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ABSTRACT 

Melanoma is recognized as the most lethal type of skin cancer, responsible for a 

significant proportion of skin cancer-related deaths. However, early detection of melanoma 

is essential for successful treatment outcomes. Computer-aided skin cancer diagnosis tools 

can save lives by enabling earlier detection of skin cancer. Image segmentation is a crucial 

step in computer-aided diagnosis as it allows the detection of critical features or regions in 

an image. Thus, an accurate image segmentation method is necessary to create a more 

precise computer-aided diagnostic tool for skin cancer diagnosis. This dissertation includes 

investigating and developing deep learning techniques to improve image segmentation in 

dermoscoopic skin lesion images.  

First, a novel deep neural architecture is proposed for hair and ruler mark detection 

in skin lesion images. Second, a new deep learning approach is developed to segment lesion 

borders. Third, a novel data augmentation technique is developed to generate synthetic 

multi-lesion images to train a robust deep neural network for multi-lesion segmentation. 

The experimental results from this research achieved state-of-the-art performance on hair 

and ruler mark segmentation and lesion segmentation in skin lesion images. 
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1. INTRODUCTION 

 

Skin cancer is a prevalent form of cancer worldwide, resulting primarily from 

exposure to ultraviolet radiation (UV) from the sun or other sources such as tanning beds. 

The three primary types of skin cancer are melanoma, squamous cell carcinoma and basal 

cell carcinoma. Melanoma is responsible for most fatalities associated with skin cancer, 

despite representing only 1% of all skin cancer cases [1]. In the United States alone, current 

estimates are that 97,610 new cases of invasive melanoma and 89,070 cases of in-situ 

melanoma are expected to be diagnosed in 2023 [2]. Moreover, it is projected that 7,990 

deaths will be attributed to melanoma – 5420 male and 2570 female. Melanoma detected 

at an early stage can be treated successfully; however, the five-year survival rate drops 

drastically from > 99% to 32 % if the melanoma has spread to distant lymph nodes or other 

organs [1].  

Skin cancers are diagnosed using various techniques such as clinical examination, 

photography, dermoscopy and biopsy. Dermoscopy is a non-invasive diagnostic tool that 

improves non-contact skin lesion examination using a handheld device with a magnifying 

lens and a cross-polarized light source. Alternately, contact dermoscopy employs gel or 

similar skin interface to reduce reflections from the skin surface. Both techniques increase 

visualization of subsurface details for the clinician. Dermoscopy has shown better 

diagnostic accuracy of early-stage melanoma over a dermatologist's naked-eye visual 

inspections of lesions [3]–[5].  

There has been a considerable effort to develop a computer-aided diagnosis (CAD) 

for skin cancer. CAD uses machine learning algorithms to analyze medical images and 
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provide diagnostic support to clinicians. A computer-aided diagnostic tool might not only 

give higher accuracy but also has the potential to reduce the time and cost associated with 

a skin cancer diagnosis. In recent years, deep learning (DL) techniques have dominated 

almost all image recognition and classification tasks [6]–[10]. DL techniques combined 

with dermoscopy have demonstrated higher diagnostic accuracy in the skin cancer domain 

than experienced dermatologists [11]–[13].  

While deep learning techniques have become dominant in medical image analysis, 

it is essential to recognize that clinically relevant handcrafted features are also crucial. Such 

features can aid in building a better CAD tool and facilitate an explainable decision process. 

Furthermore, recent studies showed that the fusion of DL and handcrafted features boosts 

the diagnostic accuracy of skin lesion classifiers [12], [14]–[17]. The computation of 

handcrafted features usually involves image segmentation to detect crucial features or 

regions in the image. Thus, an accurate segmentation method is necessary to develop a 

precise computer-aided diagnostic tool for skin cancer diagnosis. This dissertation aims to 

develop better image segmentation methods using deep learning techniques for skin lesion 

image analysis. 

1.1. PROBLEM STATEMENT 

Image segmentation is a crucial step for a computer-aided diagnosis of skin cancer. 

Image segmentation methods using both traditional image processing approaches [18]–

[23] and deep learning techniques [24]–[31] have been applied in dermoscopic skin lesion 

images to detect various clinical features, including hair, blood vessel, globules and lesion 

border. Although traditional methods showed promising results when applied to small 
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datasets, they typically exhibit unsatisfactory performance under challenging conditions 

such as lesions with varying color, low contrast between lesion and background, and 

images that contain artifacts such as hair, ruler marks, ink marks and stickers. Conversely, 

deep learning methods have overcome these challenges to some extent and improved the 

segmentation performance in skin lesion images. Caution is needed here because some of 

the recognized features, notably ink marks, can lead to DL decisions which apply only to 

a given image set. The ink marks can signal melanoma, but they are not an intrinsic image-

set-independent diagnostic feature. Rather, such artifacts comprise an information leak. 

Despite the early success of DL techniques, better image segmentation methods are 

warranted to develop a precise computer-aided diagnostic tool for skin cancer.   

This dissertation uses deep learning techniques to investigate three different image 

segmentation tasks in dermoscopic skin lesion images. First, deep learning-based hair and 

ruler segmentation is studied, as hair and ruler marks hinder accurate segmentation and 

detection of critical network features in skin lesion images. Hair detection is particularly 

challenging in dermoscopic skin lesion images as the hairs can be thin, overlapping, faded, 

or of similar color as skin or overlaid on a textured lesion. Second, a deep learning method 

is proposed to find lesion borders in skin lesion images. The existing traditional image 

processing and deep learning techniques face difficulties in accurately segmenting lesions 

due to factors such as high variation in lesion color, low contrast between the lesion and 

the background, and the presence of artifacts. Therefore, there is a need for novel deep 

learning architectures with advanced representational capabilities to address the existing 

techniques' current limitations. Third, a new data augmentation technique is proposed to 

train a robust DL model for single-lesion and multiple-lesion segmentation. Dermoscopic 
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skin lesion images typically contain a single lesion per image, although there are many 

examples where more than one lesion is present. Multiple-lesion segmentation has yet to 

be explored in dermoscopic image analysis. Incorporating information about multiple 

lesions may prove advantageous for machine learning systems utilized in computer-aided 

skin cancer diagnosis in various domains. 

1.2. SUMMARY OF CONTRIBUTIONS 

This dissertation is comprised of three journal publications as listed in the 

publications list. The unique contributions are summarized as follows: 

1.2.1. ChimeraNet: U-Net for Hair Detection in Dermoscopic Skin Lesion 

Images. Detection of hair and ruler marks can serve multiple purposes. Not only can it help 

to eliminate noise when identifying crucial network features, but it can also yield important 

clinical information to enhance the accuracy of diagnosis. For instance, hair can reveal 

valuable details about the patient's age, gender, and body part being examined. This study 

presents a novel DL method, ChimeraNet, for hair and ruler mark detection in skin lesion 

images. ChimeraNet is a U-Net [32] based architecture which consists of two main parts – 

an encoder network and a decoder network. The proposed novel architecture uses a 

pretrained EfficientNet [9] as the encoder network; the decoder network is constructed 

using squeeze-and-excitation residual (SERes) structures. The squeeze-and-excitation 

structure was chosen as it has a better generalization capability than the plain convolution 

structure as it emphasizes the critical channels of feature maps while suppressing the 

weaker ones [33]. In addition, the skip-connections in U-Net architecture help to recover 

the spatial information lost during downsampling in the encoding process. Furthermore, 
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ChimeraNet uses an extra skip connection directly from the input to the decoder, which 

provides additional low-level spatial information while reconstructing a segmentation map 

for fine structures like hair and ruler marks. The proposed ChimeraNet yields state-of-the-

art accuracy compared to previously reported classical techniques and DL methods. 

1.2.2. Skin Lesion Segmentation in Dermoscopic Images with Noisy Data.  Skin 

lesion segmentation enables the extraction of precise and detailed information about the 

lesion's shape, size, and texture, which helps distinguish benign lesions from malignant 

ones. This can aid clinicians and dermatologists in making more informed decisions 

regarding the treatment and management of skin cancer. In this study, we proposed a novel 

deep learning method for lesion segmentation in dermoscopic images. The proposed 

method uses a ChimeraNet architecture, described in section 1.2.1, with minor 

modifications to accommodate lesion segmentation task. The extra skip-connection and 

fifth decoder block of the original ChimeraNet were specifically designed to give extra 

low-level information to detect fine structures like hair and ruler marks. These extra 

connections were removed.  Despite the growing popularity of deep learning methods in 

image recognition, the quality of training data remains a critical factor in achieving high 

performance. Thus, this study also assesses the data quality in a public benchmark dataset. 

ISIC 2017 [34] skin lesion segmentation dataset is the largest and most widely used dataset 

in skin lesion segmentation studies. Our investigation shows that the dataset contains many 

inaccurate or noisy ground truth (GT) segmentation masks, as GT labels were created using 

manual and semi-automated processes. In this study, a dermatologist (W.V.S.) visually 

inspected and sorted all GT masks into good, mildly noisy, and noisy categories. The 

experimental results show noisy labels in the training set do not lower segmentation 
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performance. Moreover, the proposed DL segmentation method achieved a Jaccard score 

of 0.807 on an official ISIC2017 test set, which surpasses the previously reported methods.    

1.2.3. LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion 

Segmentation.  Multiple-skin lesion segmentation in a dermoscopic image can offer 

significant assistance to computer-aided diagnosis by providing relevant information on 

the location and characteristics of each lesion. In this research, we develop a novel lesion-

aware mixup augmentation (LAMA) technique synthesizing multi-lesion samples using 

single-lesion images. LAMA randomly selects one or more lesions and pastes in a non-

lesion area of an image. To find the non-lesion area in the image, it generates patches at 

multiple patch levels and creates a pool of candidate non-lesion patches by checking 

whether the patch contains a part of the lesion. The lesion patches are generated by 

cropping the lesion from each image using a bounding box enclosing the lesion. The size 

of the lesion varies greatly in dermoscopic lesion images. To avoid excessive resizing 

during mixing, LAMA groups the lesion patches into n groups based on their sizes, with 

each group corresponding to a specific level of non-lesion patches. The lesions are 

distributed in each group based on the histogram distribution of images having non-lesion 

patches at each patch level. Finally, LAMA randomly selects one or more lesion patches 

and pastes them on the non-lesion patches in the image. The DL model trained with the 

LAMA method improves lesion segmentation over the baseline model in single- and multi-

lesion images. The proposed method finds the multiple lesions in real-life examples despite 

training using only synthetic multi-lesion images based on single-lesion examples. 
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PAPER 

I. CHIMERANET: U-NET FOR HAIR DETECTION IN DERMOSCOPIC SKIN 

LESION IMAGES 

Norsang Lama1, Reda Kasmi2, Jason R. Hagerty3, R. Joe Stanley1, Reagan Young1, 

Jessica Miinch1, Januka Nepal3, Anand Nambisan1, William V. Stoecker3 

1Department of Electrical and Computer Engineering,  

Missouri University of Science and Technology, Rolla, MO, USA 
2Faculty of Technology, Laboratoire de Technologie Industrielle et de I’Information, 

University of Bejaia, Bejaia, Algeria.  
3S&A Technologies, Rolla, MO, 65401 USA 

ABSTRACT 

Hair and ruler mark structures in dermoscopic images are an obstacle preventing 

accurate image segmentation and detection of critical network features. Recognition and 

removal of hairs from images can be challenging, especially for hairs that are thin, 

overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper 

proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion 

images. Our proposed ChimeraNet is an encoder-decoder architecture that employs 

pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) 

structures in the decoder. We applied this approach at multiple image sizes and evaluated 

it using the publicly available HAM10000 (ISIC2018 Task 3) skin lesion dataset. Our test 

results show that the largest image size (448x448) gave the highest accuracy of 98.23 and 

Jaccard index of 0.65 on the HAM10000 (ISIC 2018 Task 3) skin lesion dataset, exhibiting 

better performance than for two well-known deep learning approaches, U-Net and 

ResUNet-a. We found the Dice loss function to give the best results for all measures. 
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Further evaluated on 25 additional test images, the technique yields state-of-the-art 

accuracy compared to 8 previously reported classical techniques. We conclude that the 

proposed ChimeraNet architecture may enable improved detection of fine image structures. 

Further application of DL techniques to detect dermoscopy structures is warranted. 

Keywords—Hair removal, melanoma, dermoscopy, deep learning, image 

segmentation, transfer learning 

 

1. INTRODUCTION 

 

An estimated 106,110 new cases of invasive melanoma and 101,280 new cases of 

in-situ melanoma will be diagnosed in 2021 in the USA [1], in addition to 2 million 

epitheliomas [2]. Dermoscopy is an imaging modality that renders these cancers visible 

when they are fully curable. However, many cases of melanoma are missed by domain 

experts [3], [4]. 

Dermoscopy is a crucial tool in the early detection of melanoma, increasing the 

diagnostic accuracy over clinical visual inspection in the hands of experienced physicians 

[5]–[7]. Yet dermatologists viewing dermoscopic images in recent studies have shown 

lower diagnostic accuracy than machine vision techniques [3], [4], [8], [9].  

