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ABSTRACT

This thesis proposes efficient ensemble-based algorithms for solving the full and

reduced Magnetohydrodynamics (MHD) equations. The proposed ensemble methods re-

quire solving only one linear system with multiple right-hand sides for different realizations,

reducing computational cost and simulation time. Four algorithms utilize a Generalized

Positive Auxiliary Variable (GPAV) approach and are demonstrated to be second-order ac-

curate and unconditionally stable with respect to the system energy through comprehensive

stability analyses and error tests. Two algorithms make use of Artificial Compressibility

(AC) to update pressure and a solenoidal constraint for the magnetic field. Numerical

simulations are provided to illustrate theoretical results and demonstrate the efficiency and

long-time accuracy of the proposed algorithms.
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1. INTRODUCTION

In most applications, methods for modeling fluid flow can be highly sensitive due

to imperfect initial conditions and parameters. These errors cause deviations that increase

over time and propagate throughout the simulation domain, leading to inaccurate long-

term predictions. Uncertainty quantification (UQ) is one field that aims to remedy this,

often through statistical approaches. Ensemble-based UQ methods combine the results of

multiple calculations with slightly different initial conditions and forcing terms to improve

the accuracy of long-term predictions. However, for large-scale simulations, it is not

feasible to obtain predictions one-by-one for a large ensemble of parameters at a high

spatial resolution within a specific time window.

The purpose of this thesis is to introduce efficient second-order numerical schemes

involving an ensemble mean for the magnetohydrodynamics equations (MHD). The en-

semble mean addresses the computational burden associated with solving PDEs for each

realization. This is done by considering all realizations sharing the same coefficient matrix,

and efficient block-solvers can then be applied to the resulting single linear system with

multiple right-hand sides. This approach enables us to compute a large ensemble for a

prescribed accuracy with limited computational resources.

In this thesis, we focus on developing efficient second-order ensemble methods

for MHD flow simulations. Section 2 presents our paper focused on an ensemble mean

algorithm for solving the reduced MHD at small magnetic reynolds number, and presents

extensive error and stability analysis, along with numerical tests to verify results. Section

3 presents our paper describing two ensemble algorithms for the full MHD combined with

a scalar auxiliary variable (SAV) technique to explicitly discretize nonlinear terms while

maintaining unconditional stability with respect to a modified system energy equation.

Section 4 describes extending the approach in Section 3 to a scheme that utilizes artificial
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compressibility to separate the velocity and magnetic field equations from the pressure and

solenoidal constraint equations respectively. Finally, Section 4 will conclude and discuss

future potential directions.

Overall, this thesis aims to contribute to provide new insights into the use of ensemble

methods for practical and computationally efficient simulations.



3

PAPER
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ABSTRACT

We study a second order ensemble method for fast computation of an ensemble of

MHD flows at small magnetic Reynolds number. Computing an ensemble of flow equations

with different input parameters is a common procedure for uncertainty quantification in many

engineering applications, for which the computational cost can be prohibitively expensive

for nonlinear complex systems. We propose an ensemble algorithm that requires only

solving one linear system with multiple right-hands instead of solving multiple different

linear systems, which significantly reduces the computational cost and simulation time.

Comprehensive stability and error analyses are presented proving conditional stability and

second order in time convergent. Numerical tests are provided to illustrate theoretical results

and demonstrate the efficiency of the proposed algorithm.

Keywords: MHD, low magnetic Reynolds number, uncertainty quantification, ensemble

algorithm, finite element method, partitioned method
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1.1. INTRODUCTION

Uncertainty quantification (UQ) is critical to effective flow simulations with uncer-

tain model inputs such as initial conditions, forcing functions and other model parameters.

The main challenge for studying efficient UQ methods is the excessive computational cost.

Ensemble-based UQ methods are nonintrusive in the sense that they require the solution

of a set of deterministic PDEs corresponding to different parameter samples and legacy

flow solvers can be used without modifications. These methods require little coding efforts

and some require much less realizations to achieve certain accuracy, proving to be effective

in many applications. Nevertheless, for large-scale simulations, it is not realistic to run

simulations over a large ensemble of parameters at a high spatial resolution and obtain

predictions within a certain time window, which is essential for important applications such

as numerical weather prediction. Ensemble methods have been developed in recent years

aiming to address this issue. The idea is that if all realizations share the same coefficient

matrix, efficient block solvers can be applied to solve the resulting single linear system with

multiple right-hand sides. In [1], the first ensemble method was developed for solving the

Navier-Stokes equations, which cleverly split the nonlinear term into two parts, the mean

and the fluctuation. The mean doesn’t depend on the ensemble index and thus is the same

for all realizations, while the fluctuation term that does depend on the ensemble index was

lagged to the previous timestep and thus can be moved to the right-hand side of the equation

without affecting the coefficient matrix. All realizations can then be solved at one pass with

efficient block solvers greatly reducing the averaged computational cost for each realization,

making the algorithm well-suited for applications that require computing a large ensemble

for a prescribed accuracy but have limited computer resources. This algorithm has been

further tested for high-Reynolds number flows [2, 3], turbulent flows [4, 5] and other flow

models [6–10]. It has been demonstrated to be highly computationally efficient used in

conjunction with UQ methods such as the Monte Carlo method [8, 11, 12], multilevel

Monte Carlo [13], pseudo-spectral stochastic collocation [14], and the proper orthogonal



5

decomposition (POD) technique [15–17]. In this report, we study a second order ensemble

algorithm for Magnetohydrodynamics (MHD) flows at small magnetic Reynolds number

and develop a second order accurate ensemble algorithm for fast computation.

1.1.1. GOVERNING EQUATIONS.

1.1.1.1. Reduced MHD. Magnetohydrodynamics (MHD) flows occur in many im-

portant applications such as plasmas, astrophysics, planetary science and metallized indus-

try. For liquid metals, the induced magnetic field is negligible compared with the imposed

magnetic field leading to a reduced MHD model. Let Ω be a bounded Lipschitz domain in

𝑅𝑑 (𝑑 = 3). Herein we consider computing the reduced MHD system 𝐽 times with different

initial conditions and/or body forces. The solution (𝑢 𝑗 , 𝑝 𝑗 , 𝜙 𝑗 ) of 𝑗-th realization, which

corresponds to the initial condition 𝑢0
𝑗
(𝑥) and body force 𝑓 𝑗 (𝑥, 𝑡), satisfies, for 𝑗 = 1, 2, ..., 𝐽,



1
𝑁

(
𝑢 𝑗 ,𝑡 + 𝑢 𝑗 · ∇𝑢 𝑗

)
− 1

𝑀2△𝑢 𝑗 + ∇𝑝 𝑗 = 𝑓 𝑗 +
(
𝐵 × ∇𝜙 𝑗 + 𝐵 × (𝐵 × 𝑢 𝑗 )

)
,

Δ𝜙 𝑗 = ∇ · (𝑢 𝑗 × 𝐵) and ∇ · 𝑢 𝑗 = ∇ · 𝐵 = 0 ∀(𝑥, 𝑡) ∈ Ω × (0, 𝑇],

𝑢 𝑗 = 𝐵 = 0 ∀(𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇],

𝑢 𝑗 (𝑥, 0) = 𝑢0
𝑗 (𝑥) ∀𝑥 ∈ Ω,

𝜙 𝑗 (𝑥, 0) = 𝜙0
𝑗 (𝑥) ∀𝑥 ∈ Ω.

(1.1)

Here 𝑢 𝑗 (𝑥, 𝑡) is the fluid velocity, 𝑝 𝑗 (𝑥, 𝑡) the pressure and 𝜙 𝑗 (𝑥, 𝑡) the electric

potential. The body force 𝑓 𝑗 (𝑥, 𝑡) and imposed static magnetic field 𝐵 𝑗 (𝑥) are given, 𝑀

is the Hartmann number given by 𝑀 = �̃�𝐿
√︃

𝜎
𝜌𝜈

and N is the interaction parameter given

by 𝑁 = 𝜎�̃�2 𝐿
𝜌𝑈

, in which �̃� is the characteristic magnetic field, 𝜌 is the density, 𝜈 is the

kinematic viscosity, 𝜎 is the electrical conductivity, 𝑈 is a typical velocity of the motion,

and 𝐿 is the characteristic length scale.
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1.1.1.2. Ensemble. We define the ensemble mean and the fluctuation of the velocity

𝑢𝑛
𝑗

and the electric potential 𝜙𝑛
𝑗

respectively

�̄�𝑛 =
1
𝐽

𝐽∑︁
𝑗=1

(2𝑢𝑛𝑗 − 𝑢𝑛−1
𝑗 ) and 𝜙𝑛 =

1
𝐽

𝐽∑︁
𝑗=1

(2𝜙𝑛𝑗 − 𝜙𝑛−1
𝑗 ), (mean)

𝑢′𝑛𝑗 = 2𝑢𝑛𝑗 − 𝑢𝑛−1
𝑗 − �̄�𝑛 and 𝜙′𝑛𝑗 = 2𝜙𝑛𝑗 − 𝜙𝑛−1

𝑗 − 𝜙𝑛, (fluctuation)

where 𝑢𝑛
𝑗
= 𝑢 𝑗 (𝑥, 𝑡𝑛), 𝜙𝑛𝑗 = 𝜙 𝑗 (𝑥, 𝑡𝑛) and 𝑡𝑛 = 𝑛Δ𝑡 (𝑛 = 0, 1, 2, ...).

1.1.2. ALGORITHM. We then propose a second order, partitioned ensemble al-

gorithm given by

Sub-problem 1: Given 𝑢𝑛
𝑗

and 𝜙𝑛
𝑗
, find 𝑢𝑛+1

𝑗
and 𝑝𝑛+1

𝑗
satisfying



1
𝑁

(
3𝑢𝑛+1

𝑗
− 4𝑢𝑛

𝑗
+ 𝑢𝑛−1

𝑗

2Δ𝑡

)
+ 1
𝑁
�̄�𝑛 · ∇𝑢𝑛+1

𝑗 + 1
𝑁
𝑢′𝑛𝑗 · ∇(2𝑢𝑛𝑗 − 𝑢𝑛−1

𝑗 )

− 1
𝑀2Δ𝑢

𝑛+1
𝑗 + ∇𝑝𝑛+1

𝑗 = 𝑓 𝑛+1
𝑗 +

(
𝐵 × ∇(2𝜙𝑛𝑗 − 𝜙𝑛−1

𝑗 ) + 𝐵 ×
(
𝐵 × 𝑢𝑛+1

𝑗

))
,

∇ · 𝑢𝑛+1
𝑗 = 0.

Sub-problem 2: Given 𝑢𝑛+1
𝑗

, find 𝜙𝑛+1
𝑗

satisfying

Δ𝜙𝑛+1
𝑗 = ∇ · (𝑢𝑛+1

𝑗 × 𝐵).

1.2. PRELIMINARIES

1.2.1. NOTATION. Throughout this paper the 𝐿2(Ω) norm of scalars, vectors,

and tensors will be denoted by ∥ · ∥ with the usual 𝐿2 inner product denoted by (·, ·). 𝐻𝑘 (Ω)

is the Sobolev space 𝑊 𝑘
2 (Ω), with norm ∥ · ∥𝑘 . For functions 𝑣(𝑥, 𝑡) defined on (0, 𝑇), we

define the norms, for 1 ≤ 𝑚 < ∞,

∥𝑣∥∞,𝑘 := ess sup
[0,𝑇]

∥𝑣(·, 𝑡)∥𝑘 and ∥𝑣∥𝑚,𝑘 :=
( ∫ 𝑇

0
∥𝑣(·, 𝑡)∥𝑚𝑘 𝑑𝑡

)1/𝑚
.
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The function spaces we consider are:

𝑋 : = 𝐻1
0 (Ω)

𝑑 =
{
𝑣 ∈ 𝐿2(Ω)𝑑 : ∇𝑣 ∈ 𝐿2(Ω)𝑑×𝑑 and 𝑣 = 0 on 𝜕Ω

}
,

𝑄 : = 𝐿2
0(Ω) =

{
𝑞 ∈ 𝐿2(Ω) :

∫
Ω

𝑞 𝑑𝑥 = 0
}
,

𝑆 : = 𝐻1
0 (Ω) =

{
𝜙 ∈ 𝐿2(Ω) : ∇𝜙 ∈ 𝐿2(Ω) and 𝜙 = 0 on 𝜕Ω

}
,

𝑉 : = {𝑣 ∈ 𝑋 : (∇ · 𝑣, 𝑞) = 0,∀𝑞 ∈ 𝑄} .

The norm on the dual space of 𝑋 is defined by

∥ 𝑓 ∥−1 = sup
0≠𝑣∈𝑋

( 𝑓 , 𝑣)
∥∇𝑣∥ .

A weak formulation of the reduced MHD equations is: Find 𝑢 : [0, 𝑇] → 𝑋 ,

𝑝 : [0, 𝑇] → 𝑄, and 𝜙 : [0, 𝑇] → 𝑆 for a.e. 𝑡 ∈ (0, 𝑇] satisfying

1
𝑁

(
𝑢 𝑗 ,𝑡 , 𝑣

)
+ 1
𝑁

(
𝑢 𝑗 · ∇𝑢 𝑗 , 𝑣

)
+ 1
𝑀2

(
∇𝑢 𝑗 ,∇𝑣

)
−

(
𝑝 𝑗 ,∇ · 𝑣

)
(1.2)

+
(
−𝜙 𝑗 + 𝑢 𝑗 × 𝐵, 𝑣 × 𝐵

)
=

(
𝑓 𝑗 , 𝑣

)
, ∀𝑣 ∈ 𝑋,(

∇ · 𝑢 𝑗 , 𝑞
)
= 0, ∀𝑞 ∈ 𝑄,

−
(
∇𝜙 𝑗 ,∇𝜓

)
+

(
𝑢 𝑗 × 𝐵,∇𝜓

)
= 0, ∀𝜓 ∈ 𝑆.

We denote conforming velocity, pressure, potential finite element spaces based on

an edge-to-edge triangulation (𝑑 = 2) or tetrahedralization (𝑑 = 3) of Ω with maximum

element diameter ℎ by

𝑋ℎ ⊂ 𝑋 , 𝑄ℎ ⊂ 𝑄, 𝑆ℎ ⊂ 𝑆.

We also assume the finite element spaces (𝑋ℎ, 𝑄ℎ) satisfy the usual discrete inf-sup /𝐿𝐵𝐵ℎ

condition for stability of the discrete pressure, see [18] for more on this condition. Taylor-

Hood elements, e.g., [19], [18], are one such choice used in the tests in Section 5. We
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assume the mesh and finite element spaces satisfy the standard inverse inequality

ℎ∥∇𝑣ℎ∥ ≤ 𝐶(𝑖𝑛𝑣) ∥𝑣ℎ∥. (1.3)

that is known to hold for standard finite element spaces with locally quasi-uniform meshes

[19]. We also define the standard explicitly skew-symmetric trilinear form

𝑏∗(𝑢, 𝑣, 𝑤) :=
1
2
(𝑢 · ∇𝑣, 𝑤) − 1

2
(𝑢 · ∇𝑤, 𝑣),

and note by the divergence theorem,

𝑏∗(𝑢, 𝑣, 𝑤) = (𝑢 · ∇𝑣, 𝑤) + 1
2
(∇ · 𝑢, 𝑤 · 𝑣). (1.4)

Also, by [20] we have the following bounds

𝑏∗(𝑢, 𝑣, 𝑤) ≤ 𝐶∥∇𝑢∥∥∇𝑣∥∥∇𝑤∥, ∀𝑢, 𝑣, 𝑤 ∈ 𝑋, (1.5)

𝑏∗(𝑢, 𝑣, 𝑤) ≤ 𝐶∥∇𝑢∥∥∇𝑣∥ (∥∇𝑤∥∥𝑤∥)1/2 , ∀𝑢, 𝑣, 𝑤 ∈ 𝑋, (1.6)

𝑏∗(𝑢, 𝑣, 𝑤) ≤ 𝐶 (∥∇𝑢∥∥𝑢∥)∥∇𝑣∥∥∇𝑤∥, ∀𝑢, 𝑣, 𝑤 ∈ 𝑋. (1.7)
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1.3. PROBLEM FORMULATION

1.3.1. FULLY DISCRETIZED ALGORITHM. The full discretization of the

proposed partitioned ensemble algorithm is Sub-problem 1: Given 𝑢𝑛
𝑗,ℎ

∈ 𝑋ℎ and 𝜙𝑛
𝑗,ℎ

∈ 𝑆ℎ,

find 𝑢𝑛+1
𝑗 ,ℎ

∈ 𝑋ℎ and 𝑝𝑛+1
𝑗 ,ℎ

∈ 𝑄ℎ satisfying



1
𝑁

(
3𝑢𝑛+1

𝑗
− 4𝑢𝑛

𝑗
+ 𝑢𝑛−1

𝑗

2Δ𝑡
, 𝑣ℎ

)
+ 1
𝑁
𝑏∗(�̄�𝑛ℎ, 𝑢

𝑛+1
𝑗 ,ℎ , 𝑣ℎ)

+ 1
𝑁
𝑏∗(𝑢′𝑛𝑗,ℎ, 2𝑢

𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗 ,ℎ , 𝑣ℎ) +
1
𝑀2 (∇𝑢

𝑛+1
𝑗 ,ℎ ,∇𝑣ℎ) − (𝑝𝑛+1

𝑗 ,ℎ ,∇ · 𝑣ℎ)

+
(
−∇(2𝜙𝑛𝑗,ℎ − 𝜙𝑛−1

𝑗 ,ℎ ) + 𝑢𝑛+1
𝑗 ,ℎ × 𝐵, 𝑣ℎ × 𝐵

)
=

(
𝑓 𝑛+1
𝑗 , 𝑣ℎ

)
, ∀𝑣ℎ ∈ 𝑋ℎ,(

∇ · 𝑢𝑛+1
𝑗 ,ℎ , 𝑞ℎ

)
= 0, ∀𝑞ℎ ∈ 𝑄ℎ.

(1.8)

Sub-problem 2: Given 𝑢𝑛+1
𝑗 ,ℎ

∈ 𝑋ℎ, find 𝜙𝑛+1
𝑗 ,ℎ

∈ 𝑆ℎ satisfying

(
−∇𝜙𝑛+1

𝑗 ,ℎ + 𝑢𝑛+1
𝑗 ,ℎ × 𝐵,∇𝜓ℎ

)
= 0, ∀𝜓ℎ ∈ 𝑆ℎ. (1.9)

1.3.2. ALGORITHM WITH REGULARIZATION. Herein we define an eddy

viscosity term, following [2]. The proceeding regularization will be critically useful for

computations involving large 𝑅𝑒, and will eliminate one timestep condition, forcing less

restriction on Δ𝑡. We present the following eddy viscosity term:

𝜈𝑇 (𝑢′𝑗 ,ℎ, 𝑡
𝑛) = 𝜇 |𝑢′𝑛𝑗,ℎ |

2Δ𝑡.
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With the addition of this term to Algorithm 1.3.1, the ensemble algorithm with regularization

is Sub-problem 1: Given 𝑢𝑛
𝑗,ℎ

∈ 𝑋ℎ and 𝜙𝑛
𝑗,ℎ

∈ 𝑆ℎ, find 𝑢𝑛+1
𝑗 ,ℎ

∈ 𝑋ℎ and 𝑝𝑛+1
𝑗 ,ℎ

∈ 𝑄ℎ satisfying



1
𝑁

(
3𝑢𝑛+1

𝑗
− 4𝑢𝑛

𝑗
+ 𝑢𝑛−1

𝑗

2Δ𝑡
, 𝑣ℎ

)
+ 1
𝑁
𝑏∗(�̄�𝑛ℎ, 𝑢

𝑛+1
𝑗 ,ℎ , 𝑣ℎ) +

1
𝑁
𝑏∗(𝑢′𝑛𝑗,ℎ, 2𝑢

𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗 ,ℎ , 𝑣ℎ)

+ 1
𝑀2 (∇𝑢

𝑛+1
𝑗 ,ℎ ,∇𝑣ℎ) − (𝑝𝑛+1

𝑗 ,ℎ ,∇ · 𝑣ℎ) +
1
𝑁
(𝜈𝑇 (𝑢′𝑗 ,ℎ, 𝑡

𝑛)∇𝑢𝑛+1
𝑗 ,ℎ ,∇𝑣ℎ)

+
(
−∇(2𝜙𝑛𝑗,ℎ − 𝜙𝑛−1

𝑗 ,ℎ ) + 𝑢𝑛+1
𝑗 ,ℎ × 𝐵, 𝑣ℎ × 𝐵

)
=

(
𝑓 𝑛+1
𝑗 , 𝑣ℎ

)
, ∀𝑣ℎ ∈ 𝑋ℎ,(

∇ · 𝑢𝑛+1
𝑗 ,ℎ , 𝑞ℎ

)
= 0, ∀𝑞ℎ ∈ 𝑄ℎ.

(1.10)

Sub-problem 2: Given 𝑢𝑛+1
𝑗 ,ℎ

∈ 𝑋ℎ, find 𝜙𝑛+1
𝑗 ,ℎ

∈ 𝑆ℎ satisfying

(
−∇𝜙𝑛+1

𝑗 ,ℎ + 𝑢𝑛+1
𝑗 ,ℎ × 𝐵,∇𝜓ℎ

)
= 0, ∀𝜓ℎ ∈ 𝑆ℎ. (1.11)

1.4. STABILITY

1.4.1. STABILITY OF ALGORITHM WITHOUT REGULARIZATION. Al-

gorithm 1.3.1 is long time, nonlinearly stable under two timestep conditions.

