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Abstract: Asphalt pavements make up a majority of the essential transportation systems in the
US. Asphalt mixtures age and degrade over time, reducing the pavement performance. Pavement
performance critically depends on the aging of asphalt binder. The aging of asphalt binder during
construction is traditionally modeled by rolling thin film oven (RTFO) testing, while aging during
service life is modeled by pressure aging vessel (PAV) testing. Comparing these models to the aging
of binders in actual pavements is limited because, to be used for current testing, binders must be
separated from the pavement’s aggregate by solvent extraction. Solvent extraction will, at least in part,
compromise the structural integrity of asphalt binder samples. Spin-lattice NMR relaxometry has
been shown to nondestructively evaluate asphalt properties in situ through the analysis of hydrogen
environments. The molecular mobility of hydrogen environments and with it the stiffness of asphalt
binder samples can be determined by characteristic T1 relaxation times, indicating the complexity
of asphalt-binder aging. In this study, two laboratory-generated asphalt mixtures, a failed field
sample, and several laboratory-aged binder samples are compared by NMR relaxometry. NMR
relaxometry was found to be able to differentiate between asphalt samples based on their binder
percentage. According to the relaxometry findings, the RTFO binder aging compared favorably to
the 6% laboratory-mixed sample. The PAV aging, however, did not compare well to the relaxometry
results found for the field-aged sample. The amount of aggregate was found to have an influence on
the relaxation times of the binder in the mixed samples and an inverse proportionality of the binder
content to the primary NMR relaxation time was detected. It is concluded that molecular water
present in the pores of the aggregate material gives rise to such a relationship. The findings of this
study lay the foundation for nondestructive asphalt performance evaluation by NMR relaxometry.

Keywords: nuclear magnetic resonance; relaxometry; asphalt aging; aggregate; hot mix asphalt

1. Introduction

Asphalt pavements are critical to the world’s transportation infrastructure [1–6]. As of
2020, 67% of the world’s roads are paved, with a vast majority using asphalt mixtures [7].
Due to this, there are many important design considerations for these mixtures depending
on the construction locale and source materials to resist weather and use effects. Water
degrades aggregate properties, which allows for failures to occur in the mixture [8–11].
Therefore, it is imperative that the aggregate is coated in enough binder to resist water
infiltration as well as prevent brittleness. However, too much binder is also a problem that
leads to permanent deformation failures [8,9,12]. This metric is tested as an asphalt weight
percentage. Aging also changes the effectiveness of a binder coating on the asphalt; as the
mobile maltenes escape, the more brittle the mixtures become. This leads to water affecting
the structure of the aggregates and leading to freeze-thaw failures [1,8,10,13,14]. Currently,
the only conventional lab testing for Hot Mix Asphalt (HMA) samples to determine the
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effectiveness of asphalt percentages as well as resistance to failures involves the destructive
testing of asphalt cores [11,15–20]. However, new techniques have been developed to
determine adhesion characteristics between the binder and the aggregate [1,21].

Apart from the mixtures, the performance of asphalt binders is tested by mimicking
the processes that cause the most aging, construction, and service life [8,22]. Construction
is mimicked with the rolling thin film oven (RTFO) test. RTFO aging heats and rotates the
binder to determine the amount of volatiles that will leave the binder when mixed and
paved. Service life is simulated through the Pressurized Aging Vessel (PAV) test, which
heats the binder for 20 h under pressure. This process simulates the oxygenation that occurs
in the field over 7–10 years. After the aging of the binder is modeled with RTFO and/or PAV
testing, the viscoelastic properties are compared. These parameters are then used in mixture
designs to ensure proper binder performance depending on the climate of the region. Once
the asphalt is placed, it is assumed that the mixture will live through its predicted service
life and that failures cannot be detected until after they occur. The current and experimental
methods of asphalt pavement performance assessment are based on optical analysis of
existing failures or using destructive core extraction methods [11,15–20,23–26]. Therefore,
the application of a chemically non-destructive method, which has predictive power, will
allow for more precise evaluation and maintenance of existing roads.

NMR relaxometry has been adapted over the years for numerous applications. From
determining adsorption mechanisms to evaluating binder viscosity, NMR relaxometry has
been used for various purposes with great success in asphalt research [27–33]. Relaxometry
is a superior method to current physical testing since solvents and heat are not needed,
preserving the molecular integrity. Additionally, smaller amounts of analytes are needed.
While T2 relaxation has been used wildly for its rapid acquisition, solvents are needed to
capture the fast relaxation times of solids. Therefore, this work focuses on the lesser-used
T1 relaxation, which indicates the lattice relaxation of hydrogen environments without
the need for a solvent. This lattice relaxation has been used on asphalt binder blends to
show some correlation to physical properties [32,33]. Little research has been conducted
on asphalt mixtures and the chemical effects of the aggregate on the asphalt binder. If
correlations between field and lab-aged samples can be made through T1 NMR relaxation
times, then asphalt conditions and failures can be analyzed and predicted. Additionally,
comparisons between aged binders and mixtures can evaluate the applicability of binder
aging modeling.

