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ABSTRACT

Consider a study with 𝑛 units wherein every unit is monitored for the occurrence of

an event that can recur with random end of monitoring. At each recurrence, 𝑝 concomitant

variables associated to the event recurrence are recorded with 𝑞 (𝑞 ≤ 𝑝) collected with

errors. Of interest in this dissertation is the estimation of the regression parameters of

event time regression models accounting for the covariates. To circumvent the problem

of bias and consistency associated with model’s parameter estimation in the presence of

measurement errors, we propose inference for corrected estimating functions with well-

behaved roots under additive measurement errors model. We consider two types of failure

time regression models: one with additive effects and the other with multiplicative effects on

the pure event history. We show that estimation is essentially unbiased under the corrected

profile likelihood for recurrent events, in comparison to biased estimations under a likelihood

function that ignores correction in both cases. We propose methods for obtaining estimators

of error variance and discuss the property of the estimators. We further investigate the case

of misspecified error models under the multiplicative regression model and show that the

resulting estimators under misspecification converge to a value different from that of the true

parameter–thereby providing a basis for bias assessment. In both cases, simulation studies

indicate that the asymptotic properties of the regression parameters closely approximate

its finite sample properties. We demonstrate the foregoing correction methods on an open

source rhDNase dataset which was gathered in a clinical setting.
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1. INTRODUCTION

In this section, we first discuss the mathematical prerequisites to facilitate the reading

of this dissertation. Secondly, the basic concepts of recurrent events data analysis and

measurement error are also given.

1.1. MATHEMATICAL PRELIMINARIES

The pioneering work by Aalen (1978) on the theory of counting processes has been

the key to the development of statistical tools for analyzing data in reliability and survival

analysis settings. A detailed discussion of these topics can be found in Andersen et al.

(2012), Chung et al. (1990), and Fleming and Harrington (2011).

Let (Ω,F , 𝑃) be a complete probability space and 𝑇 = [0, 𝜏] ⊂ R be an interval of

time.

Definition 1 A filtration F = {F𝑡 , 𝑡 ∈ 𝑇} on (Ω,F , 𝑃) is an increasing family of 𝜎-

algebras, that is, ∀𝑡 ≤ 𝑠, F𝑡 ⊆ F𝑠 ⊆ F .

Note here that in the case of a stochastic process, F𝑡 could be taken to be all information

generated by the process up to time 𝑡, and is called the natural history of the process. From

now on, we will denote by F the natural filtration associated with the probability space

(Ω,F , 𝑃).

Definition 2 A stochastic process X = {𝑋𝑡 , 𝑡 ≥ 0} is called cadlag if its simple paths

{X(𝑡, 𝑤) : 𝑡 ∈ 𝑇} are right continuous with left hand limits for almost all w. Furthermore,

the set of all cadlag functions is called the Skorohod space.

Definition 3 A counting process is a stochastic process {𝑁 (𝑡) : 𝑡 ≥ 0} adapted to a filtration

F with 𝑁 (0) = 0 and 𝑁 (𝑡) < ∞ almost surely (a.s), and whose paths are with probability

one right-continuous, piecewise constant, and have only jump discontinuities, with jumps

of size +1.
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Definition 4 A stochastic process X = {𝑋𝑡 , 𝑡 ≥ 0} is:

1. Integrable if sup𝑡∈𝑇 𝐸 (𝑋 (𝑡)) < ∞,

2. Square integrable if sup𝑡∈𝑇 𝐸 (𝑋 (𝑡)2) < ∞,

3. Bounded if there exists a finite constant Γ such that 𝑃
{
sup𝑡∈𝑇 |𝑋 (𝑡) | < Γ

}
= 1.

Definition 5 A collection M = {𝑀𝑡 , 𝑡 ≥ 0} is an F-martingale if M is F-adapted and

satisfies:

1. Integrability: 𝐸 ( |𝑀𝑡 |) < ∞ for all 𝑡 ∈ 𝑇 ,

2. Martingale property: 𝐸 (𝑀𝑡 |F𝑠) = 𝑀𝑠 a.s ∀𝑠 < 𝑡.

We obtain a sub martingale if (2) in previous definition is replaced by 𝐸 (𝑀𝑡 |F𝑠) ≥ 𝑀𝑠

𝑎.𝑠 ∀𝑠 < 𝑡. On the other hand, a super martingale is obtained by replacing (2) in previous

definition by 𝐸 (𝑀𝑡 |F𝑠) ≤ 𝑀𝑠 𝑎.𝑠 ∀𝑠 < 𝑡.

Definition 6 (Local Martingale)

1. A stochastic process M = {𝑀𝑡 , 𝑡 ≥ 0} is a local martingale with respect to a filtration

F if there exists a sequence {𝜏𝑛} , 𝑛 ∈ N, of stopping times such that, for each 𝑛,

𝑀𝑛 = {M(𝑡 ∧ 𝜏𝑛) : 0 ≤ 𝑡 < ∞} is an F-martingale.

2. If 𝑀𝑛 above is a martingale and is a square integrable process, 𝑀𝑛 is called a square

integrable martingale and M is called a local square integrable martingale.

We now discuss the notion of a predictable process.

Definition 7 The 𝜎-algebra generated by all the sets of the form:

1. [0] × 𝐴, 𝐴 ∈ F0 and,

2. (𝑎, 𝑏] × 𝐴, 0 ≤ 𝑎 < 𝑏 < ∞, 𝐴 ∈ F𝑎,
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is called the predictable 𝜎-algebra for F, where F0 is the information at time 0.

Lemma 1 Let F be a filtration, and X a left-continuous real-valued process adapted to F.

Then X is predictable.

Proposition 1 Let X be an F𝑡-predictable process. Then, for any 𝑡 > 0, 𝑋 (𝑡) is F𝑡-

measurable.

We now discuss an important theorem that allows us to decompose a submartingale.

Theorem 1 (Doob-Meyer Decomposition) Let M = {𝑀𝑡 , 𝑡 ≥ 0} be a right continuous,

nonnegative submartingale with respect to the filtration F. Then, there exists a right-

continuous martingale M (𝑡) and an increasing right-continuous predictable process 𝐴(𝑡)

such that 𝑀 (𝑡) = M (𝑡) + 𝐴(𝑡) a.s.

Note that, if M is a martingale with 𝐸 (𝑀2(𝑡)) < ∞ for 𝑡 > 0, Jensen’s inequality indicates

that 𝑀2(𝑡) is a submartingale.

Corollary 1 Let M be a cadlag martingale with respect to F. Then, there exists a unique in-

creasing right-continuous predictable process denoted by ⟨M,M⟩ (𝑡) called the predictable

quadratic variation process of M, such that ⟨M,M⟩ (0) = 0 a.s, 𝐸 ⟨M,M⟩ (𝑡) < ∞ for all t

and
{
M2(𝑡) − ⟨M,M⟩ (𝑡) : 𝑡 ≥ 0

}
is a right continuous martingale.

We now discuss about notion of stochastic integration. A detailed discussion can be found

in Chung et al. (1990).

Theorem 2 Suppose M is a finite variation local square integrable martingale, H a pre-

dictable process and
∫ 𝑡

0 𝐻
2𝑑 ⟨𝑀⟩ locally integrable. Then,

∫ 𝑡

0 𝐻𝑑𝑀 is a local square

integrable martingale and its quadratic variation process is given by

〈∫
𝐻𝑑𝑀

〉
(𝑡) =

∫ 𝑡

0
𝐻2𝑑⟨𝑀⟩.
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The above theorem can be further generalized to a vector of martingales M and M’ and

matrices H and K of predictable processes. In that case, the predictable covariation process

is given by

〈∫
H𝑑M,

∫
K𝑑M’

〉
=

∫ 𝑡

0
H𝑑 ⟨M,M’⟩ K’.

where A’ denotes the transpose of a matrix A.

Definition 8 Suppose a filtration F on (Ω,F , 𝑃) is given. A multivariate counting process

N = (𝑁1, . . . , 𝑁𝑘 ) is a vector of k F- adapted cadlag processes for which:

1. 𝑁𝑖 = 0 ∀𝑖 = 1, 2, . . . , 𝑘 ,

2. There jumps are of size one and no two components can jump at the same time,

3. Their paths are nondecreasing and piecewise constant.

Note that because the components of the counting process N are adapted, cadlag, locally

bounded, and non-decreasing, they are local submartingales. So, by the Doob-Meyer de-

composition, there exists a compensator of 𝑁𝑖, say Λ𝑖, which is referred to as the cumulative

intensity process of the counting process.

The following proposition makes an important connection among counting processes, mar-

tingales and stochastic integration which is crucial in our study.

Proposition 2 Let N be a multivariate counting process and let 𝚲 =
∫
𝜆 be its associated

vector of compensator processes such that each component of 𝚲 is absolutely continuous.

Let M = N − 𝚲 be the resulting vector of local martingales. If H is a vector of locally

bounded and predictable processes, then
∫

H𝑑M are vectors of local square integrable

martingales with a quadratic variation process given by

〈∫
H𝑑M

〉
=

∫
H𝑑𝑖𝑎𝑔 {𝝀} H’𝑑𝑠,
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where 𝑑𝑖𝑎𝑔 {𝝀} is the diagonal matrix of associated intensity processes.

The idea of constructing likelihood with counting process data was first introduced by

Jacod (1975). Considering counting process data, one can write the likelihood function in

a product integral form, which is a continuous version of the simple product Π.

Let Δ𝑁𝑖 (𝑡) = 𝑁𝑖 (𝑡) − 𝑁𝑖 (𝑡−) be the jump process, and let our intensity process

depend on some p-dimensional parameter 𝜃. Then, the likelihood in [0, 𝑡] can be written as

𝐿 (𝜃, 𝑡) =
𝑛∏
𝑖=1

∏
𝑣∈[0,𝑡]

{
𝜆𝑖 (𝑣, 𝜃)Δ𝑁𝑖 (𝑣) × (1 − 𝜆𝑖 (𝑣, 𝜃))1−Δ𝑁𝑖 (𝑣)

}
, (1.1)

where 𝑁𝑖 (𝑡) is the counting process for each individual i in the study and 𝜆𝑖 (𝑡, 𝜃) is the

hazard rate at time t which is a function of 𝜃 for a parametric model. Simplifying (1.1)

using Taylor expansion and noting that 1 − 𝜆𝑖 (𝑣, 𝜃)𝑑𝑣 ≈ exp(−𝜆𝑖 (𝑣, 𝜃))𝑑𝑣, we obtain

𝐿 (𝜃, 𝑡) ∝
𝑛∏
𝑖=1


∏
𝑣∈[0,𝑡]

{
𝜆𝑖 (𝑣, 𝜃)Δ𝑁𝑖 (𝑣)

}
× exp

{
−

∫ 𝑡

0
𝜆𝑖 (𝑣, 𝜃)𝑑𝑣

} . (1.2)

Next, by taking the logarithm of (1.2), we obtain the log-likelihood process given by

𝑙 (𝜃, 𝑡) =
𝑛∑︁
𝑖=1

{∫ 𝑡

0
log[𝜆𝑖 (𝑣, 𝜃)]𝑑𝑁𝑖 (𝑣) −

∫ 𝑡

0
𝜆𝑖 (𝑣, 𝜃)𝑑𝑣

}
. (1.3)

The score process𝑈𝜃 (𝜃, 𝑡) is obtained by taking the derivative of (1.3) with respect to 𝜃.

𝑈𝜃 (𝜃, 𝑡) =

𝑛∑︁
𝑖=1

{∫ 𝑡

0
∇ log[𝜆𝑖 (𝑣, 𝜃)]𝑑𝑁𝑖 (𝑣) −

∫ 𝑡

0
∇𝜆𝑖 (𝑣, 𝜃)𝑑𝑣

}
=

𝑛∑︁
𝑖=1

{∫ 𝑡

0
∇ log[𝜆𝑖 (𝑣, 𝜃)]𝑑𝑀𝑖 (𝑣)

}
,

where ∇ stands for the gradient operator.
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We now provide a result which is key to obtaining asymptotic properties of the

estimators.

1.2. RECURRENT EVENTS DATA ANALYSIS

Survival analysis is a statistical field that focuses on analyzing the time until the

occurrence of a specific event (time-to-event data) of interest. For example in medical

and engineering disciplines this time could be the time elapsed from the beginning of a

particular treatment to the occurrence of another condition, such as death or component

breakdown. Stochastic process formulation, counting processes, and martingale theory are

the dominant tools used to handle these time-to-event data today.

However, it is important to note that in some cases, study subjects may experience

the event of interest multiple times as time goes by, which is known as a recurrent event, and

it occurs in various fields, including public health, biomedicine, engineering, economics,

and geology. Examples of recurrent events in public health and biomedical studies include

drug abuse of teenagers, hospitalization of chronically ill individuals, onset of depression,

and recurrence of tumors. In engineering settings, recurrent events could be the failure

of an electronic system, the breakdown of computer software, or the power outage of an

electric grid. Recurrences of hurricanes, earthquakes, or volcano eruptions are examples in

geology.

The statistical methods used for analyzing single-event data cannot be directly ap-

plied to recurrent event data. One reason why traditional methods cannot be directly

applied to recurrent event data is that the occurrence of one event can affect the probability

of subsequent events. For example, a hospitalization may increase the likelihood of another

hospitalization, or a customer’s first visit to a store may affect their likelihood of visiting

again. This correlation between events violates the assumption of independence that un-

derlies many traditional statistical methods. To handle recurrent event data, specialized

methods have been developed, such as the counting process or the frailty models. These
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models take into account the correlation between events and allow for the analysis of recur-

rent event data. The counting process model is based on counting the number of events that

occur in a specific time interval, and the frailty model incorporates the unobserved hetero-

geneity between individuals into the analysis. Various approaches have been proposed, such

as doubly-indexed processes formulated by Gill (1981), Selvin (1988), and later extended

by Peña (2001), which have become the dominant tools used to handle recurrent event data.

1.2.1. Survival Models. Survival models are a crucial tool in survival analysis.

At the core of survival modeling is the concept of hazard functions, which describe the

probability of an event occurring at a specific time, given that an individual or unit has

survived up until that point. Hazard functions model the rate at which events occur over

time and are essential for modeling the time-to-event data.

There are several approaches to modeling the hazard function, including paramet-

ric, semi-parametric, and non-parametric models. Parametric models assume a specific

functional form for the hazard function, such as the exponential, Weibull, or log-normal

distributions. Semi-parametric models, such as the Cox proportional hazards model, as-

sume a baseline hazard function that is not specified and allow the effect of covariates to be

modeled. Non-parametric models, such as the Kaplan-Meier estimator, do not assume any

functional form for the hazard function and estimate it directly from the data.

Survival models allow researchers to investigate the effect of one or more covariates

on the instantaneous risk of an event occurring, making them a powerful tool for analyzing

survival data. These models can be used in both single-event and recurrent event settings.

By understanding the different approaches to modeling the hazard function, researchers can

build and interpret survival models, gaining valuable insights into the risk factors associated

with an event of interest.
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1.2.1.1. Hazard function. The hazard function, defined below, gives the probabil-

ity of the subject 𝑖 failing at the next instant, given that the subject has survived up to time

𝑡;

𝜆(𝑡) = lim
Δ𝑡→0

𝑃 {𝑡 ≤ 𝑇𝑖 ≤ 𝑡 + Δ𝑡 |𝑇𝑖 ≥ 𝑡}
Δ𝑡

.

The hazard function fully specifies the distribution of t so that it also determines the survivor

and density functions.

1.2.1.2. Cox model. The Cox model (multiplicative hazard function) is defined as

follows:

𝜆(𝑡; x𝑖 (𝑡)) = 𝜆0(𝑡) exp(𝜷′x𝑖 (𝑡)), (1.4)

where 𝜆0(·) is the baseline hazard function and 𝜷 is the regression parameter vector. This

model assumes that the effect of covariates on the baseline hazard is multiplicative. As

noted in Cox (1975), a special property of this model is estimating regression parameters

by obtaining the partial likelihood. Furthermore, this partial likelihood method allows us

to investigate the covariate effects even when the baseline hazard function is unspecified.

1.2.1.3. Additive hazard model. The additive hazard model is given by

𝜆(𝑡; x𝑖 (𝑡)) = 𝜆0(𝑡) + 𝜷′x𝑖 (𝑡),

where 𝜆0(·) is the baseline hazard function and 𝜷 is the regression parameter vector. This

survival model assumes that the covariates have an additive effect on the hazard. More

details can be found in Lin and Ying (1994), and Cox and Oakes (2018).

1.2.1.4. Accelerated failure time model. Accelerated failure time model Cox

(1972a) assumes

𝜆(𝑡; x𝑖 (𝑡))) = exp(−𝜷′x𝑖)𝜆0 [𝑡𝑒−𝜷
′x𝑖 ],
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where 𝜆0(·) is the baseline hazard function, 𝜷 is the regression parameter vector and x is

a time invariant covariate vector. This model also assumes that 𝑌 = log𝑇 and covariate x

are related via the linear model 𝑌 = 𝜷′x + 𝑒 where 𝑒 is an error variable. More details are

provided in Kalbfleisch and Prentice (2011).

1.2.2. Recurrent Events. This subsection introduces the modeling and notations

used for recurrent events. Consider a study in which 𝑛 units are being monitored for the

occurrences and reoccurrences of an event for a time period of [0, 𝜏𝑖] for each unit 𝑖, where

𝜏𝑖s are independent and identically distributed (i.i.d.) random variables. For unit 𝑖, define

𝑆𝑖, 𝑗 as the calendar time at the 𝑗 th recurrence and 𝑇𝑖, 𝑗 be the time difference between ( 𝑗 − 1)

and the 𝑗 th recurrences. The 𝑇𝑖, 𝑗s are referred to as gap times or interoccurrence times, and

in the dissertation, they are assumed to be independent and identically distributed (i.i.d.)

random variables with an absolutely continuous function denoted by 𝐹 (𝑡) = 𝑃(𝑇𝑖, 𝑗 ≤ 𝑡).

Let x𝑖 (𝑠) be a p-dimensional time varying covariates for the 𝑖th unit. If 𝐾𝑖 is the number of

recurrent events experienced by unit 𝑖, then the total observables is O = {O1, ...,O𝑛} where

O𝑖 =
{
𝐾𝑖, 𝜏𝑖, 𝑇𝑖,1, ..., 𝑇𝑖,𝐾𝑖

, 𝜏𝑖 − 𝑆𝑖,𝐾𝑖
, x𝑖 (𝑆𝑖,1), ..., x𝑖 (𝑆𝑖,𝐾𝑖

)
}
. (1.5)

Recurrent event data is illustrated in Figure 1.1.

Figure 1.1. An illustration of recurrent event data.

1.2.3. Effective Age Process. The concept of the effective age process is a funda-

mental aspect of survival analysis that draws from reliability analysis, a field that deals with

the repair and maintenance of systems and components. In this context, the term ”repair”

refers to the process of restoring a damaged or failing system to a functional state. There

are various models used to describe the effective age process in the literature, but two of the
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most commonly used models are the minimal repair model and the perfect repair model.

The minimal repair model assumes that the repair can restore the system to the state it

was in just before the failure occurred. In this case, the effective age process is simply the

calendar time, or the amount of time that has passed since the system was put into use,

denoted by 𝜑𝑖 (𝑠) = 𝑠. In contrast, the perfect repair model assumes that a new, identical

system can replace the failed system. This model assumes that the gaps between failures

are independent and identically distributed, and the effective age process is defined as the

time elapsed since the last failure; 𝜑𝑖 (𝑠) = 𝑠 − 𝑆𝑖,𝑁†
𝑖

(𝑠−).

1.2.4. Stochastic Process Formulation. The observables in (1.5) can be expressed

using stochastic processes. We define the following calendar time stochastic processes by,

𝑁
†
𝑖
= {𝑁†

𝑖
(𝑠) : 𝑠 ≤ 𝜏𝑖} and 𝑌

†
𝑖
= {𝑌†

𝑖
(𝑠) : 𝑠 ≥ 0},

where

𝑁
†
𝑖
(𝑠) =

∞∑︁
𝑗=1

𝐼{𝑆𝑖, 𝑗 ≤ 𝑠 ∧ 𝜏𝑖} and 𝑌
†
𝑖
(𝑠) = 𝐼{𝜏𝑖 ≥ 𝑠}.

The process 𝑁†
𝑖
(𝑠) counts the number of observed events over the calendar period [0, 𝑠]

experienced by subject 𝑖 while the 𝑌†
𝑖
(𝑠) process indicates if the subject is still at risk of

experiencing the event calendar by time 𝑠. Let 𝜆0(·) be the baseline hazard function and

F = {F𝑠 : 𝑠 ≥ 0} a natural filtration generated by {(𝑁†
𝑖
(𝑠), 𝑌†

𝑖
(𝑠)) : 𝑠 ≥ 0}. Hence, the

compensator process of 𝑁†
𝑖

is given by

𝐴
†
𝑖
(𝑠 |𝜷) =

∫ 𝑠

0
𝑌
†
𝑖
(𝑣)𝜆𝑖 (𝑣)𝑑𝑣,

where

1. for multiplicative hazards: 𝜆𝑖 (·) = 𝜆0 [𝜑𝑖 (·)] exp[𝜷′x𝑖 (·)] and

2. for additive hazards: 𝜆𝑖 (·) = 𝜆0 [𝜑𝑖 (·)] + 𝜷′x𝑖 (·),
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with 𝜑𝑖 (·) being the effective age process and 𝜷 is a 𝑝-dimensional regression parameter.

In this dissertation, we define the effective age process as 𝜑𝑖 (𝑠) = 𝑠 − 𝑆𝑖,𝑁†
𝑖

(𝑠−), which is

the time elapsed since the last event. The process 𝜑𝑖 (𝑠) is also called backward recurrence

time. The martingale process 𝑀†
𝑖
(𝑠 |𝜷) = 𝑁

†
𝑖
(𝑠) − 𝐴

†
𝑖
(𝑠 |𝜷) is a local square integrable

martingale with regard to filtration F .

1.2.5. Doubly Indexed Processes. Double indexed processes are an important

concept in survival analysis that have gained attention due to their ability to address issues

with martingales and renewal processes. The motivation for using double indexed processes

stems from the breakdown of martingales, which are mathematical models that describe

the expected value of a variable in a system over time. When a martingale breaks down, it

can lead to a renewal process, where the system effectively ”resets” after each event. This

can make it difficult to accurately model the behavior of the system over time, especially

in cases where there are multiple factors that influence the likelihood of events occurring.

Double indexed processes offer a solution to this problem by allowing for multiple variables

to be incorporated into the model. By including two indices in the process, it becomes

possible to account for both time-dependent and event-dependent variables, which can help

to provide a more complete and accurate picture of the system being studied. Overall,

the use of double indexed processes represents an important development in the field of

survival analysis, enabling researchers to better understand and model complex systems

where traditional martingale and renewal approaches may fall short.

For 𝑖 = 1, 2, ..., 𝑛, define the doubly indexed processes 𝑅𝑖 (𝑣, 𝑡), 𝑁𝑖 (𝑠, 𝑡), 𝐴𝑖 (𝑠, 𝑡 |𝜷)

and 𝑀𝑖 (𝑠, 𝑡 |𝜷) by

𝑅𝑖 (𝑣, 𝑡) = 𝐼{𝜑𝑖 (𝑠) ≤ 𝑡},

𝑁𝑖 (𝑠, 𝑡) =
∫ 𝑠

0
𝑅𝑖 (𝑣, 𝑡)𝑁†

𝑖
(𝑑𝑣),

𝐴𝑖 (𝑠, 𝑡 |𝜷) =
∫ 𝑠

0
𝑅𝑖 (𝑣, 𝑡)𝐴†𝑖 (𝑑𝑣 |𝜷), (1.6)
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𝑀𝑖 (𝑠, 𝑡 |𝜷) =
∫ 𝑠

0
𝑅𝑖 (𝑣, 𝑡)𝑀†

𝑖
(𝑑𝑣 |𝜷) = 𝑁𝑖 (𝑠, 𝑡) − 𝐴𝑖 (𝑠, 𝑡 |𝜷).

At calendar time 𝑣, 𝑅𝑖 (𝑣, 𝑡) indicates if at the most t time units have elapsed since the

last event occurrence. 𝑁𝑖 (𝑠, 𝑡) counts number of recurrences experienced by the unit 𝑖 at

calendar time 𝑠 whose effective age is at the most gap time 𝑡. 𝐴𝑖 (𝑠, 𝑡 |𝜷) is the compensator

process of 𝑁𝑖 (𝑠, 𝑡) and 𝑀𝑖 (𝑠, 𝑡 |𝜷) is a zero-mean square integrable martingale for fixed 𝑡

since 𝑀†
𝑖
(𝑠 |𝜷) is a martingale and the process 𝑅𝑖 (𝑣, 𝑡) is predictable.

