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A stochastic model for dielectric breakdown in thin capacitors 
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A nontrivial two-dimensional stochastic model for dielectric breakdown within a parallel plate 
capacitor is presented for the first time. The model has been used to determine geometric 
properties of parallel plate discharges. Comparisons are made between these properties and 
known fractal properties of electrostatic discharges within cylindrical geometries. As the 
spacing between the plates of a capacitor increases, the value of the fractal dimension of the 
associated discharge structure increases from the minimum value of unity and approaches the 
limiting value corresponding to the case ofinfinite spacing. For any given spacing, this fractal 
exponent is equal to the exponent of first passage time for the discharge pattern to reach a 
given height. A study of various power law relationships governing the breakdown may 
provide insight into the breakdown mechanism and electrical insulating quality of various 
materials. The model is applicable to the breakdown of thin insulating layers of metal-ox ide
semiconductor devices. 

I. INTRODUCTION 

Dielectric breakdown phenomena occur in a very wide 
range of materials and sizes. Lightning is a large-scale exam
ple of this, while the breakdown ofthe gate oxide of an metal
oxide-semiconductor CMOS) device is a small-scale exam
ple. I

,2 Whenever a high-voltage difference exists across a 
gaseous, liquid, or solid insulator, dielectric breakdown may 
occur. These discharge geometries branch into complicated 
stochastic patterns. 1 This randomness can be seen in light
ning. 

In a large-scale dielectric breakdown, the dimensions of 
the dielectric are much larger than the details of the branches 
of the discharge. Close structural similarity among each of 
the discharge branches can be observed.3.4 Thus, the com
mon feature of these structures is their dilation symmetry. 

If a self-similar structure of the discharge exists, the size 
of the materials must be infinitely large so that the scale of 
discharge structure is infinitely renormalizable. An example 
is the surface discharges or Lichtenberg figures in com
pressed SF 6 gas. J In such a case, the relation between total 
length of all branches inside a circle of radius r and the radius 
r itselfis shown to be a power law with fractal (noninteger) 
exponent D. This concept of fractal dimension D is due to 
Mandelbrot4 and is the controlling quantity to describe the 
discharge phenomena.5 The value of D in large-scale planar 
discharges is shown to be D = 1.751 

However, there are discharge phenomena where one of 
the dimensions is finite. Examples are MOS capacitors, 
where the oxide layers are as thin as 100 A in thickness while 
the width and length are of the order of microns. 6 Because of 
finiteness in one dimension, the boundary will have an effect 
on the dilation symmetry and hence on the fractal exponent 
The dielectric breakdown of such thin gate oxides usually 
starts at a trapped hole at the oxide-semiconductor interface, 
There are two main mechanisms. 7 One is avalanche break
down which is caused by impact ionization. The other is the 

filament-heating transport which induces a destructive 
breakdown. The latter mechanism gives rise to a discharge 
pattern and the subsequent existence of molten materials 
near the breakdown region. Investigation of such electrical 
breakdown of thin oxides is very important, because the re
duction of gate oxide thickness is necessary in order to 
achieve improved MOS device performance for future gen
erations of integrated circuits. It is well known that the 
breakdown of thin gate dielectrics is the major cause of cir
cuit failure, especially for large-scale dynamic random-ac
cess memories.6 In addition, the rupture of the very thin 
tunnel dielectrics in nonvolatile E2PROMs is the principal 
cause of E2PROMs endurance (write/erase cycling) fail
ures.6-9 Thus, a good understanding of the discharge struc
ture is needed. 

There has been very limited theoretical investigation of 
discharge structures. Niemeyer et al. 1 studied radial dis
charges within cylindrical capacitors. Because of the cylin
drical symmetry and the very large spacing between the two 
cylinders, the discharge structure possesses dilation symme
try. Wiesmann and ZellerlO generalized the above model to 
include local dielectric breakdown effects. Turkevich and 
Scher I 1.12 established the equivalence of the electrostatic 
problem associated with the above model to continuous
time random-walk theory of diffusion-limited aggregation. 
The relation between fractal dimension D and cluster-tip oc
cupancy probabilities has been derived analytically. In this 
work, a study of thin parallel plate capacitors is made to 
model dielectric breakdown of thin oxides in MOS devices. 
Because of the very small spacing between the two parallel 
plates, it is expected that the discharges will possess different 
properties than in the large-scale case. Therefore, the dis
charge structures, the value of fractal dimension D, and 
hence the possession of dilation symmetry for the case of 
infinite spacing cannot be used to describe the dielectric 
breakdown of thin capacitors. Instead, the discharge struc
tures will show transitional behavior when spacing of the 
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capacitor starts to increase, This is discussed in Sec. III, In 
Sec. II, we describe the dielectric breakdown model. The 
effect due to the change of prescribed probability function 
for discharge between two neighboring lattice sites is also 
discussed. 