In this study, 1H NMR relaxometry was used to determine T1 times for binders
and mixtures to quantify a relationship between laboratory testing of binders with real-
world aging. Evaluation of the aggregate’s effects on the binder and mixture parameters
were also considered and tested. This is wholly new research in the asphalt and NMR
fields and could provide useful information regarding the effectiveness of current aging
simulation parameters, as well as provide information on the chemical environments of
asphalt mixtures.

2. Materials and Methods

Mixtures of 4.5%, 5.5%, and 6% PG 64-22 were obtained from the Missouri University
of Science Department of Civil Engineering, Rolla, MO, USA. PG 64-22 was chosen since
it is a preferred binder used in the Midwest area [34–37]. The asphalt content of 4.5%,
5.5%, and 6% were noted as low, optimal, and high asphalt percentages, respectively.
The 9/16′′ coarse aggregate used in these samples was also obtained and listed as Agg.
A failed 18-year-old field-aged sample was gathered from the City of Rolla, MO, USA
and listed as Field. The mixtures were ground to fit into a 5 mm NMR tube. Additional
preparations of the aggregate included heating the samples at 163 ◦C in a standard lab
oven for 3 days to remove excess moisture and submerging them in de-ionized water for
3 days to maximize moisture content. The dried and submerged aggregates were labeled as
Aggd and Aggw, respectively. Holmes-sourced PG 64-22 asphalt binder was aged by RTFO
(AASHTO T240-21) and PAV (AASHTO R28-21) standards. Three samples of each type of
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material were obtained. In total, 12 mixture samples along with 9 binder and 9 aggregate
samples were tested. The material preparation is summarized in Figure 1; arrows indicate
chronological progression and dashes indicate expected similarities between binder models
and mixture samples.
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Figure 1. Research methodology.

A Bruker Avance DRX 200-MHz spectrometer was used to collect the 1H NMR T1
relaxation data. Relaxation curves were acquired at room temperature without a solvent,
preserving the microstructural integrity of the binder. The SIP-R pulse sequence was used
to obtain exponential decay to zero [38]. The recovery delays were equally spaced on a log-
arithmic scale to determine the shape of the exponential decay. Other processing variables
entailed using 4 scans, 5 s pre-delay, and 100 µs dead time. The delay-dependent signals
were evaluated through SigmaPlot 11’s mono-, bi-, and tri-exponential decay regressions.
The primary relaxation times along with the standard deviation of three samples were
compared in all samples. Pictures of the compacted and crushed samples are provided in
Figure 2.
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Figure 2. (a). Compacted HMA (b). Crushed HMA increasing in asphalt percent from left to right
(4.5, field, 5.5, 6%).

3. Results
3.1. Noise

Since asphalt is not a traditional type of sample for NMR testing and because the
mixtures contain paramagnetic materials, the noise of each mixture was determined as
displayed in Figure 3. If the noise was high, then variation in relaxation times could be
attributed to the NMR device noise. Eight logarithmically equidistant points were chosen
and repeatedly tested 32 times to develop an average value for the signal intensity. The
standard deviation is shown in each sample as the error bars. Each sample had a different
signal intensity depending on the device parameters and concentration of hydrogen atoms.
The field sample had the most error/noise. The other samples had small amounts of noise.
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All samples contained higher amounts of noise at 2.2676 s since most of the signal was
decayed and most noise remained. Since the aggregate had longer relaxation times, it had
more signal at 2.267 s, which reduced the amount of noise. The combination of aggregate
and binder did result in some noise but the impurities found in the field were most likely
responsible for the high variation in signal intensity. While there were detectable levels
of noise due to the NMR device, it was not enough to drastically change the shape of the
relaxation curve. Any drastic changes in the average relaxation times were concluded to
result from the variability of the samples, not the noise of the device.
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3.2. Binder Comparison