1.2.6. Modeling of Recurrent Events Data with Cox Model. This subsection is

devoted to recurrent events with multiplicative covariates effects. With a view towards

estimating Λ0(𝑡), an alternative form of (1.6) is needed due to the fact that (1.6) is not

in multiplicative form. Therefore, from Pena et al. (2000), and Adekpedjou and Stocker

(2015), the alternative form of (1.6) is defined by

𝐴𝑖 (𝑠, 𝑡 |𝜷) =
∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤 |𝜷)𝜆0(𝑤)𝑑𝑤,

where generalized at-risk process 𝑌𝑖 (𝑠, 𝑡 |𝜷), is given by

𝑌𝑖 (𝑠, 𝑡 |𝜷) =

𝑁
†
𝑖
((𝑠∧𝜏𝑖)−)∑︁
𝑗=1

𝐼 (𝑇𝑖 𝑗 ≥ 𝑡) exp[𝜷′x𝑖 (𝜑−1
𝑖, 𝑗−1(𝑡)]

+𝐼
(
(𝑠 ∧ 𝜏𝑖) − 𝑆𝑖,𝑁†

𝑖
((𝑠∧𝜏𝑖)−) ≥ 𝑡

)
exp[𝜷′x𝑖 (𝜑−1

𝑖,𝑁
†
𝑖
((𝑠∧𝜏𝑖)−)

(𝑡))] .

Moreover, the cumulative hazard function Λ0(𝑡) under the Cox model is

Λ̂0(𝑠, 𝑡 |𝜷) =
∫ 𝑡

0

𝐽 (𝑠, 𝑤 |𝜷)
𝑌 (𝑠, 𝑤 |𝜷)𝑁 (𝑠, 𝑑𝑤), (1.7)
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where 𝑌 (𝑠, 𝑤 |𝜷) =
∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤 |𝜷) and 𝐽 (𝑠, 𝑤 |𝜷) = 𝐼{𝑌 (𝑠, 𝑤 |𝜷) > 0}. More details on

deriving Λ̂0(𝑠, 𝑡 |𝜷) can be found in Pena et al. (2001). Also, using (1.7), the product limit

estimator for the baseline survivor function is

ˆ̄𝐹0(𝑠, 𝑡 |𝜷) =
𝑡∏

𝑤=0

{
1 − Λ̂0(𝑠, 𝑑𝑤 |𝜷)

}
. (1.8)

Note that the estimator �̂� is needed in order to estimate Λ0(𝑠, 𝑡 |𝜷) and ˆ̄𝐹0(𝑠, 𝑡 |𝜷) using

(1.7) and (1.8) respectively. We derive the full likelihood process following Jacod (1975)

as follows:

𝐿 𝑓 𝑢𝑙𝑙 (Λ0, 𝜷, 𝑠) =

𝑛∏
𝑖=1

𝑠∏
𝑤=0

[
𝑑𝐴

†
𝑖
(𝑤, 𝜷)

]Δ𝑁†
𝑖
(𝑤)

×
[
1 − 𝑑𝐴†

𝑖
(𝑤, 𝜷)

]1−Δ𝑁†
𝑖
(𝑤)

=

𝑛∏
𝑖=1

𝑠∏
𝑤=0

[
𝑌
†
𝑖
(𝑤)𝜆0 [𝜑𝑖 (𝑤)] exp(𝜷′x𝑖 (𝑤))𝑑𝑤

]Δ𝑁†
𝑖
(𝑤)

×
[
1 − 𝑌†

𝑖
(𝑤)𝜆0 [𝜑𝑖 (𝑤)] exp(𝜷′x𝑖 (𝑤))𝑑𝑤

]1−Δ𝑁†
𝑖
(𝑤)

=

{
𝑛∏
𝑖=1

𝑠∏
𝑤=0

[
𝑌
†
𝑖
(𝑤)𝜆0 [𝜑𝑖 (𝑤)] exp(𝜷′x𝑖 (𝑤))𝑑𝑤

]Δ𝑁†
𝑖
(𝑤)

}
×

{
exp

[
−

𝑛∑︁
𝑖=1

∫ 𝑠

0
𝑌
†
𝑖
(𝑤)𝜆0 [𝜑𝑖 (𝑤)] exp(𝜷′x𝑖 (𝑤))𝑑𝑤

]}
. (1.9)

From Adekpedjou and Stocker (2015), substituting Λ̂0(𝑠, 𝑡 |𝜷) for Λ0(𝑤) in(1.9) and after

simplifying, we get profile likelihood as

𝐿𝑝 (𝜷) =
𝑛∏
𝑖=1

𝑁
†
𝑖
((𝑠∧𝜏𝑖)−)∏
𝑗=1

{ exp(𝜷′x𝑖 (𝑆𝑖, 𝑗 ))
𝑌 (𝑠, 𝜑𝑖 (𝑆𝑖, 𝑗 ) |𝜷)

}Δ𝑁†
𝑖
(𝑆𝑖, 𝑗 )

.

Note that, the argument for the exponential part of (1.9) can be written in the following

form (Peña et al. (2007a))):

𝑛∑︁
𝑖=1

∫ 𝑠

0
𝑌
†
𝑖
(𝑤)𝜆0 [𝜑𝑖 (𝑤)] exp(𝜷′x𝑖 (𝑤))𝑑𝑤 =

∫ ∞

0
𝑌 (𝑠, 𝑤)Λ0(𝑑𝑤).
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From (1.7), it follows that
∫ ∞

0 𝑌 (𝑠, 𝑤 |𝜷)Λ̂0(𝑠, 𝑑𝑤 |𝜷) =
∑𝑛
𝑖=1 𝑁𝑖 (𝑠,∞), and this is inde-

pendent of 𝜷. As a result, the exponential part in (1.9) does not contribute to the profile

likelihood of 𝜷 and hence will be discarded. Next, by taking the logarithm of 𝐿𝑝 (𝜷), we

obtain log profile likelihood process as follows:

𝑙𝑝 (𝜷) =
𝑛∑︁
𝑖=1

∫ 𝑠

0
[𝜷′x𝑖 (𝑤) − log[𝑌 (𝑠, 𝜑𝑖 (𝑤) |𝜷)]] 𝑁†

𝑖
(𝑑𝑤). (1.10)

Estimating equation for profile maximum likelihood estimator of 𝜷 can be obtained by

equating the gradient of (1.10) to 0 as below.

𝑛∑︁
𝑖=1

∫ 𝑠

0

[
x𝑖 (𝑤) −

𝜕
𝜕𝜷𝑌 (𝑠, 𝜑𝑖 (𝑤) |𝜷)
𝑌 (𝑠, 𝜑𝑖 (𝑤) |𝜷)

]
𝑁

†
𝑖
(𝑑𝑤) = 0.

Numerical methods such as the Newton–Raphson algorithm or the Nelder–Mead simplex

algorithm should be used to estimate 𝜷, since a closed form expression for 𝜷 is not obtainable.

1.2.7. Modeling of Recurrent Events Data with Additive Hazard Model. This

subsection is devoted to recurrent events with additive covariates effects. From Stocker

and Adekpedjou (2020), an equivalent expression for 𝐴𝑖 (𝑠, 𝑡) in (1.6) is obtained where the

argument of 𝜆0(·) is no longer the effective age process so that Λ0(𝑡) can be obtained.

𝐴𝑖 (𝑠, 𝑡) =
∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)

{
𝜆0(𝑤) + 𝜷′x𝑖 (𝜑−1

𝑖 (𝑤))
}
𝑑𝑤,

where the generalized at-risk process 𝑌𝑖 (𝑠, 𝑤) is given by

𝑌𝑖 (𝑠, 𝑤) =
𝑁
†
𝑖
((𝑠∧𝜏𝑖)−)∑︁
𝑗=1

𝐼 (𝑇𝑖 𝑗 ≥ 𝑤) + 𝐼
(
(𝑠 ∧ 𝜏𝑖) − 𝑆𝑖,𝑁†

𝑖
((𝑠∧𝜏𝑖)−) ≥ 𝑤

)
.
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Also, by Stocker and Adekpedjou (2020), the cumulative hazard function Λ0(𝑡) under the

additive hazard function can be written as

Λ̂0(𝑠, 𝑡 |𝜷) =
∫ 𝑡

0

∑𝑛
𝑖=1

{
𝑁𝑖 (𝑠, 𝑑𝑤) − 𝑌𝑖 (𝑠, 𝑤)𝜷′x𝑖 (𝜑−1

𝑖
(𝑤))𝑑𝑤

}∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)

.

A score function can be constructed using similar arguments as in Lin and Ying (1995).

Details are provided in Stocker and Adekpedjou (2020). This score function is given by

𝑈 (𝜷; x, 𝑠, 𝑡) =
𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))] [𝑁𝑖 (𝑠, 𝑑𝑤) − 𝑌𝑖 (𝑠, 𝑤)𝜷𝑇x𝑖 (𝜑−1
𝑖 (𝑤))𝑑𝑤],

where

x̄(𝜑−1(𝑡)) =
∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑡)x 𝑗 (𝜑−1

𝑗
(𝑡))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑡)
.

Solving𝑈 (𝜷; x, 𝑠, 𝑡) = 0, we obtain

�̂� =

{
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤

}−1

×
{

𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
}
.

1.3. MEASUREMENT ERROR

When dealing with measurement errors that affect covariates, it becomes crucial

to understand the relationship between the error-contaminated covariates and their true

(error-free) versions. This is necessary in order to make accurate inferences.

1.3.1. Measurement Error Models. In this section, we introduce commonly used

error models in the literature. A comprehensive overview can be found in Carroll et al.

(2006).
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1.3.1.1. Classical additive error model. The classical additive error model has

the form

𝑥𝑖 = 𝑧𝑖 + 𝜖𝑖, (1.11)

where 𝜖𝑖 are assumed to be independent and identically distributed with a mean of zero

and a positive definite variance-covariance matrix 𝚵. It is also assumed that the 𝜖𝑖 are

independent of the true covariates 𝑧𝑖. The multivariate normal distribution in the literature

is a common choice for 𝜖𝑖 because of its reasonable assumptions, compatibility with other

models and wide applicability.

1.3.1.2. Berkson model. The Berkson error model is given by

𝑧𝑖 = 𝑥𝑖 + 𝜖𝑖, (1.12)

where 𝜖𝑖 are assumed to be independent and identically distributed with a mean of zero

and a positive definite variance covariance matrix 𝚵. It is also assumed that the 𝜖𝑖 are

independent of the observed covariates 𝑥𝑖. Multivariate normal distribution is a common

choice for 𝜖𝑖 in the literature.

The difference between the classical additive error model and the Berkson model

is how they view the association between 𝑧 and 𝑥. The Berkson model treats 𝑥 as the

independent variable and 𝑧 as the dependent variable, while the classical additive error

model treats 𝑧 as the independent variable and 𝑥 as the dependent variable.

1.3.1.3. Multiplicative model. The multiplicative error model is given by

𝑥𝑖 = 𝑧𝑖𝜖𝑖, (1.13)

where 𝜖𝑖 are assumed to be independent and identically distributed with a mean of zero

and a positive definite variance-covariance matrix 𝚵. It is also assumed that the 𝜖𝑖 are

independent of the true covariates 𝑧𝑖.



17

1.3.1.4. Latent variable model. The latent variable error model is a combination

of both the classical error model and the Berkson model. Therefore, it is more flexible in

handling measurement errors. This model uses a latent variable denoted by 𝑤𝑖 to make the

connection between 𝑥𝑖 and 𝑧𝑖, and is defined by

𝑥𝑖 = 𝑤𝑖 + 𝜖𝑖,𝐴 (1.14)

and

𝑧𝑖 = 𝑤𝑖 + 𝜖𝑖,𝐵, (1.15)

where 𝜖𝑖,𝐴 and 𝜖𝑖,𝐵 both have mean zero, and their corresponding error covariance variance

matrices are 𝚵𝐴 and 𝚵𝐵 respectively. It is also assumed that 𝜖𝑖,𝐴, 𝜖𝑖,𝐴 and 𝑤𝑖 are mutually

independent.

The classical additive error model is the most popular in modeling survival data subject to

covariate measurement error. More details on this error model and its applications can be

found in Carroll et al. (2006).

1.3.1.5. Repeated measurements. Sometimes, replicate surrogate measurements

of 𝑧𝑖 may be available, say 𝑤𝑖. In particular, suppose 𝑧𝑖 is measured 𝑚𝑖 (> 1) times

repeatedly. Then for 𝑙 = 1, ..., 𝑚𝑖, the classical additive error model becomes

𝑤𝑖𝑙 = 𝑧𝑖𝑙 + 𝜖𝑖𝑙 ,

where 𝜖𝑖𝑙 are zero mean i.i.d. random variables with a positive definite variance-covariance

matrix Σ. For the classical additive errors, it is possible to estimate Σ as follows using these

replications:

Σ̂ =

∑𝑛
𝑖=1

∑𝑚𝑖

𝑙=1(𝑤𝑖𝑙 − �̄�𝑖.)
⊗2∑𝑛

𝑖=1(𝑚𝑖 − 1) ,

where �̄�𝑖. =
∑𝑚𝑖

𝑙=1 𝑤𝑖𝑙/𝑚𝑖.



18

1.3.1.6. Validation subsample. A valid subsample usually contains measurements

for both true (𝑧𝑖) and surrogate (𝑤𝑖) covariates. Furthermore, validation data can be

categorized into internal and external groups depending on the response measurements’

availability. In particular, an internal validation data set contains response measurements,

whereas an external validation data set does not. Internal validation data can directly

examine measurement error structure, often giving accurate estimators and inferences. In

contrast, external validation data can be used to assess the measurement error model. More

details on validation data can be found in Carroll et al. (2006).

1.3.1.7. Instrumental data. Sometimes, a second measurement of 𝑧𝑖, say 𝑧𝑖, may

be available, measured using another mechanism. This variable, 𝑧𝑖, is often called an

instrumental variable and is correlated with 𝑧𝑖 albeit with a weaker relationship than 𝑤𝑖

to 𝑧𝑖. The availability of so-called instrumental data can be useful in measurement error

analysis. More details on instrumental data can be found in Carroll et al. (2006).

1.4. CONSEQUENCES OF IGNORING COVARIATE MEASUREMENT ERROR
ON PARAMETER ESTIMATION

We performed a simulation study to demonstrate how parameter estimation is af-

fected by error-contaminated covariates. We used the Cox model with a single covariate

given by 𝜆(𝑡; 𝑧𝑖) = 𝜆0(𝑡) exp(𝑧𝑖𝛽) where true covariate 𝑧𝑖 ∼ 𝑁 (0, 1). In this simulation

study, we considered two scenarios below:

Scenario 1: We used classical additive error model 𝑥𝑖 = 𝑧𝑖 + 𝜖𝑖 where 𝜖𝑖 ∼ 𝑁 (0, 𝜎2). For

each 𝜎, we generated error-contaminated covariate 𝑥𝑖, replaced 𝑧𝑖 in the Cox model by

𝑥𝑖, and estimated 𝛽. We replicated this 𝛽 estimating procedure 200 times and plotted the

average of those estimates labeled error-prone in Figure 1.2.

Scenario 2: For each 𝜎, we used true covariate 𝑧𝑖 in the Cox model and estimated 𝛽. We

replicated this 𝛽 estimating procedure 200 times and plotted the average of those estimates

labeled error-free in Figure 1.2. We can see from the Figure 1.2 that the error-free parameter
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Figure 1.2. Impact of covariate measurement error on parameter estimation.

estimates are consistent around the true parameter value, which is 1. In contrast, error-prone

parameter estimates are significantly biased. Moreover, the bias increases significantly as

the magnitude of the error increases. Hence, ignoring covariate measurement error can lead

to biased parameter estimates. Therefore, better estimating functions need to be developed

in order to estimate 𝛽.

1.5. EXISTING METHODOLOGY ON RECURRENT EVENTS DATA WITH MEA-
SUREMENT ERROR

Even though many methods have been developed in the survival data setting for

single events with error-contaminated covariates, a little work has been done with regard to

recurrent events with error-contaminated covariates. In this section, we review the literature

on existing methods for analyzing recurrent events data subject to covariate measurement

error.
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Turnbull (1997) considered a mixed effects poisson regression model for recurrent

event data with error-contaminated covariates. This author proposed adjustments for usual

maximum likelihood estimators that are obtained from neglecting covariate measurement

error.

Jiang et al. (1999a) investigated inference methods for discrete-time events in the

presence of covariate measurement error. In particular, they used semi-parametric Poisson

and mixed poisson process regression while accounting for possible random effects and

covariate measurement error.

Yi and Lawless (2012) developed inferential methods that account for covariate

measurement error. Particularly, their work included counting processes consisting of

multiplicative intensity functions and mixed Poisson models. They discussed inference

methods based on likelihood which led to obtaining estimation equations.

Yu et al. (2018) proposed non-parametric methods taking covariate measurement er-

ror into account in multivariate recurrent event data under informative censoring. However,

their research was limited to time-independent covariates. Moreover, their approach did

not require the Poisson-type assumption for recurrent event process and any distributional

assumption for frailty or covariate measurement error.

In addition to the aforementioned existing methodology on recurrent events data

with measurement error, there is some work in the literature related to measurement error

in the field of survival analysis. Veierød and Laake (2001) and Guo and Li (2002) explored

covariate measurement error effects on Poisson regression and misclassification. Zeger and

Edelstein (1989) studied the Poisson regression model with error-contaminated covariates

and used a likelihood method to correct the measurement error effects. Fung and Krewski

(1999) investigated SIMEX and regression calibration algorithms empirically for Poisson

regression with replicates of error-prone covariate measurements. Kim (2007) worked on

a mean model for the event count data and used kernel estimates to obtain a correction

method in the presence of categorical error-prone covariates while assuming a validation
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subsample is available. These studies did not investigate the asymptotic properties of the

derived estimators. However, they provided simulation study results to assess their proposed

methods’ performance.

1.6. SPECIFIC OBJECTIVES OF THE DISSERTATION

In this dissertation, we develop statistical methods to analyze recurrent event data

with mismeasured covariates. We consider two types of intensity functions namely the

multiplicative and additive. While the first part of this dissertation is devoted to the

development of statistical methods based on the multiplicative intensity model, the second

part will concentrate on the additive intensity model. The aims of this dissertation are:

• Derive regression parameter estimators of the intensity models based on corrected

scores, and obtain their asymptotic properties.

• Derive an estimator for cumulative baseline hazard function under the multiplicative

regression model, and obtain its asymptotic properties.

• Investigate the effects of misspecified error models under the multiplicative regression

model, and assess bias.

• Derive an estimator for error variance.

• Run simulation study to validate the theoretical results.

• Apply the results to real recurrent events data.
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ABSTRACT

For subject 𝑖, we monitor an event that can occur multiple times over a random

observation window [0, 𝜏𝑖). At each recurrence, 𝑝 concomitant variables, x𝑖, associated

with the event recurrence are recorded–a subset (𝑞 ≤ 𝑝 ) of which is measured with errors.

To circumvent the problem of bias and consistency associated with parameter estimation

in the presence of measurement errors, we propose inference for corrected estimating

equations with well-behaved roots under the additive measurement errors model. We
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show that estimation is unbiased under the corrected profile likelihood for recurrent events

compared to biased estimations under a likelihood function that ignores correction. We

propose methods for obtaining estimators of error variance and discuss the properties of

the estimators. We further investigate the case of misspecified error models and show that

the resulting estimators under misspecification converge to a value different from that of

the true parameter–thereby providing a basis for bias assessment. Finally, we demonstrate

the preceding correction methods on an open-source rhDNase dataset gathered in a clinical

setting.

Keywords: Recurrent events; Covariate measurement errors; Model misspecification;

Bootstrap; Kullback-Leibler divergence; Corrected score.

1. INTRODUCTION

A recurrent event process is a process that repeatedly generates events serially. It

is encountered in many fields, such as biomedical science, epidemiology, social science,

reliability, and actuarial science, to name a few. The literature on methods and models

that address various scientific questions about recurrent event processes is well-known.

Regardless of the problem of interest, analyses of recurrent events can be broadly classified

as either gap-time analysis or time-to-event analysis. Under these two paradigms, the focus

can be put on estimating the intensity function 𝜆(·), the survivor function �̄� (·), the mean

rate function 𝜇(·), or other functionals of these unknowns in the presence of possible time-

dependent covariates. Because covariates play an essential role in better understanding

time to failure, incorporating them in modeling has always been beneficial. Denote x a

𝑝-dimensional vector of possibly time varying covariates, 𝜷 a 𝑝-dimensional regressor, and

𝜆0(·) a baseline hazard function. For a vector a, we call a′ its transpose. Models that

account for covariates include the multiplicative intensity model 𝜆(𝑠) = 𝜆0(𝑠) exp(𝜷′x(𝑠))

following Cox (1972), the additive model 𝜆(𝑠) = 𝜆0(𝑠)+𝜷′x(𝑠), the mean rate model 𝜇(𝑠) =

𝜇0(𝑠) exp(𝜷′x(𝑠)), the additive-multiplicative model 𝜆(𝑠) = 𝑔(𝜷′x(𝑠)) + 𝜆0(𝑠)ℎ(𝜷′x(𝑠)),
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and the accelerated failure time model 𝜆(𝑡) = x′𝜷 + 𝑤 as few examples. With specific

choices of 𝑔(·) and ℎ(·) in the additive-multiplicative model, one can easily retrieve the Cox

and the additive model. The choice of a model depends on the area of application, the area of

research interest, and its goodness of fit. What has been abundant in the literature is model

specifications in which all covariates are assumed to be perfectly measured during data

collection or study design. However, the notion that all covariates are perfectly measured

is far-fetched in most research fields. A simple fact well-known to medicine is that blood

pressure measured in healthcare facilities, for example, suffers from the psychological

effect of subjects being in a doctor’s office even if the instrument used appears to be

well-calibrated. The same is true for measuring household lead levels, an error-prone

process usually influenced by environmental factors, including air quality, dust movement,

and soil quality. Similarly, measuring nutrient intake has been a long-documented error-

prone process with measurement errors that can negatively impact health. Covariates

measurement errors can be associated with the mechanism by which the measurements are

taken, the situations under which they are measured, environmental factors, human errors,

missingness, or with many other lurking factors.

Ignoring the errors in modeling and inference could lead to biased parameter esti-

mates, distorted inference, and inaccurate conclusions. There has been extensive work on

the topic with classical, censored, truncated, and uncensored data, resulting in numerous

correction methods in models that include measurement errors. The correction methods

are either parametric or nonparametric, wherein the error term acts on the true value of the

covariates in an additive, multiplicative, or some other fashion. The parametric handling of

the problem assumes a distribution of the error terms. In contrast, the nonparametric relax

that assumption and uses replicate surrogates and instrumental variable for error correction.

Regardless of the approaches and data type, the following references are noteworthy: Pren-

tice (1982), Stefanski (1985), Armstrong (1990), Nakamura (1990), Nakamura (1992), Hu

et al. (1998), Hu and Lin (2002), Song and Huang (2005), Yan and Yi (2015), Huque et al.
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(2016), and Alexeeff et al. (2016). A comprehensive review of methods for measurement

errors can be found in Carroll et al. (1995). Textbooks dealing with measurement errors

include Fuller (1987), Carroll et al. (1995), and most recently Yi (2017).

Though the literature has been abundant with single events about measurement

error models and correction methods, there needs to be more literature on recurrent events.

