of size
𝐿 = 100, 𝐿𝜏 = 452 with analogous parameters. c.) Spectral densities for the clean system
at the values of ln𝛼 indicated in a.). d.) Spectral densities for diluted (𝑝 = 1/3) system for
values of ln𝛼 indicated in b.).

however the magnitude of the error is such that the error bars are smaller than the symbol

sizes. Second, we consider how variation of the weight parameter 𝛼 about the neighborhood

of the optimal value 𝛼∗ affects the resulting spectral density. Taking values ±5% of ln𝛼∗,

we find that the spectral density peak positions are only weakly varied in the frequency axis,

with a variation of only a few percent of their peak energies at 𝛼∗ for small wave vector 𝑞.

For larger 𝑞, the spectral densities become much more broad and have significantly smaller

amplitude. As the peak positions of a broad maximum is less well-defined, this leads to

a larger variation in the apparent peak positions for short wavelengths. This can be seen

as the error bars presented with the dispersion data in Figure 8. The peak amplitudes are
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significantly more sensitive to the exact value of 𝛼∗ in the clean case with variations of the

peak amplitudes ≈ 10% (Figure 3c). In the diluted case the broader peaks and significantly

smaller amplitudes suppress the peak amplitude variations (Figure 3d).

Lastly, we consider the effects introduced by changing the number of fitted Matsubara

frequency data points. This becomes important in the case of large 𝑞, as the peak frequencies

begin to increase and have their features broadened. For small 𝑞, the main features in the

spectral density are at low frequency and, thus only a few percent variation is observed in the

spectral densities when the number of 𝜔𝑚 included is changed, with most of the difference

seen in the tails leaving the peaks relatively unaffected. For large 𝑞, an increasing number

of fitted Matsubara frequencies is required to capture the main features of the broader, high-

frequency features of the spectral densities. We therefore utilize all available Matsubara

frequencies for fitting when considering the dispersion for the full range of 𝑞.

6. RESULTS: HIGGS MODE LOCALIZATION

For the clean (𝑝 = 0) system, the amplitude mode is seen as a well-defined, soft-

gapped excitation with a sharp peak in the spectral density 𝜒′′𝜌𝜌 centered at the Higgs energy

𝜔𝐻 . The calculated zero-wavenumber spectral densities are shown in Figure 4 for a range

of distances from criticality 𝑟 = (𝑇 − 𝑇𝑐)/𝑇𝑐. The expected scaling behavior (15) is seen to

be satisfied by the collapse of the spectral densities with respect to both Higgs energy 𝜔𝐻

and amplitude for 𝑟 ≥ −0.030. The remaining variation between the curves in this 𝑟-range

is within the errors introduced by the maximum entropy method. Beyond 𝑟 < −0.030,

both Higgs energy and amplitudes begin to violate scaling. This can be attributed to being

outside of the critical window where scaling is not expected to be satisfied. These results

are in agreement with previous studies of the clean case Higgs mode.[37]

A much different behavior is seen in the spectral densities as soon as disorder is

introduced to the system. Our calculated zero-wavenumber spectral densities can be seen

in Figure 5. The main panel compares 𝜒′′𝜌𝜌 for several dilutions at a fixed distance from
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Figure 4. Spectral densities in the clean (𝑝 = 0) case for q = 0 at different distances from
criticality 𝑟 < 0. Calculated from a system of size 𝐿 = 𝐿𝜏 = 128 and averaged over 10, 000
samples. Main panel: Spectral densities scaled according to the expected scaling form
(15). The clean spectral densities scale as expected to within the error bars of the maximum
entropy techniques. Inset: Raw data of spectral densities showing the softening of 𝜔𝐻 as
the QCP is approached. Spectral densities outside the scaling window (𝑟 < −0.30) are
indicated by faint/dotted line plots.

criticality 𝑟 = −0.01. A broad, non-critical response in the spectral densities is seen for

all dilutions below the percolation threshold, with no sharp Higgs peak present. Even for

the smallest dilution considered (𝑝 = 1/8), the Higgs peak is strongly suppressed, with the

main contribution to the spectral weight being at high-frequencies. As dilution is increased

the high-frequency contribution quickly dominates the spectral weight as can be seen in

the main panel of Figure 5. For larger dilutions 𝜒′′𝜌𝜌 becomes almost dilution independent.

