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ABSTRACT

Correlation, topology, and disorder can fundamentally affect the properties of inter-

acting many-particle systems. After a short introduction which covers the basic concepts of

phase transitions and scaling as well as the physics of Josephson junctions, the dissertation

focuses on three separate projects.

The first project is motivated by the stripe and nematic phases observed e.g. in

cuprate superconductors and iron pnictides. To understand the effects of disorder on such

phases, we have investigated the behavior of the diluted 𝐽1-𝐽2 Ising model. Spinless

impurities generate a random-field disorder for the spin-density (stripe) order parameter,

which destroys the stripe phase. Combining symmetry arguments, percolation theory and

Monte Carlo simulations, we show that a weak spatial interaction anisotropy restores the

stripe phase. Moreover, we determine the phase diagram and explain it using percolation

theory. We also analyze the critical behavior of the transition into the stripe phase.

Many-particle systems far from thermal equilibrium can undergo abrupt transitions

between different steady states which resemble thermal transitions. In the second project,

we have studied the absorbing-state phase transition of the 1-D contact process, which can be

understood as a model of epidemic spreading, under the combined influence of spatial and

temporal disorders. We discuss the stability of the directed percolation universality class

against such disorder, and then perform Monte Carlo simulations to confirm our theory. We

also investigate the Griffiths singularities that accompany the nonequilibrium transition.

In the third project, we have constructed unconventional Josephson junctions by

coupling superconducting Nb leads to the surface states of a 𝑆𝑚𝐵6 crystal. We have found a

robust critical current at low temperatures which responds to out-of-phase magnetic fields.

This behaviour significantly deviatates from the usual Fraunhofer patterns, forming so-

called Shaphiro steps. We have also found the effects of Kondo breakdown in our devices,

as well as the coexistence of magnetism with superconductivity at the 𝑆𝑚𝐵6 surface.
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1. INTRODUCTION

1.1. PHASE TRANSITIONS

A phase represents a state of matter. Its properties are uniform in space and time-

independent, and its qualitative characteristics do not change upon small changes of external

parameters (control parameters) such as pressure, temperature, magnetic field, and chemical

composition. Correspondingly, a phase transition is defined as a qualitative change in a

thermodynamic system in response to a change of the control parameters. The transition

between two phases happens when one crosses the boundary in the phase diagram, which

shows the different phases of a material as a function of the control parameters. A well-

known example are the three phases of water (solid, liquid and gas), as shown in Figure

1.1. For water, the phase boundaries correspond to the melting of ice and the evaporating

of liquid water.

First-order phase transitions involve phase coexistence and latent heat. During the

transition, the system either absorbs or releases a fixed amount of energy per mass to turn

one phase into the other at the phase boundary. For example, ice and liquid water coexist

at the melting transition at 0◦C, and a finite amount of heat is necessary to melt the ice at

Figure 1.1. Schmatic phase diagram of water
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this temperature. This implies that the first derivative of the free energy with respect to

temperature is discontinuous. In contrast, second-order phase transitions (continuous phase

transitions) do not feature latent heat or phase coexistence. Their first derivatives of the free

energy (such as entropy and magnetization) are continuous, but the second derivatives such

as susceptibility and specific heat are potentially divergent at the transition point.

1.1.1. Order Parameter and Landau Theory. Modern theories of phase transi-

tions are mostly built on Landau theory [1, 2, 3, 4]. Landau generalized mean-field theory

and proposed the concept of the order parameter, which is a macroscopic thermodynamic

observable that has a nonzero value in the ordered phase and vanishes in the disordered

phase. Laudau theory assumes that the free energy 𝐹𝐿 of a system can be described as

an analytical function of the order parameter. The physical state then corresponds to the

minimum of 𝐹𝐿 with respect to the order parameter. For example, in a ferrormagnetic

system using magnetization 𝑚 as its order parameter, the free energy 𝐹𝐿 can be written in

the form:

𝐹𝐿 = 𝐹𝐿 (0) + ℎ𝑚 + 𝑟𝑚2 + 𝑢𝑚4 +𝑂 (𝑚5), (1.1)

where ℎ is the external field, and 𝑟 and 𝑢 are expansion coefficients that are independent

of the order parameter, yet dependent on all other degrees of freedom. There is no cubic

term because of 𝑍2 symmetry. They vary with the external parameters such as temperature,

pressure, etc. In the absence of an external field (ℎ = 0), the free energy 𝐹𝐿 is an even

function. This case is easily discussed. If 𝑟 ≥ 0, 𝐹𝐿 reaches its minimum at 𝑚 = 0. This

represents the system in the disordered paramagnetic phase. On the other hand, if 𝑟 < 0,

the free energy 𝐹𝐿 now reaches its minimum value at nonzero magnetization,

𝑚 = ±
√︁
−𝑟/2𝑢. (1.2)

This solution represents the ordered, ferrormagnetic phase.
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The phase transition between the paramagnetic and ferromagnetic phases happens

at 𝑟 = 0, thus, 𝑟 is a measure of the distance from the transition point (critical point). From

Equation (1.2), it follows that 𝑚 is a continuous function of 𝑟 at the phase transition point

𝑟 = 0. In general, we can define the critical exponent 𝛽 of the order parameter using

𝑚 ∼ (−𝑟)𝛽. (1.3)

Landau theory predicts the value 𝛽 = 1/2, identical to the value in simple mean-field

theories. Other critical exponents will be introduced in the next section.

Landau theory can also describe a discontinuous phase transition. Take the same

example of a ferrormagnet in the ordered phase, 𝑟 < 0. At ℎ < 0, the system will be in a

phase with 𝑚 < 0. If we tune the field from ℎ < 0 to ℎ > 0, the system will discontinuously

change to a phase with 𝑚 > 0. At the transition point, ℎ = 0, the phases with 𝑚 > 0 and

𝑚 < 0 coexist.

1.1.2. Scaling Hypothesis. Scaling theory is a phenomenological theory of the

behavior close to the transition point of a continuous phase transition, i.e. close to criticality.

It is based on the observation that the correlation length 𝜉 becomes very large close to the

critical point (𝑟 = 0) and diverges as

𝜉 ∼ |𝑟 |−𝜈 . (1.4)

Here, 𝜈 is the correlation length critical exponent. This suggests that the correlation

length is the only relevant length scale in the system close to the critical point. Thus, if

all lengths in the system are rescaled by a positive arbitrary length scale factor 𝑏 while

the external parameters are adjusted so that the correlation length retains its value, the

physical properties do not change. According to the scaling hypothesis [5, 6], we need

to rescale the distance from criticality 𝑟𝑏 as 𝑟𝑏𝑦𝑟 and field ℎ𝑏 as ℎ𝑏𝑦ℎ , where 𝑦𝑟 and 𝑦ℎ

are critical exponents. This leads to a homogeneity relation for the free energy density
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𝑓 = −(𝑘𝐵𝑇/𝑉) ln(𝑍) that has the form

𝑓 (𝑟, ℎ) = 𝑏−𝑑 𝑓 (𝑟𝑏𝑦𝑟 , ℎ𝑏𝑦ℎ). (1.5)

Here, 𝑑 is the space dimentionality. Under the same transformation, the correlation length

𝜉 behaves as

𝜉 (𝑟, ℎ) = 𝑏𝜉 (𝑟𝑏𝑦𝑟 , ℎ𝑏𝑦ℎ). (1.6)

The freedom of setting the length scale factor 𝑏 to an arbitary value can be used to derive

the behavior of various observables. Choosing 𝑏 = 𝑟−1/𝑦𝑟 , the free energy density and

correlation length now become,

𝑓 (𝑟, ℎ) = 𝑟𝑑/𝑦𝑟 𝑓𝑆 (ℎ𝑟−𝑦ℎ/𝑦𝑟 ), (1.7)

𝜉 (𝑟, ℎ) = 𝑟−1/𝑦𝑟 𝜉𝑆 (𝑟−𝑦ℎ/𝑦𝑟 ℎ), (1.8)

where 𝑓𝑆 and 𝜉𝑆 are unary scaling functions using the combination 𝑟−𝑦ℎ/𝑦𝑟 ℎ as argument. In

the absence of a field (ℎ = 0), combining Eqs. (1.4) and (1.8) we have 𝜈 = 1/𝑦𝑟 . Moreover,

by taking appropriate derivatives of 𝑓 (𝑟, ℎ), we obtain the order parameter 𝑚,

𝑚(𝑟, ℎ) = −( 𝜕 𝑓
𝜕ℎ

) = 𝑏𝑦ℎ−𝑑𝑚(𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ). (1.9)

The susceptibility 𝜒 reads

𝜒(𝑟, ℎ) = ( 𝜕𝑚
𝜕ℎ

) = 𝑏2𝑦ℎ−𝑑𝜒(𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ), (1.10)

and the specific heat 𝐶 reads

𝐶 (𝑟, ℎ) = −𝑇 ( 𝜕
2 𝑓

𝜕2𝑟
) = 𝑏2/𝜈−𝑑𝐶 (𝑟𝑏1/𝜈, ℎ𝑏𝑦ℎ). (1.11)
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Table 1.1. Critical exponent values in Landau (mean-field) theory and for the 2D Ising
universality class [3, 9]

critical exponent Landau theory 2-dimensional Ising
𝛼 0 0
𝛽 1/2 1/8
𝛾 1 7/4
𝛿 3 15
𝜈 1/2 1

Setting 𝑏 equal to 𝑟−𝜈 as before and ℎ = 0, these three equations now yield,

𝑚 ∼ 𝑟 (𝑑−𝑦ℎ)𝜈 = 𝑟 𝛽, (1.12)

𝜉 ∼ 𝑟 (𝑑−2𝑦ℎ)𝜈 = 𝑟−𝛾, (1.13)

𝐶 ∼ 𝑟𝑑𝜈−2 = 𝑟−𝛼, (1.14)

which defines the susceptibility critical exponent 𝛾 and specific heat critical exponent 𝛼.

By setting 𝑏 = ℎ−1/𝑦ℎ and 𝑟 = 0, Equation (1.12) gives

𝑚 ∼ ℎ𝑑/𝑦ℎ−1 = ℎ1/𝛿 (1.15)

where 𝛿 is the critical isotherm exponent. Their values can be found in Table 1.1. By 

comparing these definitions of critical exponents, we find that they are not all independent. 

