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ABSTRACT 

An estimated 2 million new cases of basal cell carcinoma (BCC) are diagnosed 

each year in the United States, making it one of the most common skin cancers. Earlier 

detection of these cancers enables less invasive biopsies. Clinical detection consists of a 

preliminary visual observation of these skin lesions by an experienced dermatologist 

making it a specialized task highly dependent on their time, availability, and resources. 

Hence, there is a need for automating this process that can assist healthcare staff. In 

recent years, deep learning (DL) has been used extensively and successfully to diagnose 

different cancers in dermoscopic images. Telangiectasia or narrow blood vessels that 

typically appear serpiginous or arborizing, are a critical indicator of basal cell carcinoma 

(BCC), aiding dermatologists in BCC diagnosis. Most DL approaches lack such clinical 

inputs that could aid in higher accuracy and explainability. Hence, in this research, we 

exploit the following computational and data fusion techniques for BCC feature detection 

and diagnosis: 1. Automate the segmentation of telangiectasia with the application of 

image processing techniques and a semantic deep learning model. 2. Apply ensemble 

learning on a combination of Deep learning features and handcrafted features from 

semantically segmented telangiectasia masks for BCC diagnosis. 3. Explore topological 

data analysis (TDA) techniques to create a DL-TDA based hybrid classification model. 

Through this research we achieve state-of-the-art results in BCC diagnosis and provide 

pathways for automating diagnosis/classification for similar datasets and problem 

statements. 
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1. INTRODUCTION

Basal Cell Carcinoma or BCC accounts for 80% of all skin cancer cases in the 

United States. As mentioned by the American Cancer Society “According to one 

estimate, about 5.4 million basal and squamous cell skin cancers are diagnosed each year 

in the US (occurring in about 3.3 million Americans, as some people have more than 

one). About 8 out of 10 of these are basal cell cancers” [1][2]. 

BCC usually appears on exposed areas of the skin such as arms, face, and neck. A 

BCC lesion may appear raised, bumpy, or scaly patch which can be skin colored or 

brown and may even sometimes resemble a sore. Due to this, it sometimes may not be 

timely treated. Even though the cancer is not considered deadly, if left untreated, it is 

prone to become locally invasive may lead to disfigurement and other complications. 

These complications can include ulceration, bleeding, infection, recurrence and 

sometimes metastasis. Hence, it is important to diagnose and treat BCC early to prevent it 

from spreading and causing further damage. Early detection improves the chances of a 

favorable outcome.[3][4] 

BCC is usually diagnosed by a dermatologist and the screening involves visual 

examination, where the dermatologist is looking for any suspicious lesions. They may use 

a dermascope for magnified versions of the lesion. If there is suspicion, they may perform 

a biopsy and take a small sample of the tissue. To prevent invasive biopsies and 

associated costs, early detection through other methods of diagnosis is being developed to 

assist dermatologists and healthcare staff, which may also benefit patients in remote 

areas.[5][6] 
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1.1. OVERVIEW 

Basal Cell Carcinoma (BCC) is one of the most widespread forms of skin cancer 

worldwide. To diagnose this cancer, dermatologists perform visual inspection of the 

affected skin lesion area which involves looking for certain cancer indicating physical 

features, such as Telangiectasia or thin blood vessels. Digital images of the lesion are a 

zoomed in version of the skin lesion. To assist dermatologists in accessing these lesions 

for biomarkers such as Telangiectasia, we explore several automation techniques for 

BCC diagnosis as well as clinical feature segmentation. Such techniques would help them 

avoid invasive biopsies and have extra diagnostic assistance. 

1.2. PROBLEM DESCRIPTION 

In recent years, biomedical image analysis with the help of a plethora of 

computational methods has gained fruitful momentum. Computational methods such as 

deep leaning applied with the goal of classification of medical conditions as well as 

segmentation/extracting features have resulted in a lot of success and understandably, 

increased clinical and research interests.[3-8] 

Computational and quantitative methods especially for digital medical image 

analysis strive to find the underlying distinguishing patterns that may or not be 

observable by the human eye. As such Deep Learning (DL) techniques using 

dermoscopic images have recently shown diagnostic accuracy exceeding that of 

dermatologists. Due to the black box nature of deep learning models, these results may 

sometimes lack interpretability, especially from a clinical perspective [9-13] 
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Telangiectasis or thin arborizing blood vessels present within the skin lesion are 

an important biomarker for BCC. Detecting and segmenting these vessels either by visual 

inspection or computational methods can help dermatologists proceed with a more 

probable and confident BCC diagnosis. These blood vessels usually appear a little darker 

than the surrounding skin and hence a pixel rule-based color drop vessel detection 

methods have been used in the past [14-16]. Stacked sparse autoencoders, independent 

component analysis, k-means clustering, and shape filters to detect vessels and other 

vascular structures are some of the other methods that have been used. There are very few 

image processing studies that utilize these vascular structures to diagnose BCC. An 

adaptive critic design approach to discriminate vessels from competing structures, and 

features extracted from these vascular structures to classify BCC using a random forest 

classifier are some of the other works. Features learned from sparse autoencoders, 

combined with patient profile information, are some meta-data fusion diagnosis methods 

used in the past [17-22]. Recently, used clustering-based color features and GLCM-based 

texture features to train VGG16 and MLP models to extract deep learning features to 

subsequently train another MLP model was applied [22-35]. 

In this dissertation we explore a combination of different data fusion techniques 

and a hybrid of TDA and DL methods to diagnose BCC. We dive into first integrating 

image processing to segment Telangiectasia and then utilize it for BCC diagnosis. We 

then fuse handcrafted features from telangiectasia in a DL based ensemble learning 

model [35-46]. Lastly, we apply TDA to create a hybrid model for BCC diagnosis with 

less computational cost.  
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1.3. SUMMARY OF CONTRIBUTIONS 

This dissertation is comprised of 3 journal papers as listed in the publications list. 

The unique contributions from each article can be summarized as follows: 

• First study of pixel and DL-based telangiectasia segmentation in skin lesions 

• A unique dataset consisting of thousand binary vessel masks for telangiectasia 

publicly released on Zenodo 

• An improved fusion-DL model for BCC diagnosis with handcrafted 

telangiectasia features 

• A hybrid TDA-DL model with state-of-the-art BCC diagnosis 

1.3.1. A Deep Learning Approach to Detect Telangiectasia in Basal Cell 

Carcinoma. Telangiectasia or thin blood vessels is the first step in identifying BCC.  In 

this study, we automate the detection and segmentation of telangiectasia by using a pixel 

based Deep Learning approach. A unique binary vessel mask dataset is curated for 

applying a U-Net based segmentation model that outputs vessel mask in candidate 

images. To overcome the similarity of vessel and lesion pixels a preprocessing histogram 

equalization method is used on the BCC images. We optimize the performance by using a 

combination loss function to manage class imbalance of images and pixel imbalance of 

skin versus vessel pixels. We achieve Jaccard scores within the variation of human 

observers and analyze the results for issues in medical segmentation such as inter-

observer variability.  

1.3.2. Basal Cell Carcinoma Diagnosis with Fusion of Deep Learning and 

Telangiectasia Features. We utilize the segmented telangiectasia masks from the study 

above to implement a novel BCC diagnosis technique.  We apply a range of image 
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processing techniques to yield different telangiectasia and lesion shape and color features.  

On a hold-out dataset of 395 lesion images (195 BCC and 200 non-BCC) we achieve a 

binary classification accuracy of 97.2% and an AUC of 0.99. We demonstrate metric 

improvements in three stages: 1) the addition of handcrafted telangiectasia features to 

deep learning features, 2) including areas near telangiectasia (surround areas), 3) 

discarding the noisy lower-importance features. Examining the surround areas of 

telangiectasia and calculating respective features, we offer another novel approach to 

feature finding with weak annotations.  Our experimental results show state-of-the-art 

accuracy and precision in the diagnosis of BCC, compared to three benchmark 

techniques. 

1.3.3. Hybrid Topological Data Analysis and Deep Learning for Basal Cell 

Carcinoma Diagnosis. Topological Data Analysis is a growing field in applied 

mathematics and is rapidly being explored for deep learning applications. In this study, 

we apply persistence homology to generate topological features known as persistence 

statistics and produce results comparable and even better than a few DL models. We use 

a hybrid TDA-DL model to ultimately improve diagnostic accuracy of BCC. We show 

improvements in two stages: first by adding telangiectasia features to a TDA 

classification model and second: by adding TDA features to an EfficientNet based BCC 

classification model. We achieve state-of-the-art accuracy of 97.4% and an AUC of 0.994 

on a hold-out test set of 395 images. Our results demonstrate telangiectasia improves 

BCC diagnosis and TDA can potentially improve DL results.   
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PAPER  

I. A DEEP LEARNING APPROACH TO DETECT BLOOD VESSELS IN BASAL 

CELL CARCINOMA 

Akanksha Maurya1, R. Joe Stanley1, Norsang Lama1, Sadhika Jagannathan2, Daniyal 

Saeed3, Samantha Swinfard1, Jason R. Hagerty4, William V. Stoecker4 
 

 

1Missouri University of Science &Technology, Rolla MO 65209 USA 

2University of Missouri, Kansas City MO USA 
3St Louis University, MO USA 

4S&A Technology, Rolla, MO, 65401 USA 

ABSTRACT 

Purpose: Blood vessels called telangiectasia are visible in skin lesions with the aid 

of dermoscopy. Telangiectasia are a pivotal identifying feature of basal cell carcinoma. 

These vessels appear thready, serpiginous and may also appear arborizing, i.e., wide 

vessels branch into successively thinner vessels. Due to these intricacies, their detection 

is not an easy task, neither with manual annotation nor with computerized techniques. In 

this study, we automate the segmentation of telangiectasia in dermoscopic images with a 

deep learning U-Net approach. 

Methods: We apply a combination of image processing techniques and a deep 

learning-based U-Net approach to detect telangiectasia in digital basal cell carcinoma 

skin cancer images. We compare loss functions and optimize the performance by using a 

combination loss function to manage class imbalance of skin vs vessel pixels. 
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Results: We establish a baseline method for pixel-based telangiectasia detection in 

skin cancer lesion images. An analysis and comparison for human observer variability in 

annotation is also presented. 

Conclusion: Our approach yields Jaccard score within the variation of human 

observers as it addresses a new aspect of the rapidly evolving field of deep learning: 

automatic identification of cancer-specific structures. Further application of DL 

techniques to detect dermoscopic structures and handle noisy labels is warranted. 

KEYWORDS: Blood vessels, telangiectasia, dermoscopy, deep learning, skin 

cancer, basal cell carcinoma. 

1. INTRODUCTION 

An estimated two million new cases of basal cell carcinoma (BCC), the most 

common type of skin cancer, are diagnosed each year in the USA [1]. Earlier detection of 

these cancers enables less invasive treatment [2,3]. 

 Deep Learning (DL) techniques using dermoscopic images have recently 

shown diagnostic accuracy exceeding that of dermatologists [4-6]. Recent studies have 

shown improved results for skin cancer diagnoses by fusing ensembles, in some cases 

handcrafted and DL techniques [7-11]. However, these studies have not employed DL at 

the dermoscopic level, e.g., to detect blood vessels, a critical sign for BCC (Figure 1). 

