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ABSTRACT 

Overexposure to respirable coal mine dust has been linked to causing serious 

health problems including coal workers pneumoconiosis (CWP) and chronic massive 

fibrosis. The prevalence of these health problems has been on the increase since the 

2000s due to increased exposure levels with roof bolter operators having the highest 

exposure levels. The currently used PDM3700 is too expensive, heavy and bulky which 

limits their use only for regulatory monitoring failing to measure miners’ personal 

exposure levels. Also, since roof bolter opeartors are more prone to elevated coal dust 

levels, the canopy air curtain (CAC) was developed to protect then high coal dust 

concentrations. However, the current generation CAC only provides a 46% coal dust 

reduction efficiency leaving room for improvement. Insifficient coal dust monitors in 

mines make it challenging to effectively evaluate the performance of these CACs. 

The objectives of this research are therefore, to develop a small, light weight, low-

cost coal dust monitor using a low-cost PM sensor for personal coal dust monitoring in 

underground coal mines; to develop statistical and machine learing calibration models for 

low-cost PM sensors to accurately measure coal dust concentrations; and to optimize the 

design of the CAC using computational fluid dynamics for improved coal dust protection. 

This study has led to the development and calibration of a low-cost coal dust monitor 

which will potentially reduce monitoring cost by ~$15,000 per unit while achieving 95% 

the accuracy of the PDM3700. The CAC design was optimized using CFD simulations 

improving the uniformity of the CAC. Further, the low-cost sensors present an 

opportunity to effectively measure the dust control efficiency of the CACs. 
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1. INTRODUCTION 

 

Particulate matter is a general hazard associated with mining. High levels of PM 

are generated from many activities and processes involved in the extraction and 

processing of minerals including drilling, blasting, excavation, loading, hauling, tipping 

and crushing of ore. Different mines are associated with different PM characteristics and 

chemical composition. In coal mining, miners are exposed to respirable coal mine dust in 

the mine atmosphere generated by coal minig activities. Coal dust concentrations 

measured in underground mines can be considerably higher than in surface mines due to 

limited ventilation to dilute coal dust. As a result, underground coal miners are exposed 

to elevated levels of coal dust.  

Overexposure to respirable coal mine dust is known to cause irreversible 

respiratory diseases such as coal workers pneumoconiosis (CWP), emphysema and 

chronic bronchitis, collectively known as “black lung” which causes permanent disability 

and premature deaths. Coal miners have also been diagnosed with silicosis due to 

exposure to coal dust with high silica content. The prevalence of the advanced form of 

black lung known as progressive massive fibrosis has been exponentially increasing since 

2000. This recent prevalence is considered the most serious in history, causig thousands 

of deaths and about $44 billion in compensation paid to affected families by the federal 

government. While all miners are at risk, underground roof bolter operators are the 

occupation exposed to some of the highest levels of coal dust in underground coal mines. 

The Mine Safety and Health Administration (MSHA) has promulgaed coal dust 

rules which are aimed at protecting coal miners from excessive coal dust exposure. In the 
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new coal dust rule implemented in August 2014, underground coal mines are required to 

limit personal exposure to respirable coal dust to 1.5 mg/m3 end of shift average. 

Accurate real time personal exposure monitoring is needed to ensure that personal 

exposure levels for miners do not exceed the regulated concentration as this was required 

within the new coal rule. However, the currently used personal coal dust monitoring unit, 

the PDM3700, which costs $20,000 and weighs 5 kg is too expensive, too heavy and too 

bulky. Because of these drawbacks, mines are not able to measure all miners’ personal 

exposure levels, leaving most miners exposed to unknown coal dsut concentrations. This 

has resulted in the use of the PDM3700 primarily for regulatory monitoring purposes. 

Low-cost light scattering PM sensors offer an advantageous solution. These low-

cost PM sensors measure PM concentrations in real time using light scattering principles, 

and come in a small, light weight package. Even though these sensors have been 

previously explored for domestic air quality montoring applications and have 

demonstrated promising results, this technology has never been explored for any mining 

applications. Moreover, their accuracy for measuring mining induced coal dust 

concentrations in underground mine conditions are questionable due to errors and 

performance issues pointed out in the past. The objectives of this work are therefore to 

develop low-cost coal dust monitors using low-cost PM sensors and to calibrate them 

using statistical and machine learning algorithms. These sensors will be necessary to 

inform timely dust control measures. They will also provide a more effective measure of 

the efficiency of dust control devices such as the CAC with high density motitoring 

capacity. 
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Effective dust control technology is crucial in underground coal mining to ensure 

timely intervention when elevated coal dust conentrations are detected. Roof bolter 

operators are exposed to some of the highest coal dust conentrations in underground 

mines. This is due to their exposure to dust falling off from their operations drilling in the 

roof, their position downwind of other operations and limited ventilation in underground 

mines. The canopy air curtain (CAC) was therefore developed by NIOSH to control their 

exposure to coal dust and has been through several redesigns over the years with the aim 

of improving its dust control efficiency. It is known that with a uniformly distributed 

airflow over the plenum of the CAC, an air curtain will be formed preventing dust laden 

air from penetrating the protected zone. Previous internal structures of the CAC have 

been incorporated with deflectors and louvers to ensure a uniform airflow distribution 

over the plenum area. However, the third and current generation CAC has an efficiency 

of 42% which leaves room for further improvement. The objective of this study was 

therefore to optimize the design of the CAC to ensure optimum dust protection 

efficiency.  

The combined application of the low-cost PM sensors and the optimized CAC 

design in underground coal mines aim to achieve improved underground mine air quality 

and the protection of miners against coal dust overexposure. This is achieved through real 

time personal exposure monitoring and timely dust control using the optimized CAC for 

roof bolters. This study also presents a more effective technology to measure the dust 

control efficiency of the CACs with their high special and temporal capabilities. 

  



 

 

4 

2. LITERATURE REVIEW  

 

According to data from the International Energy Agency (IEA), global demand 

for coal for power generation has more than doubled since the 1970s making up 29.03% 

of global energy production [1]. In the United States, coal fired power plants account for 

about 30% of the nation's electricity generation produced from the 700 million tons of 

coal mined yearly [1], [2].  

The national and global production of coal at these levels by coal mines exposes 

miners to high levels of coal dust. Nearly all stages in the coal mining process generate 

various levels of coal dust in the mine atmosphere. Overexposure to high concentrations 

of coal dust causes serious respiratory diseases. The most common among these diseases 

is the coal workers pneumoconiosis (CWP), also known as black lung [3], [4] whereby 

inhaled coal particles cause scarring within lung tissues impairing one’s ability to 

breathe. An advanced form of CWP, known as progressive massive fibrosis causes large 

conglomerate masses to grow within the lungs which can be potentially fatal [5], [6]. In 

the US, the prevalence of CWP and progressive massive fibrosis had been steadily 

decreasing since the early 2000s from 3.5% in 1975 to 0.5% in in 1997 as can be seen in 

Figure 2.1. However, a resurgence in progressive massive fibrosis prevalence has been 

observed since early 2000s, which is considered the most serious in history with 

prevalence rates rising back up from 0.5% to 5.3% in recent years [7]. Moreover, while 

data on miners diagnosed with CWP in China is limited, a recent study found prevalence 

of 6.02% through a systematic evaluation of reported data between 2001 and 2011 [8]. 

This suggests that coal miners in China are more susceptible to CWP than actual numbers 
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may predict as unreported data could be misleading. Another study also observed 

increased reports of CWP in Australia even though there is not national reporting system 

[9]. All this evidence points to CWP being a global problem linked to thousands of deaths 

globally each year [10]. 

 

 

Figure 2.1. Prevalence of progressive massive fibrosis among underground coal miners 

within the US’s Appalachia region 

 

To control coal dust exposure and protect miners from CWP and progressive 

massive fibrosis, MSHA promulgated the new coal rule on August 1st, 2014, to regulate 

mines from exposing miners to unhealthy coal mine dust concentrations [11]. Some 

provisions within this rule were that: miners are required to sample airflow to measure 

personal exposure levels to coal dust throughout the shift and implement corrective 
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measures if high levels of coal dust are detected; miners are required to increase 

monitoring locations within the mine to cover the entire mine; miners are required to 

increase medical surveillance and transfer miners with evidence of CWP (also known as 

part 90 miners) to areas of the mine with lower coal dust concentrations. Two years after 

this rule was passed, an additional provision was implemented reducing permissible 

exposure levels and introducing the continuous personal dust monitor (CPDM). First, the 

concentration limits for respirable coal mine dust in underground miners was reduced to 

1.5 mg/m3 from 2.0 mg/m3. Second, respirable coal dust exposure limit for part 90 miners 

was lowered from 1.0 mg/m3 to 0.5 mg/m3. This provision further required the new 

CPDM to be worn by all part 90 miners and other miners exposed to high concentrations 

of coal dust. This was expected to increase sampling frequency and miners would receive 

sampling results faster. 

The currently used CPDM model 3700, also known as PDM3700 or simply PDM, 

measures personal coal dust exposure levels every minute and displays the minute-by-

minute rolling averages. This monitor measures coal dust exposure levels based on the 

tapered element oscillating microbalance (TEOM) technique [12], [13]. Prior to its 

introduction, the federal equivalent TEOM was used to measure miners’ exposure levels 

by sampling air from their breathing zone throughout the miner’s shift onto a filter to 

determine exposure levels [14]. The TEOM, however, was too large to be used as a 

personal monitoring unit. Moreover, it took several to complete analysis and receive 

sampling results which made it difficult to implement dust control measures in time. The 

TEOM technology was therefore miniaturized into the PDM3700 as a smaller unit and 

thus portable for personal monitoring. The PDM is known to measure coal dust 
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concentrations with high accuracy and is approved by NIOSH for monitoring in 

underground coal mines. NIOSH laboratory tests have demonstrated that there is 95% 

confidence that PDM measurements are within ±25% of true concentrations. Their field 

precision tests also show that the PDM monitors have a 0.078% standard deviation [15]. 

The PDM is equipped with a respirable size coal dust cyclone with a cut-off size 

modelled to closely simulate the human respiratory system respirable curve. Therefore, 

only respirable size particles go through to the mass transducer where the mass 

concentration is determined using the tapered element oscillation microbalance (TEOM).  

Light scattering low-cost PM sensors are compact, consume little power, and are 

able to provide particle concentrations in particle size categories in real time using light 

scattering principles. This technology has been studied over the years for their ability to 

measure PM concentrations in domestic conditions, occupational environments and in the 

cities [16]–[18]. Light scattering is sensitive to particle size and composition [19]. 

Therefore, several focused previously focused on calibrating low-cost PM sensors using 

specific dust types for which they will be deployed. Previous studies have calibrated then 

for particle types including Arizona road dust [20]–[22], cigarette smoke [23], coal dust 

[24], polystyrene latex (PDL) particles [20], welding fumes [20], [25], salt [20], [21], 

[26], wood smoke [27], diesel particulate matter (DPM) [28], [29], incense [26], [30], 

[31] and sugars [26].  

Multiple studies have established that low-cost PM sensors are effective for 

measuring particle mass concentrations for PM relative to research-grade monitors [22], 

[23], [32], [33]. For example, Wang et al. [26] reported a high correlation with reference 

monitors with coefficient of determination (R2) of >0.89 for various types of sensors 
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evaluated in a laboratory for PM2.5. Feenstra et al. [34] also recorded a correlation of 

>0.7 for 6 out of 12 sensors tested in a field evaluation for PM2.5. However, studies have 

also reported poor performance scenarios of these sensors due to errors related to 

meteorological conditions [35].  

The canopy air curtain was developed by NIOSH to protect roof bolters from 

excessive coal dust exposure. Roof bolter operators install roof bolts into the roof of the 

mine by drilling into the roof to install the bolts. They are protected by a canopy over 

their working area to protect them from falling objects. However, the canopy provides no 

protection from coal dust. These operators therefore are exposed to some of the highest 

coal dust concentrations within the mine mainly resulting from dust generated from their 

operations, dust generated by other operations such as continuous mining which are 

carried over to their working area and lack of ventilation capacity in underground mines 

to dilute high coal dust concentrations [36], [37]. According to some NIOSH studies 

which monitored roof bolter operators personal exposure levels over long periods of time, 

these miners recorded concentrations as high as 7.0 mg/m3 [38]. Over the years, the 

design of the CAC has gone through several iterations aiming to provide adequate coal 

dust protection to roof bolter operators.  

The CAC was originally designed for continuous miner operator cabs and was 

modified to fit on the roof bolter. Since then, the National Institute for Occupational 

Safety and Health (NIOSH) has made many iterations of improvement to the design of 

CACs. Initial laboratory evaluation showed a dust reduction of up to 62% [39]. A new 

prototype design was presented by Listak and Beck [38] that covers the entire operating 

area under the roof bolter canopy. The CAC was optimized to provide uniformed airflow 
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over the entire plenum using computational fluid dynamics (CFD) simulation and trial-

and-error process, and has achieved dust reduction of more than 67% for entry velocities 

up to 0.61 m/s (120 fpm). Based on the NIOSH design, J.H. Fletcher & Co. incorporated 

the CAC into the roof bolter canopy as part of the machine [40]. However, based on 

NIOSH mine gallery test, its dust reduction efficiency was only 24%. Based on NIOSH 

CFD analysis and recommendations, Fletcher designed the 2nd and 3rd generation CAC 

that is redesigned to prevent contaminated air infiltrating the protected zone while 

maintaining the initial NIOSH design with uniform airflow from the plenum using 

equally spaced holes [36], [41]. Although the 3rd generation CAC lab test dust reduction 

has improved up to 49.3% [42], field test has shown variable dust control efficiencies 

indicating rooms to further improve. Previous NIOSH CAC research has indicated that an 

even distribution of airflow across the plenum of the CAC at a velocity higher than 0.51 

m/s (100 fpm) is a key for improved efficiency. 

A manifold is an important device used in many industrial processes to distribute 

a large fluid stream into several parallel streams. It consists of a main flow header, and 

several outlets. A uniform flow distribution is commonly required in most engineering 

applications, such as piping system in pumping stations, heat exchangers, and flow 

distribution system in treatment plants. However, it is challenging for a typical manifold 

with a constant cross-sectional area header to achieve uniform flow distribution. This is 

due to the static pressure build up toward the end of the header, which causes a higher 

efflux through the downstream outflows. Studies have, however, shown that the manifold 

with a tapered longitudinal section can achieve nearly uniform flow distribution if 

properly optimized [43]. This is because the pressure distribution is more uniform in the 
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header [44]. Instead of using trial-and error approaches, CFD has been successfully used 

to optimized the tapered manifold parameters to achieve uniform outlet flows [43]–[46] 

[16-20]. This allowed researchers in these studies to explore the impact of factors such as 

varying manifold outlet sizes, increasing main header size, linear and non-linear tapering 

of main header. Among these factors studied in literature, it is apparent that linear 

tapering of a main header of a manifold is the most effective strategy to achieve a 

uniform distribution of manifold outlets. 
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PAPER 

I. APPLICATION OF LOW-COST PARTICULATE MATTER SENSORS FOR 

AIR QUALITY MONITORING AND EXPOSURE ASSESSMENT IN 

UNDERGROUND MINES: A REVIEW 

ABSTRACT 

Exposure to mining-induced particulate matter (PM) including coal dust and 

diesel particulate matter (DPM) causes severe respiratory diseases such as coal workers’ 

pneumoconiosis (CWP) and lung cancer. Limited spatiotemporal resolution of current 

PM monitors causes miners to be exposed to unknown PM concentrations, with increased 

overexposure risk. Low-cost PM sensors offer a potential solution to this challenge with 

their capability in characterizing PM concentrations with high spatiotemporal resolution. 

However, their application in underground mines has not been explored. With the aim of 

examining the potential application of low-cost sensors in underground mines, a critical 

review of the present status of PM sensor research is conducted. The working principles 

of present PM monitors and low-cost sensors are compared. Sensor error sources are 

identified, and comprehensive calibration processes are presented to correct them. 

Evaluation protocols are proposed to evaluate sensor performance prior to deployment, 

and the potential application of low-cost sensors is discussed. 
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1. INTRODUCTION 

 

Poor air quality in underground mines causes severe health impacts to 

underground mine workers as mining activities generate various types of particulate 

matter (PM). In underground mines, PM concentration is much higher than the surface 

open environments due to limited ventilation capacities, which causes severe health 

impacts to underground miners. Coal dust and diesel particulate matter (DPM) are the 

two primary types of PM pollutants in underground mines. For coal dust, overexposure to 

respirable coal dust causes various lung diseases among miners, including coal workers’ 

pneumoconiosis (CWP), also known as black lung, a potentially fatal lung disease with 

no cure [1]. The prevalence of CWP has considerably decreased since the 1980s. 

However, a resurgence of CWP has been observed in the U.S. coal mines based on the 

data reported from the Coal Workers’ Health Surveillance Program [2]. This recent 

resurgence has been the most serious in history, and miners are at an increased risk. 

Contrary to prior finding that only long term exposure to coal dust leads to CWP, recent 

studies have identified cases occurred to miners who just started working in the mine and 

have never worked in other mining environments before [3]. DPM also presents a health 

threat to underground miners. DPM concentrations in underground mines are 

significantly higher than typical surface environments [4–5]. Currently, DPM is classified 

as an occupational carcinogen by the United States National Institute for Occupational 

Safety and Health (NIOSH) and increases the risk of lung cancer by 20%–50% [6]. Non-

cancer health effects, such as respiratory and cardiovascular health effects, are also 

associated with underground DPM exposure.  
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Different countries have different standards for regulating underground mine coal 

dust and DPM exposure levels. Exposures to concentrations higher than the regulated 

levels are regarded as overexposure that causes negative health impacts. In the United 

States, the Mine Safety and Health Administration (MSHA) promulgated the coal dust 

permissible exposure levels (PEL) to be 1.5 mg/m3 for underground mines. For DPM, the 

Occupational Safety and Health Administration (OSHA) regulations requires that a 

miner’s personal exposure to DPM must not exceed 160 µg/m3. Accurate personal PM 

monitoring is an essential way to protect the miners from overexposure. In US 

underground mines, the PDM3700 [7] and the FLIR Airtec DPM monitor [8] are the 

most commonly used portable monitors measuring coal dust and DPM, respectively. The 

PDM3700 uses a miniature of a tapered-element oscillating microbalance (TEOM) to 

measure PM concentration, which generally requires to be in an upright position and 

carefully protected as a hit or bumping has adverse effects on the measurement accuracy. 

The FLIR Airtec is a filter-based DPM monitor which uses light extinction to measure 

elemental carbon (EC, a surrogate for DPM) mass concentration and reports results in a 

5-min rolling average. However, these monitors have the disadvantages of high cost, 

heavyweight, and limited measuring capabilities (only measure mass concentrations) [9–

10]. Typically, regulatory grade PM monitors cost more than $20000 per unit. The PDM 

on the other hand cost ~$17000 per unit and the Airtec DPM monitor cost ~$5000 per 

unit. At these prices, they are still too expensive for mines to purchase one for each miner 

on duty to ensure each miner wears one unit. As a result, these monitors are worn only by 

a small number of miners primarily for regulatory compliance sampling purposes. This 

practice has serious drawbacks, most notably that the exposure levels for the majority of 
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the miners are unknown due to low spatio-temporal resolution of current monitoring 

system. Besides, due to the lack of sufficient data, mining engineers are unable to directly 

quantify the coal dust and DPM control effectiveness caused by modified engineering 

control strategies. Finally, there is a lack of sufficient personal exposure data to 

accurately correlate personal coal dust and DPM exposure to their related-health data in 

more detailed epidemiology studies. 

Low-cost light scattering PM sensors offer a potential solution to these problems. 

These sensors are compact, consume little power, and can even provide particle size 

distribution information if sensors have multiple size bins and are properly calibrated. 

Based on these characteristics, low-cost sensors can be deployed for personal monitoring 

to achieve a real-time highly dense monitoring data which can be necessary to monitor 

and improve air quality, ventilation designs, and underground conditions. These sensors 

are available from different commercial supplies as packed modules, and previous 

evaluations have demonstrated promising results in comparison with federal equivalent 

methods (FEMs) or research-grade instruments for air quality PM monitoring [11–13]. 

Currently, there is no research available in the application of low-cost PM sensors in 

mines [14–15]. However, the few advances in this field have been dominated with 

surface mine applications which have shown good results whereas underground mine 

application still remains unexplored [15]. Therefore, there is still limited understanding of 

the performance specifications of these emerging low-cost sensors, and their performance 

varies with operating conditions (relative humidity and temperature), particle properties 

(particle composition and size distribution), and the choice of reference instruments [16]. 

There is basically no comprehensive study available in the literature using a standard 
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protocol assessing these sensors for monitoring coal dust and DPM, which hinders an in-

depth understanding of their performance and application for underground PM 

monitoring due to lack of knowledge about the accuracy, precision, and stability of such 

sensors. 

As shown in the flow chart in Figure , the objective of this review paper is to 

summarize the current status of low-cost PM sensor research and propose research 

directions on how it can be applied to underground mines. The working principles of 

current PM monitors and low-cost PM sensors are presented and compared to help 

understand the differences between them. The accuracy of the sensors largely depends on 

the control and correction of errors. Thus, both the internal and external error sources for 

the low-cost PM sensor are analyzed, revealing their impact on sensor accuracy. 

Laboratory calibration is an important step before sensor field deployment. We explained 

commonly used calibration methods, with a discussion on the setup of a calibration 

chamber and its key components. We have introduced the linear and multivariate 

calibration models which are developed using laboratory chamber tests. Sensors have to 

be evaluated before applications; therefore, we have proposed standardized evaluation 

procedures and indices. Lastly, the challenges and application potentials of low-cost PM 

sensors in underground mines are discussed. This paper provides a theoretical and 

practical guide to the application of low-cost PM sensors to the underground mining 

industry where PM exposures cause significant health issues. Low-cost PM sensor with a 

high spatio-temporal resolution is expected to improve underground structure and 

ventilation designs, protect the health of miners, and provide high quality “big data” that 

facilitate the health studies related to respiratory diseases caused by PM. 
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Figure 1．Low-cost PM sensor review flow chart. 

 

2. WORKING PRINCIPLES OF PM MONITORS 

2.1. CURRENT UNDERGROUND PM MONITORS 

Coal dust and DPM are the two most perilous PMs whose concentrations are 

regulated in underground mines. To protect mineworkers from overexposure, the 

Personal Dust Monitor model 3700 (PDM3700) was developed under a NIOSH funded 

program for portable real-time monitoring of underground coal dust concentrations. The 

working principle is based on tapered element oscillating microbalance (TEOM) which 

has been designated as Federal Equivalent Methods by the U.S. Environmental Protection 

Agency (EPA) for environmental air quality PM monitoring [17].  

The federal equivalent TEOM monitors are too large to be used as a personal 

portable monitor. The PDM3700 is a small sized miniature of TEOM, and thus portable 

for underground coal mine applications. As shown in Figure 2, a sample inlet is mounted 
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on the bill of a miner’s hard hat to sample dust within the miner’s breathing zone at a 

constant flow rate of 2.2 L/min [18], which passes through the flexible conductive tube 

towards the cyclone. An in-built cyclone screens particles to allow only respirable sized 

particles in the air stream to flow through to the heated section for moisture removal. The 

air stream reaches the exchangeable filter cartridge where particles settle as filtered air 

proceeds to the monitor’s orifice. The microbalance applies gravimetric equivalent 

techniques to measure mass of coal dust collected on the filter, and the dust concentration 

is reported every minute. A 1.05 correction multiplier is used to compensate for errors 

between manual gravimetric reference and the PDM3700 results to meet the MSHA 

standard for underground coal mine compliance monitoring [18–19]. 

 

 

(a) 

 

(b) 

Figure 2.  (a) Commercial PDM 3700 set up and (b) schematic diagram. 