Turnbull (1997), under a normal assumption for the errors, proposed a moment-based

method for correcting a naive estimator. In contrast, Hu and Lin (2004) corrected a partial

score function under a symmetric distribution for the errors. A few manuscripts on the

topic with recurrent events have appeared in the last decade. Yi and Lawless (2012)

using the correction from Nakamura (1990) and the simulation extrapolation (SIMEX) of

Stefanski and Cook (1995), presented methods for modeling time to events which account for

measurement errors under a broad class of models for hazard. In their approach, parameters

were estimated using likelihood-based tools and estimating equations. More recently,

some authors focused on the measurement errors problem with recurrent events while

simultaneously dealing with informative censoring. For instance, Yu et al. (2016) developed

a regression calibration and moment-corrected approach to adjust for measurement errors

while accounting for informative censoring. Yu et al. (2016) modeled time to event and

incorporated informative censoring using a shared frailty model. Yu et al. (2018), on the

other hand, modeled informative censoring using a shared frailty as in Yu et al. (2016), but

relaxed the distributional assumption on the errors and proposed a general nonparametric

missing at random model to account for the errors. To the best of our knowledge, the

most recent manuscript dealing with recurrent events is that of Chen and Yi (2021). They

investigated another aspect of failure time data, namely left truncation. Since right censored

and left truncated data are prevalent in practice, Chen and Yi (2021) developed models

for simultaneously handling both data features while modeling measurement errors using

moment correction.
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To correct the bias induced by measurement errors in estimating model parame-

ters with failure time data, researchers have relied on the so-called induced hazard rates,

which are defined as the conditional hazard given the observed covariates and the events

history. The idea is to construct an unbiased score function, called corrected score, upon

which estimation and inference are based rather than naive score, i.e., the score ignoring

measurement errors, using an error-prone covariate, which tends to yield spurious results

of no practical value. The main contributors to this idea in single event settings are Pren-

tice (1982), Nakamura (1990), and Nakamura (1992). Many authors have shown that the

corrected score is not the gradient of a corrected likelihood, leading Nakamura (1992)

to introduce the concept of approximately corrected partial likelihood. Later, Augustin

(2004) justified that the corrected score proposed in Nakamura (1992) and Kong and Gu

(1999) are exact and that their corresponding estimators are consistent. In light of the

recent clarifications and based on the results in Augustin (2004), we take the approach

of corrected partial likelihood and consider a gap-time modeling of the intensity function

with recurrent events when one or more covariates are measured with errors. We operate

under the classical additive measurement errors model known to have broad applicability

in scientific research. We make the blanket assumption that the errors fluctuate around

the covariates. Other general measurement error models such as regression calibration in

Wang et al. (1997), Yu and Nan (2010), and Chapter 4 of Carroll et al. (1995) could also be

used. In our current development, we do not impose any distributional assumption on the

errors other than their variance-covariance matrix being time-independent and possessing a

consistent estimate. When properly standardized, we propose a corrected partial likelihood

score process with root consistent estimators that follow a multivariate normal large sample

distribution. Our results generalize those of Kong and Gu (1999) in two ways: (1) they are

applied to recurrent event data by focusing on their stochastic feature, and in our case, (2)

the errors do not follow any particular distribution. Kong and Gu (1999) deals with single

event models with assumed normally distributed errors. Moreover, we augment our work
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by deriving a corrected baseline cumulative hazard with recurrent events and its asymptotic

properties. We add a discussion on misspecified error models and develop properties of the

estimators under error misspecification. We show, in that case, that the estimator converges

to a value different from the true parameter, thereby allowing an assessment of bias and its

magnitude.

This part of the dissertation proceeds as follows: Section 2 states the stochastic

setting for our recurrent event model and defines some key concepts that guide our theoretical

development along with preliminary results. Section 3 proposes the corrected estimator,

including the corrected estimating equations, and develops their key asymptotic properties.

We follow Section 4 with a simulation study that validates the theoretical properties and

illustrates our findings in an applied setting. Section 5 proposes an estimator for the

corrected baseline hazard and its asymptotic properties. In Section 6, we focus on the

issue of the error model’s misspecification and asymptotic bias. We finally conclude our

comprehensive work with a conclusion, discussion, and recommendations section.

2. PRELIMINARIES

2.1. DYNAMIC MODELING AND OBSERVABLES

Consider 𝑛 units that are monitored for an event that can recur up to a random time 𝜏𝑖

for each unit 𝑖. For unit 𝑖, let 𝑆𝑖, 𝑗 be the time of occurrence of the 𝑗 𝑡ℎ event, and 𝑇𝑖, 𝑗 the gap

between the ( 𝑗 − 1) and the 𝑗 𝑡ℎ occurrence. For every unit 𝑖, a 𝑝-dimensional time-varying

covariates x𝑖 is recorded. We assume, for 𝑗 = 1, ..., 𝐾𝑖, that the 𝑇𝑖, 𝑗s have a distribution

function 𝐹𝑖 (·), and a hazard function 𝜆𝑖 (𝑡) ≡ 𝜆(𝑡 | x) that is a function of the covariates;

and 𝐾𝑖 being the total number of events per unit. For unit 𝑖, the observables at the censoring

time 𝜏𝑖 are

O𝑖 = (𝐾𝑖, 𝜏𝑖, 𝑇𝑖,1, . . . , 𝑇𝑖,𝐾𝑖
, 𝜏𝑖 − 𝑆𝑖,𝐾𝑖

, x𝑖,1(𝑠1), ..., x𝑖,𝐾𝑖
(𝑠𝐾𝑖

)), (1)
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which define an aggregate vector O = (O1, ..., O𝑛) over the observed sample of size

𝑛. In what follows, 𝑠 represents calendar time, whereas 𝑡 represents gap time. The

relevant counting processes from the data on which estimation will be conducted are

𝑁
†
𝑖
= {𝑁†

𝑖
(𝑠) : 𝑠 ≤ 𝜏𝑖}, 𝑌†

𝑖
= {𝑌†

𝑖
(𝑠) : 𝑠 ≥ 0}, where 𝑁†

𝑖
(𝑠) = ∑∞

𝑗=1 𝐼{𝑆𝑖, 𝑗 ≤ 𝑠 ∧ 𝜏𝑖}, and

𝑌
†
𝑖
(𝑠) = 𝐼{𝜏𝑖 ≥ 𝑠}. The process 𝑁†

𝑖
(𝑠) determines, for subject 𝑖, the event occurrences up

to time 𝑠 whereas the 𝑌†
𝑖
(𝑠) process determines if the unit is at-risk for future recurrences.

We write the effective age of the unit 𝑖 at time 𝑠 as 𝜑𝑖 (𝑠) = 𝑠 − 𝑆
𝑖,𝑁

†
𝑖
(𝑠−) . Observe that

0 ≤ 𝜑(𝑠) ≤ 𝑠, and is viewed as a process that keeps track of the time elapsed since the last

occurrence of an event. In 𝜑, we not only track the time elapsed but also verify whether the

time being tracked is a true event time versus another time with the hopes of a future event.

Following Cox (1972), we provide a link between the effective age process, the regressors,

and the multiplicative intensity process by 𝜆(𝑠) = 𝜆0(𝜑𝑖 (𝑠)) exp (𝜷′x𝑖 (𝑠)) where 𝜷 ∈ R 𝑝 is

a set of regressor parameters. The utility of the effective age rendering of the Cox model

is that it allows one to explicitly model the effect of an intervention or treatment performed

just after an event occurrence, an adaptation that is more in harmony with settings where

treatments are administered during an observation window such as in the health science; see

Beutner et al. (2020) . From the theory of stochastic integration, the compensator process

of 𝑁†
𝑖
(𝑠) is 𝐴†

𝑖
(𝑠) given by 𝐴

†
𝑖
(𝑠 |𝜷) =

∫ 𝑠

0 𝑌
†
𝑖
(𝑣)𝜆0 [𝜑𝑖 (𝑣)] exp[𝜷′x𝑖 (𝑣)]𝑑𝑣. Due to the

randomness of the argument 𝜑𝑖 (𝑣) in 𝐴†
𝑖
(𝑠 |𝜷), one usually works with the doubly-indexed

processes 𝑁𝑖 (𝑠, 𝑡) and 𝐴𝑖 (𝑠, 𝑡 |𝜷) that are functions of both the calendar and gap times in

order to handle the random argument in the integrand. The 𝑁𝑖 (𝑠, 𝑡) and 𝐴𝑖 (𝑠, 𝑡 |𝜷) processes

are the number of events that occurred by calendar time 𝑠 for unit 𝑖 whose effective age

is at most gap time 𝑡 and its associated doubly-indexed compensator respectively. Hence,

for fixed 𝑡, 𝑀𝑖 (𝑠, 𝑡 |𝜷) = 𝑁𝑖 (𝑠, 𝑡) − 𝐴𝑖 (𝑠, 𝑡 |𝜷) is a zero-mean square integrable martingale.

More notations and details on stochastic processes formulation in this section can be found

in Pena et al. (2001), Adekpedjou and Stocker (2015), Zamba and Adekpedjou (2019), and

references therein for interested readers.
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2.2. MEASUREMENT ERRORS NOTATIONS

Under the additive model for errors, for unit 𝑖, at calendar time 𝑠, let x𝑖 (𝑠) be

the 𝑝-dimensional covariates, possibly 𝑞 ≤ 𝑝 are measured with errors. If 𝝐𝑖 (𝑠) =

(𝜖𝑖1(𝑠), ..., 𝜖𝑖𝑝 (𝑠)) is the 𝑝-dimensional errors on x𝑖 (𝑠) = (𝑥𝑖1(𝑠), ..., 𝑥𝑖𝑝 (𝑠)), then

x𝑖 (𝑠) = z𝑖 (𝑠) + 𝝐𝑖 (𝑠),

where the z𝑖 (𝑠) are the true and unobserved covariates. We do not impose any distributional

assumption on the 𝝐𝑖 (𝑠), other than having a zero mean and a variance-covariance matrix 𝚵

that is time-independent. We assume the existence of a consistent estimator �̂� of 𝚵 which

can be derived using validation methods or replicates (cf. Carroll et al. (1995), Chapter

4). It is to be noted that some authors have assumed the errors to have a multivariate

normal distribution with error variance obtained using validation data and sample variance

formulas; cf. section 2.1 of Yi and Lawless (2012). See also section 4.7 of Carroll et al.

(1995) on ways to derive estimators for the error variance.

We now introduce some notation in the sequel to be used throughout this manuscript.

All random entities are defined on a complete probability space (Ω, F ,P). The space𝐷 [0, 𝑡]

denotes the cadlag functions on [0, 𝑡] equipped with the supremum norm ∥ · ∥∞; and all

asymptotic results are taken as 𝑛 → ∞. The notations 𝑑→, 𝑎𝑠→, and
𝑝
→ respectively denote

convergence in distribution, almost sure convergence, and convergence in probability. For

a vector a = (𝑎1, . . . , 𝑎𝑝), a′ is its transpose; and if b is also a 𝑝-dimensional vector, then

a ⊗ b is the 𝑝 × 𝑝 matrix ab′ with (𝑘, 𝑙)𝑡ℎ element 𝑎𝑘𝑏𝑙 . In addition, a⊗2 = a ⊗ a, and for

the vector a, ∥a∥ = sup
𝑘

|𝑎𝑘 |. Finally, we define the gradient operator ∇𝜷 by the vector of

partial derivatives ∇𝜷 = 𝜕
𝜕𝜷 ≡ (𝜕/𝜕𝛽𝑙 , 𝑙 = 1, 2, . . . , 𝑝)′ if 𝜷 a 𝑝-dimensional vector.
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3. CORRECTED SCORES AND ESTIMATORS

3.1. PRELIMINARY

Some preliminary results are contained in Adekpedjou and Stocker (2015); con-

sequently, we will not provide another complete exposition here. With 𝑠★ = max
1≤𝑖≤𝑛

𝜏𝑖, the

generalized at risk process is defined as

𝑌𝑖 (𝑠, x(𝑡) |𝜷) =


𝑁
†
𝑖
((𝑠∧𝜏𝑖)−)∑︁
𝑗=1

𝐼 (𝑇𝑖, 𝑗 ≥ 𝑡) + 𝐼 ((𝑠 ∧ 𝜏𝑖) − 𝑆𝑖,𝑁†
𝑖
((𝑠∧𝜏𝑖)−) ≥ 𝑡)

 · exp(𝜷′x𝑖 (𝑡))

:= ℎ𝑖 (𝑠, 𝑡) · exp(𝜷′x𝑖 (𝑡)).

We write 𝑆(0) (𝑠, x(𝑡) |𝜷) := 𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 (𝑠, x(𝑡) |𝜷), and its 𝑘 𝑡ℎ order derivative with respect

to 𝜷 written as

𝑆(𝑘) (𝑠, x(𝑡) |𝜷) =
1
𝑛
∇

(𝑘)
𝜷

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡) · exp(𝜷′x𝑖 (𝑡))

=
1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡) · x𝑖 (𝑡)⊗𝑘 exp(𝜷′x𝑖 (𝑡)).

For 𝑘 = 0, 1, 2, write

𝐸 (𝑠, x(𝑡) |𝜷) = 𝑆(1) (𝑠, x(𝑡) |𝜷)/𝑆(0) (𝑠, x(𝑡) |𝜷)

and

𝑉 (𝑠, x(𝑡) |𝜷) = [𝑆(2) (𝑠, x(𝑡) |𝜷)/𝑆(0) (𝑠, x(𝑡) |𝜷)] − 𝐸 (𝑠, x(𝑡) |𝜷)⊗2.

The partial log-likelihood is written as

𝑙𝑝 (𝜷, x(𝑠★)) =
𝑛∑︁
𝑖=1

∫ 𝑠★

0

[
𝜷′x𝑖 (𝑣) − log[𝑌𝑖 (𝑠★, 𝜑𝑖 (𝑣) |𝜷)]

]
𝑁

†
𝑖
(𝑑𝑣), (2)
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where the integral is obtained over the calendar time process. Because 𝜑𝑖 (𝑣) is a random

variable, a change of variable 𝜑𝑖 (𝑣) = 𝑤 in the integrand leads to a likelihood profile

𝑙𝑃 (𝜷, x(𝑠★)) and an associated score process U(𝜷, x(𝑠★)) = ∇𝜷𝑙𝑃 (𝜷, x(𝑠★)) given by

U(𝜷, x(𝑡★)) =
𝑛∑︁
𝑖=1

∫ 𝑡★

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − 𝐸 (𝑠★, 𝑤)]𝑁𝑖 (𝑠★, 𝑑𝑤), (3)

where 𝑡★ = max
𝑖, 𝑗
𝑇𝑖, 𝑗 is the maximum gap time. The estimator of 𝜷, �̂� say, is the solu-

tion to U(𝜷, x(𝑡★)) = 0, with predictors assumed error-free. Note that x𝑖 (𝑠) are not the

true covariates; consequently, the solution �̂� are biased by virtue of the biasedness of

U(𝜷, x(𝑡★)). As U( �̂�, x(𝑡★)) does not equal zero in the presence of measurement errors, the

corresponding likelihood and score, which are functions of 𝑆(𝑘) (𝑠★, x(𝑡) |𝜷), 𝑘 = 0, 1 are

also biased and cannot portray a reasonable estimation mechanism. We provide a corrected

expression for U(𝜷, x(𝑡★)), which is inextricably linked to corrections of 𝑆(0) (𝑠★, x(𝑡) |𝜷)

and 𝑆(1) (𝑠★, x(𝑡) |𝜷). We denote 𝐸𝜖 (·|O), the conditional expectation under the distribution

of 𝝐 with respect to the observables O. In the spirit of corrected likelihoods, we seek

estimating functions Ŭ(𝜷, x(𝑡)), expressed in terms of the observed data and satisfying

𝐸𝜖

(
Ŭ(𝜷, x(𝑡) |O)

)
= U(𝜷, z(𝑡)). (4)

This will be handled through the use of the first-order approximation of the ratio of expecta-

tions. We also operate under some regularity conditions, which are detailed in the technical

appendix section. Under these regularity conditions, 𝝐𝑖’s are independent zero-mean with

time-independent covariance structure; all order moment generating functions of the error

distribution exist; the integrated hazard is finite; the covariates are uniformly bounded and

cannot escape to infinity; and uniform continuity of 𝑆(𝑘) (𝑠★, x(𝑡) |𝜷) and their expectations

is guaranteed.
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We now introduce, the regularity conditions required for the proofs and to establish

large sample properties.

Regularity Conditions A:

I. The 𝜖𝑖 (𝑡)s are independent with mean zero and independent of O.

II. Var(𝝐𝑖 (𝑡)) = 𝚵 and is time independent.

III. The moment-generating function at all orders exists.

Assumptions I, II, and III are regular assumptions imposed on measurement errors. As-

sumption I is a trivial assumption in that errors, in general, should not deviate much from

the true value and should average to zero. In addition, errors in one unit do not indicate

errors on the next one, hence the independence between errors and observables. Assump-

tion II is given to simplify the calculation of the variance-covariance matrix of the large

sample distribution of the corrected error properly standardized. As for III, it is the usual

assumption on the moment-generating function. It is needed for the large sample properties

of the corrected score since the asymptotic properties require the in probability limit of the

estimator of the moment-generating function.

Regularity Conditions B:

The regularity conditions I, II, III, IV on page 6 of Adekpedjou and Stocker (2015) with x𝑖

replaced by z𝑖 are in force, namely

I.
∫ 𝑡★

0 𝜆0(𝑤)𝑑𝑤 < ∞.

II. (X𝑖 (𝑠) : 𝑠 ≤ 𝜏𝑖) is uniformly bounded for 𝑠 ∈ [0, 𝜏𝑖] for all 𝑖.

III. For 𝑘 = 0, 1, 2 there exists functions 𝑠(𝑘) (𝑠★, 𝑡 |𝜷) = 𝐸 (𝑆(𝑘) (𝑠★, 𝑡 |𝜷)) and a neighborhood

B of 𝜷0 such that the functions are continuous functions of 𝜷 ∈ B uniformly in 𝑡 ∈ [0, 𝑡★]

and bounded on [0, 𝑡★] × B. Furthermore,

sup
𝑡∈[0,𝑡★]
𝜷∈B

������𝑆(𝑘) (𝑠, 𝑡 |𝜷) − 𝑠(𝑘) (𝑠, 𝑡 |𝜷)������ 𝑝
→ 0
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and

𝑠(1) (𝑠★, 𝑡 |𝜷) = ∇𝜷𝑠
(0) (𝑠★, 𝑡 |𝜷) and 𝑠(2) (𝑠★, 𝑡 |𝜷) = ∇𝜷𝜷𝑡 𝑠

(0) (𝑠★, 𝑡 |𝜷).

IV. Let B, 𝑠(0) (𝑠★, 𝑡 |𝜷), 𝑠(1) (𝑠★, 𝑡 |𝜷), 𝑠(2) (𝑠★, 𝑡 |𝜷) be as in Condition III. For all 𝜷 ∈ B

and 𝑡 ∈ [0, 𝑡★] define

𝑒(𝑠★, 𝑡 |𝜷) = 𝑠(1) (𝑠★, 𝑡 |𝜷)
𝑠(0) (𝑠★, 𝑡 |𝜷)

and 𝑣(𝑠★, 𝑡 |𝜷) = 𝑠(2) (𝑠★, 𝑡 |𝜷)
𝑠(0) (𝑠★, 𝑡 |𝜷)

− 𝑒(𝑠★, 𝑡 |𝜷)⊗2.

Assume that 𝑠(0) (𝑠★, 𝑡 |𝜷) is bounded away from 0 on [0, 𝑡★] × B; there exists a positive-

definite matrix 𝚺1(𝜷0; 𝑠★, 𝑡) such that

sup
𝑡∈[0,𝑡★]

�����
�����1𝑛 𝑛∑︁

𝑖=1

∫ 𝑡

0

[
X𝑖 (𝜑−1

𝑖 (𝑤)) − 𝐸 (𝑠★, 𝑤 |𝜷0)
]⊗2

𝑆(0) (𝑠★, 𝑤 |𝜷0)𝜆0(𝑤)𝑑𝑤 − 𝚺1(𝜷0; 𝑠★, 𝑡)
�����
�����

converges in probability to 0; and the matrix

𝚺(𝜷0; 𝑠★, 𝑡★) =
∫ 𝑡★

0
𝑣(𝑠★, 𝑤 |𝜷0)𝑠(0) (𝑠★, 𝑤 |𝜷0)𝜆0(𝑤)𝑑𝑤

is positive-definite. In Regularity condition B, the 𝐸 (·, ·), 𝑉 (·, ·), and 𝑆(·, ·) functions are

the regular functions that arise in the analysis of failure time data. The 𝐸 (·, ·) and𝑉 (·, ·) are

the expectation and variance, respectively, of the covariates when they are truly observed,

whereas the 𝑆(𝑘) (·, ·), 𝑘 = 0, 1, 2 are normalizing constants.

Proposition 3 The following proposition holds:

𝐸 (𝑠★, x(𝑡) |𝜷) = 𝑆(1) (𝑠★, z(𝑡))
𝑆(0) (𝑠★, z(𝑡))

+ ∇𝜷 ln(𝜙(𝜷)).
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Proof: Under regularity condition I,

𝐸𝝐 (𝑆(0) (𝑠★, x(𝑡) |O)) = 𝐸𝝐

(
1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡) · exp[𝜷′(z𝑖 (𝑡) + 𝝐𝑖 (𝑡))]
)

= 𝐸𝝐 (exp(𝜷′𝝐𝑖 (𝑡))) · 𝐸𝝐

(
1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡) exp(𝜷′z𝑖 (𝑡))
)

= 𝜙(𝜷) · 𝑆(0) (𝑠★, z(𝑡)) + 𝑜𝑝 (1).

Likewise, using the fact that ∇𝜷𝜙𝑖 (𝜷) = 𝐸 (𝝐𝑖 (𝑡) exp(𝜷′𝝐𝑖 (𝑡)), we obtain

𝐸𝝐 (𝑆(1) (𝑠★, x(𝑡) |O) = 𝜙(𝜷) · 𝑆(1) (𝑠★, z(𝑡)) + ∇𝜷𝜙(𝜷)𝑆(0) (𝑠★, z(𝑡)).

Hence, applying a first order approximation of 𝐸𝝐 (𝑆(𝑘) (𝑠∗, x(𝑡) |O) for 𝑘 = 0, 1 at[
𝐸𝝐 (𝑆(0) (𝑠★, x(𝑡) |O), 𝐸𝝐 (𝑆(1) (𝑠★, x(𝑡) |O)))

]
, we obtain

𝐸𝝐
(
𝐸 (𝑠★, x(𝑡) |O)

)
=

𝐸𝝐

(
𝑆(1) (𝑠★, x(𝑡)) |O

)
𝐸𝝐

(
𝑆(0) (𝑠★, x(𝑡) |O)

)
=

𝜙(𝜷) · 𝑆(1) (𝑠★, z(𝑡)) + ∇𝜷𝜙(𝜷)𝑆(0) (𝑠★, z(𝑡))
𝜙(𝜷) · 𝑆(0) (𝑠★, z(𝑡))

=
𝑆(1) (𝑠★, z(𝑡))
𝑆(0) (𝑠★, z(𝑡))

+ ∇𝜷 [ln(𝜙(𝜷))] .

So, the corrected score to be used for unbiased estimating equations based on the observables

is

Ŭ(𝜷; 𝑠★, 𝑡) =
𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − 𝐸 (𝑠★, x(𝑤)) + ∇𝜷 ln(𝜙(𝜷))]𝑁𝑖 (𝑠★, 𝑑𝑤). (5)

The solution �̆� to the estimating equations Ŭ(𝜷; 𝑠★, 𝑡) = 0, is the corrected maximum profile

likelihood estimator. In a like manner, one can also derive the corrected information matrix

as

I𝑛 ( �̆�; 𝑠★, 𝑡) = −∇𝜷 [Ŭ(𝜷; 𝑠★, 𝑡)]
����
�̆�

.
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Note that when 𝝐 (𝑡) ≡ 0 in (5), one recovers the no measurement errors covariates as in

Adekpedjou and Stocker (2015). Similar to the argument about exact corrected scores and

root consistency as those put forth in Augustin (2004), Nakamura (1992), and Kong and Gu

(1999), we show that the results hold for recurrent events as well.

3.2. LARGE SAMPLE PROPERTIES OF CORRECTED VALUES

In order to establish the convergence in distribution of the standardized version of

�̆�, we would need the large sample properties of the scaled corrected score
√
𝑛
−1Ŭ(𝜷; 𝑠★, 𝑡).

Assume 𝜷0 is the true value of 𝜷, and z𝑖 (𝑡) are the true covariates free of measurement

errors; then, the process

𝑀𝑖 (𝑠, 𝑡) = 𝑁𝑖 (𝑠, 𝑡) −
∫ 𝑡

0
𝑌𝑖 (𝑠, z(𝑤) |𝜷0)𝜆0(𝑤)𝑑𝑤

is, for fixed 𝑡, a zero-mean martingale with respect to the calendar time filtration 𝔉 = {𝔉𝑠 :

𝑠 ≥ 0}, with 𝔉𝑠 the 𝜎-field generated by {[(𝑁†
𝑖
(𝑠), 𝑌†

𝑖
(𝑠+)) : 𝑠 ≥ 0], 𝑖 = 1, 2, . . . , 𝑛}. The

first result in this section pertains to the consistency of the corrected maximum likelihood

�̆�.

