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ABSTRACT 

The evolution of compliant mechanisms propelled the development of constant-

force mechanisms (CFMs) for various applications because of their unique 

characteristics.  Many research endeavors have presented different techniques that often 

involve some optimization to design the CFMs.  However, the mechanics of the generation 

of constant force at the elemental level is not well understood.  This research effort 

theorizes and validates that simple, compliant segments with different boundary 

conditions, subjected to axial loading, produce near-constant force without the need for 

design optimization.  Analytical models are developed based on the pseudo-rigid-body 

model (PRBM) concept to predict their force-displacement behavior, and to establish that 

beams exert constant force in their post-buckling stage.  The results are validated 

experimentally for these rudimentary compliant segment types, which exemplify that they 

are the very kernel for generating constant load by CFMs.  With this premise, an 

investigation is conducted on the design of a novel compliant mechanism, the Canted 

Spring.  A type synthesis of the canted spring identifies eight possible configurations. The 

PRBM concept, along with the virtual work principle, is utilized to predict their force-

displacement behavior, as well as for dimensional synthesis.  They exhibit nonlinear force-

displacement characteristics, with two configurations showing the best potential for 

exerting constant load; these are optimized to produce more exact constant force.  A 

methodology is formulated to help design a canted spring from these optimized 

mechanisms.  CFM systems, i.e., modular units and array structures, are developed with 

examples for high load-bearing and uniform pressure distribution applications. 
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1. INTRODUCTION 

1.1. COMPLIANT MECHANISMS 

This research endeavor is on the design and analysis of compliant constant-force 

segments and mechanisms.  For facilitating a better understanding of the work presented 

in the dissertation, a brief introduction to compliant mechanisms and constant-force 

mechanisms is provided in this section.  History and evolution of compliant mechanisms 

along with the nomenclature developed to design and analyze them are discussed below. 

1.1.1. Definition and History.  Compliant mechanisms are mechanical devices 

that gain some or all of their mobility from the deflection of their flexible members to 

transfer motion, force, or energy [1, 2].  The longbow and catapult used as hunting tools in 

ancient history could be well regarded as classic examples of compliant mechanisms, 

where the energy is stored in its flexible members when drawn and is provided at release.  

Compliant mechanisms integrate the form with function and typically necessitate large 

deflections to perform like the rigid-body mechanisms for the intended function(s).  In fact, 

the rigid-body mechanisms can easily be converted into compliant mechanisms by 

replacing one or more rigid links/bodies with flexible members for their inherent 

advantages (discussed in the following sections).  A few examples of compliant 

mechanisms/devices for a variety of applications are shown in Figure 1.1. 

The compliant fishhook remover, also known as Compliers®, is a single-piece 

injection molded design equivalent to traditional fishhook remover [3].  The compliers® 

utilize the stored energy in the flexible link when deformed.  This tool is more economical 

and beneficial than metal design (pliers) due to its simplicity in design and resistance to 



 

 

2 

corrosion.  The SMINT® mint dispenser [4] in Figure 1.1 has a compliant segment that 

acts as a return spring to retract the plunger, which is a single-piece injection molded part, 

back to its initial position after dispensing a mint.  It also provides sufficient reaction force 

to the user and ensures smooth motion with no noise while being operated. 

 

 

 

(a) (b) 

Figure 1.1 (a) Compliant Fishhook Remover [3] (b) SMINT® Mint Dispenser [4]. 

 

1.1.2. Advantages and Challenges. There are many advantages for compliant 

mechanisms over the rigid-body mechanism because of reduced complexity in both design 

and manufacturing.  The following are a few advantages: 

• Reduced Part Count: as the flexible segments replace the springs and joints of the 

equivalent rigid-body mechanism 

• Ease of Manufacturing and Assembly: fewer parts lead to simple manufacturing 

processes and fewer assembly steps 

• Weight Reduction: due to the reduced total number of components with simpler 

or monolithic designs, the product’s total weight can be minimized to a greater 

extent when compared to rigid-body mechanisms 
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• Cost Reduction: due to fewer parts, less material usage, simple designs, and reduced 

assembly time, the price of production will be much cheaper in comparison 

• Improved Precision: due to no lash and reduced wear 

• Improved Performance: due to no shock, energy storage, and no noise 

• High Reliability: due to increase precision and performance 

• Low Maintenance: no lubrication is needed 

• Miniaturization of components: achieved with advanced manufacturing processes 

Despite these advantages, there are a few challenges and disadvantages to 

compliant mechanisms due to the highly nonlinear nature of their large deflections and the 

use of plastics in their construction for plenty of applications, as listed below.  

• Traditionally, the biggest challenge is the relative difficulty in analyzing and 

designing them for large deflections – however, several modeling techniques have 

been developed to overcome this issue 

•  Low fatigue life and creep due to large deflections of its flexible members, 

especially for the devices manufactured with polymers – recent development of 

integrating metal strips within the polymer beams addresses these issues, as shown 

in studies conducted by Kuber [5] and Crews [6] 

• Replacing or repairing defective/deformed members of a compliant mechanism is 

often challenging and might lead to the disposal of the entire unit, as they are 

generally designed as integrated parts – often it is rare and inexpensive 

1.1.3. Applications and Examples.  Several applications implemented compliant 

mechanisms design successfully in diverse fields of engineering.  A few of them are 

demonstrated in the following figures.  Figure 1.2 illustrates compliant tires, which are 
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Flexure Wheels for NASA’s Mars Exploration Rovers [7] and Michelin Tweel Airless 

Tires [8] for automotive applications.  Figure 1.3 presents consumer products, Adidas® 

Springblade Shoes [9] for good comfort and support for runners, esp. in their recovery runs, 

and Flight Flexor® Footrest [10] for long flights to avoid numb feet and swelling. 

 

  

(a) (b) 

Figure 1.2 (a) NASA Mars Rover Wheels [7] (b) Michelin Tweel Airless Tires [8]. 

 

 
 

(a) (b) 

Figure 1.3 (a) Adidas® Springblade Shoes [9] (b) Flight Flexor® [10]. 
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Another example is a compliant chair designed by Mettlach and Midha [11], where 

the flexible legs store energy and provide the user with extra support to egress.  Also, it 

allows the chair to recline such that it provides an ergonomic posture position for better 

comfort, as shown in Figure 1.4.  Flex-Foot Cheetah [12, 13], a prosthetic foot replacement 

design made with carbon fiber, depicted in Figure 1.4, for physically disabled people.  This 

prosthetic foot can be helpful for them in performing day-to-day activities and sports, as it 

absorbs shock while running/walking and releases it for furthering their motion. 

 

 
 

(a) (b) 

Figure 1.4 (a) Compliant Chair [11] (b) Ossur® Cheetah Blade [12, 13]. 

 

Bio-medical devices also have seen significant implementations of compliant 

mechanisms.  A flexible spinal disc replacement designed to provide the natural movement 

of the spine in any direction is one of many examples.  Figure 1.5 describes the spinal disc 

developed at BYU [14] to provide more natural movement and mimic the spine motion in 

six different directions.  Halverson et al. [14] developed this disc out of titanium strips for 

improved life performance. 
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Other examples of medical devices are Trocar surgical tool developed by Nikolai 

Begg [15], which uses flexible members to accomplish precise motion during surgical 

procedures, and the compliant suturing instrument developed by Cronin et al. [16] for 

performing minimally invasive surgeries, which are illustrated in Figure 1.6. 

 

  

(a) (b) 

Figure 1.5 Artificial Spinal Disc Replacement – a) Prototype, b) Titanium Disc [14] 

 

  

(a) (b) 

Figure 1.6 (a) TROCAR® Surgical Tool [15] (b) Compliant Suturing Instrument [16]. 
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AMP Inc. has designed a few compliant tools for various applications, and a couple 

of them are presented in Figure 1.7, such as a compliant crimping tool and chip carrier 

extractor to reduce the cost of the tool and increase their precision and performance. 

The abundant advantages of compliant mechanisms have also been useful in 

developing Microelectromechanical Systems (MEMS).  It includes micro actuators, micro 

sensors, micro bistable mechanisms, electrical connectors, switches, self-closing gates, and 

product enclosures are good examples of compliant bistable mechanisms design. 

 

  

(a) (b) 

Figure 1.7 AMP Inc’s (a) Compliant Crimping Tool (b) Chip Carrier Extractor [17]. 

 

Compliant mechanisms can also be found in the automotive sectors such as seating 

and suspension designs.  The development of constant-force mechanisms is one of the 

prevalent areas where compliant mechanisms are successfully implemented.  Their 

applications and history are further discussed in detail in section 1.2. 

1.2. CONSTANT FORCE MECHANISMS 

This section briefly reviews the history and current state-of-art of CFMs.  
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1.2.1. Definition and Evolution.  A constant-force spring or mechanism may be 

defined as a device that exerts a constant or near-constant force over its entire or partial 

range of motion [18].  The evolution of constant-force mechanisms (CFMs) is propelled 

by a growing interest in the ability to exert constant or near-constant force for various 

applications.  Compliant mechanisms have recently received much attention in the design 

of CFMs because of their unique characteristics, such as fewer parts, compact construction, 

natural energy storage, no backlash, etc. 

One of the early inventions was the constant-force tension spring, also known as 

the "Neg’ator" spring [18, 19].  It is a pre-stressed strip of flat spring stock that is coiled 

around bushing or successive layers on itself.  It is also worth noting that a certain 

arrangement of Belleville spring can produce a near-constant load over a portion of its 

deflection.  Such constant-force springs have been around for a while and can be found in 

several day-to-day applications, e.g., inertia-reel seat belts, tape measures, and pull starts 

[20].  However, these springs have a few limitations, such as their inability to exert a 

constant force over a significant range of motion, unable to generate higher magnitudes of 

force and their intricate construction. 

1.2.2. Current Methodologies to Design Constant-Force Mechanisms.  There 

have been many research efforts in developing various techniques to design constant-force 

mechanisms for applications in diverse fields.  Some of the pioneering efforts in constant 

force are instigated by Nathan [19] and Jenuwine and Midha [21, 22] in the development 

of rigid-body constant-force mechanisms.  Nathan [19] developed a chain of four-bar-

parallelogram, hinged-lever mechanisms with linear springs that exerted a constant, 

unidirectional force for any position.  Jenuwine and Midha [21, 22] ushered a path to 
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synthesize a rigid-body, constant-force mechanism with two orthogonally placed linear 

springs by using the extension of the loop-closure method.  A single-input port and 

multiple-output port (SIPMOP) mechanism configuration is used for specified energy 

absorption with displacement or a constant force value, leading to the design of an exact 

constant-force generating mechanism.  A SIPMOP [21, 22], as shown in Figure 1.8, is a 

multi-loop mechanism with seven rigid links and two linear extension springs that has one 

degree of freedom.  The two orthogonal springs of this bisymmetric mechanism with the 

same spring constants generate constant force.   

 

 

Figure 1.8 SIPMOP Constant Force Mechanism [21, 22] 

 

An accelerated pavement testing machine was developed at Purdue University 

based on the SIPMOP mechanism, as shown in Figure 1.9, to exert a constant nine-ton load 

with a super-single tire on the pavement aggregate under test [23].  It also shows the scaled 



 

 

10 

prototype of the mechanism.  The force-displacement response of the pavement testing 

machine is presented in Figure 1.10. 

 

 

 

Figure 1.9 Accelerated Pavement Testing Machine at Purdue University [23] 

 

Murphy [24] and Murphy, Midha, and Howell [25] have presented the design of 

one of the first compliant constant-force mechanisms (Compliant CFMs), which is based 

on the SIPMOP CFM.  The type-synthesis methodology was employed to develop all the 

possible arrangements of the compliant CFM.  Howell [26] and Howell, Midha, and 

Murphy [27] have modeled this compliant CFM using the pseudo-rigid-body model 

(PRBM) technique as a slider-crank mechanism with torsional springs.  For several of the 

configurations of the compliant CFM, dimensional synthesis optimization was conducted 

to determine their PRBM parameters for the generation of constant force.  This work has 

established the guidelines to design and develop compliant CFMs.  Midha et al. [28] have 

presented all possible configurations of the compliant slider-crank CFMs, along with an 
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application for an electric connector.  These configurations have a variety of compliant 

segment types for the slider-crank-based compliant constant-force mechanisms, and one 

such is presented in Figure 1.11. 

 

 

Figure 1.10 Force-Displacement Behavior of Accelerated Pavement Testing Machine 

[23] 

 

Furthermore, several other design techniques [29-41] have been developed, which 

are either based on the pseudo-rigid-body model or topology optimization for developing 

compliant constant-force mechanisms.  Some of these techniques were also for analyzing 

the dynamic behavior of the CFMs. 

1.2.3. More Examples of Compliant CFM Applications.  In more recent times, 

a growing interest in compliant CFMs has led to the furtherance of such mechanisms for 

various applications in diverse fields [42-63].  Constant-force end-effector mechanism 

designed by Evans and Howell can be used where the position control is not adequate, i.e., 
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the work surface is varying, illustrated in Figure 1.12 [42].  Nahar and Sugar [45] developed 

a compliant constant-force mechanism with a variable output for micro/macro applications.  

A substantially constant-force exercise machine is designed by Howell and Magleby [47] 

that exerts constant force throughout the exercise, even during space travel, as shown in 

Figure 1.13.  A compliant constant-force mechanism was designed for an adaptive robot 

end-effector operation by Lan et al. [48]. 

 

 

Figure 1.11 Compliant Constant-Force Mechanism with a Cam [28] 

 

Pham and Wang [49] developed a constant-force bistable mechanism for force 

regulation and overload protection that can snap to its other stable equilibrium state to 

protect the device if the force exceeds its limit.  Compliant constant-force micro-

mechanism for enabling dual-stage motion for nano-injection, which delivers DNA into 

mouse zygotes, was developed by Zirbel et al. [52].  Parlaktaş designed a compliant 

constant-force mechanism for spatial applications [53]. 
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Figure 1.12 Constant-Force Robot End Effector [42] 

 

 

Figure 1.13 Constant-Force Exercising Equipment [47] 
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Karthik worked on the design of a nearly constant-force modular device based on 

a compliant slider mechanism for ease of use of CFMs [54].  Liu et al. [56] designed an 

adjustable cam-based constant force mechanism, where the constant force magnitude can 

be regulated by preloading the linear spring.  Lambert and Herder designed an adjustable 

constant-force mechanism using pin joints and springs for reducing the effects of joints’ 

friction on the quality of constant force, which may be miniaturized for medical 

applications [58].  

Liu, Zhang, and Xu [59] designed a novel compliant constant-force gripper based 

on buckled fixed-guided beams.  A load-adjustable constant-force mechanism was also 

developed by Hasara and Lusk [60] by introducing a second degree of freedom in the 

compliant crank-slider mechanism that allows for the rotation of the compliant beams as 

needed to alter their stiffness for adjustment to a specific range of constant output force.  

Jute [63] developed a generalized synthesis of nonlinear spring and designed a constant 

force spring based on it for space applications, as illustrated in Figure 1.14. 

1.3. SCOPE OF THE INVESTIGATION 

Many of the current techniques often require some level of design optimization in 

the mechanism synthesis to produce constant force over a desired yet limited range of 

motion.  However, the mechanics of the generation of constant force is still not well 

understood at the elemental level, despite the advancements in the development of 

constant-force mechanisms (CFMs).  This research theorizes and presents a vital principle 

that simple, compliant segments under axial loading are capable of generating constant 

force irrespective of their shape and size without any need for design optimization. 
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(c) 

Figure 1.14 Nonlinear Spring to Generate Constant-Force [35, 63] 

 (a) Undeformed, (b) Deformed, (c) Resultant Load-Displacement Plot 

 

This work demonstrates that various compliant beam types exert near-constant 

force over their significant range of deflection when subjected to axial loading, without the 

need for any optimization.  The compliant segment types considered herein are fixed-free, 

pinned-pinned, and fixed-guided beams, along with a compound-compliant segment with 

a small-length-flexural pivot (SLFP) and a rigid-link system are investigated to determine 
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the mechanics of the generation of constant force.  The force-characteristic behavior of the 

compliant beams is predicted by the analytical models that are developed by using the 

pseudo-rigid-body model (PRBM) approach [1-2, 26, 64-71].  The PRBM-based models 

establish that the beams exert constant force in their post-buckling stage. 

The research endeavor commences by inspecting the fixed-free compliant beam 

under axial-compressive loading, and a model is developed using the PRBM technique to 

analyze its force-deflection characteristics.  Likewise, the analytical models of pinned-

pinned, fixed-guided compliant beams are also developed using the PRBM 

approach.  Similar models are presented for the compound-compliant segment with an 

SLFP and an arrangement of rigid-link with a torsional spring to demonstrate their 

constant-force characteristics when subjected to axial loading.  The theoretical results for 

the three rudimentary segment types are experimentally validated to accentuate that they 

exert constant force in their post-buckling stage.  Additionally, this research exemplifies 

that the proposed theory is the very kernel for the generation of constant force by the 

existing CFMs. 

A design and analysis of a novel compliant mechanism, a canted spring, is 

investigated in the context of constant force with the premise of the proposed theory.  All 

the possible configurations of the canted spring are derived with a formalized type 

synthesis methodology.  Two of them are identified to have the best potential to produce 

constant force, as they can have compliant segments under axial loading conditions.  The 

PRBM concept and virtual work principle are utilized to predict their force-displacement 

behavior.  Canted springs are determined to exhibit nonlinear force-displacement 

characteristics, with two configurations exerting near-constant force when their only 
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compliant beam is subjected to axial loading.  Dimensional synthesis is developed for 

optimizing them to generate more exact constant force.  A methodology is formulated to 

help design a constant-force canted spring from these optimized mechanisms. 

CFM systems, i.e., modular units and array structures, are developed to serve high 

load-bearing and uniform pressure distribution applications.  Design methodologies are 

presented to develop desired modular units and array structures with examples. 
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2. MODELING OF COMPLIANT MECHANISMS 

2.1. INTRODUCTION 

Compliant mechanisms profoundly rely on the deflections of their flexible 

members.  The flexibility of members in traditional structural systems or rigid-body 

mechanisms is generally not desired to maintain its stability.  For example, flexibility in 

high-speed machines causes vibrations leading to mechanical failure.  Similarly, 

deflections are always undesirable in structures such as bridges and buildings.  Hence, 

kinematic analysis of rigid-body mechanisms assumes that the links are rigid and that the 

deflections are small.  The same assumption is valid for structural applications where the 

stresses are under the elastic limit.  These small deflections in the members are predicted 

by Bernoulli-Euler equations, which are linear in nature.  However, large deflections of 

compliant mechanisms cannot be solved by using these linear equations.  So, several 

techniques have been developed to study the large-deflection behavior of compliant 

segments:  This section briefly reviews small and large deflection analyses of the various 

beam types. 

The Bernoulli-Euler equation states that the bending moment of the beam at any 

point is proportional to its curvature [26, 65, 71]. 

 M = 𝐸𝐼
𝑑𝜃

𝑑𝑠
 (1) 

where, M is the bending moment, E is the modulus of elasticity, I is the area 

moment of inertia, and dθ/ds denotes the change in angular deflection along the curvature 

of the beam. 
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𝑑𝜃

𝑑𝑠
=

𝑑2𝑦
𝑑𝑥2
⁄

[1 + (
𝑑𝑦

𝑑𝑥
⁄ )

2

]

3
2⁄
 (2) 

The slope (dy/dx) for small deflections is minute, therefore, its square term in the 

denominator of Equation 2 is assumed to be negligible.  Now, the simplified Bernoulli-

Euler equation is represented as follows. 

 M = 𝐸𝐼
𝑑2𝑦

𝑑𝑥2
 (3) 

For the large deflections of flexible segments, which introduce geometric 

nonlinearity, the assumptions of small deflections are not pertinent.  If, however, utilized, 

it results in an error in the beam end locations.  Hence, the appropriate methods for the 

design and analysis of compliant segments and mechanisms are discussed in the following 

sections. 

2.2. CLOSED-FORM ELLIPTIC INTEGRALS 

It is a classical method for solving nonlinear, large-deflection beam equations.  