Consider the method with a standard spacial discretization with mesh size ℎ. Suppose the

following timestep conditions hold

Δ𝑡 <
[
4𝑁 ∥𝐵∥2

𝐿∞ (1 + 𝐶2
𝑝𝑀

2∥𝐵∥2
𝐿∞)

]−1
, (1.12)

𝐶
𝑀2

𝑁

Δ𝑡

ℎ
∥∇(2𝑢𝑛𝑗,ℎ − 𝑢𝑛−1

𝑗 ,ℎ − �̄�𝑛ℎ)∥
2 ≤ 1, 𝑗 = 1, ..., 𝐽, (1.13)
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then, for any 𝑛 ≥ 1

1
2𝑁

∥𝑢𝑛𝑗,ℎ∥
2 + 1

2𝑁
∥2𝑢𝑛𝑗,ℎ − 𝑢𝑛−1

𝑗 ,ℎ ∥2 +
𝑛−1∑︁
𝑘=1

Δ𝑡

4𝑀2 ∥∇𝑢
𝑘+1
𝑗 ,ℎ ∥

2 (1.14)

+ Δ𝑡

𝑛−1∑︁
𝑘=1

∥ − ∇(2𝜙𝑘
𝑗 ,ℎ − 𝜙𝑘−1

𝑗 ,ℎ ) + 𝑢𝑘+1
𝑗 ,ℎ × 𝐵∥2

+ Δ𝑡

𝑛−1∑︁
𝑘=1

∥ − ∇(2𝜙𝑘
𝑗 ,ℎ − 𝜙𝑘−1

𝑗 ,ℎ ) + (2𝑢𝑘𝑗 ,ℎ − 𝑢𝑘−1
𝑗 ,ℎ ) × 𝐵∥2

≤ 1
2𝑁

∥𝑢1
𝑗 ,ℎ∥

2 + 1
2𝑁

∥2𝑢1
𝑗 ,ℎ − 𝑢0

𝑗 ,ℎ∥
2 + 2Δ𝑡

𝑛−1∑︁
𝑘=1

𝑀2∥ 𝑓 𝑘+1
𝑗 ∥2

−1 .

1.4.2. STABILITY OF ALGORITHM WITH REGULARIZATION. Consider

Algorithm 1.3.2 with a standard spacial discretization with mesh size ℎ. Suppose the

following timestep condition holds

Δ𝑡 <
[
2 + 2𝑁 ∥𝐵∥2

𝐿∞ (1 + 𝐶2
𝑝𝑀

2∥𝐵∥2
𝐿∞)

]−1
. (1.15)

Directly, nonlinear long time stability holds if

∇ · 𝑢′𝑛𝑗,ℎ = 0 and 𝜇 >
1
2
. (1.16)

In addition to having one less time-step condition than Theorem 1.4, if we compare the

similar condition (1.12) to (1.15) we see for 𝑀 or 𝑁 sufficiently large,

[
4𝑁 ∥𝐵∥2

𝐿∞ (1 + 𝐶2
𝑝𝑀

2∥𝐵∥2
𝐿∞)

]−1
<

[
2 + 2𝑁 ∥𝐵∥2

𝐿∞ (1 + 𝐶2
𝑝𝑀

2∥𝐵∥2
𝐿∞)

]−1
,

placing even less restriction on Δ𝑡.
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1.5. ERROR ANALYSIS

Here we provide an error estimate of the proposed method under both of the same

time-step conditions (with possibly different constant C in the condition). Assuming that

𝑋ℎ and 𝑄ℎ satisfy the 𝐿𝐵𝐵ℎ condition, Subproblem 1 in Algorithm 1.3.1 is equivalent to:

Given 𝑢𝑛
𝑗,ℎ

∈ 𝑉ℎand 𝜙𝑛
𝑗,ℎ

∈ 𝑆ℎ, for 𝑛 = 0, 1, ..., �̃� − 1 find 𝑢𝑛+1
𝑗 ,ℎ

∈ 𝑉ℎ such that

1
𝑁

(
3𝑢𝑛+1

𝑗 ,ℎ
− 4𝑢𝑛

𝑗,ℎ
+ 𝑢𝑛−1

𝑗 ,ℎ

2Δ𝑡
, 𝑣ℎ

)
+ 1
𝑁
𝑏∗(�̄�𝑛ℎ, 𝑢

𝑛+1
𝑗 ,ℎ , 𝑣ℎ)

+ 1
𝑁
𝑏∗(𝑢′𝑛𝑗,ℎ, 2𝑢

𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗 ,ℎ , 𝑣ℎ) +
1
𝑀2 (∇𝑢

𝑛+1
𝑗 ,ℎ ,∇𝑣ℎ)

+
(
−∇(2𝜙𝑛𝑗,ℎ + 𝜙𝑛−1

𝑗 ,ℎ ) − 𝑢𝑛+1
𝑗 ,ℎ × 𝐵, 𝑣ℎ × 𝐵

)
=

(
𝑓 𝑛+1
𝑗 , 𝑣ℎ

)
, ∀𝑣ℎ ∈ 𝑉ℎ. (1.17)

We define the discrete norms as

|||𝑣 |||∞,𝑘 = max
0≤𝑛≤�̃�

∥𝑣𝑛∥𝑘 and |||𝑣 |||𝑚,𝑘 := ©«
�̃�−1∑︁
𝑛=1

∥𝑣𝑛∥𝑚𝑘 Δ𝑡
ª®¬

1/𝑚

,

where 𝑣𝑛 = 𝑣(𝑡𝑛) and 𝑡𝑛 = 𝑛Δ𝑡.

The discrete Gronwall inequality [21] will be used in the analysis.

Let 𝐷 ≥ 0 and 𝜅𝑛, 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 ≥ 0 for any integer 𝑛 ≥ 0 and satisfy

𝐴�̃� + Δ𝑡

�̃�∑︁
𝑛=0

𝐵𝑛 ≤ Δ𝑡

�̃�∑︁
𝑛=0

𝜅𝑛𝐴𝑛 + Δ𝑡

�̃�∑︁
𝑛=0

𝐶𝑛 + 𝐷 for �̃� ≥ 0. (1.18)

Suppose that for all n, Δ𝑡𝜅𝑛 ≤ 1, and set 𝑔𝑛 = (1 − Δ𝑡𝜅𝑛)−1. Then,

𝐴�̃� + Δ𝑡

�̃�∑︁
𝑛=0

𝐵𝑛 ≤ 𝑒𝑥𝑝(Δ𝑡
�̃�∑︁
𝑛=0

𝑔𝑛𝜅𝑛) [Δ𝑡
�̃�∑︁
𝑛=0

𝐶𝑛 + 𝐷] for �̃� ≥ 0.
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To analyze the rate of convergence of the approximation, we assume the following

regularity for the exact solutions:

𝑢 𝑗 ∈ 𝐿∞(0, 𝑇 ; 𝐻𝑘+1(Ω)) ∩ 𝐻1(0, 𝑇 ; 𝐻𝑘+1(Ω)) ∩ 𝐻2(0, 𝑇 ; 𝐿2(Ω)),

𝑝 𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐻𝑠+1), and 𝑓 𝑗 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)),

𝜙 𝑗 ∈ 𝐿∞(0, 𝑇 ; 𝐻𝑚+1(Ω)) ∩ 𝐻1(0, 𝑇, 𝐻1(Ω)).

We further assume the finite element spaces satisfy the approximation properties of

piecewise polynomials on quasiuniform meshes

inf
𝑣ℎ∈𝑋ℎ

∥𝑣 − 𝑣ℎ∥ ≤ 𝐶ℎ𝑘+1∥𝑢∥𝑘+1 ∀𝑣 ∈ [𝐻𝑘+1(Ω)]𝑑 , (1.19)

inf
𝑣ℎ∈𝑋ℎ

∥∇(𝑣 − 𝑣ℎ)∥ ≤ 𝐶ℎ𝑘 ∥𝑣∥𝑘+1 ∀𝑣 ∈ [𝐻𝑘+1(Ω)]𝑑 , (1.20)

inf
𝑞ℎ∈𝑄ℎ

∥𝑞 − 𝑞ℎ∥ ≤ 𝐶ℎ𝑠+1∥𝑝∥𝑠+1 ∀𝑞 ∈ 𝐻𝑠+1(Ω), (1.21)

inf
𝜓ℎ∈𝑆ℎ

∥𝜓 − 𝜓ℎ∥ ≤ 𝐶ℎ𝑚+1∥𝜓∥𝑚+1 ∀𝜓 ∈ 𝐻𝑚+1(Ω), (1.22)

inf
𝜓ℎ∈𝑆ℎ

∥∇(𝜓 − 𝜓ℎ)∥ ≤ 𝐶ℎ𝑚 ∥𝜓∥𝑚+1 ∀𝜓 ∈ 𝐻𝑚+1(Ω), (1.23)

where the generic constant 𝐶 > 0 is independent of mesh size ℎ. An example for which

the 𝐿𝐵𝐵ℎ stability condition and the approximation properties are satisfied is the finite

elements pair (𝑃𝑘+1–𝑃𝑘–𝑃𝑘+1), 𝑘 ≥ 1. For finite element methods see [18, 20, 22, 23] for

more details.

The discretely divergence free subspace of 𝑋ℎ is

𝑉ℎ : = {𝑣ℎ ∈ 𝑋ℎ : (∇ · 𝑣ℎ, 𝑞ℎ) = 0 , ∀𝑞ℎ ∈ 𝑄ℎ}.

Let 𝑒𝑛
𝑢, 𝑗

= 𝑢𝑛
𝑗
− 𝑢𝑛

𝑗,ℎ
and 𝑒𝑛

𝜙, 𝑗
= 𝜙𝑛

𝑗
− 𝜙𝑛

𝑗,ℎ
denote the approximation error of the 𝑗 th

simulation at the time instance 𝑡𝑛. We then have the following error estimates.
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[Convergence of Algorithm 1.3.1] For all 𝑗 = 1, . . . , 𝐽, if the following timestep

conditions hold

Δ𝑡 <

(
4𝑁 ∥𝐵∥2

𝐿∞ (1 + 𝐶2
𝑝𝑀

2∥𝐵∥2
𝐿∞)

)−1
, (1.24)

𝐶
𝑀2

𝑁

Δ𝑡

ℎ
∥∇(2𝑢𝑛𝑗,ℎ − 𝑢𝑛−1

𝑗 ,ℎ − �̄�𝑛ℎ)∥
2 ≤ 1, 𝑗 = 1, ..., 𝐽, (1.25)

then there exists a positive constant 𝐶 independent of the timestep such that

∥2𝑒𝑛𝑢, 𝑗 − 𝑒𝑛−1
𝑢, 𝑗 ∥2 + ∥𝑒𝑛𝑢, 𝑗 ∥2 + 3𝑁Δ𝑡

7𝑀2 ∥∇𝑒𝑛𝑢, 𝑗 ∥2 + 3𝑁Δ𝑡
14𝑀2 ∥∇𝑒

𝑛−1
𝑢, 𝑗 ∥2 + 2𝑁Δ𝑡

𝑛−1∑︁
𝑙=1

∥𝑒𝑙+1
𝑢, 𝑗 × 𝐵∥2

+ 2𝑁Δ𝑡
𝑛−1∑︁
𝑙=1

∥−∇(2𝑒𝑙𝜙, 𝑗 − 𝑒𝑙−1
𝜙, 𝑗 ) + (2𝑒𝑙𝑢, 𝑗 − 𝑒𝑙−1

𝑢, 𝑗 ) × 𝐵∥2 + 𝑁Δ𝑡

𝑛−1∑︁
𝑙=1

∥∇(2𝑒𝑙𝜙, 𝑗 − 𝑒𝑙−1
𝜙, 𝑗 )∥2

≤ 𝑒
𝑇�̃�

1−Δ𝑡�̃�

{
∥2𝑒1

𝑢, 𝑗 − 𝑒0
𝑢, 𝑗 ∥2 + ∥𝑒1

𝑢, 𝑗 ∥2 + 3𝑁Δ𝑡
7𝑀2 ∥∇𝑒1

𝑢, 𝑗 ∥2 + 3𝑁Δ𝑡
14𝑀2

(
∥∇𝑒0

𝑢, 𝑗 ∥2
)

+ 𝐶4𝑀6Δ𝑡

16𝐶3
0𝑁

3

(
2∥𝑒1

𝑢, 𝑗 ∥2 + ∥𝑒0
𝑢, 𝑗 ∥2

)
+ 𝐶𝑁ℎ2𝑘+2∥𝐵∥2

𝐿∞
������𝑢 𝑗

������2
2,𝑘+1 +

𝐶ℎ2𝑘𝑀2

𝑁

������𝑢 𝑗

������2
2,𝑘+1

+ 𝐶ℎ2𝑘𝑁

𝑀2

������𝑢 𝑗

������2
2,𝑘+1 + 𝐶ℎ2𝑘𝑁

������𝑢 𝑗

������2
2,𝑘+1 +

56𝐶2𝑀2

3𝑁
ℎ2𝑘 ������𝑢 𝑗

������4
4,𝑘+1 +

56𝐶2𝑀3

3𝑁
ℎ2𝑘

+ 𝐶𝑀2(Δ𝑡)4

𝑁

������∇𝑢 𝑗 ,𝑡𝑡

������2
2,0 + 𝐶ℎ2𝑘+1(Δ𝑡)3������𝑢 𝑗 ,𝑡𝑡

������2
2,𝑘+1 + 𝐶ℎ(Δ𝑡)3������∇𝑢 𝑗 ,𝑡𝑡

������2
2,0

+ 𝐶ℎ2𝑠+2𝑁𝑀2������𝑝 𝑗

������2
2,𝑠+1 +

𝐶ℎ2𝑘+2𝑀2

𝑁

������𝑢 𝑗 ,𝑡

������2
2,𝑘+1 +

𝐶𝑀2(Δ𝑡)4

𝑁

������𝑢 𝑗 ,𝑡𝑡𝑡

������2
2,0

+ 𝐶ℎ2𝑚 ������𝜙 𝑗

������2
2,𝑚+1 + 𝑁 (Δ𝑡)2������∇𝜙 𝑗 ,𝑡

������2
2,0

}
+ 𝐶ℎ2𝑘+2������𝑢 𝑗

������2
∞,𝑘+1

+ 𝐶𝑁ℎ2𝑘Δ𝑡

𝑀2

������𝑢 𝑗

������2
∞,𝑘+1 + 𝐶𝑁ℎ2𝑘+2Δ𝑡∥𝐵∥2

𝐿∞
������𝑢 𝑗

������2
2,𝑘+1 + 𝐶𝑁ℎ2𝑚Δ𝑡

������𝜙 𝑗

������2
2,𝑚+1

+ 𝐶𝑁ℎ2𝑘+2∥𝐵∥2
𝐿∞

������𝑢 𝑗

������2
2,𝑘+1. (1.26)
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1.6. NUMERICAL TESTS

This section will present numerical results for (1.3.1) to demonstrate the stability

and convergence proven previously. Numerical results will also be presented for stability

of (1.3.2). Throughout these tests we’ll use the finite element triplet (𝑃2–𝑃1–𝑃2), and the

finite element software package FEniCS [24].

1.6.1. CONVERGENCE TEST. To verify the convergence rates proven in section

1.4.1, and predicted error of 𝑂 (Δ𝑡2 + ℎ2), we will use a variation of the test problem in [25].

Take the time interval 0 ≤ 𝑡 ≤ 1, 𝑀 = 20, 𝑁 = 16, Ω = [0, 𝜋]2, and the imposed magnetic

field 𝐵 = (0, 0, 1). Define the true solution (𝑢, 𝑝, 𝜙) as



𝑢𝜖 = (25 cos (2𝑥) sin (2𝑦),−2 sin (2𝑥) cos (2𝑦), 0) (1 + 𝜖)𝑒−5𝑡 ,

𝑝 = 0,

𝜙𝜖 = (cos (2𝑥) cos (2𝑦) + 𝑥2 − 𝑦2) (1 + 𝜖)𝑒−5𝑡 ,

(1.27)

where 𝜖 is a given perturbation. For this problem we will consider two perturbations

𝜖1 = 10−1 and 𝜖2 = −10−1. The boundary conditions are set at 𝑢ℎ = 𝑢𝜖 and 𝜙ℎ = 𝜙𝜖 on 𝛿Ω.

The source terms and initial conditions implemented correspond with the exact solution for

the given perturbation. Because the exact solutions decay exponentially with time, we will

utilize the relative error in our numerical tests to accurately demonstrate the performance,

defined as

∥𝑣 − 𝑣ℎ∥𝑘𝑟𝑒𝑙 =
∥𝑣 − 𝑣ℎ∥𝑘

∥𝑣∥𝑘
. (1.28)

The results are displayed in tables (1.1)-(1.4), where convergence rates appear to match

expectations.
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Table 1.1. Error and convergence rates for the first ensemble member in 𝑢ℎ and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢1 − 𝑢1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢1 − ∇𝑢1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/5 1/40 3.861 e+0 — 1.278 e+0 —

1/10 1/80 1.021 e+0 1.919 3.353 e-1 1.931

1/20 1/160 2.638 e-1 1.952 8.541 e-2 1.973

1/40 1/320 6.720 e-2 1.973 2.157 e-2 1.986

1/80 1/640 1.696 e-2 1.986 5.410 e-3 1.995

Table 1.2. Error and convergence rates for the first ensemble member in 𝜙ℎ and ∇𝜙ℎ.

h Δ𝑡 ∥𝜙1 − 𝜙1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝜙1 − ∇𝜙1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/5 1/40 7.117 e-1 — 3.509 e-1 —

1/10 1/80 1.864 e-1 1.933 9.033 e-2 1.958

1/20 1/160 4.823 e-2 1.950 2.301 e-2 1.973

1/40 1/320 1.232 e-2 1.969 5.820 e-3 1.983

1/80 1/640 3.119 e-3 1.982 1.463 e-3 1.992

Table 1.3. Error and convergence rates for the second ensemble member in 𝑢ℎ and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢2 − 𝑢2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢2 − ∇𝑢2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/5 1/40 3.878 e+0 — 1.285 e+0 —

1/10 1/80 1.027 e+0 1.917 3.375 e-1 1.929

1/20 1/160 2.655 e-1 1.952 8.603 e-2 1.972

1/40 1/320 6.764 e-2 1.973 2.172 e-2 1.986

1/80 1/640 1.706 e-2 1.987 5.443 e-3 1.997
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Table 1.4. Error and convergence rates for the second ensemble member in 𝜙ℎ and ∇𝜙ℎ.

h Δ𝑡 ∥𝜙2 − 𝜙2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝜙2 − ∇𝜙2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/5 1/40 7.140 e-1 — 3.524 e-1 —

1/10 1/80 1.872 e-1 1.931 9.088 e-2 1.955

1/20 1/160 4.846 e-2 1.950 2.316 e-2 1.972

1/40 1/320 1.238 e-2 1.969 5.858 e-3 1.983

1/80 1/640 3.134 e-3 1.982 1.472 e-3 1.993

1.6.2. EFFICIENCY TEST. In this experiment we repeat the numerical method

used above with the same problem, except we analyze 11 perturbations 𝜖𝑖 = 10−1−0.009∗ 𝑖,

𝑖 = 0, . . . , 10. To see how efficient our ensemble approach is, we compare the performance

speed and accuracy of Algorithm 1.3.1 with the corresponding nonensemble IMEX method,

where linear systems for each perturbation are solved in serial. To do this, we list the CPU

runtime in seconds and accuracy of the averages �̄�𝑛 and 𝜙𝑛 for each computation. Each

approach will make use of the MUMPS LU solver [[26], [27]]. As can be seen in the tables

(1.5) and (1.6) below, the second order ensemble method obtains almost the same accuracy

as the nonensemble method, while requiring significantly less runtime.

Table 1.5. Error and CPU time for computing �̄�ℎ and 𝜙ℎ with Algorithm 1.3.1.

h Δ𝑡 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 ∥𝜙 − 𝜙𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 CPU time (s)

1/5 1/40 6.847 e+0 1.358 e+0 1.311 e+1

1/10 1/80 1.518 e+0 2.817 e-1 7.915 e+1

1/20 1/160 3.547 e-1 7.044 e-2 5.857 e+2

1/40 1/320 9.230 e-2 2.241 e-2 4.592 e+3

1/80 1/640 2.604 e-2 8.914 e-3 3.662 e+4
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Table 1.6. Error and CPU time for computing �̄�ℎ and 𝜙ℎ serially with nonensemble method.

h Δ𝑡 ∥�̄� − �̄�𝑠𝑒𝑟,ℎ∥∞,0𝑟𝑒𝑙 ∥𝜙 − 𝜙𝑠𝑒𝑟,ℎ∥∞,0𝑟𝑒𝑙 CPU time (s)

1/5 1/40 6.847 e+0 1.358 e+0 1.426 e+1

1/10 1/80 1.518 e+0 2.817 e-1 8.985 e+1

1/20 1/160 3.547 e-1 7.044 e-2 6.583 e+2

1/40 1/320 9.230 e-2 2.241 e-2 5.410 e+3

1/80 1/640 2.604 e-2 8.914 e-3 4.652 e+4

1.6.3. STABILITY TEST. Here we analyze the stability of the second order en-

semble method. We’ll use a test example from [28] for the flow of liquid aluminum

at 700◦ Celsius, with electric conductivity 𝜎 = 4.1 × 106mho/m, kinematic viscosity

𝜈 = 6 × 10−7m2/s, density 𝜌 = 2400kg/m3 and magnetic diffusivity 𝜂 = 1.94 × 10−1m2/s.

Also, the characteristic length, velocity and magnetic field are 𝐿 = 0.1m, 𝑢 = 0.1m/s,

and 𝐵 = 1T correspondingly. We’ll exclude external energy and body forces so that in

observation if the method is stable, the system energy should decay to zero as time passes.