        In previous studies, Cheng et al. [12] used a local pixel color drop technique 

to identify candidate vessel pixels. Cheng et al. [13] used an adaptive critic design 

approach to better discriminate vessels from competing structures. Kharazmi et al. [14] 

used independent component analysis, k-means clustering, and shape filters to detect 
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vessels and other vascular structures. Kharazmi et al. [15] used a stacked sparse auto-

encoders (SSAE) DL approach to detect vessel patches in BCC.  

     The detection of these intricate cancer-signaling vessels is not an easy task as 

the data and annotations for these images are limited. Also, these vessels may be blurry 

and share color similarity with surrounding skin. In this study we explore U-Net, a deep 

learning-based neural network for vessel segmentation. Our approach is a pixel-based 

method that captures structures that can elude patch-based methods. Inter-observer 

variability that is reflected in object labelling is also a widespread issue among medical 

image datasets and recent studies have shown this can affect model training significantly 

[16]. Hence, we analyze our annotations for the vessel data and consider this variability 

for comparison of metrics.  

     The techniques described in this paper will allow those new to the field, 

including the growing number of mid-level providers, to automatically identify these 

critical structures for early cancer detection. It will also benefit researchers seeking to 

precisely capture features needed for classification and diagnosis of BCC combining 

other deep learning methods. 

2. IMAGE DATASETS AND PRE-PROCESSING 

2.1. IMAGE DATASETS 

We use two datasets of dermoscopic images of BCC. The first is the HAM10000 

[17] dataset of Tschandl et al., a publicly available dermoscopic image dataset with 

images of size 450x600. The second data set was taken from NIH studies R43 
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CA153927-01 and CA101639-02A2 with images of size 768x1024. We processed 690 

images—413 from the NIH study and 217 from HAM10000 data. 

2.2. IMAGE PRE-PROCESSING 

Since the two datasets of BCC images differ significantly in image characteristics 

such as image size and color range, we use stratified training, validation and test sets. 

From the 690 images, we randomly chose 445 images for training, 112 images for 

validation, and 133 images for the test set. We cropped all non-square images to square 

dimensions and resized to 512 x 512. We performed these augmentations:  

1. Geometric augmentations: random rotation, horizontal flip, and vertical flip.  

2. Color augmentations: To overcome the similarity in red pigmented skin and 

vessels, we apply histogram stretching to each color channel followed by contrast limited 

adaptive histogram equalization, normalization, and brightness enhancement. 

 

Figure 1. Vessels in BCC. Arborizing and serpiginous telangiectasia vs. non-specific sun-

damage telangiectasia 
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After the augmentations, we used 3114 images for training and 784 images for 

validation. 

 

Figure 2. Color augmentations 

2.3. IMAGE SEGMENTATION 

We confined the analysis to the BCC by automatic segmentation using U-Net [18] 

with details below. 

3. DEEP LEARNING NETWORK 

3.1. NETWORK ARCHITECTURE 

Biomedical image segmentation often employs U-Net [18] due to its ability to 

perform accurate pixel-based classification. The network includes contractive and 

expansive paths where the contractive (encoder) path follows architecture similar to a 

convolutional neural network and the expansive (decoder) path uses transposed 2D 

convolutional layers. The encoder is downsampled 4 times and the decoder is up-sampled 
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4 times to restore the high- level semantic feature map produced by the encoder to the 

original size of the image. (Figure 3).  

Each convolutional layer in the encoder part is followed by a maxpool down-

sampling operation for the network to encode the input image into feature representations 

at multiple levels. The decoder includes up-sampling and concatenation, succeeded by 

convolution operations. The decoder projects the lower dimensional discriminative 

features learned by the encoder into a higher-resolution space. It upsamples the feature 

map while simultaneously concatenating it with its higher resolution feature map from 

the encoder part. The final layer does a 1x1 convolution to map the last feature map to the 

respective classes.  

Since vessels only constitute about 2-10% of the image, it is essential to use a loss 

function that addresses this severe class imbalance. We use a combination loss function, a 

weighted sum of Dice loss and binary cross entropy, defined as: 

DL(y,�̂�) = 1 - (2y�̂�+1)/(y+�̂�+1) 

LW-bce = - 
1

  N
∑ 𝛽(𝑦 − 𝑙𝑜𝑔(𝑦))𝑖 + (1 − 𝛽)(1 − 𝑦)𝑙𝑜𝑔 (1 − �̂�) 

m = αLW-bce – (1-α)DL(y,�̂�)  

Where DL is Dice loss and LW-bce is weighted binary cross entropy [19]. 

We employ U-Net [18] with our modifications for vessel segmentation due to its 

accuracy in pixel-based classification, as detailed in Section 4. 
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4. EXPERIMENTS PERFORMED 

Our vessel U-Net model uses varied input sizes for each of the RGB image 

channels of 32, 64, 128, 256 and 512. We use Exponential Linear Units activations 

instead of the traditional U-Net Relu activations as they tend to converge faster and 

produce more accurate results [21]. 

F(x) = {
𝑧                          𝑧 > 0
𝛼. (𝑒𝑧 − 1)       𝑧 ≤ 0

} 

The weights are initialized from truncated normal distribution centered on zero 

with standard deviation = sqrt(2/ fan_in) where fan_in is the number of input units in the 

weight tensor. 

 

Figure 3. U-Net architecture 

To introduce regularization, we use dropout layers with probability 0.1 for both 

the encoder and decoder. To prevent overfitting, we use early stopping with a patience 

value of 5 and save the best model. The hyperparameters are listed in Table 1. 
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Table 1. Different hyperparameters used for training U-Net 

Hyperparameters Value 

One weight 0.89 

Zero weight 0.11 

Learning rate 0.0001 

Epochs 20 

Metrics Jaccard loss 

Batch Size 8 

Alpha for combo loss 0.7 

 

Automatic lesion borders were determined by U-Net trained on the 2594-image 

ISIC 2018 Task 1 Lesion Segmentation dataset [19]. Images were resized to 320x320 

using bilinear interpolation. We randomly split the images into training and validation set 

of 80:20. Hyperparameters were similar to Table 1 except the model was trained up to 

100 epochs with a batch size of 10 and an Adam optimizer and Dice loss function. 

5. EXPERIMENTAL RESULTS 

We evaluate our model with the Jaccard (intersection over union) metric. This 

avoids the over-representation of negative pixels in sparse features. 

Jaccard Index = 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (𝑓𝑜𝑟 𝑏𝑖𝑛𝑎𝑟𝑦 classification) 

Our U-Net model achieves a Jaccard score of 37.8% on the test set, which 

exceeds the mean Jaccard score among our 5 observers who created vessel masks. 

Results of our model are shown in Figure 4 as green overlays, to compare with the 

predicted masks, white overlays. 
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Figure 4. Predicted binary masks and overlays 

5.1. VESSEL DETECTION PERFORMANCE FOR DIFFERENT LOSS 

FUNCTIONS 

Table 2. Evaluation metrics for different loss functions with U-Net 

Loss Functions Accuracy Jaccard Precision Recall 

Weighed BCN 0.98 0.311 0.351 0.734 

Tversky Loss 0.985 0.351 0.442 0.629 

Focal Tversky 

Loss 

0.985 0.354 0.435 0.657 

Dice Loss 0.989 0.364 0.565 0.506 

Combo Loss 0.987 0.376 0.574 0.521 
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Figure 5. Training and validation loss curves for combo loss 

In this study, 20 epochs yield a stable validation loss (Figure 5). 

6. DISCUSSION 

We used the basic U-Net structure of  Ronneberger et al. [18] with modifications 

as noted in network architecture. We used different loss functions [19] (table 2). The 

mean accuracy, precision, recall and Jaccard index, precision and recall on the test set for 

the combination loss function were 0.987, 0.38, 0.574 and 0.521. This compares with 

mean accuracy, precision and recall for Kharazmi et al. [15] of 0.954, 0.947 and 0.917.     

The latter two scores are higher than we obtained. However,  the two studies are not 

comparable because we score presence or absence of vessels on a pixel-by-pixel basis 

and Kharazmi scores presence or absence of a vessel within a patch of 32 x 32 pixels. 

Additionally, the Kharazmi masks include vascular structures other than vessels (figures 

5-7) [15]. Other studies [12][13][14] lack pixel-by-pixel scoring.   

 To understand our results better, we took samples of 10 random images from 

each person’s mask set and had all 5 observers mark those masks, to create 5 masks for 
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each of the 50 images.  One such example of an image and the corresponding mask done 

by each person is shown below. We can see from the images that there is some difference 

in the way each person views and draws the vessels. 

 

Figure 6. Mask annotations for the same image by different team members 

For the example images shown in Figure 6, the mean Jaccard calculated for each 

pair of observers on a pixel-by-pixel basis for is only 0.285, even though they appear 

rather similar. 

Over the entire set the median pairwise Jaccard is 0.271. Some of the possible 

reasons for low Jaccard values are as follows: 

1. Inter-rater variability: The most common variation we observed is the 

extent of vessel pixel covering, due to inexact fading of the edges of the vessels, and 

variable covering in the mask. The second most common variation was the varying 

inclusion of vague vessel structures.  
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2. Software differences: Two observers used Paint.net and three used 

Photoshop.  

3. Tool variation: For freehand drawing of a mask, variations can also arise 

from the use of a stylus with Photoshop and a mouse with Paint.net.  

Most false positives we observed were the result of blurry or thin vessels missed 

during mask creation, Figure 7. 

 

Figure 7. Example of disagreement with manual mask. True positives shown by green, 

false positives shown by blue and false negatives shown by yellow 

This research enables optimal detection of a critical dermoscopy structure in early 

basal cell carcinoma: thready blood vessels called telangiectasia. We accomplish this 

vessel segmentation task by combining image pre-processing with U-Net using our 

hyperparameters. The study also compares different loss functions and manages class 

imbalance by using composite loss functions. 
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     The subjective nature of structure identification by different observers has not 

received sufficient attention in the literature. Accordingly, we present an analysis of 

differences in vessel detection by different observers. We show that these differences are 

not a deterrent to accurate detection of these structures. We are able to achieve deep 

learning results that are more in agreement with each observer than the observers are with 

each other. In this study, we establish a path to detection of other cancer-critical signs for 

earlier cancer detection. In the future, we would like to further explore differences in 

machine and manual annotation to develop more sophisticated models and different U-

Net approaches [20][21]. 
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ABSTRACT 

Telangiectasia, narrow blood vessels that typically appear serpiginous or 

arborizing, are a critical indicator of basal cell carcinoma (BCC), aiding dermatologists in 

BCC diagnosis. In recent years, deep learning has been used extensively and successfully 

to diagnose different cancers in dermoscopic images. However, most approaches lack 

clinical inputs that could aid in higher accuracy and explainability. We demonstrate a 

novel BCC diagnosis technique by applying ensemble learning on a combination of 

EfficientNet-B5 based DL features and handcrafted features from semantically 

segmented telangiectasia masks (U-Net-based). On a hold-out dataset of 395 lesion 

images (195 BCC and 200 non-BCC) we achieve a binary classification accuracy of 

97.2% and an AUC of 0.99. We demonstrate metric improvements in three stages: 1) the 

addition of handcrafted telangiectasia features to deep learning features, 2) including 

areas near telangiectasia (surround areas), 3) discarding the noisy lower-importance 

features. Examining the surround areas of telangiectasia and calculating respective 
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features, we offer another novel approach to feature finding with weak annotations.  Our 

experimental results show state-of-the-art accuracy and precision in the diagnosis of 

BCC, compared to three benchmark techniques. Further exploration of deep learning 

techniques for individual dermoscopy feature detection is warranted. 