Bisshopp and Drucker [72] have developed the initial formulations for large deflections of 

cantilever beams.  Although this approach provides exact solutions, the derivations are 

complicated to use for the design and analysis of compliant segments, even when subjected 

to simple boundary conditions.  Hence, they are only valuable for benchmarking purposes. 

The methodology and closed-form elliptic integral equations for initially-straight 

and initially-curved compound compliant beams with small-length flexural pivots (SLFP) 

are demonstrated in section 3. 
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2.3. THE PSEUDO-RIGID-BODY MODEL (PRBM) 

The pseudo-rigid-body model (PRBM) approach models the deflection of 

compliant members using rigid-body components such that the beam-end location is within 

a small acceptable error [1].  A simple, compliant fixed-free beam is modeled as two rigid 

members connected at a pin joint, also referred to as a characteristic pivot, shown in Figure 

2.1.  The beam’s resistance to bending is represented by a torsional spring at the pivot 

(spring constant K), which has the equivalent force-deflection characteristics. 

The elliptic-integral equations for large deflections compute that the compliant 

cantilever beam’s end follows a near-circular path.  Accordingly, the PRBM developed by 

Howell and Midha [67, 68] assumes two rigid links connected at a pivot to accurately 

model the near-circular path.  The rigid-body link lengths are calculated using a 

characteristic radius factor, γ, which is a function of the load factor n, i.e., the ratio of the 

axial force, nP, to the transverse force, P.  The product of γ and beam length, l, is the 

characteristic radius of the circular path traced by the end of the pseudo-rigid-body link, 

γl, which is also its length.  The factor, γ, is evaluated such that the error in the beam-end 

location predicted by the PRBM is within 0.5% of the coordinates provided by the elliptic 

integral formulation [67-69]. 

The modified PRBM parameters, i.e., the characteristic radius factor (γ), the 

parametric angle coefficient (cθ), and the beam stiffness coefficient (Kθ) developed by 

Pauly and Midha [73], are presented below. 

 γ = {

0.855651 − 0.016438n, −4 < n < −1.5
0.852138 − 0.018615n, −1.5 < n ≤ 0.5

0.851892 − 0.020805n + 0.005867n2 − 0.0000895n3

+0.000069n4 − 0.000002n5, 0.5 < n ≤ 10

 (4) 
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Figure 2.1 A Fixed-Free Compliant Beam and Its Corresponding PRBM [68]. 

 

 𝑐θ = {
1.238945 + 0.012035n + 0.00454n2, −4 ≤ n ≤ −0.5

1.238945 + 0.009113n − 0.001929n2 + 0.000191n3

−0.000007n4, −0.5 < n ≤ −10

 (5) 

 𝐾θ = {
2.660461 + 0.069005n + 0.002286n2, −4 ≤ n ≤ −0.5

2.648834 − 0.074727n + 0.026328n2 − 0.004609n3

−0.00039n4 − 0.000013n5, −0.5 < n ≤ −10

 (6) 

where, 

 n =
−1

tanΦ
=
nP

P
 (7) 

The torsional spring constant and the parametric angle coefficient are computed 

respectively using Equations 8 and 9. 

 K = γ𝐾θ
𝐸𝐼

𝑙
 (8) 

 θ0 = 𝑐θΘ (9) 
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The nondimensionalized transverse load index, which remains orthogonal to the 

beam throughout its deflection, is determined as follows, 

 (𝛼2)𝑡 =
𝐹𝑡𝑙

2

𝐸𝐼
 (10) 

 and η =  √1 + n2  (11) 

where, Ft is the force tangential to the path of the beam end and is perpendicular 

to the pseudo-rigid link 

 𝐹𝑡 = F sin(Φ − Θ) = ηP sin(Φ − Θ) (12) 

The beam end coordinates (a, b) of the deflected position and its pseudo-rigid-

body angle are determined as follows. 

 a = 𝑙 − γ𝑙(1 − cos Θ) (13) 

 b = γ𝑙 sinΘ (14) 

 Θ = tan−1
b

a − (1 − γ)𝑙
 (15) 

More recently, Midha et al. [74] improved the expressions for the stiffness 

coefficient (Kθ) as a function of the load factor (n) and the pseudo-rigid-body angle (Θ).  

The equations for compressive (positive) load factor and tensile (negative) load factor are 

presented below, respectively, which resulted in a significant improvement in the 

prediction of the beam end. 

The PRBM concept demonstrated that this approach is simple, efficient, and 

accurate for modeling a variety of standard-compliant segment types: small-length flexural 

pivot (SLFP), fixed-free/pinned, pinned-pinned, and fixed-guided segments [65, 67-71]. 
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. 

𝐾θ =
1

Θ
(0.004233 − 0.012972n + 2.567095Θ − 0.003993n2

+ 0.037173Θ2 − 0.000297n3 + 0.117997Θ3

+ 0.034678nΘ + 0.003467n2Θ − 0.00947nΘ2) 

𝑓𝑜𝑟 0 ≤ n ≤ 10 𝑎𝑛𝑑 0 ≤ Θ ≤ 65° 

(16) 

. 

𝐾θ =
1

Θ
(0.000651 − 0.008244n + 2.544577Θ − 0.004764n2

+ 0.071215Θ2 − 0.000104n3 + 0.079696Θ3

+ 0.006927nΘ + 0.061507n2Θ − 0.347588nΘ2) 

𝑓𝑜𝑟 − 4 < n < 0 𝑎𝑛𝑑 0 ≤ Θ ≤ 0.8Φ 

(17) 

The key benefit of the use of the PRBM approach is modeling the compliant 

mechanisms as equivalent rigid-body mechanisms with characteristic compliance 

(springs), which enables the wealth of existing rigid-body mechanism analysis and 

synthesis knowledge to the treatment of compliant mechanisms.  Hence, the PRBM is a 

valuable tool in the early design phases of compliant mechanisms as it provides the 

designer with a better understanding of designing them.  Henceforth, the research effort 

will be utilizing the PRBM concept in the development of compliant constant-force 

mechanisms.  The pseudo-rigid-body models of other relevant segment types are discussed 

in the respective sections. 

2.4. CHAIN ALGORITHM AND FINITE ELEMENT ANALYSIS 

Nonlinear finite element methods are common numerical alternatives to elliptic-

integral solutions, and many commercial software programs are widely available.  It 
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discretizes the beam into multiple segments, and appropriate boundary conditions are 

applied at each segment to evaluate the beam-end deflection.  The chain algorithm, 

proposed by Midha, Her, and Salamon [75, 76], is a similar numerical procedure for the 

design and analysis of compliant mechanisms but uses a different technique to combine 

and solve the resulting equations for more efficient computations.  However, designing 

compliant devices by both these approaches is an iterative process and hence best used for 

validating the solutions. 

2.5. TOPOLOGY/STRUCTURAL OPTIMIZATION 

The topology and structural optimization techniques [77-80] use the 

homogenization method.  These approaches optimize the distribution of material or the size 

and shape of the continuum to satisfy the force-deflection constraints.  Given the nature of 

this approach, it is not very useful for establishing design guidelines. 



 

 

25 

3. DESIGN ELUCIDATION AND VALIDATION OF PSEUDO-RIGID-BODY 

MODEL FOR SMALL-LENGTH FLEXURAL PIVOTS (SLFP) IN 

COMPLIANT MECHANISMS 

3.1. INTRODUCTION 

In a compound compliant beam, when the compliant segment is significantly 

shorter than the rigid segment, then it is referred to as a small-length flexural pivot (SLFP).  

A simple, compliant fixed-free beam, for example, is modeled as two rigid members 

connected at a pin joint, also termed as a characteristic pivot.  The beam’s resistance to 

bending, or beam compliance, is represented by a torsional spring at the pivot.  For an 

SLFP, however, the characteristic pivot is assumed to be located at its center assuming a 

uniform cross-section segment [67].  An SLFP necessarily leads to the formation of a 

compound compliant beam, composed of two segments: a flexible or compliant segment 

(SLFP) and a rigid segment.  Traditionally, the length of the rigid segment is assumed to 

be ten or more times larger than the length of the compliant segment. 

With the ever-increasing interest and usage of SLFPs in modeling, it is deemed 

important to test the validity of the underlying assumptions and understand the congruent 

limitations.  This paper investigates the efficacy of the PRBMs for both the initially-straight 

and initially-curved SLFPs, for varying compliant- to rigid-segment length ratio (ξ). This 

is accomplished by measuring the deflection error by an existing approach, reviewed 

herein.  The error is assigned an acceptable value, a prerogative of the designer, in 

determining the corresponding limit value of ξ, and the fixed-free beam end deflections are 

experimentally supported. 
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3.2. RATIONALE FOR LOCATING THE CHARACTERISTIC PIVOT FOR 

SMALL-LENGTH FLEXURAL PIVOT 

For an SLFP with a uniform cross-section, the assumption of the characteristic 

pivot’s location at its center is valid only when the length of the compliant segment (SLFP) 

is significantly smaller than that of its adjacent rigid segment (Figure 3.1).  Then the 

variation in the bending moment dM over the length dX of the SLFP is necessarily much 

smaller.  Taking the average value of the bending moment across dX occurring at its 

midpoint, the characteristic pivot is assumed to be located there as well.  This is consistent 

with assumptions made by Howell and Midha [67].  As the relative length of the compliant 

segment increases, the variation in the bending moment increases as well, rendering the 

assumption less valid.  Figure 3.1 illustrates this with a bending moment diagram of a 

compound-compliant beam with an SLFP, subjected to a transverse load at its beam end. 

 

 

Figure 3.1 Bending Moment Diagram for Locating the Characteristic Pivot of an 

Initially-Straight SLFP. 
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3.3. INITIALLY-STRAIGHT SMALL-LENGTH FLEXURAL PIVOT 

An initially-straight, compound, compliant, cantilever beam subjected to non-

follower vertical and horizontal end loads, P and nP, respectively, is shown in Figure 

3.2.  The deflections of the compliant segment are predicted by using the closed-form 

elliptic integral method [72].  The forces and moments acting on the compliant segment 

due to the beam end loads are shown in Figure 3.1. 

The displacement of the adjacent rigid segment is superimposed onto that of the 

compliant segment to obtain the total displacement of the beam.  Thus, the beam end 

coordinates (a, b) and beam end angle θ0 [81, 82] of the deflected position are derived from 

Equations 18 through 20. 

 

 

Figure 3.2 Initially-Straight SLFP  

 

 α =
1

√2
∫

dθ

√cos(θ0 − ϕ) − cos(θ− ϕ) + λ

θ0

0

 (18) 

 a =
l

√2α
∫

cosθ dθ

√cos(θ0 − ϕ) − cos(θ− ϕ) + λ

θ0

0

+ Lcosθ0 (19) 
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Figure 3.3 Equivalent Force and Moment on SLFP. 

 

 b =
l

√2α
∫

sinθ dθ

√cos(θ0 − ϕ) − cos(θ− ϕ) + λ

θ0

0

+ Lsinθ0 (20) 

where, 

 α = √
𝐹𝑙2

𝐸𝐼
 (21) 

 λ =
1

2
(
𝑀0

𝐸𝐼
)
2

(
𝑙

α
)
2

 (22) 

 M0 = FL sin(ϕ− θ0) (23) 

 F = √P2 + (nP)2 (24) 

 ϕ = tan−1 (
1

−n
) (25) 

The PRBM method is utilized to estimate the deflections of the beam shown in 

Figure 3.3, which is illustrated in Figure 3.4.  The beam is modeled as two rigid segments 
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pinned at the characteristic pivot; for an SLFP, it is located at the center of the compliant 

segment.  The pseudo-rigid-body angle, Θ, describes the rotation of the rigid link. 

 

 

Figure 3.4 PRBM of Initially-Straight SLFP. 

 

For an SLFP, the pseudo-rigid-body angle is assumed to be equal to its beam end 

angle, as the flexible segment is very small compared to the rigid segment, and the 

deflection occurs at the flexible segment. 

 Θ = θ0 (26) 

The resistance to bending of an SLFP is modeled as a torsional spring located at 

the characteristic pivot.  The stiffness of the torsional spring is given by: 

 𝐾 =
𝐸𝐼

𝑙
 (27) 

The beam end deflections obtained using the PRBM in Figure 3.4 are as follows 

 𝑎 =
𝑙

2
+ (𝐿 +

𝑙

2
) 𝑐𝑜𝑠Θ (28) 
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 𝑏 = (𝐿 +
𝑙

2
) 𝑠𝑖𝑛Θ (29) 

 K ⋅ Θ = (L +
𝑙

2
) F ⋅ sin(ϕ− Θ) (30) 

These deflections are compared against those obtained from the elliptic integral 

method [81], for the ratios, ξ ranging from 0.1 to 0.5, and for different loading conditions: 

i) tensile loads (n = -5 to -1), ii) transverse load (n = 0), and iii) compressive loads (n = 1 

to 5).  The maximum Pseudo-Rigid-Body (PRB) angle for the deflections that are within a 

predefined error of 3% are plotted in Figure 3.5 for various ratios, ξ, and loading conditions. 

 

Figure 3.5 Allowable Maximum Pseudo-Rigid-Body Angle Θ for Different Loading 

Conditions and Segment Ratios. 

Some of the plots that have been generated to study the PRBM results relative to 

the closed-form elliptic integral solutions are presented in Figures 3.6 to 3.10.  Figures 3.6 

& 3.7 shows the accuracy of the large deflections predicted, for respective ξ values 0.1 & 

0.2, when subjected to various loading conditions.  Whereas, for ξ values 0.3, 0.4 & 0.5, 
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the deflections predicted by PRBM diverge from those obtained by the closed-form elliptic 

integral method as shown in Figures 3.8, 3.9 & 3.10, respectively.  These plots show the 

normalized deflected beam end coordinates. 

It is observed from these plots, as expected, that the beam deflections are smaller 

for tensile loads and larger for compressive loads.  The PRBM deflections tend to agree 

with the elliptic integral solution for tensile loads for all the given values of the ratio, 

ξ.  However, for the transverse and compressive loads, the error tends to increase for higher 

values of the ratio, ξ.  Hence, it can be concluded that in general, the PRBM can accurately 

predict the beam end coordinates for large deflections, subjected to any loads for ξ values 

of 0.1 and 0.2.  For any ξ value, 0.3 and beyond, the PRBM of an initially-straight SLFP 

could not predict the large deflections under a 3% error. 

3.4. INITIALLY-CURVED SMALL-LENGTH FLEXURAL PIVOT 

Figure 3.11 shows an initially-curved, fixed-free compound compliant beam 

subjected to non-follower vertical and horizontal loads, P and nP, respectively at its 

end.  The compliant segment of the beam has an initial curvature of 1/Ri.  The total 

displacement of the beam end is a superposition of the elastic deflection of the compliant 

segment and the displacement of the adjacent rigid segment.  

The elastic deflection of the compliant segment is computed by the closed-form 

elliptic integral method, which is subjected to the equivalent forces and moment as shown 

in Figure 3.12.  The displacement of the rigid segment is dependent on the beam end angle 

of the compliant segment.  
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(a) 

 

(b) 

 

(c) 

Figure 3.6 Deflections of Beam with Ratio, ξ = 0.1 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.7 Deflections of Beam with Ratio, ξ = 0.2 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.8 Deflections of Beam with Ratio, ξ = 0.3 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.9 Deflections of Beam with Ratio, ξ = 0.4 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.10 Deflections of Beam with Ratio, ξ = 0.5 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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The equivalent force, F, and the moment, M0, acting on the compliant segment are 

shown below along with the tangential component of the force, Ft: 

 F =  √P2 + (nP)2 (31) 

 Ft = F ⋅ sin(ϕ− θ0) (32) 

 M0 = Ft ⋅ L (33) 

where, 

 ϕ =  tan−1 (
1

−n
) (34) 

 

 

Figure 3.11 Initially-Curved SLFP. 

 

The closed-form elliptic integral equations used to solve for the beam end 

coordinates [81, 82] are expressed as follows: 

 α =
1

√2
∫

dθ

√cos(θ0 − ϕ) − cos(θ− ϕ) + λ

θ0

0

 (35) 
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 a =
l

√2α
∫

cosθ dθ

√cos(θ0 − ϕ) − cos(θ− ϕ) + λ

θ0

0

+ Lcosθ0 (36) 

 b =
l

√2α
∫

sinθ dθ

√cos(θ0 − ϕ) − cos(θ− ϕ) + λ

θ0

0

+ Lsinθ0 (37) 

where, 

 α = √
𝐹𝑙2

𝐸𝐼
 (38) 

 λ =
1

2
(
𝑀0

𝐸𝐼
+
1

𝑅𝑖
)
2

(
𝑙

α
)
2

 (39) 

The PRBM of the beam in Figure 3.11 is demonstrated in Figure 3.13.  The beam 

is modeled as two rigid links pinned at the characteristic pivot located at the center of the 

compliant segment along its curvature.  The initial radius of curvature of the compliant 

segment can be related to its length with a non-dimensional parameter, 𝜅0.  For the beams 

with an SLFP, the pseudo-rigid-body angle, Θ, is assumed to be equal to the beam end 

angle, θ0. 

 𝜅0 =
𝑙

𝑅𝑖
 (40) 

 Θ =  θ0 (41) 

The initial beam end coordinates and the pseudo-rigid-body angle of the beam are 

expressed as follows: 

 𝑎𝑖 =
𝑙

𝜅0
sin 𝜅0 + 𝐿 cos 𝜅0 (42) 
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 b𝑖 =
𝑙

𝜅0
(1 − cos 𝜅0) + L sin 𝜅0   (43) 

 
Θ𝑖 = 𝑡𝑎𝑛

−1(
𝑏𝑖 −

𝑙
2𝜅0

(1 − cos 𝜅0)

𝑎𝑖 −
𝑙
2𝜅0

sin 𝜅0

) (44) 

 

 

Figure 3.12 Initially-Curved SLFP with Equivalent Loads. 

 

 

Figure 3.13 PRBM of Initially-Curved SLFP. 
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The beam end deflections predicted using the PRBM method are expressed as 

follows: 

 𝑎 =
𝑙

2𝜅0
sin 𝜅0 + (𝐿 +

𝑙

2
) cosΘ (45) 

 b =
l

2𝜅0
(1 − cos 𝜅0) + (L +

𝑙

2
) sinΘ (46) 

also, 

 K(Θ− Θ𝑖) = (L +
𝑙

2
) F ⋅ sin(ϕ− Θ)  (47) 

Where, K is the stiffness of the torsional spring located at the characteristic pivot 

that represents the resistance of the compliant segment, 

 𝐾 =
𝐸𝐼

𝑙
 (48) 

The deflections of the PRBM of an SLFP are computed for ξ values ranging from 

0.1 to 0.5.  Figure 14 shows the plot of the maximum pseudo-rigid-body angle predicted 

for the deflections within the predefined error, 3% when subjected to different loading 

conditions for various compliant- to rigid-segment ratios, ξ. 

From the above plot, it is observed that the PRBM of an initially-curved SLFP can 

predict large deflections accurately for ξ values of 0.1 and 0.2 when subjected to either 

compressive or tensile loads.  For ξ value of 0.3, the PRBM predicts the beam end 

coordinates within the 3% error for considerably large deflections, however, as the 

compressive load increases the pseudo-rigid-body angle for a 3% error decreases.  Hence, 

it is recommended to use the PRBM technique for ξ value of 0.3 with caution, especially 

when subjected to extremely high compressive loads.  For ξ values of 0.4 and beyond, the 
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PRBM of an initially-curved SLFP is not recommended as the error is more than 3% for 

the predicted deflections. 

 

 

Figure 3.14 Max. Pseudo-Rigid-Body Angle at Different Loading Conditions, for 3% 

Error. 

 

Plots have been generated to evaluate the performance of the PRBM when 

compared to the closed-form elliptic integral method.  Figures 3.15, 3.16, & 3.17 

demonstrate the accuracy of the large deflections predicted when subjected to different 

loading conditions, for ξ values 0.1, 0.2 & 0.3, respectively.  On the other hand, for ξ values 

0.4 & 0.5, the PRBM deflections diverge from those obtained by using a closed-form 

elliptic integral method as shown in Figures 3.18 & 3.19, respectively.  The plots show the 

normalized deflected beam end coordinates. 
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(a) 

 

(b) 

 

(c) 

Figure 3.15 Deflections of Beam with Ratio, ξ = 0.1 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.16 Deflections of Beam with Ratio, ξ = 0.2 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.17 Deflections of Beam with Ratio, ξ = 0.3 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.18 Deflections of Beam with Ratio, ξ = 0.4 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 
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(a) 

 

(b) 

 

(c) 

Figure 3.19 Deflections of Beam with Ratio, ξ = 0.5 for (a) Tensile Load, n = -2, (b) 

Transverse Load, n = 0, (c) Compressive Load, n = 2. 