 

Momentum compensation is the key technology used in PDM3700 to miniaturize 

the traditional large TEOM [18]. The tapered element in the traditional TEOM is large 
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because it needs to be mounted on a base of significant mass to reduce energy loss and 

maintain its oscillation frequency. To overcome this, as shown in Figure 2(b), a coil 

driver and magnet are incorporated with the TEOM mass sensor. The coil driver pulsates 

against the magnets on the tapered element to initiate an oscillation. The magnetic field 

created by the magnet provides momentum compensation to the tapered element by 

oscillating in an equal but opposite motion. This patented concept of momentum 

compensation substantially reduces the energy loss from the tempered element oscillator, 

which enables the size and weight reduction of the TEOM. 

NIOSH has validated the PDM3700’s accuracy, precision, and comfortability 

before MSHA approves this equipment as the regulatory compliance monitoring device 

[18,20]. Laboratory tests verified that the PDM3700 met the criteria of 25% accuracy 

compared to reference measurement with 95% confidence [18]. Their underground tests 

also revealed a field measurement precision of 0.078 (relative standard deviation) [21].  

For DPM measurement, the NIOSH method 5040 is the standard procedure for 

measuring DPM concentrations [22]. This method analyzes EC concentration on a DPM 

laden filter through a thermal-optical analyzer in a burning process. Although this method 

is accurate, it only provides average concentration over an entire shift, and the analysis 

results are only available after weeks [6,23–24]. To measure DPM in real-time in 

underground, the FLIR Airtec DPM monitor (Airtec, United States), shown in Figure 3, 

has been developed and calibrated against the NIOSH 5040 method [22]. It measures 

DPM concentration based on light extinction principles with EC as the analyte [25]. The 

Airtec’s diaphragm pump draws in ambient air at 1.71 L/min through the inlet, where an 

impactor makes a size cut of 0.8 µm. A conductive air tube is used for preventing DPM 
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from sticking to the tube walls. The Teflon filter housed in a specially designed cassette 

traps DPM and darkens. A 650 nm wavelength laser is shot through the filter, and the 

transmittance of the filter is measured by a photodetector. The measured optical density is 

calibrated against the NIOSH 5040 method, thus able to measure EC concentrations in a 

5 min rolling average. The total carbon (TC) concentration can be obtained by multiply a 

factor of 1.3 to the measured EC data.  

Noll and Janisko [25] carried out assessments of the accuracy, precision, and 

susceptibility to interferences of the Airtec. They observed accuracy of 12% at 95% 

confidence compared to the NIOSH 5040 method. Interferences from non-DPM dust and 

cigarette smoke particles were found not to affect Airtec measurements only when a 

submicron impactor was used. Laboratory test results showed that 50–250 µg/m3 

concentration of cigarette dust resulted in additional interference of 8–98 µg/m3 of DPM 

while lower interference was recorded at lower cigarette smoke concentration. It is 

established that non-DPM particles do not affect light extinction directly. However, they 

can affect the accuracy when they are coagulated with DPM and attached to the filter, or 

in case a compactor is not used. The Airtec was not certified by MSHA as a regulatory 

compliance monitoring device, and the manufacturer has discontinued it as of 2019. 

In recent times, light scattering has become an emerging technology used for PM 

monitoring in mining environments. Many real-time PM monitors utilize light scattering 

and sensing elements to characterize PM concentrations. For example, the Thermos 

Personal Dataram (PDR) models 1000 [26] and 1500 [27] PM monitors are both 

instantaneous samplers that use light scattering principles to provide airborne respirable 

dust concentrations in underground mines. The PDR1000 uses light scattering and 
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(a) 

 

(b) 

Figure 3.   FLIR Airtec DPM monitor: (a) external features of the FLIR Airtec DPM 

monitor; (b) schematic diagram showing the internal components and principles of 

operation of the Airtec. 

 

sensing principles which is optimized to monitor respirable sized PM such as PM2.5, 

smoke, fumes, and mist. It uses the natural ambient airflow to draw air samples. The 

PDR1500 model is a similar but more advanced model which equipped with a flow 

control pump to give users some level of flexibility. An evaluation conducted by the 

Respirable Hazard Control branch of NIOSH on these monitors yielded accurate PM 

measurements using gravimetric sampling as reference monitoring [28]. Other 

established light scattering based PM monitors which are commercially available include 

AM520 TSI monitor and GRIMM model 1.107 [10,29–30]. Even though these models 

perform accurately as compared with gravitational samplers, they still possess size and 

cost disadvantages which make them inapplicable for personal monitoring in 

underground mines. 
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2.2. LOW-COST PM SENSORS 

In view of the limitations presented by the current underground personal PM 

monitors, there remains the need for an efficient method that can provide accurate real-

time continuous PM monitoring. Considerable recent research has led to the development 

of a new generation of monitors in the form of inexpensive, portable, low power, real-

time PM sensors termed as “low-cost PM sensors.” These sensors operate on light 

scattering principles. The main components of a typical low-cost PM sensor are a light 

source which could be a laser, white light or infrared light emitting diode (LED), a 

photodetector, focusing lenses, an airflow controller, and a microprocessor. Figure 4 

illustrates the components and working principles of low-cost sensors. Three techniques 

are used to draw air into the sensor. The first type uses a thermal resistor installed close to 

the inlet, as can be seen in Figure 4(a). It is electrically heated to create natural 

convection that results in an updraft of particles through the inlet to the sensing volume 

[31–32]. The second type is equipped with a small direct current (DC) fan, as shown in 

Figure 4(b), to draw air into the sensor [10]. The third type does not require any specific 

configurations, and it only relies on a hole through the center of the sensors’ body to 

allow for convection of particles through the sensing volume. With any of these 

techniques employed, sampled airflow travels through the inlet to the sensing volume and 

eventually exits from the sensor. In the flow path, particles pass through the sensing 

volume where the light beam is focused. The intensity light scattered by particles is 

detected by the photodetector and converted to mass or number concentration of PM by a 

microprocessor. Scattering angles of low-cost sensors are between 90° to 120 [33–34]. 
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Most PM sensors also have a light trap (Figure 4(b)) at the end of the focusing path to 

avoid spurious light scattering [13]. 

There are two types of low-cost PM sensors: the nephelometer type, as shown in 

Figure 4(a), and the optical particle counter (OPC) type, as shown in Figure 4(b). 

Nephelometer type PM sensors employ forward scattering principles to measure the 

amount of light scattered by the particle cloud within the sensing volume. These sensors 

infer mass concentration from the intensity of the light scattered from the incident light 

source. The OPC type sensors, on the other hand, operate as though they are single 

particle counters. As shown in Figure 4(b), only a small sensing volume is illuminated by 

a beam of the incident light, through which sample airstream flows, so that one particle at 

a time is illuminated. The intensity of light scattered by each particle is converted to 

number and mass concentration for different particle sizes across various size bins. 

 

 

(a) 

 

(b) 

Figure 4.  Low-cost PM sensor schematic diagram: (a) nephelometer type PM sensor; (b) 

OPC type low-cost sensor. 

 

Low-cost PM sensors generally weigh less than 200 g, mostly consume less than 

1 W and cost from <$10 to $500s. Most low-cost PM sensors are sold as individual 
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sensor modules and require to be incorporated with alternating current (AC)/direct 

current (DC) adaptor or batteries to provide power. For air quality monitoring, low-cost 

sensors are integrated into other products such as mobile phones [35–37], multi-sensor 

devices [38], or a body-worn monitor [39] and consequently equipped with a 

microcontroller for data-logging. Light scattering low-cost PM sensors currently used and 

commercially available include Plantower (PMS3003 and PMS5003) [9,33], OPC-(N1, 

N2) [40], Sharp GP2Y1010 [34,41], SYhitech DSM50 [42–44], Dylos (DC1100, 

DC1100 pro, and DC1700) [10,42], and Shinyei (PPD42NS, PPD 20 PV, PPD 60 PV, 

and AES-1) [45].  

Numerous experiments have established that low-cost sensors are effective for 

measuring mass concentration of PM using research-grade monitors as reference 

[13,16,42,46]. For example, Wang et al. [41] reported a high correlation with reference 

monitors with coefficient of determination (R2) of >0.89 for various types of sensors 

evaluated in a laboratory for PM2.5. Feenstra et al. [11] also recorded a correlation of 

>0.7 for 6 out of 12 sensors tested in a field evaluation for PM2.5. However, studies have 

also reported poor performance scenarios of these sensors due to errors related to 

meteorological conditions [47]. Some of the major error sources are discussed in the next 

section and followed by sensor calibration methods for improving the sensor accuracy. 

 

3. PM SENSOR ERROR SOURCES 

 

Measurement errors cause inaccurate and misleading results. In a case of 

erroneously underestimation of PM concentration, miners face the risk of unknown 
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overexposure to PM concentrations higher than the safe exposure levels. It is, therefore, 

crucial to identify the PM sensor error sources and apply appropriate calibration pre- and 

post-deployment. Based on a critical review of error sources investigated in the literature, 

we classify them into two general categories; internal and external error sources. 

3.1. INTERNAL ERROR SOURCES 

Internal error sources, also called instrument errors, are due to the working 

principles that are independent of deployment conditions, even though they may also be 

develop after deployment [10]. These errors are caused by imperfect working principles, 

defective and imperfect manufacture of parts, inaccurate installation, changes in 

instrument properties with time, and unsteady flow control systems [10,32,48]. The 

following section discusses the main types of internal error sources. 

3.1.1. Measurement Boundary Error.  The measurement boundary is generally 

the range of PM concentration a PM sensor is sensitive to. It includes two aspects: Upper 

limit of quantification (ULOQ), and lower limit of quantification (LLOQ). ULOQ and 

LLOQ are the highest and lowest PM concentrations the sensors can accurately measure 

[10,49]. Outside this range, particles do not scatter enough light to be detected 

[39,42,48,50–51]. 

These performance characteristics are either provided by the manufacturer on the 

sensor datasheet or derived by experiments. A widely used technique set out in [52] to 

experimentally determine these parameters has been successfully applied in many recent 

studies [13,41], which is elaborated in Section 5 of this paper. Outside these boundaries, 

PM sensors encounter measurement boundary errors where measurement outputs are 
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reported as their boundary values [42,46]. This was demonstrated in a test [42] of the TSI 

AirAssure low-cost PM monitor, which uses a Sharp GP2Y1010AU0F sensor with a 

limit of quantification from 5 to 300 µg/m3. With this boundary, they reported 

concentrations above 300 µg/m3 as ~300 µg/m3 and concentrations below 5 µg/m3 as ~5 

µg/m3. 

3.1.2. Systematic Errors.  As in Figure 5(a), data affected by systematic error 

have three main characteristics: a drift [11], overestimation [9,13], and underestimation 

[32,40] of the true concentration. These errors are identified using mean bias error (MBE) 

and mean absolute error (MAE). They are calculated using Eqs. (1) and (2), respectively, 

 

MBE =  
1

𝑛
∑(𝑋𝑖 − 𝑋𝑡)

𝑛

𝑖=1

 
(1) 

 
MAE =  

1

𝑛
∑|(𝑋𝑖 − 𝑋𝑡)|

𝑛

𝑖=1

 
(2) 

where Xi is the measurement by the low-cost sensor, Xt is that by the reference monitor, 

and n is the number of measurements. MBE quantifies both overestimated and 

underestimated errors into a single matric [53–54]. MAE, on the other hand, uses the 

absolute overestimation and underestimation differences to provide the mean total error 

[38]. Among low-cost sensors, Feenstra et al. [11] observed systematic errors to be 

dominant in the 12 sensors tested. Moreover, Budde et al. [35] recorded a linear drift of 

the measurement from two sensors that were evaluated for dust concentration 
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measurement. Wang et al. [41] also observed a systematic deviation in a pairwise 

correlation between sensors of the same type for all three sensors tested.   

The source of this error has been associated with sensor degradation due to 

extended use. Budde et al. [48] attributed systematic errors to the thermal resister not able 

to maintain a constant temperature within the sensor caused by unstable voltage supplies. 

Collingwood et al. [10] pointed out that the inability to measure and control flow rates in 

the sensor results in systematic errors. They further explained that voltage fluctuation 

causes fluctuation of fan speed and consequently changes the inlet air flow rate, which 

impacts measurement accuracy and contributes to systematic errors. 

 

 

(a) 

  

(b) 

Figure 5.  Low-cost PM sensor error types demonstrating their data structure: (a) 

systematic error; (b) non-linear response error. 

 

3.1.3. Non-linear Response.  An ideal sensor should have a linear relationship 

between its measurements and that of the referencing instrument. In an ideal situation 

where a low-cost sensor perfectly matches a reference monitor, the slope of the line of 

best fit should be 1.0, intercept of 0.0, and R2 of 1.0. Measurement data that are affected 
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by a non-linear error may be characterized by an exponential curve, zig-zag curve, or a 

scattered plot, as demonstrated in Figure 5(b). 

The non-linear nature of low-cost sensors have been widely reported by numerous 

researchers [45,50] recording an R2 of less than 0.9 even though a few other studies have 

reported higher linearity (R2 > 0.9) [41]. Kelly et al. [13] observed a linear relationship 

for Plantower PMS 1003/3003 sensors below 40 µg/m3, and above that concentrations, 

the non-linear relationship started to occur. Austin et al. [45] observed low-cost sensors 

showed a non-linear response when measuring particles with smaller diameter while a 

linear relationship was observed when measuring larger diameter particles. 

When making low-cost sensors, manufacturers calibrate them to achieve a linear 

response under manufacture conditions. However, differences in calibration condition 

and deployment condition could result in non-linear responses [55]. Moreover, dual-

channel principles of certain PM sensors are likely to be the cause of non-linearity in 

such sensors. For example, in the Dylos sensor, PM concentrations are obtained by 

subtracting particles in the >2.5 µm channel from that in the >0.5 µm channel, which may 

be the source of non-linearity [42]. 

3.1.4. Reproducibility.  Reproducibility of measurements of a sensor unit and/or 

units of the same sensor model is the measure of the ability of the low-cost PM sensors to 

repeat a measurement output under the same conditions. Reproducibility of low-cost 

sensors is determined by the precision of the sensors which can be measured either as 

relative precision or absolute precision. Relative precision evaluates the reproducibility of 

different sensors of the same type when measuring the same condition. Absolute 

precision measures the reproducibility of the same monitor over the same concentration. 
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Lack of precision among low-cost sensors has been attributed to factors including 

unsteady wavelengths of sensor light source, orientation of the light source and 

photodetector, mode of particle transfer from the inlet to sensing volume, and difference 

in airflow rates among PM sensors [42]. Low-cost PM sensors are not able to maintain 

their measurement precision and accuracy over a long period of time as a result of aging 

and dirt effects [10]. Reproducibility is quantified and regulated with coefficient of 

variation (CV) which is further elaborated in Section 5 of this paper. The US EPA 

requires acceptable sensor  CV values to be less than 10% [17]. 

3.2. EXTERNAL ERROR SOURCES 

External error sources come from deployment conditions and external factors. PM 

sensors are calibrated by manufacturers at a certain ambient condition. Changes in such 

conditions are likely to affect the sensor’s function. External error sources include 

meteorological factors and measured particle characteristics. 

Meteorological conditions known to have significant impacts on PM sensors are 

relative humidity [9] and temperature [56]. To overcome the effects of relative humidity, 

most high-end reference monitors are equipped with drying systems that remove water 

vapor from “in-flow” air before measurement. This system also maintains a constant 

temperature within the measured airstream. Low-cost sensors, however, do not have such 

technology, which introduces errors.  

High humidity causes overestimation of PM sensor readings. Jayaratne et al. [57] 

reported a significant overestimation of particle number and particle mass concentrations 

at relative humidity greater than 75%. Laboratory tests revealed that PM10 and PM2.5 



 

 

29 

mass concentrations began to increase exponentially at relative humidity (RH) of 78% 

and increased by a factor of 2 at RH of 89%. Their field experiment data also showed that 

foggy weather conditions cause overestimation of PM2.5 by over 50% and PM10 by 

46%. Field evaluations in another study revealed that the highest overestimated PM2.5 

concentrations occurred in the mornings (6–9 am) and evenings (18–20 pm) when RH 

was high, and temperatures were low [9]. Humidity generally overestimates particle 

number and mass concentrations in low-cost PM sensors. Water particles possess light 

scattering properties which make them scatter additional amount of light if they enter 

low-cost PM sensors’ sensing volume. Water vapor can also condense on aerosol 

particles, making them grow hygroscopically causing overestimation of particle size and 

concentration. Additionally, highly concentrated water may lead to a failure of the sensor 

circuits which can cause a bias in measurement outputs [41].  

It is normal that temperature variation causes a change of RH, thus indirectly 

leads to errors related to the above-mentioned RH variations. This error type is 

particularly evident at lower ambient temperatures when RH is high. For example, Wang 

et al. [41] observed that the sensors experienced an overestimation of PM concentration 

generally at low concentrations at 5°C. Another study reports a significant temperature 

effect for low-cost PM sensors during winter-time at temperatures between −3.5 to 

−19.2C [58]. For PM sensors that use a thermal resister to generate airflow, the ambient 

air temperature has a direct influence on the air flow rate. The thermal resistor heats to 

produce a temperature gradient between the inlet and outlet, relative to the ambient 

temperature, to create airflow. Therefore, ambient temperature fluctuations result in 

airflow rate perturbations within the sensor. This results in unexpected PM concentration 
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fluctuations [39,51]. This effect can be exacerbated when the sensor is disoriented. 

Typically, such sensors are required to be vertically oriented (with thermal resister side 

pointing downward) to cause hot air to move up, forcing ambient air into the sensor. 

Other orientations will cause airflow direction change and flow rate variations, thus 

generating errors [59].  

Another error source is from different particle characteristics. The intensity of 

light scattered by particles depends on the particles’ physical characteristics, including 

particle size, and refractive index of particles [60–62]. The Refractive index is a measure 

of the speed of light through a particle. Different particles possess different refractive 

indexes [63]. Light travels at a lower speed in particles with a high refractive index and 

faster in particles with a lower refractive index. Therefore, particles with different 

refractive indexes refract and reflect different intensities of light. Ideally, PM sensors 

should be calibrated using PM with known refractive indexes that are closely similar to 

the PM to be monitored. Particle refractive index is often not considered during sensor 

calibration. This causes significant erroneous readings when low-cost PM sensors are 

deployed for measuring PM with different refractive indices [64]. In addition, particle 

size significantly influences the intensity of light scattered by dust particles [61]. Particles 

smaller than 1 µm scatter light by Rayleigh scattering while particles equal to and larger 

than 1 µm (in this case also larger than the wavelength of the sensor light source) scatter 

light by Mie scattering. In both principles, the intensity of light scattered is strongly 

dependent on particle size. Low-cost PM sensors are generally more sensitive to larger 

size particles and less sensitive to smaller ones. This causes underestimation in mass 

concentrations when monitoring smaller size PM and a possible overestimation when 
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monitoring larger particles. One study has shown that the outputs of the tested sensor 

became higher as particle size increased from 300 to 900 nm [41]. 

 

4. CALIBRATION OF LOW-COST PM SENSORS 

 

Accurate calibration has proven to be an effective tool for improving the low-cost 

PM sensor’s data quality [65–66]. Low-cost PM sensors are either purchased uncalibrated 

or calibrated under the factory calibration conditions, which differs from intended 

deployment conditions. In addition, a calibrated sensor can get de-calibrated due to 

sensor aging over extended use. Therefore, low-cost PM sensors need to be pre-calibrated 

and re-calibrated periodically after deployment. 

Low-cost PM sensor calibrations follow an evaluation assessment carried out in a 

collocated field or laboratory test to ascertain the accuracy, precision, and the sources of 

errors that affect the measurements of low-cost sensors. The required calibration is 

dependent on these outcomes with the aim of converting raw (non-calibrated or de-

calibrated) data into a more acceptable quality. The following sections, therefore, 

elaborate calibration methods available in existing literature that can be applied to low-

cost sensors for underground mine PM monitoring. 

4.1. LABORATORY CALIBRATION CHAMBER 

Laboratory calibration chambers are custom built chambers with the purpose of 

evaluating the performance and calibrating low-cost PM sensors under controlled 

environmental conditions. These chambers can control environmental conditions, 
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including PM concentration, temperature, and humidity [41–42]. The performances of the 

low-cost PM sensors are evaluated, and the influence of these varied environmental 

factors are quantified by collocated measurements between sensors and reference 

monitors. Based on laboratory evaluation results, the sensor responses are adjusted to 

those of the reference monitors. 

As shown in Figure 6, the major components of a laboratory calibration chamber 

include the chamber enclosure, a particle generator, a dry particle-free air generator 

system, and a temperature and RH monitor. The chamber enclosure is generally made of 

metal frame [67] with acrylic glasses on the sides that allows visualization of the physical 

processes in the chamber [42,68–70]. At the rear end of the chamber is an exhaust system 

to collect exiting dust particles and moisture to prevent contaminating the laboratory 

environment. 

The particle generator generates particles into the calibration chamber which is 

uniformly mixed by a small mixing fan. There are two types of particle generators: 

particle dispensers [71] and atomizers [34]. Particle dispensers dispense dry aerosolized 

dust directly into the chamber. Particle dispensers have a dust reservoir with specified dry 

dust particles. In particle dispensers, dust is fed from a reservoir into the dispensing unit 

by an in-built conveyor belt, which uses high pressure compressed air to deagglomerate 

dust particles and aerosolize it directly into the chamber. Commercially available particle 

dispensers include Palas RGB 1000-C [68], TSI fluidized bed dust generator [6,18,46], 

and Topas model SAG 410/U [71].  

The second type of particle generator is the atomizer. It produces PM from liquid 

suspensions, which are made by dissolving particles in a solvent. With pressure from 
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compressed air, the solution is nebulized through a nozzle to a diffusion drying system to 

remove the moisture content and produce completely dry aerosolized dust particles prior 

to entry into the chamber. The amount of aerosol generated is dependent on the pressure 

of compressed air applied to the nozzle, and the mass flow rate is adjusted by the volume 

flow through the nozzle. Commercially available atomizers include PALAS AGK 2000 

[72], Collision atomizer TSI 3076 [33,41,73], and single jet atomizer TSI 9302 [68].  

Ideally, PM used for this test should be of similar characteristics with the 

measured particles the sensors will be deployed for. Dust types that have been used in 

previous low-cost PM sensor laboratory calibration chamber studies include Arizona road 

dust (ARD) [40,43,46], cigarette smoke [42], coal dust [74], polystyrene latex (PSL) 

particles [40], welding fumes [40,61], salt [40−41,43], wood smoke [75], DPM [23,76], 

incense [41,56,77], and sugars [41]. 

 

 

Figure 6.  Laboratory calibration chamber. 
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Temperature and relative humidity can be controlled in the chamber. Temperature 

can be controlled by the laboratory’s heating, ventilation, and air condition (HVAC) 

system [42,56] or by placing ice packs or heating tapes around the chamber. In the US 

EPA’s laboratory calibration chamber, the temperature is regulated using the laboratory’s 

HVAC system and supplemented with heating pads and dry ice [78]. This temperature 

regulation technique has been widely adapted in other studies [41,71]. Relative humidity 

is controlled through a water bubbler system which flows dry air through a deionized 

water to channel water vapor into the chamber to increase relative humidity 

[39,41,56,78]. Another method is by using a humidifier and pumps humid air into the 

chamber [71]. Dehumidification is achieved by eliminating excess water condensed on 

the cooling coils [71–72]. Commonly used temperature and relative humidity sensors 

include AOSONG AM2302 temperature-humidity sensor [13], AD22100 temperature 

sensor [56], platinum resistive temperature sensor for temperature measurement, and 

monolithic integrated circuit capacitance sensors for relative humidity measurement [78].  