Index Terms— basal cell carcinoma, deep learning, fusion, telangiectasia, transfer 

learning, dermoscopy 

1. INTRODUCTION 

Basal cell carcinoma is one of the two most common types of skin cancer in the 

USA, with over two million new cases diagnosed yearly. [1] Dermatologists usually 

diagnose BCC by visual inspection. However, certain benign lesions can be confused 

with BCC and lead to a unnecessary biopsy. Automating this diagnosis and ensuring 

early detection will reduce the burden on patients and healthcare professionals and 

produce more accurate results [2,3]. 

 Deep learning methodologies applied to dermoscopy images have yielded high 

diagnostic accuracy, now exceeding that of dermatologists [4-6]. Skin cancer diagnosis 

from images has advanced by implementing fusion ensembles, metadata, and some 

handcrafted features [7-11].  

Telangiectasia or thin arborizing vessels within the lesion is a crucial factor for 

dermatologists when looking for BCC. Their detection, either by visual inspection or any 

computational method can provide pathways to make BCC diagnosis more accurate.  

Cheng et al. [12] investigated a local pixel color drop technique to identify vessel 

pixels. Kharazmi et al. [13] applied independent component analysis, k-means clustering, 
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and shape for detecting vessels and other vascular structures. Kharazmi et al. [14] 

detected vessel patches by using stacked sparse autoencoders (SSAE) as their deep 

learning model. Maurya et al. [15] used a U-Net-based deep-learning (DL) model to 

perform semantic segmentation of these blood vessels. Semantically segmented precise 

binary masks provide means to effectively quantify the vessel feature information. 

  There are very few image processing studies that utilize these vascular structures 

to diagnose BCC. Cheng et al. [16] used an adaptive critic design approach to 

discriminate vessels from competing structures, enabling BCC classification. Kharazmi et 

al. [17] utilize features extracted from these vascular structures to classify BCC using a 

random forest classifier. Kharazmi et al. [18] learned from sparse autoencoders, 

combined them with patient profile information, and fed them to a Softmax classifier for 

BCC diagnosis. Recently, Serrano et.al [19] used clustering-based color features and 

GLCM-based texture features to train VGG16 and MLP models to extract deep learning 

features that they use to train another MLP model. The final MLP classifies lesions with 

either presence or absence of one of seven BCC patterns, providing BCC classification 

with high accuracy.  

 In this study, we achieve state-of-the-art accuracy in BCC classification by 

making the following unique contributions: 1. Clinically inspired and explainable BCC 

diagnosis with deep learning-based telangiectasia mask generation as an intermediate 

step. 2. An ensemble learning classifier utilizing a hybrid input feature set consisting of 

object, shape, and color telangiectasia features integrated with deep learning features 

improving overall BCC classification.  
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  The remainder of the paper is organized as follows. Section 2 explains the image 

datasets, our proposed methodology, and training details. Section 3 presents and explains 

our experimental results. Section 4 provides a discussion on our approaches and results. 

Section 5 gives the conclusion and possible future work. 

2. MATERIALS AND METHODS 

2.1. IMAGE DATASETS 

The skin lesion images used in this study come from 3 datasets: the HAM10000 

dataset (ISIC 2018) of Tschandl et al. [20], a publicly available skin lesion dermoscopy 

dataset containing over 10,000 skin images for seven diagnostic categories, the ISIC 2019 

dataset [20-22], and datasets R43 from NIH studies CA153927-01 and CA101639-02A2 

[23]. For training the U-Net model, that generates telangiectasia masks, 127 images were 

selected from the HAM10000 dataset, 90 images from the ISIC 2019 dataset, and 783 

images from the NIH study dataset, leading to a total of 1000 BCC images. The ISIC 

2019 dataset included a few repeat images, omitted from our BCC dataset. The ground 

truth binary vessel masks were manually drawn by our team and verified by a 

dermatologist (WVS). The BCC dataset and the ground truth masks are shown in Figure 

1.  

For the non-BCC dataset, we selected 1000 images from the HAM10000 dataset 

from five benign categories: benign keratosis, nevus, actinic keratosis, dermatofibroma, 

and vascular lesion, shown in Figure 2. The distribution for each of these categories is 

shown in Figure. 3. The images are 8-bit RGB of size 450x600 from the HAM10000 
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dataset and 1024x768 from the NIH study dataset. All the images are resized to 448x448 

before training. 

 

Figure 1. Left to right, first row: first two images are BCC from the HAM10000 

(ISIC2018) dataset; last two images are BCC from the NIH study dataset. Second row 

presents telangiectasia overlays for the images in the first row 

For both U-Net and EfficientNet-based models’ training, standard train-test splits 

of 80-20 were used. The training set was further split 80-20 to create a validation set. For 

BCC classification, the images were randomly selected, leading to subsets of 1288 for 

training, 324 for validation, and 395 for testing. For the U-Net model, the training set 

consisted of 650 images, the validation set comprised 162 images, and the test set 

included 195 images. These 195 BCC images combined with 200 non-BCC images make 

up the holdout test set for the BCC classification model. 
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Figure 2. From left, first row: benign keratosis, nevus, actinic keratosis; from left second 

row: dermatofibroma and vascular lesion 

 

Figure 3. Number of images from each category used in the non-BCC dataset 

2.2. DATA AUGMENTATION 

For medical datasets with relatively few examples and a lack of variation, data 

augmentation helps create more training samples. Augmentation provides deep learning 

models the ability to generalize and hence provides regularization without overfitting. For 

both the U-Net and EfficientNet-based BCC classification models, the geometric 

augmentations include rotation ranging +30° to -30° in reflect mode, not to distort the 
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vessels, horizontal and vertical flip, width shift with a range of (-0.2, +0.2), height shift 

with a range of (-0.2, +0.2), and shear with a range (-0.2, +0.2). These geometric 

augmentations are shown in Figure 4. For the U-Net model, to overcome the similarity in 

red-pigmented skin and vessels, we perform color augmentations as well. We apply 

histogram stretching to each color channel followed by contrast-limited adaptive 

histogram equalization, normalization, and brightness enhancement [15], as shown in 

Figure 5. 

 

Figure 4. Different geometric augmentations 

Due to the narrowness of the vessels, all the vessel masks are dilated with a 3x3 

structuring element and closed with a 2x2 structuring element. This dilation prevents the 

vessels in the masks from being broken when augmented and covers some boundary 

pixels, as shown in Figure5. Since the goal is to identify vessels within the lesion, the 

vessel masks are multiplied with U-Net-generated lesion masks to yield vessels only 

within the lesion. For both models, the images were square-cropped and then resized to 

448x448. 
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Figure 5. Left: Color augmentations Right: vessel masks dilation 

2.3. PROPOSED METHODOLOGY 

Our proposed methodology integrates clinically relevant handcrafted features of 

telangiectasia with high-level features extracted from a pre-trained deep learning model 

according to a feature importance score determined by the average Gini impurity 

decrease, calculated from a random forest structure. We then utilize the higher predictive 

ability of ensemble learning methods to feed this hybrid feature set to a random forest 

classifier and create our novel fusion BCC diagnosis technique. Our method includes four 

main components: 1. Semantically segmenting telangiectasia with a U-Net-based model 

to yield a binary vessel mask. 2. Applying image processing and statistical methods to 

calculate descriptive vessel features based on the objects in the vessel mask. 3. Extracting 

high-level deep learning features from fine-tuning a pre-trained EfficientNet-based 

model. 4. Calculating the feature importance score for all the features and selecting only 

the top-most features above a threshold. 5. Classifying the skin lesions into BCC or non-

BCC using a random forest classifier trained on the hybrid feature set. Our methodology 

is illustrated in Figure 6. 
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In recent years, U-Net [24] based semantic segmentation models have been the 

go-to for biomedical segmentation. Our vessel detection deep learning model is based on 

the U-Net model [15]. As vessels occupy only 2-10% of the skin lesion image, a 

combination loss function addresses this severe class imbalance [19].    

Traditional image processing techniques provide several tools to calculate 

telangiectasia features explicitly. Features are generated using objects in the vessel mask. 

Table 1 explains the handcrafted features we generated. 

Figure 6. Proposed architecture employing a fusion of deep learning and handcrafted 

features from vessels for BCC classification 

 

Features 1 to 8 are general vessel descriptors [12]. Features 1-4 represent BCC’s 

narrower, longer, and more numerous vessels. Eccentricity features 5- 8 are calculated to 

account for straighter BCC vessel structures. From Maurya et al. [15], annotations for 

telangiectasia suffer from interobserver variability, fine or blurry telangiectasia, and poor 

contrast in images. There may be missed vessels along the boundary of annotations that 
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need to be included. Hence, regions surrounding the vessels can also be helpful in 

differentiating basal cell carcinoma.  

To include these probable missed features, we generate a surround mask for the 

vessel objects. Every object from the vessel mask is extracted and dilated with a disk 

structuring element of radius 12 (d1) and radius 5 (d2), resulting in two dilation variants 

of the object. Removing d2 from d1 gives the object surround mask, as shown in Figure 

7. For the example images shown, 347 and 240 vessel objects are detected. The figure 

shows surround masks generated for two such vessel objects. Features 5 to 8 are 

calculated for the surround masks and make up features 9 to 12. Features 13 to 22 include 

the number of objects calculated after morphologically eroding the final vessel mask with 

a circular structuring element of radius from 1 to 10.  Features 23 to 32 include the area 

of objects calculated after morphologically eroding the final vessel mask with a circular 

structuring element of radius from 1 to 10. Features 33 to 44 are color features for 

vessels. Features 45 to 56 are color features in the HSV plane and features 57 to 80 are 

features 33 to 56 (RGB and HSV features) applied to the surround of vessel objects. 

 

Figure 7. Object surround masks: Top row from left: Example lesion image 1 with 

telangiectasia, its ground truth mask, its surround mask for object 1 (the contiguous 

connected vessel area), its surround mask for object 2 (the vessel on the bottom right). 