 



 

 

47 

3.5. DEVIATION OF ERROR, AND CAUSES FOR VARIATIONS IN ERROR 

The beam-end coordinates of the deflected position obtained from the closed-form 

elliptic integral method (a, b), and PRBM method are presented in Figure 3.20 along with 

its initial coordinates.  The vector joining these coordinates with the un-deflected beam 

end, ((L+l), 0), also shown in Figure 3.20, is stated in Equation 49. 

 

 

Figure 3.20 Error Definition. 

 

 δa = √(𝐿 + 𝑙 − 𝑎)2 + 𝑏2 (49) 

The vector from the un-deflected beam end to the deflected beam-end coordinates 

predicted by the PRBM (Figure 3.20), can be expressed as follows: 

 δe = √[(L +
𝑙

2
) (1 − cosΘ)]

2

+ [(L +
𝑙

2
) (sinΘ)]

2

 (50) 

The error, defined relative to the deflection predicted by the closed-form elliptic 

integral method, is represented by a vector joining the beam end coordinates of the 

deflected positions predicted by the two methods.  The relative error is computed as, 
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 𝑒𝑟𝑟𝑜𝑟 =

√{𝑎 − [
𝑙
2 + (𝐿 +

𝑙
2) cosΘ]}

2

+ {𝑏 − (𝐿 +
𝑙
2) sinΘ}

2

√(𝐿 + 𝑙 − 𝑎)2 + 𝑏2
 

(51) 

It can be observed that the error in the deflections predicted by PRBM of an 

initially-straight SLFP is larger than that of an initially-curved SLFP for the same ξ values 

and loading conditions.  This can be predominantly attributed to the buckling mode of an 

initially-straight beam.  The pre-existing curvature of an initially-curved beam alleviates 

the buckling mode and aids the beam with rotation for the same loading conditions as for 

an initially-straight beam, which results in lower errors.  Hence, for a higher value of ξ for 

an initially-curved SLFP, the PRBM method qualifies to predict its beam end coordinates 

accurately within the specified error. 

The analysis is conducted for different lengths of the compliant segment, l = 1, 2, 

3, 4, & 5 while maintaining the rigid segment’s length constant, L = 10 to achieve various 

ratios, ξ ranging from 0.1 to 0.5.  The beam end deflections presented in this paper are 

normalized w.r.t the length of the beam.  However, for a given ξ value, it is observed that 

the error decreases when the lengths of the compliant and rigid segments are reduced and 

vice-versa.  Hence, the error is directly proportional to both the absolute length of the 

segments and the ratio ξ. 

In Figures 3.5 and 3.14, a change in trend can be observed for ratios, ξ, 0.3 & 

beyond for the initially-straight beam, and 0.4 & beyond for the initially-curved 

beam.  This is because the error in the large deflections increases as the ratio increases, and 

these plots present only the maximum pseudo-rigid-body angles for the deflections 

predicted under the 3% error.  The reader has a choice to use the PRBM of an SLFP to 

predict large deflections for higher values of ξ, by allowing a higher error percentage. 
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3.6. EXPERIMENTAL VALIDATION 

Experiments were conducted to validate the performance of the PRBM of initially-

straight and initially-curved SLFPs, in compound-compliant beams for the ξ ratios greater 

than 0.1.  As noted earlier, the PRBM for initially-straight SLFP effectively predicts the 

beam’s behavior, for ξ values 0.1 and 0.2.  Similarly, the PRBM for initially-curved SLFP 

effectively predicts the beam’s behavior, for ξ values 0.1, 0.2, and 0.3.  The experiments 

were conducted on the compound-compliant beams with higher ξ ratios that are subjected 

to high compressive loads to validate the theoretical results presented in this section. 

The experiments were performed on the experimental set-up developed by Bapat 

et al. [83].  The set-up has been slightly modified to accommodate long beams, subjected 

to compressive loads.  The beams were held vertically down, unlike in the original 

arrangement, to minimize the effect of gravity load on the results.  The experiments are 

demonstrated below. 

3.6.1. Initially-Straight Small-Length Flexural Pivot.  The ξ ratio is 0.2 for this 

compound-compliant beam and subjected to compressive loads, ϕ = 136.29° (n = 

1.04).  The length of the SLFP is 2 in. and the length of the rigid segment is 10 in.  The 

load is applied at the beam end with a pulley system, as shown in Figure 3.21.  The beam-

end deflection is traced onto a graph sheet by a pencil that has been attached to it. 

The beam end deflections obtained from the experiment, the PRBM method, and 

the elliptic integral method are plotted, as shown in Figure 3.22.  The relative error of the 

deflection obtained from the experiment at the beam end is 0.91% with respect to the 

closed-form solution.  It is observed that the deflections from the experiment match the 

closed-form deflections. 
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Figure 3.21 Experimental Setup for Initially-Straight Compound Compliant Beam. 

 

 

Figure 3.22 Comparison of Beam-end Deflections from the Experiment compared to 

Closed-form and PRBM Results for Initially-Straight SLFP. 
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3.6.2. Initially-Curved Small-Length Flexural Pivot.  The ξ ratio is 0.3 for this 

compound-compliant beam and subjected to compressive loads, ϕ = 136.29° (n = 

1.04).  The length of the curved SLFP is 3 in. and the length of the rigid segment is 10 

in.  The load is applied at the beam end with a pulley system, as shown in Figure 3.23.  The 

beam end deflection is similarly traced onto a graph sheet by a pencil attached to it. 

 

 

Figure 3.23 Experimental Setup for Initially-Curved Compound Compliant Beam. 

 

The beam end deflections obtained from the experiment, the PRBM method, and 

the elliptic integral method are plotted in Figure 3.24.  The relative error of the deflection 

obtained from the experiment at the beam end is 2.02% with respect to the closed-form 

solution.  It is observed that the relative error is slightly more than the previous experiment 

results, it could be due to the machining imperfections associated with water-jet cutting the 

initially-curved SLFP, and probably due to human error while conducting the experiment. 
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Figure 3.24 Comparison of Beam-end Deflections from the Experiment to Closed-form 

and PRBM Results for Initially-Curved SLFP. 

 

3.7. SUMMARY 

The PRBM of an SLFP method has been examined by comparing the deflections 

predicted with those generated by the closed-form elliptic integral method for both 

initially-straight and initially-curved compound compliant beams for the ξ values 0.1, 0.2, 

0.3, 0.4, and 0.5.  From this investigation, it is concluded that the PRBM for an initially-

straight SLFP effectively predicts the beam end deflections for ξ values 0.1 and 0.2, when 

subjected to various loading conditions. 

Similarly, the PRBM for an initially-curved SLFP accurately predicts the beam end 

deflections for ξ values 0.1, 0.2, and 0.3, under different loading conditions.  However, for 

ξ value 0.3, the PRBM may not predict large deflections for a 3% error, when subjected to 
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very high compressive loads (n ≥ 4).  Tables 3.1 & 3.2 show the corresponding pseudo-

rigid-body angles for the deflections predicted for 3% error, respectively for initially-

straight and initially-curved SLFP.  For the other ξ values that are not presented in tables 

3.1 and 3.2, it is recommended to use PRBM of the fixed-fixed beam to model that 

compound-compliant segment to predict the deflections accurately. 

The experiments validate that the PRBM method effectively predicts the behavior 

of a fixed-free compound compliant beam for the ξ ratios up to 0.2 for initially-straight 

SLFP and ξ ratios for up to 0.3 for initially-curved SLFP.  It is noted that the PRBM method 

effectively predicts any tensile and transverse loading.  However, for the compressive 

loads, the designer needs to be aware that the PRBM effectively predicts up to 150 degrees 

of deflection for initially-straight SLFP and up to 120 degrees for initially-curved SLFP. 

 

Table 3.1 Max Θ Values for Initially-Straight SLFP 

 n -5 -4 -3 -2 -1 0 1 2 3 4 5 

ξ =0.1 
 

(degrees) 

11.21 13.95 18.30 26.90 44.28 88.14 133.95 151.89 160.41 165.05 167.94 

ξ =0.2 9.40 11.70 15.38 22.45 38.67 82.16 126.75 143.70 150.00 152.24 152.28 

 

Table 3.2 Max Θ Values for Initially-Curved SLFP 

 
(deg) 

n -4 -3 -2 -1 0 1 2 3 4 5 

ξ =0.1 13.99 

 
(degrees) 

14.03 18.34 26.44 44.52 88.68 133.69 151.65 160.79 164.64 168.20 

ξ =0.2 13.68 14.03 18.37 22.40 44.10 86.79 130.38 148.22 156.00 159.97 162.57 

ξ =0.3 13.40 14.02 18.33 26.05 41.84 79.23 119.82 131.99 133.37 125.13 120.94 
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4. DESIGN AND ANALYSIS OF CONSTANT-FORCE COMPLIANT 

SEGMENTS 

4.1. INTRODUCTION 

This work demonstrates the fundamental behavior of simple compliant segments 

with different boundary conditions, under axial loading, that they produce near-constant 

force [84].  The compliant segment types considered herein are fixed-free, pinned-pinned, 

and fixed-guided beams, along with a compound-compliant segment with a small-length 

flexural pivot (SLFP).  Analytical models are developed based on the pseudo-rigid-body 

model (PRBM) concept to derive the force equations and predict their force-displacement 

characteristic behavior.  The models are extended to study the behavior of a rigid-body 

arrangement of a pivoted link with a torsional spring under axial loading. 

4.2. FIXED-FREE COMPLIANT BEAM 

A simple, compliant segment fixed at one end and free at the other end, subjected 

to axial-compressive loading, is presented in Figure 4.1.  The beam has to be preloaded or 

slightly perturbed from its axis before loading to allow it to deflect in the desired direction.  

This arrangement of fixed-free compliant beam generates near-constant force over its 

deflection without the need for any design optimization, as illustrated in Figure 4.2.  It is 

scalable in size and the magnitude of the output force profile. 

The constancy of the force generated by the compliant beam is independent of its 

geometric and material properties.  It is, however, dependent on the initial beam-end angle, 

and the constancy of the force increases as the angle tends to zero degrees.  For non-zero 

or large initial angles, the output force profile is similar to that of a soft spring. 
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Figure 4.1  Fixed-Free Compliant Beam. 

 

 

Figure 4.2  Force Vs. Deflection of Fixed-Free Compliant Beam. 

 

The PRBM technique [65, 68-71] is used to model the compliant beam and analyze 

its force-characteristic behavior.  The force equations are derived from the static 
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equilibrium position of the pseudo-rigid-body (PRB) model of the fixed-free compliant 

beam shown in Figure 4.3 to determine its force-displacement characteristics 

. 

 

Figure 4.3  PRBM of Fixed-Free Compliant Beam. 

 

∑𝑀O = 0 : 

 F. γL sinΘ = K(Θ − Θi) (52) 

 F =
K(Θ − Θi)

γL sinΘ
 (53) 

where, 

 K = γ𝐾Θ
𝐸𝐼

L
 (54) 

 𝐼 =
𝑤𝑡3

12
 (55) 
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The force equation is simplified with the Taylor/ Maclaurin series [85, 86], 

 
F =

K(Θ − Θ𝑖)

γL (Θ −
Θ3

3! +
Θ5

5!
−
Θ7

7!
)
 

(56) 

It is simplified furthermore with the Taylor/Maclaurin series [85, 86] as the initial 

beam-end angle tends to zero, 

 F =
K

γL
(1 + 0.1667Θ2 + 0.0194Θ4) (57) 

The characteristic load, henceforth, defined as the first value of the force exerted 

by the beam at zero deflection, of the fixed-free compliant beam is as follows: 

 𝐹𝑐 =
K

γL
= 3.67 𝑙𝑏 (58) 

For this example, Delrin is the material of choice for the fixed-free beam.  Table 

4.1 lists the compliant beam parameters for the force-deflection plot in Figure 4.2. 

 

Table 4.1 Fixed-Free Compliant Beam Parameters 

𝐸 = 420,000 𝑝𝑠𝑖 L = 3.5 𝑖𝑛 𝑏 = 0.5 𝑖𝑛 

ℎ = 0.1 𝑖𝑛 γ = 0.8156 𝐾Θ = 2.56597 

Θ𝑖 = 0.01°  

 

It is well known that a member under compressive axial loading buckles when the 

force reaches a critical level, i.e., Euler’s critical load [87-89].  Upon investigation, it is 

observed that the beam’s characteristic load is almost identical to its critical buckling 
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load.  The Euler’s critical load of a segment is dependent on its boundary conditions, so 

the formula for the fixed-free compliant beam is as follows. 

 𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(2L)2
= 3.525 𝑙𝑏 (59) 

The ratio of the characteristic load and the critical load of the beam is, henceforth, 

termed as the Characteristic Load Factor, 𝜂𝑐. 

 𝜂𝑐 =
𝐹𝑐
𝑃𝑐𝑟

=
4𝐾Θ
𝜋2

= 1.039 (60) 

 

 

Figure 4.4  Force Vs. Deflection of Fixed-Free Compliant Beam, With its 

Characteristic and Critical Load. 

 

It may be noted that these values are nearly the same, and their ratio near unity 

signifies that the beam generates near-constant force in its post-buckling stage, as 

demonstrated in Figure 4.4.  It lends interesting insight into the generation of constant force 

by compliant beams and the existing constant-force mechanisms. 
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The difference between Fc and Pcr is probably due to the assumptions made in 

Euler’s equation.  Beam’s characteristic load is probably more reliable because it is derived 

based on the PRBM concept, which is developed off the elliptic integral solutions with an 

error of less than 0.5%. 

It is now established that the fixed-free, compliant beam generates constant force 

when subjected to axial loading.  The investigation is extended to examine the performance 

of the pinned-pinned and fixed-guided compliant beams under compressive axial loading.  

The force characteristics of these two segment types are expected to be similar to that of 

the fixed-free beam. 

4.3. PINNED-PINNED COMPLIANT BEAM 

A pinned-pinned compliant beam, displayed in Figure 4.5, is pivoted at both ends 

and allowed to translate axially/vertically at least at one end, if not both, but is constrained 

in the transverse direction.  The PRBM of the pinned-pinned beam, which consists of two 

characteristic pivots with torsional springs, is illustrated in Figure 4.6 [26, 68-71, 90].  

Similar to the fixed-free beam, it, under axial loading, generates near-constant force 

without any need for design optimization.  The force equation is derived from the half 

model of its PRBM, shown in Figure 4.7, due to symmetry. 

∑𝑀O = 0 ∶ 

 F.
γL

2
sinΘ = K(Θ − Θ𝑖) (61) 

 F =
2K(Θ − Θ𝑖)

γL sinΘ
 (62) 
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Figure 4.5  Pinned-Pinned Compliant Beam. 

 

 

Figure 4.6  PRBM of Pinned-Pinned Compliant Beam. 

 



 

 

61 

 

Figure 4.7  Half-Model of PRBM of Pinned-Pinned Compliant Beam. 

 

where, 

 K = 2γ𝐾Θ
𝐸𝐼

L
 (63) 

 𝐼 =
𝑤𝑡3

12
 (64) 

The constant-force equation is simplified with the Taylor/ Maclaurin series [85, 

86], 

 
F =

2K(Θ − Θ𝑖)

γL (Θ −
Θ3

3! +
Θ5

5!
−
Θ7

7!
)
 

(65) 

It is simplified furthermore with the Taylor/Maclaurin series [85, 86] as the initial 

beam-end angle tends to zero, 

 F =
2K

γL
(1 + 0.1667Θ2 + 0.0194Θ4) (66) 

The characteristic load, defined as the first value of the force exerted by the beam 

at zero-degree deflection, of the fixed-free compliant beam is as follows: 
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 𝐹𝑐 =
2K

γL
= 7.18 𝑙𝑏 (67) 

It is well known that a member under compressive axial loading buckles when the 

force reaches a critical level, i.e., Euler’s critical load [87-89].  Upon investigation, it is 

observed that the beam’s characteristic load is almost identical to its critical buckling 

load.  The Euler’s critical load of a segment is dependent on its boundary conditions, so 

the formula for the fixed-free compliant beam is as follows. 

 𝑃𝑐𝑟 =
𝜋2𝐸𝐼

(L)2
= 6.91 𝑙𝑏 (68) 

The characteristic load factor, 𝜂𝑐, of the pinned-pinned compliant segment turns 

out to be the same as the fixed-free beam.  This reinforces that the beam generates constant 

force in its post-buckling stage, as illustrated in Figure 4.8. 

 𝜂𝑐 =
𝐹𝑐
𝑃𝑐𝑟

=
4𝐾Θ
𝜋2

= 1.039 (69) 

 

 

Figure 4.8  Force Vs. Deflection of Pinned-Pinned Compliant Beam, with its 

Characteristic and Critical Load. 
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4.4. FIXED GUIDED COMPLIANT BEAM 

A fixed-guided, compliant beam grounded/fixed at one end and guided at the other 

to maintain the beam-end angle the same, i.e., the slope of the beam at the guided end 

remains constant while being able to translate in both directions as presented in Figure 4.9.  

Likewise, its PRBM, illustrated in Figure 4.10, consists of two characteristic pivots with 

two torsional springs [26, 68-71].  Similarly, it generates near-constant force without the 

need for optimization when subjected to axial loading.  The force equation is derived from 

the half model of its PRBM, shown in Figure 4.11, due to symmetry. 

 

 

Figure 4.9  Fixed-Guided Compliant Beam. 

 

∑𝑀O = 0 ∶ 

 F.
γL

2
sinΘ = K(Θ − Θ𝑖) (70) 
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F =

2K(Θ − Θ𝑖)

γL sinΘ
 

(71) 

 

 

Figure 4.10  PRBM of Fixed-Guided Compliant Beam. 

 

 

Figure 4.11  Half-Model of PRBM of Fixed-Guided Compliant Beam. 

 

 



 

 

65 

where, 

 𝐾 = 2γ𝐾Θ
𝐸𝐼

L
 (72) 

 𝐼 =
𝑤𝑡3

12
 (73) 

Using the Taylor/Maclaurin series [85, 86], 

 
F =

2K(Θ − Θi)

γL (Θ −
Θ3

3! +
Θ5

5!
−
Θ7

7!
)
 

(74) 

As the initial beam-end angle tends to zero, it is further simplified with 

Taylor/Maclaurin series [85, 86], 

 F =
2K

γL
(1 + 0.1667Θ2 + 0.0194Θ4) (75) 

Characteristic load factor, 𝜂𝑐, of the fixed-guided compliant beams turns out to be 

the same as the other two beams.  It again reinforces that the beam generates constant force 

in its post-buckling stage, as depicted in Figure 4.12. 

 𝐹𝑐 =
2K

γL
= 4.99 𝑙𝑏 (76) 

 𝑃𝑐𝑟 =
𝜋2𝐸𝐼

L2
= 4.8 𝑙𝑏 (77) 

 𝜂𝑐 =
𝐹𝑐
𝑃𝑐𝑟

=
4𝐾Θ
𝜋2

= 1.039 (78) 

Each of the torsional springs of the pinned-pinned and fixed-guided beams is about 

twice the stiffness of that of a fixed-free beam, so these two compliant segment types are 

four times stiffer as there are two springs for the same beam length as the fixed-free 
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beam.  Again, the initial beam-end angle needs to be close to zero degrees to be able to 

generate near-constant force, and the beams are slightly perturbed to facilitate buckling in 

the desired direction. 

 

 

Figure 4.12  Force Vs. Deflection of Fixed-Guided Compliant Beam, With Its 

Characteristic and Critical Load. 