Asphalt binder was expected to have the highest density of hydrogen environments
in the mixture. For comparison, laboratory-modeled binders were tested and compared.
In a previous study, stiffer binders had longer relaxation times and/or more hydrogen
environments [33]. In this study, the stiffnesses of the binders were different as shown in
Figure 4a but their hydrogen environments were very similar, as displayed in Figure 4b.
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While the binder may be stiffer, the chemical structure still contains complex hydrocarbons
as described by NMR. While these structures may interact differently to cause an increase
in stiffness, the hydrogen environments are similar. The binders could not be differentiated
using a mono-, bi-, or tri-exponential fit due to the overlapping of standard deviations as
seen in Figure 4b. While other environments could have formed, the relaxation times of
the RTFO and PAV-aged samples were very similar despite having different viscoelastic
properties. The major pattern detected between these asphalt binder samples was the
standard deviation; as the samples were aged, the sample variability decreased.
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3.3. Mixture Comparison

After the primary relaxation times of the modeled binder aging were determined,
the mixtures were tested. Three hot mix asphalt samples were compared by mono-, bi-,
and tri-exponential fits, as shown in Figure 5. The main difference between the mixtures
was the age of the sample and the asphalt binder content. The field sample came from an
18-year-old pavement while the 4.5% and 6% binder content samples were mixed in a lab
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at the same time. While the field sample is aged much more than the lab mixes, the asphalt
content is shown to have a large impact on the hydrogen environments of the sample. Each
exponential fit changed the relation of the mixtures due to the number and intensity of hy-
drogen environments present. In the monoexponential fit, all hydrogen environments were
summarized with one value. According to Figure 5, a monoexponential fit is insufficient
while a tri-exponential fit is too much for a meaningful analysis. Since HMAs have many
variable hydrogen environments, the number of relaxation times evaluated can drastically
change the comparison. A clear differentiation was seen using the biexponential fit. Using
this fit, the relaxation time was concluded to be inversely proportional to the amount of
binder in the sample.
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(red bars).

The relaxation times of the 4.5%, field, and 5.5% mixtures were much longer than
pure binder (0.5 s). The 4.5% and 6% binder mixtures were less than and greater than the
optimum amount of binder, respectively. The field and 5.5% samples were comparable to
the optimum amount of asphalt binder. Since the major difference between the mixtures
was the amount of binder, the aggregate was determined to be responsible for the large
increase in relaxation times. Therefore, the aggregate was also evaluated.

3.4. Aggregate Comparison

While the asphalt binder had primary relaxation times closer to 0.5 s, the mixtures
contained hydrogen environments with relaxation times above 1 s. While impurities in
the environment may explain the field sample, the only other component to the 4.5% and
6% samples was the aggregate. Aggregate samples were tested in normal conditions, after
72 h of drying (Aggd), and after 72 h of submerging (Aggw). The results are summarized in
Figure 6. These hydrogen environments were expected and concluded to most likely be
water. While none of the fits could differentiate between all the samples, the submerged
sample could be differentiated in all fits. Since the dried aggregate cannot be differentiated
from the room temperature aggregate, more intense heating may be needed. Alternatively,
the water was in a stable crystalline form, resulting in a longer relaxation time.
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4. Discussion

The device noise of the mixtures was determined to not have a large impact on the
variability of the samples. Instead, the impurities and differences between the samples
impacted the larger standard deviations. Distinct and changing hydrogen environments
were represented by NMR T1 relaxation times as displayed in Figure 7. To differentiate
between the asphalt mixtures, asphalt binders, and aggregates, a biexponential was chosen
as the best fit. Biexponential fits have been shown previously to be the best fit for mixture
samples [27].
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(red bars).

4.1. Binder Aging

Traditional aging of the binder did not correlate to a significant difference in hydrogen
environments. If stiffer binders are expected to have longer T1 times, the field sample
should have had the longest relaxation time. However, the 4.5% HMA sample had the
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longest relaxation time around 1.5 s, then the field around 1.06 s, then the 5.5% around
0.92, and finally the 6% HMA sample around 0.47 s. The field sample may have extra
hydrogen environments that better describe the aging occurring in the field but, due to
sample variability, these smaller hydrogen environments have large standard deviations.
There were slight differences between the binders but these differences do not account for
the changes seen in the mixtures. Asphalt mixtures rely on the proper coating of aggregate.
While each mixture is created by standard procedures, the aggregate may differ slightly
when mixing, leading to sample variability. Sampling variability also occurs when crushing
the mixture since some aggregate may be easier to breakdown than others.