A diffusion dryer is connected to the atomizer to remove the moisture from the 

generated particles and ensure dry particles are dispensed into the chamber [68,73,79–

80]. Diffusion dryers are composed of a cartridge containing silica gel, which absorbs 

moisture. As the wet aerosol goes through the cylindrical cartridge, water vapor diffuses 

into the silica gel and only dry dust aerosol is injected into the chamber. A microporous 

structure interlocking cavities gives silica gel a high surface area and makes it a high 

capacity desiccant. Water vapor is adsorbed to the silica gel due to the lower pressure in 

the silica gel caused by its large surface area. Examples of factory-made diffusion dryers 

are PALAS model TR2000 [71] and TSI model 3062 [68]. It can also be custom-built in 



 

 

35 

the laboratory using the major component of the silica gel desiccant cartridge [41,81]. As 

shown in Figure 7, it is built as a double layer cylindrical tube with granules of silica gel 

in-between the layers. The inner cylinder is made with fine stainless steel wire mesh to 

allow moisture to diffuse in the silica and avoid substantial particle loss. The initial red 

color of the silica gel in the cartridge turns green as it gets saturated, and the silica gel can 

be reused after drying. 

 

 

Figure 7.  Diagram for a custom-built diffusion dryer. 

 

When environmental conditions are controlled to the desirable conditions, and 

desired PM concentrations attained at a steady-state, evaluation and calibration can begin. 

Low-cost PM sensors and reference monitors are collocated in the chamber and 

challenged with a wide range of controlled PM concentrations and environmental 

conditions. Different sensors or sensors of the same type can be calibrated with this 

method. The basic principle employed is that low-cost PM sensors should have a perfect 

linear relationship with reference monitors used in the calibration. The difference 

between low-cost PM sensor readings and reference monitor readings are studied. The 

influence of relative humidity on low-cost PM sensor readings are then observed and 

quantified. Finally, the influence of temperature on low-cost sensor readings is studied 

and quantified based on the evaluation test with a variety of temperatures. A combination 
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of these factors can also be studied since they occur simultaneously in real life. At the 

end of the calibration process, various calibration models and algorithms will be used to 

adjust the sensor response to that of the reference monitors, thus improving the low-cost 

PM sensor’s data quality. 

4.2. CALIBRATION MODELS 

Eliminating errors from low-cost PM sensors is a difficult and complex process. 

However, calibration models developed based on laboratory chamber tests allow for the 

best estimate of true concentration using low-cost PM sensors. Accurate and precise 

calibration models are important for successful and effective field deployment.  

The most used calibration model is the linear calibration model [55,82]. It 

assumes that low-cost sensors respond linearly with the PM concentrations, which 

simplifies the calibration procedures. A single variable linear model that only includes 

the PM concentration as the only independent variable is called a univariate linear 

calibration model. The linearity of response is usually assessed using the least-square 

regression. The calibration function is in the form of (3) where 𝑎 and 𝑏 represent 

calibration variables, X represents reference monitor measurement, and Rs represents low-

cost sensor response [83]. Subsequently, (3) is rearranged into (4) to determine the 

calibrated concentration. 

 𝑅s = 𝑎𝑋 + 𝑏 (3) 
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𝑋 = 

𝑅s − 𝑏

𝑎
 

(4) 

Low-cost PM sensors are susceptible to errors caused by change in ambient 

temperature and relative humidity in the deployment environment [84]. For this reason, 

temperature and humidity levels should be included in the algorithms that are used to 

calibrate the PM concentration output of sensors. Multivariate calibration models are 

mostly used to take the impact of temperature and humidity into considerations. A recent 

study [85] developed a RH correction factor as shown in (5): 

 
𝐹 =

𝑅𝑠

𝑅𝑚

= 𝛼 + 𝛽 ×
RH2

1 − RH
 (5) 

where F is the RH correction factor, Rs is the low-cost PM sensor readings, Rm is the 

reference instrument readings, α and β are empirical regression parameters, and RH is the 

relative humidity measured within the chamber environment. These empirical regression 

parameters are obtained by ordinary least-squares regression. The dependent variable is 

the RH correction factors calculated as the ratio of low-cost PM sensor readings averaged 

across all the sensor units to the corresponding reference instrument readings at a given 

RH, and the independent variable is the term RH2/(1 − RH). Based on this derived 

equation, the RH adjusted concentration is generated using the RH correction factor 

equation as shown in (6): 

𝑃 =
𝑅s

𝐹
 

(6) 
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where P is the RH adjusted PM concentration. This method reduced the mean error of 

PMS3003 sensor from 27% to 10% [85]. 

Correction of low-cost sensor readings for RH alone was found to be insufficient 

to meet the measurements by reference monitors likely due to additional interference 

from temperature. To compensate for temperature in addition RH in a multivariate linear 

regression, temperature is used as an additional term in the linear calibration model to 

generate a generalized empirical correction equation, as shown in (7): 

𝑃 = 𝛽0 + (𝛽1𝑅𝑚) + (𝛽2𝑡) (7) 

where 𝛽0, 𝛽1, and 𝛽2 are calibration coefficients and t is the temperature [38,82,85]. 

Standard linear regression is used to fit these parameters in the equation to generate these 

coefficients, and the temperature adjusted PM concentration is calculated using (8): 

𝜌 =
𝑃 − 𝛽0 − 𝛽2 × 𝑡

𝛽1

 (8) 

where 𝜌 is the temperature and RH corrected concentration. The application of this model 

further reduced the mean error from 10% (error after RH correction) to 6%. Even though 

this temperature may be seen as trivial, the combination of both RH and temperature 

adjustments succeeded in lowering the mean errors from 27% to 6%, which falls within 

US EPA’s acceptable sensor requirements [85]. 
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5. SENSOR EVALUATION PROTOCOLS 

 

Low-cost PM sensors need to be calibrated and evaluated before deployment. 

This is because the manufacturer calibration and evaluation procedures are normally not 

sufficient covering the range of deployment conditions, and thus are often of limited use. 

To address this challenge, standard PM sensor evaluation protocols are developed to 

systematically assess the accuracy and reliability of the sensors. These protocols allow 

for cross comparison among different PM sensor studies and establish accuracy between 

low-cost PM sensors and highly accurate federal reference methods (FRM)/federal 

equivalent methods (FEM) monitors. With the recent interest in low-cost PM sensors by 

governmental and regulatory agencies globally, it is important to standardize evaluation 

procedures and indices to evaluate the performance of low-cost PM sensors.  

Seven performance evaluation indices have been established by the US 

Environmental Protection Agency (EPA) [78,86], including (1) linearity of response, (2) 

precision of measurement, (3) limit of detection (LOD), (4) concentration resolution, (5) 

response time, (6) interference equivalence, and (7) temperature and relative humidity 

influence. The US Air quality Sensor Performance Evaluation Center (AQ-SPEC) [71–

72] reiterated some of these indices and additionally proposed the inclusion of four more 

indices: (8) data recovery, (9) accuracy, (11) intra-model variability, and (12) baseline 

drift. The European Metrology Research Program (EURAMET) [87] employs similar 

protocols based on indices used by the US EPA and AQ-SPEC protocols. Additional 

important indices that have been used in the literature include: (13) root mean square 

error (RMSE), (14) measurement bias [88], (15) dependence on particle size, and (16) 
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dependence on particle composition [41]. The above 16 indices will be discussed 

sequentially in the following paragraphs. 

The coefficient of determination (𝑅2) from linear regression is a primary 

parameter to evaluate correlation of low-cost PM sensor outputs with reference monitors. 

This indicates the level of agreement between measurements of low-cost PM sensors and 

reference monitors over a range of PM concentrations. To test the correlation of a sensor, 

the sensor and reference monitor are challenged with a wide range of PM concentrations 

in a laboratory calibration chamber. The output from low-cost PM sensors is plotted 

against the output from reference monitor to generate a best fitted regression curve. 

Based on this curve, the fitted linear equation is generated and used to optimize the 

accuracy of the low-cost PM sensor’s outputs. The 𝑅2 is reported for evaluating the 

strength of correlation on a scale of 0 to 1 (or 0 to 100%). An R2 of 1 indicates a perfect 

correlation with the reference monitor, while an R2 of 0 indicates a complete lack of 

correlation.  

The coefficient of variation (CV) is another parameter that is used to evaluate the 

precision of measurement. The precision of low-cost PM sensor measurements is 

evaluated by conducting three replicate measurements. A stable concentration is 

generated within the controlled laboratory chamber. Once this is attained, three replicate 

measurements are taken with the sensor. Based on data from this experiment, the 

coefficient of variation calculates the dispersion of data points around the mean value 

expressed as a percentage, and it should be less than 10% for acceptable performance 

[17]. This parameter is defined by (9): 
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 CV =
𝜎

𝜇
 (9) 

where 𝜎 represents standard deviation, and 𝜇 is the mean value of measurements. 

The limit of detection (LOD) describes the lowest detectable concentration that is 

detected from blank concentration by a low-cost PM sensor. A PM monitor’s reading is 

only considered reliable and meaningful when the dust concentrations exceed the LOD 

[41]. LOD evaluation is performed by challenging low-cost PM sensors with several 

blank concentrations. The LOD is then calculated using (10). 

LOD =
3𝜎blk

𝑘
 (10) 

where k is the slope from the fitted linear regression model, and 𝜎blk is the standard 

deviation at blank PM conditions. The k value is obtained as the slope from the linear 

correlation curve generated over the range of concentration (as measured in R2). The 𝜎blk 

is calculated over the extended measurement time for the test with all sensor readings 

using (11): 

𝜎blk = √∑ (𝑅𝑖 − 𝑅)
2

𝑁
𝑖=1

𝑁 − 1
 (11) 

where 𝑅𝑖 is the individual measurements, 𝑅 is the average concentration measured by 

sensor, and N is the number of measurements. 
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Concentration resolution is the smallest amount concentration that the sensor can 

detect. This term is defined by the noise of the sensor. A sensor’s noise is the 

spontaneous short-term change in sensor response at a constant PM concentration. 

Concentration resolution is quantified by the standard deviation of a sensor’s 

measurements about a steady concentration. To evaluate this parameter, low-cost PM 

sensor is exposed to a zero-concentration for 10 measurements (𝑟𝑖,…, 𝑟10) with a 2-min 

time interval between successive measurements. The standard deviation is calculated 

using (12): 

 

𝑆 = √
1

𝑛 − 1
[∑𝑟𝑖

2

𝑛

𝑖=1

−
1

𝑛
(∑𝑟𝑖

𝑛

𝑖=1

)

2

] (12) 

where S is the concentration resolution, 𝑟𝑖 is sensor reading for each measurement, and n 

is the number of measurements (10 in this case). This procedure is repeated for a 

concentration 80% of the sensor’s upper detectable limit. 

Response time generally measures the time taken for a low-cost PM sensor to 

respond to a change in input concentration. US EPA classifies response time into lag time 

and rise time. Lag time is the time interval between a step change in input concentration 

and the first observable corresponding change in measurement response by the sensor. 

Rise time, however, is the time interval between the first observable measurement 

response (the lag time) and the final response after a step increase in input concentration. 

Response time is a vital sensor evaluation index as it assesses if the sensor is suitable for 

mobile monitoring in conditions like an underground mine where PM concentrations 
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change rapidly. Low-cost PM sensors deployed for personal monitoring are preferred to 

have response time approaching 0.  

Interference equivalence is the positive or negative measurement response caused 

by particles and substances other than the one being targeted to be measured. The test to 

evaluate this parameter involves exposing low-cost PM sensors to a zero-air test 

atmosphere and taking the sensor output. This is followed by challenging the sensors with 

potential interfering particle types at a known concentration which is substantially higher 

than that likely to be found in the ambient air where the sensor will be deployed. The 

interference equivalence (IE) is calculated using Eq. (13): 

IE = 𝑍𝑖 − 𝑍 (13) 

where 𝑍𝑖 is the sensor output at zero concentration and 𝑍 is the sensor output with the 

interferent. 

RH and temperature influence on low-cost PM sensors are tested to know how 

real-life changes in temperature and relative humidity influence the sensor performance. 

Within a controlled laboratory chamber environment, temperature variations ranging 

from low temperatures (~0ºC) to high (>30ºC) and relative humidity from <25% to >85% 

are challenged with the low-cost PM sensors to measure their impact on low-cost sensors 

[78].  

Data recovery measures the effectiveness of collecting valid data. It is calculated 

using a percentage ratio of valid sensor data points as a percentage of the total number of 

data points collected over a testing period.  
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Accuracy is the degree of closeness between sensors’ measured values to the true 

concentration. The test for a sensor’s accuracy (A) exposes low-cost PM sensors and 

reference monitors to the same steady-state conditions and calculated using Eq. (15): 

𝐴 = 100% − (
|�̅� − 𝐶̅|

𝐶̅
× 100%) (14) 

where �̅� is the average concentration measured by the sensor throughout the steady-state 

period and 𝐶̅ is that measured by the reference monitor. The accuracy criterion used by 

MSHA and the EPA protocol requires that a sensor yields an accuracy within 25% of 

the true concentration with a probability of 0.95. 

Intra-model variability is the closeness of measurements from sensors of the same 

type under the same concentration. Test for this parameter involves sensors closely 

deployed in a laboratory chamber with a steady state PM concentration, as calculated by 

Eq. (15): 

 
𝑉 =

𝑋highest − 𝑋lowest

𝑋average
× 100% (15) 

where V is the intra-model variability, 𝑋highest is the sensor reading with the highest 

concentration, 𝑋lowest is the sensor reading for the lowest concentration, and 𝑋average is 

the total average of all the three sensors.  

Baseline drift is the gradual systematic change in sensor response to a fixed set of 

environmental conditions over a period of time without a change in input concentration. 
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Drifts are evaluated by exposing the sensor to a zero concentration. A sensor which is 

affected by baseline drift has its response gradually but systematically deviates from the 

true zero concentration. This test is repeated for 80% of the sensor’s upper detectable 

limit.  

The evaluation sensor bias is imperative to measure the error percentage of low-

cost sensor output compared to reference monitors. This value needs to be less than 

10% to ensure measurement accuracy. It is calculated by using Eq. (16): 

 
Bias =

1

𝑛
∑

𝐶HD − 𝐶rf

𝐶rf

𝑛

𝑖=1
× 100% (16) 

where n is the total number of measurements, CHD is the concentration measured by low-

cost PM sensor, and Crf is the concentration measured by reference monitor. A positive 

bias indicates an overestimation of actual PM concentration and a negative measurement 

indicates an underestimation.  

RMSE measures how close the observed data points are to the calibration model’s 

predicted value. To determine this index, low-cost PM sensors are exposed to a wide 

range of known PM concentrations (model concentrations,𝑀𝑖). Based on measurement 

outputs (observed concentrations, 𝑂𝑖) by the sensors, residual values (𝑂𝑖 − 𝑀𝑖) are 

determined to calculate RMSE using Eq. (17), where n and 𝑖 indicates the time step. 

 

RMSE = √
1

𝑛
∑(𝑂𝑖 − 𝑀𝑖)2

𝑛

𝑖=1

 (17) 
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Dependence on particle size is imperative as light scattering principle is strongly 

dependent on particle size both in Rayleigh and Mie regimes. To evaluate the impact of 

size dependence, spherical particles such as water solutions of polystyrene latex [41] with 

uniform diameters are generated for three size categories. The same constant steady 

concentration is maintained for all three tests using the three different particle size 

distributions. Sensor performance is evaluated by comparing their outputs with actual 

mass concentrations measured by reference monitors.  

Dependence on particle composition is likely to be a problem with low-cost PM 

sensors due to their light scattering working principles which depend on particle 

characteristics such as refractive index. This is tested by exposing low-cost PM sensors 

and reference monitors to the same concentration of particles known to have different 

refractive indices for three particle types. Particles used for this test should be of equal 

aerodynamic diameters to avoid the interference of particle size. 

 

6. FRAMEWORK FOR UNDERGROUND MINE APPLICATION 

 

The application of low-cost PM sensors in underground mines for real-time 

personal monitoring of coal dust and DPM concentration will be a powerful tool to 

protect miners from overexposure to these PM. The implementation of this technology 

will additionally yield several economic and operational benefits to mines, such as a 

reduction in productive work time due to problems with high PM concentration, a 

considerable reduction in cost incurred through hospital bills and compensation due to 

PM-related health conditions, and accident prevention caused by high PM levels. It is, 
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therefore, imperative to discuss the framework for the implementation of low-cost PM 

sensors in underground mines effectively to facilitate the control of PM exposure. 

6.1. USABILITY 

It is important to note that low-cost sensors, only refer to the PM measuring 

component described in Section 2.2 which is not entirely functional as a measuring 

system all by itself since it has no inbuilt digital converters and unable to display results. 

In order to operate as a complete monitor, low-cost sensors are converted into complete 

PM monitors together with other important components such as microprocessor which 

functions as an anolog to digital converter and a platform to program the sensor and the 

monitor as a whole, other sensors including temperature and RH sensors to provide 

supplementary environmental monitoring data and inclusion into the calibration 

algorithms, battery or another power source to provide power for the monitor, and a 

display screen to allow data to be viewed by miners. Therefore, for the purpose of 

application in underground mines, low-cost PM monitors are what will be deployed and 

not the sensor alone. 

Low-cost PM monitors made from PM sensors may be worn on a miner’s chest 

region or on the bill of a hard hat where it can monitor the PM within the miner’s 

breathing zone—within 0.3 m (12 in.) radius of the miner’s mouth or nose [89]. The 

lightweight and small size of these monitors present minimal ergonomic discomfort for 

miners. However, a comprehensive ergonomic study is required to point out an optimum 

body part to attach the sensor for maximum ergonomic functionality. 
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6.2. TESTS  

With no known applications of low-cost PM sensors in underground mines, 

important studies must be done to substantiate their use prior to the commercialization of 

such sensors for underground mines. First, laboratory and in-mine performance 

evaluation of low-cost PM sensors should be performed to assess the performance of the 

sensors under controlled and onsite environments. Low-cost PM sensors will further need 

to be calibrated to the underground ambient conditions to optimize their efficiency under 

those conditions. Periodic post deployment calibration is equally important for a 

successful long-term usage. It is normal for monitors to encounter errors over an 

extended period of use and a recalibration is sufficient to correct low-cost PM monitor 

outputs in this event. Moreover, it will be critical to perform an in-mine pilot study to 

explore whether and how a network of low-cost PM monitors can effectively monitor and 

improve PM levels in underground mines. The worthiness and usability of the low-cost 

sensor, when worn by miners performing their normal duties, will be known from the 

perspective of miners through this pilot study. For the purpose of these studies, various 

mines should be sampled to represent various geographical areas with various types of 

mines, ventilation systems, types of equipment, and mining methods in order to make 

these studies comprehensive. 

6.3. DEPLOYMENT AND DATA RETRIEVAL  

Low-cost PM monitors will be deployed in underground mines in a wireless 

sensor network (WSN) where every monitor can function autonomously to offer high 

flexibility and easy troubleshooting. When sensors are activated, each sensor 
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continuously monitors and displays real-time PM concentrations that the miner is 

exposed to. Data recorded are displayed on a display screen for miners to view their 

current exposure levels. Additionally, these sensors can be programmed to display color 

codes for PM concentration levels from a scale of green to red (safe to hazardous) to 

facilitate interpretation and easily alert miners of a dangerous PM concentration level 

[90]. An exposure alarm can also be installed to trigger immediately when a set level of 

PM exposure has been reached.  

Using a Wi-Fi enabled microprocessor such as NodeMCU ESP8266, sensors can 

concurrently store monitoring data to a receiver computer in real-time which can be 

accessed by the mine ventilation engineer for onward planning. This real-time and 

cumulative data enable management to correlate PM levels to initiate timely proactive 

controls and for mine ventilation planning purposes. Furthermore, the data provide a 

good estimate of the average workplace dust levels at various locations. This will help 

miners and management to identify PM levels higher than normal and take immediate 

actions. For example, a defective dust control system or an insufficient ventilation rate in 

the mine can be identified quickly when dust real-time PM levels at a particular location 

reach an unusual level. 

6.4. SPECIAL SAFETY REQUIREMENT FOR UNDERGROUND MINE USAGE 

For the safety of the mine, MSHA requires electronic devices used in 

underground coal and other gassy mines to be intrinsically safe. This is due to the high 

risk of explosion presented by the buildup of methane and coal dust in underground 

mines which can be ignited by waves of electromagnetic energy within the radio 
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frequency spectrum. For low-cost PM sensors to be approved for use in underground 

mines, they must be certified by MSHA as intrinsically safe for use in underground 

mines. Low-cost PM sensors should therefore be modelled to meet this requirement 

before it can be applied in underground mines. The intrinsic safety of low-cost PM 

monitors can be enhanced by limiting the electrical energy within their circuits so that 

ignition is not possible but able to provide sufficient power to the sensor.  

6.5. FLEXIBILITY 

This novel technology presents the challenge of disengaging occasionally to 

change or charge batteries during operational hours when batteries are exhausted. The 

power consumed by these sensors are in the range of 0.45 to 1 W, which are substantially 

low. Connecting these sensors to commonly used 4000 mAh batteries can last between 27 

and 33 h for a monitor whose current demand is 150 mA, lasting more than twice as 

much as Airtec’s 12 h run and thrice as much as the PDM3700’ 8 h run. In order to avoid 

abrupt shutdowns during operational hours, changing and charging of batteries can be 

done at the end of the shift or during breaks ahead of their expected run-out times. For 

stationary monitoring, the sensor may be connected to an AC power for uninterrupted 

power supply.  

 

7. CONCLUSIONS 

 

Mining-induced PM such as coal dust and DPM causes many respiratory diseases 

such as CWP and lung cancer. Current available underground PM monitoring devices 
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have disadvantages which limit their measuring capacity for compliance monitoring only. 

As a result, exposure levels for most miners remain unknown, leading to many unrealized 

overexposures. Recent research has shown that low-cost light scattering PM sensors offer 

the potential solution to this problem. This paper, therefore, investigates the feasibility of 

the application of low-cost PM sensors to achieve real-time high spatio-temporal PM 

measurement in underground mines.  

Operated on optical principles, low-cost sensors are able to characterize both mass 

and number concentrations in real-time, which is critical for personal monitoring to 

achieve high spatio-temporal resolution. In spite of these promising potentials of low-cost 

PM sensors, they are affected by significant error sources that make their results 

erroneous and unreliable. Based on errors pointed out in previous studies, we categorized 

error sources into two forms: internal and external error sources. As elaborated in Section 

3, internal error sources are due to preexisting sensor conditions and manufacturer errors 

whereas external sources of errors are often caused by changes in environmental 

conditions.  

Accurate calibration has proven to be an effective tool for improving the low-cost 

PM sensor’s data quality. As describes in Section 4, laboratory calibration chambers 

enable researchers to calibrate sensors under a variety of controlled environmental 

conditions, mainly PM concentration, relative humidity, and temperature through the 

application of univariate and multivariate calibration models. Governmental agencies 

such as EPA, EURAMET, and AQ-SPEC have proposed standardized sensor evaluation 

protocols with indices based on which sensors should be evaluated. Due to the many 

uncertainties and variabilities in evaluations done by private individual researchers, we 
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only discussed indices proposed by these agencies. We further propose that future studies 

adapt protocols established by these government agencies for accurate and uniform 

evaluation procedures. 

This review has revealed the feasibility of low-cost sensors to achieve highly 

dense spatial coverage PM monitoring in underground mines. The potential application of 

low-cost PM sensors in underground mines has been demonstrated in Section 6. 

However, with no known underground mine application and study available, we suggest 

field and laboratory studies to sanction the potential application of low-cost PM sensors 

in underground mines. This review paper extends existing literature on low-cost PM 

sensor studies, and provides a framework on the development and application of the 

sensor for coal dust and DPM monitoring in underground mines. The outcomes of such 

endeavors will help protect the health of miners, enhance the safety of mining-related 

jobs, and inform industry and government about better management options for the cost-

effective operation of underground mines.  
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II. CALIBRATION OF LOW-COST PARTICULATE MATTER SENSORS FOR 

COAL DUST MONITORING 

ABSTRACT 

Mining-induced coal dust causes various respiratory diseases to mine workers 

mainly coal workers’ pneumoconiosis (CWP). Currently available underground monitors 

are expensive and bulky. These disadvantages limit them for regulatory sample 

monitoring purposes. Moreover, personal exposure levels for most miners remain 

unknown, risking them to potential overexposures. Low-cost light scattering particulate 

matter (PM) sensors offer a potential solution to this problem with the capability to 

characterize PM concentration with high spatio-temporal resolution. However, these 

sensors require precise calibration before they can be deployed in mining environments.  