Pathan et al. published a recent review detailing both handcrafted and deep learning 

(DL) techniques for computer-aided diagnosis of skin lesions [10]. Recent studies have 

shown successful results for skin cancer diagnosis by fusing ensembles, in some cases 

handcrafted and DL techniques [11]–[15]. However, hair and ruler artifacts can interfere 

with handcrafted feature detection by mimicking pigment network and interfering with 
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accurate border detection [16], [17]; thus, detection of these structures is needed to 

maximize handcrafted feature detection accuracy. 

Ian Lee et al. reviewed hair detection in dermoscopic images[18]. The methods 

generally employ one of three types: mathematical morphology, edge detection, and 

matched filters. To detect hair, the same group [18] used the top-hat transform and 

modified Gaussian filter to enhance hair. Xie et al. [19] proposed an algorithm focused on 

dark hair, using a top-hat operator and an automatic threshold. Abbas et al. [20] 

implemented detection of both light and dark hairs using the first derivative of Gaussian 

followed by morphological techniques to remove non-hair noise. Nguyen et al. [21] also 

detected light and dark hair using a universal matched filtering kernel, with the binary mask 

generated by local entropy thresholding. 

Lee et al. [22] proposed Dullrazor, with dark hair identified by grayscale 

morphology. Subsequent operations verify long and narrow structures. Fiorese et al. [23] 

proposed VirtualShave, which uses top-hat filtering followed by morphological 

postprocessing. Koehoorn et al. [24] used a threshold-set model and a gap-detection 

algorithm and further postprocessing using skeletonizing.  Toossi et al. [25] used Canny 

edge detection followed by refinement using morphologic operators. Abuzaghleh et al. [26] 

segment hair by a set of directional Gaussian filters. Huang et al. [27] sought to detect hairs 

often missed, thin hairs and hairs in shaded backgrounds, using Gaussian matched filtering. 

Zhou et al. [28] used Steger’s algorithm and a least-square method. Inpainting algorithms 

employed in these studies included interpolation, in either one or multiple directions, and 

a fast-marching technique.   
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Deep learning methods have also been applied to detect hair in skin lesion images. 

Attia et al. [29] used a hybrid model of convolution and recurrent layers for hair 

segmentation. However, due to the lack of a hair mask dataset, they trained using the 

weakly labeled data and tested on the simulated hair. Li et al. [30] created a new hair-mask 

dataset to train and test U-Net [31] based hair segmentation model. To create the hair-mask 

dataset, first, they applied the top-hat segmentation techniques [32] and then manually 

removed the over-segmented regions. Moreover, they excluded the under-segmented 

images from the dataset. The use of weakly labeled data in the first method and selecting 

only over-segmented images in the second method limit the quality of data, thereby 

weakening the robustness of the DL network. 

The approach of this paper is as follows. First, we created a well-labeled hair mask 

dataset by manually annotating hair and ruler marks on the public HAM10000, also ISIC 

2018 Task3 lesion classification dataset [33], [34]. Many of the reported hair removal 

algorithms were evaluated on small sets of images. Many of these methods find only dark 

hair, ignoring light hair and ruler marks. Second, we proposed a novel deep learning based 

hair detection method called ChimeraNet that detects light hair and ruler marks as well as 

dark hair in dermoscopic skin lesion images. Further, we compared the performance of our 

proposed method against two well-known DL approaches [31], [35] and eight conventional 

image processing approaches [18]–[20], [22]–[24], [27], [36].  

The remainder of the paper is organized as follows. Section 2 explains the image 

datasets and proposed method. Section 3 presents the segmentation experiments and 

comparison. Section 4 provides a discussion. Section 5 gives the conclusion and possible 

future work. 
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2. MATERIALS AND METHODS 

2.1. IMAGE DATASETS 

We used two datasets in this study. The first is the HAM10000 [33] dataset of 

Tschandl et al., a publicly available skin lesion dermoscopy dataset containing over 10,000 

skin images for 7 diagnostic categories. All images are 8-bit RGB images of size 450×600, 

as shown in Figure 1. These images comprised a training set for the ISIC2018 Task 3 lesion 

classification challenge [34]. Since the dataset lacks ground truth hair segmentation masks, 

we manually drew hair masks for 1333 dermoscopy images in the dataset. The manually 

drawn hair masks include dark hair, white hair, and ruler marks, Figure 2. As the width of 

hair and ruler marks differs within an image or from one image to other, the manual hair 

masks were drawn with varying widths. 

 

 

Figure 1. Skin lesion dermoscopy images from HAM10000 (ISIC2018 Task 3) dataset 

showing dark hair, light hair, and ruler marks. 
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The masks were evaluated and verified by a dermatologist. Some of the hair 

segments are very thin, in some cases 1-pixel wide, so we dilated the binary masks with a 

3×3 cross-shaped structuring element. 

 

 

Figure 2. Manually drawn hair masks corresponding to skin lesion images shown in 

Figure 1. The hair masks include dark hair, white hair, and ruler marks. 

 

We randomly divided 1333 skin lesion images from the HAM10000 dataset 

(ISIC2018 Task 3 Lesion Classification dataset) into image subsets of 852 for training, 214 

for validation, and 267 for testing. Both training and validation images combined with 

manually drawn masks were used to train the deep convolutional neural networks, and the 

holdout test images were used to evaluate the performance of the proposed model. 

The second dataset was 25 dermoscopic skin lesion images with hair and calculated 

hair masks from [18]. The images are RGB images of size 768×1024. We resized all images 

into same size as of first dataset i.e., 450×600 using bilinear interpolation method. This set 

was small compared to first set, so only used as a test set in this study. 
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2.2. DATA AUGMENTATION 

Data augmentation helps convolution neural networks to generalize better and 

reduce the overfitting problem by adding more training samples. It performs different 

image transform methods on original images to generate more examples and used them for 

training. In this study, we selected following image transforms for data augmentation: 

• Height or width shift with a range of (-0.15, +0.15) 

• Horizontal or vertical flip  

• Rotation with range between +90° to -90°  

• Zoom with a range (-0.15, +15) 

• Brightness with a range of (0.9, 1)  

We performed online data augmentation to increase the number of training images by 

5 times. Then, the augmented images’ data range were rescaled between 0 and 1. Further, 

the images were normalized before feeding them to the deep network. 

2.3. PROPOSED NETWORK ARCHITECTURE 

U-Net [31] is a popular convolutional neural network architecture designed for 

biomedical image segmentation. It consists of encoder (left) and decoder (right) paths. The 

encoder path is a typical convolutional neural network (CNN) that extracts the high-level 

features from the input image. The features maps are downsampled many times at different 

levels, thus reducing the spatial dimension of feature maps. The decoder path, which is 

symmetric to the encoder path, expands the low-resolution feature map to generate a 

segmentation map with spatial dimensions equal to those of the input. First, the decoder 

concatenates the feature map and high-resolution features from the encoder. Then, it 
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upsamples the concatenated feature maps applying transpose convolution operations. The 

high-resolution features via skip-connections from the encoder are helpful in recovering 

the fine-grained details in the image to generate the segmentation map. 

 

 

Figure 3. Proposed ChimeraNet architecture for hair segmentation. An encoder-decoder 

architecture with pretrained EfficientNet model as the encoder network and the decoder 

network comprised of five squeeze-and-excitation residual blocks. Five skip-connections 

(Red color) from the encoder to the decoder. 

 

The overall pipeline of our proposed ChimeraNet architecture is shown in Figure 

3. First, we used a pre-trained EfficientNet model as the encoder network in our model. 

Tan et al. [37] developed a family of CNN models, called EfficientNets, which achieved 

state-of-art top-1 accuracy in the ImageNet [38] image classification challenge. These 

models are composed of mobile inverted bottleneck convolution (MBConv) blocks. 

EfficientNet has seven blocks, from Block1 to Block7, which are composed of multiple 

MBConv blocks. Based on the number of MBConv blocks in Block1 to Block7, they have 

8 network variants from B0-B7. EfficientNetB0 is the baseline architecture, and other 

variants are scaled up versions by employing a compound scaling method that uniformly 

scales network depth, width, and resolution with a fixed set of scaling factors. In our model, 

we used the EfficientNet-B5 variant of EfficientNet models trained on ImageNet. As the 
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models were originally developed for image classification, we could not directly employ 

the EfficientNet-B5 [37] as the encoder network in our model. Thus, we removed some top 

layers of EfficientNet-B5 that are specifically designed for classification output: a final 3x3 

convolution layer, a global average pooling layer, and a fully connected (FC) layer. And 

we used the remaining layers, all layers from input to Block7, as the encoder part without 

any modification on them. Also, the U-Net architecture uses the skip-connections from the 

encoder network to the decoder network. Typically, the U-Net architecture has four skip-

connections, and we selected the outputs of Conv3×3, Block2, Block3 and Block5 of 

EfficientNet-B5 as the sources of skip-connections as shown in the Figure 3. Further, we 

added an extra skip-connection from the input layer to the final decoder block. This adds 

more low-level spatial information to the decoder for precise localization of features and 

improves the segmentation of fine structures like hair and ruler marks which are very thin, 

being only a few pixels wide. The output shapes of the blocks corresponding to the skip 

connections and the final output of the encoder are shown in Table 1. 

 

Table 1. Different blocks of the encoder showing the size and number of feature map. 

Block Name Size (W × H) #Feature Map (C) 

Input layer 448 × 448 3 

Conv3×3 224 × 224 48 

Block2 112 × 112 40 

Block3 56 × 56 64 

Block5 28 × 28 176 

Block7 14 × 14 512 



 

 

16 

 

Figure 4. Convolutional block structures of the decoder. Double convolution block (left) 

and Squeeze-and-excitation residual block (right). 

 

Second, we constructed a decoder network using a squeeze-and-excitation residual 

(SERes) structures developed by [39]. The squeeze-and-excitation (SE) block emphasizes 

the informative features and suppresses the weaker ones by modeling the interdependencies 

between channels of convolutional features. We used five SERes blocks named SERes 

Block1 to SERes Block5 as shown in Figure 3. Each SERes block gets two feature maps 

as inputs – an output feature map from previous block and a low-level feature map via skip-

connection from the encoder. For example, the first SERes block (SERes Block1) of the 

decoder gets 14×14×512 feature input from Block7 and 28×28×176 low-level feature input 

from Block5 via skip-connection; here, three dimensions of the feature map represent width 

(W), height (H) and number of feature map or channel (C). However, the dimensions of 

both inputs are not same. To combine both inputs, first, the 14×14×512 feature map from 
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previous layer is upsampled using a transposed convolution, also called deconvolution. The 

transposed convolution performs both 2×2 upsampling and 3×3 convolution operations. 

We selected the number of filters for transposed convolution as the half of the number of 

input channels i.e., 256 (=512/2), and thus generates 28×28×256 feature map. Then, the 

two inputs are concatenated along the channel axis to form 28×28×432 feature map before 

feeding to SERes block. The SERes block combines an SE block with a residual structure 

[40], as shown in Figure 4. The residual unit in the SERes block is a double convolution 

block, which applies two sets of 3×3 convolution, batch normalization [41], and rectified 

linear unit (ReLU) operations. Again, we selected the number of filters for two convolution 

layers in residual unit as half of the input channels i.e., 216 (= 432/2). The residual unit 

outputs 28×28×216 feature map and then the squeeze-and-excitation operation is 

performed to scale the features along the channel axis. To find the weights for each channel 

of the feature map, SE first applies global average pooling to reduce the feature map to 

1×1×216 and then applies non-linear operations like FC, ReLU, FC and sigmoid.  The 

number of neurons in two FC layers are C/r and C respectively, where r is a feature 

reduction factor and empirically selected as r = 8. The SE generates 1×1×216 weight vector 

with each value in the range of 0 to 1. Then residual feature is multiplied with weight vector 

to scale the features and generates 28×28×216 scaled feature map. Further, the SERes block 

combines this scaled residual feature map with original input feature map. But the channels 

in original input feature map (28×28×256) and residual feature output (28×28×216) are not 

same so 1×1 convolution operation with 216 filters followed by batch normalization 

operation are performed on original input feature map. Then, SERes Block1 adds two 
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feature maps together and applies ReLU operation to generate the final 28×28×216 feature 

output. 

 

Table 2. SERes blocks in the decoder and their output shapes. 

Block Name Size (W × H) Feature Map (C) 

SERes Block1 28 × 28 216 

SERes Block2 56 × 56 86 

SERes Block3 112 × 112 41 

SERes Block4 224 × 224 34 

SERes Block5 448 × 448 10 

 

 

During inference, we give five different augmented versions of an input image to 

the trained deep network: an original image, horizontally flipped image, vertically flipped 

image, 90° clockwise rotated image, and 90° counterclockwise rotated image. The deep 

network generates segmentation output for each image and the final segmentation mask is 

generated by aggregating these five outputs. The final aggregated mask is the unweighted 

average of the five predicted masks. Further, the mask is binarized using the threshold of 

0.5 to generate a binary segmentation mask.       

2.4. TRAINING DETAILS 

All models were built using Keras with a Tensorflow backend in Python 3 and 

trained using a single 32GB Nvidia V100 graphics card. The networks were trained for 
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200 epochs with a batch size of 16 and a constant learning rate of 0.0001 using the Adam 

optimization algorithm [42]. We set up an early stopping criterion with a patience of 30 

epochs to stop the model from overtraining. All images are of equal size with dimensions 

450×600 and were resized using bilinear interpolation into various sizes, with further 

details in section 3.1. We conducted experiments with five different loss functions, see 

section 3.2. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

We evaluated the performance of the proposed algorithm by comparing the predicted 

hair masks with the manually drawn ground truth hair masks on two test sets - 267 images 

from [33], [34] and 25 images from [18]. The evaluation metrics used are Jaccard index 

(Jac), Dice similarity coefficient (Dsc), precision (Prec), recall (Rec), accuracy (Acc) and 

inaccuracy (Inacc), which are defined by the Equations (1)-(6). 