Fix the static magnetic field at 𝐵 = (0, 0, 1) and Let 0 ≤ 𝑡 ≤ 1 and Ω = [0, 10−1]2. Then

we have 𝑅𝑒 = 16667, 𝑅𝑚 = 0.051496, 𝑀 = 5336 and 𝑁 = 1708. Set 𝑓 and all boundary

conditions to zero, and initial conditions

𝑢0(𝑥, 𝑦, 𝜖) = (10𝜋 cos (10𝜋𝑥) sin (10𝜋𝑦),−10 sin (10𝜋𝑥) cos (10𝜋𝑦), 0) (1 + 𝜖),

𝜙0(𝑥, 𝑦, 𝜖) = (cos (10𝜋𝑥) cos (10𝜋𝑦) + 𝑥2 − 𝑦2) (1 + 𝜖).

We will test several sets of (𝜖1, 𝜖2) to observe how stability is affected by different perturba-

tions. Fixing ℎ = 1/10, we compute the average energy 𝐸𝑛 = 1
2 ∥𝜙

𝑛∥2 + 1
2 ∥�̄�

𝑛∥2 for multiple

timesteps and graph the results in log-log plots in Figures
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(1.1a), (1.1b) and (1.1c). Eventually for small enough timestep, we begin to see decent

results as the stability timestep conditions (1.12) and (1.13) are satisfied and the energy

indeed goes to zero.

(a) Decay of the system energy with 𝜖1 = 10−1

and 𝜖2 = 10−2.

(b) Decay of the system energy with 𝜖1 = 10−2

and 𝜖2 = 10−3.

(c) Decay of the system energy with 𝜖1 = 10−2

and 𝜖2 = −10−2.

Figure 1.1. Log-log plots of decay of the system energy for Algorithm 1.3.1 with varying
perturbations.

These results indicate the method is not very optimally stable, but requires a small

timestep or some size constraints on 𝑅𝑒. Next observe in Figures (1.2a), (1.2b) and (1.2c)

the stability results under the same test problem for Algorithm 1.3.2 with regularization,

where we’ve set 𝜇 = 0.55,
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(a) Decay of the system energy with 𝜖1 = 10−1

and 𝜖2 = 10−2.

(b) Decay of the system energy with 𝜖1 = 10−2

and 𝜖2 = 10−3.

(c) Decay of the system energy with 𝜖1 = 10−2

and 𝜖2 = −10−2.

Figure 1.2. Decay of the system energy for Algorithm 1.3.2 with varying perturbations.

Here the timestep condition (1.15) is satisfied rather easily, as results become suffi-

ciently stable even at Δ𝑡 = 1/100.

1.7. CONCLUSIONS

This paper has presented the second order ensemble algorithm applied to the reduced

MHD equations, and demonstrated the stability and convergence rate of the method under

two time-step conditions. We’ve shown with the addition of an eddy viscosity term one

time-step condition can be removed and stability ensured. This can be useful when dealing



21

with high Reynolds number where a sufficiently small time discretization may be too com-

putationally expensive for Algorithm 1.3.1. Numerical experiments verify expectations of

our ensemble approach and show promising results in terms of accuracy and computational

time costs.
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ABSTRACT

We propose two unconditionally stable, linear ensemble algorithms with pre-

computable shared coefficient matrices across different realizations for the magnetohydro-

dynamics equations. The viscous terms are treated by a standard perturbative discretization.

The nonlinear terms are discretized fully explicitly within the framework of the generalized

positive auxiliary variable approach (GPAV). Artificial viscosity stabilization that modifies

the kinetic energy is introduced to improve accuracy of the GPAV ensemble methods. Nu-

merical results are presented to demonstrate the accuracy and robustness of the ensemble

algorithms.

Keywords: MHD, SAV, uncertainty quantification, ensemble algorithm, unconditional

stability

1.1. INTRODUCTION

Magnetohydrodynamics (MHD) flow describes electrically conducting fluid mov-

ing through a magnetic field. It has important applications in fusion technology, submarine

propulsion system, liquid metals in magnetic pumps, and so on. The mathematical model

comprises the Navier-Stokes equations for fluid flow and Maxwell’s equations for electro-

magnetics. In practical applications, the problem parameters such as viscosity and magnetic
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resistivity, external body forcing and initial conditions, are invariably subject to uncertainty.

To quantify the impact of uncertainty and develop high-fidelity numerical simulations, one

usually computes the flow ensembles in which the MHD equations are solved repeatedly

with different inputs. The aim of this article is to develop efficient second-order accurate

ensemble algorithms that are unconditionally stable and suitable for long-time simulations.

Ensemble methods have been extensively developed for solving the Navier-Stokes

equations and related fluid models [7, 29–37]. The central idea in these ensemble methods

is a perturbative time discretization that utilizes the ensemble mean corrected by explicit

treatment of the fluctuations in time marching of each realization. As a result, at each time

step the coefficient matrix of the resulting linear systems is identical for all realizations,

saving both storage and computational cost. Moreover, under some constraint on the time-

step and the size of fluctuations it is shown that the ensemble algorithms are long-time

stable. A similar ensemble method is developed in [38] and [39] for solving a reduced

MHD system at low magnetic Reynolds number. Based on the Elsasser formulation [40]

and the perturbative time discretization, a first-order decoupled and unconditionally stable

ensemble algorithm is proposed and analyzed in [41, 42] for solving the full MHD model.

An artificial eddy viscosity term is employed to ensure unconditional stability. Due to

the usage of Elsasser variables, the method appears to be limited to the case of Dirichlet

boundary conditions.

Further computational efficiency gains can be achieved by fully explicit discretiza-

tion of the nonlinear terms so that the exact same coefficient matrix is shared across different

time steps in ensemble simulations. This approach would often incur a CFL condition that

hinders the efficiency of the algorithm for long-time simulation or for problems involving

multiple scales. One remedy is the introduction of a Lagrange multiplier for enforcement

of the underlying energy estimate (energy dissipation or conservation). This idea leads to

recent development of the so-called Invariant Energy Quadratization (IEQ) method [43–46],

and the Scalar Auxiliary Variable (SAV) approach [47, 48] for solving phase field models.
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Extensions of these methods are reported in [49–52] on the design of linear, decoupled,

unconditionally stable numerical schemes for solving general nonlinear equations satisfying

an energy law. Based on the SAV approach proposed in [49], a stabilized SAV ensemble

algorithm is developed in [53] for parameterized flow problems where superior accuracy is

observed thanks to a penalization of the kinetic energy causing the high frequency mode to

quickly roll-off in the energy spectrum [54]. Stability and error analysis of a SAV method

for the MHD equations is recently conducted in [55].

In this article we propose two linear, second-order accurate, unconditionally stable

ensemble methods with shared coefficient matrix across different realizations and time steps

for solving the MHD model. The parameters are treated by the usual perturbative method.

We employ the Generalized Positive Auxiliary Variable framework (GPAV) from [50] in the

discretization of the nonlinear terms. The advantages of the GPAV method include: linearity

of the algebra equation for the scalar variable; provable positivity of the scalar variable;

and flexibility in handling complex boundary conditions. These Lagrange multiplier type

approaches often suffer from poor accuracy especially for long time simulation of advection-

dominated flow, cf. [56] for a careful benchmark comparison study of the SAV approach.

This drop in accuracy is also discussed and demonstrated in the numerical tests from [50].

In [57] a post-processing procedure is introduced to improve accuracy of the SAV method

for the Cahn-Hilliard equation. In our method we adopt the stabilization technique of

artificial viscosity that proves robust and efficient in past studies [53, 54]. The stabilization

introduces a penalty term in the kinetic energy which leads to a quick roll-off of the under-

resolved modes in the energy spectrum thus curtailing the inertial range and making the

system more computable, cf. [54]. This mechanism is well-known in the Navier-Stokes-𝛼

model for large eddy simulation of turbulence [58, 59]. We perform extensive numerical

tests to gauge the accuracy, efficiency and robustness of the proposed ensemble methods.

1.1.1. GOVERNING EQUATIONS.
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1.1.1.1. MHD. We consider solving 𝐽 times the following MHD equations: for

𝑗 = 1, 2, ..., 𝐽,



𝒖 𝑗 ,𝑡 + 𝒖 𝑗 · ∇𝒖 𝑗 − 𝑠𝑩 𝑗 · ∇𝑩 𝑗 − 𝜈 𝑗Δ𝒖 𝑗 + ∇𝑝 𝑗 = 𝒇 𝑗 in Ω × (0, 𝑇),

∇ · 𝒖 𝑗 = 0, in Ω × (0, 𝑇),

𝑩 𝑗 ,𝑡 + 𝒖 𝑗 · ∇𝑩 𝑗 − 𝑩 𝑗 · ∇𝒖 𝑗 − 𝛾 𝑗Δ𝑩 𝑗 + ∇𝜆 𝑗 = ∇ × 𝒈 𝑗 in Ω × (0, 𝑇),

∇ · 𝑩 𝑗 = 0, in Ω × (0, 𝑇),

𝒖 𝑗 (𝑥, 0) = 𝒖0
𝑗 (𝑥), in Ω, 𝑩 𝑗 (𝑥, 0) = 𝑩0

𝑗 (𝑥), in Ω.

(1.1)

Here 𝒖 𝑗 is the fluid velocity, 𝑝 𝑗 the pressure, 𝑩 𝑗 the magnetic field and 𝜆 𝑗 is a Lagrange

multiplier corresponding to the solenoidal constraint on 𝑩 𝑗 [41]. The body force 𝒇 𝑗 (𝑥, 𝑡)

and ∇ × 𝒈 𝑗 are given, 𝑠 is the coupling number, 𝜈 𝑗 is the kinematic viscosity, and 𝛾 𝑗 is the

magnetic resistivity. Dirichlet boundary conditions will be imposed for both 𝒖 𝑗 and 𝑩 𝑗 ,

though the numerical methods are also applicable to other boundary conditions including

∇ × 𝑩 𝑗 = 0 on 𝜕Ω. Note that we have adopted an equivalent formulation of the MHD

equations, cf. [41, 42, 60, 61].

1.1.1.2. Ensemble and Approximations. We define the ensemble mean and the

fluctuation of the viscosity terms 𝜈𝑛
𝑗

and the electric potential 𝛾𝑛
𝑗

at timestep 𝑛 respectively

�̄�𝑛 =
1
𝐽

𝐽∑︁
𝑗=1

𝜈𝑛𝑗 and �̄�𝑛 =
1
𝐽

𝐽∑︁
𝑗=1

𝛾𝑛𝑗 , (mean)

𝜈′𝑛𝑗 = 𝜈𝑛𝑗 − �̄�𝑛 and 𝛾′𝑛𝑗 = 𝛾𝑛𝑗 − �̄�𝑛, (fluctuation)

𝜈′max = max
𝑗

max
𝑥∈Ω

|𝜈′𝑛𝑗 (𝑥) | and 𝛾′max = max
𝑗

max
𝑥∈Ω

|𝛾′𝑛𝑗 (𝑥) |,
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where in our considerations 𝜈𝑛
𝑗
= 𝜈 𝑗 , 𝛾𝑛𝑗 = 𝛾 𝑗 are constants and 𝑡𝑛 = 𝑛Δ𝑡 (𝑛 = 0, 1, 2, ...).

Define

𝒗𝑛+1/2 =
1
2
(𝒗𝑛+1 + 𝒗𝑛), �̃�𝑛+1/2 = 2𝒗𝑛−1/2 − 𝒗𝑛−3/2, (1.2)

𝒗∗𝑛+1/2 =
3
2
𝒗𝑛 − 1

2
𝒗𝑛−1, �̃�𝑛+1 = 2𝒗𝑛 − 𝒗𝑛−1. (1.3)

1.1.1.3. Relevant Functions and Equations. We define a shifted energy of the

form

𝐸 𝑗 (𝑡) = 𝐸 [𝒖 𝑗 , 𝑩 𝑗 ] =
∫
Ω

1
2
|𝒖 𝑗 |2𝑑Ω +

∫
Ω

𝑠

2
|𝑩 𝑗 |2𝑑Ω + 𝐶0, (1.4)

where 𝐸 [𝒖 𝑗 , 𝑩 𝑗 ] is the total kinetic energy of the system, which for physical examples is

bounded from below, and 𝐶0 is an arbitrarily small positive constant chosen in such a way

that 𝐸 𝑗 (𝑡) > 0 for 0 ≤ 𝑡 ≤ 𝑇 . Next, let F be any one-to-one increasing differentiable

function with F −1 = G such that { F (𝜒) > 0, 𝜒 > 0, (1.5)

G(𝜒) > 0, 𝜒 > 0. (1.6)

The scalar variable 𝑅 𝑗 (𝑡) is defined by

𝑅 𝑗 (𝑡) = G(𝐸 𝑗 ), (1.7)

𝐸 𝑗 (𝑡) = F (𝑅 𝑗 ). (1.8)

With 𝐸 𝑗 as in (1.4), 𝑅 𝑗 (𝑡) then satisfies

F ′(𝑅 𝑗 )
𝑑𝑅 𝑗

𝑑𝑡
=

∫
Ω

𝒖 𝑗 ·
𝜕𝒖 𝑗

𝜕𝑡
𝑑Ω +

∫
Ω

𝑠𝑩 𝑗 ·
𝜕𝑩 𝑗

𝜕𝑡
𝑑Ω. (1.9)
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Since F (𝑅 𝑗 )
𝐸 𝑗

= 1 for all 𝑗 , we may write

F ′(𝑅 𝑗 )
𝑑𝑅 𝑗

𝑑𝑡
=

∫
Ω

[
𝒖 𝑗 ·

𝜕𝒖 𝑗

𝜕𝑡
+ 𝑠𝑩 𝑗 ·

𝜕𝑩 𝑗

𝜕𝑡

]
𝑑Ω (1.10)

+
[F (𝑅 𝑗 )

𝐸 𝑗

− 1
] [ ∫

Ω

𝒖 𝑗 ·
(
𝜈 𝑗Δ𝒖 𝑗 − ∇𝑝 𝑗 + 𝒇 𝑗

)
𝑑Ω

+
∫
Ω

𝑠𝑩 𝑗 ·
(
𝛾 𝑗Δ𝑩 𝑗 − ∇𝜆 𝑗 + ∇ × 𝒈 𝑗

)
𝑑Ω

]
+
F (𝑅 𝑗 )
𝐸 𝑗

[ ∫
Ω

𝒖 𝑗 · [𝑩 𝑗 · ∇𝑩 𝑗 − 𝒖 𝑗 · ∇𝒖 𝑗 ]𝑑Ω

−
∫
Ω

𝒖 𝑗 · [𝑩 𝑗 · ∇𝑩 𝑗 − 𝒖 𝑗 · ∇𝒖 𝑗 ]𝑑Ω

+
∫
Ω

𝑠𝑩 𝑗 · [𝑩 𝑗 · ∇𝒖 𝑗 − 𝒖 𝑗 · ∇𝑩 𝑗 ]𝑑Ω

−
∫
Ω

𝑠𝑩 𝑗 · [𝑩 𝑗 · ∇𝒖 𝑗 − 𝒖 𝑗 · ∇𝑩 𝑗 ]𝑑Ω
]

=

∫
Ω

[
𝒖 𝑗 ·

𝜕𝒖 𝑗

𝜕𝑡
+ 𝑠𝑩 𝑗 ·

𝜕𝑩 𝑗

𝜕𝑡

]
𝑑Ω

−
∫
Ω

𝒖 𝑗 ·
(
𝜈 𝑗Δ𝒖 𝑗 − ∇𝑝 𝑗 +

F (𝑅 𝑗 )
𝐸 𝑗

[𝑩 𝑗 · ∇𝑩 𝑗 − 𝒖 𝑗 · ∇𝒖 𝑗 ] + 𝒇 𝑗

)
𝑑Ω

−
∫
Ω

𝑠𝑩 𝑗 ·
(
𝛾 𝑗Δ𝑩 𝑗 − ∇𝜆 𝑗 +

F (𝑅 𝑗 )
𝐸 𝑗

[𝑩 𝑗 · ∇𝒖 𝑗

− 𝒖 𝑗 · ∇𝑩 𝑗 ] + ∇ × 𝒈 𝑗

)
𝑑Ω +

F (𝑅 𝑗 )
𝐸 𝑗

[ ∫
Ω

𝒖 𝑗 · [𝑩 𝑗 · ∇𝑩 𝑗

− 𝒖 𝑗 · ∇𝒖 𝑗 + 𝜈 𝑗Δ𝒖 𝑗 − ∇𝑝 𝑗 + 𝒇 𝑗 ]𝑑Ω

+
∫
Ω

𝑠𝑩 𝑗 · [𝑩 𝑗 · ∇𝒖 𝑗 − 𝒖 𝑗 · ∇𝑩 𝑗 + 𝛾 𝑗Δ𝑩 𝑗 − ∇𝜆 𝑗 + ∇ × 𝒈 𝑗 ]𝑑Ω
]

Note that all the additional terms above amount to adding zero to (1.9). Using integration

by parts we get the equality

∫
Ω

𝒖 𝑗 · [𝑩 𝑗 · ∇𝑩 𝑗 − 𝒖 𝑗 · ∇𝒖 𝑗 + 𝜈 𝑗Δ𝒖 𝑗 − ∇𝑝 𝑗 + 𝒇 𝑗 ]𝑑Ω (1.11)

+
∫
Ω

𝑠𝑩 𝑗 · [𝑩 𝑗 · ∇𝒖 𝑗 − 𝒖 𝑗 · ∇𝑩 𝑗 + 𝛾 𝑗Δ𝑩 𝑗 − ∇𝜆 𝑗 + ∇ × 𝒈 𝑗 ]𝑑Ω
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= −
∫
Ω

(𝜈 𝑗 |∇𝒖 𝑗 |2 + 𝑠𝛾 𝑗 |∇𝑩 𝑗 |2)𝑑Ω +
∫
Ω

( 𝒇 𝑗 · 𝒖 𝑗 + 𝑠(∇ × 𝒈 𝑗 ) · 𝑩 𝑗 )𝑑Ω

+
∫
Γ

𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 )𝑑Γ,

where 𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 ) represents the forcing terms on the boundary, defined as

𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 ) =
∫
Γ

(
− 1

2
|𝒖 𝑗 |2𝒖 𝑗 −

𝑠

2
|𝑩 𝑗 |2𝒖 𝑗 + 𝜈 𝑗∇𝒖 𝑗 · 𝒖 𝑗 − 𝑝 𝑗𝒖 𝑗 (1.12)

+ 𝑠(𝑩 𝑗 · 𝒖 𝑗 )𝑩 𝑗 + 𝑠𝛾 𝑗∇𝑩 𝑗 · 𝑩 𝑗 − 𝑠𝜆 𝑗𝑩 𝑗

)
· �̂� 𝑑Γ

and �̂� is the unit normal vector to the boundary. We use this equality and write

F ′(𝑅 𝑗 )
𝑑𝑅 𝑗

𝑑𝑡
=

∫
Ω

[
𝒖 𝑗 ·

𝜕𝒖 𝑗

𝜕𝑡
+ 𝑠𝑩 𝑗 ·

𝜕𝑩 𝑗

𝜕𝑡

]
𝑑Ω (1.13)

−
∫
Ω

𝒖 𝑗 ·
(
𝜈 𝑗Δ𝒖 𝑗 − ∇𝑝 𝑗 +

F (𝑅 𝑗 )
𝐸 𝑗

[𝑩 𝑗 · ∇𝑩 𝑗 − 𝒖 𝑗 · ∇𝒖 𝑗 ] + 𝒇 𝑗

)
𝑑Ω

−
∫
Ω

𝑠𝑩 𝑗 ·
(
𝛾 𝑗Δ𝑩 𝑗 − ∇𝜆 𝑗 +

F (𝑅 𝑗 )
𝐸 𝑗

[𝑩 𝑗 · ∇𝒖 𝑗 − 𝒖 𝑗 · ∇𝑩 𝑗 ] + ∇ × 𝒈 𝑗

)
𝑑Ω

+
F (𝑅 𝑗 )
𝐸 𝑗

[
−

∫
Ω

(𝜈 𝑗 |∇𝒖 𝑗 |2 + 𝑠𝛾 𝑗 |∇𝑩 𝑗 |2)𝑑Ω

+
∫
Ω

( 𝒇 𝑗 · 𝒖 𝑗 + 𝑠(∇ × 𝒈 𝑗 ) · 𝑩 𝑗 )𝑑Ω +
∫
Γ

𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 )𝑑Γ
]

+
[
1 −

F (𝑅 𝑗 )
𝐸 𝑗

] ����� ∫Ω

( 𝒇 𝑗 · 𝒖 𝑗 + 𝑠(∇ × 𝒈 𝑗 ) · 𝑩 𝑗 )𝑑Ω +
∫
Γ

𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 )𝑑Γ
�����.

As will be seen later, we consider this reformulation (including the addition of the terms

within absolute value brackets) as a means of constructing numerical schemes that inherit

unconditional stability with respect to the modified energy F (𝑅 𝑗 ) and guaranteed positivity

of a computed scalar variable 𝜉 𝑗 to be defined.