Theorem 3 As 𝑛 → ∞, the sequence of solutions �̆�𝑛 = (𝛽1𝑛, ..., 𝛽𝑛𝑝) to the sequence of

equations Ŭ𝑛 (𝜷; 𝑠★, 𝑡) = 0, 𝑛 = 1, 2, ... is consistent.

Proof: The proof is based on a simplified functional uniform convergence argument for

𝑀−estimators as used in theorem 5.9 of van der Vaart (1998), by showing two conditions

needed to establish consistency, namely convergence in probability (𝑖) and separability of
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the root (𝑖𝑖). To show condition (𝑖), observe that

1
𝑛

Ŭ(𝜷; 𝑠★) =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑠★

0
[x𝑖 (𝑤) − 𝐸 (𝑠★, 𝜑𝑖 (𝑤); x(𝑤)) + ∇𝜷 ln(𝜙(𝜷))]𝑀𝑖 (𝑑𝑤 |𝜷0) (6)

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑠★

0
[x𝑖 (𝑤) − 𝐸 (𝑠★, 𝜑𝑖 (𝑤); x(𝑤)) + ∇𝜷 ln(𝜙(𝜷))]𝐴†

𝑖
(𝑑𝑤 |𝜷0)

= 𝑇1 + 𝑇2.

We now use the time-transformed processes. Since 𝑀𝑖 (𝑠★, 𝑑𝑤 |𝜷0) is a zero mean

martingale for fixed 𝑡, transforming the first term in (6), we see that it is 𝑜𝑝 (1). Next, replac-

ing x𝑖 (𝑤) by z𝑖 (𝑤) +𝝐𝑖 (𝑤) and using the fact that 𝐸 (𝑠★, x(𝑡)) = 𝐸 (𝑠★, z(𝑡)) +∇𝜷 [ln(𝜙(𝜷))],

the second term becomes

𝑇2 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡★

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − 𝐸 (𝑠★, z(𝑤))]𝐴†
𝑖
(𝑠, 𝑑𝑤 |𝜷0)

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡★

0
𝝐𝑖 (𝜑−1

𝑖 (𝑤))𝐴†
𝑖
(𝑠, 𝑑𝑤 |𝜷0)

−
∫ 𝑠★

0
𝐸 (𝑠★, z(𝑤))𝑆(0) (𝑠★, z(𝑤))𝜆0(𝑤)𝑑𝑤

𝑝
→

∫ 𝑡★

0
[𝑠(1) (𝑠★, z(𝑤) |𝜷) − 𝑒(𝑠★, z(𝑤))𝑠(0) (𝑠★, z(𝑤) |𝜷0)]𝜆0(𝑤)𝑑𝑤.

Hence Condition (𝑖) of Theorem 5.9 of van der Vaart (1998) has been established. For

Condition (𝑖𝑖), note that the corrected score Ŭ(𝜷; 𝑠★, 𝑡) is a continuous function and is 0 at

𝜷0. The partial derivative of the in-probability limit of 𝑇2 is

−
∫ 𝑡★

0
𝑠(0) (𝑠★, 𝑤 |𝜷0)

[
𝑠(2) (𝑠★, 𝑤 |𝜷0)
𝑠(1) (𝑠★, 𝑤 |𝜷0)

−
(
𝑠(1) (𝑠★, 𝑤 |𝜷)
𝑠(0) (𝑠★, 𝑤 |𝜷)

)⊗2]
𝜆0(𝑤)𝑑𝑤, (7)

which is negative definite at 𝜷 = 𝜷0. Hence �̆� is a global maximum, thus concluding the

consistency of 𝜷. ∥
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The moment-generating function of the 𝝐𝑖 (𝑠), 𝜙𝑖 (𝜷) = 𝐸 (𝑒𝜷
′𝝐𝑖 (𝑠)) plays a key role

in the asymptotic properties of corrected estimators, the corrected score, and corrected

Fisher information. In the next few lines, we discuss its large sample property. For every

𝑖, note that 𝜷′𝝐𝑖 (𝑠) =
∑𝑝

𝑗=1 𝛽 𝑗𝜖𝑖 𝑗 (𝑠). The function 𝜙𝑖 (𝜷) is assumed to exist for 𝜷 in the

neighborhood of zero and is twice differentiable with respect 𝜷. If a consistent estimator

�̂� of 𝜷 exists, the following lemma asserts the consistency of an estimator of 𝜙(𝜷) namely

𝜙(𝜷) := 𝜙( �̂�), the empirical moment generating function.

Lemma 2 Let �̂� be the corrected and consistent maximum likelihood estimator of 𝜷. The

empirical moment generating function of 𝜙(𝜷) based on {𝜙𝑖 (𝜷) : 𝑖 = 1, ..., 𝑛} is defined by

𝜙(𝜷) = 𝜙( �̂�) = 1
𝑛

𝑛∑︁
𝑖=1

𝜙𝑖 ( �̂�),

and is a consistent estimator of 𝜙(𝜷).

Proof: The result follows from the functional continuous mapping theorem, the uniform

law of large numbers, and the consistency of �̂�.

As indicated earlier, to establish the distribution limit of the properly standardized

corrected maximum likelihood estimator, we will first establish the asymptotic properties

of the corrected score
√
𝑛
−1Ŭ(𝜷; 𝑠★, 𝑡).

Theorem 4 As 𝑛 → ∞, the process
{

1√
𝑛
Ŭ(𝜷; 𝑠★, 𝑡) : 𝑡 ∈ [0, 𝑡★]

}
converges weakly on

𝐷 [0, 𝑡★] to a zero-mean Gaussian process U∞(𝜷0, 𝑠
★, 𝑡) with covariance matrix given by

Ψ(𝑠, 𝑡1 ∧ 𝑡2 |𝜷0)) that can be estimated by Ψ̆(𝑠, 𝑡1 ∧ 𝑡2 | �̆�)) = 𝐸 ( [𝑉𝑖 (𝑠, 𝑡1 ∧ 𝑡2)⊗2]), with

𝑉𝑖 (𝑠, 𝑡) given in the proof below.
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Proof:
√
𝑛
−1Ŭ(𝜷; 𝑠★, 𝑡) can be written as Proof: Let 𝐴 =

√
𝑛
−1Ŭ(𝜷; 𝑠★, 𝑡) which can be

written as

𝐴 =
1
√
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0

{
x𝑖 (𝜑−1

𝑖 (𝑣)) − 𝐸 (𝑠★, x(𝑣)) + ∇𝜷 ln[𝜙(𝜷0)]
}
𝑀𝑖 (𝑠★, 𝑑𝑣 |𝜷0)

+ 1
√
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
ℎ𝑖 (𝑠★, 𝑣) exp(𝜷′0x𝑖 (𝑣))𝑒−𝝐

′
𝑖
(𝑣)𝜷0𝜆0(𝑣)𝜙(𝜷0)𝜙−1(𝜷0)𝑒−𝝐𝑖 (𝑣)𝜷0𝑑𝑣.

For large 𝑛, it can be seen that A is equal to

𝐴 =
1
√
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0

{
x𝑖 (𝜑−1

𝑖 (𝑣)) − 𝐸 (𝑠★, x(𝑣)) + ∇𝜷 [ln 𝜙(𝜷0)]
}
𝑀𝑖 (𝑠★, 𝑑𝑣 |𝜷0) (8)

+ 1
√
𝑛
𝜙−1(𝜷0)

𝑛∑︁
𝑖=1

∫ 𝑡

0
ℎ𝑖 (𝑠★, 𝑣) exp(𝜷′0x𝑖 (𝑣))𝑒−𝝐

′ (𝑣)𝜷0𝜆0(𝑣)𝑑𝑣.

The display in (8) can be viewed as the sum of 𝑛 independent𝑉𝑖 (𝑠, 𝑡) processes with

𝑉𝑖 (𝑠, 𝑡) given by

𝑉𝑖 (𝑠, 𝑡) =
1
√
𝑛

∫ 𝑡

0

{
x𝑖 (𝜑−1(𝑣)) − 𝐸 (𝑠, z(𝑣)) + ∇𝜷 [ln 𝜙(𝜷0)]

}
𝑀𝑖 (𝑠, 𝑑𝑣 |𝜷0)

+𝜙−1(𝜷0)
∫ 𝑡

0
ℎ𝑖 (𝑠, 𝑣) exp(𝜷′0x𝑖 (𝑣))𝑒−𝝐

′ (𝑣)𝜷0𝜆0(𝑣)𝑑𝑣.

We can then apply the functional central limit theorem to find its large sample properties.

To apply the functional central limit theorem, we have to show conditions (𝑎) to (𝑒) of

Theorem 11.16 of Kosorok (2008) about the manageability of the process and the existence

of an in-probability limit of the variance-covariance matrix of the standardized process.

Numerous manuscripts have shown these conditions dealing with recurrent event modeling

when the covariates are not mismeasured. The addition of the constant term ∇𝜷 [ln 𝜙(𝜷0)]

does not prevent those conditions from holding since 𝑀𝑖 (𝑠, 𝑑𝑣) is a zero-mean martingale.
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Therefore, by Theorem 11.16 of Kosorok (2008) the process

{√
𝑛
−1Ŭ(𝜷; 𝑠★, 𝑡) : 𝑡 ∈ [0, 𝑡★]

}
converges to a tight 𝑣𝑈∞(𝜷0; 𝑠★, 𝑡) with a variance covariance matrix Ψ(𝑠, 𝑡1 ∧ 𝑡2 |𝜷0)) that

can be estimated by Ψ̆(𝑠, 𝑡1 ∧ 𝑡2 | �̆�)).

With the limiting distribution of
√
𝑛
−1Ŭ𝑛 (𝜷; 𝑠★, 𝑡) established, we can now proceed

with that of the properly standardized corrected maximum likelihood estimator. To that

end, we need a corrected Fisher information matrix and its in probability limit. Recall that

the Fisher information matrix is given by

I𝑛 ( �̆�; 𝑠★, 𝑡) = −1
𝑛
∇𝜷′Ŭ( �̆�; 𝑠★, 𝑡).

We have

I𝑛 (𝜷;★ , 𝑡) = −1
𝑛
∇𝜷′Ŭ(𝜷; 𝑠, 𝑡)

= −1
𝑛

∫ 𝑡

0

{
∇𝜷′ [∇𝜷 ln 𝜙(𝜷)] − 𝑆(2) (𝑠★, 𝑡 |𝜷)

𝑆(0) (𝑠★, 𝑡 |𝜷)
+ 𝐸⊗2(𝑠★, 𝑡 |𝜷)

} 𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠★, 𝑑𝑤).

To obtain the corrected Fisher information, we need to find the corrected expression of

the second and third terms in the integrand. The third corrected expression has been

provided in Proposition 1. Recall that the variance covariance matrix of 𝝐𝑖 is assumed

to exist and is independent of 𝑡, that is 𝚵 = 𝐸 (𝝐⊗2
𝑖
), 𝑖 = 1, ..., 𝑛 is independent of 𝑡.

The next proposition pertains to the corrected expression of the second term, namely

𝑆(2) (𝑠★, x(𝑡) |𝜷) [𝑆(0) (𝑠★, x(𝑡) |𝜷)]−1.
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Proposition 4 The corrected expression of 𝑆(2) (𝑠★, x(𝑡) |𝜷) [𝑆(0) (𝑠★, x(𝑡) |𝜷)]−1 can be ap-

proximated by

𝑆(2) (𝑠★, x(𝑡) |𝜷)
𝑆(0) (𝑠★, x(𝑡) |𝜷)

≈ 𝑆(2) (𝑠★, z(𝑡) |𝜷)
𝑆(0) (𝑠★, z(𝑡) |𝜷)

+ [𝐸 (𝑠★, z(𝑡) |𝜷) (𝜷𝚵)]′

+[𝐸 (𝑠★, z(𝑡) |𝜷) (𝜷𝚵)] + 𝚵 + [(𝚵𝜷) (𝚵𝜷)′] .

Proof: Replacing x by z + 𝝐 , 𝑆(2) (𝑠, x(𝑡) |𝜷) can be written as

𝑆(2) (𝑠★, x(𝑡) |𝜷) =
1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡) (z𝑖 + 𝝐𝑖)⊗2 exp(𝜷′(z𝑖 + 𝝐𝑖))

=
1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡)z⊗2
𝑖 exp(𝜷′(z𝑖 + 𝝐𝑖)) +

1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡)𝝐⊗2
𝑖 exp(𝜷′(z𝑖 + 𝝐𝑖))

+1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡)z𝑖𝝐′𝑖 exp(𝜷′(z𝑖 + 𝝐𝑖)) +
1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡)z′𝑖𝝐𝑖 exp(𝜷′(z𝑖 + 𝝐𝑖))

= 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4.

𝐴1 can be written as

𝐴1 = 𝜙(𝛽) 1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡)z⊗2
𝑖 exp(𝜷′z𝑖) +

1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡)z⊗2
𝑖 exp(𝜷′z𝑖){exp(𝜷′𝝐𝑖)𝜙−1(𝜷) − 1}.

So that

𝐸 (𝐴1) = 𝜙(𝜷)𝑠(2) (𝑠★, z) + 𝑜𝑝 (1).

Likewise,

𝐴2 = 𝜙(𝜷) 1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡) exp(𝜷′z𝑖) [𝚵 + (𝚵𝜷) (𝚵𝜷)′]

+𝜙(𝜷) 1
𝑛

𝑛∑︁
𝑖=1

ℎ𝑖 (𝑠, 𝑡) exp(𝜷′z𝑖)
[
𝑛∑︁
𝑖=1

𝝐⊗2
𝑖

]
+1
𝑛

[ [
𝑛∑︁
𝑖=1

𝝐⊗2
𝑖

]
𝜷

] [
𝑛∑︁
𝑖=1

𝝐⊗2
𝑖

]′ [
𝑒𝜷

′𝝐𝑖𝜙(𝜷) − 1
]
.
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Hence,

𝐸 (𝐴2) = 𝜙(𝜷)𝑆(0) (𝑠★, z(𝑡)) [𝚵 + (𝚵𝜷) (𝚵𝜷)′] + 𝑜𝑝 (1).

The terms 𝐴3 and 𝐴4 can also be corrected in the same way, leading to

𝐸 (𝐴3) = 𝜙(𝜷) [𝑆(1) (𝑠★, z(𝑡)) (𝚵𝜷)′ + (𝚵𝜷)𝑠(1) (𝑠★, z(𝑡))′] + 𝑜𝑝 (1).

Because of symmetry between 𝐴3 and 𝐴4, the expressions are the same; and the corrected

expression of 𝑆(2) (𝑠★, x(𝑡) |𝜷) [𝑆(0) (𝑠★, x(𝑡) |𝜷)]−1 follows. ∥ In light of the proposition, the

corrected Fisher information matrix is given by

I𝑛 (𝜷; 𝑠★, 𝑡★) = −1
𝑛

∫ 𝑡★

0

[
𝐸 (𝑠★, z(𝑤) |𝜷)⊗2 − 𝑆(2) (𝑠★, z(𝑤) |𝜷)

𝑆(0) (𝑠★, z(𝑤) |𝜷)

] 𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠★, 𝑑𝑤).

It can be seen that the corrected Fisher information based on the true values of the covariates

z no longer contains any information about the error terms. This concurs with the results

in Kong and Gu (1999) and those in Augustin (2004). Moreover, the Fisher information

matrix can therefore be estimated by 1
𝑛
Ĭ( �̆�; x(𝑡), 𝑠★) which is a consistent estimator of

1
𝑛
Ĭ( �̆�; z(𝑡), 𝑠★) by virtue of the consistency of �̆� and the corrected expression. The final

result in this section regards the asymptotic property of the properly standardized corrected

maximum partial likelihood estimators.

Theorem 5 As 𝑛 → ∞,
√
𝑛( �̆�𝑛 − 𝜷0)

𝑑→ 𝑁𝑝 (0,𝚺−1(𝜷0)), where 𝚺−1(𝜷0; 𝑠★, 𝑡★) can be

consistently estimated by

�̆�
−1

=
(
[I𝑛 ( �̆�; x(𝑡), 𝑠★)]−1)′Ψ̆( �̆�; 𝑠, 𝑡) [I𝑛 ( �̆�; x(𝑡), 𝑠★)]−1.
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The proof follows from the usual Taylor expansion of the corrected score around 𝜷0,

the limiting distribution of
√
𝑛
−1Ŭ𝑛 (𝜷; 𝑠, 𝑡), and the consistency of the corrected Fisher

information matrix. The limiting variance is finally obtained using multivariate distribution

theory.∥

3.3. MEASUREMENT ERRORS VARIANCE ESTIMATION

Estimating the measurement error variance is useful in addressing whether a sim-

plified approach that ignores it would be acceptable. The size of the error variance is also

a factor associated with bias in parameter estimates. In order to address this estimation, it

is common to proceed by bootstrapping. Two approaches are usually taken to achieve this

goal; the school of thoughts in Hjort (1985) through bootstrapping the empirical distribution

and those of Efron (1981), Efron and Tibshirani (1986) through the bootstrap resampling

of the observables. If the empirical distribution is the basis for bootstrapping, then given

𝐾𝑖 = 𝑙𝑖, one can obtain the empirical function of the x𝑖 as

𝐹𝑛 (𝑤 |x) =
1∑𝑛
𝑖=1 𝑙𝑖

𝑛∑︁
𝑖=1

𝑙𝑖∑︁
𝑗=1

I{x𝑖 ( 𝑗) ≤ 𝑤}

and obtain draws from the empirical. One could also deal directly with the observables,

target the within-subject observations as replicates, and derive an estimated variance-

covariance structure �̂� by restricting to subjects with multiple events and obtain

�̂� =

∑𝑛
𝑖=1 𝐼{𝑁

†
𝑖
((𝑠 ∧ 𝜏𝑖)−) > 0}∑𝑁

†
𝑖
((𝑠∧𝜏𝑖)−)

𝑗=1 (x𝑖, 𝑗 (𝑠𝑖, 𝑗 ) − x̄𝑖.)⊗2∑𝑛
𝑖=1 [𝑁

†
𝑖
((𝑠 ∧ 𝜏𝑖)−) − 1]

,

x̄𝑖. =
∑𝑁

†
𝑖
((𝑠∧𝜏𝑖)−)

𝑗=1 x𝑖, 𝑗 (𝑠𝑖, 𝑗 )

𝑁
†
𝑖
((𝑠 ∧ 𝜏𝑖)−)

,
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and resample this estimate for smoothing purposes. Regardless of the approach taken, since

the empirical distribution function is a consistent estimator of the true distribution function,

the individual components of �̂� converge almost surely to their true values.

Theorem 6 The components of �̂�2
𝑞𝑟 of �̂� satisfy �̂�2

𝑞𝑟

𝑎.𝑠.→ 𝜎2
𝑞𝑟 under the bootstrap probability,

that is, the coordinate-wise bootstrap estimator converges in probability to its counterpart

in the true variance of the errors.

Proof: This can be proved using the concept of statistical functionals. Define the Mallow

metric 𝑑1(·, ·) on 𝐿1. Let 𝑋 be an observable with probability measure 𝑃 for which

𝐸 (𝑋) < ∞, likewise for 𝑌 with probability measure 𝑄. Define the metric 𝑑1(·, ·) between

𝑃 and 𝑄 by 𝑑1(𝑃,𝑄) = inf𝐸 ( |𝑋 − 𝑌 |). By Lemma 8.1 of Bickel and Freedman (1981),

𝑑1(·, ·) is a metric. The empirical distribution function 𝐹𝑛 (𝑤 |x) converges in distribution

to the true distribution function of the errors 𝐹 (𝑡). By Lemma 8.3 of Bickel and Freedman

(1981), 𝑑1(𝐹𝑛 (𝑡), 𝐹 (𝑡)) → 0 as 𝑛→ ∞. Given 𝐾𝑖 = 𝑙𝑖, define the functionals

∫
x𝑑�̄�𝑛 =

1
𝑛

𝑛∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

x𝑖 ( 𝑗), and
∫

x2𝑑�̄�𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝐾𝑖∑︁
𝑗=1

x2
𝑖 ( 𝑗).

Assume 𝐹𝑛 and 𝐹 are in 𝐿1 and 𝐿2, then by Bickel and Freedman (1981), 𝑑1(𝐹𝑛, 𝐹) → 0

implies
∫
∥x∥𝑑�̄�𝑛 → 𝐸 (∥x∥) and

∫
∥x∥2𝑑�̄�𝑛 → 𝐸 (∥x∥2). Then �̂�2

𝑞𝑟

𝑎.𝑠.→ 𝜎2
𝑞𝑟 in bootstrap

probability, and consequently �̂�
𝑎.𝑠.→ 𝚵.

4. SIMULATION AND APPLICATION

A simulation study was performed using the R Studio software package to investigate

the performance of proposed corrected regression parameter estimators. The specific

objectives of this study were: (i) to examine the effect of sample size (𝑛) on the distributional

properties of �̂�𝐶 ; (ii) to examine the bias and variance of �̂�𝐶 .
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Survival Times: We generate survival times 𝑡 by

𝑡 = 𝜃2 [−(log𝑈) exp(−𝜷′x)]
1
𝜃1 ,

where

𝑡 = survival time

𝜃1 = shape parameter of the Weibull distribution

𝜃2 = scale parameter of the Weibull distribution

𝜷 = 𝑝 dimensional regression parameter vector

x = 𝑝 dimensional covariates vector

𝑈 = randomly generated value from Uniform(0, 1)

Next, we show how we obtained this equation. First, note that

𝜆(𝑢) = 𝑓 (𝑢)
1 − 𝐹 (𝑢) = − 𝑑

𝑑𝑢
log[1 − 𝐹 (𝑢)],

and

Λ(𝑡) =
∫ 𝑡

0
𝜆(𝑢)𝑑𝑢 = − log[1 − 𝐹 (𝑡)] . (9)

For a Weibull distribution with shape parameter (𝜃1) and scale parameter(𝜃2), the cumulative

distribution function is given by

𝐹 (𝑡) = 1 − exp

[
−

(
𝑡

𝜃2

)𝜃1
]
. (10)

Hence by (9) and (10), we get the expression of baseline cumulative hazard function for a

Weibull distribution by

Λ0(𝑡) =
(
𝑡

𝜃2

)𝜃1

. (11)
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Moreover, for proportional hazard function,

𝜆(𝑢) = 𝜆0(𝑢) exp(𝜷′x). (12)

Therefore,

− log[1 − 𝐹 (𝑡)] = Λ(𝑡) =
∫ 𝑡

0
𝜆(𝑢)𝑑𝑢 =

∫ 𝑡

0
[𝜆0(𝑢) exp(𝜷′x)]𝑑𝑢 = Λ0(𝑡) exp(𝜷′x) (13)

We also know that,

1 − 𝐹 (𝑡) ∼ uniform(0, 1). (14)

Hence by (11), (12) , (13) and (14) we obtain,

− log𝑈 =

(
𝑡

𝜃2

)𝜃1

exp(𝜷′x).

By solving for 𝑡, we get

𝑡 = 𝜃2 [−(log𝑈) exp(−𝜷′x)]
1
𝜃1 (15)

True Parameter Values: In our study, we set 𝜃1 = 1, 𝜃2 = 1.5, 𝜷 = {−1, 1}, 𝑋1 ∼ 𝑁 (0, 1),

and 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5).

Censoring: We generate censoring times from an exponential distribution randomly. 𝐶𝑖 ∼

𝑒𝑥𝑝(𝜃). In our study, we set 𝜃 = 0.75. Next, we calculate times 𝑇𝑖 by 𝑇𝑖 = 𝑚𝑖𝑛(𝑡𝑖, 𝐶𝑖). We

will also create an indicator variable 𝛿𝑖 = 𝐼 (𝑡𝑖 ≥ 𝐶𝑖) to indicate if 𝑇𝑖 is a survival time or a

censoring time.

Error Contaminated Variables: We add a gaussian noise with variance 𝜎2 to 𝑋1 to create

error contaminated version of 𝑋1, say 𝑋1.
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By this point, we have the knowledge to generate an observation tuple,

𝑂𝑖 =
{
𝑋1𝑖, �̃�1𝑖, 𝑋2𝑖, 𝑇𝑖, 𝛿𝑖

}
.