Eliminating 𝑦ℎ, we obtain the following scaling relations [5, 7, 8]

𝛼 = 2 − 𝑑𝜈 Josephson’s Identity, (1.16)

2𝛽 + 𝛾 + 𝛼 = 2 Rushbook’s Identity, (1.17)

𝛽(𝛿 − 1) = 𝛾 Widom’s Identity. (1.18)
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1.2. DISORDER EFFECTS AT PHASE TRANSITIONS

The results discussed in the previous section are based on spatially homogeneous,

or ‘pure’, systems. However, such pure systems are rather an expectation than the rule. In

nature, almost any real material contains different types of defects and impurities which

introduce quenched disorder into the system. This leads to a number of important questions,

especially: Will the ordered phase still exist in the presence of quenched disorder? Will the

phase transition remain sharp? Will the order of the transition or the critical behavior change

under the influence of disorder? Before answering these questions, we must distinguish two

fundementally different types of disorder.

1.2.1. Random Field Disorder vs Random Mass Disorder. Disorder or random-

ness can have different sources such as impurity atoms and vacancies or extended defects.

Almost all disorder in condensed matter systems is time-independent over experimental

time scales, so it is called 𝑞𝑢𝑒𝑛𝑐ℎ𝑒𝑑 disorder. In contrast, 𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 disorder changes over

experimental time scales. Here we only discuss quenched disorder.

According to Landau, ordered phases can be classified according to their broken

symmetries. This suggests that types of disorder should also be classified according to their

symmetries. Consider, for example, an Ising ferromagnet in an external magnetic field ℎ(𝑥)

that varies randomly in space. This type of disorder is called random-field disorder. As

it couples linearly to the order parameter, it appears in the linear term in the free energy

Equation (1.1):

−ℎ(𝑥)𝑚(𝑥, 𝑟). (1.19)

Random fields locally prefer one particular direction of 𝑚 over others and thus 𝑙𝑜𝑐𝑎𝑙𝑙𝑦

break the spin up-down symmetry. If the distribution of ℎ(𝑥) is even, no direction is preferd

globally, so the global symmetry is preserved (in the statistical sense).
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In contrast, let us now consider a ferrormagnet with a number of randomly distributed

vacancies. Since the vacancies do not prefer a particular spin direction, both local and global

up-down spin symmetries of the Hamitonian are preserved. Yet, the vacancies cause local

variations in the tendency towards ferromagnetism and change the critical temperature.

This type of disorder is therefore called 𝑟𝑎𝑛𝑑𝑜𝑚 − 𝑇𝐶 disorder, or random-mass disorder.

In a Landau expansion, it couples to the square of the order parameter, leading to a random

variation 𝛿(𝑥) in space of the quadratic coefficient. The corresponding quadratic term in

the free energy Equation (1.1) reads

[𝑟 + 𝛿(𝑥)]𝑚2(𝑥, 𝑟). (1.20)

1.2.2. Imry-Ma Criterion. A basic problem is whether a symmetry-breaking or-

dered phase can suvive random-field disorder. In order to solve this problem, Imry and

Ma [10] analyzed whether macroscopic phase coexistence is possible under random-field

disorder.

As an example, consider a 𝑑-dimensional ferromagnet (FM) having a spin-up domain

of linear size 𝐿 embedded within a larger spin-down domain as shown in Figure 1.2. In the

absence of random fields, the bulk free energy densities of both domains are identical.

The free energy loss due to the formation of the domain wall is proportional to the

domain wall area,

𝐸𝐷𝑊 ∼ 𝐿𝑑−1, (1.21)

and the free energy gain from aligning the spin-up domain with the local random fields can

be estimated from the central limit theorem,

𝐸𝑑𝑖𝑠 ∼ 𝐿𝑑/2. (1.22)
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Figure 1.2. Derivation of Imry-Ma criterion. Domain of the spin-up phase embedded in
spin-down bulk.

Based on Imry and Ma, we need to compare these two different energies. If

𝐸𝑑𝑖𝑠 < 𝐸𝐷𝑊 , the formation of domains is unfavorable, and the uniformly ordered FM phase

is stable. If 𝐸𝑑𝑖𝑠 > 𝐸𝐷𝑊 , domains proliferate, destroying the ferromagnetic state. This

leads to a simple requirement for the dimension. If 𝑑 ≤ 2, quenched disorder will destroy

the FM phase for arbitrary weak random fields because the disorder energy will allow a

domain ’wall’ for sufficently large 𝐿. For 𝑑 > 2, in contrast, the ordered phase remains

stable against sufficiently weak random fields. This result is called the Imry-Ma criterion

[11]; it was later proven rigorously by Aizeman and Wehr [12] for classical phase transitions

and by Aizeman, Greenblatt and Lebowitz [13] for quantum phase transitions.

1.2.3. Harris Criterion. At first, people believed that weak random-𝑇𝐶 (random-

mass) disorder would destroy any critical point, because the system would break up into

separate sub-regions which would undergo the phase transition at different temperatures,

destroying the sharp change in thermodynamic observables associated with a phase tran-

sition. However, it was later found that phase transitions generically remain sharp under

weak and short-range random-𝑇𝐶 disorder.
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Figure 1.3. Derivation of Harris criterion. The system is divided into independent blocks,
each with its own critical temperature.

Harris [14] found a simple criterion for the stability of a clean critical point of a

classical phase transition against weak random-mass disorder. It was later proven to be

applicable to quantum critical points as well [15].

Let us understand Harris’ finding. Let us assume a system that undergoes a con-

tinuous phase transition in the presence of random-mass disorder at an overall critical

temperature 𝑇𝑐. Imagine the system is divided into many sub-systems whose linear size is

equal to the correlation length 𝜉, see Figure 1.3. Each sub-system 𝑖 behaves independently

and has its own ’critical temperature’𝑇 𝑖
𝐶

, which depends on its disordered local microscopic

parameters.

We define Δ𝑇𝐶 to be the variation of these local critical temperatures. If Δ𝑇𝐶 >

|𝑇 −𝑇𝐶 |, some sub-systems will be in one phase and some will be in the other phase. Thus,

a uniform phase transition is forbidden. On the other hand, If Δ𝑇𝐶 < |𝑇 − 𝑇𝐶 |, almost all

blocks are in the same phase. Harris’s argument compares these two cases, and concludes

that a neccessary condition for the stability of the clean critical point against disorder is that

Δ𝑇𝐶 ≪ |𝑇 − 𝑇𝐶 | always holds.
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According to the central limit theorem, the variantion of the local critical tempera-

tures Δ𝑇𝐶 can be estimated based on the size of the subsystems, i.e., the correlation length

𝜉:

Δ𝑇𝐶 ∼ 𝜉−𝑑/2. (1.23)

If the distance from criticality 𝑟 is replaced by |𝑇 − 𝑇𝐶 | in Equation (1.4), we obtain the

relation:

|𝑇 − 𝑇𝐶 | ∼ 𝜉−1/𝜈 . (1.24)

Combining equations Eqs. (1.23) and (1.24), we find that the critical point is stable if

𝜉−𝑑/2 ≪ 𝜉−1/𝜈 for 𝜉 → ∞. This implies that, the clean critical point is stable if:

𝑑𝜈 > 2. (1.25)

This is the neccessary condition for the stability of a critical point, known as the famous

Harris criterion [14]. Several generalizations of the Harris criterion to correlated disorder,

temporal disorder, and others have been found, see e.g., Vojta and Dickmann [16].

1.2.4. Rare Regions and Griffiths Effect. In some disordered systems, the fate of

the system will be dominated by rare events. Consider a randomly diluted classical magnet,

see Figure 1.4. For a dilution not strong enough to destroy the phase transition, the critical

temperature will drop from its clean value 𝑇𝐶0 to 𝑇𝐶 . Due to statistical fluctuations, there

is a small but nonzero probability for large spatial regions (rare regions) that are devoid of

impurities. Griffiths effects arise where the temperature is in the range 𝑇𝐶 < 𝑇 < 𝑇𝐶0; this

region of the phase diagram is thus called Griffiths region or Griffiths phase [17]. In this

temperature range, rare regions show local magnetic order even though the bulk system is

in the paramagnetic phase (disordered phase). Griffiths proved that the rare regions produce

a singularity in the free energy of the system in this temperature range [18].
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Figure 1.4. Sketch of a diluted magnet, the shaded region is devoid of impurities and acts
as a rare region

The contributions of the rare regions to the thermodynamic behavior of the system

can be estimated from the probability 𝑃 for finding a rare region, which is a function of its

size 𝐿𝑅𝑅:

𝑃(𝐿𝑅𝑅) ∼ exp(−𝐴𝐿𝑑
𝑅𝑅), (1.26)

where 𝐴 is a constant. Using this probability, the rare region contribution to, say, the

magnetic susceptibility 𝜒 can be estimated as

𝜒𝑅𝑅 ∼
∫

𝑑𝐿𝑅𝑅𝑃(𝐿𝑅𝑅)𝜒(𝐿𝑅𝑅), (1.27)

where 𝜒(𝐿𝑅𝑅) is the susceptibility of an individual rare region of size 𝐿𝑅𝑅.

The Griffiths effect then depends on the effective dimension 𝑑𝑅𝑅 of the rare re-

gions and its relation to the lower critical dimension 𝑑−
𝐶

of the transition [19]. [𝑑−
𝐶

is the

dimensionality below which there is no phase transition.]

(i) For 𝑑𝑅𝑅 < 𝑑−
𝐶

, the rare region cannot undergo the phase transiton by itself. Since

the contribution of the rare region to 𝜒𝑅𝑅 scales as power law of its size, it cannot overcome

the exponential decay of the rare region probability 𝑃 in Equation (1.26). Thus, all the rare

region effects are exponentially weak. This generically happens in classical systems with

point defects.
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(ii) For 𝑑𝑅𝑅 = 𝑑−
𝐶

, the rare regions are exactly at the lower critical dimension. In this

case, the rare region still cannot undergo the phase transition by itself, but 𝜒(𝐿𝑅𝑅) grows

exponentially with 𝐿𝑅𝑅 so that it can overcome the decrease of the rare region probability

𝑃. This produces power-law Griffiths singularities that dominate the behavior at the critical

point. The critical point itself features exotic exponential scaling (infinite-randomness

critical point). Examples are the infinite-randomness critical point of the McCoy-Wu model

[20, 21, 22, 23] and the quantum critical point of the transverse-field Ising model [15, 24].