No previous study has promulgated a standard protocol to assess these sensors for coal 

dust monitoring. The goal of this study was to calibrate Plantower PMS5003 sensors for 

coal dust monitoring using linear regression models. Two other commercially available 

PM sensors, the Airtrek and Gaslab CM-505 multi-gas sensors, were also evaluated and 

calibrated.  They were evaluated for factors including linearity, precision, limit of 

detection, upper concentration limits, and the influence of temperature and relative 

humidity in a laboratory wind tunnel. The PMS5003 sensors were observed to be 

accurate below 3.0 mg/m3 concentration levels with R-squared values of 0.70 to 0.90 

which was the best among the sensors under with an acceptable precision below 1.5 

mg/m3. Moreover, this study shows that temperature and relative humidity have minimal 

influence on the efficacy of low-cost PM sensors’ ability to monitor coal dust. This 
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investigation reveals the feasibility of low-cost sensors for real-time personal coal dust 

monitoring in underground coal mines if a robust calibration model is applied. 

 

1. INTRODUCTION 

 

Coal dust concentrations in underground mines can be considerably higher than 

surface mines due to limited ventilation to dilute the coal dust. This puts underground 

mine workers at a greater risk of coal dust overexposure. Overexposure to respirable coal 

mine dust (RCMD) has resulted in the onset of irreversible diseases, such as coal 

workers’ pneumoconiosis (CWP), emphysema and chronic bronchitis collectively known 

as ‘black lung” which can cause permanent disability and premature death [1]. Miners 

have also been diagnosed with silicosis due to exposure to coal dust with high silica 

contents [2], [3]. In recent times, there has been a resurgence of CWP among US coal 

miners [4] which is of great conern to the mining industry. Contrary to common 

understanding that CWP is only associated with long-term coal dust exposure, recent data 

indicates that advanced CWP has been found in younger coal miners [1].  

Accurate real-time personal dust exposure monitoring is essential to alert mine 

workers to change behavior and apply mitigation methods to reduce their exposure when 

working.  The Mine Safety and Health Administration (MSHA) requires the use of 

continuous personal dust monitors (CPDM) for measuring RCMD mass concentrations 

and determining compliance with the regulatory exposure limits. However, current 

CPDM devices are expensive and bulky [5]–[8]. For example, PDM3700 is the MSHA 

certified CPDM to be used in coal mines, but it costs ~$17,000 and weighs 2.0 kg [9]. 
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These expensive PDMs are worn only by a few miners for regulatory compliance 

monitoring. These are mainly miners who are exposed to the highest coal dust 

concentrations at their work locations and those who have already been diagnosed with 

pneumoconiosis [1]. This practice has serious drawbacks, most notably is that the 

exposure levels for most miners are unknown. Besides, dust control effectiveness of 

modified engineering control strategies is not well understood by mining engineers due to 

lack of sufficient monitoring data. Finally, there is a lack of sufficient exposure 

information to accurately correlate coal dust exposure to its related-health data in 

epidemiology studies.  

Light scattering low-cost particulate matter (PM) sensors have the potential to 

accurately monitor coal dust concentration in real time. The low cost, small size, and low 

power requirements of these sensors offer the promise of being widely worn by all coal 

mine workers. These could yield accurate concentration information if properly 

calibrated. Even though this technology has been significantly explored by researchers 

for other environmental applications [10]–[13], it remains a new technology for 

monitoring coal dust [14]. Because of questionable accuracy and long-term reliability of 

these sensors, it is critical to adopt a systematic approach to evaluate and effectively 

calibrate these sensors before they can be applied for coal dust monitoring. Many low-

cost PM sensor calibration studies have demonstrated promising results in comparison 

with Federal Equivalent Methods (FEMs) or research-grade instruments for air quality 

PM monitoring [13], [15]–[18]. However, there are very few studies that investigate the 

performance and application of low-cost sensors for monitoring coal dust. Existing 

research by governmental agencies such as US Environmental Protection Agency (EPA) 
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[19] and European Metrology Research Program (EURAMET) [18], as well as research 

in the literature [13] have established standard protocols for calibrating low-cost PM 

sensors for environmental PM monitoring. However, there is still limited understanding 

of how these calibration models will perform with mining-induced coal dust.  

The objective of this study was to evaluate and calibrate three types of lower cost 

PM sensors against a FEM reference monitor, Personal Dust Monitor (PDM) model 3700 

and a research grade Aerodynamic Particle Sizer (APS) model 3321. A custom-built 

wind tunnel in the laboratory was used for the calibration experiments. Sensors and 

monitors were exposed to various levels of concentration within the tunnel to generate 

the linearity plots between the sensors and the reference monitors. Since several studies 

have established the linear relationship between light scattering low-cost PM sensors and 

reference monitors, univariate calibration models using linear regression were developed 

based on the linearity analysis to calibrate the sensors [17], [20]–[23]. The precision, 

limit of detection and upper concentration limits were evaluated to provide further 

understanding of the sensors’ performance with coal dust. A 22 factorial design was used 

to determine the influence of temperature and relative humidity (RH) on the sensors’ 

performance at low (~0.5 mg/m3) and high (~1.5 mg/m3) coal dust concentration levels. 

This method provides an understanding of the influence of each of the two levels of both 

temperature and RH on sensor outputs as well as the interaction of both conditions. The 

implementation of these sensors for coal dust monitoring will expand personal exposure 

monitoring in mines as every miner can wear one to detect timely overexposures to 

ensure timely controls are engineered to protect miners’ health. On a broader scope, low-
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cost PM sensors can greatly supplement more expensive research grade monitors used in 

other occupational environments. 

 

2. EXPERIMENTAL METHODS 

2.1. LOW-COST PM SENSORS AND REFERENCE MONITORS 

Three low-cost PM sensors were evaluated in this study – the Plantower 

PMS50003 (PMS) low-cost PM sensor, the Airtrek PM sensor, and the Gaslab CM-505 

multi-gas sensor. Two units of each sensor were evaluated. The Gaslab sensor, shown in 

Figure  (a) measures PM 2.5 and PM 10 particle concentration together with oxygen, 

carbon dioxide and carbon monoxide concentrations. The Gaslab uses a combination of 

NDIR sensors, electrochemical sensors, and fluorescent sensors to measure gases and 

uses laser scattering technology to measure PM 2.5 and PM 10. The Airtrek sensors on 

the other hand, shown in Figure  (b) use light scattering principles like that of the 

Plantower PMS5003 sensor to measure PM concentrations. The Airtrek sensors measure 

PM in four size bins of 1.0 µm, 2.5 µm, 4.0 µm, and 10.0 µm.  

The Plantower PMS5003 (shown in Figure  (d)) was used to assemble in-house 

made dust monitors. They are inexpensive light scattering PM sensors that are 

commercially available for about $ 30. This sensor employs a fan to draw ambient air 

into the light scattering measuring cavity through its inlet. As illustrated in Figure  (c), 

the LED radiates laser-induced light into the sensing area to target particles within the 

measuring cavity. Light is scattered as it hits the particles. It is detected by the photo-

diode detector, which is positioned at 180° with the LED light. The scattered light 
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received by the photo-diode detector sends pulses of electric signal to the in-built 

microprocessor. The number and intensity of electrical signals detected by the 

microprocessor are then converted to number and mass of particles respectively based on 

MIE theory [24].  

These PMS sensors characterize PM by size into PM1, PM2.5, and PM10. The 

manufacturers of the PMS sensors state that PM1 is measured for particles in the size 

range of 0.3 µm to 1.0 µm, PM2.5 for particles in the size range of 1.0 µm to 2.5 µm and 

PM10 for particles in the size range of 2.5 µm to 10.0 µm. For each size category, the 

PMS reports two PM outputs, one without any form of correction factor, called standard 

PM concentration (or CF = 1) and the other with an atmospheric calibration factor, called 

environmental PM concentration. The manufacturers have not published any details 

about the calibration factor and how it was developed. Therefore, due to considerable 

uncertainties about manufacturer calibration, the standard PM concentrations were used 

for this study. Manufacturer specifications indicated high anti-interference performance 

using non-PM shielding technology. Previous studies have also shown that the Plantower 

sensors have superior performance as they have been integrated into PurpleAir air quality 

monitors [25]. These characteristics justify the reason the PMS sensors were used for this 

study.  

Together with a DHT-22 temperature and relative humidity sensor, NodeMCU 

ESP8266 microcontroller and a 4 line by 20-character LCD screen, the PMS5003 was 

integrated into a prototype monitor (low-cost PM monitor) as displayed in Figure  (e). 

This monitor was programmed with Arduino IDE to display real time concentrations of 

PM2.5 and PM10, temperature and relative humidity readings every 1.0 s onto the LCD 
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screen. To protect the low-cost PM sensor and its critical components from rainfall, 

sunlight, and physical damage, the sensor, and its components are housed in a 10.0 cm x 

4.0 cm x 1.5 cm acrylic plastic box. This also allowed the team to see the screen readings 

in real time through the transparent acrylic case. The side of the acrylic case is strongly 

fastened but left uncovered to allow for normal operation of the PMS sensor without 

interference to the sensors’ exposure. The low-cost PM monitor is continuously powered 

using a 5.0 V USB cable. For data analysis, the PM monitor is interfaced with a 

ThingSpeak Matlab based online IOT platform which serves as a cloud where all data is 

transmitted through Wi-Fi. 

 

 

(a) Gaslab CM-505 multi-gas sensor 

 

(b) Airtrek PM sensor 

 

(c) Schematic PMS5003 

sensor 

 

(d) Plantower PMS5003 

sensor 

 

 

         (e) PM monitor 

Figure 1.  Low-cost PM monitor: (a) schematic diagram of the plantower PMS5003, (b) 

a picture of the Plantower PMS5003 sensor, (c) the in house fabricated low-cost PM 

monitor 
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The primary reference monitor used in this study is the personal dust monitor 

model 3700 (PDM3700). This is a real time personal coal dust monitor which operates on 

the principle of tapered element oscillation microbalance (TEOM). It is capable of 

reporting concentrations at 1-minute intervals. The PDM3700 is equipped with a 

respirable size inlet installed near the inlet which ensures that the cut-off diameter for 

coal dust going through the mass sensor is 5.0 µm. This makes it capable of monitoring 

respirable size coal particles. It is used by miners by mounting the sample inlet, 

incorporated in the universal cap lamp, on the bill of a miner’s hard hat to monitor dust 

within the miner’s breathing zone [26]. The National Institute for Occupational Safety 

and Health (NIOSH) has validated PDM3700’s accuracy, precision, and comfortability, 

and Mine Safety and Health Administration (MSHA) has approved this equipment as the 

regulatory compliance monitoring device [26]. This has also been designated as Federal 

Equivalent Method by the U.S. Environmental Protection Agency (EPA) for 

environmental air quality PM monitoring [27]. 

The APS measures PM mass and number concentration by particle aerodynamic 

sizes from 0.5 µm to 20.0 µm using the time-of-flight principles. To make it comparable 

with the PDM, PM concentration of particle size ranging from 0.00 to 4.37 µm from the 

APS was used for this study since it compares with the 4.37 µm D50 of the PDM 

cyclone. The APS draws ambient PM-laden air into the monitor through a nozzle at an 

accelerated flowrate of 5.0 liters per minute. Ideally, the APS needs to sample airflow at 

the same velocity as the air velocity at the sampling location. In this case, a 0.8 cm 

diameter nozzle was used to achieve a sampling velocity of 1.5 m/s to get as close as 

possible to airflow velocity in the wind tunnel. The accelerated airflow goes through the 
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sensing zone where the PM concentrations are measured using the time-of-flight 

principles. Particle size distribution is then reported every 15 seconds based on the 

settings used for this study [28]. 

2.2. WIND TUNNEL 

The calibration chamber used in this study is a custom-built wind tunnel made 

with metal frames and acrylic glass panels (Figure 2). The wind tunnel has a U shape 

with cross-sectional dimension of the tunnel being 0.5 m x 0.5 m to simulate the airway 

bends in underground mines. The entire dimension of the U shape is 4.5 m long and 2.0 

m wide.  

The wind tunnel has a particle generator that is made up of a compressed air duct, 

dust reservoir with injector, and a concentration regulation valve installed at its inlet 

which dispenses dry coal dust into the wind tunnel. The injected coal dust goes through 

an aerosol dispersion system to ensure a homogenous distribution of coal dust particles 

across the cross section of the wind tunnel. The outlet of the wind tunnel is connected to a 

dust collector that also enables exhausting type airflow through the wind tunnel. The fan 

drives air through the wind tunnel at a velocity of 1.0 m/s which is the normal air velocity 

in underground mines [29]. The wind tunnel has a platform built at the monitoring 

location which is 25.0 cm from the top of the tunnel on which the sensors and the nozzles 

for the monitors are installed. 
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Figure 2. Calibration wind tunnel and the experimental set-up 

2.3. CALIBRATION PROCEDURE 

The coal dust used for this experiment is the Keystone mineral black 325 with a 

density of 1,220 kg/m3 with particle sizes in the range of 0.04 µm to 35.00 µm. Detailed 

characteristics and particle size distribution of this coal dust can be observed in Figure 3 

[30]. Prior to the injection of coal dust particles, the two PMS sensors, APS, PDM, two 

Airtreks, and two Gaslabs were placed on the monitoring platform in the wind tunnel. 

The inlets to the sensors and monitors were placed very closely to one another to 

minimize spatial differences in particle concentration in such a way that did not cause 

interference with each other’s exposure to airflow. Regarding the APS and PDM, the 

monitors were kept outside the wind tunnel and particles were sampled from the wind 

tunnel through nozzles which were positioned to face the flow in the tunnel. The 

remaining sensors and monitors were placed inside the wind tunnel with their inlets 

facing the flow. It was imperative to ensure that particle concentration at the sampling 
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locations stayed within 10% variation which was observed prior to the start of the 

experiments using the PDM. This was ensured by performing a preliminary test 

measuring and comparing the concentrations across the sampling location within the 

wind tunnel using the PDM. The uniform concentration maintained was the precaution 

used to ensure that variation in dust concentration between the sensors and monitors was 

insignificant. 

 

 

Figure 3. Particle size distribution for Keystone mineral black 325 coal dust 

 

MSHA coal dust regulation is based on end-of-shift Time Weighted Average 

concentrations of 1.5 mg/m3 [1]. The dust coal concentration in mines should typically 

fluctuate around this value, therefore we investigate the sensors’ responses to different 

concentration levels ranging from 0 to 3.0. The coal dust injection rate was adjusted 

throughout the course of the experiments within that range depending on the test being 

performed.  
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The clock times on all sensors and monitors were reset to synchronize the time 

stamps. Although the APS and PMS sensors were programmed to record real time 

concentrations every 15.0 seconds, the Airtrek monitor reported concentrations every 

30.0 seconds, while the Gaslab reports concentrations every 2.0 seconds. For these 

sensors and monitor that record their outputs multiple times within a minute, their 

readings were averaged to get minute-by-minute concentrations for all the sensors to be 

comparable with the PDM. This data is then used in the evaluation and calibration 

procedure. The PDM’s reported time weighted average (TWA) concentration data were 

converted to minute-by-minute real-time concentrations using Equation  to be consistent 

with all the other sensors’ data. In this equation, TWAn is the time weighted average at 

each time step, Cn is the real time concentration measured, T is the time interval between 

successive measurement and Tn is the total number minutes at time n. 

 
C =

𝑇𝑊𝐴𝑛 × 𝑇𝑛 

𝑇
− (𝐶1 + 𝐶2 + 𝐶3 … . 𝐶𝑛−1)  Equation 1 

2.4. CALIBRATION MATRICES 

Low-cost PM monitors were evaluated and calibrated based on five calibration 

matrices: accuracy (linearity), precision, lower limit of detection, upper limit, and 

temperature and relative humidity influences. These matrices were adopted from the low-

cost PM sensor evaluation protocol proposed and used by United States Environmental 

Protection Agency (US-EPA) [19], [31] the US Air quality sensor performance 

evaluation center (AQ-SPEC) [32], [33] and European Metrology Research Program 
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(EURAMET) [18] which have proven to be comprehensive and effective for low-cost 

PM sensors. These matrices are elaborated in the following sections. 

2.4.1. Linearity.  The accuracy of PM sensors is the closeness of sensor 

measurements to actual concentrations. In the linearity test, sensors and reference 

monitors were exposed to the same concentrations and environmental conditions within 

the wind tunnel. During the test, the coal dust injection rate was changed every 10.0 

minutes between 0 and 3.0 mg/m3. During this test, concentrations occasionally spiked 

above the target 3.0 mg/m3 for a few seconds after which valves were quickly readjusted 

to the correct levels. This, however, allowed us to observe the characteristics of the 

sensors at peak concentrations beyond 3.0 mg/m3. The linearity of the PMS sensors and 

the other monitors were assessed using the correlation coefficient from linear regression 

by plotting the output of monitors against PDM and APS. The concentrations measured 

by the reference monitors were used as the independent variable, while the concentrations 

measured by the sensors were reported as dependent variables. Using both the PDM and 

APS as reference monitors, each sensor is evaluated with both the PDM and APS. The 

linearity of each sensor and monitor, which is an indication of a monitor’s accuracy, is 

evaluated by the R-squared value calculated using the ordinary least square (OLS) linear 

regression method. The accuracy of a sensor is lower for those with lower linearity 

values. The linear regression models generated from this evaluation was then used to 

derive the calibration equation to improve the accuracy of the PMS to the accuracy of the 

PDM. 

2.4.2. Precision.  The precision of the sensors was evaluated to understand the 

ability of the sensors to reproduce the same outputs at the same concentration level. Five 
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concentration levels were used for these experiments - 0.5 mg/m3, 1.0 mg/m3, 1.5 mg/m3, 

2.0 mg/m3 and 3.0 mg/m3. At each concentration level, coal dust concentration and other 

environmental conditions were kept constant within the wind tunnel and measurements 

were taken with sensors for 60 mins. The precision for each sensor was then measured 

using the EPA sensor evaluation protocol for low-cost PM sensors. This is determined by 

the coefficient of variation (CV) expressed as a percentage using the equation in Equation 

2 where 𝜎 represents standard deviation, and 𝜇 is the mean value of measurements. A 

precision of less than 10% is required by EPA for sensor deployment. This would give us 

the understanding of the consistency and reliability of the PMS outputs in an extended 

use.  

 CV =
𝜎

𝜇
 Equation 2 

2.4.3. Limit of Detection.  LOD describes the lowest concentration limit of 

sensors that significantly differentiates from sensor outputs at blank concentrations. This 

tells how the sensors will reliably differentiate concentration changes from instrument 

noise, which is the short-term deviations in measurements about the mean of a stable 

concentration which are not caused by changes in concentrations. Different from LOD, 

the lower limit of sensors was also evaluated as the average sensor output at zero coal 

dust concentration. The LOD for the low-cost sensors were evaluated by subjecting them 

to 0.0 mg/m3 coal dust concentrations over a 60-minute period. This blank condition was 

generated by filling the chamber with clean air with no particles and completely shutting 

off the valves to the dust injection system. For this experiment, air is considered clean 
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when the PDM and APS reference monitors measures 0.0 mg/m3. Based on outputs of 

sensors under these conditions, LOD is calculated using Equation 3 [34] where k is the 

slope from the fitted linear regression model, and 𝜎𝑏𝑙𝑘 is the standard deviation. In this 

experiment, these parameters were calculated based on the 60 measurements taken over a 

testing period of 1 hour. 

 
LOD =

3𝜎𝑏𝑙𝑘

𝑘
 Equation 3 

2.4.4. Upper Concentration Limits.  The upper concentration limit is the 

concentration at which a 10 unit increase in reference monitors’ measurements is 

unproportionally characterized by a 0.2 unit or an exponential increase in the outputs of 

low-cost sensors. This concentration serves as the maximum concentration that a sensor 

is capable of measuring with an acceptable degree of accuracy. Upper limits vary 

significantly among the various low-cost PM sensors. Even though manufacturers report 

certain values as the upper limits, usually 1.0 mg/m3, it is important to evaluate the upper 

limit to determine if these limits differ for coal dust particles. The results from the 

linearity test described in Section 2.4.1 was analyzed to determine the operational range 

for the sensors and to determine the upper limits for each sensor. The inflection point of 

their response curves (also known as the knee of the curve) was determined as a sensor’s 

upper limit using Equation 4. The maximum k value on the curve determines the 

inflection point at which the linearity of the sensor ends. 
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𝑘(𝑥) =

|𝑓′′(𝑥)|

[1 + (𝑓′(𝑥))
2
]
3

2⁄
 

Equation 4 

2.4.5. Influence of Temperature and Relative Humidity.  A 22 factorial 

design was used to determine if the temperature and relative humidity changes have a 

significant impact on dust monitors’ readings at low and high coal dust concentration 

levels. The temperature and relative humidity factors each had two levels, high (+) and 

low (-). For these tests, low temperatures ranged from 20 to 24oC whereas high 

temperatures ranged from 26 to 40oC which represents typical underground conditions as 

the temperature in most mines range from 15 and 35oC. Low RH ranged from 20 to 30% 

while high RH ranged from 35 to 45%. Even though RH in mines can exceed 45%, the 

challenge of simulating higher RH in the lab limited testing at higher RH values. At each 

concentration level, four tests were performed at different levels of temperature and 

relative humidity as shown in Table 1. The order of tests was randomized within each 

concentration. Each test lasted for 60 minutes with at least 5 minutes stabilization time 

between tests when the conditions are changed. All 0.5 mg/m3 concentration tests were 

performed on 4/18/2022, and the 1.5 mg/m3 concentration tests were performed on 

4/19/2022. A 2 factorial ANOVA analysis of variance was used to evaluate the effect of 

temperature and relative humidity on the performance of the low-cost PM sensors. 

The low temperature and relative humidity conditions were achieved using the lab 

ambient temperature and humidity regulated by the building HVAC system. The high 

temperature and humidity were achieved by operating a Honeywell heater and a 
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Honeywell cool moisture humidifier, which are displayed in Figure 4 installed at the inlet 

of the wind tunnel. 

 

 

Figure 4. The Honeywell turbo force power heater and the Honeywell infrared cool 

moisture humidifier 

 

Table 1. Experimental design for 0.5 and 1.5 mg/m3 concentration at different 

temperature and humidity levels 

Test Name Temperature Humidity 

TLHL0.5 - - 

THHL0.5 + - 

TLHH0.5 - + 

THHH0.5 + + 

TLHL1.5 - - 

THHL1.5 + - 

TLHH1.5 - + 

THHH1.5 + + 
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3. RESULTS 

3.1. LINEARITY 

Prior to the evaluation of the sensors, the two reference monitors were compared 

beforehand to determine their accuracy and to determine if any reference monitors had 

any errors which would eventually affect the sensors’ calibration models. Figure 5 shows 

the correlation obtained from comparing the respirable particle size concentrations from 

the PDM with the APS. The PDM uses the BGI HD cyclone with precise D50 cut off 

point of 4.37 µm which has a proven significantly low bias relative to the International 

Standards Organization (ISO) respirable size selection curve. Since it is practically 

impossible for the APS to emulate the performance and behavior of the theoretical 

respirable particle size selection curve, the concentration of particles within the 4.37 µm 

size bin is used in this analysis [35]. When the data from PDM and APS were compared, 

a remarkably high linearity was observed between them. The R-squared value of 0.92 

indicates a high correlation between them. In PM monitoring studies, an R-squared above 

0.80 is generally considered as highly correlated, with R-squared values from 0.60 to 

0.80 representing moderately correlated monitors, while a measure of R-squared below 

0.60 is considered to have low correlation [22], [25]. A statistical test performed on these 

results gave a P-value of 0.00 indicating strong statistical significance of these results. It 

is apparent that despite the two monitors operating on different PM measurement 

principles, the difference in technologies had no significant impact on their correlation. 