Bottom row from left: Example lesion image 2 with telangiectasia, its ground truth mask, 

its surround mask for object 1 (the contiguous connected vessel area), its surround mask 

for object 2 (the vessel on the bottom right) 
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Table 1. Handcrafted Feature Description 

No. Abbreviation Measure Description Meaning 

1 no_vessels Number of 

vessels 

Number of vessels in the final 

vessel mask 

BCC has more vessels 

2 avg_len Average length Average length for all vessels 

within a lesion 

BCC vessels are longer 

3 avg_wid Average width Average width for all vessels 

within a lesion 

BCC vessels are 

narrower 

4 avg_area Average area Average area for all vessels 

within a lesion 

BCC vessels are larger 

5 max_ecc Maximum 

eccentricity 

Maximum ratio of the distance 

between the foci of the ellipse 

enclosing the vessels and its 

major axis length 

 

BCC vessels are 

straighter 

6 min_ecc Minimum 

eccentricity 

Minimum ratio of the distance 

between the foci of the ellipse 

enclosing the vessels and its 

major axis length 

 

BCC vessels are 

straighter 

7 avg_ecc Average 

eccentricity 

Average eccentricity of all the 

vessels per vessel mask 

 

BCC vessels are 

straighter 

8 STD_ecc Standard 

deviation of 

eccentricity 

Average standard deviation of 

eccentricity of all the vessels 

per vessel mask 

BCC vessels are 

straighter and more 

uniform 

9 to 

12 

1 to 8 with 

prefix ‘sur’ 

Surround features Same as features 5 to 8 for the 

surrounding objects in the 

vessel mask 

Regions around the 

vessel may contain 

distinguish-ing 

information 

13 

to 

22 

no_objN; N: 1 

to 10 

Eroded vessel 

objects 

Number of objects after the 

vessel mask is eroded with a 

disk structure of radius 1 to 10 

BCC objects are fewer 

after given number of 

erosions 

23 

to 

32 

areaN: 

N: 1 to 10 

Eroded vessel 

area 

Area of objects after the vessel 

mask is eroded with a disk 

structure of radius 1 to 10 

BCC object areas are 

smaller after given 

number of erosions 

33 

to 

35 

max_R, 

max_G, 

max_B 

Color features Maximum red, green, and blue 

value of every vessel; then 

averaged over total number of 

vessels per image 

BCC vessels appear 

darker than lesion 

36 

to 

38 

min_R, min_G, 

min_B 

Color features Minimum red, green, and blue 

value of every vessel averaged 

over total number of vessels 

per image 

BCC vessels appear 

darker than lesion 

39 

to 

41 

avg_R, avg_G, 

avg_B 

Color features Average red, green, and blue 

value of every vessel averaged 

over total number of vessels 

per image 

BCC vessels appear 

darker than lesion 

42 

to 

44 

STD_R, 

STD_G, 

STD_B 

Color features Standard Deviation of red, 

green, and blue value of every 

vessel averaged over total 

number of vessels per image 

BCC vessels appear 

darker than lesion 

45 

to 

56 

33 to 44 with 

prefix “HSV” 

Color features Features 33 to 44 applied in 

HSV plane 

HSV plane is more 

robust to lighting and 

shadow variations 

57 

to 

80 

33 to 56 with 

prefix ‘sur’ 

Surround features Features 33 to 56 applied on 

the surround of objects in the 

vessels 

Regions around the 

vessel may contain 

distinguish-ing 

information 
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To calculate deep learning features, we use a pretrained EfficientNet model. 

EfficientNets are a series of convolutional neural network models introduced by Tan et 

al. [25] that uniformly scale all network depth, width, or resolution dimensions by a 

compounding coefficient. These models achieved state-of-art top-1 accuracy on the 

ImageNet [26] dataset with fewer parameters. Their primary building block is a mobile 

inverted bottleneck called MBConv. The family of EfficientNet networks has different 

numbers of these MBConv blocks. The EfficientNetB5 model consists of two main 

blocks: MBConv1 and MBConv6. The detailed structures of these blocks are shown in 

Figure 8. 

 

Figure 8. MBConv1 & MBConv6 blocks 

The MBConv block or the inverted residual block improved the MobileNet [27] 

or residual blocks and followed a narrow-> wide->narrow approach, which means that 

the connections in the MBConv blocks move from one bottleneck to another, using a 
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residual connection. The basic MBConv block implements the following operations: 1x1 

convolution that expands the dimensionality from the narrow channels to wider channels, 

a 3x3 or 5x5 channel-wise or depth-wise convolution operation to get output features, 

ultimately followed by another 1x1 convolution that downsamples the number of 

channels to the initial value. Since this output block and the initial block have the same 

dimensionality, they are added together. 

  Both variations of the MBConv blocks contain the Squeeze and Excitation sub-

block [25]. The primary purpose of the Squeeze operation is to extract global information 

from each of the channels of an image. Each block starts with a feature transformation on 

an image X to get features U, which are then squeezed to a single value using global 

average pooling [25]. This output is then fed to a fully connected layer followed by a 

ReLU function to add nonlinearity and reduce complexity. From here, another fully 

connected layer followed by a sigmoid function performs the excitation operation to get 

per-channel weights. The final output is achieved by rescaling these feature maps U with 

these activations. The detailed structure of the Squeeze and Excitation block is shown in 

Figure 9. 

Since the original EfficientNet-B5 model was built for ten class classification, we 

remove the top layers to add a global average pooling layer, a dropout layer, and a final 

dense layer for binary classification. For our model, the initial input image size is 

448x448x3. Our model contains 14 different stages and is used first for classification, 

followed by feature extraction with the trained model. 
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Figure 9. Squeeze & Excitation block 

For the classification stage, we start with a 3x3 filter convolution, batch 

normalization and swish activation function reducing the image dimensions in half from 

448 to 224 and increasing the channels from 3 to 48. Hence, the feature map dimensions 

are 224x224x48. Stage 2 consists of 3 layers of an MBConv1 block with a 3x3 filter that 

maintains the previous stage resolution, but decreases the number of channels, resulting 

in a feature map of size 224x224x24. Stages 3 (5 layers), 4 (5 layers) and 5 (7 layers) use 

3 MBConv6 blocks each of kernel size 5x5 continuously reducing the resolution but 

increasing the feature map size to 28x28x128 (end of stage 5). Stages 6 (7 layers), 7 (9 

layers) and 8 (3 layers) apply 3 more MBConv6 blocks each, with kernel sizes 3x3, 5x5 

and 3x3, producing a feature map of size 14x14x2048. At stage 9, a 1x1 convolution with 

2048 filters results in a feature map of size 14x14x2048. Stages 10 and 11 apply batch 

normalization and Softmax activation retaining the feature size as the previous layer. 

Stage 12 uses global average pooling to bring the resolution to 2048, followed by a 
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dropout (stage 13) and dense layer (stage 14) leading to the final classification. The 

model is fine-tuned after the 200th layer and the best model is saved. We perform feature 

extraction at stage 12 after the global average pooling layer, thereby resulting in a 2048 

size feature vector for the training, validation, and test sets. The stages, operations, 

resolutions, channels, and layers are shown in Table 2. 

Table 2. Efficientnet-B5 Based Dl Model Description 

Stage Operator/Block Resolution Channels Layers 

1 Conv 3x3 + BN + Swish 224x224 48 1 

2 MBConv1, k3x3 224x224 24 3 

3 MBConv6, k5x5 112x112 40 5 

4 MBConv6, k5x5 56x56 64 5 

5 MBConv6, k5x5 28x28 128 7 

6 MBConv6, k3x3 28x28 176 7 

7 MBConv6, k5x5 14x14 304 9 

8 MBConv6, k3x3 14x14 512 3 

9 Conv 1x1 14x14 2048 1 

10 BN 14x14 2048 1 

11 Activation 14x14 2048 1 

12 Global Average Pooling 2048 1 1 

13 Dropout 2048 1 1 

14 Dense 1 1 1 

2.4. TRAINING DETAILS 

All models were built using Keras with a Tensorflow backend in Python 3.7 and 

trained using a single 32GB Nvidia V100 graphics card. The training and network 

parameters for the U-Net model generating the vessel masks are taken from [15].  The 

EfficientNet-B5 model is fine-tuned after the 200th layer. The model is trained for 120 

epochs with a learning rate of 0.0001 and a batch size of 20. To prevent overfitting, we 

use an early stopping criterion with a patience of 5. The loss function used is binary cross 

entropy with RMSprop optimizer. The dropout rate is 0.2. For the random forest 

classifier, 1000 estimators are used with the Gini index criterion. The minimum samples 
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per split are 2 with bootstrapping, and the maximum number of features considered per 

decision is the square root of the number of features.    

3. EXPERIMENTAL RESULTS 

We present test results for each of the four stages of the proposed architecture. 

The results are evaluated on the holdout test set that consists of 195 BCC and 200 non-

BCC images. The evaluation metrics used are Accuracy, Sensitivity, Specificity, and 

Precision which are defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

where TP stands for True Positives, TN stands for True Negatives, FP stands for 

False Positives, and FN stands for False negatives. All variables denote pixel counts. 

3.1. VESSEL SEGMENTATION TEST RESULTS FOR BCC AND NON-BCC 

IMAGES 

Figure 10 shows an example of vessel masks generated from the U-Net model for 

BCC and non-BCC images. From left, columns 1 and 3 show non-BCC and BCC images, 

respectively, whereas columns 2 and 4 show the predicted masks from the U-Net model. 

The second image in column 1 has some vessels outside the lesion captured in the 

predicted masks. Compared to the telangiectasia vessels in the BCC images, these vessels 
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appear disconnected and thinner. Handcrafted masks can capture such distinctive 

properties. 

 

Figure 10. From left: Column 1 shows non-BCC images, column 2 shows their predicted 

masks, column 3 shows BCC images, and column 4 shows predicted BCC masks 

3.2. DEEP LEARNING TRAINING RESULTS AFTER FINE-TUNING 

We achieved the best deep learning results from the EfficientNet-B5 baseline 

model. The weights after layer 200 were unfrozen, and the model was fine-tuned to our 

binary BCC vs. non-BCC classification. The preliminary transfer learning model 

converged at 100 epochs and took nine more epochs to converge after fine-tuning. 
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Figure 11. Loss curves before and after fine-tuning the EfficientNet-B5 based model 

 

Figure 12. Accuracy curves before and after fine-tuning the EfficientNet-B5 based model 

Figure 11 and 12 show the loss and accuracy curves for the training and validation 

sets. The green vertical line denotes the point at which fine tuning starts. After a jump in 

accuracy and a dip in loss, the curves flatten, and the model converges. The validation 

and test set accuracies were 95.9% and 95.2%, respectively. After the model is trained, 

the 2048 length feature vector is extracted for the training, validation, and test sets. 
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3.3. FEATURE IMPORTANCE WITH RANDOM FOREST 

Feature importance score is calculated for deep learning and handcrafted features 

using the random forest classifier. The selection of key features results in models 

requiring optimal computational complexity while ensuring reduced generalization error 

due to noise introduced by less important features. Figure 13 and 14 show the selected 

features with their importance scores. 

 

Figure 13. Importance scores for deep learning features 

 

Figure 14. Importance scores for handcrafted features 
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The top 50 deep learning features with importance score greater than 0.005, and 

the top 23 handcrafted features with importance score greater than 0.01 are selected. 

From Figure 14, we observe that the most important handcrafted features generally 

include area of vessel objects, number of vessel objects, vessel eccentricity features, and 

color values of the vessel objects and the surrounding area. 

3.4. FINAL CLASSIFICATION WITH DEEP LEARNING AND RANDOM 

FOREST CLASSIFIER 

Table 3 shows six different fusion models that we tested. The different models are 

based on the following two selection criteria:   

1. Pretrained model used for extracting deep learning features:  

EfficientNetB5, EfficientNetB0, and InceptionV3 

2. Feature set size:  

A.  Fusion 2: Select deep learning and handcrafted features with the highest 

importance score: total 73 features: 50 for deep learning and 23 for handcrafted 

B.  Fusion 1: All deep learning and handcrafted features  

a. EfficientNet-B5: total 2128 features; 2048 for deep learning and 80 for 

handcrafted  

b. EfficientNet-B0: total 1360 features; 1280 for deep learning and 80 for 

handcrafted  

c. InceptionV3: total 2128 features; 2048 for deep learning and 80 for 

handcrafted 

We achieve the best scores across all metrics with our Fusion 2 model that uses 

select critical features extracted from the fine-tuned EfficientNet-B5 model and 
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handcrafted features extracted from vessel masks that feed a random forest classifier to 

yield a final classification result. We achieve an accuracy of 0.972, sensitivity of 0.979, 

specificity of 0.965, and precision of 0.965. We achieve an AUC of 0.995 as shown in 

Figure 15. Table 4 shows the improvements in metrics as we move from the fine-tuned 

EfficientNet-B5 model to our fusion model. The accuracy, sensitivity, specificity, and 

precision improve 1.3%, 3.7%, 1.5% and 1.5%, respectively, suggesting the importance 

of adding handcrafted features. Omitting the surround features from the list of 

handcrafted features drops the AUC slightly, from 0.995 to 0.993. 