(ii) For 𝑑𝑅𝑅 > 𝑑−
𝐶

, the rare region can undergo the phase transition by itself and

independently from the bulk system. Since the dynamices of the locally ordered rare

regions completely freezes, the phase transition of the whole system will become smeared.

An example is the classical three-dimensional Ising magnet with planar defects [25] or the

quantum phase transition in itinerant Ising magnets [26, 27, 28].

1.3. APPLICATIONS

The concepts and phenomena discussed above can be used in many disorderd

systems. In this section, we introduce their applications to the systems studied in papers I

and II.

1.3.1. Magnetic Stripe Order and the 𝐽1−𝐽2 Ising Model. Many materials feature

modulated charge or spin order, i.e., charge and spin density waves (or ’stripes’). Such stripe

order can be seen for example in iron pnictides and cuprate superconductors.

A prototypical model to study the formation of a stripe phase is the 𝐽1 − 𝐽2 two-

dimensional Ising model. The Hamiltonian reads:

𝐻0 = −𝐽1
∑︁
⟨𝑖 𝑗⟩

𝑆𝑖𝑆 𝑗 − 𝐽2
∑︁
⟨⟨𝑖 𝑗⟩⟩

𝑆𝑖𝑆 𝑗 , (1.28)
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Figure 1.5. Interactions of the anisotropic 𝐽1 − 𝐽2 model

where 𝑆𝑖 = ±1 are classical Ising variables, and 𝐽1 > 0 and 𝐽2 < 0 are the nearest-

neighbor and second-neareast neighbor interactions respectively (see Figure 1.5). In the

absence of vacancies, the phase transitions of the system are well studied (see, e.g., Refs.

[29, 30, 31, 32]). If the ratio |𝐽2 |/𝐽1 < 1/2, the ground state of the system will be

ferromagnetic. It doesn’t break any real-space symmetry. But if the ratio |𝐽2 |/𝐽1 > 1/2, the

ground states breakes the 𝐶4 rotation symmetry of the lattice and will result in stripe phase.

Figure 1.6 shows the existence of the stripe phase in the phase diagram of the undiluted

system.

How do spinless impurities affect the phase diagram of the 𝐽1 − 𝐽2 Ising model?

If the system is in the ferrormagnetic phase (|𝐽2 |/𝐽1 < 1/2), spinless impurities do not

break the order-parameter symmetry (the spin up-down symmetry). They therefore act as

random-𝑇𝐶 disorder.

As the stripe order that occurs for |𝐽2 |/𝐽1 > 1/2 breaks a real-space symmetry (the𝐶4

lattice rotation symmetry), the impurities are expected to create random-field disorder. The

explicit random-field mechanism was analyzed in [33], where it was shown that horizontal

vacancy pairs favor horizontal stripes and vertical vacancy pairs favor vertical stripes by an

energy differenct of 2𝐽1 (see Figure 1.7).

The resulting random-field disorder destroys the long-range stripe-ordered phase via

domain formation [33], as predicted by the Imry-Ma argument.
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Figure 1.6. Phase diagram of 𝐽1 − 𝐽2 Hamiltonian for both uncorrelated and anticorrelated
site dilution at an impurity concentration of 𝑝 = 1/8 compared to the phase diagram of the
undiluted system (open symbols)

Figure 1.7. Random field mechanism in diluted 𝐽1 − 𝐽2 model. The energy of the horizontal
stripe state(left) is lower by 2𝐽1 than the energy of the vertical stripe state(right).

In paper I, we analyze the effects of an additional weak interaction anisotropy,

introduced, for example, by strain on the sample.

1.3.2. Nonequilibrium Phase Transitions in the Contact Process. In the previous

sections, phase transitions in equilibrium systems were studied. However, research has

shown that abrupt transitions can also occur between different nonequilibium steady states

[34].
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One example is the 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 introduced by Harris [35, 36] as a prototypical

model that undergoes a noneequilibrium continuous phase transition. The model is defined

on a hypercubic lattice in 𝑑 dimension. Each site can be occupied by a particle (active) or

it can be empty (inactive). The time evolution of the contact process is a continuous-time

𝑀𝑎𝑟𝑘𝑜𝑣 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, and it contains 2 basic trasitions.

(i) Active site spontaneously becomes inactive with a ’healing’ rate 𝜇, this ’healing’

rate 𝜇 is usually set to unity for simplification.

(ii) Inactive sites get ’infected’ at rate 𝑛𝜆/2𝑑 where 𝑛 is the number of active nearest

neighbor sites, and 𝜆 is called the infection rate.

The infection rate 𝜆 is the overall control parameter and determines the fate of the

contact process. For sufficiently small 𝜆, the healing process dominates the state of the

system. Eventually all active sites will die out, resulting in an 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑒. This state is

called an absorbing state because the system cannot leave this state. For sufficiently large 𝜆,

the infection process dominates the state, the fraction of active sites is nonzero at all times,

resulting in the 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑡𝑒. The nonequilibrium phase transition between the inactive and

active states occurs at a critical value of the infection rate 𝜆𝐶 .

Now we disscuss the critical phenomena of the contact process. Near the critical

point, the density of active sites in the steady state 𝜌𝑠 shows a power-law denpendence on

the distance from criticality 𝑟 ∼ (𝜆 − 𝜆𝐶):

𝜌𝑠 ∼ 𝑟 𝛽. (1.29)

where 𝛽 is the order parameter critical exponent. The characterstic size of clusters of active

sites, the correlation length 𝜉, also follows a power-law dependence on 𝑟:

𝜉 ∼ |𝑟 |𝜈⊥ . (1.30)
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where 𝜈 is the correlation length critical exponent. The corresponding time scale, the

correlation time 𝜏 follows the relation

𝜏 ∼ 𝜉𝑧 . (1.31)

where 𝑧 is the dynamical critical exponent.

These three exponents 𝛽, 𝜈, 𝑧 define the universality class of the transition which is

known as the directed percolation universality class. In one dimension, they take the values

𝛽 = 0.276486, 𝜈⊥ = 1.733847, 𝑧 = 1.580745.

Paper II is devoted to the effects of simultaneous spatial and temporal disorder on

the transition of the contact process.

1.4. JOSEPHSON JUNCTION

The Josephson effect is a quantum mechanical phenomenon that allows supercur-

rents to go through a thin non-superconducting barrier or restriction between two super-

conductors. A device that can present this phenomenon and produce supercurrent is called

Josephson junction. This was predicted by B. D. Josephson in 1962 [37] and experimentally

confirmed shortly after.

This barrier separating two superconductors can be an insulator, creating a S-

I-S junction, or a non-superconducting metal, creating a S-N-S junction, or a physical

constriction that weakens the contact point, creating a S-c-S junction. If a Josephson junction

is on the surfaces of a 3D topological insulator, a topological superconductor can be achieved

through proximity induced superconductivity [38, 39, 40, 41, 42, 43, 44, 45, 46, 47].
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The DC Josephson effect is a direct current crossing the insulator without external

electromagnetic field. The supercurrent depends on the phase difference 𝜙 between two

superconducting electrodes. The supercurrent density through tunneljunction is:

𝐽 = 𝐽𝑐 sin 𝜙. (1.32)

where 𝐽𝑐 is the maximum supercurrent that can flow through the Josephson junction, and 𝜙 =

𝜙1 − 𝜙2 is the phase difference of the macroscopic quantum phases of the superconductors.

The AC Josephson effect, on the other hand, serves as a voltage standard, with

the phase varying linearly with time and current being a sinusoidal AC with time. A

second explanation possible for AC Josephson effect is that the tunneling Cooper pairs are

accelerated due to the presence of the voltage and gain energy. As the cooper pairs are not

allowed to alter their energy while tunneling, a photon is emitted.

The Josephson effect is an example of a macroscopic quantum phenomenon, which

manifests itself in various quantum implications such as superconducting quantum interfer-

ence devices (SQUIDs) or superconducting qubits.

1.4.1. Topological Insulator. A topological insulator is a material that behaves

as an insulator in the bulk phase, but the surface or edge can contain conducting states.

These states are possible due to the combination of spin-orbit interactions and time-reversal

symmetry. The topological insulator is closely related to the 2D integer quantum Hall state,

which also has unique edge states. The surface or edge states of a topological insulator

features conduncting states which are unlike any other known 1D or 2D electronics systems

[48].

As shown in Figure 1.8, inside the topological insulator, its Fermi level lies between

conducting band and valence band, so it behaves as normal insulator. Yet on the surface,

there exist symmetry-protected Dirac fermions. These states can fall within the bulk energy

gap and allow surface metallic conduction [50].
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Figure 1.8. Energy band of topological insulator [49]

Topological insulators have non-trivial symmetry-protected topological order, the 

distinction between 2D and 3D topological insulators is determined by the 𝑍2 topological 

invariant that defines the ground s tate. If there is a  s ingle 𝑍 2 invariant distinguishing the 

insulator from the quantum spin-Hall phase, it is in 2D. If there are four 𝑍2 invariant 

distinguishing the insulator, it is in 3D.

Being also one of the topics of this dissertation, three-dimensional topological 

insulators have drawn a great deal of attention due to their conducting 2D helical 

surface states protected by time reversal symmetry and strong spin-orbit coupling. 

These protected surface states are immune to magnetic disorder and localization effects; 

therefore transport through them is expected to be dissipationless [51, 52].