Recurrent Event Data: To generate the recurrent events data, we perform the following

steps. First, we create a database with 1 million observation tuples, say 𝐷. Next, we

split this database into two different sub databases based on the value of 𝛿. Let us call

the sub-database with 𝛿 = 0 as 𝐷𝑐 and the sub-database with 𝛿 = 1 as 𝐷𝑛𝑐. Suppose

we need to generate recurrent events data for 𝑛 ∈ {40, 80, 100, 200} subjects. To do that,

we determine how many recurrent events are experienced by each subject 𝑗 , say 𝐾 𝑗 , by

randomly selecting a number from {0, 1, 2, 3, 4, 5, 6}. After that, we randomly select 𝐾 𝑗

number of observations from 𝐷𝑛𝑐 sub-database followed by one observation tuple from 𝐷𝑐

to mimic the recurrent events observed by the 𝑗 th subject. Once we have generated the

recurrent events data for each subject of the study, we use the entire dataset to find naive

regression parameter estimates by using coxph function in surviavl package in R. We

create 100 data sets and find the mean of regression parameter estimates, which we call the

naive estimates 𝛽1 and 𝛽2. We also find the standard deviation of the regression parameter

estimates. Similarly, using our proposed equation, for each of the generated data set, we find

the corrected regression parameter estimates. Finally, we obtain the mean of the corrected

regression parameter estimates, which are denoted by 𝛽1𝑐 and 𝛽2𝑐. We also find and the

standard deviation of these corrected estimates. We change the value of 𝜎 to take the values

{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, to observe the ability of our proposed estimator to handle

the error. We refer to the model which ignores the measurement errors as a naive fit and to

the one which incorporates the measurement error in estimation via corrected score as the

corrected fit. In the second part of our simulation study, We kept 𝛽2 = 1 and error variance

𝜎2 = 0.12 fixed and varied 𝛽1 ∈ (−1,−.8,−.6,−.4,−.2,−.1, .1, .2, .4, .6, .8, 1), to observe

how naive and corrected estimators behave.
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4.1. SIMULATION RESULTS

The simulation results are summarized in Figure 1 and Tables 1-4. The pictorial

representation in Figure 1 encapsulates the use of estimation based on the corrected partial

score rather than the naive approach in the parameter estimation for the predictor recorded

with measurement error. While in the naive case, bias increases with the magnitude of

the effect of the predictor on the hazard of recurrence, we see that the corrected partial

likelihood has created an estimation scheme with minimal, if not nonexistent, bias. This

observation holds irrespective of 𝑛. Overall, standard error trivially decreases with 𝑛. The

parameter estimate for the predictor without measurement error has been estimated with

minimal bias in both the partial and the corrected partial scores. We measure the accuracy

of estimating the parameter without measurement error by using the mean square error. We

call MSE(naive) for the estimation based on the partial likelihood, and MSE(corrected)

the one based on the corrected partial likelihood. Expectedly, these values are negligible

and asymptotically similar. Correction is expected to have a minimal and negligible effect

on this covariate. The results align with published literature in single events where the

corrected likelihood outperforms the naive approach.

4.2. APPLICATION: RHDNASE DATA

This is a pulmonary exacerbation study that has appeared in many publications,

including Fuchs et al. (1994), Cook and Lawless (2007), and Yi (2017) to name a few. This

double-blind, randomized clinical trial aims to assess the effect of rhDNase, a recombinant

deoxyribonuclease I enzyme, versus placebo, on respiratory exacerbations among patients

with cystic fibrosis. Six hundred and forty-five patients were recruited for the trial, and each

patient was followed up for about 169 days. We use a modified version of these data as an

illustrative example. During the study, an argument was made concerning forced expiratory

volume (FEV) measurements being recorded with measurement errors because two measure-
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Figure 1. Bias assessment comparing the naive approach to the corrected.

ments taken a few minutes apart differed. For this illustrative example, we chose the seed

value 12321 in R to create time-varying FEV values, for each subject, at each occurrence

of respiratory exacerbation, using the subject-specific ordered measurements FEV1, FEV2

according to a Uniform(FEV1, FEV2). The dataset with time-varying FEV is posted on

our web domain (https://www.myweb.uiowa.edu/gzamba/) for a reproducibility check

on our proposed methods. Next, we add Gaussian noise to the time-varying FEV measure-

ments, using the seed 121 in R, to create a covariate with measurement error. We use 𝜎 = 0

as a reference value, which would be the basis for our comparison; degeneracy under which

both the corrected and uncorrected methods should yield similar results. We increase the

error variance so that the resultant FEV value is still within the range of clinically acceptable

and realistic pulmonary function values. By increasing the measurement error variance,
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Table 1. Weibull Intensity: �̄� (𝑡; 𝜽) = 𝑒−(𝜃2𝑡) 𝜃1 ; 𝜃2 = 1; 𝜃1 = 1.5; 𝛽2 = 1, 𝑛 = 40, 80.

N(0, .1)
𝑛 𝛽1 𝛽1 𝑠𝑒(𝛽1) 𝛽1𝑐 𝑠𝑒(𝛽1𝑐) 𝛽2 𝑠𝑒(𝛽2) 𝛽2𝑐 𝑠𝑒(𝛽2𝑐)

-1.0 -0.839 0.095 -0.980 0.143 0.978 0.238 1.036 0.240
-0.8 -0.678 0.109 -0.836 0.158 1.039 0.214 1.112 0.217
-0.4 -0.365 0.117 -0.415 0.106 1.054 0.238 1.049 0.240
-0.2 -0.177 0.117 -0.230 0.128 1.062 0.249 1.040 0.247

40 -0.1 -0.078 0.080 -0.081 0.120 1.002 0.248 1.040 0.230
0.1 0.096 0.085 0.093 0.124 1.052 0.238 1.063 0.193
0.2 0.170 0.079 0.183 0.125 1.019 0.260 1.028 0.207
0.4 0.347 0.101 0.411 0.134 1.013 0.208 1.024 0.256
0.8 0.709 0.138 0.773 0.150 1.067 0.260 1.079 0.244
1.0 0.859 0.116 1.021 0.169 0.968 0.196 1.111 0.270

-1.0 -0.840 0.079 -0.947 0.093 0.991 0.153 1.008 0.170
-0.8 -0.687 0.079 -0.801 0.088 1.018 0.166 1.052 0.187
-0.4 -0.342 0.064 -0.395 0.084 1.005 0.171 1.030 0.156
-0.2 -0.187 0.062 -0.187 0.079 1.035 0.165 1.031 0.158

80 -0.1 -0.083 0.068 -0.105 0.059 1.019 0.164 0.976 0.154
0.1 0.075 0.062 0.090 0.078 1.026 0.177 1.051 0.131
0.2 0.195 0.062 0.187 0.056 1.035 0.128 1.024 0.160
0.4 0.338 0.064 0.385 0.089 1.006 0.139 0.980 0.139
0.8 0.665 0.075 0.784 0.093 0.972 0.156 1.046 0.146
1.0 0.831 0.070 0.959 0.100 1.002 0.137 1.029 0.158

we verify in this illustrative example how the naive approach would progressively lead us

to spurious inference about an FEV effect and how this inconvenience has been repaired

through correction. We recognize that our method is not one-size-fits-all. The last row of

table 4 highlights instants beyond which estimation crumbles down for the corrected partial

likelihood—a situation partly addressed by Kong and Gu (1999) that failure in estimation

for the corrected partial score tends to occur when | 𝛽1𝜎 |≥ 0.8; though in this example

estimation appears to reasonably hold up to | 𝛽1𝜎 |≤ 1. The breakdown observed in the

corrected score coefficient estimates is due to the divergence of the iteration process.
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Table 2. Weibull Intensity: �̄� (𝑡; 𝜽) = 𝑒−(𝜃2𝑡) 𝜃1 ; 𝜃2 = 1; 𝜃1 = 1.5; 𝛽2 = 1, 𝑛 = 100, 200.

N(0, .1)
𝑛 𝛽1 𝛽1 𝑠𝑒(𝛽1) 𝛽1𝑐 𝑠𝑒(𝛽1𝑐) 𝛽2 𝑠𝑒(𝛽2) 𝛽2𝑐 𝑠𝑒(𝛽2𝑐)

-1.0 -0.826 0.069 -0.984 0.100 0.960 0.132 1.058 0.140
-0.8 -0.674 0.060 -0.807 0.086 0.984 0.127 1.017 0.127
-0.4 -0.354 0.063 -0.388 0.066 1.040 0.151 1.007 0.119
-0.2 -0.177 0.060 -0.199 0.068 1.031 0.146 1.006 0.135
-0.1 -0.086 0.064 -0.101 0.058 0.993 0.126 1.033 0.137

100 0.1 0.093 0.059 0.103 0.056 1.028 0.142 0.988 0.131
0.2 0.183 0.063 0.211 0.072 1.057 0.140 1.029 0.115
0.4 0.367 0.063 0.399 0.070 1.016 0.144 1.017 0.115
0.8 0.685 0.070 0.784 0.083 1.011 0.141 1.026 0.166
1.0 0.839 0.068 0.965 0.094 0.989 0.141 1.010 0.149

-1.0 -0.821 0.039 -0.962 0.065 1.018 0.089 1.004 0.106
-0.8 -0.668 0.053 -0.763 0.051 0.969 0.097 1.026 0.103
-0.4 -0.338 0.039 -0.401 0.051 1.011 0.112 1.022 0.103
-0.2 -0.182 0.046 -0.210 0.049 1.028 0.105 1.014 0.093
-0.1 -0.092 0.045 -0.109 0.044 1.015 0.081 1.012 0.093

200 0.1 0.079 0.035 0.101 0.043 1.013 0.081 1.048 0.109
0.2 0.177 0.042 0.208 0.047 1.016 0.099 1.022 0.089
0.4 0.348 0.046 0.404 0.040 1.004 0.095 1.033 0.100
0.8 0.678 0.043 0.758 0.050 0.976 0.107 1.001 0.099
1.0 0.832 0.057 0.968 0.067 1.015 0.101 1.036 0.111

Table 3. MSE(𝛽2): Error for the covariate with no measurement error.

𝑛 40 80 100 200
MSE(naive) 0.0016 0.0005 0.0009 0.0004
MSE(corrected) 0.0041 0.0011 0.0007 0.0006
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Table 4. Weibull Intensity: �̄� (𝑡; 𝜽) = 𝑒−(𝜃2𝑡) 𝜃1 ; 𝜃2 = 1; 𝜃1 = 1.5; (𝛽1, 𝛽2) = (−1, 1).

N(0, 𝜎)
𝑛 𝜎 𝛽1 𝑠𝑒(𝛽1) 𝛽1𝑐 𝑠𝑒(𝛽1𝑐) 𝛽2 𝑠𝑒(𝛽2) 𝛽2𝑐 𝑠𝑒(𝛽2𝑐)

0.5 -0.704 0.085 -1.024 0.228 0.988 0.231 1.046 0.295
0.4 -0.737 0.079 -0.980 0.193 1.012 0.224 1.129 0.265
0.3 -0.848 0.094 -0.965 0.155 0.960 0.231 1.042 0.256

40 0.2 -0.909 0.107 -0.979 0.135 0.979 0.237 1.055 0.243
0.1 -0.926 0.099 -0.911 0.116 1.029 0.227 1.036 0.193
0.05 -0.947 0.122 -0.976 0.120 1.018 0.211 1.099 0.234
0.01 -0.938 0.144 -0.928 0.134 0.956 0.177 1.044 0.227

0.5 -0.685 0.071 -0.983 0.144 0.916 0.155 1.055 0.181
0.4 -0.772 0.086 -0.929 0.086 0.966 0.152 1.049 0.162
0.3 -0.840 0.077 -0.981 0.115 0.960 0.126 1.003 0.130

80 0.2 -0.930 0.091 -0.983 0.089 1.005 0.128 1.025 0.150
0.1 -0.911 0.066 -0.940 0.082 0.989 0.135 1.056 0.138
0.05 -0.957 0.081 -0.971 0.080 1.068 0.124 1.014 0.157
0.01 -0.941 0.089 -0.933 0.071 1.005 0.132 1.001 0.161

0.5 -0.683 0.068 -0.957 0.139 0.956 0.133 1.015 0.173
0.4 -0.773 0.056 -0.975 0.108 1.026 0.143 1.118 0.173
0.3 -0.842 0.075 -0.976 0.090 0.971 0.127 1.058 0.133

100 0.2 -0.937 0.074 -1.002 0.091 1.011 0.135 0.996 0.136
0.1 -0.936 0.063 -0.957 0.078 0.997 0.137 1.042 0.124
0.05 -0.966 0.066 -0.939 0.075 1.016 0.129 1.029 0.133
0.01 -0.936 0.068 -0.947 0.071 1.011 0.154 1.024 0.120

0.5 -0.695 0.045 -0.938 0.065 0.950 0.084 1.022 0.104
0.4 -0.766 0.042 -0.941 0.059 1.000 0.081 1.095 0.110
0.3 -0.833 0.052 -0.976 0.057 0.995 0.084 1.021 0.085

200 0.2 -0.929 0.051 -0.977 0.059 1.004 0.108 1.029 0.097
0.1 -0.915 0.044 -0.938 0.047 0.978 0.076 1.004 0.094
0.05 -0.944 0.055 -0.945 0.054 1.027 0.098 1.037 0.073
0.01 -0.937 0.051 -0.932 0.049 1.013 0.109 1.010 0.087
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Table 5. Regression Parameter Estimates.

𝜎 𝛽1 𝛽2 𝛽1𝑐 𝛽2𝑐

0.000 -1.7025 -0.2734 -1.7004 -0.2729
0.050 -1.6201 -0.2695 -1.6884 -0.2678
0.100 -1.4338 -0.2665 -1.6763 -0.2644
0.150 -1.2153 -0.2646 -1.6612 -0.2603
0.200 -1.0102 -0.2636 -1.6446 -0.2566
0.300 -0.6944 -0.2633 -1.6125 -0.2467
0.400 -0.4910 -0.2640 -1.5873 -0.2370
0.500 -0.3610 -0.2649 -1.5774 -0.2240
0.600 -0.2752 -0.2657 -1.6094 -0.2438
0.700 -0.2166 -0.2665 421.8588 86.7149

5. CORRECTED BASELINE HAZARD AND PROPERTIES

The baseline hazard plays a vital role in the Cox model. Whether time-varying

or not, covariates act multiplicatively on the baseline hazard and give a real-time failure

rate at time 𝑡. The Breslow cumulative baseline hazard was developed based on error-

free covariates. So, any errors in the covariates measurement hinder the interpretation of

the baseline hazard. It has been shown in the lifetime literature that the baseline hazard

estimator based on the true covariates is consistent and converges to Gaussian processes

when properly standardized. However, these large sample properties do not hold when

the covariates are error-prone. As a consequence, a corrected baseline hazard needs to be

developed. Some work has been done for the right censored data under the assumption

of normally distributed errors, while large sample properties are derived, such as in Kong

and Gu (1999). Below we propose a corrected baseline hazard for recurrent events with

covariates under measurement errors. Our corrected estimator generalizes that in Augustin

(2004) and Kong and Gu (1999) to recurrent events and is not restricted to normally

distributed errors. The cumulative baseline hazard estimator based on error-free covariates

under the Cox model was derived in Adekpedjou and Stocker (2015), Peña et al. (2007),
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and given by

Λ̂0(𝑠★, x(𝑡) | �̂�) =
∫ 𝑡

0

𝑁 (𝑠★, 𝑑𝑤)
𝑌 (𝑠★, 𝑤 | �̂�)

,

where �̂� is the estimate based on error-free covariates. We seek a corrected estimator of

Λ0(𝑡), say Λ̆0(𝑠, 𝑡; z| �̆�) that satisfies

𝐸𝝐 (Λ̂0(𝑠★, x(𝑡) | �̂�)) = Λ̆0(𝑠★, z(𝑡) | �̆�).

To that end, we assume expectation and integral formula are exchangeable, and we observe

that from Taylor expansion of the ratio

𝐸𝝐

(
1

𝑆(0) (𝑠★, x(𝑡) |𝜷)

)
=

1
𝐸𝝐 (𝑆(0) (𝑠★, x(𝑡) |𝜷))

=
1

𝜙(𝜷)𝑆(0) (𝑠★, z(𝑡) |𝜷)
+ 𝑜𝑝 (1).

Then, it is not difficult to see that a corrected baseline cumulative hazard estimator for Λ0(𝑡)

based on the observables with covariates {x𝑖 (𝑡) : 𝑖 = 1, ..., 𝑛} is given by

Λ̆0(𝑠★, 𝑡 | �̆�) = 𝜙( �̆�)
∫ 𝑡

0

𝑁 (𝑠★, 𝑑𝑤)
𝑆(0) (𝑠★, x(𝑡) | �̆�))

, (16)

where �̆� is the corrected estimate of 𝜷. If the errors are assumed to be normally distributed,

then we obtain a similarly corrected baseline hazard as those in Kong and Gu (1999). The

corrected cumulative hazard in (16) is also similar in form to the one proposed by Augustin

(2004) in the discrete failure time case. The consistency of Λ̆0(𝑠★, 𝑡 | �̆�) is the consequence

of the consistency of 𝜙( �̆�) and Λ̂0(𝑠★, x(𝑡) | �̂�); from Theorem 2 of Adekpedjou and Stocker

(2015).

Theorem 7 As 𝑛 → ∞, the process {
√
𝑛(Λ̆0(𝑠★, 𝑡 | �̆�) − Λ0(𝑡))} converges to a zero mean

Gaussian process with variance function given by Γ(𝑠, 𝑡1 ∧ 𝑡2).
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Proof: Write

√
𝑛(Λ̆0(𝑠★, 𝑡 | �̆�) − Λ0(𝑡)) =

√
𝑛(Λ̆0(𝑠★, 𝑡 | �̆�) − Λ̆0(𝑠★, 𝑡 |𝜷0))

+
√
𝑛(Λ̆0(𝑠★, 𝑡 |𝜷0) − Λ0(𝑡))

= 𝐶1 + 𝐶2.

Consider 𝐶1. Taylor expanding 𝐶1 yields

𝐶1 = ( �̆� − 𝜷0)
[
∇𝜷𝜙(𝜷★)

∫ 𝑡

0

∑𝑛
𝑖=1 𝑁𝑖 (𝑠★, 𝑑𝑢)
𝑆(0) (𝑠★, 𝑢 |𝜷★)

]
−( �̆� − 𝜷0)∇𝜷

[
𝜙(𝜷★)

∫ 𝑡

0

𝐸 (𝜷★, x(𝑢))
𝑆(0) (𝑠★, x(𝑢) |𝜷★)

𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠★, 𝑑𝑢)
]

= −( �̆� − 𝜷0)𝐻 (𝜷★),

where 𝜷★ lies in the line segment between �̆� and 𝜷0 and 𝜷★
𝑝
→ 𝜷0 as 𝑛 → ∞. Next,

using the corrected expression of 𝑆(0) (𝑠★, x(𝑡) |𝜷) and 𝑆(1) (𝑠★, x(𝑡) |𝜷)), it can be shown

that, as 𝑛→ ∞, 𝐻 (𝜷★) converges to −
∫ 𝑡

0 𝑒(𝜷0, 𝑢)𝜆0(𝑢)𝑑𝑢. Noting that 𝑆(0) (𝑠★, x(𝑡) |𝜷0) =

𝜙(𝜷0)𝑆(0) (𝑠★, z(𝑡) |𝜷0), we have

𝐶2 = Λ̆0(𝑠★, 𝑡 | �̆�) − Λ0(𝑡)

=

∫ 𝑡

0

𝑑𝑀 (𝑠, 𝑑𝑢)
𝑆(0) (𝑠★, z(𝑢))

+ 𝑜𝑝 (1).



55

Hence, for large 𝑛

√
𝑛(Λ̆0(𝑠★, 𝑡 | �̆�) − Λ0(𝑡)) =

√
𝑛𝐻 (𝜷★) ( �̆� − 𝜷0)

+
√
𝑛

∫ 𝑡

0

∑𝑛
𝑖=1 𝑀𝑖 (𝑠, 𝑑𝑢)
𝑆(0) (𝑠★, z(𝑢))

=
1
√
𝑛

∫ 𝑡

0

𝑑𝑀 (𝑠, 𝑑𝑢)
𝑆(0) (𝑠★, z(𝑢))

+ 1
√
𝑛
𝐻 (𝜷0)

[
1
𝑛
𝐼𝑛 (𝜷0; 𝑠★, 𝑡)

]−1
U𝑛 (𝜷0, 𝑠

★, x(𝑡))

=

𝑛∑︁
𝑖=1
𝑊𝑖 (𝜷0; 𝑠★, 𝑡).

Therefore,
√
𝑛(Λ̆0(𝑠★, 𝑡 | �̆�) −Λ0(𝑡)) can be viewed as the sum of 𝑛 independent components,

each of which is a 𝑝-vector. This is the sum of 𝑛 independent random process whose finite-

dimensional distribution converges to those of 𝑊∞(𝑠, 𝑡). By the Functional Central Limit

theorem, the sum converges weakly to a zero-mean Gaussian process with covariance matrix

Γ(𝑠, 𝑡1∧ 𝑡2) that can be estimated consistently by Γ̆(𝑠, 𝑡1∧ 𝑡2) = 𝐸 (𝑊𝑖 (𝑠, 𝑡1; �̆�)𝑊𝑖 (𝑠, 𝑡2; �̆�)).

∥

6. MISSPECIFIED ERRORS MODEL

A fundamental assumption underlying classical results on the properties of estima-

tors obtained from the score process, namely the maximum likelihood estimators, is that the

distribution or model determining the behavior under investigation is well specified. For

example, thus far in this manuscript, we have assumed that the measurement errors have

the additive form x = z + 𝝐 . However, the additive model for errors may be erroneous,

and the real form may be another unknown model. Perhaps the Berkson model z = x + 𝝐 ,

or a mixture of the Berkson and additive, namely x = u + 𝝐 , where u is a latent variable

having mean 𝜇𝑢 and a variance covariance matrix Σ𝑢. The true error model can also be

a multiplicative or a transformed additive model. In many situations, knowing how the

errors act on the covariates is hard. Suppose the measurement errors model is not correctly
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specified. In that case, it is natural to ask what would have resulted in properties such

as consistency and the convergence in law of the properly standardized corrected partial

likelihood estimator �̆�. Does this estimator still converge asymptotically to some limit? If

so, does this limit have any practical value? Does the asymptotic normality of the properly

standardized �̆� still hold under the misspecified errors model? These questions can be

answered using the theory of misspecified models. White and Domowitz (1984) provides

a unified framework on the properties of maximum likelihood estimators obtained under

various types of misspecification in different contexts.

6.1. PROPERTIES OF THE CORRECTED ESTIMATOR UNDER MISSPECIFIED
ERRORS

To set the stage for this subsection, let 𝑙𝑃 (𝜷; 𝑠★, 𝑡) be the log-profile likelihood

process under the working errors model, and 𝜷★𝑛 , the solution to 𝑙𝑃 (𝜷; 𝑠★, 𝑡) = 0, if one

exists. Suppose our true measurement errors model is defined by some unknown function

𝜿(x, 𝝐). Further, let 𝑙𝑃 (𝜷; 𝑠★, 𝑡) be the corrected likelihood under the true measurement

errors 𝜿(x, 𝝐). If 𝜷 is in a compact subset B of ℜ𝑝, the solution �̃�𝑛 to 𝑙 (𝜷; 𝑠★, 𝑡) = 0 is

defined by

�̃�𝑛 = argmax𝜷∈B𝑙𝑃 (𝜷; 𝑠★, 𝑡).

Likewise,

𝜷★𝑛 = argmax𝜷∈B𝑙𝑃 (𝜷; 𝑠★, 𝑡)

is the sequence of the solution under the working likelihood. The first question is, does a

sequence of solutions exist under the working model assumption? The answer is yes, given

in the following lemma 2 of Jennrich (1969).

Lemma 3 If B is a compact subset ℜ𝑝. Given the data O, there exists a sequence 𝜷★𝑛

maximizing 𝑙 (𝜷; 𝑠★, 𝑡), that is
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𝜷★𝑛 = argmax𝜷∈B𝑙𝑃 (𝜷; 𝑠★, 𝑡).

Following White and Domowitz (1984), to describe the discrepancy between the sequence

of estimators { �̃�𝑛 : 𝑛 = 1, 2, 3...} and { �̆�𝑛 : 𝑛 = 1, 2, 3...}, we use the Kullback-Leibler

(Kullback and Leibler (1951)) information criterion (KLI). The KLI gives an idea about

how far apart the two solutions are and is given by

KLI(O; 𝜷) = 𝐸𝜿(x,𝝐)

[
𝑙𝑃 (𝜷; 𝑠★, 𝑡)
𝑙𝑃 (𝜷; 𝑠★, 𝑡)

]
.

The following theorem is on the large sample behavior of the sequence �̆�𝑛, the solution

obtained using the working likelihood.