Table 3. Performance Comparison of Different Fusion Models 

Model Feature set size Acc Sens Spec Prec 

EfficientNet-B5-

FT-Fusion2 

73: 50 EfficientNet-B5-FT + 23 

handcrafted 

0.972 0.979 0.965 0.965 

EfficientNet-B0-

FT-Fusion2 

73: 50 EfficientNet-B0-FT + 23 

handcrafted 

0.967 0.979 0.955 0.960 

InceptionV3-FT-

Fusion2 

73: 50 InceptionV3-FT + 23 

handcrafted 

0.955 0.965 0.95 0.95 

EfficientNet-B5-

FT-Fusion1 

2128: 2048 EfficientNet-B5-FT 

+ 80 handcrafted 

0.964 0.967 0.955 0.95 

EfficientNet-B0-

FT-Fusion1 

1360: 1280 EfficientNet-B0-FT 

+ 80 handcrafted 

0.934 0.945 0.94 0.933 

InceptionV3-FT-

Fusion1 

2128: 2048 InceptionV3-FT + 

80 handcrafted 

0.93 0.942 0.934 0.93 

Notes for Table: FT: Fine-tuned; Acc: Accuracy; Sens: Sensitivity; Spec: Specificity; 

Prec: Precision 

Table 4. Performance Comparison with Baseline DL Model 

Model Feature set size Acc Sens Spec Prec 

EfficientNet-B5-FT-Fusion2 73: 50 EfficientNet-

B5-FT + 23 

handcrafted 

0.972 0.979 0.965 0.965 

EfficientNet-B5-FT 2048 EfficientNet-B5 0.952 0.942 0.950 0.950 

Notes for Table: FT: Fine-tuned; Acc: Accuracy; Sens: Sensitivity; Spec: Specificity; 

Prec: Precision 
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Figure 15. ROC curve for our final fusion classification model 

Table 5. Performance Comparison with Other Methods 

Manu Dataset Feature 

categories  

Final 

Classifier 

Acc  Sens Prec 

Kharazmi et al. 

2017 

659; 299 BCC 

and 360 non-

BCC 

Vascular features Random 

Forest 

0.965 0.904 0.952 

Kharazmi et al. 

2018 

1199; 599 BCC 

and 600 non-

BCC 

Patient profile 

information & 

SAE feature 

learning 

Softmax 0.911 0.853 0.877 

Serrano et al. 

2022 

692 BCC and 

671 non-BCC 

Color and texture 

features 

MLP 0.970  0.993 0.953 

Proposed 

method 

2000; 1000 BCC 

and 1000 non-

BCC  

EfficientNet-B5 & 

localized vessel 

handcrafted color 

and shape features 

Random 

Forest 

0.972 0.979 0.965 

Notes for Table: Manu: Manuscript; Acc: Accuracy; Sens: Sensitivity; Spec: Specificity; 

Prec: Precision 

3.5. PERFORMANCE COMPARISON WITH EXISTING METHODS 

We compared the performance of our proposed fusion model with 3 other 

published results [17,18,19]. Table 5 lists the datasets, features, classifiers, and scoring 

metrics for the models. We achieve better accuracy and precision values with our method 
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than the existing best values. All the methods listed except ours use some type of color 

and texture features; only ours semantically segments telangiectasia as an intermediate 

step. 

4. DISCUSSION 

A crucial clue for the clinical diagnosis of basal cell carcinoma is the presence of 

telangiectasia within the lesion. Classical image processing methods to detect these 

vessels in this study used statistical measures to quantify telangiectasia features. These 

measures included characteristics such as color values relative to the surrounding lesion 

area [12] or independent component analysis of melanin and hemoglobin components 

followed by thresholding and clustering. [18]. From these vessel masks, different color, 

texture, and shape features are calculated. Our group used a deep learning-based U-Net 

model to detect these vessel masks with high accuracy vs. ground truth, obtaining a mean 

Jaccard score within the variation of human observers [15].  

Recently, deep learning methods achieved superior results for detecting features 

such as hair [28] and globules [29]. From these deep learning-generated masks, classical 

features are calculated with the assumption that if the masks are more accurate, the 

features will be as well. Developing a single model for diagnosis without extracting 

individual features from whole images using pre-trained deep learning models also has 

been used extensively. However, it is impossible to know which features the deep 

learning model deems more important, contributing to its black box nature. Our structure-

based detection model partially remedies this shortcoming by detecting specific features. 
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Moreover, this report shows improved diagnostic accuracy for BCC vs. non-BCC 

classification by combining deep learning and classical features with ensemble learning. 

Figure 10. displays the advantages of the method presented here. Benign lesions 

have fewer vessels, and the total vessel area is less, as shown in columns 2 and 4 of 

Figure 10. The number of vessels, their morphological features and statistical properties 

show up as the most discriminatory features obtained from these masks, as shown in 

Figure 14. Eccentricity and color of objects found, all critical features of telangiectasia, 

are also crucial handcrafted features derived from these masks.  

   We achieve state-of-the-art results with this approach that are better than deep 

learning or traditional image processing results, indicating promise for our structure-

based detection model. We also achieve clinically explainable results, opening similar 

pathways to solve other diagnostic challenges. Our results also confirm the superiority of 

ensemble learning methods for selecting a robust feature combination that improve the 

model’s accuracy. As seen from Table 1, all metrics improve when the features with 

higher importance scores are used.  Another observation concerns the recent study by 

Serrano et al. [19]. The authors used different BCC features to annotate images with the 

presence or absence of features. We achieve a similar AUC but slightly better accuracy 

with our proposed model, using only a single automatically segmented BCC structure: 

telangiectasia. Due to this added local pixel information, our results achieve state-of-the-

art accuracy automatically without observing and annotating every single pattern that 

may or may not be present. In previous work, we determined significant interobserver 

variability in vessel annotation [15]. However, DL can learn to detect structures with 

more consistency than those providing the masks for DL training. Thus, DL appears to be 
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able to generalize from limited and inexact data sets and can detect vessel-like structures 

in different kinds of skin lesions, not just BCC. Figure 10 shows that our U-Net-based 

vessel detection model can identify these structures even in non-BCC images. Once the 

telangiectasia are detected, distinguishing qualities in BCC vessels (thinness, arborizing) 

are captured when we calculate the handcrafted features as indicated in Table 1. Using 

handcrafted features also helps us distinguish between vessels present outside the lesion, 

as they do not contribute to BCC diagnosis. 

   To account for the missed vessels due to blurry boundaries [15], our 

introduction of surround area features also leads to an overall improvement in the AUC 

value. For segmentation problems, surround area detection by boundary expansion is a 

novel solution to feature finding that can contribute to better classification. 

There are several limitations of this work. The vessel mask marking was 

supervised by a single dermatologist (WVS). Only one team observer (one of AM, DS, 

SS, or WVS) annotated each mask. The final sensitivity was less than for the study by 

Serrano et al., however, the overall accuracy was higher. 

5. CONCLUSION AND FUTURE WORK 

This study proposes a telangiectasia-based fusion model approach for classifying 

BCC vs. non-BCC lesion images. To train our vessel identification model’s deep learning 

(U-Net) arm, we developed telangiectasia masks for 1000 BCC images, available here. 

No such telangiectasia overlay database for BCC currently exists. Using the results from 

[15], we calculate the color and texture features from telangiectasia vessel masks and 

deep learning features learned from the EfficientNet-B5 model to yield a final 
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classification result.  Using a random forest model to combine features of each model 

provides a framework for fusion models.   

Our fusion model outperforms past BCC classification models in precision and 

accuracy, over a larger dataset than in previous studies, one that is publicly available. Our 

state-of-the-art accuracy demonstrates the effectiveness of the proposed fusion techniques 

for this medical dataset. Our results produce more explainable results than whole-image 

deep learning results as we target clinically observable and relevant telangiectasia 

features. The current study is the only one, to the best of our knowledge, which uses 

semantically generated telangiectasia vessel features for BCC diagnosis.  

In the future, we would like to continue this research by including more clinical 

features for our fusion model and employing additional statistical techniques. For medical 

datasets limited in number, fusion techniques can help establish state-of-the-art 

diagnostic models. 
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ABSTRACT 

A critical clinical indicator for basal cell carcinoma (BCC) is the presence of 

telangiectasia (narrow blood vessels) within the skin lesions. Many skin cancer imaging 

processes today exploit deep learning (DL) models for diagnosis, segmentation of 

features and feature analysis. Hence, integration of deep learning models with 

telangiectasia features could help improve BCC diagnosis. To extend automated 

diagnosis, recent computational intelligence research has explored the field of 

Topological Data Analysis (TDA). Persistent homology is a TDA method to identify and 

quantify topological features of a data set, such as clusters, voids, and tunnels. TDA 

quantifies these features. In this study we exploit all three aspects namely, telangiectasia, 

deep learning and TDA to achieve our final BCC classification model. First, we exploit 

persistent homology-based statistics to implement a color and telangiectasia driven BCC 

classification model. Second, we use fine-tuning with EfficientNet-B5 based model to 

achieve robust deep learning features. Finally, we combine the first two models to build 

our final hybrid TDA-DL model which achieves state of the art accuracy of 97.4% and 
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AUC of 0.995 on a holdout test of 395 skin lesions for BCC diagnosis. Our hybrid 

diagnostic model shows that telangiectasia features improve BCC diagnosis and TDA 

improves DL performance. 

Keywords— basal cell carcinoma, TDA, persistent homology, deep learning, fusion, 

telangiectasia, transfer learning, dermoscopy 

1. INTRODUCTION 

Over two million cases of basal cell carcinoma (BCC) diagnosed yearly in the US 

[1]. The initial diagnosis of BCC includes a visual inspection by a dermatologist or mid-

level practitioner (nurse practitioner or physician assistant), often with a dermatoscope. If 

the. diagnosis is unclear or if confirmation is needed, an invasive procedure such as a 

biopsy is performed. Recent research has aimed to improve diagnostic accuracy and 

minimize the number of biopsies through automatic image processing. In some cases, 

deep learning (DL) methods applied in dermoscopy have outperformed dermatologists 

[2-6].  Skin cancer diagnosis from images has advanced by implementing DL and, in 

some cases, fusion ensembles employing DL, metadata, and handcrafted features [7-12].  

Telangiectasia or thin narrow blood vessels within the skin lesions are a critical 

clinical indicator of BCC. [12-14] Studies have detected these blood vessels through 

various handcrafted pixel-based techniques or patch-based techniques. Cheng et al. [13] 

investigated a local pixel color drop technique to identify vessel pixels. Kharazmi et al. 

[14] applied independent component analysis, k-means clustering, and shape for 

detecting vessels and other vascular structures. Kharazmi et al. [15] detected vessel 

patches by using a stacked sparse autoencoder (SSAE) as their DL model. Maurya et. al 
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[16] employed DL to segment these vessels semantically, a dermoscopic feature-driven 

approach also used by Nambisan et al to detect dots and globules [17].  

Cheng et al. [18] used an adaptive critic design approach in the past to detect and 

use these vessels for BCC classification. Kharazmi et al. [14] used a random forest-based 

classifier to diagnose BCC with color and texture features. Kharazmi et al. [19] used a 

combination of SSAE and patient meta data for BCC diagnosis. Serrano et.al [20] used 

clustering-based color features and GLCM-based texture features to train VGG16 and 

MLP models for DL-based BCC classification.  