Proximity-induced superconductivity in topologically non-trivial surface states of a 

3D topological insulator is predicted to give rise to an exotic quantum phenomenon called 

fractional Josephson effect. A lthough existent 3 D t opological i nsulators a re n ot perfect 

insulators in the bulk, it has been demonstrated theoretically [53] and experimentally [42, 44] 

that the supercurrent primarily flows t hrough t he surface s tates r ather t han t he bulk i n a 

topologcial Josephson junction. Since surface states of the topological barrier are symmetry
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protected from backscattering, the system can possess gapless bound states as in the case of

SNS junction with perfectly transparent SN contacts (N denotes normal metal, S denotes

superconductor). In the non-adiabatic limit, a special pair of bound states crosses at 𝜙 = 𝜋

(bringing a continuum of gapless states at zero energy) due to fermion parity conservation

[54]. This leads to a doubling in the periodicity of a conventional SNS Josephson relation,

i.e. fractional Josephson effect.

1.4.2. Topological Kondo Insulator. Topological Kondo insulators are a class

of narrow gap topologically ordered insulators. This topological order comes from the

large spin orbit coupling and the odd-parity of the f-states. At room temperature, these

insulators are metals containing magnetic moments; at sufficiently low temperatures, Kondo

hybridization of localized f-electrons with itinerant d-electrons in the conduction band opens

up a narrow insulating band gap where the Fermi level lies [55].

One of the biggest drawbacks of commonly studied 3D topological insulators is the

presence of conducting bulk that obscures both surface states and low energy bound sates.

Kondo insulators are materials with strongly correlated electrons that open up a narrow band

gap at low temperatures. The band gap opens up at low temperatures due to hybridization

of localized electrons. Thus, the material will become insulating at low temperatures. As

a result, topological Kondo insulators such as 𝑆𝑚𝐵6 have a truely insulating bulk at low

temperatures [56, 57]. Introducing superconductivity in topological Kondo insulators is

therefore a promising avenue.

1.4.3. Shaphiro Steps. If a Josephson junction is exposed to microwave photons

of frequency 𝑓 , it undergoes an inverse AC Josephson effect; consequently the dc current-

voltage characteristics will display quantized features, called Shaphiro steps [58, 59].

Shapiro steps will appear from the response of the supercurrents at voltages equal to

𝑛ℎ 𝑓 /2𝑒. Here, ℎ is Planck’s constant, 𝑒 is the electron charge, and 𝑛 is an aribitary interger.

This phenomena is also known as phase-locking effect since the Shaphiro steps occur due

to the phase matching between the junction and the drive frequency.
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Figure 1.9. AC Josephson effect giving rise to Shaphiro steps in I-V

Figure 1.9 shows clear Shaphiro steps manifesting AC Josephson effect in the

current-voltage characteristics of a 𝑁𝑏/𝑆𝑚𝐵6/𝑁𝑏 Josephson junction The details about

the fabrication and the performance of such devices will be explained in paper III.
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ABSTRACT

We investigate the behavior of the frustrated 𝐽1-𝐽2 Ising model on a square lat-

tice under the influence of random dilution and spatial anisotropies. Spinless impurities

generate a random-field type disorder for the spin-density wave (stripe) order parameter.

These random fields destroy the long-range stripe order in the case of spatially isotropic

interactions. Combining symmetry arguments, percolation theory and large-scale Monte

Carlo simulations, we demonstrate that arbitrarily weak spatial interaction anisotropies re-

store the stripe phase. More specifically, the transition temperature 𝑇𝑐 into the stripe phase

depends on the interaction anisotropy Δ𝐽 via 𝑇𝑐 ∼ 1/| ln(Δ𝐽) | for small Δ𝐽. This logarith-

mic dependence implies that very weak anisotropies are sufficient to restore the transition



22

temperature to values comparable to that of the undiluted system. We analyze the critical

behavior of the emerging transition and find it to belong to the disordered two-dimensional

Ising universality class, which features the clean Ising critical exponents and universal log-

arithmic corrections. We also discuss the generality of our results and their consequences

for experiments.

1. INTRODUCTION

The influence of impurities, defects, and other types of quenched random disorder on

the symmetry-broken low-temperature phases of many-particle systems and on their phase

transitions is an important topic in condensed matter physics. Fundamentally, disorder

effects are governed by the interplay between the symmetries of the order parameters

characterizing the phase or phase transition and the symmetries of the disorder (see, e.g.,

Ref. [1] for a pedagogical discussion).

If the impurities respect the order parameter symmetries, they generically lead to

random-𝑇𝑐 disorder, i.e., to spatial variations in the tendency towards the symmetry-broken

phase. As this disorder appears in the mass term of the order parameter field theory, it is also

called random-mass disorder. The diluted ferromagnet is an example for this case because

spinless impurities do not prefer a particular magnetization direction and thus do not break

the spin symmetry. Random-mass disorder can influence phase transitions profoundly, e.g.,

by rounding first-order phase transitions [2, 3, 4] or by modifying the critical behavior

of continuous ones [5]. Quantum phase transitions can feature additional disorder effects

including infinite-randomness critical points [6, 7, 8, 9, 10], smeared phase transitions

[11, 12], and quantum Griffiths singularities [13, 14, 15, 16] (see Refs. [17, 18, 19] for

reviews).

If, on the other hand, the impurities locally break the order parameter symmetries,

a stronger coupling between the disorder and the order parameter can be expected. The

generic result is random-field disorder [20], i.e., randomness in the field conjugate to
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the order parameter in the corresponding field theory. More complicated scenarios such

as random-easy-axis disorder [21] can occur if the impurities break the order parameter

symmetries only partially. Random fields can have more dramatic effects than random-

mass disorder. In sufficiently low space dimensions (𝑑 ≤ 2 for discrete order parameter

symmetry and 𝑑 ≤ 4 for continuous order parameter symmetry), even weak random fields

destroy the symmetry-broken phase itself via domain formation [4, 20, 22].

Recent years have seen renewed interest in phases that spontaneously break real-

space symmetries in addition to spin, phase, or gauge symmetries, including the charge-

density wave or stripe phases in cuprate superconductors [23, 24, 25], the Ising-nematic

phases in the iron pnictides [26, 27, 28], as well as valence-bond solids in certain quantum

magnets [29, 30, 31]. In general, impurities locally break the real-space symmetries of the

associated order parameters. They thus generically lead to random-field type disorder for

such order parameters [32, 33, 34, 35, 36, 37, 38, 39]. In addition to destroying the original

long-range order, these random fields can also induced novel phases of matter [38, 39].

A prototypical model for impurity-induced random fields is the frustrated 𝐽1-𝐽2 Ising

model on a square lattice, with ferromagnetic nearest-neighbor interactions and antiferro-

magnetic next-nearest-neighbor interactions. For sufficiently strong next-nearest-neighbor

interactions, it features a stripe-ordered low-temperature phase. As site or bond dilution

locally break the symmetry between the two equivalent stripe directions, they generate

random fields for the nematic order [32, 37] which destroy the stripe phase via domain

formation. Interestingly, the strength of the random fields can be tuned by the repulsion

between the impurities [37].

In the present paper, we revisit the diluted 𝐽1-𝐽2 Ising model and focus on the

interplay between the random-field disorder and global interaction anisotropies that may

arise, e.g., from strain engineering, epitaxial growth or the shape of crystallites or samples.

We combine symmetry arguments, percolation theory and large-scale Monte Carlo simu-

lations to show that the stripe phase is restored by an arbitrarily weak global anisotropy



24

(modeled, e.g., by a difference Δ𝐽 between the horizontal and vertical interaction strengths)

that explicitly breaks the symmetry between the two stripe directions. Importantly, the

transition temperature 𝑇𝑐 into the stripe phase varies with the interaction anisotropy as

𝑇𝑐 ∼ 1/| ln(Δ𝐽) |. This logarithmic dependence implies that a very weak anisotropy is

sufficient to suppress most random-field effects and restore the transition temperature to a

value comparable to that of the undiluted system. We also determine the critical behavior

of the emerging phase transition between the paramagnetic and stripe phases. Just as the

transition in the diluted Ising ferromagnet, it belongs to the disordered two-dimensional

Ising universality class which is characterized by the clean Ising exponents and universal

logarithmic corrections.

The remainder of our paper is organized as follows. In Sec. 2, we define the 𝐽1-𝐽2

Ising model. We also discuss the random-field mechanism and domain formation. Our

computer simulation methods are introduced in Sec. 3. Section 6 is devoted to the simulation

results and a comparison with theoretical predictions. We conclude in Sec. 5 by discussing

the generality of our findings and their consequences for experiments.

2. MODEL AND RANDOM-FIELD MECHANISM

2.1. DILUTED ANISOTROPIC 𝐽1-𝐽2 ISING MODEL

We start with the well-known 𝐽1-𝐽2 Ising model on a square lattice of 𝑁 = 𝐿2 sites

given by the Hamiltonian

𝐻0 = −𝐽1
∑︁
⟨𝑖 𝑗⟩

𝑆𝑖𝑆 𝑗 − 𝐽2
∑︁
⟨⟨𝑖 𝑗⟩⟩

𝑆𝑖𝑆 𝑗 . (1)

Here, 𝑆𝑖 = ±1 is a classical Ising spin, ⟨𝑖 𝑗⟩ denotes pairs of nearest-neighbor sites coupled by

the ferromagnetic interaction 𝐽1 > 0, and ⟨⟨𝑖 𝑗⟩⟩ denotes next-nearest neighbor pairs coupled

by the antiferromagnetic interaction 𝐽2 < 0. The phases of this system are well-understood
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Figure 1. Interactions of the anisotropic 𝐽1-𝐽2 model.

(see, e.g., Refs. [40, 41, 42, 43] and references therein). It displays paramagnetic behavior

at high temperatures. As the temperature is lowered, two distinct long-range ordered phases

appear. For |𝐽2 |/𝐽1 < 1/2, the low-temperature phase is ferromagnetic; it breaks the 𝑍2

Ising spin symmetry but none of the real-space symmetries. For |𝐽2 |/𝐽1 > 1/2, in contrast,

the low-temperature phase features a stripe-like spin order that breaks not only the Ising

spin symmetry but also the 𝐶4 rotation symmetry of the square lattice.