 𝐽𝑎𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (1) 

 𝐷𝑠𝑐 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 𝑃𝑟𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 𝑅𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 𝐼𝑛𝑎𝑐𝑐 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
+

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 (6) 
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where TP is the number of true positives denoting the pixels correctly identified as the 

hair, TN is the number of true negatives denoting the pixels correctly identified as the 

background, FP is the number of false positives pixels denoting the background pixels 

incorrectly identified as the hair, and FN is the number of false negatives denoting the hair 

pixels incorrectly identified as the background. 

3.1. HAIR SEGMENTATION PERFORMANCE FOR DIFFERENT IMAGE 

SIZES 

In this section, we compared the hair segmentation performance of the proposed 

method with different input sizes using 267 test images. We selected 3 different sizes to 

modify the original images in the HAM10000 dataset. When the image size was doubled 

from 224×224 to 448×448, the Jaccard score increased by 32.65% from 0.49 to 0.65, 

precision increased by 14.49% from 0.69 to 0.79, and recall increased by 19.7% from 0.66 

to 0.79. Table 3 shows that larger image sizes have better segmentation performance. 

However, a larger image size requires more memory and more computational time.    

 

 Table 3. Segmentation Test Results with Different Input Sizes. 

Image Size Acc Inacc Dsc Jac Prec Rec 

224×224 97.30 17.85 0.63 0.49 0.69 0.66 

320×320 97.76 12.67 0.72 0.58 0.72 0.76 

448×448 98.23 10.97 0.77 0.65 0.79 0.79 
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3.2. HAIR SEGMENTATION PERFORMANCE FOR DIFFERENT LOSS 

FUNCTIONS 

For highly imbalanced data sets, such as hair images where most pixels are true 

negative pixels, Jadon found that the Focal-Tversky and Log-Cosh Dice loss functions 

yield improved results [43]. 

 

Table 4. Segmentation Test Results with Different Loss Functions. 

Loss Method Acc Inacc Dsc Jac Prec Rec 

Jaccard 98.081 10.350 0.762 0.634 0.751 0.808 

Dice 98.228 10.963 0.775 0.649 0.790 0.792 

Log-Cosh Dice 98.074 10.349 0.765 0.637 0.761 0.808 

Tversky 98.065 9.480 0.764 0.635 0.737 0.826 

Focal-Tversky 98.091 9.899 0.766 0.637 0.751 0.817 

 

 

We compared the performance of five widely used loss methods for image 

segmentation - Dice [44], Jaccard [45], Tversky loss [46], Log-Cosh Dice loss [43], and 

Focal-Tversky loss [47]. As early stopping with patience of 30 epochs was set up to avoid 

overfitting, none of the models trained up to 200 epochs. The Dice loss method was trained 

most with 149 epochs. Surprisingly, the remaining four methods were stopped exactly at 

same epochs of 95. On 267 test images with 448×448 input resolution, we found that the 

Dice loss had the best overall result with a 0.649 Jac and 0.775 Dsc. Table 4 shows that the 

four other loss methods had similar performance in Jac and Dsc measurements with 

differences of less than 0.5%. 
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3.3. PERFORMANCE COMPARISON WITH DIFFERENT U-NET 

ARCHITECTURES 

Next, we compared the segmentation performance of our proposed architecture 

with two state-of-the-art U-Net architectures using the same 448x448 input resolution and 

dice loss.  Table 5 shows the segmentation performance of ChimeraNet compared to two 

DL approaches, U-Net [30], [31] and ResUNet-a [35], on 267 test images. The proposed 

ChimeraNet outperformed the other two methods in all the measurements. It improved the 

Jaccard score by 10% from 0.59 to 0.65 and the Dice score by 6.9% from 0.72 to 0.77 on 

U-Net even with the slightly smaller network size. Although our proposed model has a 

74% smaller network size than ResUNet-a, it improved the Jaccard score by 3.2% from 

0.63 to 0.65 and the precision by 2.6% from 0.77 to 0.79. Furthermore, we evaluated the 

performance of ChimeraNet with/out the residual squeeze-and-excitation (SERes) 

structure. ChimeraNet (basic) is the ChimeraNet without the SERes structure. The results 

show that the addition of SERes structure improved the segmentation performance without 

significantly increasing the number of model parameters. Nevertheless, ChimeraNet 

(basic) also achieved better performance compared to two other U-Net models. 

 

Table 5. Comparison of proposed architecture with existing U-Net Architectures. 

Model # Params Acc Inacc Dsc Jac Prec Rec 

U-Net [31] 31.5M 97.86  13.10  0.72  0.59  0.73  0.75 

ResUNet-a [33] 52.8M 97.79  11.94  0.76  0.63  0.77  0.78 

ChimeraNet (basic) 30.3M 98.18  11.27  0.77  0.64  0.78  0.79  

ChimeraNet  30.4M 98.23  10.97  0.77  0.65  0.79  0.79  
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Figure 5. Hair segmentation results of proposed ChimeraNet against U-Net and ResUNet-

a for HAM10000 test images. The segmentation results show true positives (GREEN), 

false positives (RED), and false negatives (BLUE). U-Net model finds more false 

positives (for example, gel bubbles) and ResUNet-a finds less hair. The proposed 

ChimeraNet model successfully detects hair with fewer false positives and false 

negatives. 

 

In Figure 5, we compare the segmentation results of the proposed model with two 

DL approaches. The examples in the first, second and third rows show that U-Net 

performed well on long and dark hair but poorly on gel and bubble structures and falsely 

predicted them as hair and ruler objects. In contrast, ResUNet-a performed well on gel and 

bubble structures but missed many valid hair objects. In case of short hairs as shown in the 

fourth row, both U-Net and ResUNet-a had difficulty finding them. Furthermore, the 

proposed ChimeraNet performed well not only on long and short hair, but it was successful 
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in separating the gel and bubble structures from hair and ruler objects.  It was also able to 

find difficult hairs such as dark hairs inside a dark lesion as shown in the second and third 

rows compared to U-Net and ResUNet-a architectures. 

3.4. PERFORMANCE COMPARISON WITH EXISTING HAIR 

SEGMENTATION ALGORITHMS 

We compared the performance of our method with seven published hair 

segmentation algorithms and one on-press [18]–[20], [22]–[24], [27], [36]. Table 6 shows 

different scoring metrics computed on the second dataset (25 dermoscopic images) for all 

 

Table 6. Results, resolution 448x448, compared with existing hair segmentation 

algorithms on 25 test images. 

Methods & 

Year of publication 

Acc Inacc Prec Rec Dsc Jac 

ChimeraNet 96.06 11.59 0.79 0.79 0.77 0.64 

SharpRazor, 2021 93.80 22.48 0.58 0.58 0.53 0.38 

Ian Lee, 2017 90.99 29.39 0.60 0.44 0.40 0.26 

Xie, 2015 90.04 39.07 0.37 0.25 0.25 0.15 

Koehoorn, 2015 80.13 49.11 0.08 0.14 0.07 0.03 

Abbas, 2013 87.36 29.40 0.34 0.49 0.33 0.22 

Huang, 2013 81.13 32.94 0.23 0.50 0.26 0.16 

Fiorese, 2011 91.74 37.82 0.68 0.26 0.32 0.20 

DullRazor,1997 93.15 34.87 0.66 0.31 0.38 0.25 

  

 



 

 

25 

algorithms. For methods except for SharpRazor, the hair masks reported in [16] were 

kindly provided by Ian Lee. Our method achieved better overall scores across all six 

measurements, as shown in Table 3. The most significant improvements with our method 

were 45% in Dice similarity coefficient, 36% in recall, and 68% in Jaccard scores from the 

existing best scores. 

 

Figure 6. Lesion image, ground truth hair mask, and overlays of predicted hair mask on 

lesion image for nine hair detection methods. The proposed ChimeraNet method 

accurately detects more hair with less noise compared to other hair detection methods. 

 

We compare reported hair detection methods with the proposed deep learning 

method in Figure 6. The proposed method finds thin hairs that other methods fail to detect 

and finds less noise. 
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4. DISCUSSION 

 

After Ronneberger et al. [31] proposed the U-Net architecture for biomedical image 

segmentation, many new variants of U-Net have been developed. One variant used in skin 

image segmentation is dense residual U-Net, which replaces some convolutions with dense 

convolutions and appends residual convolutions to the network [48]. This approach may 

offer better generalization capability and may be more robust on small dataset sizes, but at 

the cost of slightly decreased overall performance. Diakogiannis et al. [35] proposed 

ResUNet-a that employs residual connections, atrous (dilated) convolutions, pyramid 

scene parsing pooling, and multi-tasking inference to segment monotemporal very high-

resolution aerial images. Baheti et al. [49] modified U-Net architecture by employing 

EfficientNet [37] in the encoder network and basic convolution layers in the decoder 

network for scene segmentation. Here, we propose a new hair segmentation method based 

on U-Net architecture by employing EfficientNet-B5 as the encoder network and squeeze-

and-excitation structures as the building block of the decoder network. We used the 

squeeze-and-excitation structure [39], which has better generalization capability than basic 

convolution structures because it focuses on more critical channels of feature maps. 

Ronneberger et al. [31] showed that the skip-connection helped to improve the semantic 

segmentation by adding low-level spatial information to the decoder. We put an extra skip-

connection from an input to the final block of the decoder which further adds low-level 

spatial information for precise localization of features. The proposed architecture 

performed better than U-Net and ResUNet-a to detect fine structures like hair and ruler 

marks in skin lesion images. 
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We used several metrics to evaluate the performance of the DL hair detection 

approach. The accuracy metric counts true-negative pixels and true positive pixels equally. 

For most images, except on the scalp, most of the pixels are true negative pixels (not hair 

pixels). Thus, the accuracy metric overstates actual performance. Dice and Jaccard metrics 

give a better performance evaluation because they are better for scoring detection of 

structures with less overall representation in the images. Our DL approach gives nearly 

twice the Jaccard score of any classical method except for the SharpRazor method.   

Although most reports consider hair pixels unwanted noise, hair and ruler structures 

may contribute to diagnostic accuracy. White hairs may indicate patient age. Shaved hairs 

may determine body location and gender, such as a male face or a female leg. Ruler marks 

may give an indication of the clinic where the images originated. Although hair structures 

still constitute noise, their detection could contribute to diagnostic accuracy, and thus they 

could be considered useful noise. The deep learning approach reported here, which can 

detect ruler marks and white hair, may yield useful information from the automatically 

detected structures. 

 

5. CONCLUSION AND FUTURE WORK 

  

In this study, we employ a novel deep learning technique to find hair and ruler 

structures. Using an image resolution on the order of 448×448, the reported method 

achieves state-of-the-art accuracy compared to other approaches. One disadvantage of the 

technique is that it requires many images, with the training, validation, and test sets totaling 

1333 images. These training images, which required hundreds of hours to create, can 
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nevertheless serve as training images for future hair detection methods. In future work, we 

will make the training hair masks available publicly. In addition, we will employ deep 

learning to detect other dermoscopic features, using this new ChimeraNet model and 

comparing it to other models. 

 Despite the fairly high accuracy achieved by this method, there is a need for future 

work to improve the results. New approaches could include fusion methods and 

postprocessing using modeling or other methods. Deep learning architectures have 

advanced rapidly, and as techniques evolve, other models can be employed. 
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ABSTRACT 

We propose a deep learning approach to segment the skin lesion in dermoscopic 

images. The proposed network architecture uses a pretrained EfficientNet model in the 

encoder and squeeze-and-excitation residual structures in the decoder. We applied this 

approach on the publicly available International Skin Imaging Collaboration (ISIC) 2017 

Challenge skin lesion segmentation dataset. This benchmark dataset has been widely used 

in previous studies. We observed many inaccurate or noisy ground truth labels. To reduce 

noisy data, we manually sorted all ground truth labels into three categories – good, mildly 

noisy, and noisy labels. Further, we investigated the effect of such noisy labels in training 

and test sets. Our test results show that the proposed method achieved Jaccard scores of 

0.807 on the official ISIC 2017 test set and 0.832 on the curated ISIC 2017 test set, 

exhibiting better performance than previously reported methods. Further, the experimental 

results showed that the noisy labels in the training set did not lower the segmentation 

performance. However, the noisy labels in the test set adversely affected the evaluation 

scores. We recommend that the noisy labels should be avoided in the test set in future 

studies for accurate evaluation of the segmentation algorithms. 
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1. INTRODUCTION 

 

An estimated 99,780 new cases of invasive melanoma and 97,920 in-situ melanoma 

will be diagnosed in 2022 in the United States [1]. Dermoscopy is an imaging modality to 

aid dermatologists for the early detection of skin cancer and can improve diagnostic 

accuracy over clinical visual inspection by the experienced domain expert [2]–[4].  

