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ABSTRACT

This dissertation focuses on two areas of statistics: DNA methylation and

survival analysis. The first part of the dissertation pertains to the detection of differ-

entially methylated regions in the human genome. The varying distribution of gaps

between succeeding genomic locations, which are represented on the microarray used

to quantify methylation, makes it challenging to identify regions that have differen-

tial methylation. This emphasizes the need to properly account for the correlation

in methylation shared by nearby locations within a specific genomic distance. In

this work, a normalized kernel-weighted statistic is proposed to obtain an optimal

amount of “information” from neighboring locations to detect those differences. The

large sample properties of the proposed statistic are also studied. Simulation studies

show that the proposed method captures the true length of differentially methylated

regions more accurately than a widely used existing method.

The second focus area of the dissertation pertains to mixture cure models

in survival analysis. Mixture cure models are those based on a cured and uncured

population. The choice of models for the cured and uncured is crucial in developing

statistical models for this type of population. In this work, a flexible mixture cure

model is proposed that incorporates a generalized partially linear single-index model

for modeling the cure part and an additive hazard model for the uncured. This

model proves to be particularly effective when dealing with large data sets where an

underlying baseline mechanism is expected. In such cases, limited models like the

logistic regression are not suitable. By employing the additive hazard model, the

proposed approach offers an alternative for modeling cure survival data, especially

when hazard differences are of interest and the proportional hazard assumption is

violated.
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1. INTRODUCTION

This dissertation focuses on the development of novel statistical methods in

two different areas: DNA methylation analysis and cure survival models. The work is

organized into two papers, one for each topic. In this dissertation, a separate section

is devoted to providing background information for each paper. The two papers are

then provided, followed by a conclusion section.
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2. BACKGROUND TO PAPER I

The first part of this dissertation involves the development of statistical meth-

ods for detecting regions of differential methylation in the genome. This section

focuses on the biological and mathematical information needed to fully appreciate

the ideas in Paper I.

2.1. EPIGENETICS AND DNA METHYLATION

This section explores the epigenetic modification of DNA and its impact on

gene expression and cellular processes.

2.1.1. Background. Epigenetics is the study of how one’s behaviors and

the changes in environmental characteristics affect the way genes work. Epigenetic

changes are reversible and do not affect the deoxyribonucleic acid (DNA) sequence

(Fernandez et al., 2021). However, they can affect the activity of genes (gene ex-

pression) by turning genes off and on (Cedar, 1988). There are different types of

epigenetic modifications, such as DNA methylation and histone modifications, that

can occur in the genome. The focus of this work is on DNA methylation.

DNA methylation occurs when a methyl (CH3) group is added to the fifth

carbon of a cytosine on the DNA sequence. In mammals, DNA methylation is known

to typically occur symmetrically in a sequence where a cytosine (C) nucleotide base

is followed by a guanine (G) nucleotide base. These locations are commonly referred

to as CpG loci or sites. The “p” stands for the phosphate bond in between the C and

G base (Laurent et al., 2010; Ramsahoye et al., 2000). Most methylation in mammals

occurs at CpG sites but it can occur in places other than the CpG sequence. This

non-CpG methylation mostly occurs in embryonic stem cells (Ichiyanagi et al., 2013).
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2.1.2. DNA Methylation and Diseases. The role of DNA methylation in

human diseases was first seen in the area of genomic imprinting. Genomic imprinting

is the situation where only one copy of the genes (whether maternal or paternal) is

expressed. Diseases such as the Beckwith-Wiedemann, Prader-Willi and the Angel-

man syndromes, have been associated with the loss of imprinting (Procter et al., 2006;

Rossignol et al., 2006). Moreover, DNA methylation patterns can change over time

and are influenced by genetic factors and environmental changes. DNA methylation

plays a complex role in disease etiology. Numerous studies have highlighted its signif-

icance, particularly in relation to the progression of cancer, diabetes, and aging (Jin

and Liu, 2018). DNA methylation has the ability to modify how genes are expressed

differently between individuals with and without a disease. Detecting locations in

the genome that differ in methylation patterns between disease and healthy groups

is a growing area of research that can aid in understanding the mechanism of com-

plex diseases such as cancer. Statistical methods are essential in identifying genomic

locations with significant association between DNA methylation and disease status.

2.2. DNA METHYLATION TECHNOLOGIES

Several technologies have been developed for quantifying DNA methylation

across the genome. Bisulfite sequencing and bisulfite microarrays are the two most

widely used technologies. These technologies are described in the following two sec-

tions, with a more detailed discussion about the bisulfite microarrays since they are

the focus of this work.

2.2.1. Bisulfite Sequencing. Bisulfite sequencing begins with the DNA be-

ing treated with sodium bisulfite, which converts unmethylated cytosines to uracil

while leaving methylated cytosines unaffected. The bisulfite-treated DNA is sub-

jected to PCR amplification, which is used to make several copies of the bisulfite-

treated DNA fragments. The PCR results are then subjected to DNA sequencing
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methods such as Sanger sequencing or high-throughput next-generation sequencing

(NGS) platforms, which determines the nucleotide (A, T, C, G) sequence of the DNA

fragments. Unmethylated cytosines are read as thymines during sequencing, whereas

methylated cytosines are read as cytosines. The methylation status of individual cy-

tosine sites is established and quantified by comparing the sequenced fragments to a

reference genome (Frommer et al., 1992; Susan et al., 1994). The gold standard for

quantifying DNA methylation is Whole Genome Bisulfite Sequencing (WGBS) be-

cause it achieves the most comprehensive coverage of a genome (Jeong et al., 2017).

Though it is cheaper now than initially, the WGBS is still considered expensive com-

pared to microarray technologies (Crary-Dooley et al., 2017).

2.2.2. Bisulfite Microarray Technologies. The most popular microarray

technology for quantifying DNA methylation was developed by Illumina. The Illu-

mina microarray or BeadArray technology provides an alternative user-friendly and

cost-effective approach to large scale epidemiological studies involving the human

genome. It uses silica beads, which are coated with multiple copies of oligonucleotide

capture probes that consist of nucleotide sequences corresponding to a specific lo-

cation in the genome. In this approach, sodium bisulfite is first applied to DNA

fragments. As described previously, this sodium bisulfite treatment converts un-

methylated cytosines to uracils and leaves the methylated cytosines unchanged (Du

et al., 2010). The uracils are later read as thymines through PCR amplification. This

helps determine the methylation status at each CpG site. Next, is the hybridiza-

tion step. Bisulfite-converted DNA fragments from the biological sample are passed

over the BeadChip and each fragment binds to a complementary sequence in the

probes represented on the array, stopping one base before the CpG locus of interest.

This positioning ensures that subsequent processes, such as single-nucleotide exten-

sion or detection, query the CpG site accurately to capture the methylation status

at that specific locus. The design of the probes and their complementary binding to
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the bisulfite-converted DNA fragments enable the BeadChip platform to detect and

quantify DNA methylation levels at single-nucleotide resolution. A typical workflow

of the Infinium assay technology is shown in Figure 2.1.

Figure 2.1. The Infinium Assay Workflow - The Infinium assay workflow proceeds
from input DNA to automated genotype report (or methylation status for methylation
arrays) with a total assay turnaround time of three days. Source: (Illumina, 2017).

The first BeadChip technology used to study methylation was the Illumina

Infinium HumanMethylation27 (27K) array introduced in 2008. Measurements were

taken at approximately 27,000 CpG sites, which cover approximately 14,000 genes.

The 27K (which housed 12 samples per array) was one of the first Infinium BeadChips

used to perform epigenome-wide association studies (EWAS). EWAS research aids

in understanding the mechanisms behind various diseases and identifying biomark-

ers for cancers (Pidsley et al., 2016). In 2011, Illumina introduced the Infinium

HumanMethylation450 BeadChip (450K) that interrogated 485,577 CpG sites, and
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kept 94% of the CpGs on the 27K array. The coverage on the 450K included

a set of diverse genomic regions, such as the CpG Islands (CGI) (regions with a

high frequency of CpG sites), shores (regions that are 2kb upstream and down-

stream of CpG islands), shelves (regions that are further away from the CpG is-

lands, specifically 2kb away from the shores), 5’UTR (upstream Untranslated Re-

gion), 3’UTR (downstream Untranslated Region), FANTOM4 promoters (4th phase

of Functional Annotation of the Mammalian Genome project that aims to identify

all functional elements in mammalian genomes) and some enhancer regions (Bibikova

et al., 2011; Pidsley et al., 2016). Organizations like The Cancer Genome Atlas

(https://www.cancer.gov/ccg/research/genome-sequencing/tcga) and the

Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) of the National

Center for Biotechnology Information (NCBI) used the 450K platform to profile sam-

ples for different types of cancer.

The 450K uses two different probe types that could impact the analysis. The

main types of probes used in the Infinium assay are the Infinium I and II probe

designs. An illustration of these probe types can be found in Figure 2.2. For each

CpG position, two readings are obtained: a methylated intensity and an unmethylated

intensity. The way these intensities are measured depends on the specific type of probe

used at the position. The Infinium I probe design, which measures approximately 30%

of the CpG sites on the 450K, uses two separate probes for each CpG site, one for the

methylated signal and one for the unmethylated signal. Both signals are measured

using the same color, resulting in two one-color (red-red or green-green) assays. On

the other hand, the Infinium II probe design, which measures the remaining ∼ 70% of

the CpG sites, uses a single probe to measure both the methylated and unmethylated

signals, but each signal is reported in a different color, resulting in a two-color (red
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Figure 2.2. Two Infinium probe types: Infinium I (top) and Infinium II (bottom)
Source: Illumina (2012).

and green) assay (Bibikova et al., 2011). This unique combination of probe designs

allows for a comprehensive and accurate assessment of methylation status across the

genome.

Physically, the 450K is a small, rectangular piece of glass about the size of a

standard microscope slide. Its surface is thoroughly covered with thousands of tiny

spots or wells, each containing many tiny beads attached to specific DNA probes

(Sandoval et al., 2011). While these individual beads or probes are not visible to the

human eye, under a microscope, a grid-like pattern of spots can be observed. The

BeadChip is divided into sections, each capable of analyzing a different DNA sample.
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Depending on the specific version, it might be divided into 8 or 12 sections, each

physically separated from the others by a small gap. A barcode or other identifier is

usually present on the edge of the BeadChip for tracking purposes (Sandoval et al.,

2011). See Figure 2.3 for the structure of the 450K BeadChip.

Figure 2.3. Illumina Infinium HumanMethylation 450 BeadChip. Source: Illumina
Inc. (2012).

The 450K array missed essential regulatory regions on the genome and in

2016, Illumina introduced the EPIC array that targeted over 850,000 CpG sites;

covering more than 90% of the sites on the 450K. It also contained more than 350,000

CpG loci identified as potential regulatory enhancers by two significant projects,

FANTOM5 and ENCODE (Moran et al., 2016; Pidsley et al., 2016). FANTOM5 is

an international research consortium that aims to identify all functional elements in

mammalian genomes (The FANTOM Consortium and the RIKEN PMI and CLST

(DGT), 2014), while ENCODE is a public research consortium focused on identifying

all functional elements in the human genome (ENCODE Project Consortium, 2012).

The inclusion of these additional CpG loci in the EPIC array has expanded the ability

to study the role of DNA methylation in gene regulation, contributing to a deeper

understanding of the association between DNA methylation and diseases (McCartney
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et al., 2016; Pidsley et al., 2016). It is also notable that data collected at each CpG

locus on the EPIC array maintains a high correlation with the 450K array, ensuring

consistency across studies using the two different arrays (Pidsley et al., 2016).

2.3. DNA METHYLATION DATA

There are two main file formats for Illumina methylation BeadChip 450K and

EPIC array data: (i) raw (∗.idat) data stores the raw intensities for each probe and

(ii) ∗.txt data is obtained after preprocessing of the intensities has been completed. In

line with The Cancer Genomic Atlas protocol, idat (intensity data) files are referred

to as Level 1 data and ∗.txt files, level 3 data. There are several R packages built to

handle these two main types of data. The raw idat files must undergo preprocessing

to correct for technical variation and potential biases, such as background noise,

ensuring that subsequent analyses are based on accurate and reliable methylation

measurements (see section 2.4 for details). Two popular R packages illuminaio and

wateRmelon are designed to read, process, and analyze the raw and preprocessed data

from the Illumina methylation BeadChip (Pidsley et al., 2013; Smith et al., 2013).

Irrespective of the data format, there are two general resulting methylation

data formats for analysis purposes. The first of the two is the β value. This repre-

sents the ratio of methylated intensities to the total methylated and unmethylated

intensities. They range from 0 (fully unmethylated) to 1 (fully methylated) and have

a highly skewed distribution (Du et al., 2010). Mathematically, the β value for the

ith CpG site is expressed as:

βi =
max(γi,methy, 0)

max(γi,unmethy, 0) + max(γi,methy, 0) + α
, (2.1)
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where γi,methy and γi,unmethy represent the intensities measured by the ith methylated

and unmethylated probes respectively. α is an offset constant added to adjust the β

values in the case where both methylated and unmethylated intensities are near 0.

Illumina recommends an α value of 100. The max(γi,methy, 0) and max(γi,unmethy, 0)

are used to avoid any possible negative values that may arise. The β values typically

follow a beta distribution if one assumes the intensities are gamma distributed.

The second data type is the log ratio of the methylated intensities to the

unmethylated intensities, referred to as the M-value. Mathematically it is expressed

as follows:

Mi = log2
max(γi,methy, 0) + α

max(γi,unmethy, 0) + α
. (2.2)

Here, the offset parameter, α is set to a default value of 1. From (2.2), it is clear

that an M-value close to 0 indicates similar intensity levels between the two probes.

Positive M-values indicate more methylated than unmethylated intensities and vice

versa for negative M-values. The relationship between the β and M values is shown

below, where it is clear that the M-values have a support in R:

Mi = log2

(
βi

1− βi

)
. (2.3)

Both data types are relevant. The β values are preferred when it comes to biological

interpretation because they provide an intuitive measure of the methylation level

at each CpG site and as such they are useful for visualizing and communicating

methylation data (Du et al., 2010). However, the M-values have better statistical

properties, such as homoscedasticity of variance, an assumption required of most

commonly used statistical methods and the same support as Gaussian distribution.

For these reasons, M-values are preferred for statistical data analysis (Du et al., 2010).
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2.4. PREPROCESSING OF METHYLATION DATA

The typical preprocessing of DNA methylation data involves quality control

via probe filtering and normalization (Wang et al., 2018).

2.4.1. Quality Control. Prior to analysis, probe quality control must be

performed to examine the success of the bisulfite conversion and array hybridization.

Chen et al. (2012) found probes on the Illumina BeadChips that target CpG sites

that overlap single nucleotide polymorphisms (SNPs), known as polymorphic CpGs.

This can potentially introduce bias in the measurement of methylation levels, as the

presence of SNPs can affect the binding efficiency of the probe and thus influence

the success of bisulfite conversion. They also concluded that approximately 6% of

probes generate fake signals because they target repetitive sequences or hybridize to

multiple genomic regions. In other situations, a CpG site may be mutated and hence

does not match its intended complimentary probe, so it should be excluded before

downstream analysis. Thus, probes that meet any of these criteria are filtered out

since they are of questionable quality. In many DNA methylation studies, probes on

the X and Y chromosomes are also often filtered out to avoid potential sex biases in

the downstream analysis (McGregor et al., 2016).

Detection p-values are also used for quality control as they are a common

technique used in the analysis of methylation data to distinguish true signal from

background noise. They are calculated for each probe on the array and provide an

estimate of the probability that the observed signal intensity for a given probe is dis-

tinguishable from the background. For Illumina’s methylation arrays, the detection

p-value is calculated based on the intensity signals of negative control probes, which

are designed to not hybridize to any genomic DNA sequence (Aryee et al., 2014).

The distribution of these negative control intensities is used to estimate the back-

ground noise, and a z-test is performed to calculate a p-value for each probe on the

array. A low detection p-value indicates that the signal intensity for a given probe
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is significantly higher than the background noise, suggesting that the probe is reli-

ably “detected” (Aryee et al., 2014). The conventional cutoff for detection p-values is

typically set at 0.01 or 0.05, although this can vary depending on the specific study

or analysis. Probes with detection p-values above this cutoff are considered to be

“undetected” and are often excluded from further analysis due to the low confidence

in their signal intensities. An alternative approach to calculating detection p-values

can be found in the work of Heiss and Just (2019).

2.4.2. Normalization. Normalization is the process of adjusting the raw

intensity values of the methylation probes to correct for technical variation and po-

tential biases. When done, it ensures that the differences observed in methylation

levels across samples are reflective of true biological differences rather than technical

artifacts or biases. To allow more probes to fit on the 450K and EPIC arrays, the

Infinium II probe/assay was introduced in addition to the Infinium I that was used

on the 27K. This created a two probe/assay design for both 450K and EPIC arrays.

Though these assays are complimentary to each other, they possess very different

chemistries and different dynamic ranges. Moreover, the 450K array uses 70% In-

finium II probes/assays, and this leads to a potential type II probe bias during the

analysis stage. After poor quality probes are filtered out, within-array normalization

is the next step in the preprocessing phase of the DNA methylation analysis. This

typically includes correction of type II probe bias, background correction and color-

bias adjustment. For a detailed list of background correction methods developed,

see Triche et al. (2013). The lumi package in R provides methods for background

correction and the methylumi R package provides methods for color-bias adjustment.

According to Dedeurwaerder et al. (2011), applying these methods improves the qual-

ity of data. The probe type-bias is considered the most critical of the preprocessing
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techniques because it has the greatest potential of reducing the quality of data passed

on for further analysis. Due to this, many efforts were made to develop methods to

correct this type of bias. Some of the popular methods are described below.

The first method is the peak-based correction (PBC) method (Dedeurwaerder

et al., 2011). The Infinium II probes are less accurate and reproducible compared

to the Infinium I probes. The PBC method re-scales methylation intensities of the

type II probes to match the same modes as the type I probes. This method of bias

correction is known to be less robust when the density distribution of β values do

not show well defined peaks (Maksimovic et al., 2012). In 2012, Maksimovic et al.

(2012) introduced the Subset-quantile Within Array Normalization (SWAN), a two-

step procedure that assumes the same intensity distribution when probes have the

same number of CpGs. Another implicit assumption is that the differences in the

methylation intensity distributions between probe types I and II, represent technical

differences between them. The first step in the SWAN method is to identify an

average quantile distribution using a subset of probes marked to be similar in terms

of CpG content. Following this step, the intensities of the remaining probes must be

adjusted via interpolation. Other within-sample normalization methods that were not

used in this dissertation include the subset quantile normalization (SQN) and Beta

Mixture Quantile normalization (BMIQ), proposed by Touleimat and Tost (2012) and

Teschendorff et al. (2013), respectively.

One characteristic of experiments with large sample sizes is unwanted batch

effects. Batch effects are known to be common sources of non-biological variation.

Any equipment (such as a microarray chip) that is made in batches and used in an

experiment is one potential type of batch effect. These effects are typically unmea-

sured but can impact analysis. In 2014, Fortin et al. (2014) proposed the functional

normalization procedure, an unsupervised technique, that attempts to remove non-

biological variation by adjusting for covariates estimated from control probes. The
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focus of this method is to normalize methylation data that have global methylation

changes, such as in cancer and normal samples. For a systematic study and compre-

hensive list of between and within-array normalization methods and the associated

R packages where such methods could be implemented, see Wang et al. (2015) and

Shiah et al. (2017).

2.5. DIFFERENTIAL METHYLATION TESTING METHODS

Epigenome-wide association studies (EWAS) were intended to identify disease

risk factors by using statistical techniques to test associations between disease states

and DNA methylation at individual CpG sites or genomic regions.

2.5.1. Site-level Testing. Site-level testing refers to testing for differences

in methylation patterns between groups representing differences in conditions (e.g.

disease vs. healthy) on a base-pair level. CpG sites that possess significant differences

in methylation levels are called Differentially Methylated Positions (DMP). Several

methods have been developed in the literature to test for differential methylation at

each CpG locus. Different methods are needed for microarray and bisulfite sequencing

data. This section focuses on popular methods for DNA methylation microarray data,

as that is the focus of this work. Robinson et al. (2014) and references therein provide

a review of site-level testing methods developed for bisulfite sequencing data.

The Linear Models for Microarray data (limma) by Smyth (2004) is arguably

the most commonly used approach by many researchers to test for differential methy-

lation at individual CpG sites. It was initially developed as a general and practical

approach for identifying genes that are differentially expressed across conditions in de-

signed microarray experiments. However, the method readily applies to DNA methy-

lation data. limma uses a linear modeling approach combined with the empirical

Bayes technique developed by Efron and Morris (1972) to borrow information across

genomic locations to estimate site-level variance. In some microarray experiments,
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the number of samples is small and in such cases inferences made are not stable. The

limma framework solves this problem through the use of a moderated statistic which

employs the posterior residual standard deviation in place of the ordinary standard

deviation. This shrinks CpG site-wise residual sample variances towards a pooled

estimate leading to much more stable inferences, especially in small sample-sized ex-

periments (Ritchie et al., 2015; Smyth, 2004). In terms of site-level testing, limma

can be explained in the following steps:

1. Fit a linear model at the ith CpG site. Consider a response vector of M-values

yT
i = (yi1, . . . , yin) for the ith CpG site. The model yi = Xαi + ϵi, assumes

that E (yi) = Xαi where X is a design matrix, αi is a coefficient vector, and

ϵi is an error vector. Further, assume var (yi) = Wiσ
2
i where Wi is a known

non-negative definite weight matrix.