Theorem 8 As 𝑛→ ∞, we have:

(a) 𝜷★𝑛
𝑝
→ 𝜷★ ≠ 𝜷0

(b)
√
𝑛(𝜷★𝑛 − 𝜷★) 𝑑→ 𝑁𝑝 (0,𝚺−1(𝜷★)), where 𝚺−1(𝜷★)) is given by

𝚺−1(𝜷★) =
(
[I (𝜷★; 𝑠★, 𝑡)]−1)′Ψ(𝜷★; 𝑠★, 𝑡) [I (𝜷★; 𝑠★, 𝑡)]−1,

and can be consistently estimated with the observables data and expectation for the Fisher

information taken under 𝜿(x, 𝝐) the true error model, Ψ(·; 𝑠★, 𝑡) is the same as in 4.

Remark 1 The previous theorem gives us two important results when the model for errors

is misspecified. First, the root of the corrected score under the misspecified model is still

consistent- albeit it does not converge to the true value of 𝜷, and we still have convergence

to a multivariate normal distribution when the misspecified estimator is standardized. The

other significant result is the fact that we can quantify the magnitude of the inconsistency,
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if any, by looking at 𝜷★𝑛 − 𝜷0. To obtain 𝜷★𝑛 , one needs to numerically solve the equation

Ũ(𝜷; 𝑠★, 𝑡) =

𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − 𝐸𝜿(x,𝝐) (𝑠★, x(𝑤))]𝑁𝑖 (𝑠★, 𝑑𝑤) (17)

=

𝑛∑︁
𝑖=1

∫ 𝑡

0

[
x𝑖 (𝜑−1

𝑖 (𝑤)) −
𝐸𝜿(x,𝝐) (𝑆(1) (𝑠★, x(𝑤) |O))
𝐸𝜿(x,𝝐) (𝑆(0) (𝑠★, x(𝑤) |O))

]
𝑁𝑖 (𝑠★, 𝑑𝑤)

= 0.

Proof: (a) We apply Theorem 1.14 page 28 of Yi and Lawless (2012). We have two tasks:

(𝑖) show that 𝑙 (𝜷; 𝑠★, 𝑡) = ln[𝐿 (𝜷; 𝑠★, 𝑡)] is bounded by an integrable function concerning

the distribution of the true errors and (𝑖𝑖) KLI(O; 𝜷) has a unique minimum at 𝜷★𝑛 in B, a

compact subset of ℜ𝑝. We begin with (i). Observe that the corrected score under the true

errors model is

Ũ(𝜷; 𝑠★, 𝑡) :=
𝑛∑︁
𝑖=1

∫ 𝑡

0

[
x𝑖 (𝜑−1

𝑖 (𝑤)) −
𝐸𝜿(x,𝝐) (𝑆(1) (𝑠★, 𝑤; x|O))
𝐸𝜿(x,𝝐) (𝑆(0) (𝑠★, 𝑤; x|O))

]
𝑁𝑖 (𝑠★, 𝑑𝑤).

The concept of manageability can be used to show that an integrable function bounds

it. We assume without loss of generality that x𝑖𝑘 is positive. Because 𝑥𝑖𝑘 has a total

variation bounded by a constant, and 𝑁𝑖 (𝑠, 𝑡) is a sum of indicator functions that are

increasing functions for each 𝑖, we conclude that each of the 𝑝-components of 𝑙𝑃 (𝜷; 𝑠★, 𝑡)

has pseudo-dimension not exceeding 10 (cf. Pollard (1990)) since the integrand have

pseudo-dimension of at most 1. Therefore, 𝑙𝑃 (𝜷; 𝑠★, 𝑡) is manageable, hence bounded by

an integrable function with respect to the true probability measure of the errors, which also

guarantees that KLI(O; 𝜷) is well defined. To prove part (𝑖𝑖), let 𝑙 (𝜷; 𝑠★, 𝑡) be the true

likelihood under the true errors model, and 𝑙 (𝜷; 𝑠★, 𝑡) be the working likelihood, that is one

under the misspecified model. Define the random function D(𝜷; 𝑠★, 𝑡) in B by

D(𝜷; 𝑠★, 𝑡) =
1
𝑛
𝐸𝜿(x,𝝐) [𝑙 (𝜷0; 𝑠★, 𝑡) − 𝑙 (𝜷; 𝑠★, 𝑡)] (18)

=
1
𝑛
𝐸𝜿(x,𝝐)

[
log

(
𝐿 (𝜷0; 𝑠★, 𝑡)
�̃� (𝜷; 𝑠★, 𝑡)

)]
. (19)
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Also, define the deterministic function

𝑑 (𝜷; 𝑠★, 𝑡) =
∫ 𝑡★

0

[
(𝜷0 − 𝜷)′x(𝜑−1(𝑤)) − ln

[
𝑠(0) (𝑠★, 𝑤 |𝜷)
𝑠(0) (𝑠★, 𝑤 |𝜷0)

] ]
𝜆0(𝑤)𝑑𝑤. (20)

These functions are twice-differentiable concerning 𝜷 ∈ B. Observe that 𝜷★𝑛 is the natural

estimator of the working likelihood. Furthermore, �̃� is the parameter value that minimizes

KLI(O; 𝜷) since the numerator in KLI is a function of the true likelihood, and the denomi-

nator is the working likelihood with expectation taking with respect to the true measurement

errors model distribution. Assume that, for 𝑚 = 0, 1, 2

sup
(𝜷,𝑡)∈B×[0,𝜏]

∥𝑆(𝑚)
𝑖

(𝜷; 𝑠, 𝑡) − 𝐸𝜿(x,𝝐)
(
𝑆
(𝑚)
𝑖

(𝜷; 𝑠, 𝑡)
)
∥

𝑝
→ 0,

with 𝐸𝜿(x,𝝐)
(
𝑆
(𝑚)
𝑖

(𝜷; 𝑠, 𝑡)
)
= 𝑠★(𝑚) (𝜷; 𝑠, 𝑡). Furthermore, observe that �̃�𝑛 is minimizer of

𝜷 ↦→ 𝐷 (𝑠★, 𝜷). We also observe that

sup
(𝜷,𝑡)∈B×[0,𝜏]

∥D(𝜷; 𝑠★, 𝑡) − 𝑑 (𝜷; 𝑠★, 𝑡)∥
𝑝
→ 0,

as 𝑛 → ∞. Easy calculations show that the first derivative of D(𝜷; 𝑠★, 𝑡) is the score

process, whose derivative is the Fisher information matrix with limit coinciding with the

Hessian of 𝑑 (𝜷; 𝑠★, 𝑡). The Hessian of 𝑑 (𝜷; 𝑠★, 𝑡) turns out to be positive definite, which

means that 𝜷 ↦→ 𝐷 (𝜷; 𝑠★, 𝑡) is strictly convex for 𝜷 ∈ B. We take 𝜷★𝑛 to be the minimizer

of 𝐷 (𝑠★, 𝜷) inside B, and 𝜷★ to be the unique minimizer of 𝑑 (𝜷; 𝑠★, 𝑡) in B. Therefore,

by Theorem 2.2 of White and Domowitz (1984), we obtain the convergence in probability

of the sequence {𝜷★𝑛 : 𝑛 = 1, 2, 3, ...} to a value 𝜷★ minimizing the KLI(O; 𝜷). The proof

of Part (b)follows the convergence to the multivariate normal distribution of the properly

standardized corrected maximum likelihood when the error terms are correctly specified.
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7. CONCLUSION AND DISCUSSION

Through our exposition, we have shown, in the context of recurrent events, that

correcting the profile likelihood and the estimating equations is a wise course of action in

the presence of suspected measurement errors in the Cox model covariates. We have further

provided a mechanism for correcting the baseline integrated hazard in the presence of mea-

surement errors–as it is a crucial ingredient for inference in reliability and recurrence. We

operated under the additive measurement errors model and have shown that the corrected

estimators proposed are consistent and, when properly standardized, converge to Gaussian

processes. We further utilized the Kullback-Leibler information criterion and misspecifi-

cation theorems from Domowitz and White (1982) to show that when the errors model is

misspecified by taking a form that differs from the additive, bias can be easily quantified and

that the new estimators obtained under this scenario converge when properly standardized,

although not to the true parameter values. The latter indicates the size of the bias. Finally,

we provided simulation results supporting bias and estimation and successfully applied our

findings to open-source rhDNase data. We hope that practitioners will be convinced not to

settle down for modeling without prior thoughts given to measurement errors but instead

choose the course of wisdom by pertinently questioning the mechanism that generates the

data at hand and scrutinizing whether bias has crept into the process. Furthermore, we

provided a theoretical means for estimating the magnitude of the errors. We plan to dissem-

inate the current work by software that will be published on the comprehensive R archive

network and adaptable to practitioners with applied inclinations.
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ABSTRACT

Consider that units are monitored for multiple occurrences of an event. At each

occurrence, covariates contributing to those event times are recorded, with at least one

of the covariates subject to measurement error. It is well known that error-contaminated

covariates can distort inference and create biased and inconsistent estimators if not prop-

erly accounted for. In this manuscript, we propose a corrected score function under the

assumption of the classical additive errors model while letting the effect of covariates be

additive. Simulation studies show that the proposed estimators approximate the true values

of regression parameters well. Finally, the proposed methods are applied to the rhDNase

dataset.

Keywords: Recurrent events; Covariates measurement error; Corrected score; Additive

model; Counting processes
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1. INTRODUCTION

In survival analysis, the goal is to model the time until an event of interest occurs,

such as the failure of a mechanical component or the death of a patient. The time-to-event

data is often right-censored, meaning that some subjects do not experience the event by the

end of the study or are lost to follow-up before the event occurs. The Cox proportional

hazard model is a widely used method in survival analysis, which assumes that the hazard

function at any time 𝑡 is proportional to a set of covariates or predictors as below:

𝜆(𝑡 |x) = 𝜆0(𝑡) exp(𝜷𝑇x),

where 𝜆0(𝑡) is the baseline hazard function, which is independent of the covariates, and 𝜷

are the regression coefficients of the predictors x. To estimate the coefficients 𝜷, we use the

partial likelihood method that allows us to handle right-censored data and obtain consistent

estimates of the coefficients. In part 1 of this dissertation, we used the Cox proportional

hazards model to analyze the relationship between a set of predictors and the recurrent event

time data which is in fact a type of time-to-failure data where each subject may experience

more than one event during the study period.

Nevertheless, in this second part of the dissertation, we will use the additive hazards

model below:

𝜆(𝑡 |x) = 𝜆0(𝑡) + 𝜷𝑇x.

The choice of the appropriate model depends on the specific research question and the

underlying assumptions of the data. While the multiplicative intensity model is widely

used in survival analysis, it may not always be appropriate. In some cases, the additive

hazard model may be a more suitable alternative. One such situation is when the hazards

are non-proportional, meaning that the effect of covariates on the hazard function may

change over time. In this case, an additive model may be more flexible and better able to

capture the changing relationship between the covariates and the outcome variable. For
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example, in cancer studies, the hazard of recurrence may be higher in the first few years

after treatment and then decrease over time. In such cases, the additive hazard model may

be more appropriate. Another situation is when there are significant interaction effects

between covariates, which may not be captured by the multiplicative hazard model. In

contrast, the additive hazard model can more easily account for such effects. For instance,

in a study of heart disease, the effect of obesity on the hazard of a heart attack may be

different in men and women. The additive hazard model can better capture such interaction

effects. Non-linear effects may also pose a challenge for the multiplicative hazard model.

For instance, in a study of smoking and lung cancer, the effect of smoking on the hazard

of lung cancer may be non-linear. In such cases, the additive hazard model may be more

appropriate. Sometimes, when the effect of a covariate changes over time, the multiplicative

hazard model may not be appropriate. For instance, in a study of HIV/AIDS, the effect of

CD4 count on the hazard of death may change as the disease progresses. In such cases, the

additive hazard model may be more appropriate.

Next we give a brief introduction to recurrent events and measurement error. Re-

current event processes are processes that generate events repeatedly over time, and they

arise in a variety of fields such as biomedical science, epidemiology, social science, relia-

bility, and actuarial science. To better understand these processes, analysts often need to

estimate unknown functions like the intensity function, the survivor function, or the mean

rate function, taking into account possible time-dependent covariates. In many research

fields, it is unrealistic to assume that all covariates are perfectly measured, and ignoring

measurement errors can lead to biased estimates and inaccurate conclusions. Therefore,

numerous correction methods have been developed to account for measurement errors in

models, including censored, truncated, and uncensored data. These methods can be para-

metric or nonparametric, using various techniques such as replicate surrogates, instrumental

variables, or moment-based approaches. While there is abundant literature on measurement

error models for single events, there is a need for more research on these models in the
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context of recurrent events. A few recent studies have addressed this issue, including a

moment-based method and a partial score function correction for symmetric errors. Addi-

tionally, some authors have developed methods for modeling recurrent events that account

for measurement errors under a broad class of hazard models and informative censoring.

We now discuss some of the important references. Turnbull (1997) considered a

mixed effects Poission regression model for recurrent event data with error-contaminated

covariates. They proposed adjustments for usual maximum likelihood estimators that are

obtained from neglecting covariate measurement error as the method of accounting for error-

prone covariates. Jiang et al. (1999) investigated inference methods for discrete-time events

in the presence of covariate measurement error. In particular, they used semi-parametric

Poisson and mixed Poission process regression while accounting for possible random effects

and covariate measurement error. Yi and Lawless (2012) developed inferential methods

that account for covariate measurement error. Particularly, their work included counting

processes consisting of multiplicative intensity functions and mixed Poisson models. They

discussed inference methods based on likelihood, producing estimation equations. Yu et al.

(2018) proposed non-parametric methods for correcting covariate measurement error in

multivariate recurrent event data under informative censoring. However, their research

was limited to time-independent covariates. Moreover, their approach did not require the

Poisson-type assumption for recurrent event process and any distributional assumption for

frailty or covariate measurement error.

In addition, there is some work in the literature related to our area of concentra-

tion in this manuscript, mainly measurement error. Veierød and Laake (2001) and Guo

and Li (2002) explored covariate measurement error effects on Poisson regression and

misclassification. Zeger and Edelstein (1989) studied the Poisson regression model with

error-contaminated covariates and used a likelihood method to correct the measurement

error effects. Fung and Krewski (1999) investigated SIMEX and regression calibration

algorithms empirically for Poisson regression with replicates of error-prone covariate mea-
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surements. Kim (2007) produced a mean model for the event count data and used kernel

estimates to obtain a correction method in the presence of categorical error-prone covariates

while assuming a validation subsample is available. These studies did not investigate the

asymptotic properties of the derived estimators. However, they provided simulation study

results to assess their proposed methods’ performance.

In this dissertation, we assume that the variance-covariance matrix of error variables

is time-independent while no distributional properties are imposed on the errors. We

propose a corrected score process considering additive intensity function. We consider the

case where the errors are modeled using the classical additive measurement errors model,

which may be the case in many real-world scenarios.

This part of the dissertation proceeds as follows: In Section 2, the model and the

notation are introduced. In Section 3, the measurement error model and the assumptions are

provided. Section 4 consists of a mathematical setup for our proposed corrected score. In

Section 5, consistency of the proposed corrected regression parameter vector is established.

Section 6 reports the simulation study to investigate finite sample properties. In Section 7,

the rhNDase dataset is analyzed to illustrate our model. Section 9 lists concluding remarks

of this research.

2. THE MODEL AND NOTATION

The notation employed in this section is identical to that used in part 1. However,

there is a key distinction between the two: while a multiplicative hazard model was utilized

in the first section of the dissertation, an additive hazard model will be employed in this

one. Specifically:

𝜆𝑖 (𝑣) = 𝜆0(𝜑𝑖 (𝑣)) + 𝜷𝑇x𝑖 (𝑣).
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3. MEASUREMENT ERROR

As in the first part of this dissertation, we consider the additive error model. To

proceed in this section, we will follow the same approach by correcting the score function

under the additive error model.

4. CORRECTED SCORE

Following Stocker and Adekpedjou (2020) if x𝑖 (𝑠) were the true covariates, then the

score process is given by

𝑈 (𝜷; x, 𝑠, 𝑡) =
𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))] [𝑁𝑖 (𝑠, 𝑑𝑤) − 𝑌𝑖 (𝑠, 𝑤)𝜷𝑇x𝑖 (𝜑−1
𝑖 (𝑤))𝑑𝑤],

where

x̄(𝜑−1(𝑡)) =
∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑡)x 𝑗 (𝜑−1

𝑗
(𝑡))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑡)
.

Unfortunately, the x𝑖 (𝑠) are not the true covariates, and as a consequence, the solution �̂�

is biased and cannot be used. If ignored, error-contaminated covariates can lead to biased

parameter estimates and inaccurate conclusions. Hence, regardless of the model used,

the estimation functions need to be corrected to obtain accurate estimators. Intending to

find a remedy for this issue, next we will derive a corrected score to estimate regression

parameters. As before, we seek,

𝐸𝜖 [U∗(𝜷; x, 𝑠, 𝑡)] = U(𝜷; z, 𝑠, 𝑡). (1)

The following propositions are needed in the sequel. All expectations are taken with respect

to the error distribution denoted by 𝐸𝜖 (·).

Proposition 5 𝐸𝜖
{
x𝑖 (𝜑−1

𝑖
(𝑤))

}
= z𝑖 (𝜑−1

𝑖
(𝑤)).
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Proof:

𝐸𝜖
{
x𝑖 (𝜑−1

𝑖 (𝑤))
}

= 𝐸𝜖
{
z𝑖 (𝜑−1

𝑖 (𝑤)) + 𝝐𝑖 (𝜑−1
𝑖 (𝑤))

}
= z𝑖 (𝜑−1

𝑖 (𝑤)). ∥ (2)

Proposition 6 𝐸𝜖
{
x̄(𝜑−1(𝑤))

}
= z̄(𝜑−1(𝑤)).

Proof:

𝐸𝜖
{
x̄(𝜑−1(𝑤))

}
= 𝐸𝜖

{∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)x 𝑗 (𝜑−1

𝑗
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

}
=

∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)𝐸𝜖 [x 𝑗 (𝜑−1

𝑗
(𝑤))]∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑡)

=

∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)𝐸𝜖 [z 𝑗 (𝜑−1

𝑗
(𝑤)) + 𝝐 𝑗 (𝜑−1

𝑗
(𝑤))]∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑡)

=

∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)z 𝑗 (𝜑−1

𝑗
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)
= z̄(𝜑−1(𝑤)). ∥

Proposition 7 𝐸𝜖 [x⊗2
𝑖
(𝜑−1
𝑖
(𝑤))] = z⊗2

𝑖
(𝜑−1
𝑖
(𝑤)) + 𝚵.

Proof:

𝐸𝜖 [x⊗2
𝑖
(𝜑−1
𝑖
(𝑤))]
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= 𝐸𝜖 [x𝑖 (𝜑−1
𝑖 (𝑤))x𝑇𝑖 (𝜑−1

𝑖 (𝑤))]

= 𝐸𝜖



𝑥2
𝑖,1(𝜑

−1
𝑖
(𝑤)) . . . 𝑥𝑖,1(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

𝑥𝑖,1(𝜑−1
𝑖
(𝑤))𝑥𝑖,2(𝜑−1

𝑖
(𝑤)) . . . 𝑥𝑖,2(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

...
. . .

...

𝑥𝑖,1(𝜑−1
𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤)) . . . 𝑥2

𝑖,𝑝
(𝜑−1
𝑖
(𝑤))


=



𝐸𝜖 [𝑥2
𝑖,1(𝜑

−1
𝑖
(𝑤))] . . . 𝐸𝜖 [𝑥𝑖,1(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))]

𝐸𝜖 [𝑥𝑖,1(𝜑−1
𝑖
(𝑤))𝑥𝑖,2(𝜑−1

𝑖
(𝑤))] . . . 𝐸𝜖 [𝑥𝑖,2(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))]

...
. . .

...

𝐸𝜖 [𝑥𝑖,1(𝜑−1
𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))] . . . 𝐸𝜖 [𝑥2

𝑖,𝑝
(𝜑−1
𝑖
(𝑤))]


. (3)

Diagonal elements 𝐸𝜖 [𝑥2
𝑖,𝑚

(𝜑−1
𝑖
(𝑤))] for 𝑚 = 1, 2, ..., 𝑝 are found as below:

𝐸𝜖 [𝑥2
𝑖,𝑚 (𝜑−1

𝑖 (𝑤))] = 𝐸𝜖 [(𝑧𝑖,𝑚 (𝜑−1
𝑖 (𝑤)) + 𝜖𝑖,𝑚 (𝜑−1

𝑖 (𝑤)))2]

= 𝐸𝜖 [𝑧2
𝑖,𝑚 (𝜑−1

𝑖 (𝑤))] + 𝐸𝜖 [2𝑧𝑖,𝑚 (𝜑−1
𝑖 (𝑤))𝜖𝑖,𝑚 (𝜑−1

𝑖 (𝑤))]

+𝐸𝜖 [𝜖2
𝑖,𝑚 (𝜑−1

𝑖 (𝑤))]

= 𝑧2
𝑖,𝑚 (𝜑−1

𝑖 (𝑤)) + 2𝑧𝑖,𝑚 (𝜑−1
𝑖 (𝑤))𝐸𝜖 [𝜖𝑖,𝑚 (𝜑−1

𝑖 (𝑤))]

+𝐸𝜖 [𝜖2
𝑖,𝑚 (𝜑−1

𝑖 (𝑤))]

= 𝑧2
𝑖,𝑚 (𝜑−1

𝑖 (𝑤)) + 𝜎2
𝑚 . (4)
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Off diagonal elements 𝐵 = 𝐸𝜖 [𝑥𝑖,𝑞 (𝜑−1
𝑖
(𝑤))𝑥𝑖,𝑚 (𝜑−1

𝑖
(𝑤))] for 𝑞 = 1, ..., 𝑝 and 𝑚 =

1, 2, ..., 𝑝 and 𝑞 ≠ 𝑚 are found as below:

𝐵 = 𝐸𝜖 [(𝑧𝑖,𝑞 (𝜑−1
𝑖 (𝑤)) + 𝜖𝑖,𝑞 (𝜑−1

𝑖 (𝑤))) (𝑧𝑖,𝑚 (𝜑−1
𝑖 (𝑤)) + 𝜖𝑖,𝑚 (𝜑−1

𝑖 (𝑤)))]

= 𝐸𝜖 [𝑧𝑖,𝑞 (𝜑−1
𝑖 (𝑤))𝑧𝑖,𝑚 (𝜑−1

𝑖 (𝑤))]

+𝑧𝑖,𝑞 (𝜑−1
𝑖 (𝑤))𝐸𝜖 [𝜖𝑖,𝑚 (𝜑−1

𝑖 (𝑤))]

+𝑧𝑖,𝑚 (𝜑−1
𝑖 (𝑤))𝐸𝜖 [𝜖𝑖,𝑞 (𝜑−1

𝑖 (𝑤))]

+𝐸𝜖 [𝜖𝑖,𝑚 (𝜑−1
𝑖 (𝑤))]𝐸𝜖 [𝜖𝑖,𝑞 (𝜑−1

𝑖 (𝑤))]

= 𝑧𝑖,𝑞 (𝜑−1
𝑖 (𝑤))𝑧𝑖,𝑚 (𝜑−1

𝑖 (𝑤)). (5)

From (4) and (5), we obtain

(3) =



𝑧2
𝑖,1(𝜑

−1
𝑖
(𝑤)) . . . 𝑧𝑖,1(𝜑−1

𝑖
(𝑤))𝑧𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

𝑧𝑖,1(𝜑−1
𝑖
(𝑤))𝑧𝑖,2(𝜑−1

𝑖
(𝑤)) . . . 𝑧𝑖,2(𝜑−1

𝑖
(𝑤))𝑧𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

...
. . .

...

𝑧𝑖,1(𝜑−1
𝑖
(𝑤))𝑧𝑖,𝑝 (𝜑−1

𝑖
(𝑤)) . . . 𝑧2

𝑖,𝑝
(𝜑−1
𝑖
(𝑤))


+



𝜎2
1 0 . . . 0

0 𝜎2
2 . . . 0

...
...

. . .
...

0 0 0 𝜎2
𝑚


= z⊗2

𝑖 (𝜑−1
𝑖 (𝑤)) + 𝚵. ∥

Proposition 8 𝐸𝜖 [x 𝑗 (𝜑−1
𝑗
(𝑤))x𝑇

𝑖
(𝜑−1
𝑖
(𝑤))] = z 𝑗 (𝜑−1

𝑗
(𝑤))z𝑇

𝑖
(𝜑−1
𝑖
(𝑤)).