Computer vision techniques have improved appreciably in recent years [5]–[9] and 

have been successfully applied to many medical imaging problems [10]–[13]. In the skin 

cancer domain, deep learning techniques combined with dermoscopy have higher 

diagnostic accuracy than experienced dermatologists [10], [14]–[17]. Pathan et al. 

published a recent review detailing both handcrafted and deep learning (DL) techniques 

for computer-aided diagnosis of skin lesions [18]. Although deep learning eliminates a 

tedious feature engineering process, recent studies show that the fusion of deep learning 

and handcrafted features can improve accuracy in skin cancer diagnosis [17], [19]–[22]. 

Handcrafted features are not as straightforward as the deep learning method, and they 

require a lesion border to define the region of interest. Accurate calculation of handcrafted 

lesion features depends upon correct detection of the lesion border [22]. Thus, lesion 

segmentation is an important step in computer-aided diagnosis of skin cancer.  

Traditional image processing methods were applied to segment the skin lesion in 

dermoscopic images [23]–[25]. These methods performed well on small sets but generated 
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unsatisfactory results when applied to challenging conditions such as low contrast between 

lesion and background, lesions with different colors, and images with artifacts like hair, 

ruler marks, gel bubbles, and ink markers, etc. Deep learning techniques have overcome 

these challenges to some extent and improved border detection in skin lesion images [26]–

[30]. 

Al-Masni et al. [26] proposed a deep full-resolution convolutional network for skin 

lesion segmentation. Unlike U-Net [31], this method does not employ upsampling or 

downsampling operations so that the feature maps always have the same resolution from 

the input to the output. The deep learning methods require little preprocessing and the RGB 

color images are directly fed to the network. However, recent studies showed that adding 

more input color channels improves skin lesion segmentation; Yuan et al. [28] combined 

three RGB channels, three HSV channels and one L channel of CIELAB color space and 

input 7-channel images to their deep neural network model and showed improved results. 

Ozturk et al. [30] also used 7 channels in their deep learning method, however, their 

approach was slightly different. The first input layer took three RGB channels and four 

additional channels (S of HSV color space, I of YIQ color space, B of CBR color space 

and Z of XYZ color space) were fed to deeper intermediate layers.  

Xie et al. [29] created a high-resolution feature block (HRFB) having three 

branches – a normal convolutional branch, a spatial attention branch, and a channel 

attention branch. Tong et al. [32] used an extended U-Net architecture and proposed 

ASCU-Net by employing a triple attention mechanism of attention gate [33], spatial 

attention module, and channel attention module.  
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A transfer learning approach has also been applied to skin lesion segmentation 

problems. Kadry et al. [34] and Rajinikanth [35] employed a pretrained VGG [7] network 

to encode the important features from the skin lesion image and then upsampled the feature 

maps repeatedly to generate the segmentation mask. Zafar et al. [36] employed a ResNet-

50 [9] architecture pretrained on ImageNet [37] as the encoder network in their U-Net 

architecture. A similar method by Tschandl et al. [27] also used a ResNet-34 architecture 

as the encoding layers and investigated the effect of random weight initialization versus 

domain-specific or ImageNet pretraining. Nawaz et al. [38] presented a U-Net architecture 

using DenseNet [39] encoder to segment melanoma lesion of varying colors and sizes. 

Nguyen et al. [40] integrated a pretrained EfficientNet-B4 [41] and the residual blocks in 

their U-Net architecture. Despite the early success of deep learning methods on skin lesion 

segmentation, many current architectures still fail to produce satisfactory results on 

challenging conditions like low skin-versus-lesion contrast and presence of image artifacts 

like hair or ruler marks, ink markers and gel bubbles. Another concern we found was the 

presence of inaccurate or noisy ground truth (GT) masks in the benchmark ISIC 2017 [42] 

skin lesion segmentation datasets used in previous studies. These noisy GTs in the 

benchmark dataset warrant investigation to determine their effect on skin lesion 

segmentation. 

In this study, we propose a deep learning method to improve skin lesion 

segmentation in dermoscopic images. The proposed method uses a modified ChimeraNet 

[43] architecture that was used to detect hair and ruler marks in dermoscopic images. The 

main contributions of this paper are as follows: 
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• The proposed method achieves state-of-the-art segmentation performance on the 

ISIC 2017 skin lesion segmentation dataset. This segmentation improvement can 

benefit conventional analysis of the lesion, which depends on accurate 

segmentation. 

• We identify noisy or inaccurate ground truth labels in the benchmark public dataset.  

• We investigate the effect of pruning the noisy or inaccurate ground truth labels from 

the dataset. 

 

2. MATERIALS AND METHODS 

 

This section discusses the materials and methods used in this study. Our proposed 

method has three stages – annotation curation, training, and evaluation or inference. First, 

a dermatologist or specialist assesses the quality of ground truth annotations in a 

benchmark public dataset. Second, a U-Net segmentation model is trained using the curated 

training set. Finally, the trained model is evaluated on the curated test set. The overall flow 

diagram of the proposed method is shown in Figure 1. 

 

 

Figure 1. The overall flow diagram of a proposed skin lesion segmentation method. 
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2.1. IMAGE DATASETS 

The dataset used in this study is the publicly available ISIC 2017 [42] skin lesion 

segmentation dataset. It is a large skin lesion segmentation dataset released as a part of the 

2017 International Skin Imaging Collaboration (ISIC) Challenge. It provides 2750 

dermoscopic skin lesion images with lesion boundary masks - 2000 training, 150 

validation, and 600 test images. The ground truth (GT) lesion boundary masks were 

determined under the supervision of expert clinicians using both manual annotation and 

semi-automated process as shown in Figure 2. The images are 8-bit RGB images with 

varying height and width ranging from a few hundred pixels to a few thousand pixels. As 

the dataset provides a single train-validation split, we combined the official training and 

validation sets to create a single training set of 2150 images to run 5-fold cross-validation 

experiments. The official 600 test images were used as a holdout test set to evaluate the 

performance of our proposed method against the state-of-the-art methods. 

 

 

Figure 2. Skin lesion dermoscopy images with ground truth lesion boundary (RED) from 

publicly available ISIC skin lesion datasets. The masks are manually drawn (first row) or 

generated using a semi-automated process (second row). 
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Figure 3. Examples of inaccurate or noisy ground truths on ISIC lesion segmentation 

dataset. Overlays show GT lesion boundaries on lesion images (top row) and ground truth 

lesion segmentation mask (bottom row). The lesion boundary (RED) fails to cover the 

whole lesion in all examples. 

 

Table 1. Number of images with good, mildly noisy, and noisy lesion boundary labels in 

ISIC 2017 train and test sets. 

Image Set Good Mildly Noisy Noisy 

Train + Validation (2150) 1982 149 19 

Test (600) 493 87 20 

Total (2750) 2475 236 39 

 

 

As the GT masks were created using both manual and semi-automated processes, 

we found some of the ground truth masks, especially those determined automatically, were 

inaccurate (Figure 3). The noisy labels or inaccurate examples in the training set might 

affect the model adversely, reducing accuracy. Conversely, noisy labels might aid 

performance by increasing the number of training examples or regularizing the 

overparameterized deep learning model. Also, the noisy labels in the test set might not 
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demonstrate a true evaluation of the model. Thus, all 2750 GT masks, including both train 

and test sets, were re-evaluated by a dermatologist and categorized into three categories - 

good, mildly noisy, and noisy. The number of GT masks in each category after reevaluation 

are shown in Table 1. 

2.2. DATA AUGMENTATION 

Data augmentation can be applied during the training of deep neural networks to 

increase the number of training images without adding new images. Augmentation will 

result in better generalization of deep network models and reduce the overfitting problem. 

Data augmentation performs different image transform methods on the original training 

images to generate more examples for training. In this study, we selected the following 

image transforms for data augmentation: 

• Height or width shift with a range of (-0.15, +0.15) 

• Horizontal or vertical flip  

• Rotation with range between +90° to -90°  

• Zoom with a range (-0.15, +15) 

• Brightness with a range of (0.85, 1.15) 

• Contrast with a range of (0.85, 1.15) 

Furthermore, all images were resized to 448×448 and the image pixel values were 

rescaled between 0 and 1. Finally, the images were normalized before feeding them to the 

deep network. 
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2.3. NETWORK ARCHITECTURE 

In this study, we used a modified U-Net [31] convolutional neural network (CNN) 

architecture for skin lesion segmentation by Lama et al. [43]. The proposed encoder-

decoder based image segmentation model, named ChimeraNet, uses a pretrained 

EfficientNet [41]model in the encoder and squeeze-and-excitation [44] structures in the 

decoder. Further, we applied a dilated convolution [45] operation in place of a regular 

convolution operation in these squeeze-and-excitation residual blocks. As artifacts like 

hair, ruler marks, and purple marks hinder the detection of important features from skin 

lesion images [23], [46], we adopted the CNN architecture that was already successful in 

segmenting fine structures like hair and ruler marks from the skin lesion images. However, 

a few minor modifications were performed on the original ChimeraNet[43] model to 

accommodate skin lesion segmentation task. The overall pipeline of the proposed UNet 

architecture is shown in Figure 4. 

 

 

Figure 4. Proposed architecture for skin lesion segmentation. An encoder-decoder 

architecture with pretrained EfficientNet model as the encoder network and the decoder 

network comprised of four squeeze-and-excitation residual blocks. 
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2.3.1. Encoder. In the encoder part, we used the EfficientNet [41] model pretrained 

on the ImageNet [37] image classification challenge dataset. EfficientNets are composed 

of mobile inverted bottleneck convolution (MBConv) structures and have 8 network 

variants from EfficientNet-B0 to EfficientNet-B7. These networks use multiple MBConv 

blocks grouped together to form seven larger blocks named Block1 to Block7 as given in 

Table 2. EfficientNetB0 is the baseline architecture, and other variants are scaled up by 

employing a compound scaling method that uniformly scales network depth, width, and 

resolution with a fixed set of scaling factors. In the proposed model, we used the pretrained 

EfficientNet-B4 variant of EfficientNet models as the encoder network. Like many CNN 

architectures, the EfficientNet model downsamples the feature map repeatedly while 

extracting the most useful features from the image. The spatial dimension of the final 

feature map gets much smaller than the original dimension of an input image. The 

dimensions of feature maps at different levels are given in Table 2. 

Conversely, the decoder network needs to expand these low-resolution feature 

maps to generate the segmentation map with spatial dimensions equal to those of the input 

image. The U-Net architecture uses the skip-connections to recover the spatial information 

lost in the encoder due to downsampling process. For precise localization of features, the 

skip-connection feeds the high-resolution output feature maps at various levels in the 

encoder to the decoder by skipping some blocks as shown in Figure 4. In the proposed 

method, we used the outputs of Conv3×3, Block2, Block3 and Block5 as sources of the 

skip-connections. These blocks are selected for skip connections because the size of output 

feature maps is downsampled by a factor of 2 in the subsequent block. The output 
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dimensions of each block corresponding to the skip connections and the final output of the 

encoder are given in Table 2. 

 

Table 2. Different blocks of EfficientNet-B4 model and their output feature map sizes 

and the number of channels. 

Block Name Feature Map Size (W × H) #Feature Map (C) 

Input layer 448 × 448 3 

Conv3×3 224 × 224 48 

Block 1 224 × 224 24 

Block 2 112 × 112 32 

Block 3 56 × 56 56 

Block 4 28 × 28 112 

Block 5 28 × 28 160 

Block 6 14 × 14 272 

Block 7 14 × 14 448 

 

 

2.3.2. Decoder. The decoder network is constructed using a squeeze-and-excitation 

residual (SERes) structure [44] as shown in Figure 5. The SERes block has a better feature 

representation capability than the plain convolution block as it emphasizes the informative 

features and suppresses the weaker ones by modeling the interdependencies between 

channels of convolutional features. The decoder network has 4 blocks named Dec Block1 

to Dec Block4, as shown in Figure 4. Each decoder block is composed of a SERes block 

and gets two feature maps as inputs – an output feature map from the previous stage and a 
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low-level feature map via a skip-connection from the encoder. For example, the first block 

(Dec Block1) of the decoder gets 14×14×448 feature input from the previous stage, the 

final output of the encoder, and 28×28×160 low-level feature input from Block5 via a skip-

connection. Here, three dimensions of the feature map represent width (W), height (H) and 

number of feature map or channel (C). Both feature inputs are concatenated before feeding 

to the SERes block. However, the dimensions of both inputs are not the same. To combine 

both inputs, first, the 14×14×448 feature map from the previous stage is upsampled using 

a transposed convolution, also called deconvolution. The transposed convolution performs 

2×2 upsampling followed by a 3×3 convolution operation. We selected the number of 

filters for transposed convolution as half of the number of input channels, i.e. 224 (=448/2), 

thus generating a 28×28×224 feature map. Then, the two inputs are concatenated along the 

channel axis to form 28×28×384 feature map before feeding to the SERes block. The 

SERes block combines an SE block with a residual structure [44], as shown in Figure 5. 