2. Define the hypothesis of interest. This is achieved by defining contrasts of the

coefficients that are assumed to be of biological interest in the form Bi = C⊤αi

where C is a contrast matrix. Let Vi be a positive definite matrix not depending

on s2i . The contrast estimators are B̂i = CT α̂i with estimated covariance

matrices var
(
B̂i

)
= CTViCs2i . It is of interest to test whether individual

contrast values Big are equal to zero or not. The hypothesis being tested by

limma is:

H0 : Big = 0 (2.4)

H1 : Big ̸= 0 (2.5)

where g is the specific contrast to be tested at the ith CpG site.
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3. Test the hypothesis of interest. This is achieved using the moderated t-statistic

given by

t̃i =
B̂ig

s̃i
√
vig

(2.6)

where vig is the gth diagonal element of C⊤ViC. This statistic estimates si,

the posterior residual standard deviation, using empirical Bayes as follows. The

unknown variances σ2
i are assumed to have a prior distribution given by

1

σ2
i

∼ 1

d0s20
χ2
d0

(2.7)

where s20 is a prior estimator of the variance and d0 is the degrees of freedom

Next, this prior distribution is updated using observed data to obtain the pos-

terior distribution whose mean given by

s̃2i = E
(
σ2
i | s2i

)
=

d0s
2
0 + dis

2
i

d0 + di
. (2.8)

di denotes the residual degrees of freedom for the linear model for CpG site i.

4. Calculate p-values. The moderated t-statistics are then used to calculate p-

values. Due the multiple hypotheses that are tested (one for each CpG site),

the p-values are then adjusted for multiple testing to control the false discovery

rate (Benjamini and Hochberg, 1995a).

In 2012, Wang et al. (2012) introduced the Illumina Methylation Analyzer

(IMA) for both site and region-level testing. It uses a Wilcoxon rank-sum test in

their R package, IMA, which is based on β values as their default method for test-

ing for differences in methylation between treatment and control groups. IMA also

provides a Student’s t-test option as well. In the same year, Barfield et al. (2012)

developed CpGassoc, an R package, that uses a fixed or mixed effects model to test

for methylation differences at CpG sites. Some characteristics of their method in-
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clude: the ability to handle covariates, the ability to model batch effects as fixed or

as random effects among others. Other methods existing in the literature for site-level

testing include COHCAP (Warden et al., 2013a), MethLAB (Kilaru et al., 2012) and

penalized logistic regression for DNA methylation data with case-control by Sun and

Wang (2012) among others.

2.5.2. Region-level Testing. While site-level testing can be informative

(Weaver et al., 2004), a more biologically relevant and statistically appropriate ap-

proach involves testing across clusters of CpG sites, referred to as regions. These re-

gions of methylation frequently align with biologically functional units, such as genes.

The term “statistically appropriate” in this context refers to the increased statistical

power achieved through region-level testing, which increases the ability to detect con-

tinuous methylation differences across a given region (Robinson et al., 2014). Certain

diseases have even been associated with differentially methylated regions (DMRs) in

the epigenome. For instance, a type of colorectal cancer, called CpG island methy-

lator phenotype (CIMP) cancer, has a high frequency of methylated genes (Lao and

Grady, 2011).

Regions can be defined in two different ways. Some methods use predefined

genomic regions (CGIs, Open sea, CGI shores, among others). Other methods de-

fine regions based on the data or array. These user-defined regions typically utilize

statistics or p-values (adjusted for multiple testing) from site-level tests to group con-

tiguous sites together and form regions based on some criteria (Mallik et al., 2019).

Though the predefined region-level testing approach can reduce the number of tests

that need to be considered in controlling the false discovery rate (FDR), the prob-

lems it possesses are two-fold: (1) regions are comprised of only a subset of the probes

presented on the array, which may bias results and (2) it requires defining genomic

regions prior to evaluation, which forces DMRs to have artificial start and end points.

Two examples of predefined region-level testing methods include IMA by Wang et al.
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(2012) and COHCAP by Warden et al. (2013a). The next three subsections describe

common user-defined DMR testing methods for array-based data, which is the focus

of this work. For a good review of differential methylation detection methods for

bisulfite sequencing data, see (Piao et al., 2021; Shafi et al., 2018).

2.5.2.1. Bump Hunter. The bump hunting method proposed by Jaffe et al.

(2012) is a DMR identification tool that takes into consideration the correlations of

methylation levels between nearby CpG sites (co-methylation). This method starts

off by first fitting a linear regression model at each CpG site as in (2.9)

Yji = µi + βiXj +

p∑
k=1

γkiZjk +

q∑
l=1

aliWjl + εji (2.9)

where Yji = M-values at CpG site i for individual j, µi represents the population-level

DNA methylation profile of the healthy group, Xj = disease status for individual

j, βi = measures association between Xj and Yji at CpG site i, Zjk = measured

confounders (e.g. sex, age, race), γki = effect of confounder k at CpG site i, Wjl =

unmeasured confounders (e.g. batch effects), ali effect of unmeasured confounder l at

site i and εji = error.

Next, the coefficient, βi, representing the difference in average methylation

levels between two groups (e.g. disease vs. healthy) at each CpG site, is then used

to implement the bump hunting methods in the following steps (Jaffe et al., 2012):

1. Estimate β∗(t), a smooth function via LOWESS (Locally Weighted Scatterplot

Smoothing) smoothing using the βi’s.

2. Use the smooth function β∗(t) to estimate the regions Rn, n = 1, 2, · · · , N for

which β∗(t) ̸= 0 ∀t ∈ Rn. Rn are then contiguous intervals (genomic regions)

for which methylation levels at consecutive measured CpG sites are significantly

different between the groups.

3. Use permutation to assign statistical uncertainty to each estimated region.
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A key element in their model is accounting for batch effects (via surrogate variable

analysis, Leek and Storey (2007)). The Bump Hunter procedure is implemented in

the R/Bioconductor packages bumphunter and minfi.

2.5.2.2. Probe Lasso. The Probe Lasso DMR detection method developed

by Butcher and Beck (2015), fits a linear model by regressing M values on group (e.g.

disease vs healthy) at each CpG site. This DMR detection method was developed

under the motivation that probe spacing on the beadchip arrays is not uniform with

respect to gene feature or genomic annotation. That is, probes near the transcrip-

tion Start Site (TSS) are the most densely spread compared to intergenic regions

(IGRs). Thus, probe lasso works by generating dynamic, flexible boundaries or win-

dows around each probe based on the type of genetic/epigenetic feature the probe is

located in (e.g. TSS500, Gene body, etc.). Based on this feature, it “throws” a lasso

(constructs a genomic window or region) around each probe centered at the target

locus with the size of the lasso depending on the type of genetic/epigentic feature

where the probe is located. A region is selected if the number of significant probes

within the probe-lasso bounds is at least equal to a user-specified threshold. Next,

a p-value is estimated for each region using Stouffer’s method (Stouffer et al., 1949)

to assign weights to the individual p-values based on a correlation matrix of β val-

ues (Butcher and Beck, 2015). Probe Lasso is implemented in the R/Bioconductor

package ChAMP.

2.5.2.3. DMRcate. The DMRcate method developed by Peters et al. (2015),

first fits a linear model by regressing the M-values on group status (e.g. disease vs.

healthy) at each CpG site using the empirical Bayes technique from the limma R/Bio-

conductor package. Then the DMR identification is done following the steps below:

1. A statistic, Yi = t2i is calculated at each CpG site, i, where t is the moderated

t-statistic (see section 2.5.1) from the linear model fit, which denotes the group

effect or the site-level difference in methylation.
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2. Apply a kernel-based Gaussian smoother (2.10) with bandwidth λ (scaled by

some factor C, for C ∈ R+) at each location on the Yi’s:

SKY (i) =
n∑

j=1

KijYj (2.10)

where Kij = exp

(
−[xi − xj]

2

2σ2

)
, x1 < x2 < · · · < xn are CpG site positions

for some chromosome, and σ = λ/C. This Gaussian kernel smoothing is em-

ployed as a way of borrowing the co-methylation (similar methylation profiles)

information known to exist among “nearby” CpG sites.

3. Compute p-values for the local kernel-weighted statistic SKY (i), at each CpG

site using a moment-matching technique via the method of Satterthwaite (Sat-

terthwaite, 1946).

4. Apply the multiple comparison correction via Benjamini and Hochberg (Ben-

jamini and Hochberg, 1995b) to obtain False Discovery Rate (FDR) corrected

p-values.

5. Combine nearby contiguous significant CpG sites that are within λ nucleotides

from each other to form regions.

6. Use the minimum p-value within a DMR as the representative p-value for that

region.

The DMRcate method is implemented in the R/Bioconductor package DMRcate (Pe-

ters et al., 2015).
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2.6. MOTIVATION

In the early part of 2015, Li et al. (2015) reported in their article titled, “An

evaluation of statistical methods for DNA methylation microarray data analysis”,

that amongst the methods evaluated they would recommend the region-level Bump

Hunter method over the site-level empirical Bayes method (such as limma) when DNA

methylation levels are correlated across CpG loci, as their method improved statistical

power. It has since been clear the advantage of DMR detection over DMP detection.

Later that same year, Probe Lasso and DMRcate methods were published in the

literature. Simulation studies comparing Bump Hunter, Probe Lasso and DMRcate in

the paper that proposed the DMRcate method, showed that DMRcate outperformed

its counterparts based on the area under the precision-recall curve (AUPRC) metric

(Peters et al., 2015). The AUPRC is a metric that provides a single summary measure

of the DMR detection method’s performance across all possible thresholds for defining

a DMR. A perfect DMR detection method has an AUPRC of 1, while a method that

is no better than random has an AUPRC equal to the proportion of CpG sites that

are in true DMRs. Four years later, Mallik et al. (2019) performed a comprehensive

evaluation of Bump Hunter, Probe Lasso, DMRcate, and comb-p (a Python-based

DMR identifier) methods under 60 different parameter settings. They evaluated the

precision, recall, F1 score, the AUPRC, the type I error rate (see Ma and He (2013)

for definitions of these terms) and other metrics. They concluded that DMRcate and

comb-p were the two best methods of the four methods they compared in terms of

precision, power and execution time. The results of these two studies perhaps provide

evidence that DMRcate’s novel way of detecting DMRs is a useful lens through which

to view DMR detection.

All aforementioned DMR detection methods rely on findings from Eckhardt

et al. (2006), which says that methylation levels between CpGs that are within 1000 bp

are highly correlated. In recent studies done by Sun and Sun (2019) on within-sample
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co-methylation of normal tissues, they concluded that co-methylation regions are as

short as a few hundred bp. Another recent preliminary analysis of methylation pat-

terns between consecutive CpG sites by Sun et al. (2019), revealed that co-methylation

region lengths differed significantly for unmethylated and methylated states. These

recent findings reveal the somewhat complex nature of the co-methylation patterns

in DNA methylation data.

In this work, a general locally-weighted statistic for DMR detection is pro-

posed. DMRcate is a special case of this general statistic. Next, a normalized kernel-

weight is proposed as a superior way of borrowing information from nearby CpG sites.

Asymptotic properties of this statistic are then studied. The method is then evalu-

ated via simulation studies and applied to a dataset from NCBI’s Gene Expression

Omnibus database. In summary, a new method is developed that better captures or

borrows the right amount of information from nearby CpG sites in detecting DMRs.

2.7. MATHEMATICAL BACKGROUND

In this section, mathematical details are provided to facilitate the understand-

ing of the proposed DMR detection method. These details are utilized in the method

development. These results can be found in numerous texts, including Härdle et al.

(1991), Silverman (1986), Casella and Berger (2021), Mood et al. (1974) among oth-

ers. The following definitions, theorems, and discussions are from Mood et al. (1974)

and Casella and Berger (2021). First the distributions used in this work are defined

along with some results about relationships between these distributions.

Definition 1 (Normal Distribution). A random variable X is defined to be normally

distributed if its density is given by

fX(x) = fX(x;µ, σ) =
1√
2πσ2

e−(x−µ)2/2σ2

, (2.11)
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where −∞ < x < ∞. The parameters µ (mean) and σ (standard deviation) satisfy

−∞ < µ < ∞ and σ > 0. Any distribution defined by a density function given in

(2.11) is called a normal or Gaussian distribution. Notation: X ∼ N(µ, σ2).

If a normal random variable has mean 0 and variance 1, it is called a standard normal

random variable, denoted Z.

Definition 2 (Gamma Distribution). If X has density given by

fX(x;α, β) =
xα−1e−x/β

Γ(α)βα
, (2.12)

where 0 ≤ x <∞, α > 0, β > 0 then X is defined to have a gamma distribution with

mean, αβ and variance, αβ2. Γ(·) is the gamma function defined by:

Γ(t) =

∫ ∞

0

xt−1e−xdx.

Definition 3 (Chi-square Distribution). If X is a random variable with density

fX(x) =
xν/2−1e−x/2

Γ(ν/2)2ν/2
, (2.13)

where 0 ≤ x < ∞ and ν is a positive integer then X is defined to have a chi-square

distribution with ν degrees of freedom.

Note that a chi-square density is a particular case of a gamma density with gamma

parameters α and β equal, respectively, to ν/2 and 2.

Another distribution of practical importance is the student’s t-distribution

which is defined as the ratio of a standard normally distributed random variable to

the square root of an independently distributed chi-square random variable divided

by its degrees of freedom.
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Theorem 1 (Student’s t-distribution). If Z has a standard normal distribution, if U

has a chi-square distribution with ν degrees of freedom, and if Z and U are indepen-

dent, then

T =
Z√
U/ν

(2.14)

has a Student’s t-distribution with ν degrees of freedom.

Next, a theorem is given for the F-distribution, which is defined as the ratio

of two independent chi-square random variables divided by their respective degrees

of freedom.

Theorem 2 (F-distribution). Let U be a chi-square random variable with µ degrees

of freedom; let V be a chi-square random variable with ν degrees of freedom, and let

U and V be independent. Then the random variable

F =
U/µ

V/ν
(2.15)

is distributed as an F distribution with µ and ν degrees of freedom with density defined

in (2.16)

fF (x) =
Γ[(µ+ ν)/2]

Γ(µ/2)Γ(ν/2)

(µ
ν

)µ/2 x(µ−2)/2

[1 + (µ/ν)x](µ+ν)/2
. (2.16)

We note that if F is an F−distributed random variable with µ and ν degrees of

freedom then E(F ) =
ν

ν − 2
for ν > 2 and V ar(F ) =

2ν2(µ+ ν − 2)

µ(ν − 2)2(ν − 4)
for ν > 4.

Another important result used in this work is the relationship between between

the gamma distribution and the beta distribution in the next corollary.
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Corollary 1 (Gamma to Beta Relationship). Let X and Y be two independently

and identically distributed random variables each having a Gamma distribution with

parameters α and β as in definition 2, then the random variable

W =
X

X + Y
(2.17)

has a beta distribution (Cramér, 2016) denoted W ∼ Beta(α, α) with density function

f(w) =
Γ(2α)

Γ(α)Γ(α)
wα−1(1− w)α−1 , 0 < w < 1. (2.18)

Proposition 1 (F to Chi-square Relationship). Let Y be a random variable with

probability density function (PDF) given in (2.16) so that Y is defined as in (2.15).

Then as ν →∞,

Y
d→ χ2

µ/µ (2.19)

where χ2
µ is a chi-squared distribution with µ degrees of freedom and

d→ means con-

verges in distribution (refer to Definition 6 for details).

The next background information provided is important to the large-sample

results that underpin this work. The following definitions, concepts and theorems

can be found in Billingsley (1995); DasGupta (2008); Jiang (2010); Lehmann (2004);

Resnick (1999).

Definition 4 (Convergence in Probability). Let {Xn}, X be a sequence of random

variables. Then {Xn} converges in probability to X as n → ∞ ({Xn}
p→ X) if for

each ϵ > 0,

lim
n→∞

P (|{Xn} −X| > ϵ) = 0. (2.20)
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The limiting random variable X may be a constant; in which case we write {Xn}
p→ c

(a constant). This means for large n, there is almost no variation in the random

variable X.

A statistical version of convergence in probability is the concept of consistency of a

statistic or an estimator, which is defined in corollary 2.

Corollary 2 (Consistency). Let T1, T2, · · · , Tn, · · · be a sequence of estimators of

τ(θ). The sequence {Tn} is defined to be weakly consistent if for every ϵ > 0 the

following is satisfied:

lim
n→∞

P (|Tn − τ(θ)| > ϵ) = 0 (2.21)

for every θ in Θ.

Convergence in probability is weak and merely requires that the probability difference

becomes small. A much stronger form of convergence is almost sure convergence,

which is defined below.

Definition 5 (Almost Sure Convergence). A sequence of random variables {Xn}

converges with probability 1 (almost surely) to a random variable X ({Xn}
a.s.→ X) if

P ([ω : lim
n→∞
{Xn}(ω) = X(ω)]) = 1. (2.22)

Another aspect of large-sample theory deals with convergence in distribution, which

involves approximations to probability distributions and the limit theorems that un-

derlie these approximations.

Definition 6 (Convergence in Distribution). Suppose {Xn}, X are random variables.

Then {Xn} converges in distribution to X as n→∞ ({Xn}
d→ X) if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x) = F (x) (2.23)
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for each continuity point of the distribution function F (x). Note this refers to distribu-

tions with cumulative distribution functions (CDFs), Fn, converging to a distribution

function F . i.e. Fn(x)→ F (x) at all continuity points x of F .

The concept of uniform tightness is crucial to the study of convergence of distributions

of random variables.

Definition 7 (Uniform Tightness). A collection of random variables {Xα}α∈A is

uniformly tight if ∀ϵ > 0, there exists M <∞ such that:

sup
α

P (|Xα| ≥M) ≤ ϵ.

The next theorem pertains to the generalization of the famous Central Limit Theorem

to the case where the summands are independent but not identically distributed.

Theorem 3 (Lindeberg-Feller). Let {Xn, n ≥ 1} be independent (but not necessarily

identically distributed) random variables and suppose Xk has distribution Fk, and that

E(Xk) = 0, Var(Xk) = σ2
k. Define

Yn = X1 +X2 + . . .+Xn (2.24)

s2n = σ2
1 + σ2

2 + . . .+ σ2
n = Var

(
n∑

i=1

Xi

)
. (2.25)

{Xk} satisfies the Lindeberg-Feller condition (uniform integrability) if for all t > 0 as

n→∞ we have

1

s2n

n∑
i=1

E
(
X2

k1[|Xk/sn|>t]

)
→ 0. (2.26)
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The Lindeberg-Feller condition implies the Uniform Asymptotic Negligibility (UAN)

condition below:

max
1≤k≤n

σ2
k

s2n
→ 0 as n→∞. (2.27)

The Lindeberg-Feller condition in Theorem 3 further implies:

Yn

sn

d→ N (0, 1) (2.28)

where N (0, 1) is a normal random variable with mean 0 and variance 1. Note that

(2.28) is the so-called Lindeberg-Feller Central Limit Theorem (CLT).

Usually an easier condition to check than Lindeberg-Feller condition is the

Lyapounov condition which is stated in the next corollary.

Corollary 3 (Lyapounov Condition). Let {Xn, n ≥ 1} be an independent sequence

of random variables satisfying E(Xk) = 0, Var(Xk) = σ2
k <∞, s2n =

∑n
k=1 σ

2
k. If for

some δ > 0:

n∑
i=1

E|Xk|2+δ

s2+δ
n

→ 0, (2.29)

then the Lindeberg-Feller condition (Theorem 3) holds and hence the CLT.

Now a Lemma and Theorem (due to Adler and Rosalsky (1991)) are intro-

duced that pertain to situations when weighted sums of independent and identically

distributed (iid) random variables obey the weak law of large numbers.

Lemma 1. Let {Y , Yn} be iid random variables defined on a probability space (Ω,F , P )

and let {an, n ≥ 1} and {bn, n ≥ 1} be constants with an ̸= 0, bn > 0, n ≥ 1 and{
cn =

bn
|an|

, n ≥ 1

}
.
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If

nP (|Yn| > cn) = o(1) (2.30)

and either

cn ↑,
cn
n
↓,

n∑
j=1

a2j = o(b2n), and
n∑

j=1

(
cj
j

)2

= O

(
b2n∑n
j=1 a

2
j

)
(2.31)

or

cn
n
↑ and

n∑
j=1

a2j = O
(
na2n
)

(2.32)

then

n∑
j=1

a2jE
(
Y 21{|Y |≤cn}

)
= o(b2n) (2.33)

where the symbols un ↑ or un ↓ are used to indicate that the given numerical sequence

{un, n ≥ 1} is monotone increasing or decreasing, respectively.