1.1.2. CRANK-NICOLSON ALGORITHM. With Dirichlet boundary condi-

tions, a Crank-Nicolson scheme for 1.1 becomes Given 𝒖𝑛
𝑗
, 𝑩𝑛

𝑗
, 𝑞𝑛

𝑗
and 𝑝𝑛

𝑗
, find 𝒖𝑛+1

𝑗
,

𝑩𝑛+1
𝑗

, 𝑞𝑛+1
𝑗

and 𝑝𝑛+1
𝑗

satisfying
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(
𝑢𝑛+1
𝑗

− 𝑢𝑛
𝑗

Δ𝑡

)
= −𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2
𝑗

+ 𝑠𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2

𝑗
+ �̄�𝑛Δ𝑢

𝑛+1/2
𝑗

(1.14)

+ 𝜈′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝑝𝑛+1/2
𝑗

+ 𝒇 𝑛+1/2
𝑗

,

∇ · 𝑢𝑛+1
𝑗 = 0, (1.15)(

𝑩𝑛+1
𝑗

− 𝑩𝑛
𝑗

Δ𝑡

)
= 𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2
𝑗

− 𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2

𝑗
+ �̄�𝑛Δ𝑩𝑛+1/2

𝑗
(1.16)

+ 𝛾′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝜆𝑛+1/2
𝑗

+ ∇ × 𝒈𝑛+1/2
𝑗

,

∇ · 𝑩𝑛+1
𝑗 = 0, (1.17)

𝜉 𝑗 =
F (𝑅𝑛+1

𝑗
)

𝐸 (�̄�𝑛+1
𝑗

, �̄�𝑛+1
𝑗

)
, (1.18)

𝐸 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 ) = 1
2
∥�̄�𝑛+1

𝑗 ∥2 + 𝑠

2
∥ �̄�𝑛+1

𝑗 ∥2 + 𝐶0, (1.19)

F (𝑅𝑛+1
𝑗

) − F (𝑅𝑛
𝑗
)

Δ𝑡
=

∫
Ω

𝑢
𝑛+1/2
𝑗

·
(
𝑢𝑛+1
𝑗

− 𝑢𝑛
𝑗

Δ𝑡

)
𝑑Ω (1.20)

+
∫
Ω

𝑠𝑩𝑛+1/2
𝑗

·
(
𝑩𝑛+1

𝑗
− 𝑩𝑛

𝑗

Δ𝑡

)
𝑑Ω

−
∫
Ω

𝑢
𝑛+1/2
𝑗

·
[
− 𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2
𝑗

+ 𝑠𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2

𝑗

+ �̄�𝑛Δ𝑢
𝑛+1/2
𝑗

+ 𝜈′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝑝𝑛+1/2
𝑗

+ 𝒇 𝑛+1/2
𝑗

]
𝑑Ω

−
∫
Ω

𝑠𝑩𝑛+1/2
𝑗

·
[
𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2
𝑗

− 𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2

𝑗

+ �̄�𝑛Δ𝑩𝑛+1/2
𝑗

+ 𝛾′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝜆𝑛+1/2
𝑗

+ ∇ × 𝒈𝑛+1/2
𝑗

]
𝑑Ω

+ 𝜉 𝑗

[
−

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1/2

𝑗
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1/2

𝑗
|2
)
𝑑Ω +

∫
Ω

𝒇 𝑛+1/2
𝑗

· �̄�𝑛+1/2
𝑗

𝑑Ω

+
∫
Ω

𝑠(∇ × 𝒈𝑛+1/2
𝑗

) · �̄�𝑛+1/2
𝑗

𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1/2
𝑗

, �̄�𝑛+1/2
𝑗

)𝑑Γ
]
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+ (1 − 𝜉 𝑗 )
���� ∫

Ω

𝒇 𝑛+1/2
𝑗

· �̄�𝑛+1/2
𝑗

𝑑Ω

+
∫
Ω

𝑠(∇ × 𝒈𝑛+1/2
𝑗

) · �̄�𝑛+1/2
𝑗

𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1/2
𝑗

, �̄�𝑛+1/2
𝑗

)𝑑Γ
����.

Here �̄�𝑛+1
𝑗

, �̄�𝑛+1/2
𝑗

, �̄�𝑛+1
𝑗

and �̄�𝑛+1/2
𝑗

are second order approximations of 𝑢𝑛+1
𝑗

, 𝑢𝑛+1/2
𝑗

, 𝑩𝑛+1
𝑗

,

and 𝑩𝑛+1/2
𝑗

that will be defined later.

1.1.3. BDF2 ALGORITHM. for Dirichlet boundary conditions, a BDF2 scheme

is Given 𝒖𝑛
𝑗
, 𝑩𝑛

𝑗
, 𝑞𝑛

𝑗
and 𝑝𝑛

𝑗
, find 𝒖𝑛+1

𝑗
, 𝑩𝑛+1

𝑗
, 𝑞𝑛+1

𝑗
and 𝑝𝑛+1

𝑗
satisfying

(
3𝑢𝑛+1

𝑗
− 4𝑢𝑛

𝑗
+ 𝑢𝑛−1

𝑗

2Δ𝑡

)
= −𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1
𝑗 + 𝑠𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1

𝑗 + �̄�𝑛Δ𝑢𝑛+1
𝑗 (1.21)

+ 𝜈′𝑛𝑗 Δ�̃�
𝑛+1
𝑗 − ∇𝑝𝑛+1

𝑗 + 𝒇 𝑛+1
𝑗 ,

∇ · 𝑢𝑛+1
𝑗 = 0, (1.22)(

3𝑩𝑛+1
𝑗

− 4𝑩𝑛
𝑗
+ 𝑩𝑛−1

𝑗

2Δ𝑡

)
= 𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1
𝑗 − 𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1

𝑗 + �̄�𝑛Δ𝑩𝑛+1
𝑗 (1.23)

+ 𝛾′𝑛𝑗 Δ�̃�
𝑛+1
𝑗 − ∇𝜆𝑛+1

𝑗 + ∇ × 𝒈𝑛+1
𝑗 ,

∇ · 𝑩𝑛+1
𝑗 = 0, (1.24)

𝜉 𝑗 =
F (𝑅∗𝑛+3/2

𝑗
)

𝐸 (�̄�𝑛+3/2
𝑗

, �̄�𝑛+3/2
𝑗

)
, (1.25)

𝐸 (�̄�𝑛+3/2
𝑗

, �̄�𝑛+3/2
𝑗

) = 1
2
∥�̄�𝑛+3/2

𝑗
∥2 + 𝑠

2
∥ �̄�𝑛+3/2

𝑗
∥2 + 𝐶0, (1.26)

F (𝑅∗𝑛+3/2
𝑗

) − F (𝑅∗𝑛+1/2
𝑗

)
Δ𝑡

=

∫
Ω

𝑢𝑛+1
𝑗 ·

(
3𝑢𝑛+1

𝑗
− 4𝑢𝑛

𝑗
+ 𝑢𝑛−1

𝑗

2Δ𝑡

)
𝑑Ω (1.27)

+
∫
Ω

𝑠𝑩𝑛+1
𝑗 ·

(
3𝑩𝑛+1

𝑗
− 4𝑩𝑛

𝑗
+ 𝑩𝑛−1

𝑗

2Δ𝑡

)
𝑑Ω

−
∫
Ω

𝑢𝑛+1
𝑗 ·

[
− 𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1
𝑗 + 𝑠𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1

𝑗
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+ �̄�𝑛Δ𝑢𝑛+1
𝑗 + 𝜈′𝑛𝑗 Δ�̃�

𝑛+1
𝑗 − ∇𝑝𝑛+1

𝑗 + 𝒇 𝑛+1
𝑗

]
𝑑Ω

−
∫
Ω

𝑠𝑩𝑛+1
𝑗 ·

[
𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1
𝑗 − 𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1

𝑗

+ �̄�𝑛Δ𝑩𝑛+1
𝑗 + 𝛾′𝑛𝑗 Δ�̃�

𝑛+1
𝑗 − ∇𝜆𝑛+1

𝑗 + ∇ × 𝒈𝑛+1
𝑗

]
𝑑Ω

+ 𝜉 𝑗

[
−

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1

𝑗 |2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1
𝑗 |2

)
𝑑Ω +

∫
Ω

𝒇 𝑛+1
𝑗 · �̄�𝑛+1

𝑗 𝑑Ω

+
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ) · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 )𝑑Γ
]

+ (1 − 𝜉 𝑗 )
���� ∫

Ω

𝒇 𝑛+1
𝑗 · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ) · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 )𝑑Γ
����.

Similarly �̄�𝑛+1
𝑗

, �̄�𝑛+3/2
𝑗

, �̄�𝑛+1
𝑗

and �̄�𝑛+3/2
𝑗

are second order approximations of 𝑢𝑛+1
𝑗

, 𝑢𝑛+3/2
𝑗

,

𝑩𝑛+1
𝑗

, and 𝑩𝑛+3/2
𝑗

to be defined later.

1.2. PRELIMINARIES

1.2.1. NOTATION. Throughout this paper the 𝐿2(Ω) norm of scalars, vectors,

and tensors will be denoted by ∥ · ∥ with the usual 𝐿2 inner product denoted by (·, ·). 𝐻𝑘 (Ω)

is the Sobolev space 𝑊 𝑘
2 (Ω), with norm ∥ · ∥𝑘 . For functions 𝑣(𝑥, 𝑡) defined on (0, 𝑇), we

define the norms, for 1 ≤ 𝑚 < ∞,

∥𝑣∥∞,𝑘 := 𝐸𝑠𝑠𝑆𝑢𝑝 [0,𝑇] ∥𝑣(·, 𝑡)∥𝑘 and ∥𝑣∥𝑚,𝑘 :=
( ∫ 𝑇

0
∥𝑣(·, 𝑡)∥𝑚𝑘 𝑑𝑡

)1/𝑚
.

The function spaces we consider are:

𝑋 : = 𝐻1
0 (Ω)

𝑑 =
{
𝑣 ∈ 𝐿2(Ω)𝑑 : ∇𝑣 ∈ 𝐿2(Ω)𝑑×𝑑 and 𝑣 = 0 on 𝜕Ω

}
,

𝑄 : = 𝐿2
0(Ω) =

{
𝑞 ∈ 𝐿2(Ω) :

∫
Ω

𝑞 𝑑𝑥 = 0
}
,

𝑉 : = {𝑣 ∈ 𝑋 : (∇ · 𝑣, 𝑞) = 0,∀𝑞 ∈ 𝑄} .
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A weak formulation of the full MHD equations is: Find 𝒖 𝑗 : [0, 𝑇] → 𝑋 , 𝑝 𝑗 :

[0, 𝑇] → 𝑄, 𝑩 𝑗 : [0, 𝑇] → 𝑋 and 𝜆 𝑗 : [0, 𝑇] → 𝑄 satisfying

(
𝒖 𝑗 ,𝑡 , 𝒗

)
+

(
𝒖 𝑗 · ∇𝒖 𝑗 , 𝒗

)
− 𝑠

(
𝑩 𝑗 · ∇𝑩 𝑗 , 𝒗

)
+ 𝜈 𝑗

(
∇𝒖 𝑗 ,∇𝒗

)
−

(
𝑝 𝑗 ,∇ · 𝒗

)
=

(
𝒇 𝑗 , 𝒗

)
, ∀𝒗 ∈ 𝑋,(

∇ · 𝒖 𝑗 , 𝑙
)
= 0, ∀𝑙 ∈ 𝑄,(

𝑩 𝑗 ,𝑡 , 𝝌
)
+

(
𝒖 𝑗 · ∇𝑩 𝑗 , 𝝌

)
−

(
𝑩 𝑗 · ∇𝒖 𝑗 , 𝝌

)
+ 𝛾 𝑗

(
∇𝑩 𝑗 ,∇𝝌

)
−

(
𝜆 𝑗 ,∇ · 𝝌

)
=

(
∇ × 𝒈 𝑗 , 𝝌

)
, ∀𝝌 ∈ 𝑋,(

∇ · 𝑩 𝑗 , 𝜓
)
= 0, ∀𝜓 ∈ 𝑄.

We denote conforming velocity, pressure, potential finite element spaces based on

an edge to edge triangulation (𝑑 = 2) or tetrahedralization (𝑑 = 3) of Ω with maximum

element diameter ℎ by

𝑋ℎ ⊂ 𝑋 , 𝑄ℎ ⊂ 𝑄.

We also assume the finite element spaces (𝑋ℎ, 𝑄ℎ) satisfy the usual discrete inf-sup /𝐿𝐵𝐵ℎ

condition for stability of the discrete pressure, see [62] for more on this condition. Taylor-

Hood elements, e.g., [63], [62], are one such choice used in the tests in Section 1.6. We

define the trilinear form

𝑏(𝑢, 𝑣, 𝑤) := (𝑢 · ∇𝑣, 𝑤).
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1.3. PROBLEM FORMULATION

1.3.1. FULLY DISCRETIZED ALGORITHMS. The full discretization of the

proposed partitioned ensemble algorithm with Crank-Nicolson scheme is: Given 𝑢𝑛
𝑗,ℎ

, 𝑩𝑛
𝑗,ℎ

,

𝑝𝑛
𝑗,ℎ

and 𝜆𝑛
𝑗,ℎ

, find 𝑢𝑛+1
𝑗 ,ℎ

, 𝑩𝑛+1
𝑗 ,ℎ

, 𝑝𝑛+1
𝑗 ,ℎ

and 𝜆𝑛+1
𝑗 ,ℎ

satisfying for any 𝒗𝒉, 𝝌𝒉 ∈ 𝑋ℎ and 𝑙ℎ, 𝜓ℎ ∈ 𝑄ℎ,

(
𝑢𝑛+1
𝑗 ,ℎ

− 𝑢𝑛
𝑗,ℎ

Δ𝑡
, 𝒗𝒉

)
= −𝜉 𝑗𝑏(�̃�𝑛+1/2

𝑗 ,ℎ
, �̃�𝑛+1/2

𝑗 ,ℎ
, 𝒗𝒉) + 𝑠𝜉 𝑗𝑏(�̃�𝑛+1/2

𝑗 ,ℎ
, �̃�𝑛+1/2

𝑗 ,ℎ
, 𝒗𝒉) (1.28)

− �̄�𝑛
(
∇𝑢𝑛+1/2

𝑗 ,ℎ
,∇𝒗𝒉

)
− 𝜈′𝑛𝑗

(
∇�̃�𝑛+1/2

𝑗 ,ℎ
,∇𝒗𝒉

)
+

(
𝑝
𝑛+1/2
𝑗 ,ℎ

,∇ · 𝒗𝒉
)

− 𝛼ℎ

(
∇(𝑢𝑛+1

𝑗 ,ℎ − 𝑢𝑛𝑗,ℎ),∇𝒗𝒉
)
+

(
𝒇 𝑛+1/2
𝑗 ,ℎ

, 𝒗𝒉
)
,(

∇ · 𝑢𝑛+1
𝑗 ,ℎ , 𝑙ℎ

)
= 0, (1.29)(

𝑩𝑛+1
𝑗 ,ℎ

− 𝑩𝑛
𝑗,ℎ

Δ𝑡
, 𝝌𝒉

)
= 𝜉 𝑗𝑏(�̃�𝑛+1/2

𝑗 ,ℎ
, �̃�𝑛+1/2

𝑗 ,ℎ
, 𝝌𝒉) − 𝜉 𝑗𝑏(�̃�𝑛+1/2

𝑗 ,ℎ
, �̃�𝑛+1/2

𝑗 ,ℎ
, 𝝌𝒉) (1.30)

− �̄�𝑛
(
∇𝑩𝑛+1/2

𝑗 ,ℎ
,∇𝝌𝒉

)
− 𝛾′𝑛𝑗

(
∇�̃�𝑛+1/2

𝑗 ,ℎ
,∇𝝌𝒉

)
+

(
𝜆
𝑛+1/2
𝑗 ,ℎ

,∇ · 𝝌𝒉

)
− 𝛼𝑀ℎ

(
∇(𝑩𝑛+1

𝑗 ,ℎ − 𝑩𝑛
𝑗,ℎ),∇𝝌𝒉

)
+

(
∇ × 𝒈𝑛+1/2

𝑗 ,ℎ
, 𝝌𝒉

)
,(

∇ · 𝑩𝑛+1
𝑗 ,ℎ , 𝜓ℎ

)
= 0, (1.31)

𝜉 𝑗 =
F (𝑅𝑛+1

𝑗 ,ℎ
)

𝐸 (�̄�𝑛+1
𝑗 ,ℎ

, �̄�𝑛+1
𝑗 ,ℎ

)
, (1.32)

𝐸 (�̄�𝑛+1
𝑗 ,ℎ , �̄�

𝑛+1
𝑗 ,ℎ ) =

1
2
∥�̄�𝑛+1

𝑗 ,ℎ ∥
2 + 𝑠

2
∥ �̄�𝑛+1

𝑗 ,ℎ ∥
2 + 𝐶0, (1.33)

F (𝑅𝑛+1
𝑗 ,ℎ

) − F (𝑅𝑛
𝑗,ℎ
)

Δ𝑡
=

(
𝑢𝑛+1
𝑗 ,ℎ

− 𝑢𝑛
𝑗,ℎ

Δ𝑡
, 𝑢

𝑛+1/2
𝑗 ,ℎ

)
+ 𝑠

(
𝑩𝑛+1

𝑗 ,ℎ
− 𝑩𝑛

𝑗,ℎ

Δ𝑡
, 𝑩𝑛+1/2

𝑗 ,ℎ

)
(1.34)

+ 𝜉 𝑗𝑏(�̃�𝑛+1/2
𝑗 ,ℎ

, �̃�𝑛+1/2
𝑗 ,ℎ

, 𝑢
𝑛+1/2
𝑗 ,ℎ

) − 𝑠𝜉 𝑗𝑏(�̃�𝑛+1/2
𝑗 ,ℎ

, �̃�𝑛+1/2
𝑗 ,ℎ

, 𝑢
𝑛+1/2
𝑗 ,ℎ

) + �̄�𝑛∥∇𝑢𝑛+1/2
𝑗 ,ℎ

∥2

+ 𝜈′𝑛𝑗

(
∇�̃�𝑛+1/2

𝑗 ,ℎ
,∇𝑢𝑛+1/2

𝑗 ,ℎ

)
−

(
𝑝
𝑛+1/2
𝑗 ,ℎ

,∇ · 𝑢𝑛+1/2
𝑗 ,ℎ

)
+ 𝛼ℎ

(
∇(𝑢𝑛+1

𝑗 ,ℎ − 𝑢𝑛𝑗,ℎ),∇𝑢
𝑛+1/2
𝑗 ,ℎ

)
−

(
𝒇 𝑛+1/2
𝑗 ,ℎ

, 𝑢
𝑛+1/2
𝑗 ,ℎ

)
− 𝑠𝜉 𝑗𝑏(�̃�𝑛+1/2

𝑗 ,ℎ
, �̃�𝑛+1/2

𝑗 ,ℎ
, 𝑩𝑛+1/2

𝑗 ,ℎ
) + 𝑠𝜉 𝑗𝑏(�̃�𝑛+1/2

𝑗 ,ℎ
, �̃�𝑛+1/2

𝑗 ,ℎ
, 𝑩𝑛+1/2

𝑗 ,ℎ
) + 𝑠�̄�𝑛∥∇𝑩𝑛+1/2

𝑗 ,ℎ
∥2
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+ 𝑠𝛾′𝑛𝑗

(
∇𝑩𝑛+1/2

𝑗 ,ℎ
,∇𝑩𝑛+1/2

𝑗 ,ℎ

)
− 𝑠

(
𝜆
𝑛+1/2
𝑗 ,ℎ

,∇ · 𝑩𝑛+1/2
𝑗 ,ℎ

)
+ 𝑠𝛼𝑀ℎ

(
∇(𝑩𝑛+1

𝑗 ,ℎ − 𝑩𝑛
𝑗,ℎ),∇𝑩

𝑛+1/2
𝑗 ,ℎ

)
− 𝑠

(
∇ × 𝒈𝑛+1/2

𝑗 ,ℎ
, 𝑩𝑛+1/2

𝑗 ,ℎ

)
+ 𝜉 𝑗

[
−

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2
)
𝑑Ω +

∫
Ω

𝒇 𝑛+1/2
𝑗 ,ℎ

· �̄�𝑛+1/2
𝑗 ,ℎ

𝑑Ω

+
∫
Ω

𝑠(∇ × 𝒈𝑛+1/2
𝑗 ,ℎ

) · �̄�𝑛+1/2
𝑗 ,ℎ

𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1/2
𝑗 ,ℎ

, �̄�𝑛+1/2
𝑗 ,ℎ

)𝑑Γ
]

+ (1 − 𝜉 𝑗 )
���� ∫

Ω

𝒇 𝑛+1/2
𝑗 ,ℎ

· �̄�𝑛+1/2
𝑗 ,ℎ

𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1/2
𝑗 ,ℎ

) · �̄�𝑛+1/2
𝑗 ,ℎ

𝑑Ω

+
∫
Γ

𝐵𝑆 (�̄�𝑛+1/2
𝑗 ,ℎ

, �̄�𝑛+1/2
𝑗 ,ℎ

)𝑑Γ
����.