The residual unit in the SERes block is a double convolution block, which applies two sets 

of 3×3 dilated convolutions (dilation rate = 2), batch normalization [47], and rectified linear 

unit (ReLU) operations. Again, we selected the number of filters for two convolution layers 

in the residual unit as half of the input channels, i.e. 192 (= 384/2). The residual unit outputs 

a 28×28×192 feature map, and then the squeeze-and-excitation operation is performed to 

scale the features along the channel axis. To find the weights for each channel of the feature 

map, SE first applies global average pooling to reduce the feature map to 1×1×192 and 

then applies non-linear operations like FC, ReLU, FC, and sigmoid. The number of neurons 

in two FC layers are C/r and C, respectively, where r is a feature reduction factor and 

empirically selected as r = 8. The SE generates a 1×1×192 weight vector with each value 
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in the range of 0 to 1. Then the residual feature is multiplied with a weight vector to scale 

the features and generate a 28×28×192 scaled feature map. 

 

 

Figure 5. Structures of convolution blocks in the decoder network. Double convolution 

block (left) and squeeze-and-excitation residual block (right). 

 

Further, the SERes block combines this scaled residual feature map with the 

original input feature map. However, the channels in the original input feature map 

(28×28×224) and residual feature output (28×28×192) are not the same, so a 1×1 

convolution operation with 192 filters followed by a batch normalization operation are 

performed on the original input feature map. Then, the SERes block adds two feature maps 

together and applies the ReLU operation to generate the final 28×28×192 feature output. 

Similarly, the remaining decoder blocks (Dec Block2 to Dec Block4) apply the 

same set of operations as Dec Block1. Only the size and the number of feature maps are 
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different, as shown in Table 3. The number of feature maps (C) corresponds to the number 

of convolutional filters applied in each SERes block. Also, the dropout operation with 0.4 

probability was applied after each decoder block to regularize the network from the 

overfitting during the training. The output resolution of the final decoder block, Dec 

Block4, is still smaller than the original input resolution so it is upsampled by a factor of 

2. Finally, 1×1 convolution and a sigmoid function are applied to generate the final 

segmentation map of size 448×448×1. The 1x1 convolution reduces the number of 

channels to the desired number of classes, and the sigmoid operation converts all pixel 

values to the range between 0 and 1. Each pixel value in the segmentation map represents 

the probability score of that pixel belonging to the skin lesion. 

 

Table 3. SERes blocks in the decoder and their output sizes. 

Block Name Size (W × H) Feature Map (C) 

Dec Block1 28 × 28 192 

Dec Block2 56 × 56 76 

Dec Block3 112 × 112 35 

Dec Block4 224 × 224 32 

 

 

During inference, we give five different augmented versions of an input image to 

the trained deep network: an original image, a horizontally flipped image, a vertically 

flipped image, a 90° clockwise rotated image, and a 90° counterclockwise rotated image. 

The deep network generates the segmentation output for each image, and the final 

segmentation mask is generated by aggregating these five outputs using the unweighted 
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average of the five predicted masks. The mask is binarized using the threshold of 0.5 to 

generate the final segmentation mask.    

2.4. TRAINING DETAILS 

All models were built using Keras with a Tensorflow backend in Python 3 and 

trained using a single 32GB Nvidia V100 graphics card. We used a 5-fold cross-validation 

method to tune the hyperparameters, which are shown in Table 4. The networks were 

trained using a Dice [48] loss function and Adam [49] optimization algorithm. To reduce 

overfitting of a deep neural network model, we used data augmentation (see details in 

section 2.2), a dropout layer, and an early stopping technique. The dropout probability of 

0.4 was selected for the dropout layers in each decoder block. All images were resized to 

448x448 using bilinear interpolation. 

 

Table 4. Training hyperparameters. 

Parameter Value 

image size 448x448 

learning rate 0.0001 

batch size 10 

epoch 200 

dropout probability 0.4 

optimizer Adam 

loss method dice 

early stopping patience 30 
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3. EXPERIMENTAL RESULTS  

 

We evaluated the performance of the proposed method by comparing the predicted 

lesion segmentation masks with the provided ground truth masks on the official ISIC 2017 

[42] skin lesion segmentation dataset having 600 test images. In addition, the proposed 

method was also evaluated on curated ISIC 2017 test sets. The evaluation metrics used are 

Jaccard index (Jac), Dice similarity coefficient (Dsc), and accuracy (Acc). 

3.1. SEGMENTATION PERFORMANCE OF THE PROPOSED AND STATE-OF-

THE-ART METHODS ON ISIC 2017 TEST IMAGES 

In this section, we compared the lesion segmentation performance of the proposed 

method on 600 ISIC 2017 test images with the previously reported methods, as shown in 

Table 5. The proposed method achieved the highest Jaccard score of 0.807 compared to 

the state-of-the-art methods [53]. 

In Figure 6, we show the segmentation results of the proposed method on ISIC 2017 

test images. The segmentation results showed that the proposed method successfully finds 

the lesion border despite the presence of hair, ruler marks, ink marker, and sticker artifacts. 

Also, the proposed method accurately segments the skin lesion from the background in 

challenging images having low contrast between the skin and the lesion (see row 3). The 

predicted masks have smooth lesion borders (blue) compared to the jagged ground truth 

lesion borders (red) generated by semi-automated processes (see third column). 
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Table 5. Performance comparison with other lesion segmentation methods on the original 

ISIC 2017 test dataset. 

Methods Year Jac Dsc Acc 

Al-Masni et al. [26] 2018 0.771 0.871 0.940 

Tschandl et al. [27] 2019 0.768 0.851  

Yuan and Lo [28] 2019 0.765 0.849 0.934 

Navarro et al.[50]  2019 0.769 0.854 0.955 

Xie et al.[29]  2020 0.783 0.862 0.938 

Ozturk and Ozkaya [30] 2020 0.783 0.886 0.953 

Shan et al.[51]  2020 0.763 0.846 0.937 

Kaymak et al.[52]  2020 0.725 0.841 0.939 

Nguyen et al.[40] 2020 0.781 0.861  

Zafar et al.[36]  2020 0.772 0.858  

Goyal et al. [53] 2020 0.793 0.871  

Tong et al.[32]  2021 0.742  0.926 

Chen et al.[54] 2022 0.8036 0.8704 0.9471 

Ashraf et al.[55] 2022 0.8005   

Our Method  0.807 0.880 0.948 
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Figure 6. Segmentation results of the proposed method on ISIC 2017 test set. Overlays of 

ground truth lesion boundary (RED) and predicted lesion boundary (BLUE) on skin 

lesion images. Lesion border predictions are accurate even in the presence of artifacts like 

hair, ruler marks, ink markers, etc. 

3.2. EFFECT OF PRUNING THE NOISY GT LABELS FROM ISIC 2017 

DATASET 

In this section, we investigated the effect of pruning the noisy ground truth (GT) 

labels from both training and test sets of the ISIC 2017 lesion segmentation dataset. Table 

6 shows the segmentation performance of the proposed method on 600 test images before 

and after pruning the noisy labels from the dataset. 

First, we removed the noisy GT labels from the training set. When 19 noisy labels 

were removed from the training set of 2150 images, there was no significant change in the 

performance per Jaccard scores (0.807 vs. 0.806) on 600 test images. However, when both 
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mildly noisy and noisy labels (168 images) were removed, the performance slightly 

decreased from a Jaccard score of 0.807 to 0.802 on 600 test images. Larger training sets 

provide more examples, advantageous for training the deep learning model even if the 

labels are noisy or mildly noisy. 

Second, we removed the noisy GT labels from 600 ISIC 2017 test images. The 

model trained on the full training set (2150 images) improved the Jaccard score by 0.01 

from 0.807 to 0.817 (a 1 % improvement) when 20 noisy labels were removed. Further, 

when both noisy (= 20) and mildly noisy (= 87) GT labels were removed, we achieved the 

highest Jaccard score of 0.832, which is 2.5 % improvement from 0.807. 

 

Table 6. Segmentation performance comparison of the proposed method before and after 

pruning noisy and mildly noisy GT labels from ISIC 2017 train and test sets 

Train Pruned (Ntrain) Test Pruned (Ntest) Jac Dsc Acc 

None (2150) None (600) 0.807 0.880 94.779 

Noisy (580) 0.817 0.889 95.536 

Noisy + Mildly Noisy (493) 0.832 0.900 96.393 

Noisy (2131) None (600) 0.806 0.878 94.723 

Noisy (580) 0.815 0.887 95.518 

Noisy + Mildly Noisy (493) 0.827 0.895 96.210 

Noisy + Mildly Noisy 

(1982) 

None (600) 0.802 0.875 94.658 

Noisy (580) 0.812 0.885 95.398 

Noisy + Mildly Noisy (493) 0.824 0.893 96.073 
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Figure 7. Segmentation results of the proposed method on examples having noisy (or 

inaccurate) ground truth (GT) on an official ISIC 2017 test set. The predicted lesion 

borders (BLUE) cover the lesion area more accurately than the GT lesion border (RED). 

 

In Figure 7, we showed the segmentation results of the proposed method on the 

ISIC2017 test images having noisy or inaccurate ground truth masks. The overlays of the 

predicted lesion boundary (indicated by blue line) and the ground truth lesion boundary 

(indicated by red line) on the third-row show that the predicted segmentation covers the 

lesion area more accurately than the ground truth lesion mask. 
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4. DISCUSSIONS 

 

In this study, we demonstrated that our proposed deep learning method successfully 

detects the skin lesion boundary on most dermoscopic skin lesion images. We scored 

segmentation performance using the Jaccard index, dice similarity coefficient, and 

accuracy. As the accuracy metric counts true-negative pixels and true-positive pixels 

equally, accuracy overstates the actual performance when positive (lesion) and negative 

(background) pixels are highly imbalanced. Accordingly, accuracy is less useful than the 

other methods in assessing segmentation performance for lesions which occupy a small 

area of the image.  

The proposed network architecture in this study was the same model, ChimeraNet, 

used in detecting hair and ruler marks in dermoscopic images [43]. The encoder-decoder 

architecture uses a pre-trained EfficientNet [41] model as the encoder network and a 

squeeze-and-excitation residual [44] structure as the convolutional block to construct the 

decoder network. The proposed method performed better than the state-of-the-art methods 

on the skin lesion segmentation task, with the highest Jaccard scores of 0.807 on the official 

ISIC2017 test set and 0.832 on the curated ISIC2017 test set. A very similar method was 

employed by Nguyen et al. [40], with a pretrained EfficientNet [41] model as an encoder 

network. Our proposed model improved the Jaccard score of Nguyen by 0.026, from 0.781 

to 0.807, (a 3.2% improvement) on the ISIC 2017 test set. The main difference was the use 

of a different decoder network which employs a squeeze-and-excitation residual structure 

and dilated convolution operations. The squeeze-and-excitation convolutional structure 

improved the segmentation performance by focusing on more critical channels of the 
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feature maps [44], resulting in a better feature representation and generalization than the 

basic convolutional blocks. The dilated convolution operations give the larger receptive 

field without increasing the number of filter parameters. Lama et al. [43] compared loss 

functions and various U-Net architectures and found that the U-Net architecture presented 

here was best in the dermoscopy domain. Thus, ablation studies comparing various 

architectures are not repeated here. 

Although the ISIC 2017 skin lesion segmentation dataset is the largest publicly 

available and most-used dataset in skin lesion segmentation studies in the deep learning 

era, we found many inaccurate ground truth masks in the dataset. These inaccurate GT 

masks might affect the segmentation performance of the deep learning model. Thus, our 

dermatologist manually reevaluated all ground truth masks and graded them into three 

categories – good, mildly noisy, and noisy. Then we conducted multiple experiments to 

analyze the effect of removing the noisy or inaccurate ground truth masks from both 

training and test sets. The results in Table 6 show that the model trained on the complete 

training set performed slightly better than the model trained on the curated training set 

(after removing noisy and mildly noisy examples). The full training set model had 0.807 

Jaccard and 0.880 Dice scores on 600 ISIC2017 test images, while the curated training set 

model only achieved 0.802 Jaccard and 0.875 Dice scores. These experimental results show 

that the presence of noisy or inaccurate labels in the training set does not reduce the model’s 

performance. Instead, some noisy or inaccurate labels in the training set might provide a 

regularization effect for the overparameterized deep learning model and thus generalize 

better, aside from the beneficial effect of a more extensive training set. Conversely, the 

noisy or inaccurate GTs in the test set adversely affected the evaluation scores. The Jaccard 
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and Dice similarity scores were improved from 0.807 to 0.832 and 0.88 to 0.90, 

respectively when the noisy and mildly noisy GT labels were removed from the official 

ISIC 2017 lesion segmentation test set. This result shows that the segmentation 

performance is significantly underestimated when evaluated on the test set having noisy or 

inaccurate GT labels. As many previous studies have used the official test set to evaluate 

their method against the state-of-the-art methods, comparisons might not be fair and 

accurate.  

Image segmentations created by ChimeraNet deep learning are subjectively 

improved compared to both automatic and manual borders. The excessive jaggedness of 

the automatic borders is remedied with the new technique. The manual borders, 

characterized by straight lines joined at points, are smoothed. Both types of distortion in 

the ground truth segmentations, excessive jaggedness, and straight-line junctions, are non-

physiologic and may lead to error in handcrafted feature analysis which depends upon an 

accurate border.   

There are limitations to this study. Only one dermatologist scored the accuracy of 

the segmentations. No new noisy segmentations were added to the benchmark ISIC 2017 

dataset to see the effect of noisy data at different proportions in the training set. The 

experiments were conducted using only the available noisy data in the original dataset. 