Theorem 4. Let {Yn, n ≥ 1} be iid random variables and let {an, n ≥ 1} and {bn, n ≥

1} be constants satisfying an ̸= 0, bn > 0, n ≥ 1 and either (2.31) or (2.32) hold. If

(2.30) holds, then

∑n
j=1 aj

(
Yj − EY 1{|Y |≤cn}

)
bn

p→ 0. (2.34)

The next definition pertains to the concept of a Kernel function, which holds signifi-

cance as the method proposed in Paper I is based upon it.
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Definition 8 (Kernel). A kernel is any measurable weighting function which satisfies

the following conditions. For every x ∈ R:

K(x) = K(−x) (K.1)∫
R
K(t)dt = 1 (K.2)∫

R
tK(t)dt = 0 (K.3)∫

R
t2K(t)dt <∞ (K.4)∫

R
K2(t)dt <∞. (K.5)

Note that the symmetry condition in (K.1) implies that
∫
tK(t)dt = 0.
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3. BACKGROUND TO PAPER II

The second part of this dissertation deals with statistical methods for time-to-

event data that includes a cure fraction. The primary characteristic of time-to-event

data is, as the name suggests, the length of time until an event occurs. This type

of data is often referred to as survival data in the field of statistics. In classical

survival analysis, it is typically assumed that all subjects or units in the population

will eventually experience the event of interest. However, this is not always the case.

When some subjects will never experience the event of interest, they are referred

to as the cure fraction. The following sections are dedicated to presenting survival

analysis both without and with a cure fraction, along with estimation methods for

cure survival models.

3.1. SURVIVAL ANALYSIS AND THE FEATURES OF SURVIVAL
DATA

Survival analysis aims to describe and model time-to-event data, that is, data

concerning the duration between a starting point and a predetermined event of inter-

est. This duration is often referred to as the survival time, event time, or failure time.

The event in question is not always death, as is typically the case in a medical context;

it can also be the recurrence of a disease. In fact, survival analysis has been applied

in other fields such as economics (e.g., the time until an unemployed person finds a

new job) and engineering (e.g., the time until a machine breaks down) (Kleinbaum

and Klein, 2012).

Survival data are characterized by two key features: the survival time, de-

noted by T (a positive continuous random variable), and a censoring feature, which

renders classical statistical methods unsuitable for this type of data. Censoring arises

when the exact survival time of some subjects is unknown. There are various types of
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censoring, including right censoring, left censoring, and interval censoring. However,

this work focuses on random right censoring, which refers to situations where the

censoring time is a random variable. This corresponds to scenarios where all partici-

pants can enter and exit the study at different times. If the random censoring time is

denoted by C, then the observed data consists of the observed time, Y = min(T,C),

and the censoring indicator, ∆ = I(T ≤ C) (Lee and Wang, 2003).

When participants are required to meet a condition or to have experienced

the event to be included in the analysis, this is referred to as truncation. Truncation

is more severe than censoring because it implies that some individuals do not ap-

pear in the dataset at all. This work focuses solely on right-side censorship without

truncation, which is representative of many real-world scenarios (Chiou et al., 2019).

The censoring is assumed to be uninformative, meaning that the distribution

of the censoring times does not depend on the parameters appearing in the survival

distribution, and that T and C are independent given the covariates. This assumption

is crucial as it allows the censoring mechanism to be disregarded when modeling the

survival time, simplifying the analysis. However, if this assumption is violated, it

could lead to biased estimates (Therneau et al., 2000).

3.1.1. Definition of Survival Quantities. In classical statistical analy-

sis, the probability density function, f(t), and the cumulative distribution function,

F (t) = P (T ≤ t), are usually of interest. However, in survival analysis, the mathe-

matical functions of interest are the survival and hazard functions (Lee and Wang,

2003; Price, 2000).

The survival function, S(t), is given by

S(t) = P (T > t) = 1− F (t), t ≥ 0. (3.1)
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The survival function is the probability that an individual survives beyond time t. It

represents the probability that the event of interest has not yet occurred by time t.

The hazard rate or hazard function, λ(t), is given by

λ(t) = lim
ϵ→0

P (t ≤ T < t+ ϵ | T ≥ t)

ϵ
, t ≥ 0, (3.2)

= f(t)/S(t) (3.3)

where λ(t) ≥ 0. The hazard function is the instantaneous potential per unit time for

the event to occur, given that the individual has survived up to time t. It can be

interpreted as the risk of the event occurring at the next instant.

Additionally, the cumulative hazard function, Λ(t) is defined as

Λ(t) =

∫ t

0

λ(u)du, t ≥ 0. (3.4)

The cumulative hazard function can be interpreted as the accumulated risk of the

event occurring up to time t. It is a measure of the total risk experienced by the

individual up to time t.

These functions are fundamental to survival analysis and are often visualized

to provide insights into the data. For instance, a plot of the survival function can

show how the probability of survival changes over time, while a plot of the hazard

function can show how the risk of the event changes over time (Kleinbaum and Klein,

2012; Lee and Wang, 2003).

3.1.2. Survival Models. When modeling the effect of covariates on the sur-

vival or the hazard, commonly used models include the Cox Proportional Hazard

(Cox, 1972), the Additive Hazard (Aalen, 1980; Huffer and McKeague, 1991; Lin

and Ying, 1994) and the Accelerated Failure Time models (Klein and Moeschberger,
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2003). An overview of these three methods is given in the following sections. Other

less popular models include the Accelerated Hazard (Chen and Wang, 2000) and the

Proportional Odds (Bennett, 1983) models.

3.1.2.1. Cox Proportional Hazards model. The Cox Proportional Haz-

ards (PH) model, developed by Cox (1972), is a widely used semi-parametric model

for incorporating covariate information that may influence failure time. Let Z rep-

resent a vector of covariates and β a vector of regression coefficients. The model is

then defined by the hazard relationship:

λ(t | Z) = λ0(t) exp
(
β⊤Z

)
(3.5)

where λ0(t) is an unspecified baseline hazard common to all individuals. The model

assumes a multiplicative effect of the covariate on the baseline hazard and propor-

tional hazard ratios for all subjects. Using the relationships between survival quanti-

ties, the cumulative hazard function and survival function can be derived as:

Λ(t | Z) = Λ0(t) exp
(
β⊤Z

)
(3.6)

and

S(t | Z) = S0(t)
exp(β⊤Z) (3.7)

respectively, where Λ0(t) =
∫ t

0
λ0(u)du and S0(t) = P (T > t | Z = 0) = exp {−Λ0(t)}

represent the baseline cumulative hazard and baseline survival functions, respectively.

Inferences about β are made via the partial likelihood of Cox (1975). See (Cox and

Oakes, 1984; Kleinbaum and Klein, 2012) for details.

3.1.2.2. Additive Hazard model. In the additive hazard (AH) model, the

hazard function for a given set of covariates is expressed as the sum of the baseline

hazard function and the regression function of covariates. This is in contrast to the
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PH model, which uses the product of these two components. Various forms of the

additive hazard model have been proposed. Aalen (1980, 1989) proposed a fully non-

parametric additive hazard, while Lin and Ying (1994) proposed the semi-parametric

additive hazard model (3.8), a special case of Huffer and McKeague (1991)’s partly

non-parametric model, given by:

λ(t | Z) = λ0(t) + β⊤Z. (3.8)

Subsequently, the cumulative hazard function is given by:

Λ(t | Z) =

∫ t

0

(
λ0(u) + β⊤Z

)
du. (3.9)

Lin and Ying (1994) developed estimation and inference methods for the regression

coefficient vector β using a counting process framework.

3.1.2.3. Accelerated Failure Time model. The Accelerated Failure Time

(AFT) model, first introduced by Cox (1972), offers an alternative to the Cox PH

and Additive Hazard models. Unlike its counterparts, the AFT model defines the

survival function as:

S(t | Z) = S0

{
t

exp (β⊤Z)

}
, (3.10)

where S0(·) is a parametric baseline survival function. The covariates act multiplica-

tively on t, thereby accelerating or decelerating the event rate. See Kalbfleisch and

Prentice (2011) and Klein and Moeschberger (2003) for a thorough discussion on AFT

models).

While the AFT model offers valuable insights, the additive and proportional

hazard models are the principal frameworks used to investigate the relationship be-

tween risk variables and the time to an event (Lin and Ying, 1994). The additive

hazard and PH models, underpinned by robust empirical evidence, offer solid em-
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pirical foundations and provide complementary insights into this association. The

Cox PH model has gained popularity in the literature, partly due to its theoretical

properties and easy implementation in statistical software like R and SAS. However,

there are situations where the additive hazards model is more preferable. One such

scenario is when the cumulative hazard is minimal, indicating infrequent events. In

such cases, the change in cumulative hazard reflects the difference in disease risk at-

tributable to exposure, also known as the excess or attributable risk. In such cases,

an additive hazard regression model may be preferable (Madadizadeh et al., 2017).

3.2. CURE MODELS

The following sections will provide an overview of cure models, including their

historical development, elucidation of survival quantities in the context of cure, and

an introduction to the mixture cure model.

3.2.1. Background and History. In epidemiological studies focusing on

the time until relapse of a specific disease, some subjects may never experience the

disease, especially when monitored over a long period. In such cases, these individu-

als are referred to as cured or immune to that condition. Classical survival analysis

techniques applied to time-to-event data with a cure fraction can result in an over-

estimation of censored observations (Amico and Van Keilegom, 2018). To account

for the presence of a cure fraction in the data, cure models were developed. These

models are not limited to medical research, from which they derive their name, but

are also employed in various other fields, including engineering, economics, and the

humanities (Maller and Zhou, 1996). For example, in engineering, there are machines

that never fail, and researchers are interested in understanding the time until a ma-

chine breaks down. Similarly, in economics, there are jobless individuals who may

never find employment, and the event of interest is the duration until they secure a

job. Other studies investigate topics such as the time it takes to resolve an issue, the
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lifespan of a bank before failure, the time of purchase for a new product by a client,

or the time until a freed convict is arrested again. In each of these scenarios, there is

a possibility that individuals will never experience the event of interest. The lifetimes

of these immune subjects, in relation to the event under study, are represented in the

censored portion of the data. This circumstance has given rise to the importance of

cure models as an important area of study.

The analysis of survival data with a cure fraction has a long history, dating

back to the early 1950s. Boag (1949) and Berkson and Gage (1952) were pioneers

in formulating explicit models for such data. Boag (1949) estimated the proportion

of cured breast cancer patients by defining a patient as cured if they had a five-year

survival rate. Berkson and Gage (1952) introduced the concept of the susceptible

and cured groups, dividing the population into two categories. A group of treated

subjects were considered cured if they had the same survival distribution as the

general population who had never had the disease of interest.

There are two main classes of cure models: mixture cure models and promotion

time (or bounded cumulative hazard) cure models. Mixture cure models assume

that the population consists of both susceptible individuals who may experience the

event and immune individuals who will never experience the event. The survival

function in these models is a mixture of the survival functions of the susceptible and

immune individuals. On the other hand, promotion time cure models assume that

all individuals are initially susceptible to the event, but some individuals may require

an extremely long time to experience the event, effectively making them cured in

practical terms. The survival function in these models is derived from a bounded

cumulative hazard function (Amico and Van Keilegom, 2018; Peng and Yu, 2021).

This dissertation will focus discussions on the mixture cure models, however the reader

should see Peng and Yu (2021) for discussions on the promotion time cure models.
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In their excellent text Survival Analysis with Long Term Survivors, Maller and

Zhou (1996) provide a comprehensive discussion of the early development of mixture

cure models and their theoretical underpinnings. However, the field of cure models

has developed immensely and a more recent discussion of the current methods and

their implementations can be found in Peng and Yu (2021).

3.2.2. Survival Analysis in the Presence of a Cure Fraction: Key

Quantities and Concepts. Consider a population comprising both cured and sus-

ceptible groups in relation to an event of interest. This division results in two sub-

populations, where individuals are either cured with a probability of 1−p (exhibiting

a degenerate survival function of 1) or uncured with a probability of p (possessing a

proper survival function, Su(t)) (Amico and Van Keilegom, 2018; Price, 2000). Refer

to Figure 3.1 for illustration.

Figure 3.1. A heterogeneous population with cured and uncured sub-populations.

Let T denote the random variable representing the time until the event of

interest occurs and T = ∞ is allowed in order to represent the situation when the

event never happens. T is subject to random right censoring. So that Y = min(T,C)

is observed and ∆ = I(T ≤ C), where C is a random censoring time and I(·) is the

indicator variable. Consider a population that contains a cure fraction, it is assumed
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that limt→∞ S(t) > 0 := 1 − p, where 1 − p is sometimes referred to as the cured

proportion or cure rate. Assume that there is an indicator variable, B = I(T < ∞),

called the cure status defined as in (3.11):

B =


1, T <∞ with probability p

0, T =∞ with probability 1− p.

(3.11)

At the end of a study, information is only available on the censoring status of the

subjects. Consequently, B is not fully observed and is considered a latent variable.

For an uncensored observation (∆ = 1), it is obvious B = 1. However, censoring

affects both the cured (because the event “never” happens) and uncured subjects,

because follow-up cannot be infinite (Figure 3.2).

Figure 3.2. A schematic that describes the group (censored or uncensored) in which
the cured and uncured may arise.

Let X be a d dimensional set of covariates, Z be a q dimensional set of

covariates identical toX or partially or completely different fromX. Let S(t|X,Z) in

(3.12) be the (improper) survival function of the (heterogeneous) population described
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in Figure 3.1:

S(t|X,Z) = P (T > t|X,Z) = 1− p(X) + p(X)Su(t|Z) (3.12)

where p(X) = P (B = 1|X = x) is the probability of being susceptible (incidence)

and Su(t|Z) = P (T > t|Z = z, B = 1) is a proper conditional survival function of

susceptibles (latency). Similarly one can write the model as F (t |X,Z) = p(X)Fu(t |

Z), where F (t) = 1 − S(t) depends on Z (and not on X ). Parametric, semi-

parametric, and non-parametric families of mixture cure models result from additional

model assumptions on p(X) and Su(t | Z). While the logistic model is typically used

to describe the 1 − p(X) cure rate, other different models have been presented to

explain the survivability of the susceptibles.

3.2.3. Mixture Cure Models: A Brief Review of Modeling

Approaches. The work of Boag (1949) initiated the mixture cure model where the

incidence was modeled as a constant. Farewell (1982) was the first to introduce co-

variates in the incidence by assuming a logistic model for the probability of uncured,

p(x) = exp
(
γ⊤x

)
/
{
1 + exp

(
γ⊤x

)}
. In a parametric mixture cure model, both the

incidence sub-model, p(X), and the latency sub-model, Su(t | Z), are fully para-

metrically specified. Since the incidence part involves the probability parameter p,

common models that allow different link functions between p and the functional form

of some effect γ⊤X such as the logistic model via logit link, complementary log-log

link and probit link models, among others have been employed (Peng and Yu, 2021).

López-Cheda et al. (2017) assumed a fully nonparametric mixture cure model where

they estimated the cure rate using the kernel estimator of Xu and Peng (2014) (see

Amico and Van Keilegom (2018) for details). The latency sub-model incorporates the

assumption of a conditional distribution (T |B = 1) for the group that is susceptible

to the event of interest. This establishes a functional relationship that depends on Z,
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a vector of covariates. One common approach to achieve this is through the use of

the proportional hazards (PH) assumption. This results in the survival function for

the susceptible individuals being expressed as: Su(t|Z) = S0(t)
exp(β⊤Z).

A relatively popular latency sub-model in the literature is the accelerated

failure time (AFT) latency sub-model, which adopts the AFT assumption introduced

by Cox and Oakes (1984). The functional relationship of the AFT model is given

by: log(T |B = 1) = β⊤X + σϵ, where σ represents the scale parameter and ϵ is the

error term. The baseline survival function S0(t), which is parametrically specified, is

defined by the probability P (eσϵ > t). In this case, the conditional distribution of

T |B = 1 follows the AFT model: Su(t|Z) = S0(te
−β⊤Z).

When the latency sub-model is modeled nonparametrically or semiparametri-

cally while keeping the incidence parametric, it leads to a semi-parametric mixture

cure model. This is the most popular type of cure model in in the literature. The Cox

proportional hazards (PH) model (Cox, 1972) has been extensively used as the model

for the conditional survival function, resulting in Su(t|Z) taking the form of (3.7).

The first such work for this type of model is attributable to Kuk and Chen (1992),

who adapted the marginal likelihood approach proposed by Kalbfleisch and Prentice

(1973) to estimate the model parameters. Later, Peng and Dear (2000) and Sy and

Taylor (2000) introduced the standard approach to mixture cure modeling, which

utilizes the Expected-Maximization (EM) algorithm (Dempster et al., 1977) and as-

sumes the model depends on the latent variable B defined in (3.11). A comprehensive

review article by Amico and Van Keilegom (2018) provides a concise overview of cure

models, including an discussion of the estimation techniques proposed by Sy and

Taylor (2000).
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3.3. IDENTIFIABILITY OF THE MIXTURE CURE MODEL

Identifiability of statistical models refers to the ability to uniquely determine

model parameters from observed data. This is a critical feature of mixture cure

model estimation and inference, particularly for the semiparametric models (Amico

and Van Keilegom, 2018), as the latency component Su(·) is left unspecified. A

general and informal rule that applies to all cure models stipulates that the follow-up

period of the study needs to be extensive enough. The estimated survival function

should have a lengthy plateau comprised of numerous observations that have been

right-censored. The fraction of cured subjects may be assessed by noting whether or

not the “plateau” in the survival function plot for the whole population comprises

solely cured subjects. When the plateau remains constant for a long period of time

without declining even gradually, as shown in Figure 3.3, one can be considerably

certain that all uncured individuals had their event before the plateau began, and

so the cure fraction corresponds to the height of the plateau. In other words, the

maximum possible event time should be less than the maximum possible censoring

time. Formally, this means (with covariates omitted):

τFu < τG (3.13)

where Fu = 1 − Su, G is the censoring distribution, τG = inf t : G(t) = 1, and τF =

inf t : F (t) = 1 for some distribution F (Maller and Zhou, 1996). Sy and Taylor (2000)

proposed that when estimating (part of) the latency sub-model nonparametrically,

the survival function should be forced to reach 0 at the longest survival time, called

the zero-tail constraint. For a thorough discussion of the identifiability of cure models,

see Hanin and Huang (2014).
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Figure 3.3. Kaplan and Meier (1958) estimator of the survival function for the breast
cancer dataset of Wang et al. (2005) (+ : censored observations).

3.4. THE EM ALGORITHM

With a brief review of mixture cure models mentioned and identifiability

stated, it is now important to describe the tool used for obtaining maximum like-

lihood estimate, namely the Expectation-Maximization (EM) algorithm. The EM

algorithm introduced by Dempster et al. (1977) is a powerful widely-used technique

for obtaining the maximum likelihood estimates of model parameters when there ex-

ists “incomplete data” or where some variables are not observed. The general idea of

the EM algorithm is simple. Consider the vector of variables X (parameterized by

an unknown vector, θ) and B (B partially observed through X). The complete-data

likelihood is given by Lc(θ;X,B). If it is of interest to estimate θ via maximum like-

lihood, then the maximum likelihood estimator θ̂ = argmaxθ logL(θ,X) is complex.

The EM algorithm offers a reasonable solution to (1) estimate the complete-data like-

lihood from X (E-step) and (2) maximize the estimated log complete-data likelihood

(M-step). This is done iteratively and at the (m+ 1)th iteration the two steps are:
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1. E-step (Expectation): Compute the expected value of the complete data log-

likelihood, given the current parameter estimates and the observed data. Math-

ematically, this can be expressed as:

Q(θ | θ(m)) = EB

{
logLc(θ;X,B) | X,θ(m)

}
where θ(m) are the current estimates of the parameters at the mth iteration.

2. M-step (Maximization): Update the parameter estimates by maximizing the

expected complete data log-likelihood Q(θ | θ(m)) with respect to the parameter

vector θ(m):

θ(m+1) = argmax
θ

Q(θ,θ(m)).

This process is repeated until convergence to a maximum of the likelihood (McLachlan

and Krishnan, 2007).

3.5. MOTIVATION

In the literature on (mixture) cure models, limited work has been done using

the semi-parametric additive hazard model to model the susceptibles, resulting in

Su(t|Z) = e−Λu(t|Z), where Λu(t | Z) is defined as in (3.9). Currently, there is no

latency sub-model that employs the semi-parametric additive hazard model via the

EM algorithm. In an extensive simulation study conducted by Legrand (2021), it

was concluded that when the proportional hazards assumption is not met due to the

presence of a cure fraction, the mixture cure model should be used. However, there is

currently no readily implementable alternative method when the proportional hazards

assumption is not appropriate or when there is reason to believe that the covariate

effects are additive (linear) on the baseline hazard function of the susceptibles. The

work in this dissertation fills this gap. For a thorough review of situations where ad-
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ditive hazards seem favorable to the PH model, please see Survival and Event History

Analysis: A Process Point of View by (Aalen et al., 2008, p.155). For the incidence

sub-model, the logistic model has been extensively used and preferred due to its ease

of interpretation. However, it is too restrictive as it forces the relationship between

the log odds ratio and the covariates to be linear. Amico et al. (2019) proposed the

single-index model as a flexible to capture non-linear or non-logistic relationships.

However, it is not always easy to interpret covariates of interest. This work proposes

a generalized partially linear single-index model (GPLSIM) as an alternative. This

model combines interpretability and flexibility well. See section 3.6 for details on this

model.