Both monitors were seen to be highly accurate and appear to be equally responsive to 

coal dust particles. This explains why both monitors are recognized for their high 
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accuracies. As much as the APS is not recognized as a coal dust monitor, it has shown a 

high level of accuracy to be used as reference monitor for coal dust monitoring. 

 

 

Figure 5. Correlation between PDM and the APS reference monitors 

 

To calibrate the low-cost PM sensors, we evaluated the linearity of each sensor by 

analyzing the relationship of the output of the PDM and APS against each sensor. Figure 

6 displays the statistical plots for the pairwise correlation between the sensors and 

reference monitors. Prior to the evaluation, the boxplot algorithm for outlier detection 

was used to filter out data points which were flagged as outliers. The PMS low-cost PM 

sensors had the best linear correlation among all the sensors under evaluation while the 

Airtreks and Gaslab monitors had progressively lower performance, respectively.  

As can be seen from the plots, a considerably high linearity was recorded for both 

PMS sensors against both reference monitors. High R-squared values of 0.88 and 0.90 

was recorded for PMS1 and PMS2 respectively with the PDM at P values of 0.00 for 

both sensors. These results agree with several previous studies which have obtained 

similar high linearity values for the PMS sensors [13], [25]. However, relatively lower R-

squared values were observed for the same sensors using the APS as reference monitor 
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with R-squared values of 0.70 and 0.73 for PMS1 and PMS2 respectively. P-values 

generated for this statistical analysis were 0.01 and 0.02 for PMS1 and PMS2 

respectively highlighting the statistical significance of the outputs. It should be noted that 

these results are only true for testing concentrations below 3.0 mg/m3. While other 

studies have recorded relatively higher R-squared values for the same sensors, this was 

only achieved when NaCl or Arizona road dust are used for the testing. Coal dust on the 

other hand, has particle characteristics which are different from these particles and so the 

sensors could react to them.  

The intra-model correlation between the two PMS sensors was found to be 0.97 

with a P-value of 0.00 which makes them exceptionally agreeable with each other and 

can be calibrated using the same calibration model. The PMS can confidently measure 

coal dust concentrations provided the concentrations stay below 3.0 mg/m3.  

Although these results point to an acceptable level of accuracy for the PMS 

sensors, a striking characteristic was observed during the test when concentrations went 

above 3.0 mg/m3. Beyond this concentration, the PMS sensors reported excessively high 

outputs which were unrealistic and disproportional with the actual concentration level. 

For example, the sensor concentrations reached as high as 60.0 mg/m3 when 

concentration levels within the wind tunnel was below 5.0 mg/m3 as indicated by the 

APS. These data points, as well as all other outliers for the other sensors’ data were 

therefore eliminated from the statistical analysis as outliers using boxplot algorithms as 

keeping them on the plots would make the plots unreadable. This characteristic of the 

PMS sensors has not been observed in previous studies due to generally low testing 
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concentrations used. In those studies, PMS testing concentrations ranged between 0 and 1 

mg/m3.  

Airtrek sensors had slightly lower linearity values as compared with the PMS 

sensors. As can be seen from the plots displayed in Figure 6, at concentrations below 2.0 

mg/m3 when the Airtrek sensors reported 1.5 mg/m3, both Airtrek 1 and Airtrek 2 

appeared to have a higher linear correlation with the reference monitors. This fairly 

agrees with manufacturer’s datasheet stating that the Airtrek has a measurement range of 

up to 1.0 mg/m3 even though it can report concentrations to 2.0 mg/m3. However, when 

concentrations within the wind tunnel exceeded 2.0 mg/m3 when the Airtrek sensors 

reported 1.5 mg/m3, their outputs began to steeply approach 2.0 mg/m3 giving the overall 

Airtrek response an exponential look. This was because the Airtrek sensors would still 

report concentrations beyond 1.5 mg/m3 but with less accuracy, and report 2.0 mg/m3 for 

all concentrations which are sensed by the sensors to be beyond 2.0 mg/m3. A linear 

regression statistical analysis to determine the accuracy of the The Airtreks resulted in R-

squared values of 0.58 and 0.60 for Airtrek1 and Airtrek2 respectively using the PDM as 

reference monitor. P-values generated from the statistical analysis were both 0.00 against 

the PDM emphasizing on its statistical significance. It was also found that Airtrek1 and 

Airtrek2 had R-squared values of 0.42 and 0.51 respectively using the APS as reference 

and P-values of 0.00 for each sensor. It can be seen from these results that these sensors 

can be reliable for concentrations below 1.0 mg/m3. Between these sensors, there is an 

apparent high intra-model linearity with an R-squared of 0.73 with a P-value of 0.01. 

With a robust calibration model, individual calibration models are not required since a 

single calibration model can fit these sensors to achieve improved performance.  
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The Gaslab sensors had the lowest linearity among the three sensor models under 

evaluation. Gaslab1 reported R-squared values of 0.46 and 0.56 for PDM and APS 

respectively with P-values 0.00 each, whereas Gaslab2 reported linearity values of 0.66 

and 0.52 for PDM and APS respectively with P-values of 0.00. The two Gaslab sensors 

recorded the lowest intra-model correlation of 0.23 among all the sensors while 

generating a P-value of 0.02. Much of the non-linearity between these sensors and the 

reference monitors was due to the limited range of the gaslab sensors which makes them 

report their maximum limit of 1.0 mg/m3 even when the concentration exceeded that. As 

seen in Figure 6, it can be observed that these sensors reported no output beyond 1.0 

mg/m3 even when concentrations within the wind tunnel exceeded 1 mg/m3. These results 

confirm the specifications of the Gaslab monitors by the manufacturers having a 

measurement range of 0.0 to 1.0 mg/m3. These sensors may provide reliable monitoring 

information for environments with lower PM concentrations like indoor offices and home 

spaces. 

 

Figure 6. Pairwise correlation between the two PMS sensors, two Gaslab sensors and the 

two Airtrek sensors each against the two reference monitors PDM and APS 
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Figure 6. Pairwise correlation between the two PMS sensors, two Gaslab sensors and the 

two Airtrek sensors each against the two reference monitors PDM and APS (Cont.) 
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(a) 

 

(b) 

 

(c) 

Figure 7. Intra-mode correlation between the two models of each sensor type (a) 

PMS5003 sensors (b) Airtrek sensors (c) Gaslab sensors 

3.2. PRECISION 

The results of the tests for precision are displayed in Figure 8, Table 2 and Figure 

9. The true concentrations generated for these experiments are shown in Figure 8 while 

Table 2 and Figure 9 shows the variation of each sensor. It can be seen from the PDM 

and APS data that even though the concentrations were set to be constant throughout the 

testing period, there was some level of fluctutatuion in concentration within the wind 

tunnel resulting in concentrations occasionally exceeding and receeding the targeted 

cocncentrations. The spread of concentrations at each concentration level is represented 

by the boxplots shown in Figure 8. Because of this drawback in experiment, the precision 

of the sensors was measured using data points only when concentration was measured by 

the APS to be equal to the targeted concentration. All data points recorded when 

concentration was above and below the targeted concentration were eliminated.  

In general, it was observed that CV for the sensors increased with increasing 

concentration indicating decreasing precision with increasing concentration. In the case 

of the PMS1 and PMS2 sensors, a CV of less than 10% was achieved at concentrations 

below 2.0 mg/m3. At 2.0 mg/m3 and above, the CV progressively increased from 27.56% 
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and 56.05% at 2.0 mg/m3 to 47.83% and 70.34% at 3.0 mg/m3. This shows the PMS 

sensors are only precise at lower concentratiosn below 2.0 mg/m3. Even though they 

provide outputs at higher concentration levels, only low concentration outputs can be 

reliable. Therefore, the PMS sensors could be used for mine coal dust monitoring where 

concentrations are generally low such as inside operators’ cabs and on miners 

underground as personal monitors. It should be noted, however, that the average 

concentration of coal dust in underground coal mines is 0.55 mg/m3 [36]. Therefore, the 

limitation of imprecision at higher concentrations makes them capable of accurately 

measuring concentrations within an underground mine under normal operations. 

Similarly, for Airtrek sensors, acceptable CV values were observed below 1.0 

mg/m3 where CV were 9.54% and 8.20% for Airtrek1 and Airtrek2 at 0.5 mg/m3. CV 

noticeably increased above 1.0 mg/m3 reaching 31.36% and 30.21 at 3.0 mg/m3. A 

review of the manufacturers’ datasheet for the Airtrek sensors reveals that the 

recommended upper limit for PM monitoring is 1.0 mg/m3. Even though the sensors can 

measure and report concentrations higher than its recommended upper limit, these results 

indicate that those readings could be imprecise. Deploying these sensors for higher coal 

dust concentration environment can create misleading results to users. 

The trend of decreased precision with increasing concentration appeared to be 

different with the Gaslab sensors. Even at low concentrations, these sensors had CV 

above the acceptable 10%. At 0.5 mg/m3, a CV of 12.49% and 16.49% was measured for 

Gaslab1 and Gaslab2 respectively. These increased to 53.08% and 29.89% at 1.5 mg/m3. 

Their limited upper concentration limits of 2.0 mg/m3 made it impossible to evaluate their 
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precision at higher concentrations due to the sensors constantly reporting 2.0 mg/m3 

when the concentrations went beyond 2.0 mg/m3.  

These results confirm that even though these low-cost PM sensors can measure 

and report concentrations beyond their recommended upper limits, they begin to be 

imprecise and could report misleading results at higher concentrations. Nevertheless, if 

the imprecise readings from the sensors at higher concentrations appear to be consistent, 

a more robust calibration algorithm can correct this phenomenon. A more comprehensive 

experiment will have to be performed to determine a consistent trend if one exists. The 

EPA uses a slightly different method to evaluate sensor precision where a constant true 

concentration is achieved due to the smaller size and closed nature of their calibration 

chamber. This makes it much easier to achieve a near perfectly uniform dust 

concentration compared with a larger wind tunnel which has a more dynamic testing 

environment. It is worthwhile for future studies to evaluate sensors’ precision in smaller 

calibration chamber at more constant concentrations. 

PDM APS 

  

Figure 8. Precision results for reference monitors 
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Table 2. CV for all sensors at concentrations from 0.5 mg/m3 to 3 mg/m3 

Sensors 
Coefficient of variation (%) 

0.5 mg/m3 1.0 mg/m3 1.5 mg/m3 2.0 mg/m3 3.0 mg/m3 

PMS1 7.95 7.52 10.08 27.56 47.83 

PMS2 6.07 7.84 9.31 56.05 70.34 

Airtrek1 9.54 7.54 41.09 37.66 31.36 

Airtrek2 8.20 11.56 14.48 20.46 30.21 

Gaslab1 12.49 48.42 53.08 - - 

Gaslab2 16.49 35.30 29.89 - - 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 9. Variations for all sensors at concentrations from 0.5 mg/m3 to 3 mg/m3 

3.3. LIMIT OF DETECTION 

The results from this analysis are presented in Table 3. At 0.0 mg/m3 dust 

injection concentration, the PDM recorded 0.00 mg/m3 whereas the APS recorded 0.02 

mg/m3. Each of the PMS sensors recorded an average concentration of 0.01 mg/m3 and 
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LOD values of 0.02 mg/m3 each which was the lowest among the sensors being 

evaluated. The Airtrek sensors had slightly higher LOD values where they recorded 0.02 

mg/m3 and 0.89 mg/m3 respectively. However, these Airtrek sensors had the best 

response to zero concentration giving an average concentration of 0.0 mg/m3. With such 

accurate outputs at zero concentrations, these sensors would have had a significantly 

lower LOD if the linearity test obtained a high linearity for the airtrek sensors. The 

Gaslab sensors had the lowest lower limit values with an average concentration of 0.02 

mg/m3 at zero concentration and LOD values of 0.81 mg/m3 and 0.94 mg/m3. It should be 

noted that due to the absence of standard calibration curves for these sensors, the 

calibration curves generated using linear regression methods in Section 3.1 were used for 

this analysis. 

Table 3. Lower limits of PMS, Airtrek and Gaslab sensors and their limit of detection 

 PMS1 PMS2 Gaslab1 Gaslab2 Airtrek1 Airtrek2 

Lower limit (mg/m3) 0.01 0.01 0.02 0.02 0.00 0.00 

LOD (mg/m3) 0.02 0.02 0.81 0.94 0.02 0.89 

 

3.4. UPPER CONCENTRATION LIMIT 

In general, the low-cost PM sensors showed significantly lower upper limits as 

compared with the PDM and APS. This was expected since the APS and PDM are built 

with more advanced technology to operate in higher concentrations. By plotting the 

response of the reference monitors against the sensors, the nature of their response were 

observed and the concentration at which a sensor achieves its maximum value is 
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determined to be the upper limit using Equation 4. The results of this analysis are shown 

in Table 4. The two PMS sensors both demonstrated characteristics of their upper limits 

at 3.0 mg/m3 of coal dust. Beyond 3 mg/m3, a 10 unit increase in true concentration 

resulted in a corresponding sensor output of more than 200 % of the true concentration at 

which point the linearity of the sensor was discontinued. In principle, at higher 

concentrations when there are many particles within the sensing volume at the same time, 

these sensors suffer from coincidence errors. The multiple particles present in the sensing 

volume at the same time are recognized by the sensor as larger and heavier particles in 

which case the mass is overestimated resulting in such a high concentration compared 

with the reference monitors.  

The airtrek sensors showed a slightly lower upper concentration limit of 1.5 

mg/m3 and 1.6 mg/m3 for Airtrek1 and Airtrek2 respectively. It was observed in the 

linearity plots of the reference monitors against the Airtrek sensors in Section 3.1 that the 

change in slope from lower concentration to higher concentrations gave the response an 

exponential curve where the knee of that curve was calculated to be the upper 

concentration limits. Similar to the Airtrek sensors, the Gaslab sensors were characterized 

by an exponential curve even though they had a more linear relationship at lower 

concentrations. The two Gaslab sensors had upper concentration limits of 0.9 mg/m3 

which was the lowest among the three sensors and close enough to manufacturers 

specified upper limits. Considering the generally low upper limits of these low-cost PM 

sensors it is worthwhile to only apply them for lower concentration environments for 

optimum performances. 
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Table 4. Upper concentration limits 

Sensor PMS1 PMS2 Airtrek1 Airtrek2 Gaslab1 Gaslab2 

Upper limit 

(mg/m3) 
3 3 1.5 1.6 0.9 0.9 

 

3.5. TEMPERATURE AND RH INFLUENCE 

Several studies have found that relative humidity results in a significant bias on 

the performance of low-cost PM sensors while others have also suggested no influence. It 

has been proven that the water droplets in the atmosphere can absorb infrared radiation 

which is emitted into the measuring cavity of the sensors [13]. Water vapor can also 

condense on aerosol particles, causing hygroscopic growth of particles making them 

seem as though they are larger particles and eventually causing overestimation of particle 

size and concentrations [37]. The influence of relative humidity on low-cost PM sensors 

is highly dependent on the surface properties and composition of the particles. This is the 

reason why many studies have found a significant influence of relative humidity on these 

sensors while many others have found little to no influence at all. In this study, both 

temperature and RH conditions had no significant effect on the performance of the low-

cost PM sensors based on the 2k factorial ANOVA analysis of variance. The results of 

the temperature and RH conditions measured in the wind tunnel is displayed in Figure 10 

and Figure 11. The temperature achieved within the wind tunnel ranged from 20 degrees 

Celsius to 31 degrees Celsius while RH was measured to be from 24 % to 44 %. While a 

wider range of temperature and RH conditions was targeted, it was challenging to control 

and maintain these conditions within the wind tunnel throughout the experiments. 
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Therefore, the results from this test are only valid for the temperature and RH range 

obtained in this test. 

Using the ANOVA analysis, all sensors under all conditions of temperature and 

RH generated F ratios of more than 5.0 % in their respective models. This indicated no 

significant impact of temperature an RH on the sensors under these temperature and RH 

factor changes as shown in Figure 11. However, a more in-depth statistical analysis 

revealed that RH had marginal impact on the performance of the sensors as can be seen 

from Figure 10. Figure 10 shows boxplots integrated with dot plots of concentrations 

plotted against relative humidity while overlaying temperature conditions. Red plots 

represent elevated temperature and blue plots represent low temperature. These results 

suggest that high RH marginally overestimated the outputs of the Airtrek and Gaslab 

sensors at higher concentrations of 1.5 mg/m3 especially at lower temperatures. However, 

this effect was not substantial enough to attribute it to the changes in RH conditions. 

Other factors such as a concentration fluctuation within the tunnel cause this 

phenomenon. If RH had significant impact on these sensors, a more robust calibration 

model would be applied to comprehensively calibrate the sensors to account for the 

influence of RH on the sensors. To fully understand why RH had no influence on these 

sensors measuring coal dust, further research is needed to study the surface properties and 

composition of coal dust particles in detail to substantiate why coal particles are 

unaffected by atmospheric RH. 

Temperature, on the other hand, had no impact on the performance on the PMS, 

Airtrek and Gaslab sensors. Figure 10 shows that there was influence of the temperature 
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Figure 10. Concentrations reported by PMS, Airtrek and Gaslab sensors under different 

temperature and relative humidity conditions. Results are further elaborated with 

boxplots. 

 

Figure 11. temperature and relative humidity distribution for the tests 

 

rise and fall had on the sensor outputs. These results are consistent with several studies, 

many of which have established that there is no theoretical dependency of the light 
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scattering principle on temperature. However, some low-cost PM sensors are affected by 

temperature due to the use of thermal resistors in their operation. In that case, the 

temperature difference between the outside environment and the thermal resistor could 

affect the intake flowrate and sensor outputs. In this study, none of the sensors evaluated 

have that technology. The reference monitors had no impact from the temperature 

changes since they have temperature and RH control technology in-built. It should be 

noted that the challenge of difficulty in controlling and maintaining temperature and RH 

conditions within the wind tunnel could have impacted the findings of this study. 

 

4. CONCLUSION 

 

Accurate personal monitoring is essential to detect overexposures of the miners 

working underground in coal mines. This is also critical for recommendations of suitable 

controls. However, the high cost and size limitations of the PDM limits its usage to only a 

few miners risking most miners to unknown overexposures. Low-cost PM sensors can 

measure personal exposure levels for all miners in real time due to their low cost, small 

size, and light weight. Prior studies have established the potentials for low-cost PM 

sensors to be used as PM monitors. However, their application for mining-induced PM 

and underground conditions remained unexplored. Therefore, this study developed a coal 

dust monitor using the Plantower PMS5003 sensors, evaluated their performance in 

laboratory experiments together with Airtrek and Gaslab sensors, and calibrated them 

using linear regression calibration algorithms. 
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It was found that all three sensors under evaluation had different degrees of 

linearity with the APS and PDM. The PMS sensors had the best linearity with both PDM 

and APS among all the other sensors under evaluation, with R2 values ranging from 0.70 

to 0.90 and an excellent intra-model linearity of 0.97 for concentrations levels below 3.0 

mg/m3. The Airtrek sensors had slightly lower linearity between 0.0 and 2.0 mg/m3, but 

had lost its linearity at concentration beyond 2.0 mg/m3 giving them an exponential 

response with the reference monitors. The Gaslab sensors had the least linearity among 

the sensors with R2 values ranging from 0.40 to 0.52. All three sensors had precision 

levels identical to that of the reference monitors at concentration levels below 1.5 mg/m3. 

It was found that beyond 1.5 mg/m3, the sensors experienced a decrease in precision with 

increasing concentration. PMS sensors demonstrated the highest measurement range with 

the lowest lower limit of 0.0 mg/m3 and highest upper limits of 3.0 mg/m3. Airtreks 

generated a closer range of 2.0 mg/m3 while the gaslabs had a range of 1.0 mg/m3. 

Statistical tests gave P-values of less than 0.05 for all linearity results indicating that 

these results are reliable beyond the testing results. At concentrations above these limits, 

the sensors all show challenges reading those concentrations which would potentially 

give misleading outputs. However, since the upper limit for the PMS sensors are above 

the PEL for coal dust, the wearer would already be notified. It was also observed that 

temperature and relative humidity had no significant influence on the performance of 

these sensors even though an observation of the results show minimal overestimation of 

sensors’ performance at higher RH. The concentration change, however, was not 

significant enough to attribute it to RH changes.  
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These results provide compelling evidence that the PMS5003 low-cost PM sensor 

has the potential to monitor coal dust concentrations up to 3.0 mg/m3. Underground coal 

miners could widely wear this to ensure early overexposure detection and timely control 

to protect the health of miners. This will eliminate the high expenditure incurred by 

mines and the federal government associated with treatment of CWP, as well as 

compensations. This technology is also expected to facilitate improved underground 

structure and ventilation designs and provide high quality “big data” to facilitates the 

health studies related to respiratory diseases caused by PM. However, it will be 

worthwhile to note some limitations that still need to be investigated. During the tests, the 

research team had the limitation of achieving RH conditions higher than 45%. While RH 

conditions in underground mines could reach as high as 70%, future studies will need to 

consider testing at RH of 45% to ~70%.  Although the study revealed that the influence 

of temperature and RH were minimal, these factors should be accounted for in a 

calibration model in a multiple variable algorithm to make the performance more robust. 

Future studies should therefore apply models such as multiple linear regression and 

machine learning algorithms to cover temperature and RH in the calibration models. 
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III. CALIBRATION OF LOW-COST PM SENSORS FOR COAL DUST 

MONITORING USING MACHINE LEARNING ALGORITHMS 

ABSTRACT 

The recent resurgence of coal workers’ pneumoconiosis among coal miners in the 

United States has been linked to the exposure to excessive levels of coal dust. To control 

miners’ overexposure, the PDM3700 monitors were adopted in the mining industry to 

measure each miner’s coal dust exposure levels. However, the high cost of the PDM3700 

hinders its purpose of measuring all miners’ exposure levels. The Plantower PMS5003 

low-cost PM sensors have demonstrated the ability to measure coal dust concentrations 

with high spatial resolution in real time due to their low cost and small size. These 

sensors, however, require extensive calibration to ensure they maintain a high accuracy 

over long periods of deployment. Since they have only been calibrated for mining 

induced PM monitoring using linear regression models in the past, the objective of this 

study is to leverage machine learning algorithms for coal dust monitoring sensor 

calibration. A laboratory collocation experiment was performed using the PDM and APS 

as reference monitors in a wind tunnel under a wide range of concentrations, 

temperatures and relative humidities. The results revealed that nonlinear machine 

learning techniques significantly outperformed traditional linear regression models for 

low-cost sensor calibration. With artificial neural network being the strongest calibration 

model, the Pearson correlation of the PMS5003 sensors reached 0.98 and 0.97 with the 

Airtrek sensors reaching Pearson correlation of 0.91 while the Gaslab sensors reached 

correlations of 0.93 and 0.92. This shows a 2% to 11% improvement in model 
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performance over the linear regression model through artificial neural network 

calibration. The success of machine learning algorithms in this work has demonstrated 

the feasibility of deploying low-cost PM sensors for coal dust monitoring in mines. 

 

1. INTRODUCTION 

 

Overexposure to respirable coal mine dust has been associated with the coal 

workers’ pneumoconiosis (CWP), also known as “black lung” [1-2]. Miners have also 

been diagnosed with silicosis in mines where the respirable coal mine dust has at least 

5% silica dust content [3]. There has been an increase in CWP prevalence among the US 

coal miners since 2000 and this recent resurgence has been considered the most serious in 

history with the recent prevalence at 11% for long term coal miners [4-5]. Coal miners 

are currently at an increased risk of contracting CWP and silicosis which potentially 

causes long term permanent disability premature death. Contrary to common belief that 

CWP and silicosis are only associated with long-term respirable coal dust exposure, 

recent data indicates that it has also been diagnosed in younger coal miners [6]. 