 

4.5. COMPOUND- COMPLIANT SEGMENTS WITH SMALL-LENGTH 

FLEXURAL PIVOTS (SLFP) 

A compound compliant beam consists of compliant and rigid segments.  The 

compliant segment is considered as a small-length flexural pivot (SLFP) when its length is 

significantly smaller than the adjacent rigid segment [67, 91-92], as shown in Figure 

4.13.  Similar to the other compliant segments, the beams with SLFPs generate near-

constant force when subjected to axial loading, without the need for design 
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optimization.  The PRBM of an SLFP demonstrated in Figure 4.14 has a characteristic 

pivot at its mid-point [68-71, 91-92] and is utilized to derive the force equations. 

 

 

Figure 4.13  Compound Compliant Beam with Small-Length Flexural Pivot (SLFP). 

 

From its static equilibrium position, 

∑𝑀O = 0 : 

 F. (L +
𝑙

2
) sin Θ  =  K(Θ − Θ𝑖) (79) 

 F =
K(Θ − Θ𝑖)

(L +
𝑙
2) sinΘ

 (80) 

where, 

 K =
𝐸𝐼

𝑙
 (81) 

 𝐼 =
𝑤𝑡3

12
 (82) 
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Figure 4.14  Pseudo-Rigid-Body Model of an SLFP. 

 

The constant-force equation is simplified with the Taylor/ Maclaurin series [85, 86], 

 
F =

K(Θ − Θ𝑖)

(L +
𝑙
2)
(Θ −

Θ3

3! +
Θ5

5!
−
Θ7

7!
)
 

(83) 

It is simplified furthermore with the Taylor/Maclaurin series and as the initial 

beam-end angle tends to zero, 

 F =
K

(L +
𝑙
2)
(1 + 0.1667Θ2 + 0.0194Θ4) (84) 

Characteristic load of the compound compliant beam with an SLFP, at zero deflection, 

 𝐹𝑐 =
K

(L +
𝑙
2)

 (85) 

The force acting on the beam is calculated at its end, not at the end of the 

SLFP.  Hence, its characteristic load cannot be compared with the critical load of buckling 
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for the compliant segment.  Thus, the effective critical load at the end of the compound-

compliant beam is estimated using its PRBM, as shown in Figure 4.15. 

 

 

Figure 4.15  Pseudo-Rigid-Body Model of an SLFP 

for Equivalent Euler’s Critical Load. 

 

From its static equilibrium position, 

∑𝑀𝑂 = 0 : 

 𝑃𝑐𝑟𝑒 (
𝑙

2
sinΘ) =  𝑃𝑐𝑟 (L +

𝑙

2
) sinΘ  (86) 

 𝑃𝑐𝑟𝑒 =  𝑃𝑐𝑟 (L +
𝑙

2
) (87) 

Additionally, the small-length compliant segment of the compound beam has a low 

slenderness ratio (for most cases of the SLFPs).  For low slenderness-ratio SLFP, Johnson’s 

parabolic formula, an alternative to Euler’s critical load, is used to compute the critical 
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buckling load of the beam [93, 94].  The slenderness ratio of the compliant beam is 

calculated as follows. 

 𝑠𝑙𝑒𝑛𝑑𝑒𝑟𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 =  (
𝐿𝑒
𝑟
) (88) 

where, r is the radius of gyration, 

 𝑟 =  √
𝐼

𝐴
 (89) 

Johnson’s parabolic formula is as follows, 

 𝜎𝑐𝑟 = 𝑆𝑦 −
1

𝐸
(
𝑆𝑦

2𝜋
∙
𝐿𝑒
𝑟
)
2

 (90) 

The critical load is then calculated as a product of the critical stress and the beam’s 

cross-sectional area, 

 𝑃𝑐𝑟 = 𝜎𝑐𝑟 ∙ 𝐴 (91) 

Upon examination, it is observed that the characteristic load of the beam is nearly 

the same as its estimated effective critical load, attesting that it exerts near-constant force 

in its post-buckling stage, as shown in Figure 4.16.  As Johnson’s parabolic formula is 

dependent on the material and geometric properties of the compliant segment, the ratio of 

the characteristic and critical load varies for the SLFPs. 

 

Table 4.2 Forces of Fixed-Free Compound-Compliant Beam with SLFP  

𝐹𝑐 = 22.046 𝑙𝑏 𝑃𝑐𝑟𝑒 = 22.886 𝑙𝑏 

𝜂𝑐 =
𝐹𝑐
𝑃𝑐𝑟𝑒

= 0.963 
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Figure 4.16  Force Vs. Deflection of Compound Compliant Segment With SLFP. 

 

4.6. RIGID LINK WITH A TORSIONAL SPRING  

A simple model of a rigid link pivoted to the ground at one end with a torsional 

spring, shown in Figure 4.17, generates a near-constant force upon loading it axially, as 

well.  The link is slightly perturbed from its axis to allow it to deflect in the desired 

direction.  The constancy of the force increases as the initial beam-end angle tends to zero 

degrees, signifying that no design optimization is necessary to generate near-constant force 

over its range of motion.  It is scalable in both the size and the magnitude of the force.  A 

numerical model is derived from its static equilibrium position, similar to the fixed-free 

compliant beam.  Based on its model, the force-deflection is plotted in Figure 4.18. 
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Figure 4.17  Rigid Link with a Torsional Spring. 

 

∑𝑀O = 0: 

 F. L sinΘ =    K(Θ − Θ𝑖) (92) 

 F =
K(Θ − Θ𝑖)

L sin Θ
 (93) 

The equation is simplified with the Taylor/Maclaurin series [85, 86] as the initial 

beam-end angle tends to zero, 

 F =
K

L
(1 + 0.1667Θ2 + 0.0194Θ4) (94) 

 

Table 4.3 Rigid Link Parameters  

𝐿 = 3𝑖𝑛 𝐾 = 6 𝑖𝑛/𝑙𝑏 

𝛩𝑖 = 0.01 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 
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Figure 4.18  Force Vs. Deflection of Rigid Link with Torsional Spring. 

 

The value of the force exerted at zero deflection, i.e., the characteristic load of the 

rigid-link arrangement is as follows. 

 𝐹𝑐 =
𝐾

𝐿
= 2 𝑙𝑏 (95) 

It may also be observed that these equations are very similar to that of the fixed-

free beam arrangement.  The commonalities between these two models give the designer 

the freedom to develop a constant-force mechanism using either a rigid link with a 

torsional spring or a compliant beam. 

4.7. SUMMARY 

The theory that the simple, compliant segments exert near-constant force in their 

post-buckling stage without a need for design optimization has been investigated.  

Mathematical models are developed to study the performance of the three most common 

compliant segment types: fixed-free/pinned, pinned-pinned, and fixed-guided beams.  The 
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pseudo-rigid-body model (PRBM) concept is utilized to model and analyze the force 

characteristics of the compliant beams under axial loading.  It is noted that a fixed-free 

compliant beam under axial loading generates near-constant force over a significant range 

of its deflection.  The same is true for pinned-pinned and fixed-guided compliant beams.  

They exert near-constant force, as well, when they undergo buckling due to axial 

loading.  The force equations are derived from their respective PRBMs.  These equations 

are comparable to each other, as the half-models of the pinned-pinned and fixed-guided 

PRBMs are similar to the PRBM of the fixed-free compliant beam.  It is observed that the 

constancy of the force is only dependent on the initial beam-end angle and not on any other 

geometric or material properties of the beam.  It increases as the initial angle tends to zero 

degrees, and as the initial angle increases, the beams act as a soft spring.  The characteristic 

load of the compliant segment, defined as the first value of the force exerted at zero 

deflection, is observed to be nearly the same as its Euler’s critical load, demonstrating the 

constancy of the force exerted by the compliant beams is predominantly due to this 

phenomenon. 

Additionally, the compound-compliant segment with an SLFP and rigid-link 

arrangements are investigated, and similar analytical models are developed for constant 

force generation.  Likewise, the characteristic load of the SLFP is nearly the same as its 

critical load, which is estimated by Johnson’s parabolic formula because of its low 

slenderness ratio. 
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5. EXPERIMENTAL VALIDATION OF CONSTANT-FORCE COMPLIANT 

SEGMENTS AND KERNEL OF CONSTANT-FORCE MECHANISMS 

5.1. INTRODUCTION 

The proposed theory that simple compliant segments generate constant force in 

their post-buckling state when subjected to axial compressive loading, and the results 

obtained from the PRBM-based analytical model are experimentally validated for the three 

rudimentary segment types, i.e., fixed-free, pinned-pinned, and fixed-guided beams.  This 

investigation further exemplifies that the proposed theory is the very kernel for generating 

constant force by the existing constant-force mechanisms. 

5.2. EXPERIMENTAL VALIDATION 

A test setup is developed for each compliant segment type with a deflector to 

initiate deflection in the desired direction.  They are machined out of Aluminum and are 

equipped with roller/ball bearings as needed, and also have guides to ensure smooth 

motion.  The experiments are conducted on the Instron® Universal Testing Machine 

(UTM) 8000, and the recorded values are compared against the theoretical results. 

5.2.1. Fixed-Free Compliant Beam.  The fixed-free test setup, shown in Figure 

5.1, consists of two spring-steel, compliant beams that are fixed at one end to the top 

plate.  The beams have rollers attached at the free ends to eliminate or minimize the effect 

of friction on the test results.  The top-plate assembly is guided by a steel rod and a Delrin 

sleeve to travel vertically with little to no frictional resistance.  A deflector (in red) is placed 

around the Delrin sleeve at the free end of the beams to slightly perturb those outwards to 

ensure that they deflect in the desired direction. 
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Figure 5.1  Test Setup of Fixed-Free Compliant Beam.  

 

   

Figure 5.2  PRBM of Beam Assembly in its Static Equilibrium and FBD of its Slider. 
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The friction between the beam and the base affects the initial beam-end angle, 

which determines the constancy of the force, as shown in its static equilibrium position and 

the free-body diagram of the slider in Figure 5.2. 

 ∑FY = 0 ∶   N = Fy = Fr cos Θ𝑖 (96) 

For the slider to be in motion, 

 ∑FX ≥ 0 ∶ Fx ≥ Ff (97) 

 Ff = μN  &  Fx = Fr sin Θ𝑖 (98) 

 Fr sin Θ𝑖 ≥ μFr cos Θ𝑖 (99) 

 tanΘ𝑖 ≥ μ  𝐨𝐫  μ ≤ tanΘ𝑖 (100) 

For a small initial angle, the coefficient of friction must be very low, which is only 

possible with rollers at the free end. 

 𝑓𝑜𝑟 Θ𝑖 = 0.1° ⇒  𝜇 ≤ 0.00174 (101) 

 

 

Figure 5.3  Experimental Results for Fixed-Free Compliant Beam. 
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The experimental results for the fixed-free compliant beam are presented below in 

Figure 5.3.  It may be noted that there is a difference in force between compression and 

retraction strokes (Hysteresis effect), which can be alluded to due to the Coulomb friction.  

It may also be observed that the force predicted by the analytical model is not at the median 

of compression & retraction strokes, as is generally the case for the Hysteresis effect.  

 

 

Figure 5.4  Static Equilibrium Position of The Top Plate Assembly. 

 

It is determined experimentally that the UTM machine reads a net value of forces 

from the beams and the weight of the top plate, which is explained with a free-body 

diagram of the top-plate assembly in its static equilibrium position, shown in Figure 5.4. 

∑𝑌 = 0 ∶ 

 2FB −W𝑝𝑙𝑎𝑡𝑒 − FM = 0 (102) 
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 FM = 2FB −W𝑝𝑙𝑎𝑡𝑒 (103) 

The force predicted by the PRBM-based analytical model is appropriately adjusted 

by deducting the weight of the top-plate assembly for all the test setups. 

 

 

Figure 5.5  Experimental Results for Fixed-Free Compliant Beam - Adjusted. 

 

Table 5.1 The Beam and PRBM Parameters for Fixed-Free Test Setup 

𝑆𝑝𝑟𝑖𝑛𝑔 𝑆𝑡𝑒𝑒𝑙′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦,  𝐸 = 30𝑒6 𝑝𝑠𝑖 

𝑡h𝑖𝑐𝑘𝑛𝑒𝑠𝑠,  𝑡 = 0.025 ± 0.001" 𝑤𝑖𝑑𝑡h,  𝑤 = 0.5 ± 0.002" 

𝐿𝑒𝑛𝑔𝑡h 𝑜𝑓 𝑡h𝑒 𝑏𝑒𝑎𝑚,  L = 3 ± 0.002" 

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑅𝑎𝑑𝑖𝑢𝑠 𝐹𝑎𝑐𝑡𝑜𝑟,  γ = 0.8156 

𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,  𝐾Θ = 2.56597  

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑜𝑝 𝑃𝑙𝑎𝑡𝑒,  W𝑝𝑙𝑎𝑡𝑒 = 0.6 𝑙𝑏 
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The adjusted theoretical force profile aligns at the center of the experimental 

values/profiles.  The experiment validates the theory that compliant beams under axial 

loading generate constant force in their post-buckling stage. 

5.2.2. Pinned-Pinned Compliant Beam.  In the case of the pinned-pinned test 

setup, illustrated in Figure 5.6, consists of four spring-steel, compliant beams that rest in 

the grooves machined into the top plate and the base forming a half joint, which allows the 

beams to rotate freely at both ends.  This setup also has a guide-rod with a Delrin sleeve to 

ensure a smooth vertical motion.  Similar to the fixed-free test setup, a deflector (in orange) 

is placed around the Delrin sleeve at the center of the beams’ length to perturb the beams 

slightly off-axis to let them deflect in the desired outward direction.   

 

 

Figure 5.6  Pinned-Pinned Compliant Beam Test Setup on Instron UTM. 

 

Similarly, the weight of the top plate is taken into account while comparing the 

theoretical forces with the experimental results, presented in Figure 5.7.  This experimental 
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result further validates the theory for pinned-pinned compliant beams, which generate 

constant force in the post-buckling stage, as it matches nearly with the theoretical plot. 

 

 

Figure 5.7  Experimental Result for Pinned-Pinned Compliant Beams. 

 

Table 5.2 The Beam and PRBM Parameters for Pinned-Pinned Test Setup 

𝑆𝑝𝑟𝑖𝑛𝑔 𝑆𝑡𝑒𝑒𝑙,  𝐸 = 30𝑒6 𝑝𝑠𝑖 

𝑡 = 0.015 ± 0.001" 𝑤 = 0.5 ± 0.002" 

L = 3 ± 0.002" W𝑝𝑙𝑎𝑡𝑒 = 0.75 𝑙𝑏 

γ = 0.8156 𝐾Θ = 2.56597 

 

A minor discrepancy in the experimental results may be observed for the pinned-

pinned test setup, especially at the initial phases of the stroke.  It can be largely attributed 
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to the sharp ends of the beams not being able to rest uniformly in the concave grooves 

machined into the base and the top plate.  During the initial phase of the stroke, the beams 

align into the grooves as the setup is being loaded, and the experimental force values tend 

to merge with the theoretical force.  The tolerances in the beams’ length and the deflector, 

along with surface errors at the beam-ends and the grooves are the potential causes for the 

mismatch in the force plots. 

 

 

Figure 5.8  Fixed-Guided Compliant Beam Test Setup on Instron UTM. 

 

5.2.3. Fixed-Guided Compliant Beam.  The fixed-guided test setup, illustrated in 

Figure 5.8, consists of two spring-steel beams, which are fixed to the top plate at one end 
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and the other to a slider at the base.  The slider allows the beams to translate but constrains 

their rotation, which makes it the guided end of the test setup.  The leadscrew provided at 

the base perturbs the slider so that the beams are slightly off-axis, which lets them deflect 

in the desired direction. 

Similarly, the weight of the top plate is considered while comparing the theoretical 

forces with the experimental values.  The experimental result for fixed-guided compliant 

beams, shown in Figure 5.9, further validates the theory that they generate constant force 

in the post-buckling stage, as it matches closely with the analytical results. 

 

 

Figure 5.9  Experimental Result for Fixed-Guided Compliant Beams. 

 

It may also be observed that the experimental results for the fixed-guided test setup 

have slightly deviated from the theoretical plot, especially in the retraction stroke towards 

the end of the cycle.  It is mainly due to the lash in the draw slides used for the guided end 

of the beams at its base (too much clearance and slack).  During the compression stroke, 
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the carriage members that are inside the rails of the slider coast along the bottom side of 

the railing.  However, in the retraction stroke, it slides against the top side.  The slack in 

them also causes the carriage skew while translating, esp. in the retraction stroke because 

of the angle of the resultant force acting on it.  These are the potential reasons for the 

discrepancies in test results for the fixed-guided beams. 

 

Table 5.3 The Beam and PRBM Parameters for Fixed-Guided Test Setup 

𝑆𝑝𝑟𝑖𝑛𝑔 𝑆𝑡𝑒𝑒𝑙,  𝐸 = 30𝑒6 𝑝𝑠𝑖 

𝑡 = 0.025 ± 0.001" 𝑤 = 1 ± 0.002" 

𝐿 = 6 ± 0.002" 𝑊𝑝𝑙𝑎𝑡𝑒 = 0.75 𝑙𝑏 

𝛾 = 0.8156 𝐾𝛩 = 2.56597 

 

5.3. THE KERNEL OF THE EXISTING COMPLIANT CONSTANT-FORCE 

MECHANISM 

A few of the existing compliant constant-force mechanisms are examined now with 

the premise that simple compliant segments generate near-constant force to establish that 

the proposed theory is the kernel of the CFM to produce a constant force.  As a case study, 

one of the configurations of the compliant slider-crank CFMs, class 1A as shown in Figure 

5.10 [24-28], is considered to investigate and establish the relationship between the 

proposed theory and the existing constant-force mechanisms. 
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The class 1A configuration has a compliant segment at its slider end, and it may be 

observed that its static equilibrium position, presented in Figure 5.11, is identical to the 

fixed-free compliant beam under the axial load.  The reaction force exerted at the beam 

end is the same as the force exerted at the slider.  Hence, the compliant segment of class 

1A configuration is a fixed-free beam under axial loading that generates near-constant 

force. 

 

 

Figure 5.10  Class 1A Slider-Crank, Compliant Constant-Force Mechanism. 

 

 

Figure 5.11   Compliant Segment of Class 1A Slider-Crank, CFM with Reaction Force. 

 

A compliant cam-follower mechanism developed by Midha et al. [28], which is 

based on a class 1A CFM to exert constant force, is presented in Figure 5.12.  The cam 

operates as a pseudo-crank of the mechanism, and the follower beam in its static 

equilibrium position is just a compliant beam under axial load.  Hence, this arrangement 

behaves similarly in generating constant force. 
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From this investigation, it is evident that the constancy of the force for the large 

part is from the buckling of the compliant beam.  The function of the cam or the mechanism 

is to assist the compliant beam (under axial loading) to produce an exact constant load over 

the desired range of deflection.  It establishes the fact that the proposed theory is the kernel 

of the CFMs for the generation of constant force. 

 

 

Figure 5.12   Compliant Constant-Force Mechanism with Toroidal Cam. 

 

5.4. SUMMARY  

The proposed theory and the force-displacement characteristics predicted by the 

PRBM-based analytical model for constant force are experimentally validated for three 

rudimentary compliant segment types.  Roller bearings are utilized in the test setups to 

minimize or eliminate the effects of friction on the results.  Also, beam-deflectors are 

employed to slightly perturb the beams before loading them to ensure they deform in the 
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desired direction.  The analytical results are adjusted to include the effects of gravity load 

on the top plate of the test setups.  The experimental results match the theoretical force 

profile for fixed-free, pinned-pinned, fixed-guided beams.  Hence, it validates the proposed 

theory that simple, compliant segments produce near-constant force in their post-buckling 

stage.  However, there are minor discrepancies in the results for the pinned-pinned and 

fixed-guided test setups, due to machining and assembly errors.   

The proposed theory is further exemplified with a few examples of the existing 

CFMs.  An optimized mechanism or cam surface at the beam end may generate an exact 

constant force over large deflections but is not needed to produce a near-constant force.  A 

simple arrangement of compliant beams under axial loading can achieve that without the 

need for any optimization. 
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6. DESIGN AND ANALYSIS OF A UNIQUE CONSTANT-FORCE COMPLIANT 

MECHANISM – CANTED SPRING 

6.1. INTRODUCTION 

A growing interest in constant-force devices for applications in diverse fields has 

led to the development of several compliant constant-force mechanisms (CFMs) for 

specific needs and requirements.  However, most of them are not easily scalable, especially 

in their construction.  This research focuses on a novel compliant constant-force 

mechanism, Canted Spring, which is relatively simple to scale up or down to serve various 

engineering applications. 