3.6. GENERALIZED PARTIALLY LINEAR SINGLE INDEX MODEL

In this section the Generalized Partially Linear Single-Index Model (GPLSIM)

is introduced as the model proposed for the cured fraction. The GPLSIM is a

semiparametric version of the generalized linear model (GLM) which was first pro-

posed by Carroll et al. (1997). In the GPLSIM the unknown regression function

µ(X1,X2) = E(Y |X1,X2) is modeled via a link function H by:

H−1(µ(X1,X2)) = g
(
α⊤X1

)
+ γ⊤X2, with ∥α∥ = 1, (3.14)

where H is a known monotone function, Y is the response variable, X1 and X2 are

covariates, g is a unknown link function, α, and γ are coefficient vectors. Note that

X1 and X2 are covariates split from X = (X1,X2). To ensure identifiability and es-

timability, it is assumed that the first element of α is positive. To complete the speci-

fication of (3.14), it is assumed that V ar(Y |X1,X2) = V
{
H
(
g
(
α⊤X1

)
+ γ⊤X2

)}
where V is a known positive function. In a GLM, µ(X1,X2) is modeled linearly via
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a link function h by:

H(µ(X1,X2)) = α⊤X1 + γ⊤X2, (3.15)

where H is usually taken to be the canonical link function (see McCullagh and Nelder

(2019)). However, as Carroll et al. (1997) recounts, the model in (3.15) is not sophis-

ticated enough to capture the true relationship between the response variable and

covariates. As can be noted, (3.14) subsumes (3.15), which allows some predictors to

be modeled linearly while others modeled non-linearly. Special cases of the model in

(3.14) also result in well-known models. When α = 1, a vector with all elements be-

ing 1, then (3.14) reduces to the (generalized) partially linear model (GPLM) (Härdle

et al., 2004). When γ = 0 (no predictors in X2), (3.14) is simply the semiparametric

single-index model (SIM) studied by Hardle et al. (1993), which solves the “curse of

dimensionality” problem in purely non-parametric regression.

3.7. ESTIMATION OF THE PROPOSED MIXTURE CURE MODEL

This section pertains to the estimation of the proposed model: generalized

partially linear single-index additive hazard (GPLSI-AH) model. The (log) likeli-

hood (3.16) in classical survival analysis involves contributions from censored and

uncensored groups and is defined below:

ℓ(θ) = log
n∏

i=1

[f (Yi | Zi)]
∆i ×

n∏
i=1

[S (Yi | Zi)]
1−∆i . (3.16)

The censored contribute through the survival function, while the uncensored con-

tribute through the density function. Following the definition of the survival function

S(·) and the density function f(·) of the mixed population in (3.12), the log likelihood
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(3.16) can be rewritten as (3.17):

ℓ(θ) = log
n∏

i=1

[p (Xi) fu (Yi | Zi)]
∆i×

n∏
i=1

[1− p (Xi) + p (Xi)Su (Yi | Zi)]
1−∆i (3.17)

where θ = (α,γ,β, λ0, g)
⊤ and fu (Yi | Zi) = λu (Yi | Zi)Su (Yi | Zi), which depends

on the unobserved uncured status B, and hence the parameters cannot yet be es-

timated. Note that β, λ0 are the coefficient vector and baseline hazard defined in

the additive hazard model (see section 3.1.2.2). The likelihood in (3.17), assumes an

equal contribution from the censored but cured and the censored but uncured, a rare

case in the presence of a cure fraction (Amico et al., 2019). Sy and Taylor (2000)

used the EM algorithm of Dempster et al. (1977) to handle the partially observed B.

In the same vein, this work defines the complete-data likelihood (3.18) as follows:

Lc(θ) =
n∏

i=1

{p (Xi)Su (Yi | Zi)}Bi(1−∆i)

︸ ︷︷ ︸
censored & uncured

n∏
i=1

{1− p (Xi)}(1−Bi)(1−∆i)

︸ ︷︷ ︸
censored & cured

×
n∏

i=1

{p(Xi)fu (Yi | Zi)}Bi∆i

︸ ︷︷ ︸
uncensored & uncured

.

(3.18)

In this likelihood, there are contributions from the censored & uncured, censored &

cured and uncensored & uncured (See Figure 3.2). Expanding, combining like terms

and replacing fu (Yi | Zi) with λu (Yi | Zi)Su (Yi | Zi) in (3.18) gives:

Lc(θ) =
n∏

i=1

{
p (Xi)

Bi Su (Yi | Zi)
Bi λu (Yi | Zi)

Bi∆i

} n∏
i=1

{1− p (Xi)}(1−Bi) . (3.19)
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Taking the log gives

ℓ(θ) =
n∑

i=1

{Bi log p (Xi) +Bi logSu (Yi | Zi) +Bi∆i log λi (Yi | Zi)

+ (1−Bi) log (1− p (Xi))}

=
n∑

i=1

{Bi log p (Xi) + (1−Bi) log (1− p (Xi))}︸ ︷︷ ︸
incidence

+
n∑

i=1

Bi {∆i log λu (Yi | Zi) + logSu (Yi | Zi)}︸ ︷︷ ︸
latency

= ℓ1(θ) + ℓ2(θ)

(3.20)

The “log-likelihood” contains the partially known cure status B that will be replaced

with it’s estimate via the conditional expectation of the complete log-likelihood with

respect to B given the observed data, D, and current estimates of the parameters

θm−1. The expectation of B gives the same expression since the complete log-

likelihood is a linear function of B. Recall that the cure status B, is a Bernoulli

random variable as defined in (3.11). Therefore in the E-step of the EM algorithm,

E(B|D,θm−1) is given by:

E(B|D,θm−1) = 1× P (T <∞|D,θm−1) + 0× P (T =∞|D,θm−1)

= P (T <∞|D,θm−1)

= (1−∆i)P
(
Bi = 1 | Yi,∆i = 0,Xi,Zi,θ

m−1
)

+∆iP
(
Bi = 1 | Yi,∆i = 1,Xi,Zi,θ

m−1
)

(3.21)

where the second equation can the expressed as a sum, in the final equation, us-

ing censoring indicator notation. That expression represents the probability of sus-

ceptible (uncured) given the parameter estimates at the (m − 1)th iteration, which

may constitute censored or uncensored observations. Further, the second expres-
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sion in the last equation is 1. This is due to the fact that if an individual ex-

periences the event, then it is known that they belong to the uncured group so,

P (Bi = 1 | Yi,∆i = 1,Xi,Zi,θ
m−1) = 1.

Therefore (3.21) reduces to:

E(B|D,θm−1) = (1−∆i)P
(
Bi = 1 | Yi,∆i = 0,Xi,Zi,θ

m−1
)
+∆i. (3.22)

The probability expression in equation (3.22) can be expressed using the conditional

probability rule as:

P
(
Bi = 1 | Yi,∆i = 0,Xi,Zi,θ

m−1
)
=

P (Bi = 1, Yi,∆i = 0,Xi,Zi,θ
m−1)

P (Yi,∆i = 0,Xi,Zi,θm−1)

=
p(m−1)(Xi)S

(m−1)
u (Yi | Zi)

1− p(m−1)(Xi) + p(m−1)(Xi)S
(m−1)
u (Yi | Zi)

.

(3.23)

Substituting the result obtained from (3.23) into (3.22) it can be seen that:

E(B|D,θm−1) = ∆i + (1−∆i)

[
p(m−1)(Xi)S

(m−1)
u (Yi | Zi)

1− p(m−1)(Xi) + p(m−1)(Xi)S
(m−1)
u (Yi | Zi)

]

:= Wm
i .

(3.24)

The log likelihood (3.20) suggests that the optimization problem can be carried out

separately for the incidence (ℓ1(θ)) and the latency (ℓ2(θ)) parts of the mixture cure

model. For the incidence part, notice that the likelihood, (3.25) has the form of the

likelihood of a GLM:

ℓ1(θ) =
n∑

i=1

{Bi log p (Xi) + (1−Bi) log (1− p (Xi))} . (3.25)
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For the proposed GPLSIM, p(X) = H
(
g
(
α⊤X1

)
+ γ⊤X2

)
. Substituting into (3.25)

gives

ℓ1(θ) =
n∑

i=1

{
Bi logH

(
g
(
α⊤X1i

)
+ γ⊤X2i

)
+(1−Bi) log

(
1−H(g

(
α⊤X1i

)
+ γ⊤X2i)

)}
.

(3.26)

A penalized splines (P-splines) (Eilers and Marx, 1996) approach that follows the

work of Yu et al. (2017) is utilized to model the unknown univariate function g(·) and

it is estimated by a linear combination of truncated power spline bases:

g(u) = φ0 + φ1u+ · · ·+ φpu
p +

K∑
k=1

φp+k (u− vk)
p
+

= φ⊤S(u)

(3.27)

where S(u) =
{
1, u, . . . , up, (u− v1)

p
+ , . . . , (u− vK)

p
+

}
are spline bases with K knots

placed at (v1, . . . , vK), and φ = (φ0, φ1, . . . , φp+K)
⊤ are spline coefficients to be es-

timated. There are several options for a basis in the mgcv R package (Wood, 2012).

Other spline basis such as the thin plate regression spline (Wood, 2003) or cubic re-

gression spline can be employed especially for smaller sample sizes, as they tend to

give the best mean squared error performance at the expense of longer computational

time. As pointed out by Ruppert et al. (2003), for P-splines, the spline basis used

and the choice of knots are less important than the smoothing parameter. Hence the

default knots placements suggested in the mgcv R package, at the sample quantiles

of the predictors, is used. Increasing the number of knots (usually fewer than the

number of observations) can accurately approximate flexible functions very fast. In

such situations, a smoothing parameter can be added to control roughness and pre-
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vent overfitting. In this work, the maximum likelihood criterion of Anderssen and

Bloomfield (1974) is used in estimating the smoothing parameter, as it produced good

results.

To elaborate on the estimation of the GPLSIM, notice that B, the cure in-

dicator acts as a response variable in the “GLM-like” likelihood. g,α,γ need to be

estimated through an iterative algorithm. Using the truncated power bases splines in

(3.27), (3.26) becomes:

ℓ1(α,γ,φ) =
n∑

i=1

{
Bi logH

{
φ⊤S

(
α⊤X1i

)
+ γ⊤X2i

}
+(1−Bi) log

(
1−H

{
φ⊤S

(
α⊤X1i

)
+ γ⊤X2i

})}
.

(3.28)

In an EM-like algorithm, the values (α̂, γ̂, φ̂) are obtained that maximize the likeli-

hood

(α̂, γ̂, φ̂) = argmax
α,γ,φ
∥α∥=1

ℓ1(α,γ,φ). (3.29)

The second part of the likelihood, ℓ2(θ) is the likelihood of the additive hazard

model (3.30) with an extra weighting term Bi.

ℓ2(θ) =
n∑

i=1

Bi {∆i log λu (Yi | Zi) + logSu (Yi | Zi)} . (3.30)

For estimation purposes we proceed in the manner of Lin and Ying (1994). Bi acts

as a weight in this estimation method. It is estimated via the EM-like algorithm and

denotes the probability that the individual is cured or not. The additive hazard model

of Lin and Ying (1994) can be written in counting process form. For n independent

subjects where the counting process Ni(t) counts the number of events up to time t,

the intensity function for the model λ(t | Z) = λ0(t) + β⊤Z is given by:

Ri(t)dΛ(t | Z) = Ri(t){dΛ0(t) + β⊤Z(t)dt} (3.31)
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where Ri(t) is the at-risk process (1 if the individual is at risk at time t, 0 otherwise).

Multiplying both sides by the weighting term, Bi, and using the definition of a mar-

tingale: dM(t) = dN(t) − R(t)dΛ(t) (where R(t)dΛ(t) is the cumulative intensity

process), it can be seen that:

dMi(t) = BidNi(t)−BiRi(t)dΛ(t | Z)

= BidNi(t)−BiRi(t){dΛ0(t) + β⊤Z(t)dt}.
(3.32)

Next, the martingale property is applied. This property states that E[dM(t) | F(t)] =

0, where F(t) is the filtration up to time t. For all individuals, it can be seen that

the estimating equation 1
n

∑n
i=1 dMi(t) = 0. That is,

0 =
1

n

n∑
i=1

dMi(t)

=
n∑

i=1

Bi

[
dNi(t)−Ri(t)

{
dΛ0(t) + β⊤Zi(t)dt

}]
.

(3.33)

For fixed β and assuming B is known, the solution to (3.33) is

Λ̂0(t | β) =
∫ t

0

∑n
i=1Bi

{
dNi(u)−Ri(u)β

⊤Zi(u)du
}∑n

i=1 BiRi(u)
. (3.34)

Using the definition of a martingale and multiplying (3.32) by Ri(t)Zi(t) so that the

left-hand side of this equation represents the expected value of the covariates at the

event times, it can be seen that:

U(β) =
n∑

i=1

∫ ∞

0

Ri(t)Zi(t)dMi(t)

=
n∑

i=1

∫ ∞

0

Bi

[
Ri(t)Zi(t)dNi(t)−Ri(t)Zi(t)

{
dΛ0(t) + β⊤Zi(t)dt

}]
.

(3.35)
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Plugging in the estimate of baseline hazard and simplifying, (3.35) becomes:

U(β) =
n∑

i=1

∫ ∞

0

BiZi(t)
{
dNi(t)−Ri(t)dΛ̂0(t | β)−Ri(t)β

⊤Zi(t)dt
}
. (3.36)

Again, the resulting estimating function is that obtained in Lin and Ying (1994) with

the weighting term, Bi. Setting (3.36) equal to the q × 1 vector 0 produces the

estimating equation for β whose solution is β̂ = Â−1D̂ with :

Â =
1

n

n∑
i=1

∫ ∞

0

BiRi(t)
{
Zi(t)− Z̄(t)

}⊗2
dt (3.37)

and

D̂ =
1

n

n∑
i=1

∫ ∞

0

Bi

{
Zi(t)− Z̄(t)

}
dNi(t) (3.38)

where Z̄(t) =
∑n

i=1BiRi(t)Zi(t)/
∑n

i=1BiRi(t). Consequently a natural estimator

for the survival function of the uncured sub-population is

Ŝu(t | z) = exp

{
−Λ̂0(t | β̂)−

∫ t

0

β̂⊤z(u)du

}
. (3.39)
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ARRAY-ADAPTIVE NORMALIZED KERNEL-WEIGHTED MODEL

Daniel Ahmed Alhassan
Department of Mathematics & Statistics

Missouri University of Science and Technology
Rolla, Missouri 65409–0050

ABSTRACT

A differentially methylated region (DMR) is a genomic region that has sig-

nificantly different methylation patterns between biological conditions. Identify-

ing DMRs between different biological conditions is critical for developing disease

biomarkers. Although methods for detecting DMRs in microarray data have been in-

troduced, developing methods with high precision, recall, and accuracy in determining

the true length of DMRs remains a challenge. In this study, we propose a normalized

kernel-weighted model to account for similar methylation profiles using the relative

probe distance from “nearby” CpG sites. We also extend this model by proposing

an array-adaptive version in attempt to account for the differences in probe spacing

between Illumina’s Infinium 450K and EPIC bead array respectively. We also study

the asymptotic results of our proposed statistic. We compare our approach with a

popular DMR detection method via simulation studies under large and small treat-

ment effect settings. We also discuss the susceptibility of our method in detecting

the true length of the DMRs under these two settings. Lastly, we demonstrate the

biological usefulness of our method when combined with pathway analysis methods



55

on oral cancer data. We have created an R package called idDMR, downloadable

from GitHub repository with link: https://github.com/DanielAlhassan/idDMR, that

allows for the convenient implementation of our array-adaptive DMR method.

Keywords: Differentially methylated regions, DNA Methylation, Illumina 450K and

EPIC, Kernel smoothing

1. INTRODUCTION

DNA methylation is an important epigenetic mechanism used by cells to con-

trol gene expression (Eden and Cedar, 1994). It plays an important role in many

biological processes such as somatic cell (Greenberg and Bourc’his, 2019) and embry-

onic development (Breton-Larrivée et al., 2019). Aberrant DNA methylation patterns

have been linked to complex diseases like cancer and diabetes (Maghbooli et al., 2014).

DNA methylation refers to the addition of a methyl group to a DNA base. In mam-

mals, it is known to occur at cytosine sites when followed by a guanine nucleotide

(called a CpG site) (Ehrlich and Wang, 1981). Whole-genome bisulfite sequencing

(WGBS) is the gold standard for measuring methylation status in any organism. It

can capture more than 28 million CpGs (Shu et al., 2020), providing genome-wide

coverage, whereas microarrays focus on a subset of the genome, targeting specific

genomic regions. Despite the massive reduction in cost of WGBS in recent years, it

is still expensive when employed in large-scale epidemiological studies. Microarrays

have become more popular for most epigenome-wide association studies (EWAS).

They provide an economically feasible (Laird, 2010) means to explore the associa-

tions between DNA methylation and complex diseases (Szyf, 2012). These studies

aim to better understand the connection between DNAmethylation and human health

through identifying markers associated with diseases.
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Illumina Infinium HumanMethylation BeadChip technology is the most widely

used array-based technology for EWAS studies. The Illumina platform estimates the

methylation status using two probes (methylated and unmethylated) at each CpG

site to measure the methylation intensities (Weisenberger et al., 2008). There are two

ways of quantifying methylation output from the Illumina BeadChip assay: (1) the

β-value and (2) the M-value. The β-value measures the percentage of methylation

and hence ranges from 0 (unmethylated) to 1 (fully methylated). The M-value is

calculated from the β-value using the following relationship:

M = log2

(
β

1− β

)
. (1)

Though the β-value is biologically preferred when it comes to interpretation,

the M-value is statistically more appropriate. Most classical statistical methods,

like the general linear model, used in analyzing high-throughput experiments assume

equal variances of populations and normality of errors. The M-values approximately

have equal variance and have the same support as the Gaussian distribution. Thus, a

statistic based on M-values is more appropriate when using such methods (Du et al.,

2010).

Over the years, Illumina has been improving their DNA methylation assay

by increasing the number of CpG sites that can be interrogated, starting with the

Infinium HumanMethylation 27K (∼27,000 CpG sites), Infinium HumanMethylation

450K (∼480,000 CpG sites) to the most recent Infinium HumanMethylationEPIC

(∼850,000 CpG sites). Despite the Infinium HumanMethylationEPIC (herein termed

“EPIC”) being the most recent, the Infinium HumanMethylation 450K (herein termed

“450K”) is still used, perhaps due to the similarity in analyzing data collected from

both assays. Additionally, many large-scale projects such as the cancer genome atlas

(TCGA) utilized 450K arrays, resulting in a wealth of this type of data.
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As the technology evolves, future arrays may have different probe gap distri-

butions and a method the readily adapts to the type of array is needed. In this article,

we will focus on 450K array data but also provide a method that adapts to the EPIC

and possibly future Infinium assays. An important characteristic of the two arrays

(450K and EPIC) is that the methylation intensities are measured using either the

Infinium I assay or Infinium II assay which have different chemistries. For a detailed

description of these two assays, see (Ill, 2015) and references therein. Owing to the

different chemistries but complimentary strengths of the two designs, data preprocess-

ing and normalization is critical (Wang et al., 2018). Several normalization methods

(Fortin et al., 2014; Maksimovic et al., 2012; Triche et al., 2013) exist in the litera-

ture and though no single one always outperforms the other, some methods are built

ideally for some specific cases. For instance, the functional normalization method

(Fortin et al., 2014) is best suited for cases where global differences are expected,

such as in treatment-control studies. We employed this normalization technique in

our simulation and data application example.

Differences in DNA methylation between samples (e.g. cancer and normal) can

be measured at single CpG sites, referred to as differentially methylated loci (posi-

tion) (DML/DMP), and over contiguous sites, referred to as differentially methylation

regions (DMRs). Despite the many situations where researchers are interested in site-

level testing (Weaver et al., 2004), a more useful form is one that involves testing over

a region due to the increase in statistical power and biological interpretation (Chen

et al., 2016; Robinson et al., 2014). Methylation status between nearby CpG sites

are highly correlated (co-methylated) (Eckhardt et al., 2006; Zhang et al., 2015) and

this information is employed when collapsing contiguous sites to form DMRs. Regions

could be either predefined or user-defined. Differential DNAmethylation in predefined

regions based on genomic annotations such as CpG Islands (CGI), TSS200 (regions

from transcription start site to 200 bases upstream), TSS1500 (200–1500 bases up-
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stream of the TSS), Open sea and CGI shores have special biological interpretations

(Wang et al., 2012; Warden et al., 2013b; Wu et al., 2013; Zhang et al., 2011). How-

ever, they possess two problems: (1) they comprise only a subset of the 450K/EPIC

probes for DMR detection which provide less room for knowledge discovery and (2)

they require defining genomic regions prior to evaluation, forcing DMRs to have arti-

ficial start and end points. A user-defined region, however, allows for flexibility and

knowledge discovery as regions can be defined based on some criteria such as median

distance between probes. The method we propose falls within this group.