Even more interesting is the dependence of 𝜒′′𝜌𝜌 on the distance from criticality. In contrast

to the clean case, only weak variation of the spectral weight is observed as distance from

criticality is adjusted for the smallest dilutions. For higher dilutions, this variation within

the critical scaling region is effectively non-existent as can be seen for 𝑝 = 1/3 in the inset
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Figure 5. Main panel: Zero-wavenumber q = 0 spectral densities at a fixed distance from
criticality 𝑟 = −0.01 for each of the dilutions considered. For each dilution we simulate
a system size 𝐿 = 100 (with 𝐿𝜏 = 175, 241, 358, 452 corresponding to each dilutions
“optimal” system size fixed by the dynamical exponent 𝑧) averaged over 10, 000 disorder
samples. The prominent Higgs peak seen in the clean (𝑝 = 0) case is not observed even
in the lowest dilutions considered (𝑝 = 1/8). Inset: Spectral densities of a highly-dilute
system (𝑝 = 1/3) as a function of 𝑟 . Within the scaling region |𝑟 | < 0.03, the spectral
densities show no dependence on distance from criticality.

of Figure 5. This response of the diluted system clearly violates the naive scaling form

(15) further indicating that the spectral densities must be dominated by some non-critical

contribution that does not feature a sharp Higgs peak.

This striking difference between the clean and diluted spectral densities is already

evident in the imaginary-time scalar correlation functions themselves where the potential

instabilities of the MaxEnt procedure are of no concern. Figure 6 shows the correlation

functions 𝜒𝜌𝜌 (𝜏) with respect to imaginary-time for both the clean and highly-dilute case.

In the clean case, the approximately exponential decay of the correlations for large 𝜏 implies

a well-defined, single-frequency peak in the associated spectral densities.10 The softening

of𝜔𝐻 as the critical point is approached is also easily observed, with increasing decay times

10The long-time decay is not purely exponential as the clean spectral density is known to feature a soft gap
at 𝜔 = 0 rather than a hard gap.
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Figure 6. Comparison of scalar correlation functions in imaginary-time for a clean system
(left) and a highly-dilute system (right). Approximately exponential decay of 𝜒𝜌𝜌 (𝜏) for
long times implies a well-defined single frequency peak in the associated spectral density.
Parameters are as in Figure 5.

closer to criticality. In contrast, the diluted case shows a much faster, non-exponential decay

of the correlation function, implying a broad frequency response in the spectral densities.

Additionally, the absence of any dependence on distance from criticality is observed, with

correlation functions within the region |𝑟 | ≤ 0.03 effectively identical within error bars.

These two features of the diluted correlations functions are in agreement with the response

seen in the spectral densities, verifying that the unconventional nature of the Higgs mode

in the diluted system is evident even before the uncertainties of the MaxEnt process.

To further understand the nature of this non-critical response we also study the

dispersion 𝜔𝐻 (q) of the peak positions as a function of the wave vector q. Figure 7 shows

spectral densities for 𝑝 = 0 and 𝑝 = 1/3 at a fixed distance from criticality 𝑟 = −0.01

for several values of the wave number 𝑞. The clean case shows expected behavior for a

𝑧 = 1 quantum critical point. Namely, a quadratic long-wavelength dispersion 𝜔𝐻 (q) =

𝜔𝐻 (0) + 𝑎q2 that crosses over to a linear form 𝜔𝐻 (q) ∼ |q| as the critical point 𝑟 → 0 is
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Figure 7. Spectral densities for several values of the wave number 𝑞 for a.) 𝑝 = 0 and b.)
𝑝 = 1/3 at a fixed distance from criticality 𝑟 = −0.01. Parameters analogous to those in
Figures 4 and 5. A strong 𝑞-dependence can be seen in the clean case, whereas the diluted
case features only weak 𝑞-dependence at the shortest wavelengths. These spectral densities
are used as inputs for calculating the peak position dispersion 𝜔𝐻 (q).

approached. The short-wavelength behavior is much more difficult to discern in our Monte

Carlo data as peaks in the spectral densities have their amplitudes decreased and peaks

broadened. Higgs mode dispersions of the clean system calculated within the critical scaling

region can be seen in Figure 8, with error bars indicating estimated MaxEnt uncertainties.

The diluted case exhibits different dispersion behavior with much weaker q-dependence

for short-wavelengths and showing nearly q-independent behavior for low-energy, long-

wavelength modes as illustrated in Figure 8b for 𝑝 = 1/3. The flattening of the dispersion

below a critical q∗ suggests the existence of a localization length 𝜆 ∼ 1/|q∗ | beyond which

no Higgs excitations can extend. This behavior is contrasted with the clean case in Figure 8.