In this section, the canted spring is formally defined to distinguish it from the other 

compliant mechanisms that can exert constant force.  It also has a few unique advantages 

over the rest of the CFMs.  A type synthesis of the canted spring is executed based on its 

PRBM to develop all the possible configurations.  It is recognized that a few of them have 

the best possibility to exert constant force based on the recent findings that compliant 

segments generate near-constant force when subjected to axial compressive loading (see 

section 5).  A dimensional-synthesis optimization is developed to determine the best 

combinations of the PRBM of the canted spring to exert constant force over its deflection.  

A design methodology to construct the desired mechanism based on the optimized 

configurations is discussed with examples.  The force-displacement characteristics of other 

sets of non-constant force configurations were also presented. 
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6.2. DEFINITION AND ADVANTAGES 

A compliant mechanism in a canted form, which comprises a negative pitch 

segment (slanted inwards) along with a positive pitch segment, is henceforth termed a 

Canted Spring, as shown in Figure 6.1.  The positive pitch segment of the canted springs 

is either cantilevered or pivoted to the ground, and the other end at the negative pitch 

segment is free to slide.  The inspiration for this canted profile [95] is from canted coil 

springs, which exert near-constant force across a partial range of their deflection [96].  

However, these canted springs have the potential to exert constant force over a large part 

of their deflection. 

 

 

 

Figure 6.1   Canted Spring Profile 

 

 

Fixed or Pivoted 

at Ground 

Slider at Canted End 
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Canted springs have a few unique advantages over the other existing compliant 

CFMs, stated as follows: 

• They are compact in their construction as half of the mechanism is slanted inwards, 

unlike the other slider-crank-based CFMs. 

• It can be deployed as a single unit or in modules, whereas the other CFMs are often 

used in pairs or modules to neutralize the transverse forces. 

• They do not need external guide rods or top plates/surfaces to contain the springs, 

as they can be assembled on a single flat surface. 

• It could either be a constant-force or soft spring based on its boundary conditions. 

Kinematic synthesis of the canted spring, like any mechanical system, is the means 

to design for specified motion and function [97], which has two phases: i) Type Synthesis 

and ii) Dimensional Synthesis.  A rigid-body kinematic chain was developed to identify all 

the possible configurations of canted spring during the type-synthesis phase.  Dimensional 

synthesis determines the geometry of the compliant mechanism using its PRBM with the 

objective of generation of constant force. 

6.3. TYPE SYNTHESIS OF CANTED SPRING 

Type Synthesis is described as the definition of the proper type of mechanism best 

suited to the problem [97-98].  For the canted spring pseudo-rigid-body kinematic chain, 

Numerical Synthesis, a subset of type synthesis, determines the number of links and the 

mechanism degrees of freedom to perform a specified task. 

6.3.1. Pseudo-Rigid-Body Kinematic Chain.  The pseudo-rigid-body (PRB) 

kinematic chain of the canted spring is determined by investigating its behavior under 



 

 

91 

loading.  It is always determined to be loaded at its apex.  The undeformed profiles of the 

canted springs and their deformations for various topologies were obtained through Finite 

Element Analysis (FEA) & Chain Algorithm simulations, as shown in Figure 6.2. 

 

  

Figure 6.2   Deformations of Different Canted Spring Profiles 

(FEA – Ansys® Mechanical APDL & Chain Algorithm) 

 

It is observed that most of the deflection in the canted springs is at two locations on 

the continuum, thus, two pin joints are specified at the respective locations.  It is the same 

behavior for all the topologies of the springs under observation.  The point of application 

of force is treated as a rigid location, if not, it would behave as a pseudo-joint.  It results in 

a four-bar slider mechanism as the kinematic chain of the canted spring.  It may be noted 

that the beam end of the negative-pitch segment is a half joint that rotates and slides, hence, 

represented by a link with a revolute joint and a prismatic pair.  This does not affect the 

degrees of freedom and the kinematic behavior of the mechanism.  This investigation draws 

parallels with the research conducted by Midha and Bagivalu [99] on static mode shapes 

in compliant mechanisms and their appropriate pseudo-rigid-body models.   
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Figure 6.3   Rigid-Body Kinematic Chain of Canted Spring 

 

The beams’ resistance to bending is represented by torsional springs, not shown in 

the figure, which forms the pseudo-rigid-body model (PRBM) of the canted spring, 

discussed in the later sections. 

6.3.2. Canted Spring Configurations.  Type synthesis of canted spring employs 

its PRB kinematic chain to determine all possible combinations of compliance in the 

mechanism that exhibits the same kinematic behavior.  Initially, a heuristic approach of 

type synthesis of the canted spring derived six configurations by deducing the mechanism 

combinations by replacing the two revolute joints in the kinematic chain with compliance 

[100].  The revolute & prismatic joints at the slider of the kinematic chain are not replaced 

by compliance for this type-synthesis analysis because it is a sliding half-joint (higher pair) 

without any deformations.  The determined six configurations are grouped into three 

categories based on the location of compliance in the mechanisms.  The first category has 

two mechanisms with compliance at both the identified pin joints.  The second and third 
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category mechanisms, two of each, have compliance at only one location, either at the 

ground pin joint (joint 1) or at the negative-pitch segment (joint 2). 

Subsequently, a systematic and formalized approach developed by Bagivalu 

Prasanna [101] yielded two additional configurations, which have been classified into the 

first category mechanisms. 

Formalized Enumeration Process – Many different methodologies have been 

developed for the type synthesis of compliant mechanisms [102].  One such approach 

proposed by Murphy [24] is a rigid-body-replacement method that uses the PRBM 

technique to identify the equivalent rigid-body kinematic chain of the compliant 

mechanism for the analysis.  A recent investigation by Bagivalu Prasanna and Midha [101] 

further simplified and discovered the benefits of considering the PRBM directly in the type 

synthesis process for detecting the isomorphism.  This simplified formal approach, which 

uses existing graph theory and the compliance number (C) concept [103], is employed to 

enumerate all the possible configurations of the canted spring.  The compliance number 

(C) represents the compliance information in the matrix that depicts the link connections 

in the PRBM [101].  The matrix form referred to as the PRBM Adjacency Matrix (A) is 

then utilized for deriving all the PRBM combinations without isomorphism [101]. 

The formal type synthesis of the canted spring is enabled by the steps developed by 

Bagivalu Prasanna and Midha [101], as stated below.  Steps 1 to 5 identify the basic 

structure of the PRBM, and the required compliance content (Cmin and Cmax) based on the 

design requirements.  Steps 6 through 8 are for the enumeration process of the PRBMs and 

their respective compliant configurations.  The process is briefly summarized as follows. 
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Step 1:  Required degrees-of-freedom (Fc) for the canted spring, Fc = 1.  Fc signifies the 

maximum number of inputs provided to a compliant mechanism. 

Step 2:  A rigid-body chain for the spring is determined based on its Fc, which is a four-bar 

slider mechanism, the same as the one presented in section 6.3.1. 

Step 3:  The minimum value of the compliance number (Cmin) is computed as follows: 

 𝐶𝑚𝑖𝑛 = 𝐹𝑐 − 𝐹𝑟 (104) 

where Fr is the freedom number and signifies the kinematic indeterminacy of the structure.  

It is equal to zero for the canted spring to ensure there is no rigid-body motion. 

Step 4:  Necessary design requirements for the canted spring are: 

i. The slider pair between links 1 & 4 and the revolute joint connecting links 3 & 4 

are not treated as characteristic pivots, as explained in the previous section 

ii. Links 1 & 4 are treated as rigid links, hence the spring is regarded as a partially 

compliant mechanism for the enumeration process 

iii. Subsequently, the PRBM of the mechanism has only two torsional springs 

iv. The force acting on the canted spring is applied at the apex of the rigid segment.  

Therefore, link 2 may be replaced only by a compound-compliant segment 

Step 5:  The maximum value of the compliance number (Cmax) is determined based on the 

requirements: 

 𝐶𝑚𝑎𝑥 = 2 (105) 

Step 6:  The possible PRBM combinations of the canted spring are enumerated by using 

adjacency matrices and the values of Cmin & Cmax.  The adjacency matrix of the mechanism 

is constructed from its kinematic graph [101].  The elements of the matrices are defined as 

follows. 
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(𝑖, 𝑗)

=

{
 
 

 
 

0, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝒊 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑙𝑖𝑛𝑘 𝒋
1, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝒊 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑙𝑖𝑛𝑘 𝒋 𝑤𝑖𝑡ℎ 𝑎 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑝𝑎𝑖𝑟
𝐶, 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑙𝑖𝑛𝑘 𝑗 𝑤𝑖𝑡ℎ 𝑎 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑝𝑖𝑣𝑜𝑡

𝑎𝑛𝑑 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑟𝑖𝑛𝑔
−1, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 𝑖𝑠 𝑎 𝑔𝑟𝑜𝑢𝑛𝑑 𝑙𝑖𝑛𝑘

 

(106) 

i. The adjacency matrix (A) of the equivalent rigid-body mechanism of the canted 

spring is as follows.  The elements highlighted in red represent the rigid joints and 

are not replaced with C (compliance) for the enumeration process 

 A =  [

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

] (107) 

ii. Matrix A being symmetric, the elements above the main diagonal are considered 

and expressed in an uncompressed sequence, S.  By eliminating the zeroes of the 

sequence S, a compressed sequence, s, is created 

 𝑆 = 101101 (108) 

 𝑠 = 1111 (109) 

iii. In the enumeration process, links 2 & 3 and the associated kinematic pairs between 

1 & 2 and 2 & 3 (shown in Figure 6.3) are considered for replacement with 

compliance, i.e., Cmax = 2.  Hence, the possible number of PRBM combinations are: 

 C2
2 + C1

2 = 3 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (110) 

iv. C2
2 represents the number of PRBM combinations with two characteristic pivots 

and C1
2 for the PRBMs with one characteristic pivot.  Their corresponding 

uncompressed (Si) and compressed sequences (si) are tabulated in Table 6.1, and 
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the respective adjacency matrices that represent the pseudo-rigid-body model 

(PRBM) combinations are in Table 6.2. 

 

Table 6.1 Compressed (s) and Uncompressed (S) Sequences for the PRBM 

Combinations 

PRBM Configurations 

for C = 2 

PRBM Configurations 

for C = 1 

Compressed 

Sequence (si) 

Compressed 

Sequence (Si) 

Compressed 

Sequence (si) 

Compressed 

Sequence (Si) 

sI = C1C1 SI = C01C01 

sII = C111 SII = C01101 

sIII = 11C1 SIII = 101C01 

 

Table 6.2 Adjacency Matrices for the PRBM Combinations 

Adjacency Matrices for PRBM Configurations with C = 2 

AI = [

0 𝐶 0 1
𝐶 0 𝐶 0
0 𝐶 0 1
1 0 1 0

] 

Adjacency Matrices for PRBM Configurations with C = 1 

AII = [

0 𝐶 0 1
𝐶 0 1 0
0 1 0 1
1 0 1 0

] 

AIII = [

0 1 0 1
1 0 𝐶 0
0 𝐶 0 1
1 0 1 0

] 
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Step 7:  AI matrix has a compliance number of 2, which is different from AII & AIII (C = 

1).  The location of the characteristic pivot in the PRBMs of AII & AIII are different from 

one another, although they have the same compliance number (C = 1).  Since all the PRBMs 

are not identical, the compliant mechanisms derived from them are non-isomorphic. 

Step 8:  All possible compliant mechanisms are enumerated for each of the PRBM 

combinations. 

 Case a:  For the PRBM combination associated with the AI matrix (C = 2), the 

possible end conditions of the rigid links are listed in Table 6.3.  The compliant mechanism 

configurations enumerated from this PRBM are classified as Category I canted springs, as 

shown in Figure 6.4 

 

Table 6.3 Possible End Conditions for the Links and the Corresponding Compliant 

Segment Type Combinations in Case a. 

Link 2 

End Conditions 

Link 3 

End Conditions 

Link 4 

End Conditions 

CC C1 11 

SLFP – SLFP 
SLFP – Revolute Joint 

Revolute Joint – Slider 
Fixed – Fixed 

SLFP – Fixed 
Fixed – Revolute Joint 

Fixed – SLFP 

 

 Case b:  The possible end conditions of the rigid links for the PRBM of the AII (C 

= 1) matrix are listed in Table 6.4.  The enumerated compliant mechanisms are classified 

as Category II canted springs, as shown in Figure 6.5 
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Figure 6.4   Category I – Class 2A  

Two Pin-Joints Replaced with Discreet Compliance 

 

Table 6.4 Possible End Conditions for the Links and the Corresponding Compliant 

Segment Type Combinations in Case b. 

Link 2 

End Conditions 

Link 3 

End Conditions 

Link 4 

End Conditions 

C1 11 11 

SLFP – Revolute Joint 
Revolute Joint – Revolute 

Joint 
Revolute Joint – Slider 

Fixed – Revolute Joint 
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Figure 6.5   Category II – Class 1A  

Pin-Joint at Ground Replaced with Discreet Compliance 

 

 Case C:  For the PRBM combination AIII matrix (C = 1), the rigid links’ possible 

end conditions are listed in Table 6.5.  The respective compliant mechanisms enumerated 

are classified into Category III canted springs, as shown in Figure 6.6 

 

Table 6.5 Possible End Conditions for the Links and the Corresponding Compliant 

Segment Type Combinations in Case c. 

Link 2 

End Conditions 

Link 3 

End Conditions 

Link 4 

End Conditions 

1C C1 11 

Revolute Joint – SLFP SLFP – Revolute Joint 
Revolute Joint – Slider 

Revolute Joint – Fixed Fixed – Revolute Joint 

 

These categories are analogous to the classification of slider-crank-based compliant 

CFMs developed by Midha et al. [24-25, 27-28].  The force-displacement behavior of 

category III springs (two configurations) is the primary focus of this research effort, as they 

have the best potential for exerting constant force.  From the recent research findings, it is 
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evident that axially loading the beams is essential for generating near-constant force, which 

is a certainty for category III configurations, i.e., negative pitch compliant segment (fixed-

free beam) under axial loading conditions. 

 

  

Figure 6.6   Category III – Class 1B  

Pin-Joint at Canted Segment Replaced with Discreet Compliance 

6.4. DIMENSIONAL SYNTHESIS OF CANTED SPRING 

The dimensional synthesis of the canted spring is executed for its pseudo-rigid-

body model to determine the geometry that generates a prescribed nonlinear force over its 

deflection.  The principle of Virtual-Work is utilized to determine the force-displacement 

characteristic behavior of the canted springs.  An optimization routine is developed to 

synthesize the nondimensionalized parameters of the PRBM for producing a more exact 

constant force over a significant range of their deflection in the case of category III 

mechanisms. 

6.4.1. Pseudo-Rigid-Body Model of Canted Spring.  Compliant mechanisms 

may be best analyzed with a simple yet efficient pseudo-rigid-body model (PRBM) 

concept.  The PRBM of the canted spring, shown in Figure 6.7, is utilized to design and 
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analyze it for force-displacement characteristics using the equations of the rigid-body slider 

mechanism.  The significance of this PRBM is that one model may be used for all three 

categories of the canted spring.  It has two characteristic pivots with torsional springs to 

model the compliant beams’ resistance to bending.  However, the spring constants K1 or 

K2 will be absent (equal to zero) for that category of mechanisms where there is no 

compliance at that location.  The canted spring is loaded vertically at its apex, which is 

represented by a coupler point (on link 2) in its PRBM. 

 

 

Figure 6.7   Pseudo-Rigid-Body Model of Canted Spring with Force at Coupler Point 

 

6.4.2. Force-Displacement Characteristics of Canted Spring.  The force-

displacement characteristics of the canted spring are obtained by applying the principle of 

virtual work [27, 104] on its PRBM, with Δy deflection at the apex as input.  It may be 

defined as for a mechanical system in equilibrium, the net virtual work of all the active 

forces is zero for all the virtual displacements consistent with the constraints [104].  The 
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work done by a force on a body along a virtual displacement is known as virtual work.  The 

method is presented in a series of steps, where the equations are derived in the context of 

the PRBM (Figure 6.7) and its vector loops at two different positions, initial and deformed, 

as shown in Figure 6.8, for loop-closure equations [105].  The mechanism has a force at its 

apex and two torsional springs to represent the beams’ compliance at those two locations, 

as shown in its PRBM, as illustrated in Figure 6.7. 

 

 

Figure 6.8   Vector Loops of PRBM at Deflected and Undeflected Positions 

 

6.4.2.1. Application of the principle of virtual work.  In order to apply the 

virtual-work principle, virtual displacements of the mechanism for applied forces and 

torques at the springs are determined to evaluate the virtual work done by each of them 

from undeflected to the arbitrary deflected position and equated to zero for equilibrium in 

the system. 
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The following sequence of steps describes the procedure in detail to derive the 

equations for the force. 

Step 1:  Defining origin and generalized coordinate, q 

The ground pivot on the positive-pitch segment is chosen as the origin.  For this 

analysis, angle ϴ2 is a sensible choice as a generalized coordinate, as the force is applied 

on the input link r2 (see Figure 6.7). 

 𝑞 ∶  ϴ2 (111) 

Step 2:  Expressing the applied force in the vector form 

The input force, F, acting vertically downwards on the spring (Figure 6.7) may be  

represented in the vector form as, 

 �⃑� = −F ⋅ 𝑗̂ (112) 

Step 3:  Determining the position vector of the input force 

 �⃑�𝐹 = (a cosϴ2 − b sin ϴ2) ⋅ 𝑖̂ + (a sinϴ2 + b cosϴ2) ⋅ 𝑗̂ (113) 

where, a and b are the dimensions from the origin along the input link to locate the 

force at the apex, as shown in Figure 6.7. 

Step 4:  Evaluating virtual displacement for the force 

The virtual displacement is derived by differentiating the position vector of the load 

with the generalized coordinate, q. 

Virtual displacement, 

 δ�⃑�𝐹 = (
d�⃑�𝐹
d𝑞

) δ𝑞 = (
d�⃑�𝐹
dΘ2

) δϴ2 (114) 

 here, ϴ2 is the generalized coordinate 

 δ�⃑�𝐹 = (−a sinϴ2 − bcosϴ2)δϴ2 ⋅ 𝑖̂ + (a cos ϴ2 − b sinϴ2)δϴ2 ⋅ 𝑗 ̂ (115) 
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Step 5:  Computing virtual work done by the force 

It is obtained by carrying out the dot product of the force vector with virtual 

displacement. 

Virtual Work due to the input force, 

 δ𝑊𝐹 = �⃑� ⋅ δ�⃑�𝐹 = −F(a cos ϴ2 − b sinϴ2)δϴ2 (116) 

Step 6:  Determining angles for torques of the torsional springs at the characteristic pivots 

The vector forms of the angles through which the torsional springs react to generate 

moments are (see Figures 6.7 & 6.8): 

For pivot at the positive-pitch segment (K1), 

 Θ⃑⃑⃑1 = (ϴ2 − ϴ20) ⋅ �̂� (117) 

For pivot at the negative-pitch segment (K2), 

 Θ⃑⃑⃑2 = {(ϴ3 − ϴ2) − (ϴ30 − ϴ20)} ⋅ �̂� (118) 

Step 7:  Calculating torques at the torsional springs and expressing them in vector forms 

Torque at torsional spring 1, 

 �⃑⃑�1 = −K1Θ⃑⃑⃑1 = −K1(ϴ2 − ϴ20) ⋅ �̂� (119) 

Torque at torsional spring 2, 

 �⃑⃑�2 = −K2Θ⃑⃑⃑2 = −K2[(ϴ3 − ϴ2) − (ϴ30 − ϴ20)] ⋅ �̂� (120) 

Step 8:  Finding virtual angular displacements for the torques 

The virtual angular displacements are derived by differentiating the angular vectors 

with the generalized coordinate, q. 