Many user-defined DMR detection methods such as Probe Lasso, Bump Hunter,

DMRcate among others, have been proposed (Butcher and Beck, 2015; Jaffe et al.,

2012; Peters et al., 2015; Sofer et al., 2013; Zhang et al., 2018). However, no one ap-

proach always outperforms the other. The Probe Lasso method (Butcher and Beck,

2015) capitalizes on the uneven spacing of probes based on genomic annotation on

the array. It calls DMRs based on the probe density so that subsequent analysis do

not entirely focus on the dense regions alone. Though the DMR calling framework is

purported to be dynamic or flexible, it still forces DMRs to have artificial start and

end points within a gene feature. It is a user-defined region method between gene

features but a predefined region method within gene features, hence it may fail to

detect other novel DMRs when they do exist (lack statistical power). Bump Hunter

(Jaffe et al., 2012), employs surrogate variable analysis to handle batch effects, a

unique feature in their method, as samples are usually not collected at the same time

point. However, in an extensive simulation study under 60 different parameter set-

tings (Mallik et al., 2019) comparing the popular methods (Probe Lasso and DMRcate

included), it was revealed that Bump Hunter was slow, lacked power (under large and

small effect size) and ranked last in terms of precision. DMRcate (Peters et al., 2015)

is a novel method that only uses the spatial distribution of probes to call DMRs

and given a window, borrowing information from nearby CpG sites using a Gaussian



59

kernel. DMRcate has gained much popularity in the literature due to its particularly

superior predictive performance compared to Probe Lasso and Bump Hunter (Mallik

et al., 2019). Despite this success, there is still a higher tendency to incur bias due

to irregularly spaced CpG sites and further lack the ability to detect all true DMRs

that may exist. Given a specific window, highly dense regions are more likely to be

detected as all nearby CpG sites will each receive weights that are very close to one.

However, less dense regions, may receive no weights at all. This bias towards denser

regions leads to the high detection of DMRs in those regions but also a low sensitivity

in detecting true DMRs that may exist in less dense regions.

Furthermore, the high weights and subsequently smoother estimates obtained

in the high dense regions is not entirely realistic as it does not account for the con-

tribution of each nearby CpG site in obtaining the smoothed estimate. That is, if

three adjacent sites A, B, and C are considered neighbors because they are within

some genomic distance of each other, then we must consider the relative contribution

from these neighbors rather than the raw contribution when attempting to smooth

site-level statistics at A. Accounting for the relative contribution could reduce the

bias in detecting DMRs to a level sufficient to detect true DMRs in the high dense

regions while also improving statistical power to detect DMRs in less dense regions.

The aforementioned DMR detection methods, all reference Eckhardt et al.

(2006), which first mentioned a strong correlation between methylation levels and

CpG distance within a 1000 base pairs (bp). More recently, Sun and Sun (2019)

found that co-methylation (similar methylation profiles) within normal tissues were as

short as a few hundred base pairs. Another recent preliminary analysis of methylation

patterns between consecutive CpG sites in a breast cancer study by Sun et al. (2019)

revealed that co-methylation region lengths differed significantly for unmethylated
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and methylated states. A thorough analysis of co-methylation patterns using breast

cancer data was done by (Sun et al., 2022). One notable finding was that the co-

methylation patterns on chromosome X were different from the other chromosomes.

The low statistical power due to the bias and lack of flexibility in the afore-

mentioned methods coupled with these recent findings on co-methylation suggest the

need for a much more flexible and less-biased DMR detection method. To this end,

the goals of this manuscript are three-fold: (1) we propose a general locally-weighted

statistic via which co-methylation information can be incorporated to site-level statis-

tics for DMR detection, (2) we show some large sample properties of statistics of this

form under some regularity conditions and (3) we develop a new method for DMR

detection (a specific case of the general locally-weighted statistic), which reduces the

bias due to irregular spaced CpG sites and increases the sensitivity in detecting true

DMRs. Furthermore, we formulate an array adaptive version of the method (aaDMR)

to better capture the somewhat complex co-methylation among CpG sites, and that

adapts to the spacing on each chromosome for 450K, EPIC and possibly future arrays.

The rest of the paper is organized as follows. In the methods section we intro-

duce the general locally-weighted statistic and briefly state some asymptotic results

for it. We then introduce the normalized kernel statistic as a specific case of this

general statistic and use it in DMR detection. In the results section we perform a

simulation study to compare the performance of our proposed DMR detection meth-

ods with DMRcate, apply our method to an oral cancer dataset and briefly study

the biological relevance of our methods through a pathway analysis. The conclusion

section contains the summary of our findings and highlights potential areas of further

research.
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2. METHODS

2.1. SITE-LEVEL DIFFERENTIAL METHYLATION TESTING WITH
LIMMA

Limma (Smyth, 2004) stands for “linear models for microarray data” and it is

the most widely used method for microarray analysis. It involves fitting linear models

and is commonly used in the analysis of DNA methylation data. We use limma for

our work to obtain differential methylation signals at individual CpG sites. To this

end, consider testing H0 : µT − µN = 0 against H1 : µT − µN ̸= 0 where µT , µN are

average methylation M-values from tumor and normal samples respectively at a CpG

site obtained from the respective true percent of methylation βT and βN based on

(1). We fit a linear model with the M-values as the response, the condition (tumor or

normal) as the predictor, along with any covariates of interest. The specific contrast

to test the above hypotheses is conducted and the empirical Bayes techniques is then

implemented to obtain robust t estimates called moderated t-statistics. The DMR

detection methods we discuss below rely on the robust site-level tests from limma.

2.2. A GENERAL LOCALLY-WEIGHTED STATISTIC

DNA methylation levels are correlated, at least for nearby CpG sites (Eck-

hardt et al., 2006; Zhang et al., 2015). Hence in determining the DMRs, we propose

smoothing limma’s moderated t-statistic as a suitable way to capture the correla-

tion information among nearby CpG sites. To this end, we propose the general

locally-weighted statistic (2), motivated by DMRcate’s kernel-weighted statistic. For

a chromosome, define the locally weighted statistic S(xi) as:

S(xi) = Yi +
n∑

j ̸=i

wj(xi)Yj (2)
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where xi denotes the position of CpG site i (site of interest where smoothing is

happening) and j (neighboring sites) respectively, n is the number of sites within

some specified genomic distance, Yi( or Yj) denotes some function of a statistic from

a site-level testing (such as the moderated t-statistic from limma (Smyth, 2004)),

and wj(xi), some appropriate weighting function or mechanism, used to account for

the interdependencies between nearby CpG sites. For the purposes of our work,

we define Y = T 2 where T is a random variable representing limma’s moderated

t-statistic (Smyth, 2004). We state in passing, that when wj(xi) = Kij, defined

as Gaussian kernel weights as in Peters et al. (2015), we obtain DMRcate’s kernel-

weighted statistic SKY (i). The EPIC array has ∼400,000 CpG sites more than 450K

array and so within some specified genomic distance, EPIC is likely to contain more

sites than the 450K. With this in mind, we investigate the asymptotic behavior of

S(xi) when the number of nearby CpG sites increases within some specified genomic

distance of xi (or as the array technology improves).

2.3. ASYMPTOTIC RESULTS

This subsection pertains to the asymptotic results of the proposed statistic

S(xi). More specifically, we state a situation under which S(xi) is consistent and

obeys a modified central limit theorem. A generalized version of the consistency

result is due to Adler and Rosalsky (1991).

Theorem 1 (Consistency). Let {Yj, j > 1} be independent F-distributed random

variables obtained from site-level testing via limma’s moderated F-statistic (t2-statistic)

and {wj, j > 1} be constants satisfying
∑n

j=1 w
2
j = O(nw2

n). Further, at CpG site
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xi, let S(xi) =
∑n

j=1wj(xi)Yj where

wj(xi) =


1, j = i

t ∈ (0, 1), j ̸= i

.

Then,

∑n
j=1wj

(
Yj − EY 1{|Y |≤n2}

)
wnn2

p→ 0.

Theorem 2. Let {Yj, j > 1} be independent F-distributed random variables obtained

from site-level testing via limma’s moderated F-statistic (t2-statistic) and let {wj, j >

1} be constants satisfying 0 < wj < 1 with
∑n

j=1 wj = 1. At CpG site xi for observed

yi, define S(xi) = yi +
∑n

j ̸=i wjYj. Then

yi +

∑n
j ̸=i wj (Yj − E(Y ))√∑n

j ̸=i w
2
jσ

2
j

d→ yi + Z as n→∞ (3)

where V ar
(∑n

j ̸=iwjYj

)
=
∑n

j ̸=iw
2
jσ

2
j and Z ∼ N(0, 1).

Theorems 1 and 2 apply to a specific case of (2). More specifically the theorems

hold for DMR testing case where Yj is the moderated F-statistic (Smyth, 2004). The

proofs are provided in the supplementary text (Appendix: Supplementary File 1).

2.4. NORMALIZED KERNEL-WEIGHTED STATISTIC

We propose a specific weighting function wj(xi) (simply wj) called the nor-

malized kernel-weight function (4) as a realistic way of incorporating the interdepen-

dencies among nearby CpG sites. Kernel smoothers allow for a flexible degree of

smoothing via its smoothing parameter, known as the bandwidth, which is an effec-

tive way of incorporating the shared methylation profiles at nearby CpG sites. Our
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rationale for the normalized kernel (NK) is two fold. First, if A < B < C, where

A,B,C are CpG sites, then within some “reasonable genomic distance” (determined

by the bandwidth), if A is a neighbor to B, and B a neighbor to C, then A and C

are neighbors as well. So in smoothing or weighting the statistic at A for instance,

one needs to consider the relative contribution from the nearby CpG sites since there

is shared co-methylation among the neighbors. Secondly, the NK reduces the bias

towards dense regions in the DMR detection process through a “fair” distribution of

the weights thereby increasing the sensitivity in detecting DMRs in less dense regions

when they do exist. With the caveat that the total of all contributed weights must

equal one, our method maintains the property that sites closer to the reference site

contribute more weight than those further away. One major difference between our

proposed method and DMRcate lies in the rationale behind the statistics proposed.

We hypothesize that within some genomic distance all neighboring sites contain the

totality of information to smooth a site-level statistic. However, DMRcate advocates

for using raw contributions from neighboring sites in smoothing a site-level statis-

tic. As previously mentioned, DMRcate procedure is biased to CpG dense regions

due to their statistic (Mallik et al., 2019). The major advantage in our approach

is the increase sensitivity or power in picking up DMRs that do exist in less dense

regions while maintaining our precision in picking up DMRs in CpG-dense regions.

For convenience, we employ the Gaussian kernel, K(z) = exp
(
− z2

2

)
, and define the

weighting function as:

wj(xi) =

K

(
xj − xi

h

)
n∑

j ̸=i

K

(
xj − xi

h

) , (4)

where K(·) is the kernel, h is the bandwidth and xi, xj denote the position of CpG

sites i and j respectively. More specifically, we address the complex co-methylation

patterns in the manner stated below.



65

(i) First, we employ the normalized kernel-weight (4) to address the interdepen-

dencies in the methylation levels at nearby sites. In order to readily capture

the benefit gained by using our weighting measure, we keep a fixed bandwidth/

kernel size, h of 500bp as do Peters et al. (2015). We call this approach the

fixed-spacing array DMR (faDMR) detection method.

(ii) Our first approach essentially assumes equal spacing between the probes on each

chromosome which is far from truth. See Figures 1 and 2 for the distribution of

probe gaps on the 450K and EPIC respectively. In addition to the uneven spac-

ing at the chromosomal level, co-methylation patterns are different for different

chromosomes (Sun et al., 2022), suggesting that using a different kernel size, h,

for each chromosome may prove useful, since h acts as a measure of spread. To

that end, we propose an array-adaptive DMR (aaDMR) detection method, one

that chooses h to equal the median probe spacing on each chromosome.

Figure 1. Probe Spacing distribution on the 450K array truncated at 1000bp to ease
visualization.
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Figure 2. Probe Spacing distribution on the EPIC array truncated at 1000bp to ease
visualization.

2.5. MODELING S(xi) VIA SATTERTHWAITE’S APPROXIMATION

We describe the process of modeling our normalized kernel-weighted statistic

and mention that the process is similar to that used by DMRcate (Peters et al.,

2015). Let x1 < x2, · · · , < xn, be CpG sites for an individual chromosome. Under the

appropriate null hypothesis, T ∼ tν where ν is the degrees of freedom (after empirical

Bayes’ adjustment) so that Y ∼ F(1,ν). It is obvious that (2) is a weighted linear

combination of F-distributed random variables which is mathematically complex to

model (Peters et al., 2015). Owing to the empirical Bayes method used by limma

(Smyth, 2004), ν is relatively large even for small sample size situations. We capitalize

on this so that as ν →∞, Y
d→ χ2

1.

We can now view (2) as a linear combination of scaled χ2
1 random variables.

Assuming that S(xi) is approximately distributed as a scaled chi-squared random vari-

able of the form pxi
χ2
qxi

, we utilize the rule suggested by Satterthwaite (Satterthwaite,

1946) by matching the first two central moments to obtain pxi
and qxi

in (6). The first

two central moments of S(xi) are E(S(xi)) = E
(
Yi +

∑n
j=1wjYj

)
= 1+

∑n
j=1 wj and

V ar(S(xi)) = V ar
(
Yi +

∑n
j=1wjYj

)
= 2

(
1 +

∑n
j=1 w

2
j

)
respectively. We adopt the
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notation pxi
and qxi

to make clear that the constants are obtained on a CpG-site-level

and hence may differ from one site to another. The mean and variance of pxi
χ2
qxi

are

given by pxi
qxi

and 2p2xi
qxi

respectively.

By matching the first two central moments to the mean and variance stated,

we have: 

pxi
qxi

= 1 +
n∑

j=1

wj

2p2xi
qxi

= 2

(
1 +

n∑
j=1

w2
j

)
.

(5)

Solving (5) leads to



pxi
=

1 +
∑n

j=1w
2
j

1 +
∑n

j=1 wj

qxi
=

(1 +
∑n

j=1wj)
2

1 +
∑n

j=1w
2
j

.

(6)

Now, since S(xi) ∼ pxi
χ2
qxi

then,
S(xi)

pxi

∼ χ2
qxi

. We compare the observed values

of
S(xi)

pxi

to a χ2 distribution with qxi
degrees of freedom to obtain p-values for our

local estimator. Next, we apply the Benjamini-Hochberg (BH) correction (Benjamini

and Hochberg, 1995a) to control the false discovery rate (FDR) across all site-level

tests. CpG sites with a BH-corrected p-value less than the significance level of α =

0.05 are retained. As a last step, we group significant CpG sites (retained from

the previous procedure) that are within g genomic distance from each other to form

DMRs. In collapsing these contiguous sites into regions, we defaulted to g = 1000
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bp as do DMRcate (Peters et al., 2015) and Bumphunter (Jaffe et al., 2012). To

quantify statistical uncertainty to the identified DMRs, we take the CpG site with

the minimum p-value as a representative p-value for that region.

2.6. STEP-BY-STEP SUMMARY OF THE FADMR & AADMR DE-
TECTION APPROACH

(a) Obtain site-level moderated observed t-statistics, tj, using limma (Smyth, 2004).

(b) Calculate observed yj = t2j for CpG site j.

(c) Use the normalized kernel weight (4) to weight observed yj to obtain smoothed

locally weighted statistic S(xi) (2). For the faDMR method, h is set to 500bp.

For the aaDMR method, h is taken to equal the median probe spacing on each

chromosome.

(d) Use Satterthwaite’s approximation to model S(xi) to obtain unadjusted p-

values.

(e) Apply BH correction to obtain adjusted p-values.

(f) Filter out any CpG site with an adjusted p-value less than α = 0.05.

(g) Specify g, the agglomerate parameter, and collapse significant sites from (f)

that are within g base pairs of each other to form DMRs.

(h) Take the minimum p-value as a representative p-value across CpG sites in the

region. This p-value is used to order the regions in terms of the strength of

significance.
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3. RESULTS

3.1. SIMULATION STUDY

To validate our method and investigate its performance, we perform a simula-

tion study and compare our method with DMRcate. We simulated 1000 repetitions of

a 450K dataset, each with 10 control and 10 treatment samples yielding a 450K × 20

matrix. In each set of simulated data, we randomly assigned 2,136 promoter regions

comprising TSS200 and TSS1500 as true DMRs out of 21,363 regions. Half of these

were hypermethylated (i.e., methylation higher in treatment than control) and the

other half hypomethylated (i.e., methylation lower in treatment than control). For

DMRs, β−values were simulated from a beta distribution with mode equal to some

specified beta level. For non-DMRs, probes were classified as completely methylated

or unmethylated based on array data from The Cancer Genomic Atlas (TCGA) on

cholangiocarcinoma (CHOL) (Center for Cancer Genomics - National Cancer Insti-

tute, n.d.). For non-DMRs, β−values were simulated from a beta distribution with

parameters manually chosen to match the average modes of two methylation statuses

of CHOL data. A detailed description of the simulation study can be found in the

supplementary text (Appendix: Supplementary File 1). We investigated two different

treatment effects (large and small). For the large effect, we set the true methylation

difference (∆β = 0.2) to be exactly 0.2 (as in DMRcate (Peters et al., 2015)). How-

ever, (Mallik et al., 2019) reported that the common DMR testing methods such as

DMRcate, lacked power to detect small effect sizes. Consequently, we compared our

methods to DMRcate with a true methylation difference of 0.09 (small effect) while

maintaining other aspects of the simulation unchanged. All analyses were based on

the M-values (see (1)). Our simulation study was set up in a similar way to DMRcate.

In addition, we obtained a histogram for one of the 1000 datasets to investigate how

well the parameter space is explored (see Figure 3).
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3.2. EVALUATION CRITERIA

We compare our methods (faDMR and aaDMR) with DMRcate under its best

(default) performance setting (see Peters et al. (2015)) to assess their performance

using three criteria (precision, recall and F1-score). As previously stated, we compare

faDMR to DMRcate to readily capture the benefit gained from using the normalized

kernel. Next we compare faDMR and aaDMR to capture the advantage of using a

bandwidth that adapts to the array (and chromosome). We consider two forms of

overlap in each criteria that follows: (1) equal overlap (EO) - where start and end

positions of significant DMRs match that of true DMRs; (2) any overlap (AO) - where

significant DMRs intersect true DMRs. When a significant DMR from any method

does not overlap a true DMR, we call that a false positive (FP). Similarly, we define

a true positive as an overlap between a significant DMR and a true DMR. When a

true DMR is not significant, we call it a false negative (FN). The three criteria we

use to evaluate performance are:

(i) Recall (power): We estimate power by dividing the number of true positives

(TP) by (TP + FN), ie. 2136 true DMRs. That is, recall =
TP

TP + FN
.

(ii) Precision: We estimate precision by dividing the number of true positive DMRs

by (TP + FP), i.e. the total number of significant DMRs found by our methods.

That is, precision =
TP

TP + FP
.

(iii) F1 score: This metric combines precision and recall into a single metric ranging

from 0 to 1, where 1 represents perfect precision and recall. Some methods

have a tendency to prioritize reducing false positives (increasing precision) at

the expense of recall (more false negatives). We use this metric, which weights

precision and recall equally, because neither precision nor recall alone tells the

complete story. We compute F1 score as, F1 = 2 × precision× recall

precision + recall
(Haibo

and Yunqian, 2013; Mallik et al., 2019).
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3.3. SIMULATION RESULTS

Based on the EO criteria (see Table 1), the type I error rates (i.e., percent

of FPs) for our methods are around the expected 5% (5.16% for faDMR and 5.35%

for aaDMR) with DMRcate a little above (6.07%). The story is reversed using the

AO criteria (see Table 2) with all methods well controlling the type I error rate at

less than 5% (0 FP for DMRcate, 2 FPs for faDMR and 1 FP for aaDMR). Both

faDMR and aaDMR detected substantially more DMRs compared to DMRcate from

of a total of 2136 (see Tables 1 and 2).

Table 1. Large treatment effect (∆β = 0.2): A confusion matrix comparing the results
from three methods (DMRcate, faDMR and aaDMR) with true DMRs based on EO
criteria averaged across 1000 datasets. Sig. means statistically significant DMRs; Not
Sig. indicates the number of regions that are not statistically significant.

DMRcate True DMR No DMR Total
Sig 284 1168 1452
Not Sig. 1852 18059 19911
Total 2136 19227 21363

faDMR True DMR No DMR Total
Sig. 753 992 1745
Not Sig. 1383 18235 19618
Total 2136 19227 21363

aaDMR True DMR No DMR Total
Sig. 772 1030 1802
Not Sig. 1364 18197 19561
Total 2136 19227 21363

The precision, power and F1-score metrics all indicate faDMR and aaDMR

methods are outperforming DMRcate. Based on the EO criteria, DMRcate performed

poorly on precision, power and F1 score with median of less than 0.2 on all three

criteria across the 1000 simulated datasets. Though power and precision are less than

50% for all methods, it’s readily improved with median values in faDMR and aaDMR

(averaged across 1000 datasets) more than twice that of DMRcate (see Figure 4). At
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Table 2. Large treatment effect (∆β = 0.2): A confusion matrix comparing the results
from three methods (DMRcate, faDMR and aaDMR) with true DMRs based on AO
criteria averaged across 1000 datasets. Sig. means statistically significant DMRs; Not
Sig. indicates the number of regions that are not statistically significant.

DMRcate True DMR No DMR Total
Sig 1452 0 1452
Not Sig. 684 19227 19911
Total 2136 19227 21363

faDMR True DMR No DMR Total
Sig. 1743 2 1745
Not Sig. 393 19225 19618
Total 2136 19227 21363

aaDMR True DMR No DMR Total
Sig. 1801 1 1802
Not Sig. 335 19226 19561
Total 2136 19227 21363

the time of writing, we have not come across an article in this domain that utilizes

the EO criteria. Most authors tend to favor the less strict AO criteria (Mallik et al.,

2019). Based on the AO criteria, all three methods perform well in terms of precision

with DMRcate sacrificing power (less than 0.7) for nearly perfect precision. faDMR

and aaDMR both improve power (between 0.8 and 0.9) without hurting precision (see

Figure 5). In allowing for the array-adaptive case, we were able to slightly improve

power by 3% (comparing faDMR to aaDMR under AO criteria). Comparing faDMR

and aaDMR using the EO criteria, we notice a slight increase in power (∼ 1%).
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Figure 3. Distribution of β−values from one of 1000 datasets showing the parameter
space is well explored.