To explore the combined influence of quenched disorder and spatial anisotropies

on the stripe phase, we now introduce site dilution, and we allow the nearest-neighbor

interaction to take different values 𝐽1ℎ and 𝐽1𝑣 for horizontal and vertical bonds, respectively

(see Fig. 1). The resulting Hamiltonian reads

𝐻 = −𝐽1ℎ
∑︁
⟨𝑖 𝑗⟩ℎ

𝜖𝑖𝜖 𝑗𝑆𝑖𝑆 𝑗 − 𝐽1𝑣
∑︁
⟨𝑖 𝑗⟩𝑣

𝜖𝑖𝜖 𝑗𝑆𝑖𝑆 𝑗

−𝐽2
∑︁
⟨⟨𝑖 𝑗⟩⟩

𝜖𝑖𝜖 𝑗𝑆𝑖𝑆 𝑗 . (2)

The 𝜖𝑖 are quenched random variables that can take the values 0 (representing a vacancy)

with probability 𝑝 and 1 (occupied site) with probability 1−𝑝. We consider the 𝜖𝑖 at different

sites statistically independent; the effects of (anti)correlations between the vacancies were
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Figure 2. Random-field mechanism: A pair of vacancies on horizontal nearest-neighbor
sites prefers horizontal stripes (left) over vertical stripes (right) by an energy difference of
2𝐽1.

explored in Ref. [37]. We parameterize the nearest-neighbor interactions in terms of their

average and difference, 𝐽1ℎ = 𝐽1 + Δ𝐽, 𝐽1𝑣 = 𝐽1 − Δ𝐽. In the following, we focus on the

parameter region that favors stripe order at low temperatures, i.e., on |𝐽2 |/𝐽1 > 1/2.

2.2. RANDOM-FIELD DISORDER

While a single vacancy does not break the𝐶4 rotation symmetry of the lattice, spatial

arrangements of several vacancies generally do break this symmetry locally, leading to the

emergence of random-field disorder that locally prefers one stripe direction over the other

(even in the absence of interaction anisotropies, i.e., for Δ𝐽 = 0). Specifically, a pair of

vacancies on horizontal nearest-neighbor sites prefers horizontal stripes over vertical stripes

by an energy difference of 2𝐽1, see Fig. 2 [32, 37]. Analogously, a vacancy pair on vertical

nearest-neighbor sites prefers vertical stripes.

The typical random-field energy of a perfect (horizontal or vertical) stripe state in a

system of 𝐿 × 𝐿 sites can be easily estimated in the limit of low dilution 𝑝 when different

vacancy pairs can be considered independent and arrangements of three or more vacancies

on neighboring sites are suppressed. A system of 𝐿 × 𝐿 sites has 2𝐿2 distinct nearest

neighbor pairs (bonds), resulting in an average number of vacancy pairs of 2𝐿2𝑝2. The
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Figure 3. Root-mean-square random-field energy of a perfect stripe state per lattice site,
⟨𝐸2

𝑅𝐹
⟩1/2/𝐿2, vs. linear system size 𝐿 for several dilutions 𝑝. The data are determined by

averaging the square of the energy difference between perfect horizontal and vertical stripe
states over 20,000 disorder configurations. The solid lines represent relation (3) without
adjustable parameters.

random-field energy 𝐸𝑅𝐹 (𝐿) is thus the sum of 2𝐿2𝑝2 random contributions ±𝐽1. The

central limit theorem then gives

⟨𝐸2
𝑅𝐹 (𝐿)⟩ = 2𝐿2𝑝2𝐽2

1 = ℎ2
eff𝐿

2 (3)

with effective random field strength ℎeff =
√

2𝑝𝐽1 1. We have confirmed the relation (3)

numerically for a range of dilutions and system sizes, as can be seen in Fig. 3. It holds (at

least in very good approximation) for dilutions as high as 𝑝 = 1/4.

1Note that the effective random-field strength is proportional to 𝑝 rather than 𝑝2 as one might have naively
expected because the probability for finding a vacancy pair is proportional to 𝑝2.
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2.3. DOMAIN FORMATION

According to Imry and Ma [20], the fate of the symmetry-broken low-temperature

phase is governed by the competition between the random-field energy gain due to the

formation of domains of horizontal and vertical stripes that align with the local random

field and the energy cost of a domain wall. The energy cost of a straight domain wall

between horizontal and vertical stripes in the undiluted 𝐽1-𝐽2 model is easily worked out,

it equals 2𝐽2 per lattice constant. This domain formation problem can be mapped onto

a random-field Ising model with the Ising variable representing the difference between

horizontal and vertical stripes in the 𝐽1-𝐽2 model (2).

Let us first consider the case of isotropic interactions, Δ𝐽 = 0 (which maps onto

an unbiased random-field Ising model). In two dimensions, domains appear for arbitrarily

weak random fields beyond the so-called breakup length scale 𝐿0. For weak random fields,

𝐿0 depends exponentially on the ratio between the domain wall energy scale 𝐽2 and the

random-field strength ℎeff ,

𝐿0 = 𝐴 exp(𝑐𝐽2
2/ℎ

2
eff) (4)

with 𝐴 and 𝑐 constants [22]. As horizontal and vertical stripe domains are equally likely for

Δ𝐽 = 0, the domain formation destroys the symmetry-broken low-temperature phase. (A

rigorous proof that the Gibbs state in a two-dimensional random-field Ising model is unique

was given by Aizenman and Wehr [4].) This agrees with the Monte Carlo simulation results

of Ref. [37].

For anisotropic interactions, Δ𝐽 ≠ 0, the problem maps onto a biased random-field

Ising model. In the caseΔ𝐽 > 0, horizontal stripes are preferred over vertical ones. Minority

(vertical stripe) domains have a finite maximum size that decreases with increasing Δ𝐽 [22].

At low temperatures, we thus expect the system to consist of finite-size vertical-stripe

domains embedded in the bulk featuring horizontal stripes.
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The domains of the two-dimensional random-field Ising model were further investi-

gated by Seppälä et al. [44, 45] and by Stevenson and Weigel [46, 47]. They demonstrated

that the domain structure in the unbiased case on length scales larger than 𝐿0 resembles the

fractal cluster structure of a critical percolation problem, at least for sufficiently weak ran-

dom fields (i.e., sufficiently large 𝐿0). Increasing bias (Δ𝐽 > 0) drives the domain pattern

away from percolation criticality, and a massive spanning cluster of the majority stripes

forms. This transition in the domain structure is governed by the usual two-dimensional

classical percolation exponents.

2.4. MAGNETIC PHASE TRANSITION

The random-field disorder in the diluted 𝐽1-𝐽2 model locally breaks the 𝐶4 rotation

symmetry of the square lattice. However, it does not break the 𝑍2 Ising spin symmetry.

This leaves open the possibility of a magnetic phase transition into a long-range ordered

low-temperature phase that spontaneously breaks this remaining 𝑍2 symmetry 2. This phase

transition, if any, has to occur on the background of the stripe domain pattern discussed in

Sec. 2.3.

In the absence of a global anisotropy (i.e., for Δ𝐽 = 0), the magnetic phase transition

is impossible because the domain structure resembles critical percolation. This implies that

neither horizontal nor vertical domains form a massive cluster that covers a finite fraction

of the lattice sites and can support long-range magnetic order. This conclusion agrees with

the Monte Carlo results of Ref. [37].

In the presence of a global anisotropy, in contrast, the majority stripes (horizontal

stripes for Δ𝐽 > 0) form a massive infinite (spanning) cluster. The Ising spins on this cluster

can therefore spontaneously break the 𝑍2 Ising symmetry and develop long-range order.

To estimate the critical temperature 𝑇𝑐 of the magnetic transition as function of the global

2Note that situation differs from the random-field Ising model where the random fields completely break
the order parameter symmetry.
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anisotropy Δ𝐽, we recall that the critical temperature of a diluted Ising model close to the

percolation threshold 𝑝𝑐 varies as 𝑇𝑐 ∼ 1/| ln(𝑝 − 𝑝𝑐) | with the distance 𝑝 − 𝑝𝑐 from the

threshold (see, e.g., [48, 49]). In our 𝐽1-𝐽2 model (2), the distance of the stripe domain

pattern from percolation criticality is controlled by Δ𝐽. We therefore expect the transition

temperature into the stripe phase to vary as

𝑇𝑐 ∼ 1/| ln(constΔ𝐽) | . (5)

In addition to random-field disorder, the vacancies also create random-mass disorder

which is known to prevent first-order phase transitions in two dimensions [2, 3, 4]. We

thus expect the transition into the stripe phase to be continuous. On symmetry grounds, its

critical behavior should belong to the two-dimensional disordered Ising universality class

as it spontaneously breaks the remaining 𝑍2 symmetry. This is a particularly interesting

universality class because the clean two-dimensional Ising correlation length exponent takes

the value 𝜈 = 1 which makes it marginal with respect to the Harris criterion [5] 𝑑𝜈 > 2.

Perturbative renormalization-group studies [50, 51, 52] predict that the critical behavior of

the disordered Ising model is controlled by the clean Ising fixed point. Disorder, which is

a marginally irrelevant operator, gives rise to universal logarithmic corrections to scaling.

Early computer simulations [53, 54, 55], in contrast, found nonuniversal critical exponents

that vary continuously with disorder strength. More recent large-scale simulations strongly

support the logarithmic-corrections scenario (see Ref. [56] and references therein).

3. MONTE CARLO SIMULATIONS

In order to gain a quantitative understanding of the interplay between the random

fields and the global anisotropy in the 𝐽1-𝐽2 model, we perform extensive Monte Carlo

simulations of the Hamiltonian (2). As we are interested in the fate of the stripe low-

temperature phase, we fix the interaction energies at the values 𝐽1 = 𝐽2 = 1 for which the
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undiluted isotropic system enters the stripe phase at a temperature of about 2.08 [42]. The

dilution is fixed at 𝑝 = 0.25. This relatively strong disorder leads to moderate domain

sizes that actually fit into the sample sizes we are able to simulate. The global interaction

anisotropy Δ𝐽 is varied between 0 and 0.2.