Within the critical scaling region, the dispersions are essentially independent of 𝑟, further

supporting the non-critical character of the Higgs excitations.
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Figure 8. a.) Clean case (𝑝 = 0) dispersion of the Higgs energy 𝜔𝐻 at various distances
from criticality. Calculated from a system of size 𝐿 = 𝐿𝜏 = 128. b.) Diluted case (𝑝 = 1/3)
dispersion calculated from a system of size 𝐿 = 100, 𝐿𝜏 = 452. c.) Dispersion at a fixed
distance from criticality (𝑟 = −0.01) for each of the dilutions considered. Error bars stem
from variation of the fit parameter 𝛼 as described in Section 5.2. Parameters are as in Figure
5.

This localization behavior also shows dependence on the dilution strength 𝑝. Figure

8c shows dispersion relations for each of the dilutions considered, at a fixed distance from

criticality 𝑟 = −0.01. The effects of dilution are clearly drastic, as even the smallest dilution

causes significant flattening of the dispersions for long wavelengths. The short-wavelength

behavior is also interesting, as some cross-over effects may be significant. For the lowest

dilutions, the flattening of the dispersions is still substantial for all wavelengths, but the

long-wavelength response is still “nearly-quadratic” for 𝑝 = 1/8 with localization lengths

only well-defined for 𝑝 = 1/5 and beyond. As dilution is increased, the localization length

decreases monotonically as the dilution further inhibits long-range correlations.
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7. CONCLUSION

We have conducted a study of the Higgs (amplitude) mode near the superfluid-Mott

glass quantum phase transition in two-dimensions. To this end, we have considered a Bose-

Hubbard model of disordered, interacting bosons in the limit of large integer filling. The

resulting quantum rotor model is then mapped onto an equivalent (2+ 1)-dimensional clas-

sical XY model and simulated via standard Metropolis and Wolff Monte Carlo algorithms.

Scalar correlation functions of the order parameter are calculated as a function of Matsubara

frequency and the associated spectral densities are obtained via maximum entropy methods.

In the clean case (𝑝 = 0), the spectral densities exhibit a sharp Higgs excitation. This

excitation in the clean case satisfies scaling predictions near criticality and exhibits behavior

in agreement with previous studies. Once disorder is introduced to the system, the spectral

densities exhibit a broad, non-critical response that violates naive scaling arguments. This

non-critical response is seen for all dilutions for which long range order is possible (i.e.

below the lattice percolation threshold) and persists arbitrarily close to the critical point

𝑟 → 0, suggesting that the introduction of disorder to the system localizes the Higgs

excitation.

The possibility of disorder-induced localization of the Higgs mode is further sup-

ported by contrasting the dispersion of the maximum of the scalar susceptibility (the Higgs

peak) as a function of wave vector for the clean and diluted cases. Expected behavior is

observed in the clean case, with a quadratic dispersion for long wavelengths crossing over

into a linear dispersion upon approaching the critical point. In contrast, dispersion in the

diluted case shows a much weaker 𝑞-dependence and a nearly 𝑞-independent response for

long wavelengths, implying a localization length below which no eigenmodes can extend.

This localization broadens the spectral densities and prevents a critical response. This

localization length is also observed to decrease monotonically with dilution strength, sug-

gesting the Higgs mode becomes more strongly localized as the site-dilution further inhibits

long-range correlations of the order parameter fluctuations.
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While the Monte Carlo results constitute strong evidence for the localization of

the Higgs mode, further disentanglement of the source of the spectral response has been

performed in a related work.[23, 40] The work consists of the simulation of an inhomoge-

neous mean-field theory of the system (1) that includes Gaussian fluctuations. The resulting

spectral densities are analogous to the Monte Carlo results, showing a broad, non-critical

response in the ordered phase arbitrarily close to the critical point. The mean-field theory

permits the explicit analysis of the excitation eigenmodes which were found to be local-

ized. Given that a mean-field theory has infinitely long-living excitations, this indicates

localization as the source of the spectral density broadening.