The full discretization of the proposed partitioned ensemble algorithm with BDF2

scheme is Given 𝑢𝑛−1
𝑗 ,ℎ

, 𝑢𝑛
𝑗,ℎ

, 𝑩𝑛−1
𝑗 ,ℎ

, 𝑩𝑛
𝑗,ℎ

, find 𝑢𝑛+1
𝑗 ,ℎ

, 𝑩𝑛+1
𝑗 ,ℎ

, 𝑝𝑛+1
𝑗 ,ℎ

and 𝜆𝑛+1
𝑗 ,ℎ

satisfying for any

𝒗𝒉, 𝝌𝒉 ∈ 𝑋ℎ and 𝑙ℎ, 𝜓ℎ ∈ 𝑄ℎ,(
3𝑢𝑛+1

𝑗 ,ℎ
− 4𝑢𝑛

𝑗,ℎ
+ 𝑢𝑛−1

𝑗 ,ℎ

2Δ𝑡
, 𝒗𝒉

)
= −𝜉 𝑗𝑏(�̃�𝑛+1

𝑗 ,ℎ , �̃�
𝑛+1
𝑗 ,ℎ , 𝒗𝒉) + 𝑠𝜉 𝑗𝑏(�̃�𝑛+1

𝑗 ,ℎ , �̃�
𝑛+1
𝑗 ,ℎ , 𝒗𝒉) (1.35)

− �̄�𝑛
(
∇𝑢𝑛+1

𝑗 ,ℎ ,∇𝒗𝒉
)
− 𝜈′𝑛𝑗

(
∇�̃�𝑛+1

𝑗 ,ℎ ,∇𝒗𝒉
)
+

(
𝑝𝑛+1
𝑗 ,ℎ ,∇ · 𝒗𝒉

)
− 𝛼ℎ

(
∇(3𝑢𝑛+1

𝑗 ,ℎ − 4𝑢𝑛𝑗,ℎ + 𝑢𝑛−1
𝑗 ,ℎ ),∇𝒗𝒉

)
+

(
𝒇 𝑛+1
𝑗 ,ℎ , 𝒗𝒉

)
,(

∇ · 𝑢𝑛+1
𝑗 ,ℎ , 𝑙ℎ

)
= 0, (1.36)(

3𝑩𝑛+1
𝑗 ,ℎ

− 4𝑩𝑛
𝑗,ℎ

+ 𝑩𝑛−1
𝑗 ,ℎ

2Δ𝑡
, 𝝌𝒉

)
= 𝜉 𝑗𝑏(�̃�𝑛+1

𝑗 ,ℎ , �̃�
𝑛+1
𝑗 ,ℎ , 𝝌𝒉) − 𝜉 𝑗𝑏(�̃�𝑛+1

𝑗 ,ℎ , �̃�
𝑛+1
𝑗 ,ℎ , 𝝌𝒉) (1.37)

− �̄�𝑛
(
∇𝑩𝑛+1

𝑗 ,ℎ ,∇𝝌𝒉

)
− 𝛾′𝑛𝑗

(
∇�̃�𝑛+1

𝑗 ,ℎ ,∇𝝌𝒉

)
+

(
𝜆𝑛+1
𝑗 ,ℎ ,∇ · 𝝌𝒉

)
− 𝛼𝑀ℎ

(
∇(3𝑩𝑛+1

𝑗 ,ℎ − 4𝑩𝑛
𝑗,ℎ + 𝑩𝑛−1

𝑗 ,ℎ ),∇𝝌𝒉

)
+

(
∇ × 𝒈𝑛+1

𝑗 ,ℎ , 𝝌𝒉

)
,(

∇ · 𝑩𝑛+1
𝑗 ,ℎ , 𝜓ℎ

)
= 0, (1.38)

𝜉 𝑗 =
F (𝑅∗𝑛+3/2

𝑗 ,ℎ
)

𝐸 (�̄�𝑛+3/2
𝑗 ,ℎ

, �̄�𝑛+3/2
𝑗 ,ℎ

)
, (1.39)
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𝐸 (�̄�𝑛+3/2
𝑗 ,ℎ

, �̄�𝑛+3/2
𝑗 ,ℎ

) = 1
2
∥�̄�𝑛+3/2

𝑗 ,ℎ
∥2 + 𝑠

2
∥ �̄�𝑛+3/2

𝑗 ,ℎ
∥2 + 𝐶0, (1.40)

F (𝑅∗𝑛+3/2
𝑗 ,ℎ

) − F (𝑅∗𝑛+1/2
𝑗 ,ℎ

)
Δ𝑡

=

(
3𝑢𝑛+1

𝑗 ,ℎ
− 4𝑢𝑛

𝑗,ℎ
+ 𝑢𝑛−1

𝑗 ,ℎ

2Δ𝑡
, 𝑢𝑛+1

𝑗 ,ℎ

)
(1.41)

+ 𝑠

(
3𝑩𝑛+1

𝑗 ,ℎ
− 4𝑩𝑛

𝑗,ℎ
+ 𝑩𝑛−1

𝑗 ,ℎ

2Δ𝑡
, 𝑩𝑛+1

𝑗 ,ℎ

)
+ 𝜉 𝑗𝑏(�̃�𝑛+1

𝑗 ,ℎ , �̃�
𝑛+1
𝑗 ,ℎ , 𝑢

𝑛+1
𝑗 ,ℎ )

− 𝑠𝜉 𝑗𝑏(�̃�𝑛+1
𝑗 ,ℎ , �̃�

𝑛+1
𝑗 ,ℎ , 𝑢

𝑛+1
𝑗 ,ℎ ) + �̄�𝑛∥∇𝑢𝑛+1

𝑗 ,ℎ ∥
2 + 𝜈′𝑛𝑗

(
∇�̃�𝑛+1

𝑗 ,ℎ ,∇𝑢
𝑛+1
𝑗 ,ℎ

)
(1.42)

−
(
𝑝𝑛+1
𝑗 ,ℎ ,∇ · 𝑢𝑛+1

𝑗 ,ℎ

)
+ 𝛼ℎ

(
∇(3𝑢𝑛+1

𝑗 ,ℎ − 4𝑢𝑛𝑗,ℎ + 𝑢𝑛−1
𝑗 ,ℎ ),∇𝑢

𝑛+1
𝑗 ,ℎ

)
−

(
𝒇 𝑛+1
𝑗 ,ℎ , 𝑢𝑛+1

𝑗 ,ℎ

)
− 𝑠𝜉 𝑗𝑏(�̃�𝑛+1

𝑗 ,ℎ , �̃�
𝑛+1
𝑗 ,ℎ , 𝑩

𝑛+1
𝑗 ,ℎ ) + 𝑠𝜉 𝑗𝑏(�̃�𝑛+1

𝑗 ,ℎ , �̃�
𝑛+1
𝑗 ,ℎ , 𝑩

𝑛+1
𝑗 ,ℎ ) + 𝑠�̄�𝑛∥∇𝑩𝑛+1

𝑗 ,ℎ ∥
2

+ 𝑠𝛾′𝑛𝑗

(
∇�̃�𝑛+1

𝑗 ,ℎ ,∇𝑩
𝑛+1
𝑗 ,ℎ

)
− 𝑠

(
𝜆𝑛+1
𝑗 ,ℎ ,∇ · 𝑩𝑛+1

𝑗 ,ℎ

)
+ 𝑠𝛼𝑀ℎ

(
∇(3𝑩𝑛+1

𝑗 ,ℎ − 4𝑩𝑛
𝑗,ℎ + 𝑩𝑛−1

𝑗 ,ℎ ),∇𝑩
𝑛+1
𝑗 ,ℎ

)
− 𝑠

(
∇ × 𝒈𝑛+1

𝑗 ,ℎ , 𝑩
𝑛+1
𝑗 ,ℎ

)
+ 𝜉 𝑗

[
−

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ |
2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ |
2
)
𝑑Ω +

∫
Ω

𝒇 𝑛+1
𝑗 ,ℎ · �̄�𝑛+1

𝑗 ,ℎ 𝑑Ω

+
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ,ℎ ) · �̄�

𝑛+1
𝑗 ,ℎ 𝑑Ω +

∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 ,ℎ , �̄�

𝑛+1
𝑗 ,ℎ )𝑑Γ

]
+ (1 − 𝜉 𝑗 )

���� ∫
Ω

𝒇 𝑛+1
𝑗 ,ℎ · �̄�𝑛+1

𝑗 ,ℎ 𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ,ℎ ) · �̄�

𝑛+1
𝑗 ,ℎ 𝑑Ω +

∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 ,ℎ , �̄�

𝑛+1
𝑗 ,ℎ )𝑑Γ

����.
There’s also the addition of two regularization terms in Algorithms (1.3.1) and (1.3.1),


𝛼ℎΔ(𝑢𝑛+1

𝑗 ,ℎ
− 𝑢𝑛

𝑗,ℎ
),

𝛼𝑀ℎΔ(𝑩𝑛+1
𝑗 ,ℎ

− 𝑩𝑛
𝑗,ℎ
),

for CN,


𝛼ℎΔ(3𝑢𝑛+1

𝑗 ,ℎ
− 4𝑢𝑛

𝑗,ℎ
+ 𝑢𝑛−1

𝑗 ,ℎ
),

𝛼𝑀ℎΔ(3𝑩𝑛+1
𝑗 ,ℎ

− 4𝑩𝑛
𝑗,ℎ

+ 𝑩𝑛−1
𝑗 ,ℎ

),
for BDF2.

(1.43)

1.3.1.1. Regularization. The terms in 1.43 are highly effective at reducing the

considerable error that eventually appears when the timestep is not sufficiently refined.

Significant improvement in accuracy will be seen later in the numerical tests. It’s noted

in [54] that this improvement cannot be explained by the stability or error analysis alone.

Instead, an explanation is offered through analysis of a modified form of the equations
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under consideration. In the modified equations, the addition of the term −𝛼ℎ𝑘Δ𝑢𝑡 (in the

case of velocity) and−𝛼ℎ𝑘Δ𝐵𝑡 (in the case of magnetic field) are added to the left-hand sides,



[
𝒖 𝑗 ,𝑡 − 𝛼ℎ𝑘Δ𝒖 𝑗 ,𝑡

]
+ 𝒖 𝑗 · ∇𝒖 𝑗 − 𝑠𝑩 𝑗 · ∇𝑩 𝑗 − 𝜈 𝑗Δ𝒖 𝑗 + ∇𝑝 𝑗 = 𝒇 𝑗 in Ω × (0, 𝑇),

∇ · 𝒖 𝑗 = 0, in Ω × (0, 𝑇),[
𝑩 𝑗 ,𝑡 − 𝑠𝛼𝑀ℎ𝑘Δ𝑩 𝑗 ,𝑡

]
+ 𝒖 𝑗 · ∇𝑩 𝑗 − 𝑩 𝑗 · ∇𝒖 𝑗 − 𝛾 𝑗Δ𝑩 𝑗 + ∇𝜆 𝑗 = ∇ × 𝒈 𝑗 in Ω × (0, 𝑇),

∇ · 𝑩 𝑗 = 0, in Ω × (0, 𝑇),

𝒖 𝑗 (𝑥, 0) = 𝒖0
𝑗 (𝑥), in Ω, 𝑩 𝑗 (𝑥, 0) = 𝑩0

𝑗 (𝑥), in Ω.

(1.44)

This results in a modified kinetic energy corresponding to the equation. In our case, the

resulting modified kinetic energy would be

∥𝑢(𝑡)∥2 + 𝛼ℎ𝑘 ∥∇𝑢(𝑡)∥2 + 𝑠∥𝐵(𝑡)∥2 + 𝑠𝛼𝑀ℎ𝑘 ∥∇𝐵(𝑡)∥2. (1.45)

Following Kraichnan’s theory [64], it is argued in [54] that the penalty term in the kinetic

energy induces an enhanced energy decay rate for numerically under-resolved modes while

preserving the correct energy cascade above the cut-off length scale. The quick roll-off in

the energy spectrum is also exploited in the Navier-Stokes-𝛼 model (NS-𝛼)–a nonlinearly

dispersive modification of the Navier-Stokes equations for large eddy simulation of turbu-

lence [58, 59]. This roll-off mechanism shortens the inertial range and makes the system

more computable.

1.4. STABILITY OF THE METHOD

1.4.1. CRANK-NICOLSON. With homogeneous boundary conditions and forc-

ing terms equal to zero, Algorithm (1.3.1) is unconditionally stable with respect to the

modified energy F (𝑅 𝑗 ).
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Proof. Stability follows directly from [50]. Set 𝒗𝒉 to 𝑢
𝑛+1/2
𝑗 ,ℎ

in (1.28), 𝝌𝒉 to 𝑠𝑩𝑛+1/2
𝑗 ,ℎ

in (1.30), add each of these to (1.34) and note (1.29) and (1.31). Then one gets

F (𝑅𝑛+1
𝑗 ,ℎ ) − F (𝑅𝑛

𝑗,ℎ) = −Δ𝑡
F (𝑅𝑛+1

𝑗 ,ℎ
)

𝐸 (�̄�𝑛+1
𝑗 ,ℎ

, �̄�𝑛+1
𝑗 ,ℎ

)

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2
)
𝑑Ω (1.46)

+
[
1 −

F (𝑅𝑛+1
𝑗 ,ℎ

)
𝐸 (�̄�𝑛+1

𝑗 ,ℎ
, �̄�𝑛+1

𝑗 ,ℎ
)

]
|𝑆0 |Δ𝑡 +

F (𝑅𝑛+1
𝑗 ,ℎ

)
𝐸 (�̄�𝑛+1

𝑗 ,ℎ
, �̄�𝑛+1

𝑗 ,ℎ
)
𝑆0Δ𝑡.

Where 𝑆0 =
∫
Ω
𝒇 𝑛+1/2
𝑗 ,ℎ

· �̄�𝑛+1/2
𝑗 ,ℎ

𝑑Ω+
∫
Ω
𝑠(∇× 𝒈𝑛+1/2

𝑗 ,ℎ
) · �̄�𝑛+1/2

𝑗 ,ℎ
𝑑Ω. Solving for F (𝑅𝑛+1

𝑗 ,ℎ
) gives

F (𝑅𝑛+1
𝑗 ,ℎ ) =

F (𝑅𝑛
𝑗,ℎ
) + |𝑆0 |Δ𝑡

1 + Δ𝑡

𝐸 (�̄�𝑛+1
𝑗 ,ℎ

,�̄�𝑛+1
𝑗 ,ℎ

)

[∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2
)
𝑑Ω + (|𝑆0 | − 𝑆0)

] .
(1.47)

If 𝒇 𝑗 = 0 and ∇ × 𝒈 𝑗 = 0, then 𝑆0 = 0 and

F (𝑅𝑛+1
𝑗 ,ℎ ) =

F (𝑅𝑛
𝑗,ℎ
)

1 + Δ𝑡

𝐸 (�̄�𝑛+1
𝑗 ,ℎ

,�̄�𝑛+1
𝑗 ,ℎ

)

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1/2

𝑗 ,ℎ
|2
)
𝑑Ω

. (1.48)

Note the denominator in (1.48) is greater than or equal to 1. By definition (1.5), if 𝑅0
𝑗 ,ℎ

> 0,

then F (𝑅0
𝑗 ,ℎ
) > 0. In fact 𝑅0

𝑗 ,ℎ
would be initialized as G(𝐸 [𝒖0

𝑗
(𝑥), 𝑩0

𝑗
(𝑥)]), which by

definition (1.6) is guaranteed positive. Then by induction for any timestep 𝑛, F (𝑅𝑛+1
𝑗 ,ℎ

) > 0,

giving us

0 < F (𝑅𝑛+1
𝑗 ,ℎ ) ≤ F (𝑅𝑛

𝑗,ℎ), 𝑛 ≥ 0. (1.49)

This completes the proof. □

1.4.1.1. Crank-Nicolson Scalar Positivity. The scalar 𝜉 𝑗 in (1.58) and 𝑅𝑛+1
𝑗

in

(1.60) are guaranteed to be positive at all timesteps.
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Proof. By definition (1.5), F (𝑅0
𝑗
) > 0 so long as 𝑅0

𝑗
> 0. It’s explained in

(1.4.1) that 𝑅0
𝑗

will be positive. The energy function 𝐸 (𝑢, 𝐵) is always positive and∫
Ω

(
𝜈 |∇𝑢 |2 + 𝑠𝛾 |∇𝐵 |2

)
𝑑Ω ≥ 0. Since |𝑆0 | − 𝑆0 ≥ 0, the initially computed 𝜉 𝑗 is ensured

positive. Then by induction, 𝜉 𝑗 at any timestep is guaranteed positive.

Once it’s ensured 𝜉 𝑗 > 0, from the definition (1.6) we can guarantee 𝑅𝑛+1
𝑗

in (1.60)

is positive. This completes the proof. □

1.4.2. BDF2 STABILITY. With homogeneous boundary conditions and forcing

terms equal to zero, Algorithm (1.3.1) is unconditionally stable with respect to the modified

energy F (𝑅 𝑗 ) as long as the approximations of 𝑅 𝑗 (𝑡) at timestep 1
2 are positive. Proof. If

one sets 𝒗𝒉 to 𝑢𝑛+1
𝑗 ,ℎ

in (1.35) and 𝝌𝒉 to 𝑠𝑩𝑛+1
𝑗 ,ℎ

in (1.37), subtracts each of these from (1.41)

and notes (1.36) and (1.38), the proof follows identically to [50]. We have

F (𝑅∗𝑛+3/2
𝑗 ,ℎ

) − F (𝑅∗𝑛+1/2
𝑗 ,ℎ

) = −Δ𝑡
F (𝑅∗𝑛+3/2

𝑗 ,ℎ
)

𝐸 (�̄�𝑛+3/2
𝑗 ,ℎ

, �̄�𝑛+3/2
𝑗 ,ℎ

)

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ |
2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ |
2
)
𝑑Ω

(1.50)

+
1 −

F (𝑅∗𝑛+3/2
𝑗 ,ℎ

)

𝐸 (�̄�𝑛+3/2
𝑗 ,ℎ

, �̄�𝑛+3/2
𝑗 ,ℎ

)

 |𝑆0 |Δ𝑡 +
F (𝑅∗𝑛+3/2

𝑗 ,ℎ
)

𝐸 (�̄�𝑛+3/2
𝑗 ,ℎ

, �̄�𝑛+3/2
𝑗 ,ℎ

)
𝑆0Δ𝑡.

Where 𝑆0 =
∫
Ω
𝒇 𝑛+1
𝑗 ,ℎ

· �̄�𝑛+1
𝑗 ,ℎ

𝑑Ω +
∫
Ω
𝑠(∇ × 𝒈𝑛+1

𝑗 ,ℎ
) · �̄�𝑛+1

𝑗 ,ℎ
𝑑Ω. Solving for F (𝑅∗𝑛+3/2

𝑗 ,ℎ
) gives

F (𝑅∗𝑛+3/2
𝑗 ,ℎ

) =
F (𝑅∗𝑛+1/2

𝑗 ,ℎ
) + |𝑆0 |Δ𝑡

1 + Δ𝑡

𝐸 (�̄�𝑛+3/2
𝑗 ,ℎ

,�̄�𝑛+3/2
𝑗 ,ℎ

)
[
∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ
|2
)
𝑑Ω + (|𝑆0 | − 𝑆0)]

.

(1.51)

If 𝒇 𝑗 = 0 and ∇ × 𝒈 𝑗 = 0, then 𝑆0 = 0 and

F (𝑅∗𝑛+3/2
𝑗 ,ℎ

) =
F (𝑅∗𝑛+1/2

𝑗 ,ℎ
)

1 + Δ𝑡

𝐸 (�̄�𝑛+3/2
𝑗 ,ℎ

,�̄�𝑛+3/2
𝑗 ,ℎ

)

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1

𝑗 ,ℎ
|2
)
𝑑Ω

. (1.52)
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The denominator above is greater than or equal to 1. Now by definition (1.5), if it’s ensured

the approximation of 𝑅 𝑗 (𝑡) at timestep 1/2 is positive, i.e. 𝑅
∗1/2
𝑗 ,ℎ

> 0, then F (𝑅∗1/2
𝑗 ,ℎ

) > 0.

Then by induction for any timestep 𝑛, F (𝑅∗𝑛+3/2
𝑗 ,ℎ

) > 0 and

0 < F (𝑅∗𝑛+3/2
𝑗 ,ℎ

) ≤ F (𝑅∗𝑛+1/2
𝑗 ,ℎ

), 𝑛 ≥ 0. (1.53)

This completes the proof. □

1.4.2.1. BDF2 Scalar Positivity. The scalar 𝜉 𝑗 in (1.5.2) and 𝑅𝑛+1
𝑗

in (1.67) are

guaranteed to be positive at all timesteps if the approximation 𝑅
∗1/2
𝑗

> 0.

Proof. Again by definition (1.5), F (𝑅∗1/2
𝑗

) > 0 so long as approximation 𝑅
∗1/2
𝑗

> 0. The

argument for positivity of 𝜉 𝑗 proceeds identically to that made in the proof of Theorem

(1.4.1.1). Once it’s ensured 𝜉 𝑗 > 0, again from definition (1.6) we can guarantee 𝑅
∗𝑛+3/2
𝑗

in

(1.66) is positive. It’s also guaranteed 𝑅0
𝑗

is positive from the previously stated point that

it would be initialized as G(𝐸 (𝒖0
𝑗
(𝑥), 𝑩0

𝑗
(𝑥))). Thus we conclude 𝑅𝑛+1

𝑗
in (1.67) remains

positive. This completes the proof. □

Note that for the choice of F (𝜒) = 𝜒2 ≥ 0 for all 𝜒 ∈ (−∞,∞), (1.53) and

unconditional stability will hold regardless of whether 𝑅∗1/2
𝑗 ,ℎ

> 0.

1.5. IMPLEMENTATION

Since the schemes are linear and the auxiliary variables are scalar functions of time

variable, the resulting systems can be solved conveniently by superposition of a series of

Stokes-type equations. We illustrate the idea by presenting the algorithms in strong form.