Effective personal dust monitoring is essential for controlling overexposure and 

preventing CWP. Personal real time monitoring units are capable of detecting 

overexposures in a timely manner to provide alert for early control measures. The 

National Ambient Air Quality Standards (NAAQS) and the Mine Safety and Health 

Administration (MSHA), who regulate particulate matter (PM) concentrations in ambient 

and mining environments respectively have implemented various PM monitoring 

guidelines [7–9]. To protect miners from respirable coal mine dust (RCMD) 
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overexposure, MSHA has promulgated regulations requiring underground mines to keep 

RCMD end-of-shift concentrations at a time weighted average of 1.5 mg/m3 in 

underground mines [6]. These compliance agencies, however, only approve the use of 

Federal Equivalent Methods (FEMs) and Federal Reference Methods (FRMs) for the PM 

monitoring. The Personal Dust Monitor (PDM) model 3700 remains the only MSHA 

certified coal dust monitoring unit. However, the PDM is too expensive and bulky [10–

12]. A unit of the PDM costs ~$19,000 and weighs 2.0 kg [12-13]. The result of these 

drawbacks is that only a few miners are able to use the PDM primarily for regulatory 

compliance monitoring purposes. These are mainly miners who are exposed to the 

highest coal dust concentrations at their work locations and those who have already been 

diagnosed with pneumoconiosis [6]. Therefore, the exposure levels for most miners are 

not measured.  

The limitations of the PDM have warranted the need for more affordable coal dust 

monitors in mines. The use of low-cost PM sensors for real time PM exposure monitoring 

has gained much attention in recent times. These sensors have the capacity to characterize 

PM with high spatial and temporal resolution due to fast response, low cost, small size 

and light weight [14–16]. Several studies have been performed on these sensors which 

have achieved impressive performances in comparison with FEMs [17-18], FRMs [15], 

[19], and research grade PM monitors [20–22]. Due to the promising potential of the low-

cost PM sensors, regulatory agencies such as the EPA have developed calibration 

guidelines to improve their accuracies and have designed a roadmap for their adaptation 

[8]. The South Coast Air Quality Management District (SCAQMD) have also looked into 

ways of incorporating them into local communities [23], [24]. Even though these sensors 
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have been widely studied for ambient PM monitoring, they still remain a new technology 

for mining-induced PM monitoring and possess questionable accuracies that leaves room 

for more powerful calibration methods. The simple linear regression (SLR) model 

remains the only calibration model that has been applied to calibrate low-cost PM sensors 

for coal dust monitoring [14]. 

The SLR calibration methods are unable to account for other environmental 

factors such as temperature and relative humidity. This affects their transferability into 

environments different from their calibration environments which challenges their 

accuracy for ambient deployment [22], [25]. The more advanced multiple linear 

regression (MLR) model has been developed to account for the influence of temperature 

and relative humidity on the low-cost PM sensors. However, the MLR algorithm is more 

dependent on random variations in sensors’ outputs making it more sensitive to the 

conditions of the length of the testing period [26]. The limitations on these calibration 

models have therefore warranted the use of more advanced calibration models using 

machine learning algorithms to evaluate and calibrate low-cost PM sensors [27–30]. A 

recent study evaluated and calibrated the Plantower PMS5003 low-cost sensor with 

reference to the Synchronized Hybrid Ambient Real Time Particulate (SHARP) monitor 

[31]. They compared the simple linear regression, multiple linear regression and two 

machine learning calibration algorithms – XGBoost and the feedforward neural network 

which revealed feedforward neural network (FNN) as the most accurate calibration 

algorithm with a root mean squared error (RMSE) of 3.91 [31]. Another study applied the 

same FNN model to calibrate the Plantower PMS7003 low-cost sensors which improved 

their accuracies from 0.618 to 0.905 using R-squared as an indicator using the Beta 
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Attenuation Monitor (BAM-1020) [27]. Random Forest and Support Vector Machine 

(SVM) have been found to additional algorithms that have superior performance over 

other machine learning algorithms [28], [30], [32]. Despite these promising potentials of 

machine learning algorithms, no study has applied these methods to calibrate low-cost 

PM sensors for coal dust monitoring and in underground mine conditions.  

This study therefore aims to calibrate low-cost PM sensors for coal dust 

monitoring using machine learning algorithms. Laboratory evaluation experiments were 

performed under varying levels of coal dust concentrations, temperatures and relative 

humidity conditions. The MSHA FEM Personal Dust Monitor (PDM) model 3700 and 

the research grade Aerodynamic particle Sizer (APS) model 3321 were used as the two 

reference monitors. Based on the data from this experiment, the sensors were calibrated 

using 5 machine learning algorithms and compared to determine the most accurate 

calibration method. The widely used simple and multiple linear regression models 

together with three other machine learning algorithms: artificial neural network (ANN), 

support vector machine (SVM) and random forest regressor (RFR) were used in this 

study. 

 

2. EXPERIMENTAL SET UP 

 

The experimental set up used for the calibration experiment has been described in 

a previously published study by the authors [14]. The setup is made of a 0.5 m × 0.5 m U 

shaped wind tunnel designed to simulate underground mine airways. It is equipped with a 
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dust injection system which allows the control of coal dust concentrations within the 

wind tunnel as well as temperature and relative humidity controls.  

2.1. REFERENCE MONITORS  

The Environmental Protection Agency (EPA) FRM PDM model 3700 developed 

by the National Institute of Occupational Safety and Health (NIOSH), and the research 

grade Aerodynamic Particle Sizer (APS) were the reference monitors used in this study. 

The PDM is a real time personal coal dust monitor which operates based on the principle 

of tapered element oscillation microbalance (TEOM). Its accuracy, precision, 

comfortability is validated by NIOSH and has been approved for regulatory monitoring 

by the MSHA. NIOSH laboratory tests have demonstrated that there is 95% confidence 

that PDM measurements are within ±25% of true concentrations. Their field precision 

tests also show that the PDM monitors have a 0.078% standard deviation [33]. The PDM 

is equipped with a respirable size coal dust cyclone with a cut-off size modelled to 

closely simulate the human respiratory system respirable curve. Therefore, only 

respirable size particles go through to the mass transducer where the mass concentration 

is determined using the tapered element oscillation microbalance (TEOM) method.  

The APS measures PM mass and number concentration by particle aerodynamic 

sizes from 0.5 µm to 20.0 µm using the time-of-flight principles. To make it comparable 

with the PDM, PM concentration of particle size below 4.37 µm from the APS was used 

for this study since it compares with the 4.37 µm D50 of the PDM cyclone. The APS 

draws ambient PM-laden air into the monitor through a nozzle at an accelerated flowrate 

of 5.0 liters per minute. The accelerated airflow goes through the sensing zone where the 
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PM concentrations are measured. Particle size distribution is then reported every 15 

seconds based on the settings used for this study [34]. 

2.2. LOW-COST SENSORS 

Three low-cost PM sensors were calibrated in this study – the Plantower 

PMS50003 (PMS) low-cost PM sensor, the Airtrek PM sensor, and the Gaslab CM-505 

multi-gas sensor. Two units of each monitor were evaluated to compare their intra-model 

precisions. The Gaslab sensor, shown in Figure  (a) measures PM 2.5 and PM 10 particle 

concentration together with oxygen, carbon dioxide and carbon monoxide concentrations. 

The Gaslab uses a combination of NDIR sensors, electrochemical sensors, and 

fluorescent sensors to measure the concentrations of PM and other gases. The Airtrek 

sensors on the other hand, shown in Figure  (b) use light scattering principles like that of 

the Plantower PMS5003 sensor. The Airtrek sensors measure PM in four size bins of 1.0 

µm, 2.5 µm, 4.0 µm, and 10.0 µm.  

The PMS sensors are inexpensive PM detection and measurement sensors that 

operate on light scattering principles. These sensors are commercially available for ~$30 

per unit. It draws ambient airflow through an inlet into the sensing area using a fan. As 

illustrated in Figure  (c), the LED radiates laser-induced light into the sensing area to 

target particles within the measuring cavity. The light scattered by the particles is 

detected by the photodetector which sends pulses of electric signal to the in-built 

microprocessor. The number and intensity of electrical signals measured by the 

microprocessor are then converted to number and mass concentrations respectively based 

on MIE theory.  
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These PMS sensors characterize PM by size into PM1, PM2.5, and PM10. The 

manufacturers of the PMS sensors state that PM1 is measured for particles in the size 

range of 0.3 µm to 1.0 µm, PM2.5 for particles in the size range of 1.0 µm to 2.5 µm and 

PM10 for particles in the size range of 2.5 µm to 10.0 µm. For each size category, the 

PMS reports two PM outputs, one without any form of correction factor, called standard 

PM concentration (or CF = 1) and the other with an atmospheric calibration factor, called 

environmental PM concentration. The manufacturers have not published any details 

about the calibration factor and how it was developed. Therefore, due to considerable 

uncertainties about manufacturer calibration, the standard PM concentrations were used 

for this study. Manufacturer specifications indicates the performance of these sensors are 

not affected by non-PM aerosols due to an inbuilt shielding technology.   

Together with a DHT-22 temperature and relative humidity sensor, NodeMCU 

ESP8266 and a 4 line by 20-character LCD screen, the PMS was integrated into a 

prototype monitor (low-cost PM monitor) as displayed in Figure  (e). This monitor was 

programmed with Arduino IDE to display real time concentrations of PM2.5 and PM10, 

temperature and relative humidity readings every 1.0 s onto the LCD screen. To protect 

the low-cost PM sensor and its critical components from rainfall, sunlight, and physical 

damage, the sensor, and its components are housed in a 10.0 cm x 4.0 cm x 1.5 cm 

acrylic plastic box. This also allowed the team to see the screen readings in real time 

through the transparent acrylic case. The side of the acrylic case is strongly fastened but 

left uncovered to allow for normal operation of the PMS sensor without interference to 

the sensors’ exposure. The low-cost PM monitor is continuously powered using a 5.0 V 

USB cable. For data analysis, the PM monitor is interfaced with a ThingSpeak MATLAB 
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based online IOT platform which serves as a cloud where all data is transmitted through 

Wi-Fi. 

 

 

(a) Gaslab CM-505 multi-gas sensor 

 

(b) Airtrek PM sensor 

 

(c) Schematic PMS5003 

sensor 

 

(d) Plantower PMS5003 

sensor 

 

 

(e) PM monitor 

Figure 1. Sensors and reference monitors used in the experiments 

2.3. DATA COLLECTION 

A custom-built air-tight wind tunnel was built with acrylic glass for the 

monitoring experiment. The wind tunnel was equipped with a particle generator which 

was used to control the coal dust concentrations within the tunnel. A heater and 

humidifier were also installed to control the temperature and relative humidity conditions 

respectively. A constant air velocity of 1.0 m/s was maintained in the wind tunnel 
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throughout the experiment while coal dust concentrations were constantly varied between 

0 and 3 mg/m3. Temperatures within the wind tunnel varied from 20oC to 32oC using the 

wind tunnel’s heating system and the lab building’s HVAC system. Relative humidity 

ranging from 23% to 43% was generated within the wind tunnel using the humidifier. 

The sensors and reference monitors were exposed to the combination of these conditions 

and the coal dust concentrations. 

While the PDM records concentrations every minute, all other sensors and 

monitors were programmed to record data every 15 seconds. The experiment lasted about 

6 hours a day for 8 days. It was ensured that the clock times on all these sensors and 

monitors were reset to synchronize the time stamps on all the sensors and monitors. 

2.4. DATA PROCESSING 

To clean up the data from these sensors for analysis, the PDM’s reported time 

weighted average (TWA) concentration data were converted to minute-by-minute real-

time concentrations using Equation  to be consistent with all the other sensors’ 

concentration units. In this equation, TWA is the time weighted average at each time 

step, Cn is the real time concentration measured, T is the time interval between successive 

measurement and Tn is the total number minutes at time n. 

 C = (𝑇𝑊𝐴 × 𝑛) − (𝐶1 + 𝐶2 + 𝐶3 … . 𝐶𝑛−1)  Equation 1 

Further processing required the four 15-second concentrations reported each 

minute by the sensors to be averaged to obtain minute by minute concentrations and 

make them comparable with the PDM data. The boxplot method of outlier detection was 
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used to detect outliers. It was observed that the PMS sensors were the only sensors to 

record outlier concentrations in its data. Since the number of outliers detected were 

significantly small, these data points were deleted with no effect on the analysis. 

 

3. DATA ANALYSIS 

3.1. SIMPLE LINEAR REGRESSION 

The performances of these low-cost PM sensors were evaluated using the simple 

linear regression (SLR) method to establish a calibration curve for these sensors. It is 

desired for light scattering low-cost PM sensors to establish a linear relationship with PM 

concentrations. In this study, this relationship was determined by establishing the 

correlations between sensor output and true concentrations determined by the PDM. The 

concentrations measured by the reference monitors were used as the independent 

variable, while the concentrations measured by the sensors were reported as dependent 

variables. Each sensor is evaluated against each sensor and monitor to obtain a calibration 

curve. The least-squares method was used to fit the calibration curve through the data 

points to determine the calibration equation as displayed in Equation 2 where y is the 

reference monitor concentration, α is the y intercept, β is the slope if the calibration 

curve, and x is the sensor outputs. This method used the sum of squared method to 

establish the curve with the least sum of squares as the curve of best fit to calibrate the 

sensors. Using the ordinary least square (OLS) linear regression method, R-squared were 

calculated to quantify the relationship between sensor outputs and true concentrations and 

to show the percentage of true concentration that can confidently be predicted using these 
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sensors. Pearson correlations were determined to determine the strength of the linear 

relationship.  

In order to make the results of this evaluation comparable with other methods 

used in this study, the Mean Squared Error (MSE) is determined using the test dataset to 

evaluate the performance of the model. It is important to note, however, that a major 

downside to this method of calibration is that it is only able to estimate the relationship 

between two variables. However, low-cost PM sensors are affected by other factors such 

as temperature and relative humidity which cannot be accounted for in simple linear 

regression models. 

 y = α + βx  Equation 2 

3.2. MULTIPLE LINEAR REGRESSION 

Since simple linear regression models are limited to single variables for 

dependent and independent variables, the multiple linear regression (MLR) models are 

used in this section to account for the influence of temperature and relative humidity. 

These factors, together with the sensor outputs are then considered as the multiple 

independent variables while the true concentration determined by the reference monitor is 

remains the dependent variable. Similar to the simple linear regression, the least squares 

approach was used to estimate the values of the model coefficients needed to establish the 

MLR calibration model. The coefficients are then used to determine the minimum sum of 

squared deviations between data points and the plane which establishes the plane of best 

fit. The nature of the equation for the plane which was considered the calibration model is 
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shown in Equation 3 where y represents the true concentration, 𝛽0 represents the constant 

term, 𝛽1 to 𝛽3 represent the slope coefficient for each independent variable and C is the 

model error term. The correlation values for each sensor were calculated to demonstrate 

the strength of the correlation between the sensor outputs and independent variables.  

Using the 70-30 train test split, the model is trained using the training dataset. R-

squared and Pearson correlation values were calculated to measure how much true 

concentration can be correctly determined by the low-cost sensors. P-values were 

measured in statistical tests to determine the statistical significance of the regression 

model. The test dataset was then used to evaluate the performance of the model. The 

performance was evaluated using the MSE. 

 y = 𝛽0 + 𝛽1 × 𝐶𝑜𝑛𝑐 + 𝛽2 × 𝑡𝑒𝑚𝑝 + 𝛽3 × 𝑅𝐻 + 𝐶  Equation 3 

3.3. ARTIFICIAL NEURAL NETWORK 

Low-cost PM sensor response to concentration and the influence of temperature 

and relative humidity may not always be linear. A more comprehensive algorithm such as 

the Artificial Neural Network (ANN) is important for the non-linear relations within the 

dataset. The ANN algorithm is inspired by the biological neural network within the brains 

of humans. The neural network within the ANN trains data by matching samples’ inputs 

to their corresponding outputs. This matchmaking is used to generate and optimize the 

probability-weighted relationship between the inputs and outputs. A schematic 

representation of this algorithm is demonstrated in Figure 2 and showing the structure of 

the ANN architecture. As can be seen in Figure 2, the input layer brings the data of input 
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variables into the model for further processing. In this application, the input layer consists 

of the sensor outputs, temperature and relative humidity. Two hidden layers were used in 

this algorithm. These layers are responsible for assigning and optimizing weights to each 

connection and adding a bias term to its sum resulting in an equation demonstrated in 

Equation 4 where 𝑊1 represents the assigned weights, 𝑋𝑛 represents input variables, 𝐵 

represents the added bias and 𝑓(𝑥) represents the ReLU activation function. In a two-

layer hidden layer in the case of this model, this process is carried over to the second 

hidden layer where a new set of weights are assigned, and a new set of biases added. An 

activation function is then applied to the resulting linear equation before moving on to the 

next hidden layer. A rectifier linear unit (ReLU) activation function was used in this 

model and programmed in these hidden layers. The result of these computations is sent to 

the output layer of the model.  

True concentrations determined by the PDM is used as the node on the output 

layer. The dataset was randomized and split into training and testing datasets. The 70-30 

train split method was used. Thus, 70% of the dataset was used as training set which 

trains the algorithm on prediction and 30% was used as testing dataset which evaluates 

the performance of the algorithm. The mean squared error (MSE) was used as the 

measure of the model performance. 

 Z = 𝑓(𝑊1𝑋1 + 𝑊2𝑋2 + 𝑊3𝑋3 … .𝑊𝑛𝑋𝑛 + 𝐵)  Equation 4 
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Figure 2. Structure of the Artificial Neural Network architecture 

3.4. RANDOM FOREST 

The random forest regressor algorithm is a supervised machine learning model 

that uses an ensemble of decision trees to solve regression problems. Random forest 

models combine the multitude of decision trees each of which train inputs to their 

respective outputs to predict the outputs. Each decision tree begins with the root node 

which splits into internal nodes through a set of branches repeatedly until a leaf node is 

obtained and a decision made.  

A sample decision tree regressor is shown in Figure 3 to demonstrate the 

sequence of this algorithm. The 70-30 train test split is applied in this algorithm and a 

bootstrapped dataset is created from the training dataset. This method involves randomly 

sampling a given number of variables from the dataset for each decision tree to obtain a 

multitude of trees. As can be seen in the sample calibration tree in Figure 3 (a), the tree 

starts with root node assigned with coal dust concentration being the strongest predictor. 

This node is split in to branches with the condition that the concentration is greater than 

2.0 mg/m3. If this condition is satisfied, the algorithm follows the path of determining the 
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concentration to be 2.5 mg/m3. On the other hand, the algorithm follows the path to the 

next node if concentration is below 2.0 mg/m3. While this explains the sequence of the 

decision tree, these steps are repeated in several interior nodes until the algorithm reaches 

the leaf node when a decision is made on the concentration prediction considering 

temperature and RH variables.  

An ensemble of decision tree is developed based on this algorithm, trained using 

the same data, and the results of all models combined in an ensemble learning process. 

To determine the final random forest prediction, the results of all the trees used in the 

model are combined as can be seen in Figure 3 (b). This model makes concentration 

predictions based on the outputs of all decision trees involved in the training and 

ultimately determines the predicted concentration as the mean concentration from all the 

trees. The mean squared error (MSE) criterion is calculated to evaluate the model 

performance. 

 

 

(a) Random forest decision tree 

structure 

 

(b) Random forest architecture 

 

Figure 3. Random forest regressor algorithm representation 
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3.5. SUPPORT VECTOR MACHINES 

This algorithm is a supervised method that predicts discrete values similar in 

principle to the categorical SVM. Similar to linear regression principles, the support 

vector regressor finds the line of best fit through the datapoints, and in the case of a 

higher dimension data, hyperplane of best fit. However, unlike linear regression which 

minimizes the sum of squared errors between datapoints and the plane of best fit, the 

objective of the SVR is to establish the line of best fit within a threshold error value.  

The SVR algorithm does this by minimizing the objective function shown in 

Equation 5 which minimizes the error between the line of best fit and the margins. The 

corresponding error term in this case is then considered as constraints shown in Equation 

6 where the absolute error is set to less than or equal to the acceptable error for our 

model. However, there is the likelihood of some datapoints falling outside the constraint 

margins. To account for these points in the generation of the optimum hyperplane, a slack 

variable seen as the second term in Equation 5 is added to reduce the error margin as 

much as possible.  

It should be noted that the difference between the hyperplane of best fit and 

datapoints outside the error margins introduces errors to the algorithm. As a result, the 

deviations are added to the new objective function and are minimized to account for these 

data points and reduce error margins as much as possible. This algorithm maximizes the 

prediction of coal dust concentration within an acceptable margin of error of 5%. The 70-

30 train test split is applied for training and testing the model which is evaluated using 

MSE to measure the model performance. 
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  Equation 5 

 |𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤ ε + |𝜉𝑖|  Equation 6 

   

4. RESULTS 

 

The results of the sensors’ evaluation and the performance of calibration models 

were discussed to compare the performance of the five calibration models used in this 

study. The performance of the sensors involved were also evaluated to determine the 

feasibility of the use of these low-cost PM sensors for coal dust monitoring using the 

calibration models discussed in this study. 

4.1. PRELIMINARY DATA ANALYSIS 

The raw data obtained from the experiments are presented in Figure 4 (a) and (b). 

These figures show the time series data of the raw sensor outputs recorded over the 

testing period for all 6 low-cost sensors and the 2 reference monitors. The corresponding 

time series for relative humidity and temperature conditions are shown on separate plots 

in Figure 4 (b) to visualize the trend of RH and temperature conditions over the testing 

period. The outputs of these sensors would be later corrected using calibration models 

developed in this study. It should be noted that the data shown here represent the results 

from several days of monitoring stitched together. Changes in outputs and the presence of 

spikes in this data are the results of changes in concentration within the wind tunnel 
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throughout the testing period. The performance of the calibration models on these data 

are discussed in subsequent sections. 

 

 

(a) 

 

 

(b) 

Figure 4. Time data series results of coal dust concentrations, temperature and relative 

humidity over time. (a) time data series comparing the responses of the reference 

monitors and low-cost PM sensors. This figure shows 1028 total minutes (17.2 hours) of 

monitoring data (b) Time series data of relative humidity and temperature conditions over 

the testing period 
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4.2. SIMPLE LINEAR REGRESSION 

The results of the simple linear regression calibration models are shown in Figure 

5 and Figure 6. Figure 5 shows a pairwise correlation of between all the sensors and 

monitors involved in this study using scatter plots with correlation coefficient for each 

scatter plot displayed. These plots were generated using the uncalibrated data from the 

sensors to understand the nature of outputs generated by the sensors relative to the 

reference monitors. It is understood from these results that all the sensors involved have a 

positive response to concentration changes with correlation values ranging from 0.84 to 

0.95. In general, the response of the sensors agreed better with the reference monitors as 

compared with results from a previous study [35]. This strong performance is linked to 

the considerably higher number of datapoints used in this study. Higher number of 

datapoints for regression has been demonstrated to statistically increase model 

performance. It was, however, observed that while the two PMS sensors had an entirely 

linear response with 0.95 correlation coefficients, the Airtrek and Gaslab sensors had 

significantly lower correlation with the PDM. The lower correlation was caused by their 

limited upper concentration limits of 2.0 mg/m3 and 1.0 mg/m3 respectively for the 

Airtrek and Gaslab sensors giving their data an exponential appearance. These results 

agree with previous a previous study which pointed out the measurement limitations of 

the Gaslab and Airtrek sensors [35]. 