Figure 4. Large treatment effect (∆β = 0.2): Precision, recall and F1 score metrics
based on EO criteria. Boxplots of results across the 1000 simulated datasets.
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Figure 5. Large treatment effect (∆β = 0.2): Precision, recall and F1 score metrics
based on AO criteria. Boxplots of results across the 1000 simulated datasets.

For the small methylation difference (treatment effect) of ∆β = 0.09, all meth-

ods performed well on precision (based on the AO criteria), but very poor in terms of

power. This is usually the case with power for small treatment effects. However, we

highlight that our DMR detection methods performed relatively better in terms of

power than DMRcate (see Table 3 and Figure 7). All methods under the EO criteria

performed poorly, yet our methods still do better, especially on precision with me-

dian greater than 0.35 compared to the median precision of less than 0.2 for DMRcate

across the 1000 simulated datasets (see Figure 6).

Figure 6. Small treatment effect (∆β = 0.09): Precision, recall and F1 score metrics
based on EO criteria. Boxplots of results across the 1000 simulated datasets.
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Figure 7. Small treatment effect (∆β = 0.09): Precision, recall and F1 score metrics
based on AO criteria. Boxplots of results across the 1000 simulated datasets.

Table 3. Small treatment effect (∆β = 0.09): Confusion matrix comparing three
methods (DMRcate, faDMR, and aaDMR) to true DMRs based on AO criteria, av-
eraged across 1000 datasets. Sig. represents statistically significant DMRs; Not Sig.
indicates non-statistically significant regions.

DMRcate True DMR No DMR Total
Sig 82 0 82
Not Sig. 2054 19227 21281
Total 2136 19227 21363

faDMR True DMR No DMR Total
Sig. 123 0 123
Not Sig. 2013 19227 21240
Total 2136 19227 21363

aaDMR True DMR No DMR Total
Sig. 127 0 127
Not Sig. 2009 19227 21236
Total 2136 19227 21363

In Figure 8, we compare the density of the CpGs in the DMRs obtained from

one of our simulated datasets. As previously stated, these results suggest that our

methods are able to detect DMRs in lower density regions compared to DMRcate.
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Figure 8. Density of CpGs in Significant DMRs from one of 1000 datasets for the
three methods (DMRcate, faDMR and aaDMR).

3.4. REAL DATA EXAMPLE

3.4.1. Data Extraction. We downloaded the Oral Squamous Cell Carci-

noma (OSCC) dataset (Basu et al., 2017) from the National Center for Biotechnol-

ogy Information (NCBI) Gene Expression Omnibus (GEO) repository. The OSCC

dataset (with GEO accession number GSE87053) was generated using the Illumina

Infinium 450K Human DNA methylation Beadchip v1.2. A total of 21 samples were

collected, with 10 paired tumor and adjacent normal tissues and 1 unpaired tissue.

We used the 10 paired tissues for our analysis. Information on human papillomavirus

(HPV) status (5 HPV positive, 5 HPV negative) and sex (3 females and 7 males) was

also provided.
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3.4.2. Oral Squamous Cell Carcinoma (OSCC). Oral cancer is the most

common form of head and neck squamous cell cancer. According to the American

Cancer Society, about 1 in 60 men and 1 in 140 women have a lifetime risk of devel-

oping oral cavity cancer. Aberrant DNA methylation patterns have been found to be

associated with OSCC (Basu et al., 2017).

We applied our methods and DMRcate to the OSCC data of paired tumor and

adjacent normal tissues after we had accounted for the paired data in limma’s test-

statistic. We adhered to the standard quality control steps such as normalization and

probe filtering using the preprocessFunnorm (Fortin et al., 2014) function in the minfi

R/Bioconductor package (Aryee et al., 2014). In addition to this, we controlled for the

HPV status and sex in our modeling. All three methods found 13,697 DMRs. faDMR

and aaDMR found more common DMRs (1825) than either method with DMRcate

(341 with aaDMR and 47 with faDMR, see Figure 9). In terms of the number of

uniquely identified DMRs, the results were consistent with the simulation study, as

aaDMR detected the most DMRs (with 828 unique ones) followed by faDMR (with

198 unique ones) and then DMRcate (with 247 unique ones) (see Figure 9).

With the large number of DMRs detected, we sought to determine the bio-

logical relevance (i.e. the pathways enriched and the associated unique differentially

methylated genes) via a KEGG pathway analysis, using the goregion function in the

missMethyl package (Maksimovic et al., 2021). We employed this new function in

the missMethyl package because in identifying enriched genes, it annotates probes to

genes in a way that accounts for the bias towards genes with more measured CpG

sites on the array (“probe-bias”) and corrects for “multi-gene bias” (Maksimovic

et al., 2021) thereby improving the type I error rate (see (Maksimovic et al., 2021)

for details). For this downstream analysis, we narrowed our discussion to comparing

aaDMR and DMRcate. Whereas 30 significantly affected pathways were identified

from the aaDMR procedure, 22 significantly affected pathways were found with DM-
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Rcate. Nineteen of the 22 significantly affected pathways by DMRcate were also

reported by aaDMR. For the 19 pathways identified by both methods, the evidence

of differentially methylated genes was stronger in aaDMR. We attribute this to the

higher power aaDMR has over DMRcate, as shown in the simulation study. Moreover,

we found that the 11 unique pathways determined by aaDMR were related to the im-

mune and nervous system, suggesting that the genes affected by the OSCC disease

map to these systems. In the case of DMRcate, the 3 unique pathways were related to

immune and sensory systems, and cardiovascular disease. The associated genes from

the unique pathways identified by aaDMR and DMRcate were further checked with

a wide list of databases using the interactive Enrichr enrichment analysis tool (Chen

et al., 2013; Kuleshov et al., 2016; Xie et al., 2021). Our analysis revealed that path-

ways detected by aaDMR contained the AKT serine-threonine protein kinase family

(AKT1, AKT2 and AKT3) which has been linked to oral cancer. In their study of

the specific role of AKT in OSCC, (Roy et al., 2019) revealed that the silencing of

AKT1 and AKT2 genes decreased the expression of proteins regulating cancer cell

survival. The frequency of appearances for the three genes suggest their importance

in OSCC.
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Figure 9. Venn diagram of significant DMRs identified by the three methods from
OSCC data.

3.5. SUMMARY OF RESULTS

There were many common DMRs among the three methods compared in both

the simulation study and OSCC data example. However aaDMR determined more

unique DMRs due to its higher power. Using the EO criteria revealed that there

is more room for improvement as all methods performed poorly with less than 50%

precision and power for the large treatment effect and below 40% precision and 10%

power for the small treatment effect. Despite this issue, we point out that our methods

are more likely to detect the true length of a DMR than DMRcate, as our simulation
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results using the EO criteria reveal that aaDMR has better precision and recall per-

formance. This finding supports the list of genes that are significantly affected in the

pathway analysis when our methods are applied.

4. CONCLUSION

The development of diseases is influenced by a number of factors, some of

which are genetic in origin and some of which are environmental. Additionally, by

comparing the changes in DNA methylation patterns between disease and normal

samples, epigenetic markers like DNA methylation give us a way to understand how

diseases are formed. However, this area is not fully understood and methods that

reveal unique genomic regions and genes that are enriched by changes in methylation

patterns are desirable as they provide researchers with newer areas to explore. We

discovered that our method, aaDMR, has the capacity to provide researchers with

additional pathways to investigate while also revealing particular genes that are sig-

nificantly impacted by the presence of a condition, thereby assisting researchers in

selecting the precise genes that need further analysis. Due to cost and resource con-

straints, high-throughput experiments frequently have small to medium sample sizes.

This means that there is less statistical power to detect DMRs that do exist, which

affects the reliability of studies and statistical data analysis results. In such cases,

our method may be preferred because it has a higher statistical power to detect a

DMR than DMRcate, especially in low treatment effect settings.

In summary, we have developed a general class of locally-weighted estima-

tors for use in DMR detection and shown its consistency and asymptotic normality.

We have proposed the normalized kernel-weight methods within this general class,

which have a higher power to detect a true DMR than DMRcate without sacrificing

precision for large treatment effect and a higher precision than DMRcate for a low

treatment effect. Essentially, our methods demonstrate two things: (1) that using the
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normalized kernel-weight is a better way to borrow information from neighboring sites

and account for co-methylation than DMRcate (revealed by comparing faDMR with

DMRcate) and (2) that accounting for co-methylation using the adaptive-array tech-

nique increases the susceptibility of detecting true methylation differences (revealed

by comparing aaDMR with faDMR).
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ABSTRACT

When modeling survival data with a large number of cured patients, the

semiparametric mixture cure model that assumes the additive hazards model for the

susceptibles has received less attention compared to its proportional hazard (PH)

counterpart. However, the PH assumption is often violated in practice, and its viola-

tion can lead to biased results. The logistic structure used for the incidence model is

also considered too narrow, especially in very large studies. In this work, we propose

a generalized partially linear single-index model for the incidence and an additive haz-

ard model for the latency. We describe a computational approach for our mixture cure

model, which combines the computational methods for the generalized partially linear

single-index model with the semiparametric additive hazards model. This approach

can be easily implemented in statistical software. To demonstrate the effectiveness

of our model, we present a survival example for diabetic retinopathy patients. The

proposed model provides a flexible framework for analyzing the incidence and latency

of diseases, making it particularly useful in medical, economic and finance research

fields. The computational approach presented in this work enables efficient estimation

and inference, making it a valuable tool for analyzing large datasets.

Keywords: mixture cure models, single-index, generalized partial linear, EM algo-

rithm, additive hazard models, P-splines.
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1. INTRODUCTION

The study of time-to-event data is an important subject in statistics. Classical

survival analysis presupposes that if someone is monitored for an extended period of

time, they will ultimately experience the event of interest. This assumption is not

always true. Even more recently, due to the improvement of life through better

health care, jobs, etc., this assumption has proven unrealistic in many situations, and

researchers have become interested in studying failure time data in the presence a of

cure fraction. Consider situations where a patient will “never” suffer the relapse of a

disease. Such situations are more prevalent now due to better healthcare, for example

in oncology (Felizzi et al., 2021). Another example from economics is monitoring

the time until an unemployed person finds a new job. The recent advancement of

technology due to artificial intelligence has seen many lose their jobs (Khaliq et al.,

2022) and as such, until the unemployed obtain the necessary skills, they are likely

never to actually find a new job.

When a certain fraction of the population will never experience the event of

interest, they are considered “long-term survivors”, “cured” or “immune” (Maller and

Zhou, 1996) and as such, their survival times are infinite. As it is in classical survival

analysis, it is impossible to observe subjects for an infinite time; hence, at the end of

the study, some subjects may be right-censored (that is, only a lower bound for their

survival time is known). In addition, for a mixed population of cured and uncured

subjects, censored observations will consist of both cured and uncured subjects, so

the overall survival may no longer indicate a steady fall to zero. More to the point,

at the study’s end, the censored group will contain both the cured and uncured, and

the task of fitting cure models takes into account this characteristic. Examining the

Kaplan-Meier estimator (Kaplan and Meier, 1958) of a survival curve is a simple

approach to tell if a certain set of data has a subset of long-term survivors. A cure
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model could be a suitable and practical method of data analysis if the survival curve

plateaus towards the end of the study at a value higher than zero (Sy and Taylor,

2000).

The study of cure models dates back to Boag (1949), Berkson and Gage (1952)

and Farewell (1982). They studied what has become known as mixture cure models.

In the presence of covariates, the survival function of the population, S(t|X,Z) =

P (T > t|X,Z) of survival time T given covariates (X,Z) is given by:

S(t|X,Z) = P (T > t|X,Z) = 1− p(X) + p(X)Su(t|Z) (1)

where p(X) = P (B = 1|X = x) is the probability of being susceptible (uncured)

(also referred to as “incidence”), Su(t|Z) = P (T > t|Z = z, B = 1) is a proper

conditional survival function of the susceptible group (also called the “latency”) and

B = I(T <∞) is the partially observed uncured status with indicator function, I(·).

Different models considered for the latency and incidence groups include para-

metric, semi-parametric, and fully non-parametric mixture cure models. Fully para-

metric models were first considered by Boag (1949) and Berkson and Gage (1952)

who considered a constant incidence and employed the log-normal and exponential

models for the latency, respectively. Farewell (1977) later introduced the covariates

in the incidence by employing a logistic regression model for p(x) =
exp(γ⊤x)

(1 + exp(γ⊤x))
.

Semi-parametric mixture cure models have been studied extensively by Kuk and Chen

(1992), Sy and Taylor (2000), Peng and Dear (2000), and Lu (2008). In all four of

these articles, the authors considered the Cox proportional hazard model (Cox, 1972)

for the latency sub-model and employed the logistic model for the incidence sub-model

while proposing different estimation methods. For a completely non-parametric mix-

ture cure model, the main contribution is due to López-Cheda et al. (2017) and

Patilea and Van Keilegom (2020). In both the parametric and semi-parametric cases,
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the incidence has been extensively modeled using a logistic form and has received this

much attention due to the ease of estimation and interpretation as well as its avail-

ability in many statistical software packages such as R (Amico et al., 2019). However,

it has been noted that the relationship between the covariates and the response is

not always linear, and logistic regression can perform poorly in such cases (James

et al., 2013). In addition, if the true shape of the cure rate is not an S-shape, then

the logistic model may not perform well (Amico et al., 2019). In fact, in a study in

Finland, the probability of coronary heart disease was found to be similar between

sedentary and very active men but for moderately active men, this probability was

doubled (Taylor, 1983). More recently, Liu et al. (2022) found that the association of

caffeine intake with serum uric acid in US adults was inverted U-shaped. Also, Li and

Taylor (2002) employed a generalized partial linear additive model for the incidence

but the “curse of dimensionality” is a problem.

To handle such practical situations, Amico et al. (2019) proposed the single-

index model for p(x) = g(γ⊤x) which employs an unknown smooth link function g(·)

estimated nonparametrically using kernel smoothing methods. Despite their ability

to handle complex relationships between covariates and the response and to solve

the curse of dimensionality problem faced by fully non-parametric models, single-

index methods can be difficult to interpret, especially in cases where there are many

covariates involved. It can be challenging to understand the individual contributions

of important covariates. There are many situations where the researcher may be

interested in knowing the effect of certain crucial covariates on the cure probability

while also allowing flexible modeling of p(x). In large clinical studies, some covariates

may be “nuisance” factors while others are very relevant to the researcher. Thus, it

would be advantageous if one could enjoy the interpretability of a logistic model as

well as the flexibility of a single-index model (SIM). To this end, we introduce the
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generalized partial-linear single-index model (GPLSIM) for p(x) given by

p(x) = p (x1, x2) = H{g
(
α⊤x1

)
+ γ⊤x2} with ∥α∥ = 1 (2)

where H(·) is a known monotonic function, g(·) is an unspecified link function, α⊤x1

is called the index, α and γ are coefficient vectors and the covariate vector,x, is

possibly split into (x1, x2). The restriction ∥α∥ = 1 is required for identifiability

(see section 2.1).

GPLSIMs have numerous advantages and have been used in several contexts

in the literature. As noted before, they were proposed to solve the problem of linearity

and handle model misspecification. In addition, the GPLSIM is a natural extension

to the SIM by allowing discrete covariates to be modeled in the linear term (Wang and

Cao, 2018). The decision to include a covariate in the single-index term or the linear

term can solely be a result of domain theory in the field of use (Härdle et al., 2004).

In their partially linear single-index proportional hazard model, Shang et al. (2013)

included in the linear component, covariates of interest to yield easily interpreted

results and a single-index component to effectively adjust for multiple confounders.

Carroll et al. (1997) first introduced the GPLSIM and employed kernel smoothing

methods for estimating parameters in the maximum quasi likelihood methodology.

Yu and Ruppert (2002), Yu et al. (2017) and Wang and Cao (2018) advocate for the

use of splines, which are known to be stable and computationally expedient. We also

advocate for the use of P-splines likelihood estimation for GPLSIM, as investigated

by Yu et al. (2017). Our reason is purely for ease of implementation of our methods

using already existing R software packages such as mgcv (Wood, 2012).

In survival analysis literature, the Cox PH (Cox, 1972) model has been ex-

tensively used for the latency sub-model. This proportional hazards assumption is

usually violated in practice (Zeng et al., 2022) but is frequently used since it forces
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the hazard rate to stay within its natural boundaries (Aalen et al., 2008) and has

desirable theoretical properties (Lin and Ying, 1994). The additive hazard model of

Lin and Ying (1994) has been suggested as a useful alternative in cases where the

PH assumption is violated. As a result, we propose the additive hazard model for

the latency. Our goal is to provide the user with the tools to fit the additive hazards

mixture cure model while relying on the existing software packages in R. Our work

is partly motivated by the smcure package in R and will serve as an alternative to

fitting mixture cure models when one suspects the PH assumption for the uncured is

violated.

In addition to the medical context where survival data analysis is prominent,

another field that can greatly benefit from the proposed method is finance. Specifi-

cally, in credit risk modeling, researchers often aim to simultaneously model the prob-

ability of a customer defaulting and the time to default. In such cases, the method we

propose can be highly valuable. The generalized partially linear single-index model

(GPLSIM) can effectively handle the complex relationships involved in modeling the

probability of default. It provides flexibility and accommodates various factors that

influence default probabilities. On the other hand, the additive hazard model serves

as an alternative to the Cox proportional hazards (PH) model when modeling the

time to default. This allows for more accurate and comprehensive analysis of credit

risk. By combining the GPLSIM and additive hazard models, researchers in finance

can gain a deeper understanding of credit risk dynamics and make more informed

decisions.

The proposed method offers a powerful tool for analyzing default probabilities

and time to default simultaneously, enhancing the accuracy and reliability of credit

risk models. The rest of the article is organized as follows: In Section 2, we describe

our proposed model, and state the results for the identifiability of the model, includ-

ing the penalized maximum likelihood based estimation procedure and our proposed
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algorithm. In Section 3, we present numerical studies to illustrate the finite sample

performance of the proposed estimator. A brief discussion is given on the issue of

spline smoother selection. We provide a real-world data example in Section 4 and

finally conclude the study in Section 5.

2. THE MODEL AND ESTIMATION

Let T be the random variable representing the time until the event of interest

occurs. T is subject to random right censoring. We observe Y = min(T,C), the

follow-up time, and ∆ = I(T ≤ C) where C is the random censoring time and

I(·) is the indicator variable. We assume also that T and C are independent given

covariates (X⊤,Z⊤)⊤ of dimension d and q respectively. The observed data consists

of D = {(Yi,∆i,Xi,Zi) (i = 1, . . . , n)} which we assume to be n independent and

identically distributed (i.i.d) realizations of {(Y,∆,X,Z)}. Suppose in a population

the survival function is characterized by the mixture cure model in (1). We assume

that p(x) has the GPLSIM form described in (2). We allow the d dimensional set of

covariates, X, to be possibly split into: X = (X1,X2) with the sum of dimensions

equal to d. We consider the semiparametric additive hazard of Lin and Ying (1994)

for the latency, with hazard function given by:

λu(t | z) = λ0(t) + β⊤z (3)

where λo(t) is the baseline hazard and β the coefficient vector of parameters associated

with covariate Z. The proper conditional survival function is of the form

Su(t | z) = exp

{
−Λ0(t)−

∫ t

0

β⊤z du

}
(4)

with Λ0(t), a totally unspecified cumulative baseline hazard, and Su(t | z) is a proper

survival function because as t→∞, Su(t | z)→ 0.
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2.1. IDENTIFIABILITY OF MODEL

For model parameters to possibly be estimated, they must be able to be iden-

tified in a unique way. The union of the identifiability conditions for the mixture

cure model, the GPLSIM, and the additive hazard model yields the set of identifi-

ability conditions for our model. The identifiability conditions for the GPLSIM are

essentially those captured in Carroll et al. (1997) and Li and Lu (2018):

1. The function g is differentiable and not constant on the support α⊤x1.

2. There is no intercept term in α⊤x1.

3. g(0) = 0 and ∥α∥ = 1 with the first nonzero element being positive.

For the mixture cure model we impose the following (Amico and Van Keilegom, 2018):

1. The cure threshold, τ < ∞, exists such that T > τ ⇐⇒ T = ∞, and P (C >

τ |X,Z) > 0 for almost all X and Z.

2. For all x, 0 < p(x) < 1.

For the additive hazard model, there is no intercept term in β.

2.2. ESTIMATION AND THE EM ALGORITHM

The (log) likelihood (5) in classical survival analysis involves contributions

from censored and uncensored groups. The censored contribute through the survival

function, while the uncensored contribute through the density function, as follows:

ℓ(θ) = log
n∏

i=1

[p (Xi) fu (Yi | Zi)]
∆i ×

n∏
i=1

[1− p (Xi) + p (Xi)Su (Yi | Zi)]
1−∆i (5)

where θ = (α,γ,β, λ0, g)
⊤ and fu (Yi | Zi) = λu (Yi | Zi)Su (Yi | Zi) which depends

on the unobserved uncured status B. Thus the parameters cannot be estimated yet.