Further, we did not create new ground truths for the noisy or inaccurate ground truths. 
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5. CONCLUSION 

 

In this study, we employed a novel deep learning technique to segment skin lesions 

in dermoscopic images. The proposed method performed better than the previous state-of-

the-art methods. We observed the presence of noisy or inaccurate ground truth labels in a 

large benchmark dataset. With help of a dermatologist, we manually re-evaluated the 

ground truth masks. Further, we investigated the effect of noisy ground truth labels in the 

benchmark dataset. Our experimental results show that more training data, including noisy 

data, yields better performance than the condensed curated data. However, the noisy data 

adversely affects the evaluation scores when present in the test data. The test scores were 

improved when the noisy or inaccurate labels were removed from the official test set. We 

recommend that future researchers avoid the noisy data in the test set for a fair and accurate 

evaluation of their lesion segmentation algorithms. 
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ABSTRACT 

Deep learning can, in experimental image environments, exceed specialists’ 

diagnostic accuracy. However, little progress has been made in accurate segmentation of 

multiple lesions. Thus, information present in multiple-lesion images, available to 

specialists, is not retrievable by machine learning. We propose a simple and effective data 

augmentation technique for skin lesion segmentation in dermoscopic images. The lesion-

aware mixup augmentation (LAMA) method generates a synthetic multi-lesion image by 

mixing two or more lesion images from the training set. To train the deep neural network 

with the proposed LAMA method, we used the publicly available International Skin 

Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset. As none 

of the previous skin lesion datasets (including ISIC 2017) have considered multiple lesions 

per image, we created a new multi-lesion (MuLe) segmentation dataset utilizing publicly 

available ISIC 2020 skin lesion images with multiple lesions per image. MuLe was used 

as a test set to evaluate the effectiveness of the proposed method. Our test results show that 

the proposed method improved the Jaccard score from 0.687 to 0.744 and the Dice score 
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from 0.7923 to 0.8321 over a baseline model on MuLe test images. On the single-lesion 

ISIC 2017 test images, LAMA improved the baseline model’s segmentation performance 

by raising the Jaccard score of 0.7947 to 0.8013 and the Dice score of 0.8714 to 0.8766. 

The experimental results showed that LAMA improved the segmentation accuracy on both 

single-lesion and multi-lesion dermoscopic images. Although the deep learning model was 

trained using only synthetic multi-lesion images from the LAMA method, the model 

successfully detected lesion boundaries on real multi-lesion images. These results show 

that LAMA can help to train a robust single- or multi-lesion segmentation model. 

Keywords — Melanoma, dermoscopy, deep learning, image segmentation, data 

augmentation 

 

1. INTRODUCTION 

 

An estimated 97,610 new cases of invasive melanoma and 89,070 in-situ melanoma 

are expected to be diagnosed in 2023 in the United States [1]. Dermoscopy is a powerful 

imaging technique that assists dermatologists in early skin cancer detection, resulting in 

improved diagnostic accuracy compared to visual inspection by a domain expert [2]–[4].  

Recent advancements in deep learning techniques [5]–[12] have proven immensely 

beneficial in medical image analysis  and have been successfully applied to various medical 

imaging problems [13]–[16]. In skin cancer, deep learning techniques in combination with 

dermoscopy have demonstrated higher diagnostic accuracy than experienced 

dermatologists [13], [17]–[20]. Pathan et al. published a recent review describing 

handcrafted and deep learning (DL) techniques for computer-aided skin cancer diagnosis 
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[21]. Recent studies show that the fusion of handcrafted and deep learning techniques 

boosts the diagnostic accuracy of skin cancer [20], [22]–[26]. The handcrafted features 

usually require the lesion borders to facilitate their computation [23], [24]. The precise 

calculation of handcrafted lesion features depends on accurate detection of the lesion 

border. Therefore, lesion segmentation is a crucial step in computer-aided skin cancer 

diagnosis. 

Skin lesion segmentation methods have been developed using both conventional 

image processing approaches [27]–[29] and deep learning techniques [30]–[35]. While 

traditional methods showed promising results on small sets, they tend to perform poorly on 

challenging conditions such as low contrast between lesion and background, lesions with 

different colors, and images containing artifacts like hair, ruler marks, gel bubbles, and ink 

marks. In contrast, deep learning techniques, specifically convolutional neural networks 

(CNN), seem to perform better in detecting lesion borders in the presence of these 

challenges. 

Data augmentation is a widely used technique in deep learning to artificially 

increase the size of the training dataset and improve the generalization of the model. 

Augmentation involves randomly applying image transformations such as rotation, 

translation, scaling, flipping, color jittering, etc. In addition to these basic transformations, 

various data augmentation strategies have been developed for image classification, such as 

Cutout [36], Mixup [37], [38], and Cutmix[39]. Cutout randomly masks out rectangular 

regions of the input image, which encourages the model to rely on other parts of the image 

and improves its robustness to occlusion. Mixup generates new training samples by linearly 

interpolating between pairs of images and their corresponding labels, which improves the 
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model's ability to generalize to new input distributions. Cutmix combines the cutout and 

mixup methods by replacing a rectangular region in one image with a corresponding region 

from another, which can improve the model's ability to learn fine-grained features while 

preserving the overall structure of the input. Although these methods have proven 

successful for image classification, they cannot be adopted for skin lesion segmentation as 

these methods do not consider the location or geometry of the objects (lesion). 

This study introduces a novel lesion-aware mixup augmentation (LAMA) method 

for skin lesion segmentation in dermoscopic images. The LAMA method can generate a 

new synthetic multi-lesion image by mixing two or more single-lesion images from the 

training set. Unlike Cutmix, LAMA randomly selects two or more lesions from a set of 

lesions and paste pastes the new lesions in the non-lesion area of an image. To find the 

non-lesion area in an image, it applies a multi-level patch generation and qualification 

process, which is faster as it needs to execute only once at the beginning of training. Also, 

the lesion size in dermoscopic images varies greatly, with some lesions covering the whole 

image while others might cover only a small part of the image. To avoid excessive resizing 

of lesions during mixing, LAMA categorizes the lesions into n groups based on their sizes, 

with each group corresponding to a specific level of non-lesion patches. And LAMA 

samples the patch level or patch size while mixing based on the histogram distribution of 

images having non-lesion patches at each patch level in the training set. We evaluated the 

proposed method on a benchmark ISIC 2017 [40] skin lesion segmentation dataset. Also, 

as none of the publicly available datasets or the datasets used in previous studies considered 

multiple lesions per image, we created a new multi-lesion (MuLe) segmentation dataset 

using the publicly available ISIC 2020 [41] melanoma classification dataset to evaluate the 
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effectiveness of the proposed method on real examples having multiple lesions in each 

image. The experimental results showed that the LAMA method combined with 

ChimeraNet [35], [42], a U-Net [11] model with EfficientNet [12] encoder, improved the 

segmentation performance on both the multi-lesion MuLe dataset and the single-lesion 

ISIC 2017 dataset.  

 

2.  LAMA 

 

This section describes our proposed lesion-aware mixup augmentation (LAMA) 

method for skin lesion segmentation. It generates a new synthetic multi-lesion image by 

mixing two or more skin lesion images to train the deep neural network. LAMA randomly 

selects one or more lesions from a training set of single-lesion images and pastes them on 

the non-lesion area of an image. To find a non-lesion region in the image, LAMA uses a 

multi-level patch generation and qualification process. As skin lesion size varies greatly, 

the lesion patches are categorized into n groups based on their sizes, with each group 

corresponding to a specific level of non-lesion patches. This grouping avoids an excessive 

resizing of lesion patches when mixed with non-lesion patches. In the following 

subsections, we describe each process in detail. 

2.1. FINDING NON-LESION PATCHES 

The candidate patches with various sizes are generated from a non-lesion region of 

a lesion image. A patch is randomly selected from a pool of candidate patches to paste a 

new lesion. For an image x ∈  𝑅H×W×C where C = number of colors (3) and a lesion mask 
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y ∈ RH×W, we define n different patch levels 𝑙 =  2, 3, … , n + 1 and generate 𝑃𝑙 non-

overlapping patches of sizes ℎ𝑙 × 𝑤𝑙  for each patch level 𝑙 as shown in Figure 1, where 

patch height ℎ𝑙 =
𝐻

𝑙⁄  , patch width 𝑤𝑙 =
𝑊

𝑙⁄  and patch count 𝑃𝑙 = 𝑙2. 

 

 

Figure 1. Non-lesion patch generation process. a) Creating patches of size ℎ𝑙 × 𝑤𝑙 at 𝑛 

different patch levels from 𝑙 =  2, 3, … , 𝑛 + 1.  b) Finding non-lesion patches at patch 

level 𝑙 =  6. Non-lesion patches that satisfy the criteria 𝑇𝑝𝑙𝑝𝑎 < 0.1 and 𝑇𝑝𝑙𝑙𝑎 < 0.05 are 

overlayed with GREEN color. The patches overlayed with BLUE color do not satisfy the 

criteria and are not added to the pool of candidate patches. In the rightmost mask of (a), 

the blue patch has 𝑇𝑝𝑙𝑝𝑎 =  0.17, so it fails the first criterion and is a lesion patch. 

However, the green patch has 𝑇𝑝𝑙𝑝𝑎 =  0.02, so it satisfies the first criterion and is a non-

lesion patch. 

 

To minimize occlusion of an existing lesion by the new lesion, a patch p will be 

only added to a pool of candidate patches if it satisfies two criteria - a total lesion area 

within the patch is less than 10% of a total patch area (i.e., 𝑇𝑝𝑙𝑝𝑎 < 0.1), and a total lesion 

 = 2   = 3   = n+1 
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area within the patch is less than 5% of a total lesion area (i.e., 𝑇𝑝𝑙𝑙𝑎 < 0.05). As the patch 

count is proportional to a square of patch level l and a lesion usually covers a large part of 

the image, most candidate non-lesion patches will belong to higher patch levels, i.e., 

smaller patch sizes, as shown in Figure 2 (a). The distribution of images having non-lesion 

patches vs. patch level in Figure 2 (b) shows that only a few images have larger non-lesion 

patches. 

 

 

Figure 2. Number of non-lesion patches and images having non-lesion patches for 

different patch levels (n = 1-5) on ISIC 2017 lesion segmentation training set. 
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2.2. LESION GROUPS 

Skin lesions have different shapes and sizes. Some lesions cover most of the image 

while others might occupy a tiny part of the image as shown in Figure 3. To avoid excessive 

resizing of lesions during mixing, all lesions from a training set are grouped into n groups 

based on their sizes, with each group corresponding to a specific patch level. A lesion from 

group 𝑔𝑖 only mixes with patch level 𝑙𝑖 And we compute lesion size in terms of an area of 

a rectangular bounding box enclosing the lesion. As the non-lesion patches in each patch 

level are highly imbalanced, as shown in Figure 2 (a), we divide the lesions into n groups 

based on the histogram of images having non-lesion patches for n patch levels, which is 

more balanced, as shown in Figure 2 (b). The number of lesions per group is shown in 

Figure 4. 

 

 

Figure 2. Skin Lesion Images in ISIC 2017 lesion segmentation dataset with varying 

lesion shapes, sizes, and colors. 
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Figure 4. Number of lesions per group in n groups (𝑛 =  1 − 5). 

2.3. MIXING A NEW LESION 

To paste a new lesion in a non-lesion patch, first, we randomly select a lesion group 

𝑔𝑖 with a weighted probability based on the lesion group distribution in Figure 4. Then, a 

new lesion is randomly selected from the lesion group 𝑔𝑖. The selected lesion is cropped 

using a rectangular bounding box with extended height or width (extended by 5%) to 

ensure some background around the lesion. The cropped lesion is further augmented using 

random image transformations such as rotate by 90°, transpose, vertical or horizontal flip, 

and Gaussian noise. Next, we randomly select a non-lesion patch from the patch level 𝑙𝑖 to 

paste the augmented lesion crop. The augmented lesion crop needs to be resized to match 

the size of a non-lesion patch. Finally, the lesion is pasted on the selected non-lesion patch 

location, and a new training image is created with mixed lesions, as shown in Figure 5. 
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Figure 5. Augmented Lesion images and masks after mixing a single extra lesion using 

our proposed LAMA method. Some part of the existing lesion is allowed to be occluded 

as in last two columns. 

2.4. ADDING MULTIPLE LESIONS 

When adding more lesions in a mixed image, we use a heatmap mask m ∈ IH×W 

to track a non-lesion region of the image so that multiple lesions are not pasted in the same 

non-lesion patch location. In this mask, a pixel value of 0 represents a non-lesion pixel and 

a pixel value of 1 represents a lesion pixel. With each new lesion addition, we update the 

heatmap m by setting a pixel of 𝑚 to 1 if that pixel belongs to a lesion. The non-lesion 

patch will be removed from the pool if it does not satisfy an additional criterion of a 

heatmap area within a patch is less than 5% of a total patch area (𝑇𝑝ℎ𝑝𝑎  <  0.05). And 

when adding multiple lesions, we vary the number of new lesions by randomly selecting a 

number between 1 and the maximum number of new lesions (=5) rather than using a fixed 

number as shown in Figure 6.   
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Figure 6. Augmented images after mixing multiple lesions from the proposed method. 

The lesion boundary (RED line) shows that new lesions do not occlude other lesions. The 

number of additional lesions varies between 1 and 5. 