In the parameter region 𝐽1 > 0, 𝐽2 < 0, the interactions of the 𝐽1-𝐽2 model are

frustrated. Therefore, cluster algorithms such as the Wolff [57] and Swendsen-Wang [58]

algorithms do not improve the efficiency of the simulations [59]. We therefore combine

conventional single-spin-flip Metropolis updates [60] with “corner” updates that exchange

the two spins on the diagonal corners of a 2 × 2 plaquette of sites. These corner updates

locally turn horizontal stripes into vertical ones and vice versa. Specifically, a full Monte

Carlo sweep consists of a Metropolis sweep over the full lattice followed by two corner

sweeps (one attempting to exchange the top right and bottom left sites of each plaquette,

the other doing the same for the top left and bottom right sites).

As both Monte Carlo moves are local, equilibration is slow, and the problem is

further exacerbated by the random-field effects at nonzero dilution. This is illustrated in

Fig. 4 which shows how the energy approaches its equilibrium value (for a prototypical

set of parameters). The data demonstrate that the relaxation is slower than exponential, it

approximately follows a power law over at least two orders of magnitude in Monte Carlo

time.

Consequently, long equilibration periods are required in the simulations, as well as

long measurement periods to ensure that the measurements do not remain correlated over the

simulation run. This severely limits the system sizes we can study. We employ equilibration

periods ranging from 30,000 full sweeps for the smallest systems (linear size 𝐿 = 16) to 106

sweeps for the largest systems studied (𝐿 = 192). The corresponding measurement periods

range from 30,000 to 2 × 106 full sweeps, with a measurement taken after each sweep.

We also change the temperature in small steps and use the final spin configuration for one

temperature as the initial configuration for the next. To check whether the observables truly
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Figure 4. Energy per site 𝐸/𝑁 vs. Monte Carlo sweep for a system of linear size 𝐿 = 96,
Δ𝐽 = 0 and temperature 𝑇 = 1.15. The data are averages over 3000 runs, each with
a different disorder configuration. The simulations start from a random configuration of
spins (hot start). The dashed line marks the equilibrium value of 𝐸/𝑁 . Inset: Log-log plot
of the deviation Δ𝐸 from the equilibrium value vs. Monte Carlo sweep.

reach their equilibrium values (within the statistical errors), we compare the results of runs

with “hot” starts (spins have independent random values initially) and “cold” starts (spins

are in perfect stripe state initially). An example of such a comparison is shown in Fig. 5.

All data are averaged over 3,000 to 100,000 disorder (vacancy) configurations, depending

on system size and temperature range.

During the simulations, we compute a number of observables including the total

energy per site [⟨𝑒⟩]dis and the specific heat 𝐶 = (𝑁/𝑇2) [⟨𝑒2⟩ − ⟨𝑒⟩2]dis. Here, 𝑒 = 𝐸/𝑁

stands for an individual energy measurement, ⟨. . .⟩ is the canonical thermodynamic average

(which is approximated by the Monte Carlo average) and [. . .]dis is the average over the

disorder configurations. We also calculate the two-component stripe order parameter 𝜓 =

(𝜓ℎ, 𝜓𝑣) with

𝜓ℎ =
1
𝑁

∑︁
𝑖

(−1)𝑦𝑖𝜖𝑖𝑆𝑖 , 𝜓𝑣 =
1
𝑁

∑︁
𝑖

(−1)𝑥𝑖𝜖𝑖𝑆𝑖 . (6)
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Figure 5. Comparison of simulations with hot starts (random initial spin configuration, run
starts at highest temperature) and cold starts (spins initially in perfect stripe state, run starts
at lowest temperature). Shown are the average Binder cumulant 𝑔av and the total energy
per site 𝐸/𝑁 as function of temperature 𝑇 for a system with 𝐿 = 96, Δ𝐽 = 0.01. The data
are averages over 5000 runs, each with a different disorder configuration, using 3 × 105

equilibration sweeps and 4 × 105 measurement sweeps.

Here, the indices ℎ and 𝑣 denote horizontal and vertical stripe order, respectively, and 𝑥𝑖

and 𝑦𝑖 are the (integer) coordinates of site 𝑖. The corresponding stripe susceptibility reads

𝜒𝑠 = (𝑁/𝑇) [⟨|𝜓 |2⟩ − ⟨|𝜓 |⟩2]dis. Dimensionless observables are particularly useful for

finding the phase transition temperature and analyzing the critical behavior. We therefore

also determine the average and global Binder cumulants

𝑔av =

[
2 − ⟨|𝜓 |4⟩

⟨|𝜓 |2⟩2

]
dis

, 𝑔gl = 2 − [⟨|𝜓 |4⟩]dis

[⟨|𝜓 |2⟩]2
dis

(7)

With increasing system size, these Binder cumulants are expected to approach the values 0

in the disordered phase and 1 in the stripe-ordered phase, and curves of the Binder cumulants

vs. temperature for different system sizes cross at the phase transition temperature. 𝑔av and

𝑔gl capture similar information and are expected to have identical scaling behaviors, but they

differ in how the disorder average is performed. For the average Binder cumulant 𝑔av, an
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individual Binder cumulant is computed for each disorder configuration. These individual

values are then averaged to yield 𝑔av. To obtain the global Binder cumulant 𝑔gl, in contrast,

the second and fourth moment of the stripe order parameter are averaged over the disorder

configurations, and the cumulant is then constructed from these disorder-averaged values.

4. RESULTS

4.1. ISOTROPIC INTERACTIONS, Δ𝐽 = 0

To test our simulation and data analysis techniques, we first consider Δ𝐽 = 0, i.e.,

equal exchange interactions 𝐽1ℎ and 𝐽1𝑣 in the horizontal and vertical directions, respectively.

This case can be compared with Ref. [37] and serves as the reference case for studying the

effects of anisotropic interactions.

Figure 6 presents the Monte Carlo simulation results for the average stripe Binder

cumulant 𝑔av as a function of temperature 𝑇 for several system sizes 𝐿 at dilution 𝑝 = 1/4

and 𝐽1 = 𝐽2 = 1. The curves for different 𝐿 do not cross, instead 𝑔av approaches zero with

increasing 𝐿. The global Binder cumulant 𝑔gl behaves analogously. This implies that there

is no phase transition, and the system does not enter a long-range ordered stripe phase.

This agrees with the expectation of domain formation according to the Imry-Ma argument

discussed in Sec. 2.3 and with the results of Ref. [37].

The domains can be seen explicitly in a snapshot of the local nematic order parameter

𝜂𝑖 in Fig. 7. It is defined via a sum over all bonds from site 𝑖 to its nearest neighbors,

𝜂𝑖 =
∑′

𝑗 𝜖𝑖𝜖 𝑗𝑆𝑖𝑆 𝑗 𝑓𝑖 𝑗 where 𝑓𝑖 𝑗 = 1 for horizontal bonds and −1 for vertical bonds. (This

means that 𝜂𝑖 = 4 for perfect horizontal stripe order and −4 for perfect vertical stripe order.)

The figure indicates that horizontal and vertical stripes are equally likely for Δ𝐽 = 0,

as expected in the isotropic case. It also suggests a breakup length 𝐿0 in the range between

about 50 and 100 lattice constants. It is interesting to compare this estimate with the random-

field Ising model result (4). Using the values 𝐴 ≈ 6.1 and 𝑐 ≈ 1.9 found numerically by
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Figure 7. Snapshots of the local nematic order parameter 𝜂𝑖 of one particular disorder
configuration for several anisotropies: Δ𝐽 = 0, 0.002, 0.01, 0.05 (left to right). The data
are taken a temperature 𝑇 = 0.1 reached via simulated annealing from high temperatures.
𝐿 = 192, 𝑝 = 1/4, 𝐽1 = 𝐽2 = 1.
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Seppälä et al. [44, 45], eq. (4) yields a breakup length of about 2 × 107 for 𝑝 = 1/4, much

larger than the length identified in Fig. 7. We believe that this stems from the fact that the

domain wall energy in the diluted system is significantly smaller than the value 2𝐽2 per

unit cell in the undiluted system because the domain wall can make use of the vacancies

to reduce the number of unfulfilled bonds. In fact, assuming that the vacancies reduce the

domain wall energy by a factor of 2 to 3, eq. (4) yields breakup length values comparable

to the sizes seen in Fig. 7.

Thus, the vacancies play a complex role in the destruction of the stripe order:

They generate random fields, they renormalize the domain wall energy, and they create

random-mass disorder.

4.2. ANISOTROPIC INTERACTIONS, Δ𝐽 > 0

We now turn to the main topic of this manuscript, the effects of a weak global

interaction anisotropyΔ𝐽. To this end, we perform Monte Carlo simulations forΔ𝐽 = 0.002,

0.005, 0.01, 0.02, 0.05, 0.1, and 0.2. Snapshots of the resulting local nematic order

parameter 𝜂𝑖 at low temperatures are presented in Fig. 7 for a few characteristic Δ𝐽 values.

As expected from the discussion in Sec. 2.3, the snapshots show that horizontal stripes

proliferate with increasing Δ𝐽 and form an infinite spanning cluster while vertical stripes

are restricted to finite-size clusters. Already at Δ𝐽 = 0.05, vertical stripe domains have

essentially vanished.

To investigate whether or not the systems feature a phase transition into a long-range

ordered stripe phase, we analyze the average Binder cumulant 𝑔av. For all Δ𝐽 ≥ 0.005,

we find that the stripe Binder cumulant curves for different system sizes 𝐿 cross at a

nonzero temperature, indicating the existence of the phase transition. Examples of the

average Binder cumulant data are presented in Figs. 8 and 9. The global Binder cumulant

behaves analogously. The curves for Δ𝐽 = 0.2 (Fig. 8) display a nearly perfect crossing

for all considered system sizes, demonstrating that corrections to scaling are weak. For
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Δ𝐽 = 0.005 and several system sizes 𝐿. 𝑝 = 1/4, 𝐽1 = 𝐽2 = 1. The data are averages over
10,000 to 20,000 disorder configurations. The statistical errors are smaller than the symbol
size.
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Δ𝐽 = 0.005 (Fig. 9), in contrast, the curves for smaller system sizes (𝐿 < 64) do not cross

and resemble the isotropic Δ𝐽 = 0 case. The curves for larger systems cross but the crossing

temperature of consecutive curves shifts systematically to higher values with increasing 𝐿.

This indicates that the data for the studied system sizes have not quite reached the asymptotic

critical regime.