The likelihood in (5), assumes an equal contribution from the censored but cured and
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the censored but uncured, a rare case in the presence of a cure fraction (Amico et al.,

2019). Sy and Taylor (2000) used the EM algorithm of Dempster et al. (1977) to

handle the partially observed B. Similarly we used the EM to handle B. To that end

the complete-data likelihood (6) is defined as:

Lc(θ) =
n∏

i=1

{p (Xi)Su (Yi | Zi)}Bi(1−∆i)
n∏

i=1

{1− p (Xi)}(1−Bi)(1−∆i)

×
n∏

i=1

{p(Xi)fu (Yi | Zi)}Bi∆i .

(6)

In the likelihood function presented above, there are contributions from three distinct

groups: the censored and uncured, the censored and cured, and the uncensored and

uncured. Simplifying (6) gives:

Lc(θ) =
n∏

i=1

{
p (Xi)

Bi Su (Yi | Zi)
Bi λu (Yi | Zi)

Bi∆i

} n∏
i=1

{1− p (Xi)}(1−Bi) . (7)

Taking log and simplifying further results in:

ℓ(θ) =
n∑

i=1

{Bi log p (Xi) + (1−Bi) log (1− p (Xi))}

+
n∑

i=1

Bi {∆i log λu (Yi | Zi) + logSu (Yi | Zi)}

= ℓ1(θ) + ℓ2(θ).

(8)
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The “likelihood” contains a partially observed cure status B, which needs to be

estimated together with the parameters of interest in an EM-like algorithm. To that

end, in the E-step, of the EM algorithm E(B|D,θm−1) is given by:

E(B|D,θm−1) = 1× P (T <∞|D,θm−1) + 0× P (T =∞|D,θm−1)

= P (T <∞|D,θm−1)

= (1−∆i)P
(
Bi = 1 | Yi,∆i = 0,Xi,Zi,θ

m−1
)
+∆i

(9)

where D is the observed data and θm−1 is the “current” estimates of the parameters

at the mth iteration. The probability expression in last equation can be expressed as:

P
(
Bi = 1 | Yi,∆i = 0,Xi,Zi,θ

m−1
)
=

p(m−1)(Xi)S
(m−1)
u (Yi | Zi)

1− p(m−1)(Xi) + p(m−1)(Xi)S
(m−1)
u (Yi | Zi)

.

(10)

Substituting (10) into (9) results in:

E(B|D,θm−1) = ∆i + (1−∆i)

[
p(m−1)(Xi)S

(m−1)
u (Yi | Zi)

1− p(m−1)(Xi) + p(m−1)(Xi)S
(m−1)
u (Yi | Zi)

]

:= Wm
i .

(11)

As with other mixture cure models, we can maximize ℓ1(θ) and ℓ2(θ) separately. For

ℓ1(θ), the triple (g,α,γ) need to be estimated. g is estimated using a penalized

splines (P-splines) approach (Eilers and Marx, 1996) with a truncated power bases

splines (Yu et al., 2017). The mgcv R package (Wood, 2012) offers a convenient way

with different basis options to estimate the index function g. Other spline bases,

such as the thin plate regression spline (Wood, 2003) or cubic regression spline, can

be employed especially for smaller sample sizes, as they tend to give the best mean

squared error performance at the expense of longer computational time (Wood, 2012).
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g can represented as a linear combination of truncated power spline bases:

g(u) = φ0 + φ1u+ · · ·+ φpu
p +

K∑
k=1

φp+k (u− vk)
p
+

= φ⊤S(u)

(12)

where S(u) =
{
1, u, . . . , up, (u− v1)

p
+ , . . . , (u− vK)

p
+

}
are spline bases with K knots

placed at (v1, . . . , vK), and φ = (φ0, φ1, . . . , φp+K)
⊤ are spline coefficients to be es-

timated. For our GPLSIM, p (Xi) = H
{
φ⊤S

(
α⊤X1i

)
+ γ⊤X2i

}
. Replacing the

single-index term, g(·), with its spline representation in (12) we obtain:

ℓ1(α,γ,φ) =
n∑

i=1

{
Bi logH

{
φ⊤S

(
α⊤X1i

)
+ γ⊤X2i

}
+(1−Bi) log

(
1−H

{
φ⊤S

(
α⊤X1i

)
+ γ⊤X2i

})}
.

(13)

This estimation is done iteratively in an EM algorithm and the estimates (α̂, γ̂, φ̂)

are the solution to:

(α̂, γ̂, φ̂) = argmax
α,γ,φ
∥α∥=1

ℓ1(α,γ,φ). (14)

For the estimation of the additive hazard model, we proceed in the manner of Lin and

Ying (1994). Notice that the estimate ℓ2(·) is the likelihood of the additive hazard

model with Bi serving as a weight. Using counting process notation, the counting

process Ni(t) which records the number of events up to time t for individual can be

decomposed so that

Ni(t) = Mi(t) +

∫ t

0

Ri(u)dΛ(t | Z) (15)
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where Mi(·) is a martingale, Ri(t) is the at-risk process (1 if the individual is at risk

at time t, 0 otherwise). The entire second term is the compensator of Ni(t). The

intensity function for the Ni(t) is given by:

dMi(t) = BidNi(t)−BiRi(t)dΛ(t | Z)

= BidNi(t)−BiRi(t){dΛ0(t) + β⊤Z(t)dt}.
(16)

Note that the extra Bi is a weight that captures whether or not the individual belongs

to the susceptible group. Applying the martingale property, E[dM(t) | F(t)] = 0,

where F(t) is the filtration up to time t, we have for all individuals:

0 =
1

n

n∑
i=1

dMi(t)

=
n∑

i=1

Bi

[
dNi(t)−Ri(t)

{
dΛ0(t) + β⊤Zi(t)dt

}]
.

(17)

Solving the above estimating equation for fixed β and known B, we obtain an esti-

mator for Λ0(·) given by:

Λ̂0(t | β) =
∫ t

0

∑n
i=1Bi

{
dNi(u)−Ri(u)β

⊤Zi(u)du
}∑n

i=1 BiRi(u)
. (18)

If the baseline hazard is known, β is estimated from the following estimating function

(assuming cure status, B is known)

U(β) =
n∑

i=1

∫ ∞

0

BiZi(t)
{
dNi(t)−Ri(t)dΛ̂0(t | β)−Ri(t)β

⊤Zi(t)dt
}
. (19)

Setting (19) equal to the q×1 vector 0 produces the estimating equation for β whose

solution is β̂ = Â−1D̂ with

Â =
1

n

n∑
i=1

∫ ∞

0

BiRi(t)
{
Zi(t)− Z̄(t)

}⊗2
dt (20)
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and

D̂ =
1

n

n∑
i=1

∫ ∞

0

Bi

{
Zi(t)− Z̄(t)

}
dNi(t) (21)

where Z̄(t) =
∑n

i=1 BiRi(t)Zi(t)/
∑n

i=1 BiRi(t). Consequently, a natural estimator

for the survival function of the uncured sub-population is

Ŝu(t | z) = exp

{
−Λ̂0(t | β̂)−

∫ t

0

β̂⊤z(u)du

}
. (22)

2.3. A COMPUTATIONAL ALGORITHM

In this section, we present our computational algorithm (see Algorithm 1),

which we refer to as the Expectation Maximization & Estimation (EME) algorithm.

The algorithm combines the traditional Expectation (E) step with maximum like-

lihood estimation for the GPLSI model used in the incidence component, and esti-

mating equations for the additive hazard model used in the latency component. The

EME algorithm consists of the following steps:

1. Initialize the model parameters.

2. Perform the E-step: Estimate the latent variables and update the incomplete

data likelihood.

3. Perform the ME-step: Update the model parameters by maximizing (M) the

complete data likelihood and solving estimating equations (E) respectively.

4. Repeat steps 2 and 3 until convergence is achieved or a maximum number of

iterations is reached.

By iteratively updating the model parameters based on the observed data and latent

variables, the EME algorithm effectively estimates the parameters of the mixture cure

model.
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Algorithm 1 Expectation, Maximization & Estimation (EME)

Input: D = (y, δ,x1,x2, z), diff= 1000, eps = 10−7, emmax = 100.

1: initialize parameters for α0, γ0 using standard logistic regression.

2: p0 ← exp(α⊤
0 x1+γ⊤

0 x2)

1+exp(α⊤
0 x1+γ⊤

0 x2)
▷ initialize p

3: w0 ← δ ▷ initialize weights

4: fit the GPLSI model with w0 as response

obtain α, γ, p

5: fit the additive hazard (AH) model with data (y, δ,z) and weight, w0

obtain β, baseline survival s and su

6: ymax ← max(y) where δ = 1

7: i ← 1

8: while (diff < eps & i < emmax) do

9: w ← δ + (1− δ)× (p×su )
(1−p+p×su )

▷ update weights

10: Ensure w ← 0 when δ = 0 & y > ymax ▷ zero tail constraint

11: fit GPLSI, AH models and obtain α
update

, γ
update

, p
update

, β
update

, s
update

, s
u,update

12: diff = ∥α−α
update
∥2 + ∥β − β

update
∥2 + ∥γ − γ

update
∥2 + ∥su − s

u,update
∥2

13: α ← α
update

14: β ← β
update

15: γ ← γ
update

16: su ← s
u,update

17: end while

Despite the conclusion from Yu et al. (2017)’s study using P-splines on the GPLSIM,

we found the maximum likelihood criteria (Anderssen and Bloomfield, 1974) for se-

lecting the smoothing parameter to be favorable compared to the Generalized Cross-

Validation criteria of Craven and Wahba (1978).
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3. SIMULATION STUDIES

In this section, two simulation studies are conducted to evaluate the perfor-

mance of our model. More precisely we perform simulation studies for the following

objectives:

1. To evaluate the finite sample performance of the model under different right

censoring loads. We consider how well the uncure or cure probabilities are

estimated and how well parameters are estimated.

2. To study briefly the sensitivity of our estimates with varying sample sizes.

3. To compare our generalized partially linear single-index additive hazard (GPLSI-

AH) mixture cure model with the Single-Index/Cox (SIC) cure model of Amico

et al. (2019) and the logistic/Cox (LC) cure model in the smcure R package.

Particularly, we compare incidence sub-models under the two scenarios: when

the ground truth is the logistic structure and the Sine Bump model of Carroll

et al. (1997).

The data for the incidence sub-model is generated according to two scenarios each

with a different link function. The first scenario is the logistic link function of the

form

p(x) =
exp

(
γ⊤x

)
1 + exp (γ⊤x)

. (23)

We considered four independent covariates: X1 andX2 drawn from a standard normal

distribution and X3 ∼ Ber(0.3) and X4 ∼ Ber(0.6). The parameters of the model

were set to γ = (−1.5, 0.5, 2.3,−1.3) with 1.4 as the intercept. This is essentially the

same parameter setting used in Amico et al. (2019). The second scenario is the Sine



110

Bump model (Carroll et al., 1997) of the form

h(x1, x2) = sin
{
π
(
α⊤x1 − A

)
/(B − A)

}
+ γ⊤x2 (24)

so that

p(x1, x2) =
exp(sin

{
π
(
α⊤x1 − A

)
/(B − A)

}
+ γ⊤x2)

1 + exp(sin {π (α⊤x1 − A) /(B − A)}+ γ⊤x2)
(25)

where α = (1/
√
3, 1/
√
3, 1/
√
3) with each covariate X1, X2, X3 from independent

uniform in (0, 1); γ = 0.3;X4 is a binary predictor with 1 for even observations and 0

otherwise; A =
√
3/2− 1.645/

√
12 and B =

√
3/2 + 1.645/

√
12.

For the latency sub-model, we considered one covariate Z ∼ Ber(0.6) indepen-

dent of X1, X2, X3, X4. The survival times T were generated by solving the following

equation:

− log(U) = qT + β⊤Z (26)

where U ∼ U(0, 1) and parameters β = 1.5 and q = 3. The censoring time, was

generated from an exponential distribution with probability density function, f(t) =

λc exp (−λct) , independent of (X, Z, T ). To access the impact of different levels of

censoring on the performance of the model, we considered three levels of censoring:

low, mid, and high, with ∼ 5% increase from the previous. For the two scenarios, we

have summarized the parameter settings in the Table 1
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Table 1. Parameters for the incidence and latency sub-model, the cure fraction and
the censoring rates

Scenario Incidence Latency Cure rate
Censoring

level

Censoring

rate
λc

Logistic

X1, X2 ∼ N(0, 1)

X3 ∼ Ber(0.3), X4 ∼ Ber(0.6)

γ = (−1.5, 0.5, 2.3,−1.3)

β = 1.5

Z ∼ Ber(0.6)

32% low 34% 0.15

32% mid 40% 0.5

32% high 45% 0.9

Sine Bump

X1, X2, X3 ∼ U(0, 1)

X4 = 0 for odd observations and 1 for even

α = ( 1√
3
, 1√

3
, 1√

3
), γ = 0.3

β = 1.5

Z ∼ Ber(0.6)

32% low 34% 0.15

32% mid 40% 0.6

32% high 45% 0.92

It is worth mentioning that too heavy censoring may lead to having less ob-

servations beyond the cure threshold Y(r) and hence we do not consider substantially

heavy censoring. For each scenario and censoring rate we consider 4 samples sizes,

n = {250, 500, 1000, 2500}, to yield 24 total settings (2 model scenarios, 3 censor-

ing rates, 4 sample sizes). We fit the GPLSI-AH, SIC and LC cure models for each

dataset. For each setting we obtained 500 replicates (or datasets).

For identification of the mixture cure model, we followed the suggestion of

Taylor (1995) throughout this paper. In our novel EME algorithm, two sets of initial

values were sought, one for the single index terms and one for the partial linear terms.

Our approach does not require starting values for the latency sub-model. To evaluate

the performance of our model, we consider two metrics: the average square error

(ASE) for the incidence sub-model given by (27) and the bias and variance of β̂ for

the latency sub-model. The ASE is defined as:

ASE(p̂) =
1

n

n∑
i=1

{
H
(
g
(
α⊤x1i

)
+ γ⊤x2i

)
−H

(
ĝ
(
α̂⊤x1i

)
+ γ̂⊤x2i

)}2
. (27)

The box plots for the ASE of p(x) for all three models are shown in Figures 1–

8. As expected, the LC cure model outperforms the SIC cure model when the ground

truth is logistic regression, irrespective of the sample size. On the other hand, the
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ASE of p(x) for the GPLSI-AH model is roughly the same as for the LC cure model,

particularly for low and mid censoring levels, but a little higher for high censoring

levels. It is worth noting that the continuous covariates entered the GPLSI-AH model

via the single index term, while the categorical covariates entered via the partial linear

term. When the true model is the Sine Bump model, the GPLSI-AH performs best,

followed by the SIC and LC models, as expected. It is worth mentioning that, though

the errors reduce across all three models with increased sample size, we observed more

variability in the errors for the SIC model. The SIC and LC cure models seem to suffer

heavily from model misspecification. When there is a doubt that the relationship is

logistic, specifying a logistic model for the incidence is costly. In addition, when

there is doubt about assuming a SIC model, we advocate for using the GPLSI-AH

model due to its minimal cost in error due to misspecification. Generally, for all three

models, the precision of the estimates decreases as the censoring rate increases. As

pointed out in much of the literature on mixture cure models, as the censoring rate

gets farther from the cure rate, more observations will have Wm
i between 0 and 1

with a substantial amount of them close to zero. This increases the uncertainty in

the estimation of p(x). Furthermore, with assuming the additive hazard model for

the latency, this uncertainty is especially high because, Wm
i plays the role a as weight

in the semiparametric additive hazard model fitting process at each iteration and can

heavily affect parameter estimates obtained.

As was previously mentioned, one of the benefits of GPLSI-AH is that the

variables that enter the model through the partial linear component can be interpreted

just as the LC model when the real relationship is logistic. The coefficient estimates

of our partial linear terms are close to those of the LC model when the ground

truth is logistic, with the exception of γ̂1 for n = 250 and high censoring. Similarly,

the precision of the estimates decreases with higher censoring and increases with

larger sample sizes, with GPLSI-AH estimates benefiting somewhat more from the
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increase in sample size. Overall, GPLSI-AH provides a reliable and accurate method

for modeling partial linear relationships, particularly when the true relationship is

logistic. However, researchers should be aware that high levels of censoring and

smaller sample sizes may lead to decreased precision in the estimates (see Table 2).

Next, we also compare the partial linear term in the GPLSI-AH with that in

the LC model for the Sine Bump model (see Table 3). The results are comparable with

the GPLSI-AH estimates, benefiting more from an increase in sample size. GPLSI-

AH estimates seem to be affected more by the increase in censoring compared to the

LC model. This is perhaps due to the fact that the estimate Wm
i will be equal to{

p(m−1) (Xi)S
(m−1)
u (Yi | Zi)

}
/
{
1− p(m−1) (Xi)+ p(m−1) (Xi)S

(m−1)
u (Yi | Zi)

}
and,

will thus depend on S
(m−1)
u and p(m−1). The dependence of the estimate, Wm

i on

S
(m−1)
u is more pronounced, which in turn heavily relies on the initialized values for

Wi as they serve as weights in the additive hazard model.

Figure 1. Boxplots of the Average Squared Error (ASE) for three models under the
logistic scenario for n = 250.
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Figure 2. Boxplots of the Average Squared Error (ASE) for three models under the
logistic scenario for n = 500.

Figure 3. Boxplots of the Average Squared Error (ASE) for three models under the
logistic scenario for n = 1000.
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Figure 4. Boxplots of the Average Squared Error (ASE) for three models under the
logistic scenario for n = 2500.

Figure 5. Boxplots of the Average Squared Error (ASE) for the three models under
the sine bump scenario for n = 250.
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Figure 6. Boxplots of the Average Squared Error (ASE) for the three models under
the sine bump scenario for n = 500.

Figure 7. Boxplots of the Average Squared Error (ASE) for the three models under
the sine bump scenario for n = 1000.
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Figure 8. Boxplots of the Average Squared Error (ASE) for the three models under
the sine bump scenario for n = 2500.

For the latency sub-model, where the true model is the semi-parametric ad-

ditive hazard model, we assess the performance of parameters using the bias and

variance of β̂ (see Table 4). The LC and SIC model parameter estimates for the

latency sub-model are also presented here to demonstrate how biased inferences can

be made when the model is misspecified, as they both assume the Cox PH model.

Currently, to the best of our knowledge, the software packages for mixture cure model

fitting assumes the Cox PH model, which has been shown to be hardly validated in

practice. The bias of β̂ is small for all censoring schemes and sample sizes. It does

not appear that the estimate of β is affected as much by the true nature of the cure

probability as one would expect. In addition, the variance gets smaller with larger

sample sizes. It is worth mentioning that the variance is notably higher for high

censoring rates. This is due to the fact that a higher λc results in a higher rate of

censorship, making the plateau less populated than the true cure rate. In such cases,

Wm
i may vary between 0 and 1, and that can affect our parameter estimate for the

additive hazard latency sub-model. To control for this variance, we propose using a
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different set of initial values for Wi in situations when the censoring rate is high.

When fitting the GPLSI-AH cure models to data with heavy censoring we propose

modifying the strategy in this manner: set Wo = 1 when ∆ = 1. For the rest of W0

randomly assign 1 or 0 based on a W ∼ Ber(p) where p is the censoring rate.

It is quite obvious that estimating a GPLSI-AH cure model is computationally

expensive. It requires more computational time than the LC model. However, we

observed the time required to fit a GPLSI-AH model to be reasonably close to the

SIC model.
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Table 2. Coefficient estimates and standard deviations (sd) of partial linear term
from the GPLSI-AH compared to LC model under the three censoring schemes and
four sample sizes where the true relationship is logistic.

Low censoring Mid censoring High censoring

n PL term estimate sd estimate sd estimate sd

250 γ1GPLSI
2.475 0.525 2.432 0.629 3.201 5.083

γ1LC
2.348 0.512 2.374 0.659 2.430 0.699

γ2GPLSI
-1.338 0.439 -1.386 0.458 -1.396 0.464

γ2LC
-1.346 0.471 -1.271 0.392 -1.400 0.529

n PL term estimate sd estimate sd estimate sd

500 γ1GPLSI
2.359 0.450 2.403 0.407 2.391 0.435

γ1LC
2.337 0.391 2.382 0.416 2.425 0.467

γ2GPLSI
-1.332 0.293 -1.332 0.312 -1.319 0.318

γ2LC
-1.328 0.272 -1.353 0.336 -1.349 0.341

n PL term estimate sd estimate sd estimate sd

1000 γ1GPLSI
2.334 0.262 2.311 0.277 2.297 0.335

γ1LC
2.329 0.241 2.332 0.299 2.304 0.311

γ2GPLSI
-1.286 0.189 -1.297 0.204 -1.296 0.243

γ2LC
-1.301 0.210 -1.299 0.201 -1.328 0.260

n PL term estimate sd estimate sd estimate sd

2500 γ1GPLSI
2.329 0.167 2.320 0.180 2.341 0.204

γ1LC
2.292 0.177 2.308 0.191 2.323 0.217

γ2GPLSI
-1.306 0.134 -1.324 0.127 -1.294 0.140

γ2LC
-1.313 0.119 -1.318 0.129 -1.306 0.147
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Table 3. Coefficient estimates and standard deviations (sd) of partial linear term
from the GPLSI-AH compared to LC model under the three censoring schemes and
four sample sizes for the Sine Bump model.