 

3. EXPERIMENTS 

 

In this section, we evaluate the performance of a proposed method on the ISIC skin 

lesion datasets. For our experiments, we used a ChimeraNet architecture from the previous 

studies [35], [42] that achieved a state-of-art performance on skin lesion segmentation. The 

architecture uses a pretrained EfficientNet [12] as encoder and a squeeze-and-excitation 

residual (SERes) structure as decoder. In addition, the decoder network applies a 

transposed convolution to upsample the feature maps from the encoder repeatedly to 

generate a final segmentation mask the same size as the input image. In this study, we used 

ChimeraNet (basic), a simplified version of the model, by removing the SERes structures 

while only keeping the transposed convolutions in the decoder network. 
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Table 1. Other image transformations for data augmentation. 

Method Parameter Values 

Rotate (-90°, 90°) 

Horizontal and vertical Shift (-0.15, 0.15) 

Scaling (-0.15, 0.15) 

Brightness (-0.15, 0.15) 

Contrast (-0.15, 0.15) 

Hue (HSV) (-10, 10) 

Saturation (HSV) (-20, 20) 

Value (HSV) (-10, 10) 

Motion blur 5 

Median blur 5 

Gaussian blur 5 

Gaussian noise var_limit = (5, 25) 

Optical distortion distort_limit = 1 

Grid distortion num_steps = 6, distort_limit = 1 

CLAHE clip_limit = 4 

Transpose  

Horizontal and vertical flip  

RGB shift  

Channel shuffle  
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As data augmentation has been an essential step for deep network training and uses 

more than one image transformation, we combined our augmentation method with other 

image transforms shown in Table 1. Other techniques such as batch normalization [43], 

drop out, and early stopping are also used to train the network efficiently. The training 

hyperparameters are shown in Table 2. 

All experiments were implemented using Keras with a Tensorflow backend in 

Python 3 and trained using a single 32GB Nvidia V100 graphics card. And we use the 

Albumentations [44] library for the additional image transforms for data augmentation. 

 

Table 2. Training hyperparameters. 

 Parameter Value 

input size 448×448 

learning rate 0.0001 

batch size 10 

epoch 0 

dropout probability 0.5 

optimizer Adam [45] 

loss method dice [46] 

interpolation bilinear 

early stopping patience 5 

number of patch levels 5 

maximum number of added lesions 5 

lesion bounding box extend 5% 
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3.1. MULTIPLE-LESION SEGMENTATION 

The current publicly available skin lesion segmentation datasets have only one 

lesion per image. We created a new multi-lesion (MuLe) dataset by randomly selecting 203 

images from ISIC skin lesion classification images that might have multiple lesions. Our 

domain expert annotator manually created the ground truth segmentation masks for these 

images, and the ground truths were verified by a dermatologist (W.V.S.). As this dataset is 

small, we only used it as a hold-out test set to evaluate the performance of our proposed 

method. To train the network, we used the publicly available ISIC 2017 [40] skin lesion 

segmentation dataset, with one lesion per image. It provides 2750 dermoscopic skin lesion 

images with ground truth lesion segmentation masks - 2000 training, 150 validation, and 

600 test images. As the ISIC 2017 dataset provides a single train-validation split, we 

combined the official training and validation sets of ISIC2017 to create a single training 

set of 2150 images to run 5-fold cross-validation experiments. All the images were resized 

to 540×540 using a bilinear interpolation method. During training, we only applied our 

proposed method on the training set to generate the synthetic multi-lesion images using the 

single-lesion images. Figure 7 shows the validation loss plot for the DL models trained 

with or without our proposed LAMA method. The loss plot shows that the model with 

LAMA has lower loss than the baseline model. The baseline model without LAMA trained 

for 21 epochs and exited early when the validation loss stopped improving, while the model 

with LAMA trained longer with improved validation loss. 
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Figure 7. Validation loss plot for ISIC 2017 skin lesion segmentation dataset. The lesion 

segmentation model trained with the proposed LAMA method has lower loss than the 

plain model. 

 

Table 3. Performance of the proposed method on multi-lesion (MuLe) test images. 

Method Jaccard Dice Accuracy Precision Recall 

ChimaraNet 

(baseline) 

0.687 0.7923 0.9666 0.8551 0.8149 

ChimeraNet + 

LAMA 

0.7440 0.8321 0.9733 0.8435 0.8846 

 

 

Table 3 shows the performance of the proposed method on 206 multi-lesion (MuLe) 

test images trained on the ISIC 2017 lesion segmentation dataset. The ChimeraNet model 

with LAMA improved overall segmentation performance on real multi-lesion images, 

although the model was trained using only the synthetic multi-lesion images. The largest 

improvements were for recall of 0.8149 to 0.8846, Jaccard score of 0.687 to 0.7444, and 

Dice score of 0.7923 to 0.8321. Precision fell from 0.8551 to 0.8435. Figure 8 shows the 
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segmentation results of the ChimeraNet model combined with or without the proposed 

LAMA method. The proposed method successfully finds the multiple lesions even though 

the model was trained using the synthetic multi-lesion images. 

3.2. ISIC 2017 SKIN LESION SEGMENTATION 

In this section, we evaluate the lesion segmentation performance of the proposed 

method on 600 ISIC 2017 test images. All the images in this official test set have a single 

lesion per image. We use the same trained model in section 3.1 that was trained using the 

synthetic multi-lesion training images. 

 

 

Figure 8. Segmentation results of the proposed method on multi-lesion (MuLe) test set. 

Overlay of ground truth boundary (RED), predicted boundary with LAMA (BLUE), and 

predicted boundary without LAMA (GREEN), i.e., the baseline model, on skin lesion 

images. The baseline model misses a part or some of the multiple lesions. 
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Table 4. Performance comparison with other lesion segmentation methods on 600 ISIC 

2017 test images. 

Methods Year Jaccard Dice Accuracy 

Al-Masni et al. [30] 2018 0.771 0.871 0.940 

Tschandl et al. [31] 2019 0.768 0.851  

Yuan and Lo [32] 2019 0.765 0.849 0.934 

Navarro et al.[47]  2019 0.769 0.854 0.955 

Xie et al.[33]  2020 0.783 0.862 0.938 

Ozturk and Ozkaya [34] 2020 0.783 0.886 0.953 

Shan et al.[48]  2020 0.763 0.846 0.937 

Kaymak et al.[49]  2020 0.725 0.841 0.939 

Nguyen et al.[50] 2020 0.781 0.861  

Zafar et al.[51]  2020 0.772 0.858  

Goyal et al. [52] 2020 0.793 0.871  

Tong et al.[53]  2021 0.742  0.926 

Chen et al.[54] 2022 0.8036 0.8704 0.947 

Ashraf et al.[55] 2022 0.8005   

Lama et al. [35] 2023 0.807 0.880 0.948 

ChimeraNet (baseline)  0.7947 0.8714 0.944 

ChimeraNet + LAMA   0.8013 0.8766 0.948 

 

 

Table 4 shows that the ChimeraNet model with the proposed LAMA method 

improved all measurements - Jaccard score from 0.7947 to 0.8013, dice score from 0.8714 

to 0.8766, and accuracy from 0.944 to 0.948. The proposed method shows robustness by 
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achieving a Jaccard score of 0.8013, comparable to state-of-the-art methods, even though 

the model was trained using synthetic multi-lesion images.  

In Figure 9, we show the segmentation results of the proposed method on ISIC 2017 

test images. The segmentation results show that the proposed method accurately segments 

the skin lesion even in challenging conditions like images with artifacts or low contrast. 

 

 

Figure 9. Segmentation results of the proposed method on ISIC 2017 test set. Overlays of 

ground truth lesion boundary (RED) and predicted lesion boundary (BLUE) on skin 

lesion images. LAMA finds lesion borders accurately in challenging images like low 

skin-and-lesion contrast and in the presence of artifacts like hair, ruler marks, and ink 

marks. 

 

4. DISCUSSION 

 

In this study, we demonstrated that our proposed lesion-aware mixup augmentation 

(LAMA) method helps train a robust skin lesion segmentation model. Our LAMA method 
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successfully generated synthetic multi-lesion images by mixing two or more lesion images 

to train the convolutional neural network. As the currently available public ISIC skin lesion 

segmentation datasets have only one lesion per image, we created a new multi-lesion 

(MuLe) test dataset to evaluate the effectiveness of the proposed method on real examples 

that have one or more lesions in each image. The ChimeraNet model trained with synthetic 

multi-lesion images successfully detected the lesion boundaries of multiple lesions in real 

images. LAMA improved the Jaccard score from 0.687 to 0.744, Dice score from 0.7923 

to 0.8321, and recall from 0.8149 to 0.8846 on 203 MuLe test images. Also, the LAMA 

method improved the Jaccard score of 0.7947 to 0.8013 and Dice score of 0.8714 to 8766 

when evaluated on the ISIC 2017 skin lesion segmentation test set. Although the model 

was trained using synthetic images to detect multiple lesions per image, the model achieved 

results comparable to state-of-the-methods on single-lesion test images. LAMA 

segmentation improvements are most noticeable on challenging images, as shown in Figure 

6. 

Data augmentation methods like Mixup [37] and Cutmix [39] have improved the 

generalization capability of a deep neural network by providing a regularization effect 

during training. Mixup is specifically designed for the image classification task and cannot 

be adopted for image segmentation. The proposed LAMA method is very similar to 

Cutmix, as both randomly replace the patches from one image with patches from another. 

However, CutMix does not consider the location and geometry of the objects (for example, 

lesions in our case) while selecting the patches of the images. Also, it mixes only two 

images, so it cannot generate a synthetic image with more than two lesions for our problem. 

The proposed LAMA solves these shortcomings of Cutmix by creating the lesion patches 
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using the bounding box covering the whole lesion and then pasting one or more lesions in 

the non-lesion area of the image. LAMA finds the non-lesion region of the image using a 

multi-level patch generation and selection scheme. This process is optimized, running only 

once at the beginning of training, and using the same set for all epochs. The other challenge 

for mixing skin lesions is due to a large variability in lesion sizes. To avoid extreme resizing 

of lesions during mixing, all lesion patches are grouped into n groups based on their sizes, 

and each group corresponds to one of the 𝑛 patch levels (or patch sizes). This ensures that 

the lesion patch and non-lesion patch have a similar patch size. In addition, the proposed 

LAMA method augments the lesion patches before pasting them on the non-lesion area of 

an image such that it helps to generate more variation of synthetic images. 

Although the significant color variability in skin or background in skin lesion 

images can cause a noticeable distinction between the original image background and 

newly added patches when these images are mixed, as shown in Figure 6, the experimental 

results have revealed that deep neural networks can successfully detect the actual 

boundaries of lesions and are not affected by such sharp demarcations.  

The proposed method can train segmentation of multiple lesions, potentially 

supplying additional information to machine learning systems. The ugly duckling sign 

[56], for example, shows that a given lesion differs from the patient’s other lesions. This 

sign, most applicable to clinical images, may also appear in dermoscopy images. Machine 

learning lacks such information. The LAMA technique can synthesize multi-lesion 

samples from single-lesion images to train for the segmentation of multiple lesions, 

potentially providing new information for machine learning. 

 



 

 

84 

5. CONCLUSION 

 

In this study, we proposed a novel lesion-aware mixup augmentation (LAMA) 

method to train a robust deep neural network for skin lesion segmentation in dermoscopic 

images. None of the previous studies on skin lesion segmentation considered more than 

one lesion in dermoscopic skin lesion images. Therefore, we created a new multi-lesion 

(MuLe) segmentation dataset using publicly available ISIC skin lesion images to evaluate 

our proposed method. The proposed LAMA method effectively produced synthetic multi-

lesion images by utilizing a training set of single-lesion images and their corresponding 

ground truth masks. The experimental results show that the ChimeraNet lesion 

segmentation model trained with LAMA not only successfully detects multiple lesions on 

real-life examples but also enhances the segmentation performance of single-lesion 

images. Further study of the LAMA technique is warranted. 

 

REFERENCES 

[1] R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, “Cancer statistics, 2023,” 

CA Cancer J Clin, vol. 73, no. 1, pp. 17–48, 2023, doi: 

https://doi.org/10.3322/caac.21763. 

[2] H. Pehamberger, M. Binder, A. Steiner, and K. Wolff, “In vivo epiluminescence 

microscopy: Improvement of early diagnosis of melanoma,” Journal of 

Investigative Dermatology, vol. 100, no. 3 SUPPL., pp. S356–S362, 1993, doi: 

10.1038/jid.1993.63. 

[3] H. P. Soyer, G. Argenziano, R. Talamini, and S. Chimenti, “Is Dermoscopy Useful 

for the Diagnosis of Melanoma?,” Arch Dermatol, vol. 137, no. 10, pp. 1361–1363, 

Oct. 2001, doi: 10.1001/archderm.137.10.1361. 



 

 

85 

[4] R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, “Pattern 

analysis: a two-step procedure for the dermoscopic diagnosis of melanoma,” Clin 

Dermatol, vol. 20, no. 3, pp. 236–239, May 2002, doi: 10.1016/S0738-

081X(02)00216-X. 

[5] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification with Deep 

Convolutional Neural Networks,” in Advances in Neural Information and 

Processing Systems (NIPS), 2012, pp. 1097–1105. 

[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the 

inception architecture for computer vision,” in Proceedings of the IEEE conference 

on computer vision and pattern recognition, 2016, pp. 2818–2826. 