 δΘ⃑⃑⃑1 = (
dΘ⃑⃑⃑1
d𝑞

) δ𝑞 =
d

dϴ2
(ϴ2 − ϴ20)δϴ2 ⋅ �̂� = δϴ2 ⋅ �̂� (121) 



 

 

105 

 
δΘ⃑⃑⃑2 = (

dΘ⃑⃑⃑2
d𝑞

) δ𝑞 =
d

dϴ2
[(ϴ3 − ϴ2) − (ϴ30 − ϴ20)]δϴ2 ⋅ �̂�

= (
dϴ3
dϴ2

− 1) δϴ2 ⋅ �̂� 

(122) 

Step 9:  Computing the virtual work done at the torsional springs 

It is evaluated by the summation of the dot products of the torques with their 

respective virtual angular displacements. 

Virtual work due to the torques, 

 δ𝑊𝑇 = �⃑⃑�1 ⋅ δΘ⃑⃑⃑1 + �⃑⃑�2 ⋅ δΘ⃑⃑⃑2 (123) 

 
δ𝑊𝑇 = −K1(ϴ2 − ϴ20)δϴ2

− K2[(ϴ3 − ϴ2) − (ϴ30 − ϴ20)] (
dϴ3
dϴ2

− 1) δϴ2 

(124) 

Step 10: Determining the ratio dϴ3 / dϴ2 from the deflected loop 

The ratio dϴ3 / dϴ2 often referred to as the kinematic coefficient of four-bar 

mechanisms, is derived from the loop closure equation of the deflected position. 

 e⃑⃑ + �⃑�2 = �⃑�1 + �⃑�3 (125) 

where, Z1, Z2, and Z3 represent the position vectors of the links r1, r2, and r3, 

respectively. 

that results in two scalar equations, as follows: 

 r2 cos ϴ2 = r1 + r3 cosϴ3 (126) 

 e + r2 sinϴ2 = r3 sinϴ3 (127) 

Differentiating Equation 127 with the generalized coordinate yields, 

 r2 cos ϴ2 ⋅ δϴ2 = r3 cosϴ3 ⋅
dϴ3
dϴ2

⋅ δϴ2 (128) 
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dϴ3
dϴ2

=
r2 cosϴ2
r3 cosϴ3

 (129) 

Step 11:  Net total virtual work done by the mechanism in equilibrium 

According to the principle of virtual work, the net work done by the system in 

equilibrium is zero, which is as follows: 

Net Virtual Work, 

 δ𝑊 = 0 ∶  δ𝑊𝐹 + δ𝑊𝑇 = 0 (130) 

results in,  

 F =
−K1(ϴ2 − ϴ20) − K2[(ϴ3 − ϴ2) − (ϴ30 − ϴ20)] (

dϴ3
dϴ2

− 1)

(a cosϴ2 − b sin ϴ2)
 

(131) 

The force equation may be further simplified by substituting the kinematic coefficient, 

 F =
−K1(ϴ2 − ϴ20) − K2[(ϴ3 − ϴ2) − (ϴ30 − ϴ20)] (

r2 cos ϴ2
r3 cos ϴ3

− 1)

(a cosϴ2 − b sin ϴ2)
 

(132) 

6.4.2.2. Nondimensionalized parameters for the mechanism synthesis.  The 

vertical displacement, Δy, from undeflected to deflected position is the input for canted 

spring analysis.  The loop-closure equations yield the following to analyze the PRBM.  For 

the analysis of the mechanism, the input Δy may be expressed as: 

 Δy =  r2 sinϴ20 − r2 sinϴ2 (133) 

from the loop closure Equation 127, 

 ϴ3 = sin
−1 (

e + r2 sinϴ2
r3

) (134) 
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The mechanism parameters, hereafter, are nondimensionalized to aid the designers 

in synthesizing a canted spring per the requirements/needs.  The dimensional parameters 

are normalized with the input link length r2 as follows. 

 

Table 6.6 Nondimensionalized Parameters of the Canted Spring PRBM 

Y =  
∆y

r2
 Ey =  

e

r2
 

R =  
r3
r2

 R1 =  
r10
r2

 

A =  
a

r2
 B =  

b

r2
 

 

Hence, the loop-closure equations transform to: 

 ϴ2 =  sin−1(sinϴ20 − Y) (135) 

 ϴ30 =  cos−1 (
cos ϴ20 − R1

R
) (136) 

 Ey =  R sinϴ30 − sinϴ20 (137) 

 ϴ3 =  sin−1 (
sinϴ20 + Ey

R
) (138) 

The general equation of force, F, for all three categories of the canted spring is 

determined using the virtual work principle, which is as follows. 

 
F =

K1(ϴ20 − ϴ2) +

K2{(ϴ30 − ϴ20) − (ϴ3 − ϴ2)} (
r2 cos ϴ2
r3 cos ϴ3

− 1)

a cosϴ2 − b sin ϴ2
 

(139) 
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For category I springs, both the spring constant terms K1 & K2 have non-zero 

values, and for categories II & III, K2 & K1 are equal to zero, respectively.  Hence, the 

force equation for the category III mechanisms may be rearranged as follows. 

 F =
K2
r2
ΦF (140) 

where ΦF is the nondimensionalized force factor, 

 ΦF =
{(ϴ30 − ϴ20) − (ϴ3 − ϴ2)} (

cos ϴ2
R cosϴ3

− 1)

A cosϴ2 − B sinϴ2
 

(141) 

As established in sections 4 and 5, category III mechanisms with compliant beams 

undergoing axial compression loads have the best potential to exert constant force.  The 

configurations of categories I & II behave as soft springs and hard/linear springs, 

respectively, which can be optimized to exert prescribed nonlinear force profiles. 

6.4.3. Optimization For Category III Springs.  An optimization routine is 

developed to synthesize the best possible configurations that produce a more-exact constant 

force over the desired deflection.  The normalized (nondimensionalized) parameters of the 

PRBM that result in CFM are determined by minimizing the variation in the output force 

over a significant range of its deflection.  The dimensions and initial angles of the PRBM 

are computed from these optimized parameters to construct a constant-force canted spring, 

as explained in the later springs.  The optimization problem may be stated as follows: 

 𝑓𝑖𝑛𝑑 𝑋 =  

{
 
 

 
 
R
A,  B
Ey
ϴ20
ϴ30}

 
 

 
 

 (142) 
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which minimizes the function, i.e., also termed as Constancy Ratio, α 

 𝑓(𝑋) =
|F|𝑚𝑎𝑥
|F|𝑚𝑖𝑛

=
|ΦF|𝑚𝑎𝑥
|ΦF|𝑚𝑖𝑛

= 𝛼 (143) 

subject to the following constraints 

R, A > 0 B > 0.15R R1 > 0.1 

𝜋
3⁄  ≤  ϴ30 ≤  𝜋 2⁄  

Constancy ratio may be defined as a ratio of the maximum value of the force or 

nondimensionalized force factor to its minimum value.  The closer the ratio to unity, the 

constant the output force remains with respect to its deflection 

 

 

Figure 6.9   Flowchart of the Optimization Synthesis for Category III Springs 
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A flowchart, presented in Figure 6.9, explains the sequence of operations of the 

optimization routine that determines the best possible combination of parameters of the 

PRBM for a CFM for given constraints.  An additional set of constraints are applied to 

determine other configurations of CFM with slightly different objectives, as stated below. 

Additional constraints for the optimization routine in the flowchart: 

a) Find a solution for maximum Φavg from ‘Ans3’ - this determines a configuration 

with a higher amplitude of nondimensionalized force factor.  This configuration 

helps in developing CFMs with higher force amplitude in a compact form without 

compromising on the constancy of the force (α) 

b) Find solutions for various ΦFavg and Ey from ‘Ans3’ with low α values - this helps 

in determining configurations with different offset values (eccentricity, Ey) for the 

ground pin-joint, giving the designer(s) the flexibility in developing a CFM that 

suits their shape and size constraints. 

This flowchart lays out the general sequence of computations but does not show all 

the programming details, which are exhibited in Appendix A. 

The dimensional synthesis results of the pseudo-rigid-body model for category III 

springs are tabulated for positive, zero, and negative eccentricities of ground pin-joint, Ey, 

that generate constant force in Tables 6.7, 6.8, and 6.9, respectively.  The 

nondimensionalized force factor, ΦF, is practically constant across its substantial 

deflection.  Each of the optimized configurations in the tables has the average value of ΦF, 

which helps determine the expected nominal output constant force using Equation 144. 

 F𝑎𝑣𝑔 =
K2
r2
ΦF𝑎𝑣𝑔

 (144) 
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Table 6.7 lists the PRBM configurations of the canted springs with a positive 

offset/eccentricity for the ground pin joint at the positive-pitch segments (link 2), i.e., the 

pin joint is above the ground level (slider level).  Each configuration offers a different 

average value of ΦFavg and eccentricity, Ey.  It may also be noted that some of them provide 

large, recommended deflection ranges with their corresponding constancy ratios. 

 

Table 6.7  Dimensional Synthesis Results for E-Positive Configurations. 

E+ Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 

E
y
 0.185 0.085 0.144 0.02 0.145 

R 0.544 0.544 0.59 0.60 0.60 

𝚹𝟐𝟎 20° 25° 24.5° 32° 25° 

𝚹𝟑𝟎 75.6° 68.9° 71.25° 66.4° 71.1° 

 

A 1.00 0.90 0.97 0.90 1.25 

B 0.15 0.50 0.16 0.45 0.17 

 

Y 0.075 – 0.3 0.1 – 0.375 0.1 – 0.35 0.1 – 0.4 0.1 – 0.35 

α 1.0542 1.0364 1.0311 1.0402 1.0320 

|𝜱𝐅|𝒂𝒗𝒈 0.6171 0.5894 0.4451 0.4126 0.3265 
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The force-displacement characteristic behavior of these configurations is 

demonstrated with their nondimensionalized parameters in plots of Figure. 6.10. 

 

  

  

 

Figure 6.10   Force-Deflection Characteristics of Canted Spring E+ Configurations 
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Similarly, the optimized configurations for zero offset/eccentricity of the ground 

pin joint, i.e., it is at the level of the slider, are tabulated in Table 6.8.  Their force-

deflection characteristics are demonstrated in Figure 6.11. 

 

Table 6.8  Dimensional Synthesis Results For E-Zero Configurations. 

E0 Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 

E
y
 0 0 0 0 0 

R 0.531 0.552 0.568 0.60 0.60 

𝚹𝟐𝟎 30.5° 31.5° 31.5° 35° 34° 

𝚹𝟑𝟎 72.9° 71.2° 66.9° 72.9° 68.75° 

  

A 0.90 0.90 0.90 1.00 1.10 

B 0.38 0.37 0.50 0.15 0.40 

  

Y 0.075 – 0.35 0.075 – 0.35 0.1 - 0.4 0.075 – 0.35 0.1 - 0.4 

α 1.0576 1.0474 1.032 1.0544 1.0385 

|𝜱𝐅|𝒂𝒗𝒈 0.70 0.5969 0.5011 0.4136 0.349 

 

Again, Table 6.9 has the optimized configurations of the PRBM with a negative 

offset/eccentricity of the ground pin joint, i.e., below the level of the slider.  Their force-

displacement characteristic behavior is presented in Figure 6.12. 
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Figure 6.11   Force-Deflection Characteristics of Canted Spring E0 Configurations 
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Table 6.9  Dimensional Synthesis Results For E-Negative Configurations. 

E- Config  1 Config. 2 Config. 3 Config. 4 Config. 5 

E
y
 -0.059 -0.075 -0.09 -0.017 -0.195 

R 0.40 0.414 0.441 0.477 0.507 

𝚹𝟐𝟎 26.67° 29° 31.5° 29° 43.5° 

𝚹𝟑𝟎 77.1° 81.8° 78.7° 78.7° 76.67° 

  

A 0.90 0.98 1.25 1.15 1.05 

B 0.50 0.20 0.34 0.16 0.15 

  

Y 0.05 – 0.3 0.05 – 0.325 0.05 – 0.325 0.05 – 0.35 0.05 – 0.25 

α 1.0393 1.0491 1.033 1.0349 1.0387 

|𝜱𝐅|𝒂𝒗𝒈 1.502 1.3247 0.8587 0.7641 0.6287 

 

These optimized configurations of the PRBM of the category III spring provide the 

designer with options to meet their requirements and needs depending on their constraints 

like materials, shape, size, and level of constancy of the force, etc. 

The following section illustrates the design and construction of a constant-force 

canted spring for the requirements of a designer/user from the tabulated configurations with 

a step-by-step process. 
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Figure 6.12   Force-Deflection Characteristics of Canted Spring E- Configurations 
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6.5. CONSTRUCTION OF DESIRED CONSTANT-FORCE CANTED SPRING 

WITH EXAMPLE 

A methodology is formulated to aid the user in generating a constant-force canted 

spring using the optimized tables per their needs.  The designer has a choice for the 

eccentricity of the ground pin joint either above, at, or below the ground level (slider) while 

developing a canted spring for one’s prerequisites.  A mechanism is developed as an 

example using an E-positive configuration to demonstrate the process of designing a canted 

spring for given design requirements.  The method uses a similar design philosophy and  

draws inspiration from the approach developed by Bapat et al. [106]. 

 

 

Figure 6.13   Pseudo-Rigid-Body Model of Canted Spring with Normalized Parameters 

 

6.5.1. Design Methodology - Steps.  The methodology of generating a desired 

constant-force canted spring is described in a series of steps.  The steps are provided in the 

context of the pseudo-rigid-body model of the category III canted spring (K1 = 0), as shown 
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in Figure 6.13.  For this demonstration, E-positive configuration 3 from Table 6.7 is 

considered for the desired CFM construction. 

• User Requirements 

The user has to provide the following three desired conditions for generating a CFM 

i. 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑆𝑝𝑟𝑖𝑛𝑔,  Ty = 3.8 𝑖𝑛 

ii. 𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐹𝑜𝑟𝑐𝑒,  F = 5 𝑙𝑏 

iii. 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑝𝑟𝑖𝑛𝑔:  1075 𝑆𝑝𝑟𝑖𝑛𝑔 𝑆𝑡𝑒𝑒𝑙 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠,  𝐸 = 30𝑒6 𝑝𝑠𝑖 

• Step 1:  Determine the link length r2 

From the PRBM, 

𝑁𝑜𝑛𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑝𝑟𝑖𝑛𝑔, 

H = Ey + Asinϴ20 + B cosϴ20 

 hence, 

Ty

r2
= Ey + Asinϴ20 + B cosϴ20 

⇒ r2 ≈ 5.5 𝑖𝑛 

• Step 2:  Determine the dimensions and angles of the PRBM from the 

nondimensionalized parameters and r2 

r3 = R ⋅ r2 ≈ 3.25 𝑖𝑛 

e = E𝑦 ⋅ r2 ≈ 0.8 𝑖𝑛 

a = A ⋅ r2 ≈ 5.34 𝑖𝑛 

b = B ⋅ r2 ≈ 0.88 𝑖𝑛 
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ϴ30 = sin−1 (
e + r2 sin ϴ20

r3
) 

r10 = r2 cos ϴ20 − r3 cos ϴ30 

𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ,  L =
r3
γ⁄ ≈ 3.8 𝑖𝑛 

where,   𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑟𝑎𝑑𝑖𝑢𝑠 𝑓𝑎𝑐𝑡𝑜𝑟,  γ = 0.85 

Ensure that the computed ϴ30 value is nearly the same as the optimized value 

provided in the table. 

• Step 3:  Calculate the required torsional spring constant K2 and determine the cross-

section of the beam 

𝐺𝑖𝑣𝑒𝑛 𝐹𝑜𝑟𝑐𝑒, F =  
K2
r2
𝜙𝑐𝑎𝑣𝑔 = 5 𝑙𝑏 

⇒ K2 = 61.78 𝑖𝑛 ⋅ 𝑙𝑏 

Choose an appropriate or available thickness for the beam, and compute its width 

from K2 

Free choice,  t = 0.04 𝑖𝑛 

 here,   K2 =  𝛾𝐾Θ
𝐸𝐼

𝐿
 

 where,   𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑐𝑜𝑒𝑓𝑓𝑖𝑒𝑐𝑖𝑒𝑛𝑡,  𝐾Θ = 2.65 

⇒ 𝑤𝑖𝑑𝑡ℎ,  w =
12 ⋅ 𝐼

t3
≈ 0.65 𝑖𝑛 

• Step 4:  Compute the force-deflection characteristics  

Since the width of the beam may be rounded to the nearest second decimal, the 

spring constant K2 will be slightly different from the initially calculated value, as 

the area moment of inertia (I) is calibrated. 
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𝐵𝑒𝑎𝑚′𝑠 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, K2_f =  𝛾𝐾Θ
𝐸𝐼𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑

𝐿
  

Compute the force-displacement profile using Equations 140 & 141, as follows.  

F =
K2_f
r2

ΦF 

6.5.2. PRBM of the Desired Canted Spring.  The PRBM mechanism of the 

desired canted spring is modeled with the computed parameters: 

i. Locate the ground pivot with the ‘e’ value above/below the slider level, as shown 

in Figure 6.14 

ii. Link r2 can be identified with its length and initial angle, ϴ20, as depicted in Figure 

6.14 

iii. Figure 6.14 also exhibits an imaginary circle that the link r3 would trace when it is 

not fully constrained to identify the slider location.  Please note that only one of the 

two locations will make it a canted spring (i.e., negative-pitch segment) 

iv. Locate the apex point with its relative coordinates, a & b, which marks the 

completion of PRBM construction.  The apex point is one of the crucial parameters 

for the generation of constant force throughout its recommended deflection range 

v. Calculate the length of the compliant segment and trace it along r3, as illustrated in 

Figure 6.14 

6.5.3. Topology Construction.  The topology construction of the canted spring is 

based on the PRBM and its apex point.  Recommendations are provided below for the 

topological shape connecting the negative-pitch segment with the apex and ground pivot 

with steps and a sketch in Figure 6.14, but it is the designer’s prerogative to shape the 

canted spring to desire. 
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Figure 6.14   Topology Construction of The Canted Spring – Example 

 

• Step i: Draw a construction line either perpendicular to the negative-pitch segment 

or a horizontal line to the width of the rigid segment 

• Step ii:  Now, create a circle with the apex point as one end of the diameter and as 

big as it gets closer to the end of the compliant segment 

• Step iii:  Now, draw a tangential line to the circle, completing the path of the rigid 

segment from the ground pin joint to the apex and the compliant beam end 

• Step iv:  Delete the unwanted curves and generate the thickness of the rigid 

segment, which is enclosed with the line drawn in step i 

6.5.4. Validation of Force-Displacement Behavior of Canted Spring.  The 

behavior of the example mechanism of the canted spring discussed in section 6.5.3 is 

examined with finite element analysis (FEA) simulations, and its undeflected position is 

presented in Figure 6.15. 
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Figure 6.15  Deflected and Undeflected Positions of  

Canted Spring – FEA (Ansys®) Simulation 

 

The force profile predicted by the PRBM-based model is validated with FEA 

simulations using ANSYS® Mechanical APDL v16, as shown in Figure 6.16.  The nominal 

force of the spring is computed as: 

 F𝑎𝑣𝑔 =
K2
r2
ΦF𝑎𝑣𝑔

 (145) 

It may be noted that the force profiles nearly match each other, thus validating the 

model for the generation of constant force by canted springs, with a factor of safety of 1.12 

for such large deflections.  The minute variance between the FEA values and the PRBM 

results is likely due to i) computational assumptions of the software, esp. for beams under 

near buckling, ii) assuming the generalized average values for PRBM parametric functions, 

such as γ and K .  More accurate values may be computed for each specific case by the 

equations provided by Midha, Howell, and Norton [67-71]. 
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Figure 6.16   Force-Characteristic Behavior of the Canted Spring Example 

 – PRBM & FEA 

6.6. CATEGORY I AND CATEGORY II SPRINGS 

The compliant mechanisms of categories I and II behave as soft springs and 

hard/linear springs, respectively, which may be optimized to exert prescribed nonlinear 

force profiles.  The category I canted springs have the potential to exert near-constant force 

over a selected range of its motion.  The force-displacement characteristics of that spring 

might not be as constant or for such a large deflection as category III springs. 