Topology is a branch of mathematics concerned with the properties of geometric 

objects that are preserved when the object is stretched, bent, or otherwise deformed. 

Topological Data Analysis (TDA) is an area of mathematics and data analysis that uses 

tools from topology to study the shape of data. It is a relatively newer research field that 

is now increasingly used for image classification, feature extraction and image analysis 

[21-25]. The main idea behind TDA is that the shape of the “point cloud” or clusters of 

data points can reveal important data properties that may not be immediately apparent 

from other types of analysis.  For example, TDA can be used to identify clusters or 

groups of data points, detect patterns or trends in the data, and to extract features or 

characteristics that persist along multiple higher dimensional scales.  Hu et.al [24] used 

TDA based methods for skin lesion segmentation and classification. Bendich et al [25] 

employed TDA based persistence diagrams to find metadata correlations to the brain 

artery trees, establishing a correlation between age and brain artery tree topology  

This study explores TDA’s ability to extract features from telangiectasia and 

color-spaces to improve EfficientNet-B5 pre-trained model performance. 
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This study contributes the following to the existing literature on automatic BCC 

diagnosis:  

• Integrating a clinically observable physical feature: telangiectasia with a DL-

TDA model to improve performance.  

• Demonstrating an alternative and less computationally intensive TDA model for 

medical image diagnosis. 

The remainder of the paper is organized as follows. Section 2 explains the image 

datasets, our proposed methodology, and training details. Section 3 presents and explains 

our experimental results. Section 4 provides a discussion on our approaches and results. 

Section 5 gives the conclusion and possible future work.  

2. MATERIALS AND METHODS 

2.1 IMAGE DATASETS 

This study uses BCC and benign dermoscopic skin cancer images derived from 3 

datasets: the HAM10000 dataset (ISIC 2018) of Tschandl et al. [26], a publicly available 

skin lesion dermoscopy dataset containing over 10,000 skin images for seven diagnostic 

categories, the ISIC 2019 dataset [26-28], and datasets R43 from NIH studies CA153927-

01 and CA101639-02A2 [29]. The U-Net model is trained on a total of 1000 BCC 

images, 127 of which come from the HAM10000 dataset, 90 from ISIC 2019 and 783 

from the NIH study dataset. We use 1000 non-BCC images from the HAM10000 dataset 

for our DL-BCC diagnostic model.  

The 1000 non-BCC lesions along with their distribution in the dataset are:  

• Benign Keratosis: 400 
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• Nevus: 400 

• Actinic Keratosis: 67 

• Dermatofibroma: 67 

• Vascular Lesion: 66 

The 1000 BCC images in the dataset are the same as the U-Net model. All the 

images are 8-bit RGB of size 450x600 from the HAM10000 dataset and 1024x768 from 

the NIH study dataset. Example images of these skin lesions are shown in Figure 1. 

 

Figure 1. From left: actinic keratosis, benign keratosis, dermatofibroma, basal cell 

carcinoma, nevus and vascular lesion 

2.2. PRE-PROCESSING 

All the images are square cropped centering on the lesion area and resized to 

448x448. For the U-Net model, there is an extra step where the images are processed 

with histogram stretching, contrast limited adaptive histogram equalization (CLAHE), 

normalization, and brightness enhancement (to make vessels brighter and distinguishable) 

[16]. The ground truth vessel masks are dilated with a 3x3 structuring element and closed 

with a 2x2 structuring element. We perform geometric augmentations: rotation of +30° to 

-30° in reflect mode (to preserve vessel continuity), horizontal and vertical flip, width 

shift with a range of (-0.2, +0.2), height shift with a range of (-0.2, +0.2), and shear with 

a range (-0.2, +0.2). Figure 2 shows the steps of pre-processing. 
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Figure 2. Pre-processing flowchart 

2.3. PROPOSED METHODOLOGY 

Figure 3 presents our five-component hybrid TDA and deep learning model 

pipeline investigated in this study, including:1. A U-Net model that semantically 

segments telangiectasia in both BCC and non-BCC skin lesion images. 2. A TDA based 

framework that calculates Persistence Statistics (PS) from vessel masks and -selected 

color spaces of the images. 3. A deep learning (DL) model based on EfficientNet-B5 for 

feature extraction 4. Generating class probabilities from two separate random forest 

classifiers, one for DL and one for TDA 5. Majority voting between the probabilities 

generated from DL and TDA features to yield a final classification. The following 

subsections describe each of the components in detail. 
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Figure 3. Pipeline investigated employing a hybrid TDA-DL method for BCC 

classification 

2.3.1. U-Net for Telangiectasia Masks. U-Net based segmentation models are 

widely used in medical image segmentation [30]. The U-Net model and its 

hyperparameters are taken from [16] for this study. The model produces binary vessel 

masks for BCC and non-BCC lesion images. A TDA framework used these binary vessel 

masks (as explained in detail in the subsequent sections) to generate topological features. 

2.3.2. Topological Data Analysis (TDA) and Persistent Homology. Topological 

Data Analysis (TDA) applies the concepts and methods of topology for the analysis and 

visualization of complex data. Persistent homology (PH), a statistical tool of TDA, can 

detect topological features of the data that persist over larger scales and long intervals of 

time. PH accounts for the topological features i.e., connected components in dimension 0, 
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loops in dimension 1 and voids in dimension 2 by creating persistence diagrams [21-25]. 

The persistent homology algorithm follows the steps shown in Figure 4. 

 

Figure 4. Flow of the persistent homology algorithm to generate persistence diagrams 

The main steps of the process are described below: 

A. Point clouds: Point clouds are collections of data points that reflect the 

geometry and spatial relationships of a real-world object or environment in a high-

dimensional space, most often a three-dimensional (3D) space. The x, y, and z 

coordinates of each point in a point cloud, as well as any other qualities like color or 

intensity, are used to identify each point's location in the space. Point clouds serve as the 

pixel intensity values for our problem. 

B. Topological invariants: Topological invariants are topological space-related 

mathematical numbers or qualities that are true even if the space is altered in some way. 

These invariants offer a mechanism to categorize and separate various topological spaces 

according to their inherent characteristics. Betti numbers are also a type of topological 
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invariant representing the total number of holes in a space of various sizes. Higher Betti 

numbers count higher-dimensional holes. The first Betti number counts independent 

loops, while the zeroth Betti number counts connected components. Topological 

invariants are frequently generated from algebraic structures known as homology groups 

or cohomology groups in the setting of algebraic topology, which examines the algebraic 

features of topological spaces. Chains or cochains, formal combinations of simplices or 

cells in a topological space, are used to create these groups.  

C. Simplicial complex: In the study of combinatorial topology and geometry, a 

simplex is a fundamental geometric object. It is an extension of the 2-dimensional 

simplex idea of a triangle to higher dimensions. The convex hull of (n+1) affinely 

independent points in Euclidean space is formally referred to as an n-dimensional 

simplex. A simplex is the "simplest" conceivable polytope in n-dimensional space, 

equivalently, it is a geometric object [21-25]. Here are a few instances: 

• A vertex of a zero-dimensional simplex is represented by a single point 

• A line segment joining two points is referred to as a one-dimensional 

simplex 

• A triangle having three vertices and three edges is referred to as a two-

dimensional simplex  

• A tetrahedron with four vertices, six edges, and four triangular faces is 

referred to as a three-dimensional simplex. 
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Figure 5. Simplicial Complex containing a 3D simplex (tetrahedron) and a 2D simplex 

(triangle) 

Topological invariants can be computed from the simplicial complex by counting 

the number of simplexes of different dimensions that make up the complex Let V be a set 

of vertices. A subset S of V is called a simplex of dimension n if it contains n+1 elements 

that are affinely independent, meaning that the points do not lie in a lower-dimensional 

hyperplane. The elements of S are called the vertices of the simplex. A simplicial 

complex K is a collection of simplexes in V that satisfies the following conditions [21-

25]: 

• Any face of a simplex in K is also in K, meaning that if S is a simplex in 

K, then every subset of S that is a simplex is also in K. 

• The intersection of any two simplexes in K is either empty or a face of 

both. 

Figure 5 shows a simplicial complex that includes a tetrahedron and a triangle. 

D. Vietoris-Rips Complex: We utilize the Vietoris-Rips Complex to produce 

Simplicial Complexes from our image dataset. It is built by joining together spatial pairs 

of points that are relatively close to one another, and then joining together higher-
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dimensional simplexes while considering the connectivity of the lower-dimensional 

simplexes. 

Formally, for a set of points P of dimension d, where P is a subset of Rd, then the 

Vietoris-Rips (VR) complex Vϵ(P) at scale ϵ (the VR complex over the point cloud P 

with parameter ϵ) is defined as [21-25]: 

Vϵ(P)  = {σ ⊆P∣d(u,v)≤ϵ,∀u≠v∈σ} 

Hence, for a set of data points in P, we include a simplex σ (a subset of P) if the 

points in σ are all within a distance of ϵ from each other, As a result, we obtain a 

collection of subsets of P that are all simplices, or a simplicial complex of P. 

E. Filtration: By varying the values of ϵ to different levels, we discover what 

appears to produce a significant VR complex. If ϵ is set too small, the complex might just 

include the initial point cloud or a sparse number of edges connecting the points. On the 

other hand, the point cloud will just merge into one enormous ultra-dimensional simplex 

if ϵ is set too large. In order to truly find patterns in a simplicial complex, we must 

repeatedly change the parameter ϵ (and generate new complexes) from 0 to a maximum 

that yields a single huge simplex. Then the diagram illustrates what topological features 

are created and destroyed as ϵ keeps rising. We assume features that persist over a long 

period of time are significant and vice versa. This process is called filtration. 

F. Persistence Diagrams: A persistence diagram is a graphical representation of 

this process, which consists of a collection of points in a two-dimensional plane. Each 

point in the diagram represents a topological feature and its corresponding lifespan or 

persistence, defined as the difference between the scale at which the feature was born and 

the scale at which it died out. The diagram’s horizontal axis represents the birth values of 



62 

the topological features, while the vertical axis represents their death values. The 

diagonal line in the diagram represents features with the same birth and death values and 

is called the diagonal or the "line of equality".  

0D persistent homology and 1D persistent homology refer to the analysis of 

topological features in different dimensions using the persistent homology framework. 

0D persistent homology focuses on analyzing connected components or clusters in a data 

set. It captures the evolution of these connected components as a parameter, typically 

related to distance or scale, varies. By systematically increasing or decreasing the 

parameter, 0D persistent homology tracks the birth and death of connected components. 

In 0D persistent homology, the filtration complex is constructed by associating each data 

point in the set with a 0-dimensional simplex. Initially, each data point is a separate 

connected component. As the parameter increases or decreases, connected components 

may merge or disappear, resulting in changes in the topology of the data set. The 

persistence intervals, or barcode intervals, represent the lifespan of the connected 

components, indicating when they are born and when they die. 

1D persistent homology focuses on analyzing loops or cycles in a data set. It 

captures the evolution of these loops as the filtration parameter varies. By systematically 

changing the parameter, 1D persistent homology tracks the birth and death of loops. In 

1D persistent homology, the filtration complex is constructed by considering both the 

data points and the edges connecting them. Initially, each data point is a 0-dimensional 

simplex, and each edge is a 1-dimensional simplex. As the parameter increases or 

decreases, edges may form loops or cycles, merge with existing loops, or disappear. The 
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persistence intervals represent the lifespan of the loops, indicating when they are born 

and when they die. 