Proof:

𝐸𝜖 [x 𝑗 (𝜑−1
𝑗
(𝑤))x𝑇

𝑖
(𝜑−1
𝑖
(𝑤))]
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= 𝐸𝜖



𝑥 𝑗 ,1(𝜑−1
𝑖
(𝑤))𝑥𝑖,1(𝜑−1

𝑖
(𝑤)) . . . 𝑥 𝑗 ,1(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

𝑥 𝑗 ,2(𝜑−1
𝑖
(𝑤))𝑥𝑖,1(𝜑−1

𝑖
(𝑤)) . . . 𝑥 𝑗 ,2(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

...
. . .

...

𝑥 𝑗 ,𝑝 (𝜑−1
𝑖
(𝑤))𝑥𝑖,1(𝜑−1

𝑖
(𝑤)) . . . 𝑥 𝑗 ,𝑝 (𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))


=



𝐸𝜖 [𝑥 𝑗 ,1(𝜑−1
𝑖
(𝑤))𝑥𝑖,1(𝜑−1

𝑖
(𝑤))] . . . 𝐸𝜖 [𝑥 𝑗 ,1(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))]

𝐸𝜖 [𝑥 𝑗 ,2(𝜑−1
𝑖
(𝑤))𝑥𝑖,1(𝜑−1

𝑖
(𝑤))] . . . 𝐸𝜖 [𝑥 𝑗 ,2(𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))]

...
. . .

...

𝐸𝜖 [𝑥 𝑗 ,𝑝 (𝜑−1
𝑖
(𝑤))𝑥𝑖,1(𝜑−1

𝑖
(𝑤))] . . . 𝐸𝜖 [𝑥 𝑗 ,𝑝 (𝜑−1

𝑖
(𝑤))𝑥𝑖,𝑝 (𝜑−1

𝑖
(𝑤))]


. (6)

Element 𝐶 = 𝐸𝜖 [𝑥 𝑗 ,𝑢 (𝜑−1
𝑖
(𝑤))𝑥𝑖,𝑣 (𝜑−1

𝑖
(𝑤))] for 𝑢 = 1, 2, ..., 𝑝 and 𝑣 = 1, 2, ..., 𝑝 of the

above matrix (6) is fond as follows:

𝐶 = 𝐸𝜖 [(𝑧 𝑗 ,𝑢 (𝜑−1
𝑖 (𝑤)) + 𝜖 𝑗 ,𝑢 (𝜑−1

𝑖 (𝑤))) (𝑧𝑖,𝑣 (𝜑−1
𝑖 (𝑤)) + 𝜖𝑖,𝑣 (𝜑−1

𝑖 (𝑤)))]

= 𝐸𝜖 [𝑧 𝑗 ,𝑢 (𝜑−1
𝑖 (𝑤))𝑧𝑖,𝑣 (𝜑−1

𝑖 (𝑤))]

+𝑧 𝑗 ,𝑢 (𝜑−1
𝑖 (𝑤))𝐸𝜖 [𝜖𝑖,𝑣 (𝜑−1

𝑖 (𝑤))]

+𝑧𝑖,𝑣 (𝜑−1
𝑖 (𝑤))𝐸𝜖 [𝜖 𝑗 ,𝑢 (𝜑−1

𝑖 (𝑤))]

+𝐸𝜖 [𝜖𝑖,𝑣 (𝜑−1
𝑖 (𝑤))]𝐸𝜖 [𝜖 𝑗 ,𝑢 (𝜑−1

𝑖 (𝑤))]

= 𝑧 𝑗 ,𝑢 (𝜑−1
𝑖 (𝑤))𝑧𝑖,𝑣 (𝜑−1

𝑖 (𝑤)).

Hence, (6) can be written as

(6) =



𝑧 𝑗 ,1(𝜑−1
𝑖
(𝑤))𝑧𝑖,1(𝜑−1

𝑖
(𝑤)) . . . 𝑧 𝑗 ,1(𝜑−1

𝑖
(𝑤))𝑧𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

𝑧 𝑗 ,2(𝜑−1
𝑖
(𝑤))𝑧𝑖,1(𝜑−1

𝑖
(𝑤)) . . . 𝑧 𝑗 ,2(𝜑−1

𝑖
(𝑤))𝑧𝑖,𝑝 (𝜑−1

𝑖
(𝑤))

...
. . .

...

𝑧 𝑗 ,𝑝 (𝜑−1
𝑖
(𝑤))𝑧𝑖,1(𝜑−1

𝑖
(𝑤)) . . . 𝑧 𝑗 ,𝑝 (𝜑−1

𝑖
(𝑤))𝑧𝑖,𝑝 (𝜑−1

𝑖
(𝑤))


= z 𝑗 (𝜑−1

𝑗 (𝑤))z𝑇𝑖 (𝜑−1
𝑖 (𝑤)). ∥
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Proposition 9 𝐸𝜖
{
x̄(𝜑−1(𝑤))x𝑇

𝑖
(𝜑−1
𝑖
(𝑤))

}
= z̄(𝜑−1(𝑤))z𝑇

𝑖
(𝜑−1
𝑖
(𝑤)) + 𝑌𝑖 (𝑠,𝑤)𝚵∑𝑛

𝑗=1 𝑌 𝑗 (𝑠,𝑤) .

Proof:

𝐸𝜖
{
x̄(𝜑−1(𝑤))x𝑇

𝑖
(𝜑−1
𝑖
(𝑤))

}
= 𝐸𝜖

{[∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)x 𝑗 (𝜑−1

𝑗
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
x𝑇𝑖 (𝜑−1

𝑖 (𝑤))
}

= 𝐸𝜖

{
𝑌𝑖 (𝑠, 𝑤)x𝑖 (𝜑−1

𝑖
(𝑤))x𝑇

𝑖
(𝜑−1
𝑖
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

}
+𝐸𝜖

{∑
𝑖≠ 𝑗 𝑌 𝑗 (𝑠, 𝑤)x 𝑗 (𝜑−1

𝑗
(𝑤))x𝑇

𝑖
(𝜑−1
𝑖
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

}
=

𝑌𝑖 (𝑠, 𝑤)𝐸𝜖 [x𝑖 (𝜑−1
𝑖
(𝑤))⊗2]∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

+
∑
𝑖≠ 𝑗 𝑌 𝑗 (𝑠, 𝑤)𝐸𝜖 [x 𝑗 (𝜑−1

𝑗
(𝑤))x𝑇

𝑖
(𝜑−1
𝑖
(𝑤))]∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

=
𝑌𝑖 (𝑠, 𝑤) [z⊗2

𝑖
(𝜑−1
𝑖
(𝑤)) + 𝚵]∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

+
∑
𝑖≠ 𝑗 𝑌 𝑗 (𝑠, 𝑤) [z 𝑗 (𝜑−1

𝑗
(𝑤))z𝑇

𝑖
(𝜑−1
𝑖
(𝑤))]∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

=

[∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)z 𝑗 (𝜑−1

𝑗
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
z𝑇𝑖 (𝜑−1

𝑖 (𝑤)) + 𝑌𝑖 (𝑠, 𝑤)𝚵∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)

= z̄(𝜑−1(𝑤))z𝑇𝑖 (𝜑−1
𝑖 (𝑤)) + 𝑌𝑖 (𝑠, 𝑤)𝚵∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)
. ∥

Proposition 10

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]x𝑇𝑖 (𝜑−1
𝑖 (𝑤)𝑑𝑤

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤.

Proof:∑𝑛
𝑖=1

∫ 𝑡

0 𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑
−1
𝑖
(𝑤)) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤



75

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))] [x𝑖 (𝜑−1
𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]𝑇𝑑𝑤

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]x𝑇𝑖 (𝜑−1
𝑖 (𝑤)𝑑𝑤

−
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]x̄𝑇 (𝜑−1(𝑤))𝑑𝑤

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]x𝑇𝑖 (𝜑−1
𝑖 (𝑤)𝑑𝑤

−
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)

[
x𝑖 (𝜑−1

𝑖 (𝑤)) −
∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)x 𝑗 (𝜑−1

𝑗
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
x̄𝑇 (𝜑−1(𝑤))𝑑𝑤

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]x𝑇𝑖 (𝜑−1
𝑖 (𝑤)𝑑𝑤

−
∫ 𝑡

0

[
𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤)x𝑖 (𝜑−1

𝑖 (𝑤))

−
𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤) ·

∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)x 𝑗 (𝜑−1

𝑗
(𝑤))∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
x̄𝑇 (𝜑−1(𝑤))𝑑𝑤

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]x𝑇𝑖 (𝜑−1
𝑖 (𝑤)𝑑𝑤. ∥



76

We examine the expected value of U(𝜷; x, 𝑠, 𝑡), where covariates are subject to classical

additive errors. Applying propositions 5, 6, 7, and 9 we obtain

𝐸𝜖 {U(𝜷; x, 𝑠, 𝑡)} = 𝐸𝜖

{
𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]

× [𝑁𝑖 (𝑠, 𝑑𝑤) − 𝑌𝑖 (𝑠, 𝑤)𝜷𝑇x𝑖 (𝜑−1
𝑖 (𝑤))𝑑𝑤]

}
=

𝑛∑︁
𝑖=1

∫ 𝑡

0
[𝐸𝜖

{
x𝑖 (𝜑−1

𝑖 (𝑤))
}
− 𝐸𝜖

{
x̄(𝜑−1(𝑤))

}
]𝑁𝑖 (𝑠, 𝑑𝑤)

−
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)𝐸𝜖

{
[𝜷𝑇x𝑖 (𝜑−1

𝑖 (𝑤))]x𝑖 (𝜑−1
𝑖 (𝑤))

}
𝑑𝑤

+
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)𝐸𝜖

{
[𝜷𝑇x𝑖 (𝜑−1

𝑖 (𝑤))]x̄(𝜑−1(𝑤))
}
𝑑𝑤.

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)

−
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z⊗2

𝑖 (𝜑−1
𝑖 (𝑤)) + 𝚵]𝜷𝑑𝑤

+
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)

z̄(𝜑−1(𝑤))z𝑇𝑖 (𝜑−1
𝑖 (𝑤))

+ 𝑌𝑖 (𝑠, 𝑤)𝚵∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)

}
𝜷𝑑𝑤

=

𝑛∑︁
𝑖=1

∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)

−
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [𝜷𝑇z𝑖 (𝜑−1

𝑖 (𝑤))z𝑖 (𝜑−1
𝑖 (𝑤))]𝑑𝑤

+
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)

{
[𝜷𝑇z𝑖 (𝜑−1

𝑖 (𝑤))]z̄(𝜑−1(𝑤))
}
𝑑𝑤

−
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝚵𝜷

[
1 − 𝑌𝑖 (𝑠, 𝑤)∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤

𝐸𝜖 {U(𝜷; x, 𝑠, 𝑡)} = U(𝜷; z, 𝑠, 𝑡) −
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝚵𝜷

[
1 − 𝑌𝑖 (𝑠, 𝑤)∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤. (7)
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Note that rearranging the terms in (7) yields

𝐸𝜖

{
U(𝜷; x, 𝑠, 𝑡) +

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝚵𝜷

[
1 − 𝑌𝑖 (𝑠, 𝑤)∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤

}
= 𝑈 (𝜷; z, 𝑠, 𝑡).

From the foregoing derivation, the function U∗(𝜷; x, 𝑠, 𝑡) is given by

U∗(𝜷; x, 𝑠, 𝑡) = U(𝜷; x, 𝑠, 𝑡) +
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝚵𝜷

[
1 − 𝑌𝑖 (𝑠, 𝑤)∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤.

Since 𝐸 [U(𝜷; z, 𝑠, 𝑡)] = 0, the corrected score function U∗(𝜷; x, 𝑠, 𝑡) is an unbiased esti-

mating function. Setting U∗(𝜷; x, 𝑠, 𝑡) to 0, we obtain

𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤) = {𝐴 + 𝐵} 𝜷,

where 𝐴 =
∑𝑛
𝑖=1

∫ 𝑡

0 𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑
−1
𝑖
(𝑤)) − x̄(𝜑−1(𝑤))]x𝑇

𝑖
(𝜑−1
𝑖
(𝑤)𝑑𝑤,

and 𝐵 =
∑𝑛
𝑖=1

∫ 𝑡

0 𝚵
[
1 − 𝑌𝑖 (𝑠,𝑤)∑𝑛

𝑗=1 𝑌 𝑗 (𝑠,𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤. This gives us the following:

�̂�𝐶 =

{
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]x𝑇𝑖 (𝜑−1
𝑖 (𝑤)𝑑𝑤

+
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝚵

[
1 − 𝑌𝑖 (𝑠, 𝑤)∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤

}−1

×
{

𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
}
.

By proposition 10, the corrected estimators, �̂�𝐶 is the following form:

�̂�𝐶 =

{
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤

+
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝚵

[
1 − 𝑌𝑖 (𝑠, 𝑤)∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤

}−1

×
{

𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
}
.
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5. LARGE SAMPLE PROPERTIES

Consistency of the estimators play a major role in estimation. This section is devoted

to the consistency of corrected regression parameter estimators.

5.1. REGULARITY CONDITIONS

I. 𝑁𝑖 (𝑠, 𝑡) is bounded for all 𝑖.

II. 𝑃{𝑌𝑖 (𝑠, 𝑡) = 1} > 0 for all 𝑖.

III. For 𝑖 = 1, ..., 𝑛; sup𝑡∈𝜏 | |𝐸 [z⊗2
𝑖
(𝜑−1
𝑖
(𝑡))] | | < ∞.

IV. The processes z𝑖 (𝜑−1(𝑡)) are of bounded total variation for all 𝑖 and 𝑡 ∈ 𝜏.

V. For 𝛼𝑖 (𝑠, 𝑡) being any of the functions𝑌𝑖 (𝑠, 𝑡), 𝑁𝑖 (𝑠, 𝑡), and z𝑖 (𝜑−1(𝑡)) or any function

that can be expressed as a summation or a multiplication of the functions 𝑌𝑖 (𝑠, 𝑡),

𝑁𝑖 (𝑠, 𝑡), and z𝑖 (𝜑−1(𝑡)), we have

(a)

𝛼(𝑠, 𝑡) = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝐸 [𝛼𝑖 (𝑠, 𝑡)] < ∞.

(b) There exist envelopes 𝐹𝑖 (𝑠★, 𝑡); 𝑡 ∈ 𝜏 such that

𝑛∑︁
𝑖=1

𝐸 (𝐹⊗2
𝑖

(𝑠★, 𝑡))
𝑖2

< ∞.

VI. For 𝑖 = 1, ..., 𝑛; | |𝐸 [𝝐⊗2
𝑖

(𝜑−1
𝑖
(𝑡))] | | < ∞.

VII. For 𝑖 = 1, ..., 𝑛; there exists non singular matrices defined as

∫ 𝑡

0
𝐸

𝑌𝑖 (𝑠, 𝑤)
[
z𝑖 (𝜑−1

𝑖 (𝑤)) −
𝐸 [𝑌𝑖 (𝑠, 𝑤)z𝑖 (𝜑−1

𝑖
(𝑤))]

𝐸 [𝑌𝑖 (𝑠, 𝑤)]

]⊗2 𝑑𝑤.
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Condition I. ensures that the number of events experienced by each subject is finite. Condi-

tion II. requires that all subjects in the study have a chance of being observed, which in turn

guarantees that 𝐸 [𝑌𝑖 (𝑠, 𝑤)] is bounded away from zero. This is important for the proofs

where 𝐸 [𝑌𝑖 (𝑠, 𝑤)] term appears in the denominator. Condition III. assumes bounded vari-

ation for the covariate process. Conditions IV. and V. are used to establish manageability

which is needed to prove almost sure convergence of some quantities that appear in the

proofs. Condition VI. controls the variability of the measurement error vectors, by making

sure they have finite variance. Condition VII. is required to establish the consistency of the

corrected regression parameter vector.

Lemma 4 There exist finite functions

𝛼(𝑠, 𝑡) = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝐸 [𝛼𝑖 (𝑠, 𝑡)],

where 𝛼𝑖 (𝑠, 𝑡) can be expressed as a summation or a multiplication of the functions 𝑌𝑖 (𝑠, 𝑡)

, 𝑁𝑖 (𝑠, 𝑡), and z𝑖 (𝜑−1(𝑡)), such that

sup
𝑡∈𝜏

�����1𝑛 𝑛∑︁
𝑖=1

𝛼𝑖 (𝑠, 𝑡) − 𝛼(𝑠, 𝑡)
����� 𝑎.𝑠.→ 0. (8)

Proof:

𝑌𝑖 (𝑠, 𝑡) is a monotonically increasing function. Therefore, according to the lemma

A.2 from Bilias et al. (1997), it is manageable. 𝑁𝑖 (𝑠, 𝑡) is also manageable, since 𝑁𝑖 (𝑠, 𝑡)

satisfies regularity condition I.. Additionally, z𝑖 (𝜑−1(𝑤)) is also manageable by regularity

condition IV.. The preservation result for summations and products of manageable processes

hence establishes the fact that any function which can be expressed as a summation or a

multiplication of the functions𝑌𝑖 (𝑠, 𝑡) , 𝑁𝑖 (𝑠, 𝑡) and z𝑖 (𝜑−1(𝑤)) is also manageable. Finally,

by using regularity condition V. and applying the Uniform Strong Law of Large Numbers

from Pollard (1990), we can establish (8). ∥



80

5.2. CONSISTENCY OF �̂�𝑐

Stocker and Adekpedjou (2020) showed that in the absence of measurement errors,

the estimator �̂�𝑛 can be estimated by

�̂�𝑛 = 𝑀
−1
𝑛 𝑊𝑛,

where

𝑀𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]⊗2𝑑𝑤,

and

𝑊𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤).

They also showed that �̂�𝑛
𝑎.𝑠.→ 𝜷0 as 𝑛 → ∞. To establish the consistency of the corrected

regression parameter vector, we utilize this finding along with several lemmas that will be

derived in this sequel.

Lemma 5 As 𝑛→ ∞, z̄(𝜑−1(𝑤)) 𝑎.𝑠.→ e(𝜑−1(𝑤)), where

e(𝜑−1(𝑤)) = 𝐸 [𝑌𝑖 (𝑠, 𝑤)z𝑖 (𝜑−1(𝑤))]
𝐸 [𝑌𝑖 (𝑠, 𝑤)]

.

Proof: By lemma (4), we have 1
𝑛

∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)z𝑖 (𝜑−1(𝑤)) 𝑎.𝑠.→ 𝐸 [𝑌𝑖 (𝑠, 𝑤)z𝑖 (𝜑−1(𝑤))] uni-

formly in 𝑤. Since 𝑌𝑖 (𝑠, 𝑤) is a monotonically increasing function, according to the lemma

A.2 from Bilias et al. (1997) it is manageable. So, under regularity condition (V.) applying

the Strong Uniform Law of Large Numbers we get, 1
𝑛

∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)

𝑎.𝑠.→ 𝐸 [𝑌𝑖 (𝑠, 𝑤)] uni-

formly in 𝑤. Finally by regularity condition II., and the Strong Uniform Law of Large

Numbers, we obtain
∑𝑛

𝑗=1 𝑌 𝑗 (𝑠,𝑤)z 𝑗 (𝜑−1
𝑗
(𝑤))∑𝑛

𝑗=1 𝑌 𝑗 (𝑠,𝑤)
𝑎.𝑠.→ e(𝜑−1(𝑤)). ∥

Lemma 6 As 𝑛→ ∞, 𝑀𝑛

𝑎.𝑠.→ 𝐵1, where

𝐵1 = 𝐸

[∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]⊗2𝑑𝑤

]
.



81

Proof:

𝑀𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]⊗2𝑑𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤)) + e(𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]⊗2𝑑𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [e(𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
2𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))] [e(𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]𝑇𝑑𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [−e(𝜑−1(𝑤))⊗2 + 2z𝑖 (𝜑−1

𝑖 (𝑤))e𝑇 (𝜑−1(𝑤))

+z̄(𝜑−1(𝑤))⊗2 − 2z̄(𝜑−1(𝑤))z𝑇𝑖 (𝜑−1
𝑖 (𝑤))]𝑑𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [−e(𝜑−1(𝑤))⊗2 + 2z𝑖 (𝜑−1

𝑖 (𝑤))e𝑇 (𝜑−1(𝑤))

+e(𝜑−1(𝑤))⊗2 − 2e(𝜑−1(𝑤))z𝑇𝑖 (𝜑−1
𝑖 (𝑤))]𝑑𝑤 + 0𝑎.𝑠. (1) (applying lemma 5)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]⊗2𝑑𝑤 + 0𝑎.𝑠. (1)

= 𝐸

[∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]⊗2𝑑𝑤

]
+ 0𝑎.𝑠. (1)

= 𝐵1 + 0𝑎.𝑠. (1). ∥

Lemma 7 As 𝑛→ ∞,𝑊𝑛

𝑎.𝑠.→ 𝐶1, where

𝐶1 = 𝐸

[∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
]
.
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Proof: Under regularity conditions I. and V., applying the Strong Uniform Law of Large

Numbers, we get 1
𝑛

∑𝑛
𝑖=1 𝑁𝑖 (𝑠, 𝑤)

𝑎.𝑠.→ 𝐸 [𝑁𝑖 (𝑠, 𝑤)] uniformly in 𝑤. By lemma (4) , as

𝑛 → ∞, 𝑛−1 ∑𝑛
𝑖=1

∫ 𝑡

0 z𝑖 (𝜑−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)
𝑎.𝑠.→

∫ 𝑡

0 𝐸 [z𝑖 (𝜑
−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)]. Therefore, we

obtain

𝑊𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − z̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤) − [z̄(𝜑−1(𝑤))]
∫ 𝑡

0

1
𝑛

𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠, 𝑑𝑤)

=

∫ 𝑡

0
𝐸 [z𝑖 (𝜑−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)] −

∫ 𝑡

0
𝐸 [e(𝜑−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)] + 0𝑎.𝑠. (1)

= 𝐸

[∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
]
+ 0𝑎.𝑠. (1)

= 𝐶1 + 0𝑎.𝑠. (1). ∥

Hence by lemma 6, lemma 7, and Stocker and Adekpedjou (2020), we get that

𝐵−1
1 𝐶1 = 𝜷0. (9)

As previously proven, the corrected regression parameter vector can be expressed as follows:

�̂�𝐶 = 𝐿−1
𝑛 𝐾𝑛, (10)

where

𝐿𝑛 =
1
𝑛

{
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤

−
𝑛∑︁
𝑖=1

∫ 𝑡

0
𝚵

[
1 − 𝑌𝑖 (𝑠, 𝑤)∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑌𝑖 (𝑠, 𝑤)𝑑𝑤

}
,
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and

𝐾𝑛 =
1
𝑛

{
𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
}
.

Lemma 8 As 𝑛→ ∞, 𝐿𝑛
𝑎.𝑠.→ 𝐵1, where

𝐿𝑛 = 𝑄1 −𝑄2,

𝑄1 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤,

and

𝑄2 =
1
𝑛

[
1 − 1∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤)𝚵𝑑𝑤.

Proof: First, we investigate the 𝑄1 term.

𝑄1 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))) + e(𝜑−1(𝑤))) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤)))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [e(𝜑−1(𝑤))) − x̄(𝜑−1(𝑤))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
2𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤)))] [e(𝜑−1(𝑤))) − x̄(𝜑−1(𝑤))]𝑇𝑑𝑤

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤)))]⊗2𝑑𝑤

+
∫ 𝑡

0

−
1
𝑛

𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤)e⊗2(𝜑−1

𝑖 (𝑤)) − 1
𝑛

{∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)x𝑖 (𝜑−1

𝑖
(𝑤))

}⊗2∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)

+ 2
𝑛

𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤)x𝑖 (𝜑−1

𝑖 (𝑤))e𝑇 (𝜑−1(𝑤)))

 𝑑𝑤.
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Now, we examine the second term (say 𝐺𝑛) of the 𝑄1 term above by applying the Strong

Uniform Law of Large Numbers individually to each term.