II. THE DIELECTRIC BREAKDOWN MODEL 

In order to obtain insight into the electrostatic discharge 
process, a computer program has been developed which imi
tates the phenomenon. 13,14 These discharges begin near one 
of the plates and continue toward the other plate, in a jagged 
pattern. The program attempts to produce structures which 
mimic these patterns so that their properties may be ana
lyzed. 

As the spark grows from one of the plates, the path that 
it foHows depends upon the local electric field which sur
rounds it. The discharge is more likely to traverse those re
gions where the electric field is higher, since these regions are 
more likely to fail under the stress. This assumption governs 
how the program generates the discharge patterns. 

The actual path which the algorithm chooses is a sto
chastic determination, based upon the electric field which 
exists in the region surrounding the discharge. 

The program models a parallel plate capacitor in the 
two-dimensional case only. The horizontal dimension is tak
en to be much larger than the vertical dimension. This allows 
the model to approximate an infinite plate capacitor and, 
therefore, edge effects are neglected. The numerical accura
cy of this calculation is discussed in a later section. 

Each point in the capacitor array has associated with it a 
voltage potential. The poten tial along each of the edges of the 
array (the boundaries) is set to a specific value. The top and 
bottom rows of points represent the two plates of the capaci
tor. The upper plate is assigned a potential of 1 V. The actual 
gate voltage for thin oxide breakdown is about 20 V. 6 The 
lower plate is set at 0 V. The remaining two edges (the two 
end columns) are assigned a potential configuration which 
corresponds to the potential within a capacitor of infinite 
extent. That is, the potential along each end column in
creases linearly with distance from the bottom to the top. 

For the algorithm to determine the path taken by the 
discharge, it must find the potential at all points in the interi
or of the capacitor. Thus the potential ¢; satisfies 

¢;(i,j) = H¢(i + I,j) + ¢(i - 1,j) 

+ ¢(i,j + 1) + ¢(i,j - 1)], (1) 

where (ij) indicates the coordinate of the point in the rec
tangular matrix and the computer algorithm which solves 
Laplace's equation [Eq. (1) J follows the simple relaxation 
method. 13 

The discharge pattern will expand from the ¢ = 0 struc
ture. Initially, this includes only the lower capacitor plate, 
but as new points are added to the discharge, they become a 
part of the tf> = 0 structure and are assigned a potential of 0 
V. Potential differences which may exist along the discharge 
are ignored, and the entire discharge pattern is assumed to 
have the same potential of 0 V. 

For each of the possible directions in which the dis
charge structure may extend. a probability is assigned. This 
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probability is proportional to the electric field raised to some 
arbitrary power ". It wiH be of interest to study the effects 
this exponent has upon the geometry. 

Recognizing that the potential of points (k,l) on the 
discharge is zero, the probability of branching from a point 
(k,l) on the discharge pattern to an adjacent point (i,}) is 

p(k,l-.i,j) -¢(i,j)"Yf. (2) 

Since the probabilities of an possible branch choices 
must add up to one, a final probability expression can be 
obtained: 

¢(i,j)'7 
P(k,l-+i,j) = --'---=--

J:.¢ (i' ,j' ) Yf 
(3) 

The denominator su.m is taken over all candidate 
branches. Our computer program uses this expression to de
termine a probability of branching for allowed growth direc
tions from aU points on the geometry. A branch is then ran
domly chosen according to the probability function given in 
Eq. (3). The new point is then added to the discharge geom
etry and is assigned a potential of 0 V. This change in the 
structure redefines the boundary conditions, which requires 
a new solution for the potential field. 

This process of solving Laplace's equation [Eq. (1)] 
and randomly selecting new points to add to the growing 
discharge pattern is repeated until the discharge reaches the 
upper plate. 

III, DISCUSSION 

The size of the array is chosen to best approximate an 
infinite plate capacitor. The discharge geometry begins from 
the center of the plate and remains near the centra! region of 
the dielectric. Consequently, far away from the discharge 
geometry, the potential field is essentially unaffected by the 
discharge structure. By choosing a length dimension which 
is one order of magnitude greater than the spacing of the two 
paranel plates, it is insured that the infinite plate approxima
tion can be achieved. 

The results summarized here are based upon array sizes 
of 10 X 100, 20 X 200, 50 X 500, and 70 X 700. This choice 
meets the infinite plate approximation stated above, yet al
lows reasonable run times for the simulation. A discharge 
pattern of 70 X 700 lattice points is shown in Fig. 1. 

The capacitor model has provided an insight into how 
the discharge expands through the region between the 
plates. Figure 2 shows the progress of a typical discharge of 
50 X 500 lattice points with the branching probability linear
ly related to the electric field (77 = 1), when 50, 100, 250, 
and 519 (final) steps have been included in the pattern. It is 
important to note how the geometry grows. Its path is not 
direct and the structure contains several offshoots from the 
main branch but it cannot be infinitely renormalized in scale. 