From this point onwards, we refer to the persistence diagrams corresponding to 

0D and 1D persistent homology as P0 and P1. 

One approach to understanding this filtration process involves creating a sequence 

of growing spheres centered on each point and connecting those with overlapping spheres 

with edges or triangles. Figure 5 illustrates this process.  

A. We start with a collection of data points (point clouds) in 2D space. At this 

point the value of ϵ or the radius of the spheres is 0. Hence the connected components are 

born at x=0. Since there has been no death or “overlap”, there is no corresponding y 

value. 

B. As the concentric spheres around the datapoints increase in size/radii (ϵ 

increases), the first connected components die or overlap, giving us the first death. Hence 

we see the first birth-death pair point on the corresponding persistence diagram with birth 

at x=0 and death at y>0, with x and y both simply corresponding to the radius ϵ of the 

spheres. 

C. At this stage, with the radius or ϵ increasing, more deaths or overlaps happen 

leading to more deaths and larger values of y, but we also see the emergence of a loop, 

hence a birth value for 1D homology. This loop finally disappears in the second substage. 

Hence, we arrive at a birth and death value for x and y, both greater than zero and 

accounted for by the orange point in the corresponding persistence diagram. 
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Therefore, the persistence diagram provides a global summary of the topological  

features of a dataset, capturing both their presence and their persistence over different 

scales. 

 

 

Figure 6. Persistent homology filtration process leading to formation of birth-death pairs 

in the persistence diagram 

For image classification, we use one channel at a time from a 3-channel color 

space; for example: red color plane from the RGB color space, grayscale image or binary 

image. PH is used for image analysis by treating image pixels as point clouds, where 

point clouds are a collection of data points in a high dimensional space. the shape of the 

point cloud can reveal important data properties that can be used to identify patterns in 

images, such as textures or shapes, and to measure the similarity between different 

images. Figure 6 shows persistence diagrams P0 an P1 for a BCC and non-BCC image 

for the red color channel from the RGB color space We can notice even by visual 

observation that the birth-death pairs for both images seem distinguishable. 
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Figure 7. Top row, from left: BCC skin lesion; Its corresponding P0 persistence diagram 

and P1 Persistence diagram for the red plane; Bottom row, from left: non-BCC (actinic 

keratosis) skin lesion; Its corresponding P0 persistence diagram and P1 Persistence 

diagram for the red plane 

 

2.3.3. Persistence Statistics for Topological Features. In the context of a digital 

image, a point cloud is a set of points in a high-dimensional space representing each 

pixel’s position and color information. Each point in the point cloud corresponds to a 

single pixel in the image, and its position in the space is determined by its x and y 

coordinates, while additional dimensions or attributes can represent its color. For our 

dataset, we treat each channel of a 3-channel image (example RGB) as a grayscale image 

with pixel intensity values ranging from 0 to 255 [24]. This forms the initial point cloud 

for the subsequent persistent homology process. We extract five channels form 3 
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different color spaces namely, R, G, B from the RGB color space, V from the HSV color 

space and Z from the XYZ color space as these channels performed the best. We also 

include the predicted telangiectasia mask for the images as another binary image for 

feature calculation through persistence diagrams. For all the channels we generate both 

P0 and P1. The process of calculating persistence statistics from P0 is shown in Figure 8. 

 

Figure 8. Generation of persistence statistics-based features 

As shown in Figure 7, the persistence diagram P, contains collections of pairs of 

points that represent the birth and death values of topological features. Our persistence 

statistics include three quantities that summarize this information in persistent diagrams: 

total persistence, mid-life coordinates and normalized lifespan [24]. If birth is denoted by 

b and death is denoted by d, d-b is the lifespan of the topological feature. It represents the 
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length of time that the corresponding feature persisted during the filtration process. The 

total persistence is then defined as the sum of the persistence values over all points in the 

diagram. Mathematically, this can be expressed as: 

Li = ∑ 𝑑 − 𝑏(𝑏,𝑑)∈𝑃𝑖
 

where i = 0,1 corresponding to P0 and P1. The total persistence provides a global 

measure of the complexity or richness of a dataset's topological structure, by considering 

all the topological features and their persistence over different scales. Another statistic is 

midlife coordinates, expressed mathematically as: 

Mi = (b + d)/2 

The third measure is normalized lifespan. It measures the relative persistence or 

robustness of topological features in a dataset, considering their lifespans and the overall 

complexity of the persistence diagram. We calculate the normalized lifespan pi for each 

point in the diagram as its persistence divided by the total persistence: 

pi = (d-b)/Li 

The normalized lifespan pi is a measure of the relative persistence or robustness 

of a topological feature in comparison to the overall complexity of the persistence 

diagram [22]. It indicates the proportion of the total persistence contributed by the 

corresponding feature and provides insight into how long-lasting and persistent the 

feature is. Mi and pi are empirical distributions [24] and we apply standard statistical 

measurements on these distributions, to calculate our feature vector.  Table 1 shows the 

32topological features we calculated for each image in our dataset. 
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Table 1. Persistence Statistics calculated for our methodology 

Feature number Feature name (i =0,1) Description 

1 to 4 Pi_meanmidlife 

Pi_mean_normalized_lifespan 

Means of Mi and pi 

5 to 8 Pi_std_midlife 

Pi_std_normalized_lifespan,  

Standard deviation of Mi and pi 

9 to 12 Pi_skew_midlife 

Pi_skew_normalized_lifespan 

Skewness of Mi and pi 

13 to 16 Pi_kurtosis_midlife 

Pi_kurtosis_normalized_lifespan 

Kurtosis of Mi and pi 

17 to 20 Pi_median_midlife 

Pi_median_normalized_lifespan 

Medians of Mi and pi 

21 to 24 Pi_perc25_midlife 

Pi_perc25_normalized_lifespan 

25th percentile of Mi and pi 

25 to 28 Pi_perc75_midlife 

Pi_perc75_normalized_lifespan 

75th percentile of Mi and pi 

29 to 32 Pi_interquart_midlife 

Pi_interquart_normalized_lifespan 

Interquartile ranges of Mi and pi 

 

2.3.4. Transfer Learning with EfficientNet-B5 for Feature Extraction. A 

family of convolutional neural network (CNN) models called EfficientNet has attained 

cutting-edge performance on a variety of computer vision applications while retaining a 

manageable number of parameters [31-33]. By properly scaling the network in several 

dimensions, EfficientNet's major goal is to address the trade-off between model size and 

accuracy. In the past, scaling a model meant individually expanding its depth, width, or 

resolution. EfficientNet, on the other hand, suggests a compound scaling technique that 

takes depth, width, and resolution into account all at once. The compound scaling 

technique also ensures that the model can be efficiently fine-tuned on smaller datasets 

without overfitting. Lama et al [34-35] successfully employed EfficientNet-based DL 

models for lesion segmentation and hair detection. Hence, we chose an EfficientNet 

based model, specifically EfficientNet-B5 for extracting our deep learning features for 

the classification model.  
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We remove the top layers from the original EfficientNet-B5 model because it was 

designed for 10 class classification instead of binary classification. We replace them with 

a global average pooling layer, a dropout layer, and a final dense layer. The initial input 

image size for our model is 448x448x3. Our model, which has 14 phases, is first utilized 

for classification, then feature extraction using the trained model. We begin with a 3x3 

filter convolution, batch normalization, and swish activation function for the 

classification stage, cutting the image dimensions in half from 448 to 224 and raising the 

number of channels from 3 to 48. As a result, the feature map's measurements are 

224x224x48. Stage 2 is composed of three layers of an MBConv1 block with a 3x3 filter, 

which reduces the number of channels while maintaining the resolution of Stage 1 to 

produce a feature map with dimensions of 224x224x24. Stages 3 (five layers), 4 (five 

layers), and 5 (seven layers) employ three MBConv6 blocks, each with a kernel size of 

5x5, to gradually decrease the resolution while expanding the size of the feature map to 

28x28x128 (the stage's finish). Stages 6 (7 layers), 7 (9 layers), and 8 (3 layers) each 

apply three more MBConv6 blocks with kernel sizes of 3x3, 5x5, and 3x3 to create a 

feature map with a final dimension of 14x14x512. A feature map with the dimensions 

14x14x2048 is produced at stage 9 using a 1x1 convolution with 2048 filters. Stages 10 

and 11 maintain the feature size from the preceding layer while applying batch 

normalization and Softmax activation. Stage 12 uses global average pooling to increase 

the resolution to 2048, followed by stages 13 and 14 leading to the final classification: a 

dropout and dense layer. After the 200th layer, the model is fine-tuned, and the best 

model is saved. After the global average pooling layer, at stage 12, we carry out feature 
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extraction, producing a 2048-dimensional feature vector for the training, validation, and 

test sets. Table 2 displays the phases, procedures, resolutions, channels, and layers. 

Table 2. Our EfficientNet-B5 based deep learning model 

Stage Operator Resolution Channels Layers 

1 Conv 3x3 + BN + Swish 224x224 48 1 

2 MBConv1, k3x3 224x224 24 3 

3 MBConv6, k5x5 112x112 40 5 

4 MBConv6, k5x5 56x56 64 5 

5 MBConv6, k5x5 28x28 128 7 

6 MBConv6, k3x3 28x28 176 7 

7 MBConv6, k5x5 14x14 304 9 

8 MBConv6, k3x3 14x14 512 3 

9 Conv 1x1 14x14 2048 1 

10 BN 14x14 2048 1 

11 Activation 14x14 2048 1 

12 Global Average Pooling 2048 1 1 

13 Dropout 2048 1 1 

14 Dense 1 1 1 

 

2.3.5. Class Probabilities with Majority Voting. The 2048-dimensional feature 

vector from the EfficientNet-B5 model and the 192-dimensional TDA-PS feature vector 

are both used as inputs for two different random forest classifiers. These random forest 

ensemble learners generate probabilities for each class (BCC and non-BCC) resulting in 4 

probability values:  

• DL_prob_1: probability of a lesion being BCC based on DL features 

• DL_prob_0: probability of a lesion being non-BCC based on DL features 

• TDA_prob_1: probability of a lesion being BCC based on TDA features 

• TDA_prob_0: probability of a lesion being non-BCC based on TDA 

features 
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For each image, the probability for each class is calculated and are compared and 

the class with the highest probability is chosen as the final class. 

2.4. TRAINING DETAILS 

Both deep learning models: U-Net and EfficientNet-B5 were built using Keras 

with a with a Tensorflow backend in Python 3.7 and trained using a single 32GB Nvidia 

V100 graphics card. Hyperparameters for the U-Net model are the same as for Maurya et 

al [16]. The hyperparameters for the EfficientNet-B5 model are listed in Table 3. For the 

random forest classifier, 1000 estimators are used with the Gini index criterion. The 

minimum samples per split are 2 with bootstrapping. 

Table 3. Hyperparameters for the EfiicientNet-B5 model 

Hyperparameter Values 

Fine tuning layer 200 

Epochs 120 

Learning rate 0.0001 

Batch size 20 

Loss function Binary cross-entropy 

Optimizer Adam 

Early stopping criteria Validation loss 

Patience 5 

Dropout rate 0.2 

 

3. EXPERIMENTAL RESULTS 

In this section we discuss the results of our experiments. All results listed were 

evaluated on the holdout BCC vs non-BCC test set of 395 skin lesion images (195 BCC 

and 200 no-BCC). The evaluation metrics used are Accuracy, Sensitivity, Specificity, and 

Precision which are defined as: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

where TP stands for True Positives, TN stands for True Negatives, FP stands for 

False Positives, and FN stands for False negatives. All variables denote pixel counts. 