The fact that the Binder cumulant curves for smaller sizes do not cross for weak

anisotropy is readily understood by comparing the random field energy at a given system size

with the energy gain for horizontal stripes due toΔ𝐽. According to eq. (3), the typical energy

gain due to aligning a domain of size 𝐿 with the local random fields is ℎeff𝐿 =
√

2𝑝𝐽1𝐿

whereas the anisotropy favors horizontal stripes by the energy Δ𝐽𝐿2. A weak anisotropy

can thus only suppress vertical domains of sizes larger than 𝐿Δ𝐽 ≈
√

2𝑝𝐽1/Δ𝐽 3. For

Δ𝐽 = 0.005, this estimate gives 𝐿Δ𝐽 ≈ 70 in agreement with the observation that crossings

start to appear for 𝐿 ≥ 64. For Δ𝐽 = 0.002, the smallest domain that the anisotropy can flip

has a size of about 𝐿 ≈ 175. As our system sizes are restricted to 𝐿 ≤ 192 , this explains

why we do not observe clear crossings of the Binder cumulant curves for Δ𝐽 = 0.002.

In other words, identifying the phase transition for Δ𝐽 ≤ 0.002 requires simulations of

significantly larger systems.

We now analyze how the transition temperature 𝑇𝑐 into the stripe-ordered phase

varies with the interaction anisotropyΔ𝐽. To this end, we determine the crossing temperature

for each Δ𝐽 value. This is unambiguous for the larger Δ𝐽 for which the crossing is “sharp”,

i.e., the curves all cross at the same temperature within their statistical errors. For the

smaller Δ𝐽, where the crossing shifts with increasing 𝐿, we estimate 𝑇𝑐 from the crossing

of the largest two system sizes 4.

Figure 10 presents the resulting dependence of 𝑇𝑐 on Δ𝐽. The data show that 𝑇𝑐

3Note that is a very rough estimate as it assumes compact domains which only holds on scales below 𝐿0.
On larger length scales the cluster structure is fractal, see Sec. 2.3.

4A systematic extrapolation of the crossing temperature to infinite system size, as performed, e.g., in
Ref. [56], would require significantly lower statistical errors and is thus beyond our current computational
capabilities.
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Figure 10. Transition temperature𝑇𝑐 into the long-range stripe ordered phase vs. interaction
anisotropy Δ𝐽 for 𝑝 = 1/4, 𝐽1 = 𝐽2 = 1. The solid line is a fit of the data for Δ𝐽 < 0.2 to
the logarithmic dependence (5). Inset: Data replotted as 1/𝑇𝑐 vs. lnΔ𝐽 such that (5) leads
to a straight line.

rises very rapidly as Δ𝐽 increases from zero implying that a small global anisotropy is

sufficient to stabilize a robust stripe phase. The figure also demonstrates that 𝑇𝑐 follows the

logarithmic dependence (5) on Δ𝐽 predicted in Sec. 2.4 for all Δ𝐽 ≤ 0.1.

It is interesting to compare the critical temperatures in Fig. 10 with the corresponding

value 𝑇𝑐0 ≈ 2.08 [42] for the undiluted isotropic system at the same parameter values

(𝐽1 = 𝐽2 = 1). Our simulations show that a weak anisotropy of Δ𝐽 = 0.005 already

produces a 𝑇𝑐 of more than half of the undiluted value. Moreover, a large part of the

reduction can be attributed to the random-mass effects of the dilution in our system and

not the random-field physics. Thus, a better comparison may be the diluted system with

anticorrelated impurities studied in Ref. [37]. In that system, the random-field physics is

completely eliminated by the vacancy anticorrelations. Its critical temperature of 𝑇𝑐 ≈ 1.17

(for 𝑝 = 1/4 and 𝐽1 = 𝐽2 = 1) is comparable to the critical temperatures in Fig. 10 for

anisotropies Δ𝐽 that have largely suppressed the effects of the random-field disorder.
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4.3. CRITICAL BEHAVIOR

According to the discussion in Sec. 2.4, we expect the transition into the long-range

stripe-ordered phase to be continuous and to belong to the two-dimensional disordered Ising

universality class. A perturbative renormalization group approach [50, 51, 52] predicts its

critical behavior to be controlled by the clean Ising fixed point while the disorder gives

rise to universal logarithmic corrections to scaling. This leads to the following finite-size

scaling behavior [61, 62, 63]. The specific heat at the critical temperature diverges as

𝐶 ∼ ln ln 𝐿 (8)

with system size 𝐿. The order parameter and its susceptibility at 𝑇𝑐 behave as

𝜓 ∼ 𝐿−𝛽/𝜈 [1 +𝑂 (1/ln 𝐿)] , (9)

𝜒𝑠 ∼ 𝐿𝛾/𝜈 [1 +𝑂 (1/ln 𝐿)] , (10)

with 𝛽/𝜈 = 1/8 and 𝛾/𝜈 = 7/4 as in the clean two-dimensional Ising model. Any quantity

𝑅 of scale dimension zero (such as the Binder cumulants 𝑔av and 𝑔gl) and its temperature

derivative scale as

𝑅 = 𝑅∗ +𝑂 (1/ln 𝐿) , (11)

𝑑𝑅/𝑑𝑇 ∼ 𝐿1/𝜈 (ln 𝐿)−1/2 [1 +𝑂 (1/ln 𝐿)] (12)

with the clean Ising value 𝜈 = 1.

Identifying logarithmic corrections in numerical simulations and distinguishing

them from power laws with small exponents requires high-quality data over a significant

system-size range. Here, we therefore focus on Δ𝐽 = 0.2 for which the system reaches the
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Figure 11. Semilog plot of the specific heat 𝐶 vs. system size 𝐿 at the critical temperature
𝑇𝑐 = 1.8670 for Δ𝐽 = 0.2, 𝐽1 = 𝐽2 = 1, 𝑝 = 1/4. The data are averages over 30,000 to
100,000 disorder configurations. The resulting statistical errors are much smaller than the
symbol size. The solid line represents a fit with 𝐶 = 𝑎 ln[𝑏 ln(𝑐𝐿)]. The dashed and dash-
dotted lines represent a simple logarithmic fit 𝐶 = 𝑎 ln(𝑏𝐿) and a power-law fit 𝐶 = 𝑎 𝐿𝑏,
respectively.

asymptotic critical regime for smaller 𝐿 than for weaker anisotropies (see Figs. 8 and 9).

We also simulate more disorder configurations for Δ𝐽 = 0.2 than for the other Δ𝐽 to further

reduce the statistical errors.

To test the theoretical predictions (8) to (12), we analyze the system-size dependence

of 𝐶, 𝜓, 𝜒𝑠, and 𝑑𝑔av/𝑑𝑇 at the critical temperature 𝑇𝑐 = 1.8670. (We use polynomial

interpolations in 𝑇 to determine these values from the simulation data.) Figure 11 presents

a semilogarithmic plot of the specific heat 𝐶 vs. the system size 𝐿. The figure clearly shows

that the specific heat grows slower than logarithmic with 𝐿. It can be fitted well with the
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Figure 12. Double logarithmic plot of 𝜒𝑠𝐿−7/4 vs. system size 𝐿 at the critical temperature
𝑇𝑐 = 1.8670 for Δ𝐽 = 0.2, 𝐽1 = 𝐽2 = 1, 𝑝 = 1/4. The data are averages over 30,000 to
100,000 disorder configurations. The solid line represents a fit with 𝑎[1 + 𝑏/ln(𝑐𝐿)]. The
dashed line represents a simple power-law fit with the functional form 𝑎 𝐿𝑏.

double-logarithmic form 𝑎 ln[𝑏 ln(𝑐𝐿)] suggested by eq. (8), giving a reduced error sum �̄�2

below unity 5. In contrast, both a simple logarithmic fit 𝐶 = 𝑎 ln(𝑏𝐿) and a power-law fit

𝐶 = 𝑎 𝐿𝑏 lead to unacceptably large reduced �̄�2 values of about 800 and 1600, respectively.

To test the predicted behavior (10) of the stripe susceptibility, we divide out the clean

Ising power law and plot 𝜒𝑠𝐿−7/4 vs. 𝐿 in Fig. 12. The figure demonstrates that 𝜒𝑠𝐿−7/4

increases more slowly than a power law with 𝐿. The data can be fitted reasonably well with

the form 𝑎[1 + 𝑏/ln(𝑐𝐿)], yielding a reduced error sum of �̄�2 ≈ 2.9. (The reduced error

sum drops to about 1.3 if the smallest system size, 𝐿 = 16, is discarded.) A power-law fit

produces a unacceptably large �̄�2 of about 60. The stripe order parameter can be treated

analogously, i.e., by analyzing 𝜓𝐿1/8. However, the corrections to the clean Ising behavior

5For fitting 𝑛 data points (𝑥𝑖 , 𝑦𝑖) to a function 𝑓 (𝑥) containing 𝑞 fit parameters, the reduced error sum is
defined as

�̄�2 =
1

𝑛 − 𝑞

∑︁
𝑖

(𝑦𝑖 − 𝑓 (𝑥𝑖))2

𝜎2
𝑖

(13)

where 𝜎2
𝑖

is the variance of 𝑦𝑖 . The fits are considered to be of good quality if �̄�2 ⪅ 2.
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for 𝜓 are much weaker than those for 𝜒𝑠, they only lead to a relative variation of 𝜓𝐿1/8 by

about 1% over the size range from 𝐿 = 16 to 128. Within the given statistical errors, both

(9) and a power law 𝜓 ∼ 𝐿−𝛽/𝜈 with 𝛽/𝜈 ≈ 0.120 fit the data.

Finally, we analyze the system-size dependence of the slopes 𝑑𝑔av/𝑑𝑇 of the Binder

cumulant curves at criticality. Within the statistical errors of our data and the uncertainty of

𝑇𝑐, we cannot discriminate between Eq. (12) and simple power law 𝑑𝑔av/𝑑𝑇 ∼ 𝐿1/𝜈 (which

gives 𝜈 ≈ 1.12). Both functional forms fit the data reasonably well.