1.5.1. CRANK-NICOLSON. To efficiently implement Algorithm (1.1.2), we pro-

ceed in the following manner. Assume

𝑢𝑛+1
𝑗 = �̂�𝑛+1

𝑗 + 𝜉 𝑗 �̆�
𝑛+1
𝑗 , 𝑝𝑛+1

𝑗 = 𝑝𝑛+1
𝑗 + 𝜉 𝑗 𝑝

𝑛+1
𝑗 ,

𝑩𝑛+1
𝑗 = �̂�𝑛+1

𝑗 + 𝜉 𝑗 �̆�
𝑛+1
𝑗 , 𝜆𝑛+1

𝑗 = �̂�𝑛+1
𝑗 + 𝜉 𝑗 �̆�

𝑛+1
𝑗 .
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Then solving Algorithm (1.1.2) is equivalent to solving the following subproblems, Given

𝑢𝑛−2
𝑗

, 𝑢𝑛−1
𝑗

, 𝑢𝑛
𝑗
, 𝑩𝑛−2

𝑗
, 𝑩𝑛−1

𝑗
, 𝑩𝑛

𝑗
, 𝑝𝑛

𝑗
and 𝜆𝑛

𝑗
,

Sub-problem 1: find �̂�𝑛+1
𝑗

, �̂�𝑛+1
𝑗

, 𝑝𝑛+1
𝑗

and �̂�𝑛+1
𝑗

satisfying

1
Δ𝑡

�̂�𝑛+1
𝑗 − �̄�𝑛

2
Δ�̂�𝑛+1

𝑗 + 1
2
∇𝑝𝑛+1

𝑗 = 𝒇 𝑛+1/2
𝑗

+ 1
Δ𝑡

𝑢𝑛𝑗 + 𝜈′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

(1.54a)

+ �̄�𝑛

2
Δ𝑢𝑛𝑗 −

1
2
∇𝑝𝑛𝑗 ,

∇ · �̂�𝑛+1
𝑗 = 0, (1.54b)

1
Δ𝑡

�̂�𝑛+1
𝑗 − �̄�𝑛

2
Δ�̂�𝑛+1

𝑗 + 1
2
∇�̂�𝑛+1

𝑗 = ∇ × 𝒈𝑛+1/2
𝑗

+ 1
Δ𝑡

𝑩𝑛
𝑗 +

�̄�𝑛

2
Δ𝑩𝑛

𝑗 (1.54c)

+ 𝛾′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− 1
2
∇𝜆𝑛𝑗 ,

∇ · �̂�𝑛+1
𝑗 = 0, (1.54d)

Sub-problem 2: find �̆�𝑛+1
𝑗

, �̆�𝑛+1
𝑗

, 𝑝𝑛+1
𝑗

and �̆�𝑛+1
𝑗

satisfying

1
Δ𝑡

�̆�𝑛+1
𝑗 − �̄�𝑛

2
Δ�̆�𝑛+1

𝑗 + 1
2
∇𝑝𝑛+1

𝑗 = 𝑠

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2

𝑗
−

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2
𝑗

, (1.55a)

∇ · �̆�𝑛+1
𝑗 = 0, (1.55b)

1
Δ𝑡

�̆�𝑛+1
𝑗 + 1

2
∇�̆�𝑛+1

𝑗 − �̄�𝑛

2
Δ�̆�𝑛+1

𝑗 =

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2
𝑗

−
(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2

𝑗
, (1.55c)

∇ · �̆�𝑛+1
𝑗 = 0. (1.55d)

For inhomogeneous Dirichlet boundary conditions, let

�̂�𝑛+1
𝑗 = 𝑔(𝑥, 𝑡𝑛+1), �̆�𝑛+1

𝑗 = 0, �̂�𝑛+1
𝑗 = ℎ(𝑥, 𝑡𝑛+1), �̆�𝑛+1

𝑗 = 0 on 𝜕Ω.

We use the following approximations,


�̄�𝑛+1
𝑗 = �̂�𝑛+1

𝑗 + �̆�𝑛+1
𝑗 , (1.56)

�̄�𝑛+1/2
𝑗

=
1
2
(�̄�𝑛+1

𝑗 + 𝒗𝑛). (1.57)
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This is a reasonable approximation to use since 𝜉 𝑗 is a second order approximation to 1 and

is necessary for our equations to result in a linear update of 𝜉 𝑗 . We then update 𝜉 𝑗 as

𝜉 𝑗 =
F (𝑅𝑛

𝑗
) + |𝑆0 |Δ𝑡

𝐸 (�̄�𝑛+1
𝑗

, �̄�𝑛+1
𝑗

) + Δ𝑡
∫
Ω

(
𝜈 |∇�̄�𝑛+1/2

𝑗
|2 + 𝑠𝛾 |∇�̄�𝑛+1/2

𝑗
|2
)
𝑑Ω + Δ𝑡 ( |𝑆0 | − 𝑆0)

, (1.58)

where

𝑆0 =

∫
Ω

𝒇 𝑛+1/2
𝑗

· �̄�𝑛+1/2
𝑗

𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1/2
𝑗

) · �̄�𝑛+1/2
𝑗

𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1/2
𝑗

, �̄�𝑛+1/2
𝑗

)𝑑Γ.

(1.59)

Notice 𝜉 𝑗 is updated via a linear equation and is very direct. Once we have 𝜉 𝑗 we update

𝑅𝑛+1
𝑗 = G

(
𝜉 𝑗𝐸 (�̄�𝑛+1

𝑗 , �̄�𝑛+1
𝑗 )

)
(1.60)

and proceed to the next timestep iteration. Since 𝜉 𝑗 is a ratio of the SAV to itself, we should

expect the result to be close to one. With our ensemble approach in (1.54)-(1.55), all 𝐽

realizations have the same coefficient matrix in each timestep so should be computationally

efficient.

1.5.2. BDF2. For Algorithm (1.1.3), we develop an efficient implementation with

the same approach. Note solving Algorithm (1.1.3) is equivalent to the following, Given

𝒖𝑛
𝑗
, 𝑩𝑛

𝑗
and 𝑝𝑛

𝑗
, Sub-problem 1: find �̂�𝑛+1

𝑗
, �̂�𝑛+1

𝑗
, 𝑝𝑛+1

𝑗
and �̂�𝑛+1

𝑗
satisfying

3
2Δ𝑡

�̂�𝑛+1
𝑗 − �̄�𝑛Δ�̂�𝑛+1

𝑗 + ∇𝑝𝑛+1
𝑗 = 𝒇 𝑛+1

𝑗 + 2
Δ𝑡

𝑢𝑛𝑗 −
1

2Δ𝑡
𝑢𝑛−1
𝑗 + 𝜈′𝑛𝑗 Δ, (1.61a)

∇ · �̂�𝑛+1
𝑗 = 0, (1.61b)

3
2Δ𝑡

�̂�𝑛+1
𝑗 − �̄�𝑛Δ�̂�𝑛+1

𝑗 + ∇�̂�𝑛+1
𝑗 = ∇ × 𝒈𝑛+1

𝑗 + 2
Δ𝑡

𝑩𝑛
𝑗 −

1
2Δ𝑡

𝑩𝑛−1
𝑗 + 𝛾′𝑛𝑗 Δ, (1.61c)

∇ · �̂�𝑛+1
𝑗 = 0, (1.61d)
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Sub-problem 2: find �̆�𝑛+1
𝑗

, �̆�𝑛+1
𝑗

, 𝑝𝑛+1
𝑗

and �̆�𝑛+1
𝑗

satisfying

3
2Δ𝑡

�̆�𝑛+1
𝑗 − �̄�𝑛Δ�̆�𝑛+1

𝑗 + ∇𝑝𝑛+1
𝑗 = 𝑠

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1

𝑗 −
(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1
𝑗 , (1.62a)

∇ · �̂�𝑛+1
𝑗 = 0, (1.62b)

3
2Δ𝑡

�̆�𝑛+1
𝑗 − �̄�𝑛Δ�̆�𝑛+1

𝑗 + ∇�̆�𝑛+1
𝑗 =

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1
𝑗 −

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1

𝑗 , (1.62c)

∇ · �̂�𝑛+1
𝑗 = 0. (1.62d)

We use the following approximations,


�̄�𝑛+1
𝑗 = �̂�𝑛+1

𝑗 + �̆�𝑛+1
𝑗 , (1.63)

�̄�𝑛+3/2
𝑗

=
3
2
�̄�𝑛+1
𝑗 − 1

2
𝒗𝑛. (1.64)

again noting 𝜉 𝑗 is a second order approximation to 1. We update 𝜉 𝑗 as

𝜉 𝑗 =
F (𝑅∗𝑛+1/2

𝑗
) + |𝑆0 |Δ𝑡

𝐸 (�̄�𝑛+3/2
𝑗

, �̄�𝑛+3/2
𝑗

) + Δ𝑡
∫
Ω

(
𝜈 |∇�̄�𝑛+1

𝑗
|2 + 𝑠𝛾 |∇�̄�𝑛+1

𝑗
|2
)
𝑑Ω + Δ𝑡 ( |𝑆0 | − 𝑆0)

, (1.65)

where

𝑆0 =

∫
Ω

𝒇 𝑛+1
𝑗 · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ) · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 )𝑑Γ.

Once we have 𝜉 𝑗 we update 𝑅𝑛+1
𝑗

as follows:


𝑅
∗𝑛+3/2
𝑗

= G
(
𝜉 𝑗𝐸 (�̄�𝑛+3/2

𝑗
, �̄�𝑛+3/2

𝑗
)
)
, (1.66)

𝑅𝑛+1
𝑗 =

2
3
𝑅
∗𝑛+3/2
𝑗

+ 1
3
𝑅𝑛
𝑗 . (1.67)

and proceed to the next timestep iteration.



43

1.6. NUMERICAL TESTS

This section will present numerical results for Algorithms (1.3.1) and (1.3.1) to

demonstrate the expected convergence rates and the stability proven previously. We set

F (𝜒) = 𝜒2 and the corresponding G(𝜒) = √
𝜒 in every experiment. Throughout these tests

we’ll use the finite element triplet (𝑃2–𝑃1–𝑃2), and the finite element software package

FEniCS [24].

1.6.1. CONVERGENCE TEST. To verify the expected convergence rates, we

will use a variation of the test problem in [65]. Take the time interval 0 ≤ 𝑡 ≤ 1 and domain

Ω = [0, 1]2. Define the true solution (𝑢, 𝑝, 𝐵) as



𝑢𝜖 =
(
𝑦5 + 𝑡2, 𝑥5 + 𝑡2

)
(1 + 𝜖),

𝑝𝜖 = 10(2𝑥 − 1) (2𝑦 − 1) (1 + 𝑡2) (1 + 𝜖),

𝐵𝜖 =
(
sin (𝜋𝑦) + 𝑡2, sin (𝜋𝑥) + 𝑡2

)
(1 + 𝜖),

(1.68)

where 𝜖 is a given perturbation. For this problem we will consider two perturbations

𝜖1 = 10−1 and 𝜖2 = −10−1. The kinematic viscosity and magnetic resistivity are defined as

𝜈𝜖 = 0.5 · (1 + 𝜖) and 𝛾𝜖 = 0.5 · (1 + 𝜖). The source terms and initial conditions correspond

with the exact solution for the given perturbation. For each algorithm we initialize 𝑢 𝑗 , 𝐵 𝑗 ,

𝑝 𝑗 or 𝜆 𝑗 using the exact solution. The results are displayed in tables (1.1)-(1.8) both with

regularization and without (𝛼 = 𝛼𝑀 = 0). Under this test, we indeed observe second order

convergence with and without regularization. In this particular test on a short time interval,

we also observe the algorithm with regularization achieves relatively similar accuracy to

the algorithm without.
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Table 1.1. Crank-Nicolson error and convergence rates for the first ensemble member in 𝑢ℎ
and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢1 − 𝑢1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢1 − ∇𝑢1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 9.191 e-4 — 4.985 e-3 —

1/20 1/16 2.088 e-4 2.138 1.399 e-3 1.834

1/40 1/32 4.810 e-5 2.118 3.679 e-4 1.927

1/80 1/64 1.154 e-5 2.060 9.422 e-5 1.965

1/160 1/128 2.889 e-6 1.998 2.384 e-5 1.983

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 3.912 e-4 — 4.741 e-3 —

1/20 1/16 6.032 e-5 2.697 1.355 e-3 1.807

1/40 1/32 9.532 e-6 2.662 3.579 e-4 1.920

1/80 1/64 2.208 e-6 2.110 9.179 e-5 1.963

Table 1.2. Crank-Nicolson error and convergence rates for the first ensemble member in 𝐵ℎ

and ∇𝐵ℎ.

h Δ𝑡 ∥𝐵1 − 𝐵1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵1 − ∇𝐵1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 2.566 e-4 — 3.013 e-3 —

1/20 1/16 5.0568 e-5 2.343 8.451 e-4 1.834

1/40 1/32 1.150 e-5 2.136 2.223 e-4 1.927

1/80 1/64 2.746 e-6 2.067 5.694 e-5 1.965

1/160 1/128 6.869 e-7 1.999 1.440 e-5 1.983

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 1.512 e-4 — 2.909 e-3 —

1/20 1/16 2.138 e-5 2.822 8.298 e-4 1.810

1/40 1/32 3.082 e-6 2.795 2.191 e-4 1.921

1/80 1/64 6.830 e-7 2.174 5.619 e-5 1.964
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Table 1.3. Crank-Nicolson error and convergence rates for the second ensemble member in
𝑢ℎ and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢2 − 𝑢2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢2 − ∇𝑢2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 2.020 e-3 — 5.498 e-3 —

1/20 1/16 4.897 e-4 2.045 1.433 e-3 1.940

1/40 1/32 9.342 e-5 2.390 3.701 e-4 1.953

1/80 1/64 1.560 e-5 2.582 9.440 e-5 1.971

1/160 1/128 2.923 e-6 2.416 2.385 e-5 1.985

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 4.070 e-4 — 4.753 e-3 —

1/20 1/16 6.277 e-5 2.697 1.357 e-3 1.809

1/40 1/32 1.134 e-5 2.469 3.584 e-4 1.921

1/80 1/64 2.649 e-6 2.097 9.190 e-5 1.964

Table 1.4. Crank-Nicolson error and convergence rates for the second ensemble member in
𝐵ℎ and ∇𝐵ℎ.

h Δ𝑡 ∥𝐵2 − 𝐵2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵2 − ∇𝐵2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 7.455 e-4 — 3.376 e-3 —

1/20 1/16 1.666 e-4 2.162 8.700 e-4 1.956

1/40 1/32 3.097 e-5 2.427 2.239 e-4 1.958

1/80 1/64 5.113 e-6 2.598 5.706 e-5 1.973

1/160 1/128 7.772 e-7 2.718 1.442 e-5 1.985

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 1.567 e-4 — 2.915 e-3 —

1/20 1/16 2.222 e-5 2.818 8.308 e-4 1.811

1/40 1/32 3.664 e-6 2.600 2.193 e-4 1.922

1/80 1/64 8.188 e-7 2.162 5.622 e-5 1.964
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Table 1.5. BDF2 error and convergence rates for the first ensemble member in 𝑢ℎ and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢1 − 𝑢1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢1 − ∇𝑢1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 7.413 e-4 — 5.804 e-3 —

1/20 1/16 1.891 e-4 1.971 1.495 e-3 1.957

1/40 1/32 4.790 e-5 1.981 3.793 e-4 1.978

1/80 1/64 1.183 e-5 2.018 9.557 e-5 1.989

1/160 1/128 2.944 e-6 2.006 2.399 e-5 1.994

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 4.528 e-4 — 5.601 e-3 —

1/20 1/16 6.215 e-5 2.865 1.453 e-3 1.947

1/40 1/32 7.946 e-6 2.968 3.694 e-4 1.976

1/80 1/64 1.339 e-6 2.570 9.310 e-5 1.988

Table 1.6. BDF2 error and convergence rates for the first ensemble member in 𝐵ℎ and ∇𝐵ℎ.

h Δ𝑡 ∥𝐵1 − 𝐵1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵1 − ∇𝐵1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 1.868 e-4 — 3.502 e-3 —

1/20 1/16 3.792 e-5 2.301 9.005 e-4 1.960

1/40 1/32 9.133 e-6 2.054 2.285 e-4 1.979

1/80 1/64 2.300 e-6 1.990 5.756 e-5 1.989

1/160 1/128 5.816 e-7 1.983 1.445 e-5 1.994

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 1.649 e-4 — 3.438 e-3 —

1/20 1/16 2.185 e-5 2.916 8.904 e-4 1.949

1/40 1/32 2.772 e-6 2.978 2.263 e-4 1.976

1/80 1/64 4.182 e-7 2.729 5.705 e-5 1.988
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Table 1.7. BDF2 error and convergence rates for the second ensemble member in 𝑢ℎ and
∇𝑢ℎ.

h Δ𝑡 ∥𝑢2 − 𝑢2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢2 − ∇𝑢2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 7.762 e-4 — 5.806 e-3 —

1/20 1/16 1.880 e-4 2.045 1.495 e-3 1.957

1/40 1/32 4.699 e-5 2.001 3.795 e-4 1.978

1/80 1/64 1.186 e-5 1.987 9.561 e-5 1.989

1/160 1/128 2.964 e-6 2.001 2.400 e-5 1.994

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 4.531 e-4 — 5.603 e-3 —

1/20 1/16 6.218 e-5 2.865 1.453 e-3 1.947

1/40 1/32 7.964 e-6 2.965 3.695 e-4 1.976

1/80 1/64 1.547 e-6 2.364 9.314 e-5 1.988

Table 1.8. BDF2 error and convergence rates for the second ensemble member in 𝐵ℎ and
∇𝐵ℎ.

h Δ𝑡 ∥𝐵2 − 𝐵2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵2 − ∇𝐵2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 1.918 e-4 — 3.505 e-3 —

1/20 1/16 3.930 e-5 2.287 9.013 e-4 1.960

1/40 1/32 9.605 e-6 2.033 2.287 e-4 1.979

1/80 1/64 2.425 e-6 1.986 5.761 e-5 1.989

1/160 1/128 6.129 e-7 1.984 1.446 e-5 1.994

Reg with 𝛼 = 𝛼𝑀 = 0.5

1/10 1/8 1.649 e-3 — 3.439 e-3 —

1/20 1/16 2.185 e-4 2.916 8.906 e-4 1.949

1/40 1/32 2.772 e-4 2.978 2.264 e-4 1.976

1/80 1/64 4.880 e-5 2.506 5.706 e-5 1.988
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1.6.2. EFFICIENCY TEST. In this experiment we repeat the numerical methods

used above with the same problem, except we set 𝜈𝜖 = 1.0 · (1 + 𝜖), 𝛾𝜖 = 0.2 · (1 + 𝜖) and

analyze 11 perturbations 𝜖𝑖 = 10−1 − 0.009 ∗ 𝑖, 𝑖 = 0, . . . , 10. We compare the performance

speed and accuracy of Algorithms (1.3.1) and (1.3.1) with the corresponding nonensemble

GPAV methods, where no ensemble mean is used and the linear systems for each perturba-

tion are solved in serial. To do this, we list the CPU runtime in seconds and error norm of the

average of all 11 velocities and magnetic fields, labeled as �̄�𝑛 and �̄�𝑛, for each computation.

As can be seen in the tables (1.9)-(1.12) below, the second order ensemble methods obtain

the same accuracy as the nonensemble trials, while requiring significantly less runtime.

Table 1.9. Error and CPU time for computing �̄�ℎ and �̄�ℎ with Algorithm 1.3.1.

h Δ𝑡 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 CPU time (s)

1/5 1/40 3.099 e-3 1.220 e-3 2.117 e+0

1/10 1/80 4.782 e-4 1.716 e-4 7.622 e+0

1/20 1/160 6.294 e-5 2.218 e-5 3.911 e+1

1/40 1/320 7.968 e-6 2.802 e-6 2.905 e+2

1/80 1/640 1.005 e-6 4.450 e-7 2.181 e+3

Table 1.10. Error and CPU time for computing �̄�ℎ and �̄�ℎ with nonensemble CN algorithm.

h Δ𝑡 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 CPU time (s)

1/10 1/80 4.783 e-4 1.718 e-4 1.694 e+1

1/20 1/160 6.294 e-5 2.219 e-5 1.144 e+2

1/40 1/320 7.968 e-6 2.802 e-6 8.362 e+2

1/80 1/640 1.004 e-6 7.730 e-7 6.895 e+3
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Table 1.11. Error and CPU time for computing �̄�ℎ and �̄�ℎ with Algorithm 1.3.1.

h Δ𝑡 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 CPU time (s)

1/5 1/40 3.609 e-3 1.331 e-3 2.768 e+0

1/10 1/80 4.961 e-4 1.750 e-4 8.432 e+0

1/20 1/160 6.348 e-5 2.219 e-5 3.844 e+1

1/40 1/320 7.982 e-6 2.785 e-6 2.760 e+2

1/80 1/640 1.006 e-6 3.546 e-7 2.267 e+3

Table 1.12. Error and CPU time for computing �̄�ℎ and �̄�ℎ with nonensemble BDF2 algorith.

h Δ𝑡 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 ∥�̄� − �̄�𝑒𝑛,ℎ∥∞,0𝑟𝑒𝑙 CPU time (s)

1/10 1/80 4.962 e-4 1.750 e-4 1.674 e+1

1/20 1/160 6.348 e-5 2.219 e-5 1.152 e+2

1/40 1/320 7.982 e-6 2.785 e-6 8.233 e+2

1/80 1/640 1.006 e-6 3.549 e-7 6.720 e+3

1.6.3. STABILITY. Here we analyze the stability of the second order ensemble

methods. For the test problem, we will exclude external energy and body forces so that in

observation if the method is stable, the system energy should decay to zero as time passes.