𝐺𝑛 =

∫ 𝑡

0

−
1
𝑛

𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤)e⊗2(𝜑−1

𝑖 (𝑤)) − 1
𝑛

{∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)x𝑖 (𝜑−1

𝑖
(𝑤))

}⊗2∑𝑛
𝑗=1𝑌 𝑗 (𝑠, 𝑤)

+ 2
𝑛

𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤)x𝑖 (𝜑−1

𝑖 (𝑤))e𝑇 (𝜑−1
𝑖 (𝑤))

}
𝑑𝑤

=

∫ 𝑡

0

{
−𝐸 [𝑌𝑖 (𝑠, 𝑤)]e⊗2(𝜑−1

𝑖 (𝑤)) −
{
𝐸 [𝑌 𝑗 (𝑠, 𝑤)x𝑖 (𝜑−1

𝑖
(𝑤))]

}⊗2

𝐸 [𝑌 𝑗 (𝑠, 𝑤)]

+ 2𝐸 [𝑌𝑖 (𝑠, 𝑤)x𝑖 (𝜑−1
𝑖 (𝑤))]e𝑇 (𝜑−1

𝑖 (𝑤))
}
𝑑𝑤 + 0𝑎.𝑠. (1)

=

∫ 𝑡

0

{
−𝐸 [𝑌𝑖 (𝑠, 𝑤)]e⊗2(𝜑−1

𝑖 (𝑤)) −
{
𝐸 [𝑌 𝑗 (𝑠, 𝑤)z𝑖 (𝜑−1

𝑖
(𝑤))]

}⊗2

𝐸 [𝑌 𝑗 (𝑠, 𝑤)]

+ 2𝐸 [𝑌𝑖 (𝑠, 𝑤)z𝑖 (𝜑−1
𝑖 (𝑤))]e𝑇 (𝜑−1

𝑖 (𝑤))
}
𝑑𝑤 + 0𝑎.𝑠. (1)

=

∫ 𝑡

0

{
−𝐸 [𝑌𝑖 (𝑠, 𝑤)]e⊗2(𝜑−1

𝑖 (𝑤)) − 𝐸 [𝑌𝑖 (𝑠, 𝑤)]e⊗2(𝜑−1
𝑖 (𝑤))

+2𝐸 [𝑌𝑖 (𝑠, 𝑤)]e⊗2(𝜑−1
𝑖 (𝑤))

}
𝑑𝑤 + 0𝑎.𝑠. (1)

= 0𝑎.𝑠. (1).
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Then, we continue applying the Strong Uniform Law of Large Numbers to the remaining

terms of 𝑄1 as follows:

𝑄1 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [x𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤 + 0𝑎.𝑠. (1)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤)) + 𝝐𝑖 (𝜑−1

𝑖 (𝑤))]⊗2𝑑𝑤 + 0𝑎.𝑠. (1)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)𝝐𝑖 (𝜑−1

𝑖 (𝑤))]⊗2𝑑𝑤

+
∫ 𝑡

0
2𝐸 [𝑌𝑖 (𝑠, 𝑤) (z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤)))]𝐸 [𝝐𝑇𝑖 (𝜑−1

𝑖 (𝑤))]𝑑𝑤 + 0𝑎.𝑠. (1)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

+1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤)𝝐𝑖 (𝜑−1

𝑖 (𝑤))]⊗2𝑑𝑤 + 0𝑎.𝑠. (1)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

+
∫ 𝑡

0
𝐸 [𝑌𝑖 (𝑠, 𝑤)]𝐸 [𝝐⊗2

𝑖 (𝜑−1
𝑖 (𝑤))]𝑑𝑤 + 0𝑎.𝑠. (1)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

+
∫ 𝑡

0
𝐸 [𝑌𝑖 (𝑠, 𝑤)]𝚵𝑑𝑤 + 0𝑎.𝑠. (1).
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Now, we examine the second term 𝑄2.

𝑄2 =
1
𝑛

[
1 − 1∑𝑛

𝑗=1𝑌 𝑗 (𝑠, 𝑤)

]
𝑛∑︁
𝑖=1
𝑌𝑖 (𝑠, 𝑤)𝚵𝑑𝑤

=
1
𝑛

∫ 𝑡

0

𝑛∑︁
𝑖=1

{𝑌𝑖 (𝑠, 𝑤)𝚵} 𝑑𝑤 − 1
𝑛
𝚵

∫ 𝑡

0

𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)

𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)

𝑑𝑤

=
1
𝑛

∫ 𝑡

0

𝑛∑︁
𝑖=1

{𝑌𝑖 (𝑠, 𝑤)𝚵} 𝑑𝑤 − 1
𝑛
𝚵𝑡 + 0𝑎.𝑠. (1)

=
1
𝑛

∫ 𝑡

0

𝑛∑︁
𝑖=1

{𝑌𝑖 (𝑠, 𝑤)𝚵} 𝑑𝑤 + 0𝑎.𝑠. (1)

=

∫ 𝑡

0
𝐸 {𝑌𝑖 (𝑠, 𝑤)𝚵} 𝑑𝑤 + 0𝑎.𝑠. (1).

As a result, 𝑄1 −𝑄2 gives

𝐿𝑛 = 𝑄1 −𝑄2 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − 𝑒(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

+
∫ 𝑡

0
𝐸 [𝑌𝑖 (𝑠, 𝑤)]𝚵𝑑𝑤 −

∫ 𝑡

0
𝐸 [𝑌𝑖 (𝑠, 𝑤)]𝚵𝑑𝑤 + 0𝑎.𝑠. (1)

= 𝐸

[∫ 𝑡

0
𝑌𝑖 (𝑠, 𝑤) [z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1
𝑖 (𝑤))]⊗2𝑑𝑤

]
= 𝐵1 + 0𝑎.𝑠. (1). ∥

As shown in the previous proof, the inverse matrix 𝐿𝑛 in �̂�𝐶 converges almost surely to a

positive definite matrix, subject to mild regularity conditions. Hence, the estimator �̂�𝐶 is

devoid of any singularity and instability problems.

Lemma 9 As 𝑛→ ∞, x̄(𝜑−1(𝑤)) 𝑎.𝑠.→ e(𝜑−1(𝑤)).

Proof: By regularity condition III. and VI. x𝑖 (𝜑−1(𝑤)) is manageable. Since 𝑌𝑖 (𝑠, 𝑤) is a

monotonically increasing function, according to the lemma A.2 from Bilias et al. (1997),

it is manageable. The preservation result for summations and products of manageable

processes hence establishes the fact that 1
𝑛

∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)x𝑖 (𝜑−1(𝑤)) is manageable. Under

regularity condition V., applying the Strong Uniform Law of Large Numbers, we obtain
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1
𝑛

∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)x𝑖 (𝜑−1(𝑤)) 𝑎.𝑠.→ 𝐸 [𝑌𝑖 (𝑠, 𝑤)z𝑖 (𝜑−1(𝑤))] uniformly in 𝑤. We already showed

that , 1
𝑛

∑𝑛
𝑖=1𝑌𝑖 (𝑠, 𝑤)

𝑎.𝑠.→ 𝐸 [𝑌𝑖 (𝑠, 𝑤)] uniformly in 𝑤. Then by regularity condition II. and

the Strong Uniform Law of Large Numbers, we obtain
∑𝑛

𝑗=1 𝑌 𝑗 (𝑠,𝑤)x 𝑗 (𝜑−1
𝑗
(𝑤))∑𝑛

𝑗=1 𝑌 𝑗 (𝑠,𝑤)
𝑎.𝑠.→ e(𝜑−1(𝑤)).

∥

Lemma 10 As 𝑛→ ∞, 𝐾𝑛
𝑎.𝑠.→ 𝐶1, where

𝐶1 = 𝐸

[∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
]
.

Proof: We already showed 1
𝑛

∑𝑛
𝑖=1 𝑁𝑖 (𝑠, 𝑤)

𝑎.𝑠.→ 𝐸 [𝑁𝑖 (𝑠, 𝑤)] uniformly in𝑤. Also x𝑖 (𝜑−1(𝑤)

is manageable by regularity condition III.. The preservation result for summations and prod-

ucts of manageable processes hence establishes the fact that 𝑛−1 ∑𝑛
𝑖=1

∫ 𝑡

0 x𝑖 (𝜑−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)

is manageable. So, under regularity condition V. , by applying the Strong Uniform

Law of Large Numbers, we obtain, as 𝑛 → ∞, 𝑛−1 ∑𝑛
𝑖=1

∫ 𝑡

0 x𝑖 (𝜑−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)
𝑎.𝑠.→∫ 𝑡

0 𝐸 [z𝑖 (𝜑
−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)]. Finally we get

𝐾𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑡

0
[x𝑖 (𝜑−1

𝑖 (𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤) − [x̄(𝜑−1(𝑤))]
∫ 𝑡

0

1
𝑛

𝑛∑︁
𝑖=1

𝑁𝑖 (𝑠, 𝑑𝑤)

=

∫ 𝑡

0
𝐸 [z𝑖 (𝜑−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)] −

∫ 𝑡

0
𝐸 [e(𝜑−1(𝑤))𝑁𝑖 (𝑠, 𝑑𝑤)] + 0𝑎.𝑠. (1)

= 𝐸

[∫ 𝑡

0
[z𝑖 (𝜑−1

𝑖 (𝑤)) − e(𝜑−1(𝑤))]𝑁𝑖 (𝑠, 𝑑𝑤)
]
+ 0𝑎.𝑠. (1)

= 𝐶1 + 0𝑎.𝑠. (1). ∥

We state the consistency of �̂�𝐶 as theorem 9 below.

Theorem 9 Under regular conditions, as 𝑛→ ∞, �̂�𝐶
𝑎.𝑠.→ 𝜷0.

Proof: By equation (10), lemma 8 and lemma 10, we obtain that

�̂�𝐶
𝑎.𝑠.→ 𝐵−1

1 𝐶1. (11)
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By equation (9) since we know that 𝐵−1
1 𝐶1 = 𝜷0, we can rewrite (11) as below

�̂�𝐶
𝑎.𝑠.→ 𝜷0. ∥

6. SIMULATION STUDIES

This section gives a description on the simulation design and discusses the simulation

results obtained.

6.1. SIMULATION DESIGN

A simulation study was performed using the R Studio software package to investigate

the performance of proposed corrected regression parameter estimators. The specific

objectives of this study were: (i) to examine the effect of sample size (n) on the distributional

properties of �̂�𝐶 ; (ii) to examine the bias and variance of �̂�𝐶 .

Survival Times: We generate survival times 𝑡, by solving the equation below:

(
𝑡

𝜃2

)𝜃1

+ 𝜷′x𝑡 + log𝑈 = 0,

where

𝑡 = survival time

𝜃1 = shape parameter of the Weibull distribution

𝜃2 = scale parameter of the Weibull distribution

𝜷 = 𝑝 dimensional regression parameter vector

x = 𝑝 dimensional covariates vector

𝑈 = randomly generated value from Uniform(0, 1)

Next, we show how we obtained this equation. First, note that

𝜆(𝑢) = 𝑓 (𝑢)
1 − 𝐹 (𝑢) = − 𝑑

𝑑𝑢
log[1 − 𝐹 (𝑢)],
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and

Λ(𝑡) =
∫ 𝑡

0
𝜆(𝑢)𝑑𝑢 = − log[1 − 𝐹 (𝑡)] . (12)

For a Weibull distribution with shape parameter (𝜃1) and scale parameter(𝜃2), the cumulative

distribution function is given by

𝐹 (𝑡) = 1 − exp

[
−

(
𝑡

𝜃2

)𝜃1
]
. (13)

Hence by (12) and (13), we get the expression of baseline cumulative hazard function for a

Weibull distribution by

Λ0(𝑡) =
(
𝑡

𝜃2

)𝜃1

. (14)

Moreover, for additive hazard function,

𝜆(𝑢) = 𝜆0(𝑢) + 𝜷′x. (15)

Therefore,

− log[1 − 𝐹 (𝑡)] = Λ(𝑡) =
∫ 𝑡

0
𝜆(𝑢)𝑑𝑢 =

∫ 𝑡

0
[𝜆0(𝑢) + 𝜷′x]𝑑𝑢 = Λ0(𝑡) + 𝜷′x𝑡 (16)

We also know that,

1 − 𝐹 (𝑡) ∼ uniform(0, 1) (17)

Hence by (14), (15) , (16) and (17) we obtain,

− log𝑈 =

(
𝑡

𝜃2

)𝜃1

+ 𝜷′x𝑡
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We use NLRoot package in R to find the roots of this equation.

True Parameter Values: In our study, we set 𝜃1 = 1, 𝜃2 ∈ {0.9, 2}, 𝜷 = {−1, 1},

𝑋1 ∼ 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚(−1, 1), and 𝑋2 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5).

Censoring: We generate censoring times from an exponential distribution randomly. 𝐶𝑖 ∼

𝑒𝑥𝑝(𝜃). In our study, we set 𝜃 = 0.8. Next, we calculate times 𝑇𝑖 by 𝑇𝑖 = 𝑚𝑖𝑛(𝑡𝑖, 𝐶𝑖). We

will also create an indicator variable 𝛿𝑖 = 𝐼 (𝑡𝑖 ≥ 𝐶𝑖) to indicate if 𝑇𝑖 is a survival time or a

censoring time.

Error Contaminated Variables: We add a gaussian noise with variance 𝜎2 to 𝑋1 to create

error contaminated version of 𝑋1, say 𝑋1.

By this point, we have the knowledge to generate an observation tuple,

𝑂𝑖 =
{
𝑋1𝑖, �̃�1𝑖, 𝑋2𝑖, 𝑇𝑖, 𝛿𝑖

}
.

Recurrent Event Data: To generate the recurrent events data, we perform the following

steps. First, we create a database with 1 million observation tuples, say 𝐷. Next, we split

this database into two different sub databases based on the value of 𝛿. Let us call the

sub-database with 𝛿 = 0 as 𝐷𝑐 and the sub-database with 𝛿 = 1 as 𝐷𝑛𝑐. Suppose we need to

generate recurrent events data for 𝑛 ∈ {30, 50, 80} subjects. To do that, we determine how

many recurrent events are experienced by each subject 𝑗 , say 𝐾 𝑗 , by randomly selecting a

number from {0, 1, 2, 3, 4, 5, 6}. After that, we randomly select 𝐾 𝑗 number of observations

from 𝐷𝑛𝑐 sub-database followed by one observation tuple from 𝐷𝑐 to mimic the recurrent

events observed by the 𝑗 th subject. Once we have generated the recurrent events data

for each subject of the study, we use the entire dataset to find naive regression parameter

estimates by using addhazard or timereg packages in R. We create 100 data sets and

find these mean of the regresson parameter estimates, which we call the naive estimates

𝛽1 and 𝛽2. We also find the standard deviation of these regression parameter estimates.

Similarly, using our proposed equation, for each of the generated data set, we find the
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corrected regression parameter estimates. Finally, we obtain the mean of the corrected

regression parameter estimates, which are denoted by 𝛽1𝑐 and 𝛽2𝑐. We also find and the

standard deviation of these corrected regression parameter estimates. We change the value

of 𝜎 to take the values {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}, to observe the ability

of our proposed estimator to handle the error. We refer to the model which ignores the

measurement errors as a naive fit and to the one which incorporates the measurement error

in estimation via corrected score as the corrected fit.

6.2. SIMULATION RESULTS

Tables 1 and 2 summarize the simulation results. Figures 1 and 2 show the effective-

ness of the proposed corrected regression parameter estimates versus the naive regression

parameter estimates for increasing and decreasing hazards respectively. Irrespective of the

sample size 𝑛, as the magnitude of the error variance increases naive estimators tend to be

more biased, whereas the corrected estimators remain steady with minimal or no bias. It is

also observed that the standard errors decrease with sample size 𝑛.

7. APPLICATION

Fuchs et al. (1994) reported a pulmonary exacerbation study which has later been

used by many other authors in literature. It was a double-blind randomized multicenter

clinical trial designed to evaluate the effect of rhDNase, a recombinant deoxyribonuclease I

enzyme, versus placebo on the occurrence of respiratory exacerbations among patients with

cystic fibrosis. Six hundred and forty five patients participated in this trial and each patient

was followed up for approximately 169 days. Occurrences of all exacerbations were recorded

for everyone in this trial. Due to the measurement error, two measurements of forced

expiratory volume (FEV) reflecting lung capacity which were taken a few minutes apart were

different for each patient. We used a modified version of this dataset to illustrate our proposed

methods. We created time varying FEV values for each subject by a Uniform(FEV1-
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Figure 1. Bias assessment comparing the naive estimation approach to the corrected for an
increasing hazard.
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Figure 2. Bias assessment comparing the naive estimation approach to the corrected for a
decreasing hazard.
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Table 1. Weibull Intensity: �̄� (𝑡; 𝜽) = 𝑒−(𝜃2𝑡) 𝜃1 ; 𝜃2 = 1; 𝜃1 = 2; (𝛽1, 𝛽2) = (−1, 1).

N(0, 𝜎)
𝑛 𝜎 𝛽1 𝑠𝑒(𝛽1) 𝛽1𝑐 𝑠𝑒(𝛽1𝑐) 𝛽2 𝑠𝑒(𝛽2) 𝛽2𝑐 𝑠𝑒(𝛽2𝑐)

0.35 -0.3434 0.3460 -1.0027 0.7873 0.9592 0.3495 0.9937 0.2686
0.3 -0.4161 0.3847 -0.9967 0.6370 0.9597 0.3491 0.9983 0.2546

0.25 -0.5041 0.4300 -1.0068 0.5447 0.9607 0.3487 0.9994 0.2388
30 0.2 -0.6065 0.4808 -1.0089 0.5045 0.9623 0.3485 1.0040 0.2273

0.15 -0.7172 0.5326 -0.9977 0.4681 0.9646 0.3487 1.0032 0.2203
0.1 -0.8225 0.5767 -1.0031 0.4263 0.9677 0.3495 1.0041 0.2158

0.05 -0.9018 0.6029 -1.0024 0.3911 0.9711 0.3506 0.9957 0.2137
0.01 -0.9330 0.6071 -0.9913 0.3681 0.9737 0.3515 0.9979 0.2125

0.35 -0.3827 0.2824 -1.0027 0.5833 0.9527 0.2411 1.0015 0.1732
0.3 -0.4498 0.3089 -0.9985 0.4784 0.9540 0.2421 0.9996 0.1662

0.25 -0.5290 0.3381 -1.0044 0.3992 0.9556 0.2430 1.0008 0.1591
50 0.2 -0.6185 0.3686 -0.9919 0.3483 0.9575 0.2438 1.0019 0.1537

0.15 -0.7116 0.3968 -1.0017 0.3154 0.9596 0.2440 1.0034 0.1482
0.1 -0.7946 0.4171 -0.9955 0.2900 0.9617 0.2433 0.9972 0.1448

0.05 -0.8487 0.4238 -1.0073 0.2781 0.9634 0.2414 0.9990 0.1410
0.01 -0.8594 0.4188 -0.9985 0.2734 0.9642 0.2388 1.0004 0.1386

0.35 -0.3780 0.1967 -0.9979 0.3879 0.9347 0.1689 1.0022 0.1364
0.3 -0.4499 0.2110 -0.9984 0.3093 0.9357 0.1690 0.9981 0.1314

0.25 -0.5360 0.2258 -0.9984 0.2530 0.9369 0.1690 1.0023 0.1313
80 0.2 -0.6352 0.2402 -1.0022 0.2207 0.9383 0.1691 1.0004 0.1294

0.15 -0.7419 0.2533 -1.0050 0.1994 0.9399 0.1690 0.9988 0.1282
0.1 -0.8431 0.2644 -0.9985 0.1865 0.9415 0.1686 0.9975 0.1274

0.05 -0.9185 0.2739 -0.9961 0.1865 0.9427 0.1679 1.0022 0.1280
0.01 -0.9462 0.2801 -0.9972 0.1851 0.9431 0.1672 1.0013 0.1272

SD,FEV2+SD), where FEV1 and FEV2 are two different FEV measurements of each

subject and SD is the standard deviation of all FEV1 and FEV2 values of all subjects

together. Next, we added a Gaussian noise to the time-varying FEV measurements, to

create a covariate with measurement error. We used 𝜎 = 0 as a reference value, which is the
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Table 2. Weibull Intensity: �̄� (𝑡; 𝜽) = 𝑒−(𝜃2𝑡) 𝜃1 ; 𝜃2 = 1; 𝜃1 = 0.9; (𝛽1, 𝛽2) = (−1, 1).

N(0, 𝜎)
𝑛 𝜎 𝛽1 𝑠𝑒(𝛽1) 𝛽1𝑐 𝑠𝑒(𝛽1𝑐) 𝛽2 𝑠𝑒(𝛽2) 𝛽2𝑐 𝑠𝑒(𝛽2𝑐)

0.35 -0.3981 0.3914 -0.9853 0.9904 1.0364 0.4388 1.0056 0.3548
0.3 -0.4806 0.4372 -0.9956 0.7197 1.0343 0.4376 1.0070 0.3208

0.25 -0.5801 0.4900 -0.9893 0.5613 1.0322 0.4362 0.9994 0.2789
30 0.2 -0.6957 0.5475 -1.0108 0.4670 1.0301 0.4349 0.9981 0.2662

0.15 -0.8208 0.6030 -0.9924 0.3866 1.0284 0.4340 0.9954 0.2535
0.1 -0.9395 0.6445 -0.9992 0.3408 1.0277 0.4339 0.9952 0.2466

0.05 -1.0280 0.6593 -1.0064 0.3259 1.0286 0.4347 0.9969 0.2441
0.01 -1.0614 0.6503 -0.9968 0.3320 1.0308 0.4355 0.9994 0.2445

0.35 -0.4512 0.3163 -1.0258 0.7053 1.0442 0.3304 1.0056 0.2624
0.3 -0.5330 0.3473 -1.0085 0.5820 1.0434 0.3324 0.9965 0.2337

0.25 -0.6304 0.3817 -0.9961 0.4877 1.0425 0.3342 0.9951 0.2182
50 0.2 -0.7420 0.4181 -1.0093 0.4213 1.0416 0.3355 1.0046 0.2097

0.15 -0.8605 0.4525 -1.0080 0.3732 1.0407 0.3357 1.0048 0.2006
0.1 -0.9700 0.4776 -1.0072 0.3317 1.0402 0.3343 0.9964 0.1934

0.05 -1.0466 0.4864 -1.0039 0.2963 1.0402 0.3306 0.9984 0.1885
0.01 -1.0685 0.4806 -1.0052 0.2807 1.0409 0.3260 1.0008 0.1858

0.35 -0.3877 0.2125 -0.9977 0.4251 0.9929 0.2223 0.9995 0.1543
0.3 -0.4636 0.2299 -0.9922 0.3407 0.9917 0.2226 0.9979 0.1450

0.25 -0.5553 0.2481 -0.9953 0.2890 0.9903 0.2229 1.0024 0.1396
80 0.2 -0.6623 0.2661 -0.9997 0.2469 0.9886 0.2232 0.9972 0.1293

0.15 -0.7791 0.2830 -1.0022 0.2178 0.9867 0.2236 1.0003 0.1269
0.1 -0.8926 0.2991 -0.9980 0.1991 0.9846 0.2239 0.9968 0.1244

0.05 -0.9808 0.3151 -1.0011 0.1903 0.9829 0.2238 1.0020 0.1284
0.01 -1.0167 0.3271 -1.0000 0.1907 0.9819 0.2233 1.0007 0.1259

basis for our comparison. By increasing the measurement error variance, we demonstrate

how the naive approach would lead us to incorrect inference about an FEV effect, and how

this has been corrected through the use of our proposed method.
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Table 3. Regression Parameter Estimates.

𝜎 𝛽1(×10−2) 𝛽2(×10−2) 𝛽1𝑐 (×10−2) 𝛽2𝑐 (×10−2)
0.0 -0.5605 -0.0944 -0.5605 -0.0944
0.1 -0.4648 -0.0941 -0.5348 -0.0927

0.15 -0.3881 -0.0949 -0.5166 -0.0920
0.2 -0.3154 -0.0959 -0.4957 -0.0915

0.25 -0.2537 -0.0970 -0.4727 -0.0911
0.3 -0.2044 -0.0979 -0.4482 -0.0908

0.35 -0.1657 -0.0987 -0.4229 -0.0907
0.4 -0.1356 -0.0993 -0.3974 -0.0907

8. CONCLUDING REMARKS

We have proposed a corrected score function when covariates effects are additive

and measured with errors. Without the corrections, the estimates in the model are biased

and inconsistent. Our results demonstrate that the corrected regression parameter estimators

are consistent. All these results are based on the assumption of the additive error model.
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SECTION

2. CONCLUSION

The initial section of this dissertation outlines a novel approach to obtaining a

corrected partial score for recurrent events with one or more covariates that have been

measured with errors. This involves using the Cox model to derive corrected regression

parameters and cumulative hazards function, as well as discussing a method for estimating

measurement error variance and examining its properties. Furthermore, we present the

asymptotic properties of the proposed estimators and demonstrate their efficacy through

numerical studies. The correction methods proposed are then applied to the rhDNase data.

The second part of this dissertation presents a corrected score based on the additive hazard

function for recurrent events with error-contaminated covariates. We derive regression

parameter estimators and demonstrate their accuracy in estimating their true values through

numerical studies. Both parts of this dissertation are based on the assumption that the errors

are modeled using the classical additive measurement errors model, which is applicable to

numerous real-life scenarios.
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