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale 

image recognition,” arXiv preprint arXiv:1409.1556, 2014. 

[8] I. Goodfellow et al., “Generative adversarial networks,” Commun ACM, vol. 63, 

no. 11, pp. 139–144, 2020. 

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 

recognition,” in Proceedings of the IEEE conference on computer vision and 

pattern recognition, 2016, pp. 770–778. 

[10] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image 

recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. 

[11] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for 

Biomedical Image Segmentation.” [Online]. Available: http://lmb.informatik.uni-

freiburg.de/ 

[12] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural 

networks,” in International conference on machine learning, 2019, pp. 6105–6114. 

[13] A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural 

networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017, doi: 

10.1038/nature21056. 

[14] V. Gulshan et al., “Development and validation of a deep learning algorithm for 

detection of diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, 

no. 22, pp. 2402–2410, 2016. 

[15] S. Sornapudi et al., “Deep learning nuclei detection in digitized histology images 

by superpixels,” J Pathol Inform, vol. 9, no. 1, p. 5, 2018. 



 

 

86 

[16] G. Litjens et al., “A survey on deep learning in medical image analysis,” Med Image 

Anal, vol. 42, pp. 60–88, 2017, doi: https://doi.org/10.1016/j.media.2017.07.005. 

[17] L. K. Ferris et al., “Computer-aided classification of melanocytic lesions using 

dermoscopic images,” J Am Acad Dermatol, vol. 73, no. 5, pp. 769–776, Nov. 

2015, doi: 10.1016/J.JAAD.2015.07.028. 

[18] M. A. Marchetti et al., “Results of the 2016 International Skin Imaging 

Collaboration International Symposium on Biomedical Imaging challenge: 

Comparison of the accuracy of computer algorithms to dermatologists for the 

diagnosis of melanoma from dermoscopic images,” J Am Acad Dermatol, vol. 78, 

no. 2, pp. 270-277.e1, Feb. 2018, doi: 10.1016/j.jaad.2017.08.016. 

[19] H. A. Haenssle et al., “Man against machine: diagnostic performance of a deep 

learning convolutional neural network for dermoscopic melanoma recognition in 

comparison to 58 dermatologists,” Annals of Oncology, vol. 29, no. 8, pp. 1836–

1842, 2018, doi: https://doi.org/10.1093/annonc/mdy166. 

[20] N. C. F. Codella et al., “Deep Learning Ensembles for Melanoma Recognition in 

Dermoscopy Images,” IBM J. Res. Dev., vol. 61, no. 4–5, pp. 5:1–5:15, Jul. 2017, 

doi: 10.1147/JRD.2017.2708299. 

[21] S. Pathan, K. G. Prabhu, and P. C. Siddalingaswamy, “Techniques and algorithms 

for computer aided diagnosis of pigmented skin lesions—A review,” Biomed 

Signal Process Control, vol. 39, pp. 237–262, Jan. 2018, doi: 

10.1016/J.BSPC.2017.07.010. 

[22] T. Majtner, S. Yildirim-Yayilgan, and J. Y. Hardeberg, “Combining deep learning 

and hand-crafted features for skin lesion classification,” 2016 6th International 

Conference on Image Processing Theory, Tools and Applications, IPTA 2016, 

2017, doi: 10.1109/IPTA.2016.7821017. 

[23] N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J. R. Smith, “Deep 

Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy 

Images BT - Machine Learning in Medical Imaging,” L. Zhou, L. Wang, Q. Wang, 

and Y. Shi, Eds., Cham: Springer International Publishing, 2015, pp. 118–126. 

[24] I. González-Díaz, “DermaKNet: Incorporating the Knowledge of Dermatologists 

to Convolutional Neural Networks for Skin Lesion Diagnosis,” IEEE J Biomed 

Health Inform, vol. 23, no. 2, pp. 547–559, 2019, doi: 

10.1109/JBHI.2018.2806962. 

[25] J. R. Hagerty et al., “Deep Learning and Handcrafted Method Fusion: Higher 

Diagnostic Accuracy for Melanoma Dermoscopy Images,” IEEE J Biomed Health 

Inform, vol. 23, no. 4, pp. 1385–1391, 2019, doi: 10.1109/JBHI.2019.2891049. 



 

 

87 

[26] A. K. Nambisan et al., “Improving Automatic Melanoma Diagnosis Using Deep 

Learning-Based Segmentation of Irregular Networks,” Cancers (Basel), vol. 15, no. 

4, 2023, doi: 10.3390/cancers15041259. 

[27] G. Celebi, Emre M.; Wen, Quan; Iyatomi, Hitoshi; Shimizu, Kouhei; Zhou, Huiyu; 

Schaefer, “A State-of-the-Art on Lesion Border Detection in Dermoscopy Images,” 

in Dermoscopy Image Analysis, J. S. Celebi, M. Emre; Mendonca, Teresa; 

Marques, Ed., Boca Raton: CRC Press, 2015, pp. 97–129. [Online]. Available: 

https://doi.org/10.1201/b19107 

[28] N. K. Mishra et al., “Automatic lesion border selection in dermoscopy images using 

morphology and color features,” Skin Research and Technology, vol. 25, no. 4, pp. 

544–552, 2019. 

[29] M. E. Celebi, H. Iyatomi, G. Schaefer, and W. v Stoecker, “Lesion border detection 

in dermoscopy images,” Computerized Medical Imaging and Graphics, vol. 33, no. 

2, pp. 148–153, 2009, doi: https://doi.org/10.1016/j.compmedimag.2008.11.002. 

[30] M. A. Al-masni, M. A. Al-antari, M. T. Choi, S. M. Han, and T. S. Kim, “Skin 

lesion segmentation in dermoscopy images via deep full resolution convolutional 

networks,” Comput Methods Programs Biomed, vol. 162, pp. 221–231, 2018, doi: 

10.1016/j.cmpb.2018.05.027. 

[31] P. Tschandl, C. Sinz, and H. Kittler, “Domain-specific classification-pretrained 

fully convolutional network encoders for skin lesion segmentation,” Comput Biol 

Med, vol. 104, pp. 111–116, 2019, doi: 

https://doi.org/10.1016/j.compbiomed.2018.11.010. 

[32] Y. Yuan and Y. C. Lo, “Improving Dermoscopic Image Segmentation With 

Enhanced Convolutional-Deconvolutional Networks,” IEEE J Biomed Health 

Inform, vol. 23, no. 2, pp. 519–526, 2019, doi: 10.1109/JBHI.2017.2787487. 

[33] F. Xie, J. Yang, J. Liu, Z. Jiang, Y. Zheng, and Y. Wang, “Skin lesion segmentation 

using high-resolution convolutional neural network,” Comput Methods Programs 

Biomed, vol. 186, p. 105241, 2020, doi: 

https://doi.org/10.1016/j.cmpb.2019.105241. 

[34] Ş. Öztürk and U. Özkaya, “Skin Lesion Segmentation with Improved 

Convolutional Neural Network,” J Digit Imaging, vol. 33, no. 4, pp. 958–970, 2020, 

doi: 10.1007/s10278-020-00343-z. 

[35] N. Lama, J. Hagerty, A. Nambisan, R. J. Stanley, and W. V. Stoecker, “Skin Lesion 

Segmentation in Dermoscopic Images with Noisy Data,” J Digit Imaging, 2023, 

doi: 10.1007/s10278-023-00819-8. 



 

 

88 

[36] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural 

networks with cutout,” arXiv preprint arXiv:1708.04552, 2017. 

[37] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical 

risk minimization,” arXiv preprint arXiv:1710.09412, 2017. 

[38] Y. Tokozume, Y. Ushiku, and T. Harada, “Between-class learning for image 

classification,” in Proceedings of the IEEE conference on computer vision and 

pattern recognition, 2018, pp. 5486–5494. 

[39] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization 

strategy to train strong classifiers with localizable features,” in Proceedings of the 

IEEE/CVF international conference on computer vision, 2019, pp. 6023–6032. 

[40] N. C. F. Codella et al., “Skin lesion analysis toward melanoma detection: A 

challenge at the 2017 International symposium on biomedical imaging (ISBI), 

hosted by the international skin imaging collaboration (ISIC),” Proceedings - 

International Symposium on Biomedical Imaging, vol. 2018-April, pp. 168–172, 

2018, doi: 10.1109/ISBI.2018.8363547. 

[41] V. Rotemberg et al., “A patient-centric dataset of images and metadata for 

identifying melanomas using clinical context,” Sci Data, vol. 8, no. 1, p. 34, 2021. 

[42] N. Lama et al., “ChimeraNet: U-Net for Hair Detection in Dermoscopic Skin 

Lesion Images,” J Digit Imaging, no. 0123456789, 2022, doi: 10.1007/s10278-022-

00740-6. 

[43] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift.” 

[44] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. 

Kalinin, “Albumentations: fast and flexible image augmentations,” Information, 

vol. 11, no. 2, p. 125, 2020. 

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv 

preprint arXiv:1412.6980, 2014. 

[46] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, 

“Generalised dice overlap as a deep learning loss function for highly unbalanced 

segmentations,” in Deep learning in medical image analysis and multimodal 

learning for clinical decision support, Springer, 2017, pp. 240–248. 

 



 

 

89 

[47] F. Navarro, M. Escudero-Viñolo, and J. Bescós, “Accurate Segmentation and 

Registration of Skin Lesion Images to Evaluate Lesion Change,” IEEE J Biomed 

Health Inform, vol. 23, no. 2, pp. 501–508, 2019, doi: 

10.1109/JBHI.2018.2825251. 

[48] P. Shan, Y. Wang, C. Fu, W. Song, and J. Chen, “Automatic skin lesion 

segmentation based on FC-DPN,” Comput Biol Med, vol. 123, no. April, p. 

103762, 2020, doi: 10.1016/j.compbiomed.2020.103762. 

[49] R. Kaymak, C. Kaymak, and A. Ucar, “Skin lesion segmentation using fully 

convolutional networks: A comparative experimental study,” Expert Syst Appl, 

vol. 161, p. 113742, 2020, doi: 10.1016/j.eswa.2020.113742. 

[50] D. K. Nguyen, T. T. Tran, C. P. Nguyen, and V. T. Pham, “Skin Lesion 

Segmentation based on Integrating EfficientNet and Residual block into U-Net 

Neural Network,” Proceedings of 2020 5th International Conference on Green 

Technology and Sustainable Development, GTSD 2020, pp. 366–371, 2020, doi: 

10.1109/GTSD50082.2020.9303084. 

[51] K. Zafar et al., “Skin lesion segmentation from dermoscopic images using 

convolutional neural network,” Sensors (Switzerland), vol. 20, no. 6, pp. 1–14, 

2020, doi: 10.3390/s20061601. 

[52] M. Goyal, A. Oakley, P. Bansal, D. Dancey, and M. H. Yap, “Skin Lesion 

Segmentation in Dermoscopic Images with Ensemble Deep Learning Methods,” 

IEEE Access, vol. 8, pp. 4171–4181, 2020, doi: 10.1109/ACCESS.2019.2960504. 

[53] X. Tong, J. Wei, B. Sun, S. Su, Z. Zuo, and P. Wu, “Ascu-net: Attention gate, 

spatial and channel attention u-net for skin lesion segmentation,” Diagnostics, vol. 

11, no. 3, 2021, doi: 10.3390/diagnostics11030501. 

[54] P. Chen, S. Huang, and Q. Yue, “Skin Lesion Segmentation Using Recurrent 

Attentional Convolutional Networks,” IEEE Access, vol. 10, no. September, pp. 

94007–94018, 2022, doi: 10.1109/ACCESS.2022.3204280. 

[55] H. Ashraf, A. Waris, M. F. Ghafoor, S. O. Gilani, and I. K. Niazi, “Melanoma 

segmentation using deep learning with test-time augmentations and conditional 

random fields,” Sci Rep, vol. 12, no. 1, pp. 1–16, 2022, doi: 10.1038/s41598-022-

07885-y. 

[56]  A. Scope, et al. The "ugly duckling" sign: agreement between observers. Archives 

of Dermatology, vol. 144, no. 1, pp. 58-64. doi: 10.1001/archdermatol.2007.15. 

  



 

 

90 

SECTION 

2. SUMMARY AND CONCLUSIONS  

Developing accurate image segmentation algorithms is crucial for computer-aided 

diagnosis of skin cancer. This dissertation proposes novel deep learning methods to 

improve segmentation accuracy on three different segmentation tasks in dermoscopic skin 

lesion images. First, a novel DL architecture, named ChimeraNet, was developed for hair 

and ruler mark detection. ChimeraNet was further modified to accommodate the lesion 

segmentation task. Furthermore, noisy data's effect on training data was investigated as the 

benchmark lesion segmentation dataset contains many noisy or inaccurate ground truth 

labels. Finally, a novel data augmentation technique was proposed to generate synthetic 

multi-lesion images by mixing one or more single lesions. Multi-lesion image generation 

with the proposed lesion-aware mixup augmentation (LAMA) method enables multi-lesion 

segmentation in dermoscopic lesion images. Experimental results showed that the 

proposed DL methods have state-of-the-art performance in various segmentation tasks in 

dermoscopic skin lesion images. Furthermore, these DL techniques are simple and 

efficient, so they can be easily transferred to other medical image segmentation problems. 
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