The force-displacement behavior of the category I & II springs is validated with 

FEA, as shown in Figures 6.17 and 6.18. 

6.7. SUMMARY 

A unique compliant mechanism, Canted Spring, has been examined to determine 

all possible configurations.  A formal type synthesis that is based on the rigid-body-

replacement method is employed to enumerate all the possible configurations.  Pseudo-
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rigid-body kinematic chain of the canted spring is determined by studying its behavior 

under loads using chain algorithm and FEA simulations.  The kinematic chain and its 

PRBM are utilized in the type synthesis methodology to ensure there is no isomorphism.  

Eight configurations are derived, and they are classified into three categories based on the 

location of the compliance.   

 

 
 

Figure 6.17   Force-Characteristic Behavior of Category I Canted Spring  

with Two SLFPS – PRBM & FEA 

 

The Principle of Virtual Work is used to determine the force-displacement equation 

for all three categories of the canted spring.  Dimensional synthesis is conducted for 

Category III springs as they have the best potential for generating constant force since the 

compliant segments of these springs can be loaded axially.  A synthesis routine is 

developed to optimize its  PRBM parameters such that the output force remains nearly 

constant through a significant range of its deflection.  The parameters are normalized so 

that the mechanism can be built to scale and magnitude of force per user requirements.  A 

design methodology is presented for constructing a constant-force canted spring for given 
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requirements, from PRBM to its topology as well.  The results are validated with finite 

element analysis simulations.  The general force-displacement behavior of the other two 

category springs is also studied.  

 

 
 

Figure 6.18   Force-Characteristic Behavior of Category II Canted Spring  

with SLFP – PRBM & FEA 
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7. CFM SYSTEMS FOR HIGH LOAD-BEARING AND UNIFORM PRESSURE 

DISTRIBUTION APPLICATIONS:  MODULAR UNITS AND ARRAY 

STRUCTURES 

7.1. INTRODUCTION 

Constant-force mechanisms have a wide range of applications, as they can exert 

and maintain the force/load nearly constant irrespective of their deformation.  There have 

been many efforts in developing such mechanisms to meet specific demands and needs, 

e.g., Robotic end-effectors, CFM exercise equipment, electric connectors, etc.  Hence, the 

mechanisms’ parameters, i.e., kinematic, material, and topology, were optimized for such 

applications to operate under the stress limit for desired life cycles.  Often, there is a need 

for implementing multiple CFMs to meet the force requirements and abide by the stress 

limits. 

This section proposes a few generic arrangements of CFMs to serve such various 

load-bearing applications.  Hereafter, they are characterized as CFM Systems: i) Modular 

Units and ii) Array Structures.  A modular unit consists of two or more constant-force 

elements (segments/mechanisms) to provide higher load capacity while maintaining 

stresses under yield limit for given space constraints.  An array structure is an arrangement 

of CFMs or modular units in systematic rectangular or circular configurations for uniform 

load distribution applications.  The potential applications for each CFM system are 

discussed in the following sections, along with its design development. 

7.2. MODULAR UNITS 

A module (or modular unit) of multiple compliant constant-force elements 

(segments or mechanisms) provides higher-load bearing capacity for the desired deflection 



 

 

127 

while maintaining each segment/mechanism under the stress limit.  The constant-force 

elements are arranged symmetrically such that the transverse reaction forces are balanced 

out, which enables the modules to exert load and translate in only one desired direction.  

The CFM elements can either be oriented radially or evenly spaced about the midplane(s) 

of the modular units.  They could also have guide rods to ensure a smooth and directed 

translation of the top plate where and when needed, and in other cases, there is no need for 

them, as depicted in Figure 7.1.  The units may be pre-assembled for given load 

requirements and design constraints of the application and deployed accordingly, e.g., 

aircraft landing gear, car suspensions, etc.  The nominal constant force of the module may 

be adjusted as needed by adding or removing the CFM elements. 

 

  

a. b. 

Figure 7.1   A Constant-Force Modular Units: 

a.) Four Compliant Pinned-Pinned Segments, b.) Eight Canted Springs 

 

One of the prime applications identified for the best use of constant-force modules 

is in the bridge/structure design [107].  Solving and accounting for the indeterminacy of a 

structure is a major part of the traditional design of a bridge/structure with many support 
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columns.  Incorporating specifically-designed CFM modular units at a few selective 

columns of a bridge/structure would provide a known reaction force at each of those 

columns, irrespective of their location and irregularities in the column height.  This 

arrangement of a bridge/structure with CFM modules would eliminate or at least drastically 

minimize the indeterminacy in its design, as demonstrated in Figure 7.2.  It might also 

facilitate the efficient and economical construction of such structures.  This research work 

is further investigated by Miyamoto and Midha [108]. 

 

 

Figure 7.2   A Bridge/Structure Supported by Rigid and Constant-Force Supports 

 

The Static equilibrium of the bridge/structure with constant-force modular units 

under uniformly-distributed load, as shown in Figure 7.3, may be expressed as follows, 

 ∑F𝑦 = 0:   W =∑R𝑖

2

𝑖=0

+ 4C (146) 
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Figure 7.3   A Bridge/Structure with Modular Units under UDL 

 

7.3. ARRAY STRUCTURES 

A constant-force array structure has CFM elements or modular units arranged 

systematically in a rectangular or circular orientation for uniform pressure distribution.  

They also provide very high load-bearing capacity as they can be assembled with as many 

CFM units as needed, as shown in Figure 7.4.  They have the ability to distribute the load 

uniformly regardless of the shape and size of the object resting on the array, as all of its 

units exert the same constant reaction force irrespective of their deflection. 

The array structures may find applications in various products like automotive 

seating, chair cushions, shoe soles, bedding, and other similar products in medical & 

consumer markets for better pressure distribution.  A simple algorithm is created to help 

synthesize suitable array structures based on the desired requirements, such as maximum 

allowable deflection, the curvature of the object resting on it, total load capacity, size, etc. 
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Figure 7.4   Constant-Force Array Structures: Rectangular and Circular Orientations 

 

7.3.1. Automotive Seating – Application Example.  Automotive seat cushions 

shown in Figure 7.5 are considered for this example to demonstrate the behavior of an array 

structure, especially when a person is seated in a skewed position.  The pressure 

distribution of a person sitting upright on the cushion with a backrest in automotive seating 

is determined experimentally and through FEA simulations by Grujicic et al. [109] and 

Siefert et al. [110], as shown in Figures 7.5 a and b, respectively.  The weight distribution 

and the contact surface area vary if a person is sitting in a skewed position, i.e., cross-

legged or leaning to one side.  It may be noted that the person experiences a non-uniform 

pressure distribution on one’s glutes, both in nominal and lopsided seating, with a few 

high-pressure points causing moderate to extreme discomfort depending on the duration of 

seating and cushion materials. 
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a. b. 

Figure 7.5   Pressure Distribution on Automotive Seating in Upright Position with 

Backrest [109, 110]:  a.) Experimental Data, b.) FEA Simulations 

 

An automotive seat design with an array structure would alleviate such issues to 

provide better comfort to drivers and passengers.  The reaction force of the elements in the 

array that are in contact with the body remains nearly the same regardless of their location 

& deflection, leading to uniform pressure distribution for different-sized humans, even in 

skewed positions. 

7.3.2. Design Methodology.  The process of developing on CFM array structure 

(rectangular orientation) is demonstrated below for the automotive seating example. 

• Design Requirements for Array Construction 

1. Weight of the Person/Object (input),  𝑊 = 200 𝑙𝑏 

2. Curvatures (k) or radii of the object (r), 𝑟 = 3 & 2 𝑖𝑛 
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3. Approx. size of the array (seat) (length x width): 12 × 6 𝑖𝑛 

4. Max. allowable deflection, 𝛿 = 1 𝑖𝑛 

 

 

Figure 7.6   Algorithm to Generate Rectangular Array Structure 

 

• Computation 

1. Distance between elements:  𝑑 = 0.1 ∙ (𝑤𝑖𝑑𝑡ℎ − 1) 

2. Calculate the number of elements in contact and their deflections using the 

devised program as demonstrated with a Flowchart in Figure 7.6.  The 
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results obtained for this example from the MATLAB program are: 

  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑓𝑜𝑟 𝑠𝑝ℎ𝑒𝑟𝑒 1:   61 

  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑓𝑜𝑟 𝑠𝑝ℎ𝑒𝑟𝑒 2:   37 

3. Compute the constant reaction force needed at each element of the array 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑐𝑜𝑛𝑡𝑎𝑐𝑡,   𝑛 = 98 

𝐹𝑜𝑟𝑐𝑒 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡,   𝐹 = 𝑊 𝑛⁄  ≅ 2 𝑙𝑏 

4. The residual forces are accommodated by the ground reactions through the 

substrate, 𝑊 − 𝐹 ∙ 𝑛 = 4 𝑙𝑏 

 

 

a. 

 

b. 

Figure 7.7   Array Structure Behavior in a Skewed Seating for the Cushion Example 

a.) Initial Position, b.) Descended Position  
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Figure 7.8   Algorithm to Generate Rectangular Array Structure 

 

An automotive seat with a rectangular array structure (23 X 11) is designed to bear 

200 lb human resting on it, with 196 lb. provided by the CFM elements of the array, and 

four pounds is from the ground reaction force.  The resulting seat cushion for the 

automotive seating is presented in Figure 7.7, demonstrating its behavior under loads.  

Figure 7.8 illustrates a possible arrangement of the seat cushion array. 

7.4. SUMMARY 

Constant-force modular units and array structures are developed to serve the 

needs of high-load-bearing applications.  Arrays structures also have the ability for 

uniform pressure distribution, as the load across its elements remains nearly constant 

irrespective of their deflections.  A few examples were presented to demonstrate the 

functionality of these CFM systems.  

 



 

 

135 

8. CONCLUSION AND FUTURE WORK RECOMMENDATIONS 

8.1. SUMMARY OF THE RESEARCH INVESTIGATION 

The theory that simple, compliant segments with different boundary conditions, 

subjected to axial loading, exert near-constant force the need for design optimization was 

demonstrated for various segment types.  The pseudo-rigid-body model (PRBM) concept 

was utilized to predict the force-displacement characteristics of the beams under axial 

loading.  The characteristic load for each beam was evaluated at zero deflection.  It was 

observed that the constancy of the force is dependent only on the initial beam-end angle 

and is independent of its material and other geometric properties.  It increases as the initial 

angle tends to zero degrees.  A fixed-free compliant beam generated near-constant force 

over a significant range of deflection in its post-buckling stage, i.e., its characteristic load 

is nearly the same as the Euler's critical load.  Similarly, pinned-pinned, fixed-guided, and 

compound-compliant (SLFP) beams exerted near-constant force in their post-buckling 

stages.  It was demonstrated with examples that the constancy of the force exerted by the 

existing compliant CFMs is predominantly due to this phenomenon.  An optimized 

mechanism or cam surface at the beam end may generate an exact constant force over large 

deflections, but not necessary for producing near-constant force with simple, compliant 

segments.  The theoretical results predicted by the PRBM-based model were validated 

experimentally for the three most common compliant segment types. 

A novel compliant constant-force mechanism, the canted spring, was designed 

based on the new understanding of the mechanics of generating constant force.  

Heuristically, six configurations were derived for the canted spring and revised to eight 
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with a formalized approach for type synthesis.  They were categorized into three groups 

based on the location of compliance in the mechanisms.  The category III canted springs 

had the best potential to generate constant force over large deformations.  The other two 

category springs exhibited non-linear force characteristics, which may be optimized as 

needed.  The PRBM concept was utilized to model the canted spring for dimensional 

synthesis, and its force-displacement behavior was investigated using the virtual work 

principle.  An optimization routine was developed for category III canted springs, which 

minimized the variation in the output force, producing more exact constancy.  The 

parameters of the PRBM were normalized with the link length r2 for optimization.  

Configurations were generated for different eccentricities of the ground pivot.  A 

methodology was formulated to help design a constant-force canted spring from these 

optimized mechanisms for desired requirements. 

The CFMs were arranged into modular units and array structures (CFM systems) 

to serve a wide range of high load-bearing and uniform pressure distribution applications.  

The modular units can be placed at a few columns of the bridge/structure to minimize the 

indeterminacy in the design.  A simple methodology was developed to exemplify the 

construction of an array structure for uniform pressure distribution.  The modular units can 

be part of arrays instead of a CFM to support and distribute the heavy loads throughout the 

structure. 

8.2. FUTURE WORK RECOMMENDATIONS 

Synthesis of a cam profile for the compliant segments, esp. for fixed-free beams, 

could be explored to generate an exact constant force.  An optimization routine for category 
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I canted springs, similar to the current methodology, could be developed for the generation 

of near-constant force, at least for a partial range of its deflection.  A study on minimizing 

indeterminacy by using CFM modular units in the bridge/structure design.  Development 

of CFM array structures either rectangular, circular, or combination of both orientations 

for uniform pressure-distribution applications, such as seat cushions, bedding & furniture, 

and floors (for assembly-line workers and care centers). 

 

 

 

 

 



 

 

 

 

APPENDIX A. 

MATLAB CODES FOR DIMENSIONAL SYNTHESIS OF CANTED SPRING 

OPTIMIZATION FOR CATEGORY III MECHANISMS 
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1. CATEGORY III CANTED SPRING – E-POSITIVE CONFIGURATIONS 

close all 

clear 

clc 

  

format long e 

  

rng(0); 

  

n = 10; 

  

iter = 100000; 

  

var = randi(n,5,iter); 

  

tol = 1.065;            %9*10^-2; % accuracy tol 

  

A = linspace(0.9,1.25,n); 

B = linspace(0,0.5,n); 

R = linspace(0,0.6,n); 

R1 = linspace(0.05,0.9,n); 

theta20 = linspace(pi/12,pi/3,n); 

% E = linspace(0.000001,1,n); 

% theta30 = linspace(pi/4,pi/2,n); 

Optimal_Ans = []; 

  

y = linspace(0.1,0.5,n);%control varable 

  

ii = 1; 

  

while ii <= iter 

     

    A_var = A(var(1,ii)); 

    B_var = B(var(2,ii)); 

    R_var = R(var(3,ii)); 

    R1_var = R1(var(4,ii)); 

    theta20_var = theta20(var(5,ii)); 

    %     E_var = E(var(6,ii)); 
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    %     theta30_var = theta30(var(7,ii)); 

     

    if (0 <  A_var) && (0.15*R_var <= B_var) && (0 < R_var) 

         

        for i = 1:n 

             

            theta2 = asin(sin(theta20_var)-y(i)); 

             

            theta30 = acos((cos(theta20_var)-

R1_var)/R_var); 

             

            E = R_var*sin(theta30) - sin(theta20_var); 

             

            theta3 = asin((E + sin(theta2))/R_var); 

             

            abs_phi1(i) = abs((((theta30-theta20_var)-

(theta3-theta2))*((cos(theta2)/(R_var*cos(theta3)))-

1))/(A_var*cos(theta2)-B_var*sin(theta2))); 

        end 

         

        Difference = max(abs_phi1)-min(abs_phi1); 

        Phi_avg = mean(abs_phi1); 

        Alpha_Phi = max(abs_phi1)/min(abs_phi1); 

         

        if Alpha_Phi <= tol 

             

            Optimal_Ans = [Optimal_Ans; 

                [Difference, A_var, B_var, R_var, R1_var , 

theta20_var, E, theta30, Phi_avg, Alpha_Phi]]; 

             

        end 

         

    end 

     

     ii = ii + 1; 

      

end 

  

kk = find( pi/3.75<=Optimal_Ans(:,8) & 

Optimal_Ans(:,8)<=pi/2 ); 
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Optimal_Ans_2 = Optimal_Ans(kk,:); 

  

% [~,Index_min] = min(Optimal_Ans_2(:,1)); 

%  

% Answer = Optimal_Ans_2(Index_min,:); 

  

kkk = find(Optimal_Ans_2(:,5) > 0.1); 

  

Answer3 = Optimal_Ans_2(kkk,:); 

  

kkkk = find(Answer3(:,7)>= 0.1); 

Answer4 = Answer3(kkkk,:); 

  

[~,Index_min] = min(Answer4(:,10)); 

  

Answer = Answer4(Index_min,:); 

  

[~,MaxIndex] = max(Answer4(:,9)); 

  

Ans_MaxAlpha = Answer4(MaxIndex,:); 

  

kmore = find(Answer3(:,10)<= 1.035); 

More_Answer = Answer3(kmore,:); 

  

kmore2 = find(More_Answer(:,9)>= 0.4); 

More_Answer2 = More_Answer(kmore2,:); 

  

Difference_Optimal = Answer(1) 

A_Optimal = Answer(2) 

B_Optimal = Answer(3) 

R_Optimal = Answer(4) 

R1_Optimal = Answer(5) 

theta20_Optimal = Answer(6)*180/pi 

Answer(6) 

E_Optimal = Answer(7) 

theta30_Optimal = Answer(8)*180/pi 

Answer(8) 

Phi_avg = Answer(9) 

Alpha = Answer(10) 
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2. CATEGORY III CANTED SPRING – E-ZERO CONFIGURATIONS 

close all 

clear 

clc 

  

format long e 

  

rng(0); 

  

n = 10; 

  

iter = 100000; 

  

var = randi(n,5,iter); 

  

tol = 1.065;    %9*10^-2; % accuracy tol 

  

A = linspace(0.9,1.25,n); 

B = linspace(0,0.5,n); 

R = linspace(0,0.6,n); 

%R1 = linspace(0.05,0.6,n); 

theta20 = linspace(pi/12,pi/3,n); 

% E = linspace(0.000001,1,n); 

% theta30 = linspace(pi/4,pi/2,n); 

Optimal_Ans = []; 

  

y = linspace(0.1,0.5,n);%control varable 

  

ii = 1; 

  

while ii <= iter 

     

    A_var = A(var(1,ii)); 

    B_var = B(var(2,ii)); 

    R_var = R(var(3,ii)); 

    %R1_var = R1(var(4,ii)); 

    theta20_var = theta20(var(4,ii)); 

    %     E_var = E(var(6,ii)); 
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    %     theta30_var = theta30(var(7,ii)); 

     

    if (0 <  A_var) && (0.15*R_var <= B_var) && (0 < R_var) 

         

        for i = 1:n 

             

            theta2 = asin(sin(theta20_var)-y(i)); 

             

            theta30 = asin((0 + sin(theta20_var))/R_var);      

% acos((cos(theta20_var)-R1_var)/R_var); 

             

            E = R_var*sin(theta30) - sin(theta20_var); 

             

            R1_var = cos(theta20_var) - R_var*cos(theta30); 

             

            theta3 = asin((0 + sin(theta2))/R_var); 

             

            abs_phi1(i) = abs((((theta30-theta20_var)-

(theta3-theta2))*((cos(theta2)/(R_var*cos(theta3)))-

1))/(A_var*cos(theta2)-B_var*sin(theta2))); 

        end 

         

        Difference = max(abs_phi1)-min(abs_phi1); 

        Phi_avg = mean(abs_phi1); 

        Alpha_Phi = max(abs_phi1)/min(abs_phi1); 

         

        if (Alpha_Phi <= tol) 

             

            Optimal_Ans = [Optimal_Ans; 

                [Difference, A_var, B_var, R_var, R1_var , 

theta20_var, E, theta30, Phi_avg, Alpha_Phi]]; 

             

        end 

         

    end 

     

     ii = ii + 1; 

      

end 

  



 

 

144 

kk = find( pi/3.75<=Optimal_Ans(:,8) & 

Optimal_Ans(:,8)<=pi/2 ); 

  

Optimal_Ans_2 = Optimal_Ans(kk,:); 

  

% [~,Index_min] = min(Optimal_Ans_2(:,1)); 

%  

% Answer = Optimal_Ans_2(Index_min,:); 

  

kkk = find(Optimal_Ans_2(:,5) > 0.1); 

  

Answer3 = Optimal_Ans_2(kkk,:); 

  

[~,Index_min] = min(Answer3(:,10)); 

  

Answer = Answer3(Index_min,:); 

  

[~,MaxIndex] = max(Answer3(:,9)); 

  

Ans_MaxAlpha = Answer3(MaxIndex,:); 