The effects of disorder on the Higgs mode has also been studied from a number

of other theoretical and experimental perspectives. Swanson and collaborators[41] have

considered the fate of the Higgs mode across the disorder-induced superconductor-insulator

transition by calculating complex conductivity Re𝜎(𝜔). In the clean case, the Higgs mode

is predicted to give rise to an absorption threshold in the conductivity. This absorption

threshold is not observed in the diluted case. Rather, excess spectral weight is observed for

the sub-gap frequencies. The complex conductivity has also been studied experimentally in

the disordered superconducting thin-films NbN and InO. This paper reports the observation

of a critical Higgs mode after accounting for excess spectral weight in the complex conduc-

tivity arising from the superfluid condensate and quasiparticle dynamics. The experimental

data were approximately reproduced in a Monte Carlo simulation of a Josephson junction

Hamiltonian similar to (2). At first glance, the observation of the critical Higgs mode seems

to contradict our results. However, the apparent observation of this Higgs mode is likely

due to relatively weak disorder, with a maximum bond dilution of 𝑝 ≈ 0.125 considered in

the simulations accompanying the experiment. For weak disorder, the system is expected to

display a slow crossover from the clean to disorder behavior. Further study of this crossover

region would be worthwhile, but requires considerably more computational effort.
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These results have the broader implication that disordered QPTs in general can ex-

hibit unconventional collective excitations even in the case of conventional thermodynamic

critical behavior. This motivates the further study of characteristics of this Higgs mode as

well as the corresponding Goldstone modes. Additionally, it will certainly be interesting to

investigate how spatial dimensionality and symmetries may affect these modes in disordered

systems. Is it possible to classify disordered dynamics in a similar manner as the critical

behavior? [29]
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SECTION

2. CONCLUSIONS

In this dissertation we have investigated the effects of disorder on the critical behavior

and dynamics of the superfluid-Mott insulator quantum phase transition. The critical

exponents that govern the critical behavior of these phase transitions violate the Harris

criterion for stability of a transition against disorder in the system. It follows that new

critical behavior is expected to emerge once disorder is introduced, if a phase transition still

exists at all. Analogously, the dynamical behavior of the collective excitations of the system

is expected to be governed by the critical exponents. Therefore, one may naively expect the

dynamics to evolve in a similar manner to the critical behavior once disorder is introduced.

In our calculations, we find that once disorder is introduced the critical behavior

of the system is indeed changed. We have calculated new, dilution-independent critical

exponents that now describe the transition and place the system in a new universality

class. However, despite the new values of the critical exponents the critical behavior of

the transition still falls into the category of “conventional” power-law critical behavior (as

opposed to more exotic ”infinite-randomness” critical points). We find these results in both

cases of two and three spatial dimensions. These results are in line with a previously derived

classification scheme of disordered quantum phase transitions based on the dimensionality

of rare regions in the system.

Once the critical behavior was calculated, we shifted our focus to that of the dynam-

ical behavior of the collective excitations near the phase boundary. Namely, the Higgs and

Goldstone modes of the superfluid order parameter. Since these dynamics are governed by
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power-law relationships of the critical exponents in the clean case, one may expect that the

energies and dispersion of the collective excitations in the disordered case would reflect the

shift in the critical exponents. However, this is not what is observed in our calculations.

We find that, in two spatial dimensions, the zero-momentum Higgs mode becomes

strongly localized upon the introduction of disorder. The calculated spectral densities show

no significant Higgs resonance, exhibiting only a broad, non-critical response for all en-

ergies and a momentum-independent dispersion for long wavelengths. This implies that

the disorder in the system prevents long-range order parameter correlations from forming,

destroying any long-lived Higgs mode excitation. This is contrary to current scaling argu-

ments that suggest the Higgs mode is merely suppressed in the diluted case, implying that

unconventional dynamical behavior arises upon the introduction of disorder.

In conclusion, this dissertation has studied the effects of disorder on the superfluid-

Mott insulator quantum phase transition. We have calculated the critical behavior of

the system in both two and three spatial dimensions and found that despite the change

of universality class in these systems, they still exhibit conventional power-law critical

behavior. With these results, we resolved a dispute among the literature for the two-

dimensional case and reported the first calculations of the critical behavior in the three-

dimensional case. Interestingly, despite the critical behavior of the diluted systems being

of conventional power-law type, the underlying dynamical behavior of the order parameter

shows unconventional localization behavior in the disordered case. This unconventional

dynamical response defies theoretical expectations and opens the door to many interesting

questions on the nature of the dynamical behavior of systems near a disordered quantum

phase transitions.
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