Hot mixture asphalt (HMA) samples were compared with PAV- and RTFO-aged
asphalt binder. The PAV-aged sample should be comparable to the field-aged sample while
the RTFO-aged sample should mimic the 4.5% and 6% lab mixes. Using a biexponential
fit, the T1 times of the PAV-aged samples are incomparable with those of the field-aged
sample as seen in Figure 7. This could be a result of or be in conjunction with the field
sample being older than what PAV testing simulates. Additionally, the relaxation times of
the field mixture were longer than the pure binder and shorter than the pure aggregate.
This intermediary relaxation time could be related to the asphalt–aggregate interaction
that would degrade over time from moisture damage. The RTFO-aged binder closely
modeled the hydrogen environments of the 6% HMA sample but the 4.5% HMA sample
was more similar to the aggregate. When a mono-exponential fit was used, the PAV binder
better represented the field sample, as shown in Figure 7. Summarizing the variability of
hydrogen environments with one relaxation time was more effective for some comparisons.
This one relaxation time was determined by the most influential relaxation times. However,
when considering the mixtures, the mono-exponential fit was not sufficient for comparison.

4.2. Hot Mix Asphalt

A bi-exponential fit could be used to compare binder content but not the age of the
mixture samples. When comparing the HMA samples, the primary T1 relaxation time
was related to the amount of binder in the mixture, not the age of the sample. The 4.5%
sample had the longest primary relaxation time and was designed below the optimum
asphalt content. The 6% sample had the shortest primary relaxation time and was above the
optimum asphalt content. The field sample would be comparable to the optimum asphalt
content to meet design specifications, though a mixture design could not be obtained from
the City of Rolla. The field sample relaxation time landed in the middle of the 4.5% and 6%
HMA lab samples, indicating a correlation between asphalt percentage and T1 relaxation
time. The 4.5% T1 time was closer to the time of the pure aggregate and the 6% T1 time was
closer to the pure binder samples.

The samples with aggregate, excluding the 6% HMA, had larger ranges of standard
deviation. The 6% sample had a smaller standard deviation due to the excess of binder that
completely filled the aggregate pores and enhanced the hydrogen signal. The other HMA
samples had more variability due to the impurities in the aggregate pores. The field sample
had the largest standard deviation due to the aggregate and other potential impurities such
as oils, organics, and tire rubbers.

4.3. Aggregate

The aggregate was shown to have a large impact on the major hydrogen environment
of the mixtures. This hydrogen environment is most likely from water, as some components
of aggregates contain or easily absorb water [39,40]. While heating the aggregate did
not drastically change the primary relaxation time, submerging the sample did. When
submerged in water, the relaxation time was reduced. A longer relaxation may indicate a
more crystalline water environment, while a shorter relaxation reflects a more mobile phase
of water. This could be the difference between water trapped in the aggregate and surface
moisture. The exact absorbance depends on the components in each aggregate sample,
which explains the larger standard deviations of the aggregate-containing samples.
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5. Conclusions

Asphalt mixtures are a necessary part of pavement infrastructure. The aging properties
of asphalt mixtures are difficult to detect and predict due to traditional destructive testing
methods. A nondestructive method that has indicated binder and aggregate properties is
NMR relaxometry.

• NMR relaxometry was shown to be able to differentiate asphalt mixtures based on
asphalt content. The average primary relaxation times of the 4.5%, field, 5.5%, and 6%
HMA were 1.5, 1.06, 0.92, and 0.47 s, respectively;

• The hydrogen environments of aggregate were concluded to be from moisture in
adsorbed and crystalline states. The average relaxation time of regular, dry, and wet
aggregate was 2.01, 2.21, and 1.13, respectively;

• In relation to the asphalt mixtures, these water environments indicate the susceptibility
to water damage and are expected to be the reason for the differences between the
mixture samples as detected by NMR;

• While large differences between unaged, RTFO, and PAV binders were not detected
with NMR relaxometry, asphalt mixtures, binders, and aggregates could be differenti-
ated. When the aggregate was more prevalent, the primary relaxation time was closer
to 1 s; otherwise, the primary relaxation time was close to 0.5 s.

In engineering applications, quality assurance procedures rely on optimum parameters.
NMR relaxometry was found to indicate and differentiate the optimum asphalt binder in
mixtures. While traditional testing would require hours of labor and large sample sizes,
NMR relaxometry could save time, money, and resources. It is recommended to utilize
NMR relaxometry as an innovative quality assurance method.

While this study suggests some exciting applications of NMR relaxometry for asphalt
quality assurance, an in-depth analysis of HMAs and aggregate samples should be consid-
ered for further research. A limited number of binders and mixtures were considered for
this study. Therefore, future studies should also use this methodology to dive further into
mixture additives and aggregate impact. Quantifying the relationship between asphalt ag-
ing and T1 relaxation times could be a possible breakthrough for monitoring and enhancing
the service life of pavements by preventative detection through NMR relaxometry.
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