  

kmore = find(Answer3(:,10)<= 1.05); 

More_Answer = Answer3(kmore,:); 

  

kmore2 = find(More_Answer(:,9)>= 0.4); 

More_Answer2 = More_Answer(kmore2,:); 

  

Difference_Optimal = Answer(1) 

A_Optimal = Answer(2) 

B_Optimal = Answer(3) 

R_Optimal = Answer(4) 

R1_Optimal = Answer(5) 

theta20_Optimal = Answer(6)*180/pi 

Answer(6) 

E_Optimal = Answer(7) 

theta30_Optimal = Answer(8)*180/pi 

Answer(8) 

Phi_avg = Answer(9) 

Alpha = Answer(10) 
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3. CATEGORY III CANTED SPRING – E-NEGATIVE CONFIGURATIONS 

close all 

clear 

clc 

  

format long e 

  

rng(0); 

  

n = 10; 

  

iter = 100000; 

  

var = randi(n,5,iter); 

  

tol = 1.065;            %9*10^-2; % accuracy tol 

  

A = linspace(0.9,1.25,n); 

B = linspace(0,0.5,n); 

R = linspace(0,0.6,n); 

R1 = linspace(0.05,0.9,n); 

theta20 = linspace(0,pi/3,n); 

% E = linspace(0.000001,1,n); 

% theta30 = linspace(pi/4,pi/2,n); 

Optimal_Ans = []; 

  

y = linspace(0.05,0.35,n);%control varable 

  

ii = 1; 

  

while ii <= iter 

     

    A_var = A(var(1,ii)); 

    B_var = B(var(2,ii)); 

    R_var = R(var(3,ii)); 

    R1_var = R1(var(4,ii)); 

    theta20_var = theta20(var(5,ii)); 

    %     E_var = E(var(6,ii)); 
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    %     theta30_var = theta30(var(7,ii)); 

     

    if (0 <  A_var) && (0.15*R_var <= B_var) && (0 < R_var) 

         

        for i = 1:n 

             

            theta2 = asin(sin(theta20_var)-y(i)); 

             

            theta30 = acos((cos(theta20_var)-

R1_var)/R_var); 

             

            E = R_var*sin(theta30) - sin(theta20_var); 

             

            theta3 = asin((E + sin(theta2))/R_var); 

             

            abs_phi1(i) = abs((((theta30-theta20_var)-

(theta3-theta2))*((cos(theta2)/(R_var*cos(theta3)))-

1))/(A_var*cos(theta2)-B_var*sin(theta2))); 

        end 

         

        Difference = max(abs_phi1)-min(abs_phi1); 

        Phi_avg = mean(abs_phi1); 

        Alpha_Phi = max(abs_phi1)/min(abs_phi1); 

         

        if Alpha_Phi <= tol 

             

            Optimal_Ans = [Optimal_Ans; 

                [Difference, A_var, B_var, R_var, R1_var , 

theta20_var, E, theta30, Phi_avg, Alpha_Phi]]; 

             

        end 

         

    end 

     

     ii = ii + 1; 

      

end 

  

kk = find( pi/3.75<=Optimal_Ans(:,8) & 

Optimal_Ans(:,8)<=pi/2 ); 
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Optimal_Ans_2 = Optimal_Ans(kk,:); 

  

% [~,Index_min] = min(Optimal_Ans_2(:,1)); 

% Answer = Optimal_Ans_2(Index_min,:); 

  

kkk = find(Optimal_Ans_2(:,5) > 0.1); 

  

Answer3 = Optimal_Ans_2(kkk,:); 

  

kkkk = find(Answer3(:,7) < 0); 

Answer4 = Answer3(kkkk,:); 

  

[~,Index_min] = min(Answer4(:,10)); 

  

Answer = Answer4(Index_min,:); 

  

[~,MaxIndex] = max(Answer4(:,9)); 

  

Ans_MaxAlpha = Answer4(MaxIndex,:); 

  

kmore = find(Answer4(:,10)<= 1.05); 

More_Answer = Answer4(kmore,:); 

  

kmore2 = find(More_Answer(:,9)>= 0.4); 

More_Answer2 = More_Answer(kmore2,:); 

  

Difference_Optimal = Answer(1) 

A_Optimal = Answer(2) 

B_Optimal = Answer(3) 

R_Optimal = Answer(4) 

R1_Optimal = Answer(5) 

theta20_Optimal = Answer(6)*180/pi 

Answer(6) 

E_Optimal = Answer(7) 

theta30_Optimal = Answer(8)*180/pi 

Answer(8) 

Phi_avg = Answer(9) 

Alpha = Answer(10) 

 



 

 

 

 

APPENDIX B. 

ANSYS APDL CODE FOR VALIDATING THE RESULTS PREDICTED BY 

PRBM-BASED MODEL FOR CANTED SPRING EXAMPLE  
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The following ANSYS Mechanical APDL program computes the force exerted by 

the Canted Spring example in section 6.5 (Figure 6.15).  The code computes the force for 

one input displacement at a time, hence it has to be executed for a few displacement 

inputs to get understand its force-displacement behavior.  

 

!######################## START OF COMMAND FILE ##################### 

! This command file is for analysis of a Canted Spring with one flexible segment, slider, 

and ground pin-joint 

 

finish 

/clear      ! Clear previous data 

 

!ENTERING PRE PROCESSOR MODULE 

/prep7      ! Enter preprocessor mode 

 

!DEFINE ELEMENT TYPES 

et,1,beam188     ! Regular beam elements 

et,2,mpc184,6     ! Pin-joint elements 

 

!DEFINE MATERIALS 

mp,ex,1,30e6     ! Modulus of elasticty for material 1 

mp,prxy,1,0.3     ! Poissons ratio for material 1 
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!DEFINE SECTIONS FOR FLEXIBLE AND RIGID LINKS 

sectype,1,beam,rect,flexible,0   ! Section type for flexible segment 

secdata,0.04,0.65    ! Section properties for section 1 

sectype,2,beam,rect,rigid,0   ! Section type for rigid segment 

secdata,0.3,1    ! Section properties for section 2 

 

!Nodes for Rigid segment and pin-joint 

N , 1 , 0 , 0 , 0 $ 

N , 2 , 0 , 0.8 , 0 $ 

 

!Node for pin-joint 

N , 3 , 0 , 0.8 , 0 $ 

 

!Nodes for Rigid segment - positive pitch segment 

N , 3 , 0 , 0.8 , 0 $ 

N , 4 , 3.8036 , 3.5866 , 0 $ 

N , 5 , 3.9747 , 3.6904 , 0 $ 

N , 6 , 4.1661 , 3.7664 , 0 $ 

N , 7 , 4.3804 , 3.8089 , 0 $ 

N , 8 , 4.4942 , 3.8154 , 0 $ 

N , 9 , 4.5804 , 3.8127 , 0 $ 

N , 10 , 4.7804 , 3.7822 , 0 $ 

N , 11 , 4.9804 , 3.7145 , 0 $ 
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!NODES for FLEXIBLE segment - negative pitch segment 

N , 12 , 5.1799 , 3.6022 , 0 $ 

N , 13 , 5.1456 , 3.5 , 0 $ 

N , 14 , 5.112 , 3.4 , 0 $ 

N , 15 , 5.0784 , 3.3 , 0 $ 

N , 16 , 5.0448 , 3.2 , 0 $ 

N , 17 , 5.0112 , 3.1 , 0 $ 

N , 18 , 4.9776 , 3 , 0 $ 

N , 19 , 4.944 , 2.9 , 0 $ 

N , 20 , 4.9105 , 2.8 , 0 $ 

N , 21 , 4.8769 , 2.7 , 0 $ 

N , 22 , 4.8433 , 2.6 , 0 $ 

N , 23 , 4.8097 , 2.5 , 0 $ 

N , 24 , 4.7761 , 2.4 , 0 $ 

N , 25 , 4.7425 , 2.3 , 0 $ 

N , 26 , 4.7089 , 2.2 , 0 $ 

N , 27 , 4.6753 , 2.1 , 0 $ 

N , 28 , 4.6417 , 2 , 0 $ 

N , 29 , 4.6081 , 1.9 , 0 $ 

N , 30 , 4.5745 , 1.8 , 0 $ 

N , 31 , 4.5409 , 1.7 , 0 $ 

N , 32 , 4.5073 , 1.6 , 0 $ 

N , 33 , 4.4737 , 1.5 , 0 $ 
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N , 34 , 4.4402 , 1.4 , 0 $ 

N , 35 , 4.4066 , 1.3 , 0 $ 

N , 36 , 4.373 , 1.2 , 0 $ 

N , 37 , 4.3394 , 1.1 , 0 $ 

N , 38 , 4.3058 , 1 , 0 $ 

N , 39 , 4.2722 , 0.9 , 0 $ 

N , 40 , 4.2386 , 0.8 , 0 $ 

N , 41 , 4.205 , 0.7 , 0 $ 

N , 42 , 4.1714 , 0.6 , 0 $ 

N , 43 , 4.1378 , 0.5 , 0 $ 

N , 44 , 4.1042 , 0.4 , 0 $ 

N , 45 , 4.0706 , 0.3 , 0 $ 

N , 46 , 4.037 , 0.2 , 0 $ 

N , 47 , 4.0034 , 0.1 , 0 $ 

N , 48 , 3.9699 , 0 , 0 $ 

 

!SELECT ELEMENT, MATERIAL and SECTION PROPERTIES FOR ground (E 

positive) 

TYPE,1 $ MAT,1 $ SECNUM,2 

 

!defining rigid element 

EN,1,1,2 
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!REVOLUTE JOINT 

sectype,3,joint,revo,pinjoint 

 

!SELECT ELEMENT, MATERIAL and SECTION PROPERTIES FOR Pin-Joint 

TYPE,2 $ MAT,1 $ SECNUM,3      

local,11,0,0,0.8,0, , ,90 $ secjoint,,11,11 

csys,11 

 

!ELEMENT FOR ground PIN JOINT  

EN,2,2,3 

 

!SELECT ELEMENT, MATERIAL and SECTION PROPERTIES FOR Positive-Pitch 

RIGID SEGMENT 

TYPE,1 $ MAT,1 $ SECNUM,2   ! Selecting element 1, material 1 and 

section 2 for further use 

 

!DEFINE ELEMENTS FOR Positive-Pitch Rigid Segment 

EN,3,3,4 $ EN,4,4,5 $ EN,5,5,6 $ EN,6,6,7 $ EN,7,7,8 $ EN,8,8,9 $ EN,9,9,10 $ 

EN,10,10,11 $ EN,11,11,12 

 

!SELECT ELEMENT, MATERIAL and SECTION PROPERTIES FOR Negative-Pitch 

Flexible Segment 
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TYPE,1 $ MAT,1 $ SECNUM,1   ! Selecting element 1, material 1 and 

section 1 for further use 

 

!DEFINE ELEMENTS FOR Positive-Pitch Rigid Segment 

EN,12,12,13 $ EN,13,13,14 $ EN,14,14,15 $ EN,15,15,16 $ EN,16,16,17 

EN,17,17,18 $ EN,18,18,19 $ EN,19,19,20 $ EN,20,20,21 $ EN,21,21,22 $ EN,22,22,23 

$ EN,23,23,24 

EN,24,24,25 $ EN,25,25,26 $ EN,26,26,27 $ EN,27,27,28 $ EN,28,28,29 $ EN,29,29,30 

$ EN,30,30,31 

EN,31,31,32 $ EN,32,32,33 $ EN,33,33,34 $ EN,34,34,35 $ EN,35,35,36 $ EN,36,36,37 

$ EN,37,37,38 

EN,38,38,39 $ EN,39,39,40 $ EN,40,40,41 $ EN,41,41,42 $ EN,42,42,43 $ EN,43,43,44 

$ EN,44,44,45 

EN,45,45,46 $ EN,46,46,47 $ EN,47,47,48 

 

finish 

 

!ENTERING SOLUTION MODULE 

/solu 

 

!ANALYSIS TYPE AND PROPERTIES 

antype,0 $ autots,1 $ nlgeom,1 $ nsubst,10,1000,1 $ outres,all,all 
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 ! Static analysis, auto time stepping on, nonlinear geometry on substep 

requirements 

time,1      ! maximum time of analysis 

 

!DEFINE CONSTRAINTS 

d,1,all,0     ! Fixity constraint at ground 

d,48,uy,0     ! y Displacement constraint to slider point 

!d,31,uz,0     ! z Displacement constraint to slider point 

!d,50,rotz,-0.5     ! theta Displacement constraint to coupler 

point 

!f,50,fx,-200     ! load constraint at coupler point, fx 

d,8,uy,-1.6     ! Displacement input at apex point, dy 

 

solve 

 

!ENTERING POST PROCESSOR MODULE 

/post1 

/eshape,1     ! Display as a solid geometry 

plns,u,sum $ /replot    ! Plot displacement 

plns,s,eqv $ /replot    ! Plot stress 

!antime,20,0.5,,1,2,0,1    ! Animation controls 

!anim,10,1,0.5     ! Animation controls 

prenergy,sene   ! Display total strain energy stored in the mechanism 
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/post26 

nsol,2,48,u,x,sliderdisp   ! Store nodal displacements at all time steps 

(load steps), ux 

!nsol,3,50,u,y,ydisp50    ! Store nodal displacements at all time steps 

(load steps), uy 

!prvar,2,3     ! Display command to list nodal 

displacements at all time steps (load steps), ux and uy 

 

!######################## END OF COMMAND FILE ####################### 

 

 



 

 

 

APPENDIX C. 

MATLAB CODE FOR GENERATING CFM RECTANGULAR ARRAY 

STRUCTURE  
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This MATLAB code is part of the design methodology to develop rectangular 

CFM array structure for given load and size requirements. 

 

clc; 

clear all; 

close all; 

m = input('enter the # of rows - array (odd number 

only):'); 

n = input('enter the # of columns - array (odd number 

only):'); 

d = input('enter the distance between two adjacent 

elements:'); %for time being assume the module as a point 

%f = 12; %the constant reaction force of the module with 4 

canted springs with each offering 3lb reaction force 

def = 1; % max deflection of the center module 

z = zeros(m,n); 

r1 = input('radius of the first circle:'); 

r2 = input('radius of the second circle:'); 

a = ceil(m/2); % ceil = round of to next integer % the 

center row 

b = ceil(n/2);  % the center column 

b1 = floor(b/2);    % the center column for sphere 1 

b2 = b + ceil(b/2); % the center column for sphere 2 

  

[z(a,b1), z(a,b2)] = deal(def); % max defelction is 

assigned the center elements for both spheres 

h1 = r1 - def;  % the distance from center of the sphere to 

part not dipressed into teh bed --> see figure in notes 

h2 = r2 - def; 

bmin = min(a, b1); % to get the least distance from the 

center element to box sides 

  

  

% if (r1+r2) <= (b2-b1)*d 

for i = 1:(bmin-1) 

    j = 0; 

     e = sqrt((i*d)^2 + (j*d)^2); 

    [z(a-i,b1),z(a+i,b1),z(a,b1-i),z(a,b1+i)]= 

deal(sqrt(r1^2 - e^2)- h1); %deal= to assign the same value 

to different variables 

  

    for j1 = 1:i 

        e = sqrt((i*d)^2 + (j1*d)^2); 
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       [z(a-i,b1-j1),z(a-i,b1+j1),z(a+i,b1-

j1),z(a+i,b1+j1),z(a-j1,b1-i),z(a-j1,b1+i),z(a+j1,b1-

i),z(a+j1,b1+i)]= deal(sqrt(r1^2 - e^2)- h1); 

    end 

end 

  

for i = 1:(bmin-1) 

    j = 0; 

    e = sqrt((i*d)^2 + (j*d)^2); 

    [z(a-i,b2),z(a+i,b2),z(a,b2-i),z(a,b2+i)]= 

deal(sqrt(r2^2 - e^2)- h2); %deal= to assign the same value 

to different variables 

  

    for j1 = 1:i 

        e = sqrt((i*d)^2 + (j1*d)^2); 

       [z(a-i,b2-j1),z(a-i,b2+j1),z(a+i,b2-

j1),z(a+i,b2+j1),z(a-j1,b2-i),z(a-j1,b2+i),z(a+j1,b2-

i),z(a+j1,b2+i)]= deal(sqrt(r2^2 - e^2)- h2); 

    end 

end 

% else 

%     fprintf('the two circles are not arranged properly'); 

% end 

  

  

for k = 1:m 

    for l = 1:n 

        if (z(k,l)<= 0) % non-contact elements 

            z(k,l) = 0; 

        else 

            z(k,l) = -1*z(k,l); %contact lements with 

negative sign for depression plot 

        end 

    end 

end 

  

x1 = [0 n*d n*d 0 0]; 

y1 = [0 0 m*d m*d 0]; 

z1 = [0 0 0 0 0]; 

z11 = [-1 -1 -1 -1 -1]; 

x2 = [0 n*d n*d 0; 0 n*d n*d 0]; 

y2 = [0 0 m*d m*d; 0 0 m*d m*d]; 

z2 = [0 0 0 0; -1 -1 -1 -1]; 

xp = zeros(m,n); 

yp = zeros(m,n); 

for k = 1:m 
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    for l = 1:n 

        xp(k,l) = l*d - d/2;    % x cooordinates for array-

elment points    % d/2 is distance from boxside to element 

1  

        yp(k,l) = k*d - d/2;    % y cooordinates for array-

elment points 

    end 

end 

zp = zeros(m,n); 

  

subplot(1,2,1); 

plot3(x1, y1, z1, '-b' );   %3D plot of upper box 

hold on; 

plot3(x1, y1, z11, '-b');   %3D plot of lower box 

hold on; 

plot3(x2,y2,z2,'-b');       % sides of teh cuboid box 

hold on; 

plot3(xp, yp, zp, '*r');    % points fro array elements 

surface(xp, yp, zp);        % substrate on the points 

axis equal; 

  

subplot(1,2,2); 

plot3(x1, y1, z1, '-b' ); 

hold on; 

plot3(x1, y1, z11, '-b'); 

hold on; 

plot3(x2,y2,z2,'-b'); 

hold on; 

plot3(xp, yp, zp, '*r'); 

% surface(xp, yp, zp); 

[xs1, ys1, zs1] = sphere();     %sphere function with 

xs1,ys1,zs1 as center 

surf(r1*xs1+xp(a,b1), r1*ys1+yp(a,b1), 

r1*zs1+(zp(a,b1)+r1),'FaceColor',[0.25 0.25 

0.25],'FaceAlpha',0.75);     %definign the center & color 

[xs2, ys2, zs2] = sphere(); 

surf(r2*xs2+xp(a,b2), r2*ys2+yp(a,b2), 

r2*zs2+(zp(a,b2)+r2),'FaceColor',[0.25 0.25 

0.25],'FaceAlpha',0.75); 

axis equal; 

  

figure(2) 

subplot(1,2,1); 

plot3(x1, y1, z1, '-b' ); 

hold on; 

plot3(x1, y1, z11, '-b'); 
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hold on; 

plot3(x2,y2,z2,'-b'); 

hold on; 

plot3(xp, yp, z, '*r');     %depressed points 

surface(xp, yp, z);         %substrate 

axis equal; 

  

subplot(1,2,2); 

plot3(x1, y1, z1, '-b' ); 

hold on; 

plot3(x1, y1, z11, '-b'); 

hold on; 

plot3(x2,y2,z2,'-b'); 

hold on; 

plot3(xp, yp, z, '*r'); 

surface(xp, yp, z); 

[xs1, ys1, zs1] = sphere(); 

surf(r1*xs1+xp(a,b1), r1*ys1+yp(a,b1), 

r1*zs1+(z(a,b1)+r1),'FaceColor',[0.25 0.25 

0.25],'FaceAlpha',0.75); 

[xs2, ys2, zs2] = sphere(); 

s = surf(r2*xs2+xp(a,b2), r2*ys2+yp(a,b2), 

r2*zs2+(z(a,b2)+r2),'FaceColor',[0.25 0.25 

0.25],'FaceAlpha',0.75); 

axis equal; 

% get(s) 

sp1 = z(1:m,1:b); 

sp2 = z(1:m,b:n); 

count_1 = nnz(sp1); 

count_2 = nnz(sp2); 
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