We also use the initial conditions,



𝑢0
𝜖 = (𝑥2(𝑥 − 1)2𝑦(𝑦 − 1) (2𝑦 − 1),−𝑦2(𝑦 − 1)2𝑥(𝑥 − 1) (2𝑥 − 1)) (1 + 𝜖),

𝑝0
𝜖 = 0,

𝐵0
𝜖 = (sin (𝜋𝑥) cos (𝜋𝑦),− sin (𝜋𝑦) cos (𝜋𝑥)) (1 + 𝜖).
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We’ll consider an ensemble of two perturbations, 𝜖 = 10−1 and 𝜖 = −10−1. We fix the

coupling term 𝑠 = 1 and choose two different sets of viscosity and magnetic viscosity to

test, 𝜈 = 𝛾 = 0.1 and 𝜈 = 𝛾 = 0.02. The mesh discretization is fixed at ℎ = 1/50 and several

time steps are employed, with final time 𝑇 = 5.

Decay of total system energy to 𝑇 = 5 for Algo-

rithm (1.3.1) with 𝜈 = 𝛾 = 0.1.

Decay of total system energy to 𝑇 = 5 for Algo-

rithm (1.3.1) with 𝜈 = 𝛾 = 0.02.

Figure 1.1. Stability demonstrations of Crank-Nicolson Algorithm.

Decay of total system energy to 𝑇 = 5 for Algo-

rithm (1.3.1) with 𝜈 = 𝛾 = 0.1.

Decay of total system energy to 𝑇 = 5 for Algo-

rithm (1.3.1) with 𝜈 = 𝛾 = 0.02.

Figure 1.2. Stability demonstrations of BDF2 Algorithm.

1.6.4. CHAMBER FLOW. In this numerical test, we consider a channel flow in

a rectangular domain of length 2.2 units and height 0.41, with a cylinder of radius 0.05

centered at (0.2, 0.2), in the presence of a magnetic field. On the walls and around the

cylinder, a no-slip boundary condition is applied for velocity while magnetic field is kept
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constant as 𝐵 =< 0, 0.1 >𝑇 . We set the inflow and outflow conditions equal, choosing

𝑢 =< 6𝑦(0.41− 𝑦)/0.412 sin (𝜋𝑡/16.0), 0 >𝑇 and 𝐵 =< 0, 0.1 >𝑇 . The coupling term is set

to 𝑠 = 0.01 and for all realizations we fix 𝛾 = 0.1 then consider two cases, 𝜈 = 1/50 and

𝜈 = 1/1000.

We’ll use an ensemble of two different solutions with the initial and boundary

conditions perturbed by multiplicative factors of (1 ± 𝜖). We simulate the flow with

Algorithms (1.3.1) and (1.3.1) till final time 𝑇 = 8.8 with a mesh discretization fixed at

ℎ = 1/100. We set𝛼 = 𝛼𝑀 = 0 such that these tests are performed without the regularization

terms involved. In order to maintain accurate results up unto 𝑇 = 8.8, we find it necessary

to choose a time step of roughly Δ𝑡 = 1/1000 when 𝜈 = 1/50 and Δ𝑡 = 1/2000 when

𝜈 = 1/1000. The solutions under each perturbation for velocity are shown in Figures

(1.3)-(1.10) and for magnetic field in Figures (1.13)-(1.20). We also provide results for no

perturbation, that is, 𝜖 = 0. This is for comparison as we expect the ensemble solutions to

converge to the unperturbed results as 𝜖 → 0.

Figure 1.3. Ensemble solutions for first velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.4. Ensemble solutions for second velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.
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Figure 1.5. Ensemble solutions for first velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.

Figure 1.6. Ensemble solutions for second velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.

Figure 1.7. Ensemble solutions for first velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.8. Ensemble solutions for second velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.
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Figure 1.9. Ensemble solutions for first velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.

Figure 1.10. Ensemble solutions for second velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.

Figure 1.11. Algorithm (1.3.1) solution when 𝜖 = 0 for velocity at time 𝑇 = 8.8 with
𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.12. Algorithm (1.3.1) solution when 𝜖 = 0 for velocity at time 𝑇 = 8.8 with
𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.
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Figure 1.13. Ensemble solutions for first magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.14. Ensemble solutions for second magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.15. Ensemble solutions for first magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.

Figure 1.16. Ensemble solutions for second magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.
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Figure 1.17. Ensemble solutions for first magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.18. Ensemble solutions for second magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.02, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.19. Ensemble solutions for first magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.

Figure 1.20. Ensemble solutions for second magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.0005.
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Figure 1.21. Algorithm (1.3.1) solution when 𝜖 = 0 for magnetic field at time 𝑇 = 8.8 with
𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.22. Algorithm (1.3.1) solution when 𝜖 = 0 for magnetic field at time 𝑇 = 8.8 with
𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

1.6.5. CHAMBER FLOW WITH REGULARIZATION. Here we present the

same chamber flow problem implementing Algorithms (1.3.1) and (1.3.1) with nonzero

regularization coefficients. We choose 𝛼 = 𝜈 and 𝛼𝑀 = 𝛾 in each test. We’re able to achieve

similar accuracy to the previous section with coarser time step. The following numerical

results are achieved:

Figure 1.23. Ensemble solutions for first velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.
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Figure 1.24. Ensemble solutions for second velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.25. Ensemble solutions for first magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.26. Ensemble solutions for second magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.27. Ensemble solutions for first velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.
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Figure 1.28. Ensemble solutions for second velocity member at time 𝑇 = 8.8 for Algorithm
(1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.29. Ensemble solutions for first magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

Figure 1.30. Ensemble solutions for second magnetic field member at time 𝑇 = 8.8 for
Algorithm (1.3.1) with regularization and 𝜈 = 0.001, 𝛾 = 0.1 and Δ𝑡 = 0.001.

1.6.6. ACCURACY COMPARISON. In this section we present a comparison test

between the errors of the scheme with and without the regularization terms introduced in

Section 1.6.5. We use the same test as in 1.6.1, except this time we set 𝜈 = 1.0 and 𝛾 = 0.2.

We choose two perturbations of 𝜖 = 0.1 and 𝜖 = 0.2, with final time 𝑇 = 2.5. This time

we use only the 𝐿2 error norm of the result at final time 𝑇 . For the stabilization coeffi-

cients 𝛼 and 𝛼𝑀 , we set them equal to the viscosity and magnetic resistivity correspondingly.
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Table 1.13. Error for the first ensemble member in 𝑢ℎ.

h Δ𝑡 SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2

1/100 1/8 1.398 e-2 3.789 e-2 6.485 e-6 1.823 e-5

1/100 1/16 8.242 e-2 6.229 e-2 3.467 e-6 4.143 e-6

1/100 1/32 3.369 e-2 3.664 e-2 1.907 e-6 9.296 e-7

1/100 1/64 2.230 e-2 9.960 e-3 7.120 e-7 1.902 e-7

1/100 1/128 4.517 e-2 2.383 e-3 1.093 e-6 5.102 e-8

Table 1.14. Error for the first ensemble member in 𝐵ℎ.

h Δ𝑡 SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2

1/100 1/8 5.219 e-2 1.312 e-1 3.074 e-5 6.940 e-5

1/100 1/16 2.644 e-1 1.962 e-1 1.647 e-5 1.592 e-5

1/100 1/32 7.231 e-2 7.033 e-2 9.188 e-6 3.429 e-6

1/100 1/64 6.947 e-2 2.400 e-2 3.318 e-6 6.148 e-7

1/100 1/128 1.061 e-1 8.650 e-3 5.619 e-6 1.390 e-7
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ABSTRACT

We introduce an approach for solving the full Magnetohydrodynamics (MHD)

equations that combines the Generalized Positive Auxiliary Variable (GPAV) approach,

ensemble techniques and Artificial Compressibility (AC) method. The proposed scheme

applies the ensemble method to the viscosity and magnetic resistivity coefficients, the GPAV

to the nonlinear terms, and AC is used to update the pressure and solenoidal constraint on

the magnetic field. The resulting scheme is second-order accurate and unconditionally

stable with respect to the system energy.

Keywords: MHD, SAV, uncertainty quantification, ensemble algorithm, unconditional

stability, artificial compressibility

1.1. INTRODUCTION

The governing equations for Magnetohydrodynamics (MHD) are highly nonlinear,

and semi-implicit numerical schemes to solve these are notoriously unstable. Recently,

Scalar Auxiliary Variable (SAV) techniques have been developed to remedy this issue by

defining a type of lagrange multiplier in relation to the kinetic energy of the underlying equa-

tions. Generalized Positive Auxiliary Variable (GPAV) is a variant of SAV that guarantees

the solutions to the numerical scalar equation are real and positive.
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In this paper, we present a novel approach that combines an ensemble method,

GPAV, and Artificial Compressibility (AC) to solve the full MHD equations. An ensemble

mean is used to model the stochastic fluctuations in the viscosity and magnetic resistivity

coefficients, while GPAV is applied to the nonlinear terms. The AC method is utilized to

update the pressure and solenoidal constraint on the magnetic field.

The ensemble method allows for efficient and accurate simulations by sharing the

same coefficient matrix across different realizations and time steps. The GPAV approach

is flexible in handling complex boundary conditions. Though it lacks robustness, with the

addition of some regularization terms it can perform well in advection-dominated flows.

The AC method helps speed up computations by decoupling the pressure and solenoidal

constraint equations from the velocity and magnetic field equations respectively.

We present extensive numerical tests to demonstrate the accuracy and stability.

1.1.1. GOVERNING EQUATIONS. we consider solving 𝐽 times the following

MHD equations: for 𝑗 = 1, 2, ..., 𝐽,



𝒖 𝑗 ,𝑡 + 𝒖 𝑗 · ∇𝒖 𝑗 − 𝑠𝑩 𝑗 · ∇𝑩 𝑗 − 𝜈 𝑗Δ𝒖 𝑗 + ∇𝑝 𝑗 = 𝒇 𝑗 in Ω × (0, 𝑇),

∇ · 𝒖 𝑗 = 0, in Ω × (0, 𝑇),

𝑩 𝑗 ,𝑡 + 𝒖 𝑗 · ∇𝑩 𝑗 − 𝑩 𝑗 · ∇𝒖 𝑗 − 𝛾 𝑗Δ𝑩 𝑗 + ∇𝜆 𝑗 = ∇ × 𝒈 𝑗 in Ω × (0, 𝑇),

∇ · 𝑩 𝑗 = 0, in Ω × (0, 𝑇),

𝒖 𝑗 (𝑥, 0) = 𝒖0
𝑗 (𝑥), in Ω, 𝑩 𝑗 (𝑥, 0) = 𝑩0

𝑗 (𝑥), in Ω.

(1.1)

Here 𝒖 𝑗 is the fluid velocity, 𝑝 𝑗 the pressure, 𝑩 𝑗 the magnetic field and 𝜆 𝑗 is a Lagrange

multiplier corresponding to the solenoidal constraint on 𝑩 𝑗 [41]. The body force 𝒇 𝑗 (𝑥, 𝑡)

and ∇ × 𝒈 𝑗 are given, 𝑠 is the coupling number, 𝜈 𝑗 is the kinematic viscosity, and 𝛾 𝑗

is the magnetic resistivity. This is an equivalent formulation of the MHD equations, cf.

[41, 42, 60, 61].
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1.2. PROBLEM FORMULATION

To start, we define the ensemble mean and the fluctuation of the viscosity terms 𝜈𝑛
𝑗

and the electric potential 𝛾𝑛
𝑗

at timestep 𝑛 respectively

�̄�𝑛 =
1
𝐽

𝐽∑︁
𝑗=1

𝜈𝑛𝑗 and �̄�𝑛 =
1
𝐽

𝐽∑︁
𝑗=1

𝛾𝑛𝑗 , (mean)

𝜈′𝑛𝑗 = 𝜈𝑛𝑗 − �̄�𝑛 and 𝛾′𝑛𝑗 = 𝛾𝑛𝑗 − �̄�𝑛, (fluctuation)

𝜈′max = max
𝑗

max
𝑥∈Ω

|𝜈′𝑛𝑗 (𝑥) | and 𝛾′max = max
𝑗

max
𝑥∈Ω

|𝛾′𝑛𝑗 (𝑥) |,

where in our considerations 𝜈𝑛
𝑗
= 𝜈 𝑗 , 𝛾𝑛𝑗 = 𝛾 𝑗 are constants and 𝑡𝑛 = 𝑛Δ𝑡 (𝑛 = 0, 1, 2, ...).

Define

𝛿𝑡𝑣
𝑛+1 =

1
2Δ𝑡

(3𝒗𝑛+1 − 4𝒗𝑛 + 𝒗𝑛−1), �̃�𝑛+1/2 = 2𝒗𝑛−1/2 − 𝒗𝑛−3/2, (1.2)

𝒗∗𝑛+1/2 =
3
2
𝒗𝑛 − 1

2
𝒗𝑛−1, �̃�𝑛+1 = 2𝒗𝑛 − 𝒗𝑛−1. (1.3)

The pressure terms in (1.1) lead to a coupled saddle point problem. It is desireable

to compute them seperately, especially in three dimension. For this purpose, we adopt the

artificial compression technique. The divergence-free conditions are approximated by the

following equations

∇ · u 𝑗 + 𝜖 𝑝 𝑗 ,𝑡 = 0, (1.4)

∇ · B 𝑗 + 𝜖𝜆 𝑗 ,𝑡 = 0. (1.5)

It is straightforward to verify that the modified system admits an energy

𝐸 𝑗 (𝑡) =
∫
Ω

1
2
|𝒖 𝑗 |2𝑑Ω +

∫
Ω

𝑠

2
|𝑩 𝑗 |2𝑑Ω + 𝜖

2

∫
Ω

( |𝑝 𝑗 |2 + |𝜆 𝑗 |2)𝑑Ω. (1.6)
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Next, let F be any one-to-one increasing differentiable function with F −1 = G such

that { F (𝜒) > 0, 𝜒 > 0, (1.7)

G(𝜒) > 0, 𝜒 > 0. (1.8)

The scalar variable 𝑅 𝑗 (𝑡) is defined by

𝑅 𝑗 (𝑡) = G(𝐸 𝑗 ), (1.9)

𝐸 𝑗 (𝑡) = F (𝑅 𝑗 ). (1.10)

Since F (𝑅 𝑗 )
𝐸 𝑗

= 1 for all 𝑗 , we may write

F ′(𝑅 𝑗 )
𝑑𝑅 𝑗

𝑑𝑡
=

∫
Ω

[
𝒖 𝑗 ·

𝜕𝒖 𝑗

𝜕𝑡
+ 𝑠𝑩 𝑗 ·

𝜕𝑩 𝑗

𝜕𝑡
+ 𝜖 𝑝 𝑗

𝜕𝑝 𝑗

𝜕𝑡
+ 𝜖𝜆 𝑗

𝜕𝜆 𝑗

𝜕𝑡

]
𝑑Ω (1.11)

−
∫
Ω

𝒖 𝑗 ·
(
𝜈 𝑗Δ𝒖 𝑗 − ∇𝑝 𝑗 +

F (𝑅 𝑗 )
𝐸 𝑗

[𝑩 𝑗 · ∇𝑩 𝑗 − 𝒖 𝑗 · ∇𝒖 𝑗 ] + 𝒇 𝑗

)
𝑑Ω

−
∫
Ω

𝑠𝑩 𝑗 ·
(
𝛾 𝑗Δ𝑩 𝑗 − ∇𝜆 𝑗 +

F (𝑅 𝑗 )
𝐸 𝑗

[𝑩 𝑗 · ∇𝒖 𝑗 − 𝒖 𝑗 · ∇𝑩 𝑗 ] + ∇ × 𝒈 𝑗

)
𝑑Ω

+
∫
Ω

𝑝 𝑗∇ · u 𝑗 + 𝜆 𝑗∇ · B 𝑗𝑑Ω

+
F (𝑅 𝑗 )
𝐸 𝑗

[
−

∫
Ω

(𝜈 𝑗 |∇𝒖 𝑗 |2 + 𝑠𝛾 𝑗 |∇𝑩 𝑗 |2)𝑑Ω

+
∫
Ω

( 𝒇 𝑗 · 𝒖 𝑗 + 𝑠(∇ × 𝒈 𝑗 ) · 𝑩 𝑗 )𝑑Ω +
∫
Γ

𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 )𝑑Γ
]

+
[
1 −

F (𝑅 𝑗 )
𝐸 𝑗

] ����� ∫Ω

( 𝒇 𝑗 · 𝒖 𝑗 + 𝑠(∇ × 𝒈 𝑗 ) · 𝑩 𝑗 )𝑑Ω +
∫
Γ

𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 )𝑑Γ
�����,

where 𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 ) represents the forcing terms on the boundary, defined as

𝐵𝑆 (𝒖 𝑗 , 𝑩 𝑗 ) =
∫
Γ

(
− 1

2
|𝒖 𝑗 |2𝒖 𝑗 −

𝑠

2
|𝑩 𝑗 |2𝒖 𝑗 + 𝜈 𝑗∇𝒖 𝑗 · 𝒖 𝑗 − 𝑝 𝑗𝒖 𝑗 (1.12)

+ 𝑠(𝑩 𝑗 · 𝒖 𝑗 )𝑩 𝑗 + 𝑠𝛾 𝑗∇𝑩 𝑗 · 𝑩 𝑗 − 𝑠𝜆 𝑗𝑩 𝑗

)
· �̂� 𝑑Γ
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and �̂� is the unit normal vector to the boundary.

As will be seen later, we consider this reformulation (including the addition of the

terms within absolute value brackets) as a means of constructing numerical schemes that

inherit unconditional stability with respect to the modified energy F (𝑅 𝑗 ) and guaranteed

positivity of a computed scalar variable 𝜉 𝑗 to be defined.

1.2.1. BDF2 ALGORITHM. Based on the system (1.1), the artificial compression

formulation (1.4) and (1.5) with 𝜖 = (Δ𝑡)2, and the scalar equation (1.11), a (semi-discrete)

second order backward differentiation scheme is as follows: Given 𝒖𝑛−1
𝑗

, 𝒖𝑛
𝑗
, 𝑩𝑛−1

𝑗
, 𝑩𝑛

𝑗
, find

𝒖𝑛+1
𝑗

, 𝑩𝑛+1
𝑗

, 𝑝𝑛+1
𝑗

and 𝜆𝑛+1
𝑗

satisfying

(
3𝑢𝑛+1

𝑗
− 4𝑢𝑛

𝑗
+ 𝑢𝑛−1

𝑗

2Δ𝑡

)
= −𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1
𝑗 + 𝑠𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1

𝑗 + �̄�𝑛Δ𝑢𝑛+1
𝑗 (1.13)

+ 𝜈′𝑛𝑗 Δ�̃�
𝑛+1
𝑗 − ∇𝑝𝑛+1

𝑗 + 𝒇 𝑛+1
𝑗 ,

∇ · 𝑢𝑛+1
𝑗 + (Δ𝑡)2𝜖𝑝

(
3𝑝𝑛+1

𝑗
− 4𝑝𝑛

𝑗
+ 𝑝𝑛−1

𝑗

2Δ𝑡

)
= 0, (1.14)(

3𝑩𝑛+1
𝑗

− 4𝑩𝑛
𝑗
+ 𝑩𝑛−1

𝑗

2Δ𝑡

)
= 𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1
𝑗 − 𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1

𝑗 + �̄�𝑛Δ𝑩𝑛+1
𝑗 (1.15)

+ 𝛾′𝑛𝑗 Δ�̃�
𝑛+1
𝑗 − ∇�̃�𝑛+1

𝑗 + ∇ × 𝒈𝑛+1
𝑗 ,

∇ · 𝑩𝑛+1
𝑗 + (Δ𝑡)2𝜖𝜆

(
3𝜆𝑛+1

𝑗
− 4𝜆𝑛

𝑗
+ 𝜆𝑛−1

𝑗

2Δ𝑡

)
= 0, (1.16)

𝜉 𝑗 =
F (𝑅∗𝑛+3/2

𝑗
)

𝐸𝑛+3/2 , (1.17)

𝐸𝑛+3/2 =
1
2
∥�̄�𝑛+3/2

𝑗
∥2 + 𝑠

2
∥ �̄�𝑛+3/2

𝑗
∥2 + (Δ𝑡)2

2
(𝜖𝑝 | |𝑝𝑛+3/2

𝑗
| |2 + 𝜖𝜆 | |�̄�𝑛+3/2

𝑗
| |2) + 𝐶0,

F (𝑅∗𝑛+3/2
𝑗

) − F (𝑅∗𝑛+1/2
𝑗

)
Δ𝑡

=

∫
Ω

𝑢𝑛+1
𝑗 · 𝛿𝑡𝑢𝑛+1

𝑗 + 𝑠𝑩𝑛+1
𝑗 · 𝛿𝑡𝑩𝑛+1

𝑗 (1.18)

+(Δ𝑡)2(𝜖𝑝𝑝𝑛+1
𝑗 𝛿𝑡 𝑝

𝑛+1
𝑗 + 𝜖𝜆𝜆

𝑛+1
𝑗 𝛿𝑡𝜆

𝑛+1
𝑗 )𝑑Ω
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−
∫
Ω

𝑢𝑛+1
𝑗 ·

[
− 𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1
𝑗 + 𝑠𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1

𝑗

+ �̄�𝑛Δ𝑢𝑛+1
𝑗 + 𝜈′𝑛𝑗 Δ�̃�

𝑛+1
𝑗 − ∇𝑝𝑛+1

𝑗 + 𝒇 𝑛+1
𝑗

]
𝑑Ω

−
∫
Ω

𝑠𝑩𝑛+1
𝑗 ·

[
𝜉 𝑗

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1
𝑗 − 𝜉 𝑗

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1

𝑗

+ �̄�𝑛Δ𝑩𝑛+1
𝑗 + 𝛾′𝑛𝑗 Δ�̃�

𝑛+1
𝑗 − ∇�̃�𝑛+1

𝑗 + ∇ × 𝒈𝑛+1
𝑗

]
𝑑Ω

+
∫
Ω

𝑝𝑛+1
𝑗 ∇ · u𝑛+1

𝑗 + 𝜆𝑛+1
𝑗 ∇ · B𝑛+1

𝑗 𝑑Ω

+ 𝜉 𝑗

[
−

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1

𝑗 |2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1
𝑗 |2

)
𝑑Ω +

∫
Ω

𝒇 𝑛+1
𝑗 · �̄�𝑛+1

𝑗 𝑑Ω

+
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ) · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 )𝑑Γ
]

+ (1 − 𝜉 𝑗 )
���� ∫

Ω

𝒇 𝑛+1
𝑗 · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ) · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 )𝑑Γ
����.