Low censoring Mid censoring High censoring

n PL term estimate sd estimate sd estimate sd

250 γ
GPLSI

0.315 0.317 0.304 0.341 0.319 0.371

γ
LC

0.304 0.312 0.288 0.334 0.308 0.351

n PL term estimate sd estimate sd estimate sd

500 γ
GPLSI

0.304 0.219 0.330 0.216 0.343 0.217

γ
LC

0.294 0.216 0.314 0.208 0.328 0.214

n PL term estimate sd estimate sd estimate sd

1000 γ
GPLSI

0.296 0.142 0.320 0.154 0.324 0.158

γ
LC

0.287 0.135 0.309 0.151 0.311 0.153

n PL term estimate sd estimate sd estimate sd

2500 γ
GPLSI

0.311 0.085 0.297 0.107 0.296 0.111

γ
LC

0.298 0.084 0.286 0.106 0.283 0.110
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Table 4. Bias and variance of β̂ for the GPLSI-AH, SIC and LC cure models under
the three censoring schemes and four sample sizes.

Low censoring Mid censoring High censoring

n Scenario Model Bias variance Bias variance Bias variance

250 logistic GPLSI-AH 0.015 0.429 0.009 0.447 0.024 0.557

logistic SIC -1.090 0.031 -1.095 0.033 -1.087 0.042

logistic LC -1.092 0.031 -1.097 0.032 -1.092 0.041

SB GPLSI-AH -0.012 0.425 0.052 0.572 0.022 0.572

SB SIC -1.098 0.030 -1.079 0.041 -1.094 0.042

SB LC -1.098 0.030 -1.079 0.041 -1.094 0.042

Scenario Model Bias variance Bias variance Bias variance

500 logistic GPLSI-AH 0.019 0.193 -0.032 0.212 0.032 0.236

logistic SIC -1.089 0.014 -1.102 0.016 -1.085 0.018

logistic LC -1.089 0.014 -1.102 0.016 -1.087 0.018

SB GPLSI-AH -0.000 0.212 0.012 0.257 0.035 0.286

SB SIC -1.093 0.016 -1.094 0.019 -1.088 0.021

SB LC -1.093 0.016 -1.095 0.019 -1.088 0.021

Scenario Model Bias variance Bias variance Bias variance

1000 logistic GPLSI-AH -0.017 0.097 0.006 0.102 0.012 0.116

logistic SIC -1.101 0.008 -1.091 0.008 -1.090 0.009

logistic LC -1.101 0.008 -1.092 0.008 -1.091 0.009

SB GPLSI-AH -0.004 0.094 0.023 0.132 0.006 0.124

SB SIC -1.096 0.007 -1.089 0.010 -1.094 0.010

SB LC -1.096 0.007 -1.089 0.010 -1.094 0.010

Scenario Model Bias variance Bias variance Bias variance

2500 logistic GPLSI-AH 0.006 0.036 -0.005 0.043 0.002 0.056

logistic SIC -1.093 0.003 -1.096 0.003 -1.094 0.004

logistic LC -1.093 0.003 -1.096 0.003 -1.095 0.004

SB GPLSI-AH 0.013 0.040 0.007 0.052 0.006 0.059

SB SIC -1.091 0.003 -1.092 0.004 -1.094 0.005

SB LC -1.091 0.003 -1.092 0.004 -1.094 0.005



122

4. REAL DATA EXAMPLE

We provide an example using a small-scale study on diabetic retinopathy to

demonstrate the application of the proposed method. However, it is important to

note that the true strength and advantages of the method are best observed in larger-

scale studies, such as the Framingham Heart study (Carroll et al., 1997) and the UK

bank personal loans data (Dirick et al., 2022). In the case of the Framingham Heart

study, there is no specific time-to-event variable available for analysis, which limits

the applicability of the proposed method in that particular context. Regarding the

UK bank personal loans data, we encountered challenges in obtaining the data from

the authors, preventing us from conducting an analysis using that dataset. However,

we believe that the proposed method has potential utility in credit risk modeling and

similar financial contexts, as it can simultaneously model the probability of default

and the time to default.

The Diabetic Retinopathy Study Data: People with diabetes can get diabetic

retinopathy, which is when the tiny blood vessels in their eyes get damaged. In

the United States and many other developed countries, this can cause blindness,

especially in people under 60 years old. In 1971, the Diabetic Retinopathy Study

(DRS) was started to find out if laser treatment could keep people with diabetic

retinopathy from going blind. Patients in the study had diabetic retinopathy in both

eyes, but they could still see fairly well with both eyes. One eye of each patient was

treated with a laser at random, while the other eye was not (Huster et al., 1989).

The original study followed 1,742 patients for several years. The study looked at how

well laser treatment worked by seeing if the patients’ vision got worse over time, to

the point where they couldn’t see better than 5/200 on two separate follow-up visits.

The version of the subset of the dataset used in the analysis was obtained from



123

https://www.mayo.edu/research/documents/diabeteshtml/DOC-10027460/.

This consists of n = 197 diabetic subjects (see Table 5 for variables used in this

study).

The focus of this analysis is to determine the long- and short term effects of

the covariates using mixture cure models. For instance, how does a subject’s age

affect the probability of losing their eye sight, and how does this affect how long it

takes to lose your eye sight?

Figure 9 shows the Kaplan and Meier (1958) survival curve with a plateau. We

performed a Maller & Zhou test for sufficient follow-up and found evidence of enough

follow up to detect the presence of cured subjects. About 73% of the observations

were censored, with 12% of observations on the plateau, giving enough reason to

consider a cure model.

Next, we fit all models to the data (see Table 6). The standard errors of the

parameter estimates for all models have been computed using bootstrapping based on

100 bootstrap samples. For the GPLSI-AH model, age and risk are entered through

the single-index and others through the partial linear term. Following the approach

of Amico et al. (2019), we standardized all covariates in the incidence (probability

of blindness) to make them comparable. Age and treated eye variables significantly

affected the incidence sub-model at a 5% significance level for the GPLSI-AH and

SIC models. The type of eye treated also has a significant impact on the probability

of (un)cure for the LC model. For the latency sub-model, none of the predictors

significantly affects the time to blindness. For any two subjects who are uncured, our

estimate suggests that there is no significant difference in their hazards to blindness

if one was treated on the right eye and the other on the left.
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Table 5. Description of variables in the Diabetic Retinopathy Study data used for
our analysis.

Variables Description
Subject id Unique id for subjects
laser type 1 = xenon, 2 = argon
treated eye 1 = right, 2 = left
age at diagnosis Subject’s age at diagnosis of diabetes

risk group
subject’s risk of diabetic retinopathy
on a scale of 6 -12

status 0 = censored, 1 = blindness
time follow-up time

Figure 9. Kaplan Meier survival plot of the DRS study showing a plateau.
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Table 6. Parameter estimates and standard errors for GPLSI-AH, SIC and LC cure
models.

GPLSI-AH cure model SIC cure model LC cure model

Incidence Estimate Std.Error p-value Estimate Std.Error p-value Estimate Std.Error p-value

(intercept) - - - - - - -0.7854 0.1385 0.0000

age 0.9047 0.2414 0.0002 -0.4537 0.2255 0.0442 -0.1787 0.2166 0.4092

risk -0.4261 0.3755 0.2565 -0.0810 0.3189 0.7994 0.0126 0.2168 0.9538

laser type 0.0718 0.1874 0.7017 0.3967 0.3425 0.2468 0.1924 0.1993 0.3344

treated eye 0.5691 0.1975 0.0040 0.7939 0.2677 0.0030 0.6552 0.2358 0.0054

Latency Estimate Std.Error p-value Estimate Std.Error p-value Estimate Std.Error p-value

age -0.0007 0.00057 0.1996 -0.0164 0.3150 0.9584 -0.0171 0.0211 0.4180

risk 0.0044 0.0061 0.4689 0.1443 0.2463 0.5579 0.1298 0.1483 0.3811

laser type -0.0096 0.0134 0.4718 -0.4806 0.2400 0.0452 -0.5607 0.4756 0.2384

treated eye -0.0177 0.0257 0.4908 -0.6389 0.3594 0.0755 -0.7574 0.6054 0.2109

5. CONCLUSIONS

We proposed a GPLSI-AH mixture cure model, which is a versatile semi-

parametric model. We stated the proposed model’s identifiability. The GPLSI for

the uncured probability is estimated using a P-splines-based maximum likelihood es-

timation approach with an EM algorithm. The simulation demonstrated that our

method performs well in terms of estimating the uncure probability and outperforms

other methods when the true link function is not logistic. In terms of the uncured

probability, our technique appears to be less sensitive to model misspecification. De-

spite the many advantages of using a cure model, it is generally recommended that

one ensures there is some contextual evidence for the presence of a cure fraction

(Legrand, 2021). Several strategies have been proposed. According to Taylor (1995),

a good indication of the presence of a cure fraction is when the Kaplan-Meier (KM)

survival curve levels out with a lengthy plateau containing a “high” number of data
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points. Several attempts have been made to formally test whether one can confi-

dently apply a cure model. Originally, Maller and Zhou (1996), proposed assessing

the identifiability condition as a formal test for the presence of a sufficiently long

follow-up. Other works for testing the presence of cure can be found in Zhao et al.

(2009) and Hsu et al. (2016). However, as pointed out by Legrand (2021) there is

not a clear-cut, widely available hypothesis test for the evidence of a cure fraction,

and the current recommendation is to rely on a visual inspection of the tail of the

KM survival curve. Assuming that there are many observations in the plateau of the

KM curve, then in the case of heavy right censoring, we advocate for our parameter

initialization strategy. However, further work through extensive simulations needs to

be done to investigate and provide a better approach or rule for applying our ini-

tialization strategy. Through, this we can develop a test for the presence of cure.

The GPLSI-AH can be considered a diagnostic tool to investigate misspecification

of the incidence of the mixture cure model. Future work will focus on developing a

test for a parametric form of p(·) possibly using some likelihood based arguments or

information criteria.
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SECTION

4. SUMMARY AND CONCLUSIONS

In the first part of this dissertation, methods were developed that increase

both statistical power and precision in detecting novel regions in the human genome

that are differentially methylated. These methods also have a higher susceptibility

of capturing the true length of DMRs. This type of advancement can contribute to

the field of precision medicine. Genes that are affected by the methylation process

can be detected when the proposed methods are combined with pathway analysis

methods, in efforts to develop medicine that targets the genes of interest. While the

proposed methods have led to significant progress, there is still a need for additional

research to enhance DMR detection, especially for small effect sizes. The selection of

an “adaptive” bandwidth could be a crucial factor. Moreover, the choice of kernel may

impact the results, suggesting that further exploration into different kernels could be

beneficial.

The second part of the dissertation focused on advances in cure survival mod-

els research. Specifically, a mixture cure model and a computational algorithm are

proposed that flexibly model the probability of cured in the cured sub-population

using a generalized partially linear single-index model and models the time to event

of the uncured sub-population using the additive hazard model. This method was

shown via simulation studies to perform much better with large sample size and is

less sensitive to the misspecification of the cure probability model. The use of the

additive hazard model offers an alternative to the Cox proportional hazard method.

Hence this mixture cure model will be beneficial to fields where large sample sizes

are the norm and where one has reason to believe the Cox-proportional hazard is not
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appropriate for the uncured sub-population. The initialization approach employed

in the EM algorithm warrants additional investigation. Moreover, more research is

required to provide guidance to users in selecting the bases for estimating the index

function, as this could potentially yield improved results. The proposed method,

when compared to the logistic/Cox mixture cure model, tends to require more exe-

cution time. Therefore, it could be advantageous to conduct a statistical test before

fitting the model to ascertain whether a logistic model for the cure probability would

suffice.
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APPENDIX

SUPPLEMENTARY FILE I

1. ASYMPTOTIC RESULTS

This section pertains to the proof of the asymptotic results of the proposed

estimator for paper I. More specifically it investigates the situation under which S(xi)

is consistent and obeys the central limit theorem (CLT).

Lemma 1. {Y1,v; v ≥ 1} be a family of F-distributed random variables with degrees

of freedom 1 and v, i.e. Y ∼ F1,v. Then the family is uniformly tight.

Proof. E(Y ) =
v

v − 2
for v ≥ 3. ∃ v0 such that

v

v − 2
≤ 2. ∀ϵ > 0, ∃ M1 such that

P (Y1,1 ≤ M1) > 1 − ϵ
2
and P (Y1,2 ≤ M1) > 1 − ϵ

2
. Hence Y1,1 and Y1,2 are tight.

Now, ∀v ≥ v0, P (Y1,v ≥ M) ≤ E(Y1,v)

M
≤ 3

M
. For 3

M
< ϵ, we have that ∀v ≥ v0,

P (Y1,n > Mϵ) < ϵ. Set M0 = max(M1,Mϵ) we have sup
v≥v0

P (Y1,v < M0) > 1− ϵ.

Theorem 1. Let {Yj, j > 1} be independent F-distributed random variables obtained

from site-level testing via limma’s moderated F-statistic (t2-statistic) and {wj, j > 1}

be constants satisfying
∑n

j=1 w
2
j = O(nw2

n). Further, at CpG site xi, let S(xi) =∑n
j=1 wj(xi)Yj where

wj(xi) =


1, j = i

t ∈ (0, 1), j ̸= i

.

Then,

∑n
j=1wj

(
Yj − EY 1{|Y |≤n2}

)
wnn2

p→ 0.
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Proof. To reduce notational complexity, we write S(xi) as S and wj(xi) as wj. We

will take Y to be χ2 distributed for the basis of our context. For n > 1, S(xi) has

(n − 1) weighted Yi’s and one unweighted Yi. Since Yi’s are iid we can write (1) ,

without loss of generality:

S = Y1 + w2Y2 + · · ·+ wn−1Yn−1 + wnYn

= Y1 +
n∑

j=2

wjYj

=
n∑

j=1

wjYj (1)

where
n∑

j=2

wj = 1 and w1 = 1.

Since the Y ’s are obtained from limma, we assume the denominator df is large enough

so that Y ∼ χ2
1 (see Section 2 of the appendix for proof). Define bn = wnn

2 so that

cn = n2 where 0 < wj ≤ 1.

lim
n→∞

nP (Y > n2) ≤ nE(Y )

n2
(By Markov Inequality)

=
E(Y )

n

=
1

n
→ 0 as n→∞

=⇒ nP (Y > n2) = o(1). Now,

n2

n
= n ↑ for n > 1

n∑
j=1

w2
j

nw2
n

≤ n

nw2
2

=
1

w2
n
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=⇒
∑n

j=1 w
2
j = O

(
1

w2
n

)
.

By the Lemma 1 (Adler and Rosalsky, 1991) (see Section 2.7) we have that,

n∑
j=1

w2
jE
(
Y 21{|Y |≤n2}

)
= o(wnn

2) (2)

and by Theorem 1 (Adler and Rosalsky, 1991) (see Section 2.7), we have that

∑n
j=1wj

(
Yj − EY 1{|Y |≤n2}

)
wnn2

p→ 0. (3)

Theorem 2. Let {Yn, n > 1} be independent F-distributed random variables ob-

tained from site-level testing via limma’s moderated t-statistic and let {wn, n > 1}

be constants satisfying 0 < wn < 1 and
∑n

j=1wj = 1. At CpG site xi for observed yi,

define Syi(xi) = yi +
∑n

j=1
j ̸=i

wjYj. Then

yi +

∑n
j=1
j ̸=i

wj (Yj − E(Y ))√∑n
j=1
j ̸=i

w2
jσ

2
j

d→ yi + Z (4)

where V ar

(∑n
j=1
j ̸=i

wjYj

)
=
∑n

j=1
j ̸=i

w2
jσ

2
j and Z ∼ N(0, 1)

Proof. It suffices to show that

∑n
j=1
j ̸=i

wj(Yj−E(Y ))

√∑n
j=1
j ̸=i

w2
jσ

2
j

d→ Z. Define Uj =
∑n

j=1
j ̸=i

wj (Yj − E(Y ))

so that E(Uj) = 0 and V ar(Uj) =
∑n

j=1
j ̸=i

w2
jσ

2
j := s2n

Applying Lyapunov’s CLT condition (Billingsley, 1986; Resnick, 1999) and

taking δ = 1 we only need to show that

n∑
j=1

E|Uj|3

s3n
→ 0 (5)
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To complete the proof we need the concept of uniform tightness. See Definition 7,

Lemma 1 and the proof that shows the family of F distributed random variables is

uniformly tight. By Lemma 1, Uj is uniformly bounded by M0. Then,

n∑
j=1

E|Uj|3

s3n
≤

n∑
j=1

M0E|Uj|2

s3n
=

M0

sn
→ 0 as n→∞

2. MISCELLANEOUS RESULT

Corollary 1. Let Y ∼ F(1,ν). Then as ν →∞,

Y
d→ χ2

1 (6)

where χ2
1 is a chi-squared distribution with 1 degree of freedom.

Proof. Define F =
U/µ

V/ν
. If U be a chi-square random variable with µ degrees of

freedom, V be a chi-square random variable with ν degrees of freedom and U and V

be independent then by definition F is an F-random variable. It only suffices to show

that with µ = 1, as ν →∞, V
ν

p→ 1. By Chebychev’s inequality,

P

(∣∣∣V
ν
− 1
∣∣∣ > ε

)
≤

E

(
V

ν
− 1

)2

ε2

=
E(V − ν)2

ν2ε2

=
V ar(V )

ν2ε2

=
2

νε2
→ 0 as ν →∞.

The result, Y
d→ χ2

1 follows by Slutsky’s theorem.
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3. STEPS TO OBTAIN CHOL DATA FROM THE CANCER GENOME
ATLAS PROGRAM (TCGA)

We outline briefly steps to obtaining the Cholangiocarcinoma (CHOL) data

set used in our simulation for paper I.

• Use the link (https://portal.gdc.cancer.gov/repository) to access the

TCGA GDC data portal repository.

• Under the Cases tab on the left, select TCGA under Program. Select TCGA-CHOL

from Project section.

• Under the Files tab and section Data Format, select idat. You should see 90

idat files.

• Download the manifest file and using the GDC transfer tool, download data.

After cleaning, only 18 sample names matched which resulted in 36 idat files.

4. DESCRIPTION OF SIMULATED DATA

We simulated the data for paper I in a manner similar to Peters et al. (2015);

therefore, we refer the reader to the supplementary text of Peters et al. (2015), as

the simulation description outlined in this paper is based on their ideas. We outline

these below:

1. On the basis of the 450K array containing 485,512 probes, we constructed an

empirical methylation data set.

(a) Methylated and Unmethylated Probes

Probes were classified as fully methylated or unmethylated using TCGA

data (n = 18 samples) on bile duct cancer (CHOL) (see Section 2 of the ap-

pendix). Probes with an average beta greater than 0.5 after normalization
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using the functional normalization method (Fortin et al., 2014) were clas-

sified as fully methylated; otherwise, they were classified as unmethylated.

The fully methylated to unmethylated ratio was 55.5% to 44.5%.

(b) Define Candidate Differentially Methylated Regions (DMRs)

The candidate DMRs were defined as genomics regions with probes anno-

tated as “TSS200” or “TSS1500” that were no more than 1000 base pairs

apart. We obtained 21,363 candidate DMRs with probe counts ranging

from 1 to 88, with a median of 6 probes and an average of 6.55 probes.

2. For each simulated data set, we randomly assigned 5% of the 21,363 (i.e., 1068)

candidate DMRs to be true hypermethylated DMRs and 5% to be true hy-

pomethylated DMRs. The remaining 90% of the candidate regions were not

true DMRs. We set the true methylation difference to be 0.2 (a large methy-

lation difference) as do Peters et al. (2015) and also investigate a small methy-

lation difference equal to 0.09. We simulated random values from a uniform

distribution to represent the mode of a beta distribution as follows. We gen-

erated two values from the uniform distribution to act as beta modes for each

region, one for treatment and one for control: beta1 ∼ Uniform(0.01, 0.79)

and beta2 = beta1 + 0.2. As a result, beta2 ∼ Uniform (0.21, 0.99). For hy-

permethylated regions, the control samples’ base methylation level was set to

beta1, and the treatment samples’ base methylation level was set to beta2. For

hypomethylated regions, this allocation was reversed.

3. For the probes inside the selected DMRs, we simulate β−values representing the

proportion of methylation for control and treatment samples from beta (a, b)

with a and b obtained using the mode in step (2) and a + b + 2 = K = 100.
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This value was selected as a level of variability in the sampling distribution

that is consistent with reality (Peters et al., 2015). Given K and the mode, the

following R code simulates the random β−values:

r <- mode/(1 - mode)

B <- K/(1+r)

A <- r*B

a <- A + 1

b <- B + 1

beta <- rbeta(a=a, b=b)

4. For the probes outside the selected DMRs, we generate β−values from two beta

distributions using the methylated or unmethylated status described in step 1.

We sample from

rbeta(a = 14, b = 3.12) and rbeta(a = 2, b = 11.11). These values of

a and b were chosen to be reasonably close to Peters et al. (2015).

5. The aforementioned steps yielded a data set of 485,512 rows and 20 columns

(10 treatment, 10 controls). The entire simulation was repeated 1000 times.
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