The simple linear regression calibration model developed to correct the sensors’ 

response was trained with 70% of the dataset and tested using the remaining 30%. The 

model was trained using the ordinary least square regression method to generate the 

simple linear regression model. Each model built for each sensor is of the format 
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Figure 5. Pairwise correlation among the six sensors and PDM and APS using the 70% 

training dataset. Both x and y axes represent sensors’ and monitors’ concentration outputs 

in mg/m3 

 

discussed in Section 3.1 using coefficients of the sensor outputs, slope of the calibration 

curve and the intercept. The results shown in Figure 6 compares the actual and predicted 

values generated from this model using the testing dataset with the correlation coefficient 

for each model shown on the plots. These were compared with the uncalibrated responses 
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from the sensors. In these results, the actual values are represented by the PDM 

concentrations shown on the x axes while the predicted values are indicated by the sensor 

corrected concentrations shown on the y axes. The Pearson correlation coefficient was 

used to evaluate these models over coefficient of determination because while the later is 

used to determine the correlation of the model, the Pearson correlation determines the 

strength and direction of the linear relationship. These results show little improvement in 

the sensors’ performance with little to no improvement in correlation values compared to 

the uncalibrated performance.  

A striking drawback observed in these models is that for models whose y-

intercept happened to be negative, as in Figure 6 (b), (c), (e) and (f), the model predicted 

negative concentrations for PDM concentrations lower than the x-intercept. Another 

important limitation to using the simple linear regression model is its inability to account 

for multiple independent variables. 

4.3. MULTIPLE LINEAR REGRESSION 

The influence of relative humidity and temperature was analyzed and accounted 

for in this multiple linear regression model developed to calibrate the low-cost PM 

sensors. This was expected to yield better performance compared with the simple linear 

regression method since temperature and relative humidity have shown a level of 

influence on optical PM sensors’ outputs. The results from these models are shown in 

Figure 7 comparing the performance of the MLR calibration model to the SLR model. An 

MLR calibration model was generated for each sensor in the format shown in Section 3.2, 
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Equation 3. This model is trained using 70% of the sensors’ dataset and tested using the 

remaining 30% of the dataset.  

 

(a) (b) (c) 

(d) (e) (f) 

Figure 6. Simple linear regression calibration model showing predicted calibrated sensor 

outputs against PDM concentration. The sensors represented in this figure are (a) PMS1 

(b)Airtrek1 (d) Gaslab2 (a) PMS2 (e)Airtrek2 (f) Gaslab2 

 

After accounting for relative humidity and temperature, the multiple linear 

regression models calibrated the low-cost PM sensors slightly better than the simple 

linear regression models. Evaluating the performance of the model on the 30% data 

unseen by the model revealed an increase in Pearson correlation coefficient negligibly by 

0 to 3% among the sensors as compared with the SLR models and obtained moderate 

MSE values from 0.20 to 0.33 mg/m3. This evaluation compared the actual 

concentrations read by the PDM against predicted concentrations based on sensor raw 
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output which have been corrected by the MLR model. These results suggest that 

accounting for temperature and relative humidity correction in linear regression models 

to calibrate low-cost sensors can improve the performance of the sensors depending on 

how much influence temperature and RH has on the sensor’s performance. This confirms 

the influence of temperature and RH on the performance on the low-cost PM sensors 

making them necessary to be included in sensor calibration models even though the 

performance increase is just marginal using MLR models. However in this case, it was 

found that temperature and RH has minimal impact on the PMS sensors’ performance 

which explains why the performance only increased slightly accounting for temperature 

and RH. It can be seen from the results that the performance increase was relatively 

higher for the Airtrek and Gaslab sensors which had exponential responses suggesting 

that those sensors are influenced more by temperature and RH. The results also showed 

that the exponential response in the Airtrek and Gaslab data was unable to be corrected 

by the MLR model. Moreover, the model predicted negative concentrations for 

concentrations lower than the x-intercept of the plane of best fit. 

4.4. RANDOM FOREST REGRESSOR 

The random forest regressor (RFR) calibration model significantly outperformed 

both the simple and multiple linear regression models for all six sensors. The results of 

the RFR prediction model are shown in Figure 8 comparing prediction performance to 

the multiple linear regression model. This model emerged as one of the best performing 

calibration models explored in this study showing an improved Pearson correlation of 

0.97 for both PMS1 and PMS2 with MSE of 0.02 mg/m3. The Airtrek sensors had 
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(a) (b) (c) 

(d) (e) (f) 

Figure 7. MLR results showing its comparison with the SLR model 

 

improved correlations of 0.89 and 0.91 for Airtrek1 and Airtrek2 respectively with MSE 

of 0.07 mg/m3 for both sensors. The Gaslab sensors also had improved correlations of 

0.93 and 0.92 for Gaslab1 and Gaslab2 respectively with MSE values of 0.04 mg/m3 and 

0.06 mg/m3. As can be seen from Figure 8, the poor performance of the regression 

models at lower concentrations leading to the prediction of negative concentrations was 

remarkably corrected by the RFR model showing a remarkable improvement in 

correction performance for all 6 sensors indicated by the Pearson correlations shown on 

the plots. Moreover, a near perfect 1:1 linear relationship was developed even for sensors 

which initially had exponential curves. In the results of this model, it was observed that 

the RFR calibration values were more condensed around the calibration curve, indicating 

a better fitting than the regression models. This is even more significant in the Gaslab and 
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Airtrek sensors which initially have exponential looking data. These findings agree with 

other studies which demonstrated the potential of the RF models to outperform regression 

models. For example, a study improved the correlation between HK-B3 PM sensor and 

the MicroPEM monitor from 0.87 using linear regression to 0.98 using the RFR model 

(Y. Wang et al., 2019). This was not surprising due to the random forest model’s known 

ability to balance datasets with numerous variables and variations making it suitable for 

complicated models.  

The random forest can potentially be used as the calibration model of choice for 

low-cost PM sensors for coal dust monitoring as demonstrated in these results. However, 

the model can be complicated by the multiple parameters that need to be considered in 

building the model. If incorrect values are used, it will have a direct impact on the model 

performance. In this study, the hyperparameters were tuned using Scikit-Learn’s 

RandomizedSearchCV method performing a 5-Fold cross validation with each iteration. 

In each iteration, a different combination of model settings was used in search of the 

optimum hyperparameters. The optimum combination of hyperparameters obtained from 

this search was then used to train the training dataset to obtain these results. It was 

realized in this study that optimum hyperparameters included 500 number of trees, ‘auto’ 

number of features in consideration at every split, a maximum number of levels allowed 

at each decision tree of 100, minimum sample number to split at a node to be 3, a 

minimum sample leaf of 3 and a ‘true’ bootstrapped method to be used to sample data 

points. 

The random forest calibration model structure threw more light on the relative 

importance of the explanatory variables evaluated in this study. For these low-cost PM 
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sensors, the coal dust concentration response from the sensors emerged as the most 

important predictor variable in the calibration followed by the RH condition. The factor 

that least affects the decision tree was the temperature variables. This was determined in 

the model by examining the rate of change of MSE when each variable is permuted in a 

decision tree. The decision trees in this model were built based on the importance of each 

explanatory variable to the prediction of the true concentration. Mean square error was 

then calculated each time an explanatory variable is included in the bootstrapped dataset. 

The importance of each parameter was determined by calculating the rate of increase in 

mean squared error during bootstrapping. For a variable that has strong influence in the 

prediction of the true concentration, permuting those variables in the model increases the 

MSE significantly. 

4.5. ARTIFICIAL NEURAL NETWORK 

The ANN model used in this study to calibrate the sensors compared well with the 

RF model achieving similar results. Similar to the RF model, the ANN model 

significantly outperformed the simple and multiple linear regression models. The model 

was able to correct the negative concentrations predicted by the regression models while 

also optimizing the 1:1 relationship between the PDM and sensors. In the results shown 

in Figure 9, the prediction performance of the ANN model is compared with the RFR 

model side by side. Together these two models were the best performing models among 

all the models used in this study having similar Pearson correlation. Even though the 

ANN model slightly outperformed the RF model by 1% and 2% respectively for PMS1 
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(a) (b) (c) 

(d) (e) (f) 

Figure 8. RFR model performance for low-cost PM sensors using the testing dataset. 

Correlation plots show actual data values (PDM concentration) against predicted values 

which is considered sensor corrected outputs (Sensor outputs) for all six sensors. Each 

plot shows model performances of each model using pearson correlation coefficient. The 

sensors represented in this figure are (a) PMS1 (b)Airtrek1 (d) Gaslab2 (a) PMS2 

(e)Airtrek2 (f) Gaslab2 

 

and Airtrek1, the Pearson correlation for the remaining 4 sensors remained the same for 

both models. It is therefore possible to consider ANN as the best performing model for 

low-cost PM sensor calibration for coal dust monitoring even though it can be 

interchanged with RF model due to the closeness of their performance.  

The parameters used in this ANN model determined the results of this model. 

Tuning the hyperparameters of the layers involved in the ANN model revealed the 

optimum learning rate to be 0.1 and a batch size of 30 with 60 epochs using mean 

squared error as the loss function. With three input values at the input layer, the values 

were passed to an optimum two-layer hidden layer each with 10 neurons. Finally, the 
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output layer contained one neuron which contained the predicted coal dust concentration 

output. These parameters are essential to be properly deployed as it ensures model 

accuracy as well as avoiding suboptimal model performance. For example, running the 

ANN model used in this calibration application for more than 60 epochs only becomes 

computationally expensive but offers insignificant improvement in model performance.  

 

(a) (b) (c) 

(d) (e) (f) 

Figure 9. Results of ANN models showing calibrated sensor outputs against PDM 

concentration comparing the ANN and RFR models. The sensors represented in this 

figure are (a) PMS1 (b)Airtrek1 (d) Gaslab2 (a) PMS2 (e)Airtrek2 (f) Gaslab2 

 

The results discussed in this section were as a result of applying the optimum 

hyperparameters in training the training dataset and tested using the testing dataset which 

made up 30% of the entire data. The model was evaluated using the Pearson correlation 

coefficient which showed values of 0.98 ad 0.97 for PMS1 and PMS2 respectively. These 
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results closely compared with similar studies which applied ANN to calibrate the 

Plantower PMS7003 sensor improving its R2 from 0.86 to 0.97 [27]. 

4.6. SUPPORT VECTOR MACHINES 

The support vector machine model had the worst calibration performance among 

models tested beside the simple and multiple linear regression models. Since the linear 

regression models have the drawback of not fitting no-so-linear dataset with high 

accuracy, the SVM model was expected to significantly correct the outputs of the 

sensors. However, traits of inaccuracies still remained in the predictive evaluation. The 

results for the SVM model are displayed in Figure 10 showing scatter plots of PDM 

concentrations against predicted calibrated sensors outputs compared with the ANN 

model results to highlight the significant difference in performance of these two models. 

Even the SVM model results showed minimal improvement in sensor performance for 

the Airtrek and Gaslab sensors, it could not perform better than any other model tested 

for the PMS sensors after they were calibrated. The Airtrek sensors’ correlation increased 

from 0.84 and 0.82 to 0.86 and 0.89 respectively for Airtre1 and Airtrek2 corresponding 

with MSE of 0.30 mg/m3 and 0.29 mg/m3. The gaslab sensors on the other hand, recorded 

an increase in correlations from 0.82 and 0.81 to 0.85 and 0.88 with MSE of 0.32 mg/m3 

and 0.30 mg/m3. However, the Pearson correlation for both PMS1 and PMS2 had no 

improvement having a Pearson correlation of 0.95 with MSE value of 0.20 mg/m3. Aside 

from the correlations, the MSE values generated by this model were significantly higher 

as compared with the RFR and ANN models. 
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(a) (b) (c) 

(d) 
(e) (f) 

Figure 10. Model performance of SVM model compared with ANN model testing 

datasest comparing PDM concentrations with predicted sensor calibration outputs. The 

sensors represented in this figure are (a) PMS1 (b)Airtrek1 (d) Gaslab2 (a) PMS2 

(e)Airtrek2 (f) Gaslab2 

 

A detailed analysis of the results showed the existence of all the drawbacks of the 

linear regression models. First, it was observed that even after tuning the model 

hyperparameters and applying the optimum parameters, the SVM model predicted a 

significant number of negative concentrations for most of the sensors. This is due to the 

SVM model’s plane of best fit having a negative intercept on the PDM concentration. 

When this happens, lower concentrations are predicted to be negative which can be 

misleading. In our case, this phenomenon was caused primarily by the nature of the raw 

dataset having negative y-intercept values. Secondly, a level of exponential relationship 

was observed over the desired linear relationship between the predicted sensor outputs 

and the PDM concentrations for the Airtrek and Gaslab sensors. These results suggest the 
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SVM model’s inability to correct the portions of the sensors’ dataset that were oddly 

correlated even though better performances have been observed in other studies [32]. 

 

5. CONCLUSION 

 

Overexposure to respirable coal mine dust in underground coal mines has been 

linked to the recent resurgence of coal workers’ pneumoconiosis. Effective real time 

personal coal dust monitoring in underground coal mines will inform timely 

overexposure detection to allow control measures to be implemented. However, the 

currently used PDM3700 personal coal dust monitor is too expensive for all miners to 

wear which hinders most miners from knowing their exposure levels. Low-cost PM 

sensors present the technology to measure personal exposure levels with high special and 

temporal resolution due to their low cost, small size and light weight. Nevertheless, these 

sensors require powerful calibration to ensure their accuracy over long term deployments. 

Even though these sensors have been previously calibrated with simple linear regression 

models, a more accurate calibration model is required for improved accuracy. This study 

therefore compared the performance of five machine learning algorithms on calibrating 

the low-cost PM sensors for coal dust monitoring. 

 Sensor evaluation experiments were performed within a wind tunnel. Two 

PMS5003 low-cost PM sensors, two Airtrek sensors and two Gaslab sensors were 

positioned in close proximity within the wind tunnel while the coal dust concentration 

varied between 0 and 4 mg/m3. These tests were performed using the PDM and APS 

monitors as reference monitors. Temperatures during this period ranged from 20 degrees 
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Celsius to 31 degrees Celsius while the RH ranged from 24 % to 44 %. The data collected 

from this experiment was used to train the machine learning models to correct sensor 

outputs to depict accurate coal dust concentrations. The models used include the simple 

linear regression, multiple linear regression, random forest regressor, artificial neural 

network, and support vector machine. 

Based on the results from this study, linear regression models significantly 

underperformed the other models, with ANN being the best performing model used. 

After the sensors were calibrated using the simple linear regression model, the 

correlations for the sensors ranged from 0.81 to 0.95 with the PMS sensors being the best 

performing sensors having Pearson correlation of 0.95 each. The MLR model 

surprisingly only improved the performance of the sensors slightly with a 0 to 3% 

increase in correlation among the sensors. The application of the RFR, ANN and SVM 

models showed significant levels of sensor performance improvement. The SVM model 

improved the linearity of the sensors with respect to the PDM achieving correlation of 

0.85 to 0.95 between the sensors. However, it maintained a high MSE of 0.20 mg/m3 to 

0.32 mg/m3 which were about 10 times higher than the MSE from the RFR and ANN 

models. The RFR model achieved an impressive performance with improved correlation 

of 0.97 for both PMS1 and PMS2, and 0.89 and 0.91 signifying a 5% and 9% 

improvement by Airtrek1 and Airtrek2 respectively. The Gaslab sensors also had an 11% 

increase in their correlation with the PDM to 0.93 and 0.92. Finally, the ANN model 

showed similar performance with the RFR model in terms of correlation between 

calibrated outputs and PDM concentrations. The ANN had similar correlation values but 

outperformed the RFR model in two sensors where the PMS1 showed a correlation of 
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0.98 and the Airtrek1 had a correlation of 0.91 indicating a 1% and 2% improvement 

over the RFR model. 

These machine learning algorithms have demonstrated excellent calibration 

potentials for low-cost PM sensors in coal dust monitoring. This study has reiterated the 

potentials for low-cost PM sensors to be used for personal coal dust monitoring in mines 

supplementing the PDM. When deployed, timely interventions to coal dust overexposure 

in mines will be feasible at all locations within the mine which will contribute to 

protecting the health of miners. While these potentials have been extensively studied, a 

framework for the application of low-cost PM sensors in mines is needed to direct the 

application and regulation of this technology in mines. 
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IV. OPTIMIZED CANOPY AIR CURTAIN DUST PROTECTION USING A 

TWO-LEVEL MANIFOLD AND COMPUTATIONAL FLUID DYNAMICS 

ABSTRACT 

Prolonged exposure to high concentrations of respirable coal mine dust causes 

coal workers’ pneumoconiosis and silicosis. Underground coal mine roof bolter operators 

are more prone to elevated exposure to coal and silica dust. The canopy air curtain (CAC) 

was developed by NIOSH to protect roof bolter operators from the exposure. The CAC 

supplies filtered air over the breathing zone of the operator. This dilutes the high coal 

dust concentrations and provides for an impenetrable air curtain. Many studies have been 

carried out to improve CAC efficiency. However, field test has shown variable dust 

control efficiencies indicating rooms to further improve due to the non-uniform airflow 

distribution across the plenum and ineffective perimeter flow. This study therefore 

redesigns the CAC with optimized flow distribution that effectively protects roof bolters 

from coal dust exposures. The Simplex Evolutionary Operational (EVOP) optimization 

algorithm was applied to optimize the configuration of the new CAC. Computational 

fluid dynamics (CFD) simulations are run at each iteration of the algorithm. The 

combination of these methodologies led to the optimization of the uniformity of airflow 

distribution across the plenum to achieve the best possible uniformity. A lab experiment 

using a physical model of the optimized CAC was used to validate the CFD model and 

confirm the ability of this design to protect roof bolter operators from excessive coal dust. 
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1. INTRODUCTION 

 

Exposure to high concentrations of respirable coal mine dust causes coal workers’ 

pneumoconiosis (CWP), a potentially fatal lung disease with no known conclusive 

cure[1]–[3]. Overexposure to respirable coal mine dust exposure has also been linked to 

the onset of silicosis if the silica content in the coal dust is high [4], [5]. Underground 

coal mine roof bolter operators are known to have a higher risk of both excessive coal 

dust and silica exposure [3], [6], [7]. This is due to reasons such as miners’ position 

downwind of the continuous miner, improper and inadequate ventilation, and dust from 

the bolting operations due to faulty or unmaintained dust collector. Typically, roof 

bolting downwind to the continuous miner can substantially increase bolter operators’ 

coal dust exposure level up to 7.0 mg/m3 [8]. These levels exceed the maximum 

concentrations allowed by MSHA outlined in the New Dust Rules of 2014 [9]. According 

to this rule, mines are required to maintain respirable coal dust concentrations at or below 

1.5 mg/m3 time weighted average (TWA) end of shift concentration, and if the mine’s 

respirable coal mine dust contains more than 5% silica, then the permissible limit is 

reduced and calculated by 10 divided by the percentage of quartz present in the dust.  

To reduce dust exposure levels of coal mine roof bolters, a canopy air curtain 

(CAC) was developed by the National Institute of Occupational Safety and Health 

(NIOSH). The CAC is mounted below the roof bolter’s protective canopy under which 

the bolter performs the bolting operations. The CAC uses a blower fan to draw air from 

the mine atmosphere through a HEPA filter to provide clean air. The filtered air is then 

delivered through tubing to the plenums which are located underneath the canopy of the 
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bolting machine. While bolting operations are ongoing with the operator working 

underneath the CAC, the plenums supply filtered air over the breathing zone of the 

operator. This offers a level of coal dust protection without affecting operator safety, 

comfort, and mobility [8].  

Since its invention, many improvements have been made in the design of the 

CAC. Laboratory assessment carried out by NIOSH on their initial CAC design yielded 

an efficiency of 62% [10]. A new prototype with improved design covered the entire 

operating area of the canopy [8]. This design was then optimized to provide uniform 

airflow over the entire plenum using CFD simulations and trial-and-error process. It 

achieved dust reduction of more than 67 % for entry velocities up to 0.61 m/s (120 fpm). 

A new design was made based on the NIOSH design with a much thinner profile with 

slotted openings to provide perimeter airflow [11]. This design only yielded an efficiency 

of 24 % based on the NIOSH gallery test. Later, a 3rd generation CAC was designed with 

a higher perimeter airflow to prevent contaminated airflow from infiltrating the protected 

zone. Although the third generation CAC lab test dust reduction has improved up to 

49.3% [12], the field test has shown variable dust control efficiencies necessitating rooms 

to further improve the design [7]. 

It has been established by NIOSH that the efficiency of the CAC depends on the 

uniformity of air flowing over the breathing zone of the operator. Therefore, it is 

important to ensure an even distribution of airflow across the plenum at a velocity higher 

than 0.51 m/s (100 fpm) in order to provide protection beneath the entire canopy area. To 

achieve a uniform airflow distribution across the plenum, we propose the use of a two-

level manifold system. A manifold system consists of the main flow header, and several 
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outlets. However, it is challenging for a typical manifold with a constant cross-sectional 

area header to achieve uniform flow distribution due to the static pressure build up 

toward the end of the header causing a higher efflux through the downstream outflows. 

Studies have shown that the manifold with a tapered longitudinal section can achieve 

nearly uniform flow distribution because the pressure distribution is more uniform in the 

header. To apply it to the CAC, we used CFD modeling technique to design a two-level 

manifold system: air is firstly evenly distributed horizontally using the main manifold, 

and the outlet of the main manifold will be connected to a series of sub-manifolds that 

uniformly distribute air downward. 

The objective of this research is to optimize the design of the CAC using a two-

level manifold system with improved airflow distribution that effectively protects roof 

bolters from coal dust exposures. To achieve this objective, CFD simulations are carried 

out using the existing peripheral design used in a previous NIOSH study but a redesigned 

internal structure to incorporate the two-level manifold system. A CFD based parametric 

study is performed with the aim of determining the optimum manifold designs. The 

Simplex Evolutionary Operation (EVOP) optimization algorithm was executed to 

optimize this design of the CAC with each iteration in the optimization process requiring 

a CFD simulation. A laboratory-made CAC model was then built based on this optimum 

design configuration and tested in laboratory experiments to validate the CFD models. 

The CFD results show a near perfectly uniform distribution of airflow over the plenum of 

the CAC. The CFD model resulted in a non-uniformity coefficient of 0.004907 compared 

with 0.003617 from laboratory experiments validating the accuracy of the CFD model. 
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2. MODEL DESCRIPTION 

 

The design of a CAC is critical to ensure an optimal discharge of air through the 

outlets towards the operator’s breathing zone. The structure of the CAC must allow for an 

elevated and uniform air velocity at the outlets resulting in an air-curtain formation that 

protects the operator from exposure to particulate matter. The following sections describe 

the geometry and associate CFD models to simulate the airflow patterns. 

2.1. GEOMETRY 

Figure  illustrates the peripheral geometry of the CAC design incorporated into 

the roof bolter canopy as part of the machine by J.H Fletcher and Co. [8], and this 

peripheral geometry is used in this study. Previous designs have added various designs of 

baffles, inflow vanes and flow straighteners to the CAC internal structure. In the existing 

design, a single angled plate with an adjustable louver is installed inside the plenum to 

regulate the airflow distribution. This current design has an uneven flow of air beneath 

the plenum with approximately 30% of the plenum area being unprotected. Areas with 

low to no airflow are the trapezoidal region as well as the transition zone between the 

square and the trapezoidal region. The currently used third generation CAC only reduces 

coal dust exposure by 34.6 % to 49.3 % [12]. 

The internal design of our model consists of a two-level manifold system as 

shown in Figure 2. The schematic of the manifold structure used in this study is 

demonstrated in Figure 3. Manifolds are industrial devices that distribute a large fluid 

stream into several parallel streams. In this application, a uniform distribution is desired 



 

 

142 

among all the outlets to ensure ultimate dust protection. The outlets of the first level 

manifolds serve as the inlets to the second level manifolds generating a two-level 

manifold system. 