Here �̄�𝑛+1
𝑗

, �̄�𝑛+3/2
𝑗

, �̄�𝑛+1
𝑗

and �̄�𝑛+3/2
𝑗

are second order approximations of 𝑢𝑛+1
𝑗

, 𝑢𝑛+3/2
𝑗

, 𝑩𝑛+1
𝑗

,

and 𝑩𝑛+3/2
𝑗

to be defined later.

1.2.2. CRANK-NICOLSON ALGORITHM. With Dirichlet boundary condi-

tions, a Crank-Nicolson scheme for 1.1 becomes: Given 𝒖𝑛
𝑗
, 𝑩𝑛

𝑗
, 𝑞𝑛

𝑗
and 𝑝𝑛

𝑗
, find 𝒖𝑛+1

𝑗
,

𝑩𝑛+1
𝑗

, 𝑞𝑛+1
𝑗

and 𝑝𝑛+1
𝑗

satisfying

(
𝑢𝑛+1
𝑗

− 𝑢𝑛
𝑗

Δ𝑡

)
= −𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2
𝑗

+ 𝑠𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2

𝑗
+ �̄�𝑛Δ𝑢

𝑛+1/2
𝑗

(1.19)

+ 𝜈′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝑝𝑛+1/2
𝑗

+ 𝒇 𝑛+1/2
𝑗

,

∇ · 𝑢𝑛𝑗 + (Δ𝑡)2𝜖𝑝

(
𝑝𝑛+1
𝑗

− 𝑝𝑛
𝑗

Δ𝑡

)
= 0, (1.20)(

𝑩𝑛+1
𝑗

− 𝑩𝑛
𝑗

Δ𝑡

)
= 𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2
𝑗

− 𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2

𝑗
+ �̄�𝑛Δ𝑩𝑛+1/2

𝑗
(1.21)

+ 𝛾′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝜆𝑛+1/2
𝑗

+ ∇ × 𝒈𝑛+1/2
𝑗

,
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∇ · 𝑩𝑛
𝑗 + (Δ𝑡)2𝜖𝜆

(
𝜆𝑛+1
𝑗

− 𝜆𝑛
𝑗

Δ𝑡

)
= 0, (1.22)

𝜉 𝑗 =
F (𝑅𝑛+1

𝑗
)

𝐸 (�̄�𝑛+1
𝑗

, �̄�𝑛+1
𝑗

)
, (1.23)

𝐸 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 ) = 1
2
∥�̄�𝑛+1

𝑗 ∥2 + 𝑠

2
∥ �̄�𝑛+1

𝑗 ∥2 + (Δ𝑡)2

2
(𝜖𝑝 | |𝑝𝑛+1

𝑗 | |2 + 𝜖𝜆 | |�̄�𝑛+1
𝑗 | |2) + 𝐶0, (1.24)

F (𝑅𝑛+1
𝑗

) − F (𝑅𝑛
𝑗
)

Δ𝑡
=

∫
Ω

𝑢
𝑛+1/2
𝑗

·
(
𝑢𝑛+1
𝑗

− 𝑢𝑛
𝑗

Δ𝑡

)
𝑑Ω +

∫
Ω

𝑠𝑩𝑛+1/2
𝑗

·
(
𝑩𝑛+1

𝑗
− 𝑩𝑛

𝑗

Δ𝑡

)
𝑑Ω

(1.25)

−
∫
Ω

𝑢
𝑛+1/2
𝑗

·
[
− 𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2
𝑗

+ 𝑠𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2

𝑗

+ �̄�𝑛Δ𝑢
𝑛+1/2
𝑗

+ 𝜈′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝑝𝑛+1/2
𝑗

+ 𝒇 𝑛+1/2
𝑗

]
𝑑Ω

−
∫
Ω

𝑠𝑩𝑛+1/2
𝑗

·
[
𝜉 𝑗

(
�̃�𝑛+1/2

𝑗
· ∇

)
�̃�𝑛+1/2
𝑗

− 𝜉 𝑗

(
�̃�𝑛+1/2
𝑗

· ∇
)
�̃�𝑛+1/2

𝑗

+ �̄�𝑛Δ𝑩𝑛+1/2
𝑗

+ 𝛾′𝑛𝑗 Δ�̃�
𝑛+1/2
𝑗

− ∇𝜆𝑛+1/2
𝑗

+ ∇ × 𝒈𝑛+1/2
𝑗

]
𝑑Ω

+ 𝜉 𝑗

[
−

∫
Ω

(
𝜈 𝑗 |∇�̄�𝑛+1/2

𝑗
|2 + 𝑠𝛾 𝑗 |∇�̄�𝑛+1/2

𝑗
|2
)
𝑑Ω +

∫
Ω

𝒇 𝑛+1/2
𝑗

· �̄�𝑛+1/2
𝑗

𝑑Ω

+
∫
Ω

𝑠(∇ × 𝒈𝑛+1/2
𝑗

) · �̄�𝑛+1/2
𝑗

𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1/2
𝑗

, �̄�𝑛+1/2
𝑗

)𝑑Γ
]

+ (1 − 𝜉 𝑗 )
���� ∫

Ω

𝒇 𝑛+1/2
𝑗

· �̄�𝑛+1/2
𝑗

𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1/2
𝑗

) · �̄�𝑛+1/2
𝑗

𝑑Ω

+
∫
Γ

𝐵𝑆 (�̄�𝑛+1/2
𝑗

, �̄�𝑛+1/2
𝑗

)𝑑Γ
����.

Similarly �̄�𝑛+1
𝑗

, �̄�𝑛+1/2
𝑗

, �̄�𝑛+1
𝑗

and �̄�𝑛+1/2
𝑗

are second order approximations of 𝑢𝑛+1
𝑗

, 𝑢𝑛+1/2
𝑗

,

𝑩𝑛+1
𝑗

, and 𝑩𝑛+1/2
𝑗

that will be defined later.

In practice, (𝑢0
𝑗
, 𝑢1

𝑗
, 𝐵0

𝑗
, 𝐵1

𝑗
) may be found from the initial conditions and using

an algorithm without SAV, such as the aforementioned ensemble scheme in [41]. In our

implementations, we used a primitive (without ensemble) first order scheme to initialize as

the computational cost of solving each perturbation in these first steps is not significant.
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1.3. IMPLEMENTATION

Since the schemes are linear and the auxiliary variables are scalar functions of time

variable, the resulting systems can be solved conveniently by superposition of a series of

Helmhotz equations. We illustrate the idea by presenting the algorithms in strong form.

With the splitting

u𝑛+1
𝑗 = �̂�𝑛+1

𝑗 + 𝜉 𝑗 �̆�
𝑛+1
𝑗 , B𝑛+1

𝑗 = �̂�𝑛+1
𝑗 + 𝜉 𝑗 �̆�

𝑛+1
𝑗 , (1.26)

Algorithm (1.2.1) is equivalent to solving the following linear equations

Sub-problem 1: find �̂�𝑛+1
𝑗

, �̂�𝑛+1
𝑗

, 𝑝𝑛+1
𝑗

and �̂�𝑛+1
𝑗

satisfying

3
2Δ𝑡

�̂�𝑛+1
𝑗 − �̄�𝑛Δ�̂�𝑛+1

𝑗 = −∇𝑝𝑛+1
𝑗 + 𝒇 𝑛+1

𝑗 + 2
Δ𝑡

𝑢𝑛𝑗 −
1

2Δ𝑡
𝑢𝑛−1
𝑗 + 𝜈′𝑛𝑗 Δ�̃�

𝑛+1
𝑗 , (1.27a)

3
2Δ𝑡

�̂�𝑛+1
𝑗 − �̄�𝑛Δ�̂�𝑛+1

𝑗 = −∇�̄�𝑛+1
𝑗 + ∇ × 𝒈𝑛+1

𝑗 + 2
Δ𝑡

𝑩𝑛
𝑗 −

1
2Δ𝑡

𝑩𝑛−1
𝑗 + 𝛾′𝑛𝑗 Δ�̃�

𝑛+1
𝑗 , (1.27b)

Sub-problem 2: find �̆�𝑛+1
𝑗

, �̆�𝑛+1
𝑗

, 𝑝𝑛+1
𝑗

and �̆�𝑛+1
𝑗

satisfying

3
2Δ𝑡

�̆�𝑛+1
𝑗 − �̄�𝑛Δ�̆�𝑛+1

𝑗 = 𝑠

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1

𝑗 −
(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1
𝑗 , (1.28a)

3
2Δ𝑡

�̆�𝑛+1
𝑗 − �̄�𝑛Δ�̆�𝑛+1

𝑗 =

(
�̃�𝑛+1

𝑗 · ∇
)
�̃�𝑛+1
𝑗 −

(
�̃�𝑛+1
𝑗 · ∇

)
�̃�𝑛+1

𝑗 , (1.28b)

Update of 𝜉 𝑗 :

𝜉 𝑗 =
F (𝑅∗𝑛+1/2

𝑗
) + |𝑆0 |Δ𝑡

𝐸𝑛+3/2 + Δ𝑡
∫
Ω

(
𝜈 |∇�̄�𝑛+1

𝑗
|2 + 𝑠𝛾 |∇�̄�𝑛+1

𝑗
|2
)
𝑑Ω + Δ𝑡 ( |𝑆0 | − 𝑆0)

, (1.29)

where

𝑆0 =

∫
Ω

𝒇 𝑛+1
𝑗 · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Ω

𝑠(∇ × 𝒈𝑛+1
𝑗 ) · �̄�𝑛+1

𝑗 𝑑Ω +
∫
Γ

𝐵𝑆 (�̄�𝑛+1
𝑗 , �̄�𝑛+1

𝑗 )𝑑Γ, (1.30)
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with the second approximations:


�̄�𝑛+1
𝑗 = �̂�𝑛+1

𝑗
+ �̆�𝑛+1

𝑗
, (1.31)

�̄�𝑛+3/2
𝑗

= 3
2 �̄�

𝑛+1
𝑗

− 1
2𝒗

𝑛. (1.32)

Once we have 𝜉 𝑗 we update 𝑅𝑛+1
𝑗

as follows:


𝑅
∗𝑛+3/2
𝑗

= G
(
𝜉 𝑗𝐸 (�̄�𝑛+3/2

𝑗
, �̄�𝑛+3/2

𝑗
)
)
, (1.33)

𝑅𝑛+1
𝑗 = 2

3𝑅
∗𝑛+3/2
𝑗

+ 1
3𝑅

𝑛
𝑗
. (1.34)

Finally, the pressure is updated by 𝐿2 projection:

(
∇ · u𝑛+1

𝑗 , (Δ𝑡)2𝛿𝑡 𝑝
𝑛+1
𝑗 , 𝑙

)
= 0, (1.35a)(

∇ · B𝑛+1
𝑗 , (Δ𝑡)2𝛿𝑡𝜆

𝑛+1
𝑗 , 𝜓

)
= 0. (1.35b)

Algorithm (1.2.2) can be implemented in a similar fashion.

1.4. NUMERICAL TESTS

This section will present numerical results for Algorithms (1.2.2) and (1.2.1) to

demonstrate the expected convergence rates and the stability. We set F (𝜒) = 𝜒2 and the

corresponding G(𝜒) = √
𝜒 in every experiment. Throughout these tests we’ll use the finite

element triplet (𝑃2–𝑃1–𝑃2), and the finite element software package FEniCS [24].

1.4.1. CONVERGENCE TEST. To verify the expected convergence rates, we

will use a variation of the test problem in [65]. Take the time interval 0 ≤ 𝑡 ≤ 1 and domain

Ω = [0, 1]2. Define the true solution (𝑢, 𝑝, 𝐵) as
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𝑢𝜖 =
(
𝑦5 + 𝑡2, 𝑥5 + 𝑡2

)
(1 + 𝜖),

𝑝𝜖 = 10(2𝑥 − 1) (2𝑦 − 1) (1 + 𝑡2) (1 + 𝜖),

𝐵𝜖 =
(
sin (𝜋𝑦) + 𝑡2, sin (𝜋𝑥) + 𝑡2

)
(1 + 𝜖),

(1.36)

where 𝜖 is a given perturbation. For this problem we will consider two perturbations

𝜖1 = 10−1 and 𝜖2 = −10−1. The kinematic viscosity and magnetic resistivity are defined as

𝜈𝜖 = 0.5 · (1+ 𝜖) and 𝛾𝜖 = 0.5 · (1+ 𝜖). Regularization coefficients are set as 𝛼 = 𝛼𝑀 = 0.5.

The pressure and solenoidal constraint scalars are set as 𝜖𝑝 = 𝜖𝜆 = 10 in each test. The

source terms and initial conditions correspond with the exact solution for the given per-

turbation. For each algorithm we initialize 𝑢 𝑗 , 𝐵 𝑗 , 𝑝 𝑗 or 𝜆 𝑗 using the exact solution. The

results are displayed in tables (1.1)-(1.8) with regularization. Under this test, we indeed

observe second order convergence with and without regularization. In this particular test on

a short time interval, we also observe the algorithm with regularization achieves relatively

similar accuracy to the algorithm without.

Table 1.1. Crank-Nicolson error and convergence rates for the first ensemble member in 𝑢ℎ
and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢1 − 𝑢1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢1 − ∇𝑢1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 2.313 e-2 — 6.688 e-2 —

1/20 1/16 9.126 e-3 1.342 2.242 e-2 1.577

1/40 1/32 2.364 e-3 1.949 6.435 e-3 1.801

1/80 1/64 6.633 e-4 1.833 1.750 e-3 1.879

1/160 1/128 1.760 e-4 1.914 4.591 e-4 1.930
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Table 1.2. Crank-Nicolson error and convergence rates for the first ensemble member in 𝐵ℎ

and ∇𝐵ℎ.

h Δ𝑡 ∥𝐵1 − 𝐵1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵1 − ∇𝐵1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 7.328 e-4 — 3.986 e-3 —

1/20 1/16 1.816 e-4 2.012 1.098 e-3 1.861

1/40 1/32 4.918 e-5 1.885 2.845 e-4 1.948

1/80 1/64 1.347 e-5 1.868 7.294 e-5 1.964

1/160 1/128 3.575 e-6 1.914 1.852 e-5 1.978

Table 1.3. Crank-Nicolson error and convergence rates for the second ensemble member in
𝑢ℎ and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢2 − 𝑢2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢2 − ∇𝑢2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 2.271 e-2 — 6.562 e-2 —

1/20 1/16 9.028 e-3 1.331 2.236 e-2 1.553

1/40 1/32 2.358 e-3 1.937 6.431 e-3 1.798

1/80 1/64 6.626 e-4 1.831 1.750 e-3 1.878

1/160 1/128 1.759 e-4 1.914 4.591 e-4 1.930

Table 1.4. Crank-Nicolson error and convergence rates for the second ensemble member in
𝐵ℎ and ∇𝐵ℎ.

h Δ𝑡 ∥𝐵2 − 𝐵2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵2 − ∇𝐵2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 8.214 e-4 — 4.102 e-3 —

1/20 1/16 2.056 e-4 1.998 1.146 e-3 1.840

1/40 1/32 5.682 e-5 1.855 3.000 e-4 1.934

1/80 1/64 1.565 e-5 1.861 7.752 e-5 1.953

1/160 1/128 4.153 e-6 1.913 1.977 e-5 1.971
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Table 1.5. BDF2 error and convergence rates for the first ensemble member in 𝑢ℎ and ∇𝑢ℎ.

h Δ𝑡 ∥𝑢1 − 𝑢1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢1 − ∇𝑢1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 2.551 e-2 — 7.735 e-2 —

1/20 1/16 8.397 e-3 1.603 2.341 e-2 1.725

1/40 1/32 2.401 e-3 1.807 6.598 e-3 1.827

1/80 1/64 6.495 e-4 1.886 1.773 e-3 1.896

1/160 1/128 1.720 e-4 1.917 4.620 e-4 1.940

Table 1.6. BDF2 error and convergence rates for the first ensemble member in 𝐵ℎ and ∇𝐵ℎ.

h Δ𝑡 ∥𝐵1 − 𝐵1,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵1 − ∇𝐵1,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 1.277 e-3 — 5.457 e-3 —

1/20 1/16 3.477 e-4 1.877 1.415 e-3 1.948

1/40 1/32 9.311 e-5 1.901 3.731 e-4 1.923

1/80 1/64 2.448 e-5 1.928 9.686 e-5 1.946

1/160 1/128 6.289 e-6 1.961 2.477 e-5 1.967

Table 1.7. BDF2 error and convergence rates for the second ensemble member in 𝑢ℎ and
∇𝑢ℎ.

h Δ𝑡 ∥𝑢2 − 𝑢2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝑢2 − ∇𝑢2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 2.480 e-2 — 7.575 e-2 —

1/20 1/16 8.288 e-3 1.581 2.327 e-2 1.703

1/40 1/32 2.391 e-3 1.794 6.591 e-3 1.820

1/80 1/64 6.495 e-4 1.880 1.772 e-3 1.895

1/160 1/128 1.721 e-4 1.916 4.619 e-4 1.940
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Table 1.8. BDF2 error and convergence rates for the second ensemble member in 𝐵ℎ and
∇𝐵ℎ.

h Δ𝑡 ∥𝐵2 − 𝐵2,ℎ∥∞,0𝑟𝑒𝑙 Rate ∥∇𝐵2 − ∇𝐵2,ℎ∥2,0𝑟𝑒𝑙 Rate

1/10 1/8 1.462 e-3 — 6.222 e-3 —

1/20 1/16 3.995 e-4 1.872 1.589 e-3 1.970

1/40 1/32 1.065 e-4 1.908 4.167 e-4 1.931

1/80 1/64 2.806 e-5 1.924 1.081 e-4 1.947

1/160 1/128 7.218 e-6 1.959 2.766 e-5 1.967

1.4.2. STABILITY. In this section, we analyze the stability of our ensemble meth-

ods. We consider a problem without external energy and body forces, so that the system

energy should decay to zero as time passes. The initial conditions used are given by:



𝑢0
𝜖 = (𝑥2(𝑥 − 1)2𝑦(𝑦 − 1) (2𝑦 − 1),−𝑦2(𝑦 − 1)2𝑥(𝑥 − 1) (2𝑥 − 1)) (1 + 𝜖),

𝑝0
𝜖 = 0, 𝜆0

𝜖 = 0,

𝐵0
𝜖 = (sin (𝜋𝑥) cos (𝜋𝑦),− sin (𝜋𝑦) cos (𝜋𝑥)) (1 + 𝜖).

(1.37)

We consider an ensemble of two perturbations, 𝜖 = 10−1 and 𝜖 = −10−1. We fix the cou-

pling term 𝑠 = 1 and test two different sets of viscosity and magnetic viscosity, 𝜈 = 𝛾 = 0.1

and 𝜈 = 𝛾 = 0.02. We again set 𝜖𝑝 = 𝜖𝜆 = 10. The mesh discretization is fixed at ℎ = 1/50,

and we use several time step refinements, with a final time of 𝑇 = 1.
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(a) Decay of total system energy to 𝑇 = 1 with

𝜈 = 𝛾 = 0.1.

(b) Decay of total system energy to 𝑇 = 1 with

𝜈 = 𝛾 = 0.02.

Figure 1.1. Stability demonstrations of Crank-Nicolson Algorithm (1.2.2)

(a) Decay of total system energy to 𝑇 = 1 with

𝜈 = 𝛾 = 0.1.

(b) Decay of total system energy to 𝑇 = 1 with

𝜈 = 𝛾 = 0.02.

Figure 1.2. Stability demonstrations of BDF2 Algorithm (1.2.1)

These figures accurately portray the decay of the total system energy to 𝑇 = 1 for

Algorithm (1.2.2) with 𝜈 = 𝛾 = 0.1 and 𝜈 = 𝛾 = 0.02, respectively. Figures 1.2a and 1.2b

also show decay to 𝑇 = 1 for Algorithm (1.2.1) with 𝜈 = 𝛾 = 0.1 and 𝜈 = 𝛾 = 0.02.
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2. SUMMARY AND CONCLUSIONS

In conclusion, we’ve presented efficient second-order ensemble methods for fluid

flow simulations using SAV and artificial compressibility techniques. With regularization,

the proposed methods demonstrate significant improvements in stability, long-time accu-

racy, and efficiency over existing methods, as demonstrated by simulations such as the

channel flow about a cylinder.

Our findings contribute to the advancement of numerical methods for fluid flow

simulations and have important practical use for a variety of scientists and engineers study-

ing MHD flows. The use of ensemble methods offers a promising means of achieving

efficient predictions for problems such as atmospheric modelling, and the use of artifi-

cial compressibility techniques stack even greater efficiency in-tandum with the ensemble

methods.

Future work in this area could explore the use of different types of compressibility

and pressure correction techniques and the extension of the methods to more complex flow

scenarios. We hope that the results presented in this thesis will inspire further research in

this exciting field and lead to new developments in the use of ensemble methods for fluid

flow simulations.
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