Figure 3 shows the undirected case (71 = 0) and the 
highly directed case (TJ = 2). Note that for the undirected 
case, the discharge pattern growth is independent of the elec
tric field (hence no Laplace solution is required) and that it 
spreads out very much with no tendency for moving toward 
the other plate. For this reason, Fig, 3(a) is deliberately 
shown at some intermediate stage. The highly directed case, 
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FIG. L A discharge pattern of 70 X 700 lattice points with branching prob
ability linearly related to electric field ['Tj = 1 in Eq. (3)]. The discharge 
begins at the bottom plate and extends toward the top plate. 

on the other hand, is very narrow and the discharge pattern 
shoots rather quickly from one plate to the other [Fig. 
3 (b)]. 

One measurement which can be used to compare the 
discharges among each other is by counting the number of 
points within a distance r from the starting point of the ge-

(bj 

FIG. 2. A typical discharge sequence of SO X 500 lattice points in 'Tj = 1 case. 
(a), (b), (c), and (d) are when 50, 100,250, and 519 (final) steps have 
been included in the pattern, respectively. 
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(0) 

FIG. 3. Comparison offractal discharge patterns for SOX 500. (a) Undir
ected case: The branching probability is unrelated to the electric field, 
( 'rf = 0); the figure is shown deliberately at some intermediate stage to indi
cate no tendency for moving toward the other plate. (b) Directed discharge: 
The branching probability is linearly related to the electric field ('Yl = 1). 
(c) Highly directed discharge: The probability is related to the square of the 
electric field (17 = 2). 

ometry on the ¢ = 0 plate. This number IV should be a power 
law relationship given by 

N(r)-rD. (4) 

The exponent D is a measure of how quickly the dis
charge moves away from the starting point and is calculated 
at breakthrough to the other plate. 

From Niemeyer's work on radial discharges l itis known 
that D = 1.75 for the radial discharge pattern with 17 = l. 
Turkevich and Scher'sll.12 analytical result proved that 
D = 5/3. Table I compares the values found for both radial 
discharges and for paranel plate discharges. In Table I, 50 
runs were computed for the size of 20 X 200. The rest were 
evaluated with 10 runs each. In each size, the mean and 
standard deviation of the value D from those runs are indi
cated. The values found for a paranel plate discharge are 
lower than for the radial case. This makes sense if it is real
ized that in a radial discharge, where the distant cylinder 
surrounds the central electrode, there is lesser tendency for 
the discharge to move away from the central point. On the 
contrary, in a parallel plate capacitor, the field is directed 
toward the far plate and moves more quickly toward it. 
Thus, in a paranel plate discharge, the symmetry of branch
ing is broken and the finite distance between the two plates 
affects the possible branchings which exist for the growing 
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TABLE I. Comparison of fractal dimension D for radial and parallel plate discharges. D is defined in Eq. (4) and P in the parentheses is defined in Eq. (5). In 
each size, the mean and standard deviation of D or P from many runs (see text} are indicated. 

Fractal dimension D 

n=O 
7J=1 
17=2 

Radial discharge 
(infinite limit) 

Niemeyer Turkevich 
et af. «Scher 

2.0 2.0 
1.75 5/3 
106 4/3 

lOX 100 
D,(P) 

2,(2) 
1.390 ± 0.180,( 1.409 ± 0.190) 
l.203 ± 0.155,(1.217 ± 0.145) 

structure. Fewer branchings are required to reach the top 
plate. As a result, the fractal exponent is reduced. 

In diffusion-limited aggregation problems, Turkevich 
and Scherll

•
12 have shown that scaling relates the fractal 

dimensionD to the cluster-tip occupancy probabilities and D 
does not depend on the cluster's random, irregular structure 
but rather on how it grows. In order to verify this, we calcu
late the number of steps required for the top of the discharge 
pattern to reach position n for the first time as a function of n. 
This "first passage time" F(n) can be expressed as 

F(n) _nP. (5) 

The values of P are in the parentheses of Table r. The near 
equality of D and P agrees with the analytical derivation of 
Turkevich and Scher even in the finite discharge cases where 
the discharge structures are not infiniie1y renormalizable. 

IV. CONCLUSIONS 

A computer simulation of the electrostatic discharge 
within a parallel plate capacitor has been developed. This 
model has provided insight into the characteristics of finite 
discharges that have not been investigated previously. It was 
shown that because of finite spacing between two capacitor 
plates, the discharge structures are less self-similar as com
pared to the case of radial discharge and the reason for the 
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Thin paranel plate 
(Size = TOWS X columns) 

20X200 
D,(P} 

2,(2) 

50X500 
D,(P) 

2,(2) 
1.463 ± 0.168,( 1.445 ± O.267} 
1.248 ± 0.126, (1.257 ± 0.126) 

1.580:±: 0.085,( 1.634 ± 0.120} 
1.319 ± 0.054, (1.317 ± 0.054) 

reduction of fractal exponent can be explained. The fractal 
exponent D has the same value as the exponent P of first 
passage time of the top tip. Comparison of various power law 
relations for the branching probabilities also gives insight 
into the physical breakdown mechanism and electrical insu
lating quality of various types of materials. 
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