3.1. U-NET TELANGIECTASIA SEGMENTATION RESULTS 

Figure 6 shows example non-BCC and BCC image with their corresponding 

predicted vessel masks. We can see that the U-net model can segment vessels in both 

types of lesions even though the vessels are distinguishable. As seen in the next section 

persistence statistics exploit this discriminative feature and improve classification. 

 

Figure 9. From left: non-BCC image with vessel mask prediction, BCC image with vessel 

mask prediction 
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3.2. BCC DIAGNOSIS WITH PERSISTENCE STATISTICS AND RANDOM 

FOREST 

We present classification results using persistence statistics calculated from the R, 

G, B, V and Z planes and the binary vessel masks. First, Table 4 shows a subset of the 

persistence statistics calculated from binary vessel masks for 10 BCC image examples. 

Table 4. Some example PS features calculated from vessel masks 

Image 

P0meanmidlifeVes 

P0mean_normalized_ 

lifespanVes P0std_midlifeVes P0skew_midlifeVes 

P0kurtosis_ 

midlifeVes 

1 217.496 0.008 86.0857 -2.149 2.6620 

2 224.4636 0.0181 78.3486 -2.577 4.8211 

3 212.6923 0.0042 90.8462 -1.908 1.6717 

4 202.7542 0.0055 99.7026 -1.548 0.4013 

5 201.4303 0.0081 100.057 -1.511 0.3109 

6 219.0749 0.0032 84.6016 -2.206 2.8897 

7 209.8139 0.0037 93.5049 -1.792 1.2348 

8 203.8088 0.0036 97.6522 -1.578 0.5371 

9 216.4583 0.0009 84.5038 -2.060 2.4011 

10 218.7165 0.0044 83.7334 -2.191 2.8978 

Table 5 shows the classification results of a random forest classifier trained on PS 

features derived from different subsets of color spaces. As we can see, there is a 2.3% 

jump in accuracy, 3.8% jump in sensitivity, 0.5% jump in specificity and 5% jump in 

precision after adding vessel features, hence signaling the importance of telangiectasia in 

improving BCC diagnosis. 
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Table 5. Random Forest classification with PS for R, G, B, V, Z and vessels 

Model Feature set size  Accuracy Sensitivity Specificity Precision 

R, G, B 32x3 = 96 0.900 0.875 0.928 0.875 

R, G, B, V 32x4 = 128 0.916 0.889 0.934 0.889 

R, G, B, V, Z 32x5 = 160 0.920 0.900 0.945 0.900 

R, G, B, V, Z, Vessels 32x6 =192 0.943 0.938 0.950 0.950 

 

To ensure features were not redundant we, run a feature importance test with a 

random forest classifier with our final feature model (R, G, B, V, Z, vessels) and test 

metrics by taking subsets of the persistence statistics calculated. Table 6 shows that 

metrics improve considerably after continuously adding PS features. We observe that all 

192 features are needed for high diagnostic accuracy. 

Table 6. Metric improvements with Subsets of PS Features 

Feature set size  Accuracy Sensitivity Specificity Precision 

First 50 0.867 0.855 0.866 0.867 

First 90 0.885 0.867 0.889 0.883 

First 130 0.902 0.890 0.913 0.900 

First 170 0.911 0.905 0.925 0.910 

All 192 0.943 0.938 0.950 0.950 

3.3. DEEP LEARNING RESULTS WITH EFFICIENTNET-B5 

Table 7 lists the three best models we trained for fine tuning on the BCC vs non-

BCC dataset. We achieve the best results with the EfiicientNet-B5 model and hence 

chose it for feature extraction for the hybrid model. Table 5 and 7 show that the TDA 

based random forest model performs better than EfficientNet-B0 and InceptionNetV3 but 
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slightly worse than EfficientNet-B5. Figure 10 shows the loss and accuracy plots for the 

EfficientNet-B5 model before and after fine-tuning. 

Table 7. Performance comparison of different deep learning models 

Model Feature set size  Accuracy Sensitivity Specificity Precision 

InceptionV3-FT 2048 0.920 0.910 0.942 0.934 

EfficientNet-B0-FT 1280 0.936 0.925 0.947 0.920 

EfficientNet-B5-FT  2048  0.959 0.942 0.950 0.950 

 

 

Figure 10. Training and validation accuracy and loss curves for fine tuning EfficientNet-

B5 on BCC vs non-BCC dataset 

3.4. BCC VS NON-BCC WITH HYBRID TDA-DL MODEL 

The results of our final hybrid TDA-DL model are shown in Table 8.  Adding the 

TDA -based persistence statistics (PS) features improve the deep learning results in two 

folds. We can see that without adding the PS features from vessels, the color channel-

based PS features still improve the DL results as accuracy is increased by 0.6%, 

sensitivity by 2.1%, specificity by 2% and precision by 2.1%. However, when we 

consider the full PS features, including the vessel features, the hybrid model’s accuracy 
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rises by 1.5%, sensitivity jumps by 3%, specificity jumps by 2.8% and precision jumps 

by 2.9%. 

Table 8. Performance comparison of DL model, PS model and hybrid TDA-DL model 

Model Feature 

set size  

Accuracy Sensitivity Specificity Precision 

DL-EfficientNet-B5 2048  0.959 0.942 0.950 0.950 

TDA (PS based) 192 0.943 0.938 0.950 0.950 

DL-TDA Hybrid without vessels 2208 0.965 0.963 0.970 0.971 

DL-TDA Hybrid with vessels 2240 0.974 0.972 0.978 0.979 

3.5 PERFORMANCE COMPARISON WITH EXISTING METHODS 

Table 9 compares the performance of our TDA-DL hybrid model with other 

published studies on the automation of BCC diagnosis [14] [19] [20]. Kharazmi et al [14] 

used vascular features from vessels whereas in [19], they used patient meta-data along-

with DL-based auto-encoder features. Serrano et. al [20] used annotated features 

accounting for the presence of several clinical biomarkers. Our hybrid model achieves 

higher accuracy and precision overall and produces segmentation telangiectasia as a sub-

step. Ours is the only study (to the best of our knowledge) exploring TDA approaches 

and focusing on improvement due to clinical features. 

Table 9. Performance comparison with other studies 

Manuscript Dataset  Feature categories Accuracy Sensitivity Precision 

Kharazmi et al 

2017 

659; 299 BCC and 360 

non-BCC 

Vascular features 0.965 0.904 0.952 

Kharazmi et al 

2018 

1199; 599 BCC and 600 

non-BCC 

Patient profile information & 

SAE feature learning 

0.911 0.853 0.877 

Serrano et al 2022  692 BCC and 671 non-

BCC 

Color and texture features 0.970  0.993 0.953 

DL-TDA Hybrid 2000; 1000 BCC and 

1000 non-BCC 

EfficientNet-B5 & localized 

vessel and global TDA 

features 

0.977 0.977 0.979 
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4. DISCUSSION 

The inclusion of biomarker-driven features for automation of cancer diagnosis is a 

rapidly growing field. The automation of telangiectasia detection is an important step in 

the diagnosis of BCC. Studies on this task include ones based on traditional rule-based 

image processing techniques such as color drop vessel detection [13] and independent 

component analysis of melanin and hemoglobin components followed by thresholding 

and clustering. [19]. Deep learning [16] performed this task at a pixel level by a U-Net 

segmentation model that obtains a Jaccard score within the variation of human observers. 

In this study we demonstrate the significance of segmenting telangiectasia and adding 

features derived from them to improve BCC diagnosis.  

TDA has been used extensively and successfully in many applications in medical 

image analysis [24], biology [36] neurology [25]. TDA can be applied for data with 

limited or noisy information, since it can work with incomplete or partial data as it can 

capture the multiscale structure of the data. Our initial random forest classification model 

based solely on persistence statistics derived from the red, green blue, V channel of HSV 

color space and Z channel of XYZ color space cannot outperform deep learning models. 

However, after the adding persistence statistics (PS) features derived from telangiectasia 

masks, we observe that the random forest classifier outperforms Inception-V3 and 

EfficientNet-B0 models, indicating the importance of this clinical feature in diagnosis. 

This observation is also significant as deep learning models learn the abstract data with 

the help of ground truth labels provided to them whereas TDA-based methods perform 

feature extraction without ground truth labels i.e., unsupervised learning. The PS-based 

TDA model accuracy result is slightly lower than that of the EfficientNet-B5.  
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TDA features can predict the BCC class more accurately for some test cases 

missed by deep learning. In our final hybrid DL-TDA model, we take advantage of 

majority voting of the DL and TDA probabilities. The accuracy improves by almost 2% 

on the holdout test set.  

The computational cost of calculating the persistence statistics features is 

significantly lower than for the deep learning features, i.e., they can be calculated without 

a high-performance GPU. Handcrafted features have also been used for improving 

diagnosis with fusion [7-12] [18] but usually feature calculation is feature- and problem-

dependent. With TDA analysis, we can bypass those limitations.  

Even with the recent improvements in the automation of skin cancer diagnosis, 

we acknowledge that raising the sensitivity and specificity of these models is an ongoing 

challenge. We recommend the proposed methodology for further exploration on other 

medical challenges and datasets. 

5. CONCLUSION 

This study proposes a deep learning and TDA hybrid approach for classifying 

BCC vs. non-BCC dermoscopic lesion images. We exploit color space information to 

calculate persistence homology topological features for our skin lesion images and also 

include topological features from a clinical biomarker for BCC, telangiectasia. For our 

deep learning model, we choose a state of the art pretrained model: EfficientNet-B5. 

Combining the DL and TDA features, our hybrid DL-TDA model outperforms 

EfficientNet-B5 as well as other convolution neural network-based pretrained models. 

We achieve state-of-the-art accuracy and precision, over a larger dataset, publicly 
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available at [37] than in previous studies. With the inclusion of the telangiectasia features 

and the subsequent improvements in the final classification result we also demonstrate a 

clinically explainable aspect of the diagnosis that can be extended to other biomarkers. 
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SECTION 

2. SUMMARY AND CONCLUSIONS 

This dissertation proposes data fusion techniques used together with deep learning 

methodologies for skin cancer image analysis. With the first work, the automation of a 

clinical biomarker for basal cell carcinoma (BCC), i.e., telangiectasia is performed using 

deep learning-based U-Net model. A unique database of 1000 telangiectasia vessel masks 

was created as part of this study. The second work utilizes these masks to extract image 

processing-based features that ultimately help improve a deep learning model for BCC 

diagnosis. Through this fusion technique, state-of-the-art metrics in BCC are achieved 

thus establishing the importance of fusion methods as well as introducing more 

explainability in the framework. The third study also extends data fusion work by 

exploiting topological features present in the skin lesion images as well as the 

telangiectasia vessels. This study also improves deep learning results for BCC diagnosis 

and produces similar results as the previous study. Topological techniques are 

computationally less extensive and less complex than image processing and deep learning 

methods and hence provide a pathway for improvements especially for smaller datasets. 

To conclude, deep learning has proven to surpass many state-of-the art results in 

previous and ongoing research but data fusion methods with different computational 

techniques, can help improve deep learning results further. 
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