 

 

Figure 1. CAD drawing of a typical roof bolter equipment showing the structure of the 

canopy air curtain mounted on its canopy 

 

 

Figure 2. Two-level manifold CAC 
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(a) 

 

(b) 

Figure 3. Schematic of (a) first level manifold and (b) second level manifold with labels 

of parameters to be optimized 

 

The first level manifold which receives airflow from the fan has a cross-sectional 

dimension of 10.2 cm × 4.0 cm at its entry and tapered at an angle at two points along its 

length. These dimensions are integrated into the design to be able to fit the 10.2 cm 

diameter of the fan duct without taking up additional area of space. The CAC is required 

to have a height restriction of 5.1 cm (2 in.) to provide head clearance for operators. This 

restricts the overall height of the CAC to approximately 5 cm which is why the entry of 

the first level manifold is designed to have a height of 5.0 cm. Air is delivered to this 

manifold through the 10.2 cm diameter duct which is considered as the inlet for CFD 

analysis. Air flows through the first level manifold and distributes into the plenum area 

containing the second level manifolds. Internally, the plenum area is made up of branches 

whose parameters are designed in this study. However, the heights of these manifolds are 

chosen to be a fixed value of 4.0 cm but tapered along its header. The 4.0 cm dimension 

is chosen due to the height restrictions for the CAC and the desire to maximize the use of 

the available space. The widths (R in Table 1) of these second level manifolds are 

however, included in the optimization process to be determined. The design constraints 

restricted the number of second level manifolds in the CAC to be 10 with separation 

distance between second level manifold outlets (s) also a variable to be optimized in this 
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study. These manifolds are linearly tapered at an angle along the header for controlled 

airflow distribution in the manifolds. The dimension of the end of the second level 

manifolds (D) are to be optimized to generate the optimum tapering angle for the 

optimum uniformity. The use of the two-level manifold system gives a significantly 

higher control over airflow distribution across the plenum by controlling the quantity of 

air being sent into each branch.   

2.2. OPTIMIZATION METHOD 

Most optimization models available in literature have the limitation of being 

entrapped in a local optimum solution leaving the global optimum solution unidentified 

or requiring a large number of experiments to adequately cover all decision variables to 

be optimized. Gradient descent and evolutionary operation algorithms were, therefore, 

the candidate algorithms considered for their ability to identify global optimum solution 

with relatively smaller number of iterations. The Simplex Evolutionary Operation 

(EVOP) algorithm was chosen for this study because of its established ability to find 

global optimum solutions with high probability without the need for information 

regarding the gradient or sub-gradient of the objective function [13]. An advantage to this 

this algorithm is that it is computationally inexpensive for problems with a relatively 

small number of decision variables such as the one in this study especially since the 

optimization iterations are interfaced computationally expensive CFD simulations 

[14],[15]. EVOP algorithms are known to identify global optimum solution typically 

within iterations 5 -10 times the number of decision variables [16].  
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This algorithm first defined the parameters to be optimized, their initial 

conditions, and their parametric boundaries as defined in Table 1. Ten second level 

manifolds are designed for practical considerations when fabricating the CAC.  The 

constraints for each of the parameters are determined based on geometry limitations and 

the parameter in relation with other parameters. As can be seen, there are k=6 variables to 

be optimized. The Simplex EVOP method first leads us to determine the initial k+1=7 

designs cases (vertex) to be simulated. The parameters for the initial 7 simulation cases 

are determined based on Table 2, where the value of p and q are defined in Equation 7 

and Equation 8. Thus, 7 CFD simulations were performed at the initial stage of the 

optimization process.  

Once the above seven modeling cases are completed, the dimensionless 

nonuniformity coefficient is calculated for each case and are ranked in decreasing order. 

As we want to find the case with the lowest non-uniformity (elaborated in Section 2.3), 

 

Table 1. CAC design parameters 

Parameters 
Initial Value 

(cm) 
Constraints Comments 

D1 5 2<D1<10 First level manifold middle size 

D2 2 0<D2<D1 First level manifold end size 

R 5 1<R<10 First level manifold rectangular 

outlet width (height is fixed as 5 

cm) 

d 2.5 0=<d<=5 Second level manifold end size 

w 5 1<w<10 Second level manifold hole size 

s 5 1<s<15 Second level manifold hole space 
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𝑝 = 𝑑𝑥

√𝑘 + 1 + 𝑘 − 1

𝑘√2
 Equation 7 

 
𝑞 = 𝑑𝑥

√𝑘 + 1 − 1

𝑘√2
 Equation 8 

Table 2. Initial conditions 

Vertex D1 cm D2 cm L cm d cm w cm s cm 

1 𝑥1 = 5 𝑥1 = 2 𝑥1 = 5 𝑥1 = 2.5 𝑥1 = 5 𝑥1 = 5 

2 𝑥1 + 𝑝 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 

3 𝑥1 + 𝑞 𝑥1 + 𝑝 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 

4 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑝 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 

5 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑝 𝑥1 + 𝑞 𝑥1 + 𝑞 

6 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑝 𝑥1 + 𝑞 

7 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑞 𝑥1 + 𝑝 

 

 
𝑟 = (

2

𝑘
) ∙ (∑𝑐) − 𝑤 

Equation 9 

the case with the highest non-uniformity is the one we want to avoid. Label the 

coordinates of this worst response as w, the next to worst as n and denote the coordinate 

matrix of all responses that are better than w by c. The reflection point r is calculated 

using Equation 9. r is the next model needed to be simulated which moves to the opposite 

direction from the one with the worst non-uniformity. This case will replace the previous 



 

 

147 

worst case, and the procedure is repeated. If the reflection point is outside the constraints 

of feasible dimensions of any parameter, it is treated as having the worst non-uniformity, 

which will force the procedure to reflect back to cases with feasible parameters. 

2.3. OBJECTIVE FUNCTION OF NON-UNIFORMITY COEFFICIENT 

The objective function of the optimization process is the dimensionless non-

uniformity coefficient, defined in Equation 10 which was calculated for every CAC 

design considered in this study at each iteration of the optimization process. In the 

equation, 𝛽𝑖 is a dimensionless parameter defined in Equation 11 which represents the 

flow ratio in the ith outlet, �̅� represents the average flow ratio for all outlets defined in 

Equation 12 and 𝑁 denotes the total number of parallel pipes (outlets) in the manifold. In 

Equation 11, 𝑄𝑖 denotes volume flowrate for the ith outlet in m3/s and 𝑄 represents total 

flowrate in m3/s. A higher value of the nonuniformity coefficient indicates a high 

nonuniformity in the flow distribution. Therefore, the smaller value of the nonuniformity 

coefficient will imply a high uniformity in the flow distribution across the outlets. This 

optimization therefore aims to achieve the CAC design with the lowest possible non-

uniformity value as the optimum design.  

The optimization problem is therefore formulated as follows: Find decision 

(design) variables D1, D2, L, d, w and s, to minimize objective function: 

 

Ф(𝐷1, 𝐷2, 𝐿, 𝐷,𝑊, 𝑆) = √∑ (𝛽𝑖 − �̅�)
2𝑛

𝑖=1

𝑁
 

Equation 10 
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Where Ф is the non-uniformity coefficient as a function of (D1, D2, L, D, W and S), 𝛽𝑖 

and �̅� are defined in Equation 11 and Equation 12. 

 
𝛽𝑖 =

𝑄𝑖

𝑄
 

Equation 11 

 
�̅� =

∑ 𝛽𝑖
𝑛
𝑖=1

𝑁
 

Equation 12 

𝑄𝑖 = volume flowrate for the ith outlet in m3/s and 𝑄 = total flowrate in m3/s 

Subject to constraints: 

 2 < 𝐷1 < 10 
Equation 13 

 0 < 𝐷2 < 𝐷1 
Equation 14 

 1 < 𝑅 < 10 
Equation 15 

 0 ≤ 𝑑 ≤ 5 
Equation 16 

 1 < 𝑤 < 10 
Equation 17 

 1 < 𝑠 < 15 
Equation 18 
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 𝑃(𝐷1, 𝐷2, 𝐿, 𝑑, 𝑤, s) ≤ 3000 
Equation 19 

Where 𝑃(𝐷1, 𝐷2, 𝐿, 𝑑, 𝑤, 𝑠) is the pressure drop in the CAC. 

2.4. BOUNDARY CONDITIONS AND NUMERICAL SCHEMES 

The simulations were developed using Ansys Fluent CFD software. The airflow 

through the domain was simulated with an inlet velocity of 29.5 m/s until a steady-state 

condition was achieved. The outlet of the plenum was assigned as 0 Pa. static pressure 

boundary condition. All other impermeable surfaces within the domain were assigned a 

stationary wall condition. The solver used to run the simulation is a steady-state solver 

for incompressible, turbulent flow, using the semi-implicit algorithm (SIMPLE) 

algorithm. The standard k – ε turbulence model was implemented for this simulation, 

which is a common model used in mining turbulent flow applications including NIOSH 

CAC studies [17]. This is a two-equation model that solves Reynold’s stresses by solving 

two additional transport equations (PDEs) for turbulence kinetic energy (k) and 

dissipation rate of turbulence (ε) [18]. For this simulation, the second-order discretization 

numerical scheme was used. 

2.5. GOVERNING EQUATIONS 

Airflow within the domain was considered incompressible and turbulent with no 

heat transfer. The Navier-Stokes’s equations were solved to compute this simulation. 

Navier-stokes equations are vector equations obtained by applying Newton’s law of 

motion to characterize the motion of a fluid element. The equations that form the Navier-
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Stokes’s equation are the conservation of mass (Equation 20), momentum (Equation 21), 

and energy (Equation 23). These equations were solved iteratively using the FLUENT 

solver until convergence was achieved. A threshold residual value of 0.0001 in velocity 

components and mass flow rate was set. All simulations were run in iterations until 

convergence was achieved.  

 𝜕𝜌

𝜕𝑡
+ ∇⃗⃗ ∙ 𝜌𝑣 = 0 Equation 20 

where 𝜌 is the density of the simulation fluid (kg/m3), 𝑡 is the time (seconds), and 𝑣  is the 

velocity vector.   

 𝜕(𝜌𝑣 )

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜌𝑣 𝑣 ) = ∇⃗⃗ ∙ 𝑝 + ∇⃗⃗ ∙ 𝜏  + 𝜌�⃗�  Equation 21 

where 𝜏   is the viscous stress tensor (Newton) given by Equation 22 below for a 

Newtonian fluid, �⃗�  is body force and 𝜇 is molecular viscosity coefficient 

 
𝜏  = 𝜇 (∇⃗⃗ 𝑣 + (∇⃗⃗ 𝑣 )

𝑇
) −

2

3
𝜇(∇⃗⃗ 𝑣 )𝐼   Equation 22 

 𝜕𝜌𝑒

𝜕𝑡
+ ∇⃗⃗ ∙ (𝜌𝑒𝑣 ) = 𝜌�̇� + ∇⃗⃗ ∙ (𝑘∇⃗⃗ 𝑇) − ∇⃗⃗ ∙ (𝜏  ∙ 𝑣 ) + 𝜌�⃗� ∙ 𝑣  Equation 23 

where �̇� is the volumetric heat addition per unit mass, 𝑇 is the temperature and 𝑒 is the 

internal energy per unit mass. 
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2.6. MESH INDEPENDENCE 

Using the developed model geometry, a high-quality computational mesh was 

constructed in the flow domain. Due to complexity of this model and turbulence of the 

flow, an unstructured mesh was generated as can be seen in Figure 4. Five layers of prism 

cells were generated along the walls to capture the boundary layer phenomenon with a 

first mesh layer thickness of 0.0005 m. Mesh and boundary condition parameters were 

derived to satisfy a y+ of 30 since that is the maximum acceptable y+ value for meshes to 

be considered accurate. These mesh parameters generated a mesh quality of 0.9 which is 

recognized as an acceptable mesh quality. The accuracy of the mesh parameters is 

verified using mesh independence study. 

   

 
Figure 4. Computational Mesh for the CFD simulations 

 

Mesh independence study was carried out to ensure that the results did not depend 

on the computational mesh and to ensure that both accuracy and computational cost are 

within acceptable levels. The mesh independence study was performed by generating 

three meshes; each of them was designed with a progressively lower characteristic 

dimension to generate a coarse mesh, medium mesh and fine mesh.  
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Table 3. Grid parameters for mesh independence studies 

Parameters Coarse Mesh Medium Mesh Fine Mesh 

Volume (cubic m) 0.0188 0.0188 0.0188 

Number of elements, N (million) 3.25 7.07 14.77 

Average cell size (mm) 1.81 1.40 1.09 

Cell size ratio - 1.3 1.28 

 

Table 4. Calculation of mesh convergence indices 

Parameters Coarse Mesh Medium Mesh Fine Mesh 

Static pressure at inlet (Pa) 2623.15 2695.61 2774.3 

Average static pressure at inlet (Pa) 2697.69 

Deviation from mean pressure (%) 2.76 0.08 2.84 

Average deviation from mean 

pressure (%) 
1.89 

 

Richardson’s method of uncertainty quantification in CFD was used for the mesh 

independence study [19]. It was ensured that the average height of cells in the meshes 

were progressively reduced from coarse mesh to fine mesh. The simulations were run 

until convergence and the variation in the total pressure on the inlet was computed across 

all three meshes. It is expected that for an accurate simulation whereby the mesh quality 

has no significant effect on the results, the relative standard deviation between the total 

pressure values monitored at the inlet on all three meshes should be within 5%. The 

measured percentage deviations are reported in Table 4. The results obtained from the 

mesh independence study falls within the criteria set out in the Richardson’s method 

indicating that the mash quality has no significant effect on the CFD results. Therefore, 

these mesh parameters are adopted for all other simulations carried out in this study. 
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2.7. MODEL VALIDATION 

To ensure the simulation results are accurate and a representation of reality, they 

were compared with laboratory results for validation. A prototype model of the optimized 

CAC design, shown in Figure 5, was constructed in the laboratory based on the optimum 

configuration. The model was built using acrylic materials precisely cut with water jet 

technology to ensure construction accuracy with the dimensions. It was ensured that the 

model was air-tight to prevent air loss during operation. A forcing fan was connected to 

the CAC model through a 10.2 cm diameter circular duct. Due to the unavailability of the 

Howden AF-10 to the authors of this paper, the Chicago fan was then used. 

 

  

Figure 5. Laboratory built CAC based on optimum design from CFD simulations 

 

The airflow uniformity of this prototype model was evaluated to validate the CFD 

model. The operating point of the forcing fan during this experiment was 0.23 m3/s at 

2485.80 Pa static pressure Compared with the CFD model, its operating point was 0.23 

m3/s at a static pressure of 2695.61 Pa. The velocity distribution across the outlets was 

measured using a pitot tube connected to a manometer to measure flow velocity of each 
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individual outlet. These data were then used to determine airflow uniformity for the CAC 

unit. 

 

3. RESULTS 

 

There are 6 design factors covering both the primary and secondary level 

manifolds of the CAC. The results obtained from the simulations carried out in this 

research were used in combination with the Simplex EVOP optimization algorithm to 

determine the optimum configuration of these design factors. These results from this 

study are discussed in the sections that follow. 

3.1. DESIGN OPTIMIZATION 

The results of the CAC optimization using the simplex EVOP is shown in Figure 

6. In general, the optimization resulted in a progressively more uniform configuration 

with each iteration. The trend of this result was expected since the nature of the EVOP 

algorithm is to generate a better configuration with each iteration. As a result, the non-

uniformity coefficient generally decreased throughout the iterations. The optimum 

configuration for the CAC determined with this algorithm was modeled at the 22nd 

iteration. This decision was based on the satisfaction of the termination criteria 

established in the EVOP algorithm used in this study. As can be seen from Figure 6, the 

nonuniformity of the cases continued to decrease beyond the 22nd iteration. However, the 

solutions after the 22nd iteration violated the constraints in Equation 19 generating static 

pressure drops exceeding the 3000 Pa limit for fans used in this application. As a result, 
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all designs generated after the 22nd iteration were infeasible to manufacture even though 

they resulted in better uniformity.  

The high uniformity generated in this model is partly linked to its careful design. 

Since the canopy of the roof bolter has a trapezoidal shape, the first level manifold 

needed a careful design to ensure that the optimum uniformity is achieved since the 

lengths of the branches decrease towards the trapezoidal end of the plenum. Distributing 

equal quantities of air into each branch would mean there would be more air quantities 

delivered to the area under the trapezoidal part of the plenum as compared to the squared 

region. To achieve the desired uniformity across both regions, the first-level manifold 

was tapered at two sections along its length. This method is established as one of the 

most effective manifold uniformity techniques as demonstrated in [20], [21]. Applying 

this technique to the first level manifold caused different rates of air quantity distribution 

along these two adjoining headers which made it possible to adjust the airflow 

distribution within the trapezoidal region separately from the airflow distribution within 

the squared region. The goal was to send progressively lesser quantities of air towards the 

shorter branches to achieve a uniform quantity per unit area across all branches that make 

up the second level manifold. A combination of two linearly tapering angles were put 

along the length of the first level manifold and simulated to determine the optimum 

combination of tapering angles to uniformly distribute the airflow exiting the outlets 

across all the branches. This technique greatly enhanced the uniformity of our designs.  

As illustrated in Figure 7, the detailed configuration of the optimized CAC design 

is shown which summarizes the dimensions of this model. The dimension of this model 
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fits the existing design of the roof bolter’s canopy while meeting the head clearance 

requirement. Therefore, this design required no equipment redesign to be mounted. 

 

 

 Figure 6. Optimization results 

 

 

Figure 7. Optimum CAC configuration 
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3.2. CFD RESULTS 

The airflow contours for the steady state of the simulation for the CAC and the outlets are 

shown in Figure 8 and Figure 9. As can be seen on the legend, the red portion represents 

areas with relatively higher velocity of greater than 40 m/s while the blue areas represent 

areas with relatively lower air quantities below 1 m/s. As can be seen from Figure 8, 

airflow from the fan forces its way into the first level manifold of the CAC which is 

uniformly distributed among the second level manifolds with progressively lesser airflow 

going into the shorter branches. It has been established in literature that having a 

manifold with a tapered longitudinal section can achieve near perfect uniform flow 

distribution if optimized because the pressure distribution is more uniform along the 

header. The optimized tapered design of the first level manifold in this study confirms 

that the optimum taper design generated nearly no static pressure build-up within any part 

of the manifold causing a perfectly uniform efflux throughout the second level manifolds. 

 

 

Figure 8. Contour of internal airflow pattern in CAC 
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Visualizing the airflow contours of the CAC outlets shown in Figure 9 moreover 

shows that there is a high degree of improved outflow uniformity across the plenum. This 

shows a significant improvement on the existing third generation CAC model. However, 

a small region of relatively lower flow quantities can be observed towards the center of 

the CAC. This, however, did not prove to affect the uniformity of the overall plenum area 

considering the minimal non-uniformity coefficient calculated from these results. 

 

 

Figure 9. Contours for the CAC outlets 

3.3. MODEL VALIDATION 

The laboratory-built unit of the CAC was mounted 2.07 m (6.8 inches) from the 

ground. Outlet velocity for each outlet was measured using a pitot tube measuring the 

center point velocity pressure of each outlet. The fan’s connection to the CAC resulted in 

0.23 m3/s of airflow quantity at 2485.80 Pa of static pressure closely matching the CFD 

model’s 0.23 m3/s airflow with 2695.61 Pa of static pressure. Moreover, the 0.23 m3/s 

total airflow going through the CAC domain is the same airflow quantity provided into  
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Figure 10. Comparison between laboratory experimental and CFD results based on the 

measured velocities for all outlets. 

 

the fletcher CAC currently used in mines. Figure 10 showes the results of the velocities 

measured from each outlet in the experimental model compared with those measured 

from the CFD model highlighting the similarity between them. By measuring the 

individual output quantity from each outlet, a non-uniformity coefficient of 0.003617 was 

calculated for the laboratory experiment while 0.004907 was determined for the CFD 

model. A t-test performed to test the statistical significance between the CFD model 

outlet values and that of the lab unit revealed a p-value of < 0.05. This explains that there 

is no significant difference between airflow quantity values from the outlets measured 

from the CFD model and that from the laboratory experiment making the laboratory test 

representative of the CFD model. 
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4. CONCLUSION 

 

Roof-bolters operators are exposed to elevated dust concentrations that make 

them prone to the onset of irreversible diseases such as CWP and silicosis. To control 

their exposure levels, the canopy air curtain was designed by the NIOSH to deliver 

filtered air on the roof bolter operators breathing zone to dilute coal dust within their 

working area. Additionally, this design and subsequent improvements also had a 

provision of perimeter flow. A high-velocity air jet emancipating from the slits 

downstream serves as the air curtain. This is impassable to dust particles present in the 

ventilation air stream lowering his exposure to respirable dust. This paper summarizes the 

parametric studies of the geometry of the CAC aimed at allowing near equal airflow 

through all the branches. The two-level manifold CAC design parameters were optimized 

to achieve the best possible uniformity and best efficiency. 

The original perimeter profile of the third generation CAC was used in this study. 

A two-level manifold system was introduced into the CAC peripheral design to carry air 

towards the operator’s breathing zone. Steady-state CFD models were developed to 

investigate the impact of four major parameters to the airflows. This study focused on 

optimizing the uniformity of the CAC by tapering the two-level manifolds to redistribute 

airflow across their outlets. By using the Simplex Evolutionary Operational (EVOP) 

optimization algorithm together with CFD the design of the two-level manifold CAC was 

optimized. The non-uniformity index was calculated for each CFD model performed at 

each optimization iteration. The design which resulted in the least non-uniformity 

coefficient was determined to be the optimum design of the two-level manifold-based 
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CAC. This design is critical for an effective dilution of dust-laden air close to the 

breathing zone of the miner.  

Analysis of all the parameters showed that an inlet size (D1) dimension of 10.2 cm 

× 4.0 cm, tapered header end size (D2) dimension of 4.0 cm × 2.0 cm, first level manifold 

rectangular outlet width (R) dimension of 5.7 cm × 4.0 cm, second level manifold end 

size (d) of 4.0 cm × 2.7 cm, second level manifold hole size (w) of 1.27 cm in diameter 

and a second level manifold hole space (s) of 3.0 cm gave the optimum CAC 

performance. A laboratory model of this design was built and evaluated to validate the 

CFD results. While the CFD model resulted in a non-uniformity coefficient of 0.004907, 

the laboratory experiment yielded 0.003617 with the correlation between their outlet 

velocities having a statistical P-value of < 0.05 indicating a great correlation. This study 

presents an advancement in technology necessary in optimizing the uniformity of the 

CAC plenum to improve the efficiency of the CAC. This is important in offering 

protection to roof bolter operators against the inhalation of coal dust. In the long term, 

these advancements will protect the health of roof bolter and enhance production in coal 

mines. This study had limitations in testing the efficiency of this CAC model in an 

underground mine setting against coal dust since that was out of the scope of this study. 

Future studies will perform field studies to evaluate the efficiency of this CAC model. 
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SECTION 

3. CONCLUSIONS AND RECOMMENDATIONS 

3.1. CONCLUSIONS 

Overexposure to respirable coal mine dust by underground coal miners has been 

linked to the recent increase in CWP. These studies developed novel technologies and 

methodologies to monitor and control coal dust exposures in underground mines. First, a 

new low cost, small size and light weight personal coal dust monitor was developed from 

a plantower PMS5003 low-cost PM sensor, achieving at least 80% decrease in costs of 

monitoring units. These coal dust sensors were evaluated and calibrated using simple and 

multiple linear regression calibration models. Since linear regression models have the 

drawbacks of being unable to account for multiple factors and non-linear relationships, 

several machine learning algorithms were applied in calibrating the sensors. Random 

forest regressor and artificial neural network showed significant performance increase in 

performance of the sensors above 95% using the PDM as a reference. The support vector 

machine on the other hand performed similar to the linear regression models giving no 

performance advantage.  

While these sensors are important in detecting overexposures, it is crucial to have 

effective control measures, such as the canopy air curtains. This study optimized the 

design of the CAC using a two level manifold system and computational fluid dynamics. 
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3.2. RECOMMENDATIONS  

While the robustness and accuracy of the low-cost PM sensors have been 

demonstrated in these studies to be promising, it is essential that further studies focus on 

exploring and improving the intrinsic safety of these sensors for coal mine application in 

order to prevent ignition. 

Other factors that could possibly affect the performance of the sensors need to be 

studied. Temperature and relative humidity have been studied in these studies. It is 

worthwhile to study the influence of wind velocity and sensors’ special directions. 
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