Taken together, the analyses of 𝐶, 𝜓, 𝜒𝑠, and 𝑑𝑔av/𝑑𝑇 provide strong evidence

for the critical behavior to belong to the two-dimensional disordered Ising universality

class, characterized by the clean Ising exponents with universal logarithmic corrections. To

confirm that this behavior also holds for smaller anisotropies, we have studied the system

size dependence of the specific heat at criticality for the other simulated Δ𝐽 values. For all

Δ𝐽 > 0.01, the specific heat data can be fitted well with the double logarithmic form (8),

giving reduced error sums around unity. Even for the smallest Δ𝐽 = 0.01 and 0.005, the

double logarithmic form fits much better than a simple logarithmic dependence or a power

law. However, the fit quality is noticeably worse (�̄�2 ≈ 3 and 6, respectively). This can

be attributed to the fact that the systems with Δ𝐽 ≤ 0.01 have not reached the asymptotic

critical regime in the size range 𝐿 = 16 to 128 (see Fig. 9).

5. CONCLUSION

To summarize, we have investigated the combined influence of spinless impurities

and a spatial interaction anisotropy on the low-temperature stripe phase in the frustrated

square-lattice 𝐽1-𝐽2 Ising model. The impurities reduce the effective interaction strength

and thus create random-mass disorder. They also locally break the 𝐶4 rotation symmetry of

the lattice, and thus create effective random fields coupling to the nematic order parameter

that distinguishes the two possible stripe directions. In the absence of a global anisotropy,

these random fields destroy the stripe phase via domain formation.
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A global interaction anisotropy that explicitly breaks the 𝐶4 lattice symmetry com-

petes with the random fields and restores the stripe phase at sufficiently low temperatures.

By combining percolation theory and results about the domain structure of a biased random-

field Ising model, we have predicted that the transition temperature 𝑇𝑐 into the stripe phase

varies as 𝑇𝑐 ∼ 1/| ln(Δ𝐽) | with the interaction anisotropy Δ𝐽. This means very small Δ𝐽

are sufficient to restore a robust stripe phase.

We have also studied the resulting phase transition into the stripe phase. Our Monte

Carlo results provide strong numerical evidence for the transition to be continuous and to

belong to the disordered two-dimensional Ising universality class which is characterized by

the clean Ising exponents and universal logarithmic corrections.

Our explicit calculations have implemented the global anisotropy via a difference

between the nearest-neighbor interactions in the two lattice directions. Other sources of

global anisotropies that break the symmetry between the two stripe directions are expected

to have analogous effects. For example, a global anisotropy in the impurity distribution

that favors impurity pairs on, say, horizontal nearest neighbor sites over pairs on vertical

nearest neighbor sites introduces a bias into the random field distribution. Horizontal stripe

domains thus proliferate and form a massive spanning cluster, just as in our case.

Let us also comment on the possibility of a nematic phase. In the absence of a global

anisotropy, (Δ𝐽 = 0), the phase transition between the paramagnetic high-temperature phase

and the stripe low-temperature phase, if any, could in principle split into two separate

transitions, the first breaking the 𝐶4 lattice symmetry, producing nematic order, and the

second breaking the Ising spin symmetry. In the clean 𝐽1-𝐽2 Ising model, a nematic phase

has not been observed, and same holds for the diluted model studied in Ref. [37] in which

the random-field physics is suppressed by impurity anti-correlations. The 𝐽1-𝐽2 Heisenberg

model, in contrast, hosts a nematic phase [64]. We emphasize that a nematic phase transition
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cannot occur in principle in the presence of of a nonzero anisotropy Δ𝐽 ≠ 0. The anisotropy

breaks the 𝐶4 lattice symmetry explicitly, spontaneous breaking of this symmetry is thus

impossible 6.

Our results have demonstrated that the random-field effects generated by spinless

impurities (and, by analogy, bond dilution or other types of quenched randomness) on

an order parameter that breaks a real-space symmetry are very sensitive to weak global

spatial anisotropies. This may complicate the experimental observation of the random-field

physics, for example if the samples feature residual strain. A systematic variation of the

anisotropy to test the predictions of the present paper may be achieved, e.g., by applying

uniaxial pressure.

We note that the interplay and feedback between the random-field induced domain

formation and the magnetic degrees of freedom leads to enhanced fluctuations and slow

dynamics even in the absence of a global anisotropy, as was recently demonstrated by

mapping the 𝐽1-𝐽2 Hamiltonian on an Ashkin-Teller model in a random Baxter field [65].

It is interesting to compare our results to those for the square-lattice 𝐽1-𝐽2 Heisenberg

model. Even though magnetic long-range order at nonzero temperatures is impossible in

the Heisenberg case due to the Mermin-Wagner theorem [66], the clean 𝐽1-𝐽2 Heisenberg

model features vestigial nematic order [64] associated with the unrealized stripe phase (for

|𝐽2 | > 𝐽1/2). Impurities create random fields for the nematic order just as in the Ising case,

destroying the nematic phase [33]. However, the phase replacing it, a spin-vortex-crystal

glass, is more complex than in the Ising case [39].

Impurity-induced random fields also emerge in three-dimensional frustrated mag-

nets. For example, in XY pyrochlore magnets, they have recently been shown to destroy

long-range order beyond a critical disorder strength, leading to the formation of a cluster-

glass state [38].

6This argument does not preclude more complicated scenarios such as a meta-nematic transition in analogy
to a meta-magnetic transition in a ferromagnet.
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The use of strain to manipulate and “engineer” phases and properties of many-

particle systems has recently attracted considerable attention. For instance, it was realized

that strain can lift the degeneracy of the ground state manifold of a frustrated Heisenberg

antiferromagnet on a Kagome lattice, tuning the system through a sequence of unconven-

tional phases [67]. Our results can be understood as an example of using strain engineering

to restore the stripe phase.
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[53] M. Fähnle, T. Holey, and J. Eckert. Monte carlo renormaliza-
tion group calculations of critical exponents in site-diluted 2d and
3d ising systems. J. of Magn. Magn. Mater., 104–107(0):195–196,
1992. doi: http://dx.doi.org/10.1016/0304-8853(92)90762-D. URL
http://www.sciencedirect.com/science/article/pii/030488539290762D.

[54] Jae-Kwon Kim and Adrian Patrascioiu. Critical behavior of the spe-
cific heat in the two dimensional site diluted ising system. Phys. 
Rev. Lett., 72:2785–2788, Apr 1994. doi: 10.1103/PhysRevLett.72.2785. 
URL http://link.aps.org/doi/10.1103/PhysRevLett.72.2785.
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ABSTRACT

We study the absorbing-state phase transition in the one-dimensional contact process

under the combined influence of spatial and temporal random disorders. We focus on

situations in which the spatial and temporal disorders decouple. Couched in the language

of epidemic spreading, this means that some spatial regions are, at all times, more favorable

than others for infections, and some time periods are more favorable than others independent

of spatial location. We employ a generalized Harris criterion to discuss the stability of the

directed percolation universality class against such disorder. We then perform large-scale

Monte Carlo simulations to analyze the critical behavior in detail. We also discuss how the

Griffiths singularities that accompany the nonequilibrium phase transition are affected by

the simultaneous presence of both disorders.
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1. INTRODUCTION

Macroscopic systems far from thermal equilibrium can undergo abrupt transfor-

mations between different steady states when their external conditions are varied. These

nonequilibrium phase transitions share many features with thermodynamic (equilibrium)

phase transitions including collective behavior and large-scale fluctuations. They can be

found, for example, in interface growth, chemical reactions, granular flow, and in biological

problems such as population dynamics or epidemic spreading (for reviews, see, e.g., Refs.

[1, 2, 3, 4, 5]).

When a nonequilibrium phase transition separates an active fluctuating steady state

from an inactive absorbing state in which fluctuations completely stop, it is called an

absorbing state transition. Experimental realizations of absorbing state transitions have

been observed, for example, in turbulent liquid crystals [6], periodically driven suspensions

[7, 8], bacteria colony biofilms [9, 10], and the dynamics of superconducting vortices [11].

Janssen and Grassberger [12, 13] conjectured that all absorbing-state transitions with a

scalar order parameter and short-range interactions belong to the directed percolation (DP)

universality class [14], provided they do not feature extra symmetries or conservation laws.

Many realistic systems undergoing absorbing state transitions feature random spatial

inhomogeneities (i.e., spatial disorder) or random variations of their external parameters

with time (i.e., temporal disorder). The question of how disorder affects absorbing state

transitions (and the DP universality class in particular) has attracted significant attention

during the last two decades or so. According to the Harris criterion [15], the DP critical

point is unstable against spatial disorder because its correlation length exponent 𝜈⊥ violates

the inequality 𝑑𝜈⊥ > 2 in all physical dimensions, 𝑑 = 1, 2, and 3. The DP critical point

is also unstable against temporal disorder because its correlation time exponent 𝜈∥ = 𝑧𝜈⊥

violates Kinzel’s generalization [16] 𝜈∥ > 2 of the Harris criterion (see Ref. [17] for an

extension of the Harris criterion to general spatio-temporal disorder).
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Spatial disorder has been demonstrated to have dramatic effects on the DP univer-

sality class. Hooyberghs et al. [18, 19] developed a strong-disorder renormalization group

(RG) [20, 21] method and predicted the transition to be governed by an unconventional

infinite-randomness critical point. It is accompanied by strong power-law Griffiths singu-

larities [22, 23, 24] in the parameter region close to the transition. The infinite-randomness

critical point scenario was confirmed by large-scale Monte Carlo simulations in one, two,

and three space dimensions [25, 26, 27, 28]. Similar critical behavior was also observed in

diluted systems near the percolation threshold [29, 30] and in systems featuring aperiodic

order [31].

More recently, the effects of temporal disorder on the DP universality class were

analyzed by means of a real-time “strong-noise” RG [32]. This method predicts that

the disorder strength diverges with increasing time scale at criticality, and the probability

distribution of the density becomes infinitely broad, even on a logarithmic scale. This

infinite-noise critical behavior can be understood as the temporal counterpart of infinite-

randomness critical behavior in spatially disordered systems, but with exchanged roles of

space and time. The RG predictions were later confirmed by Monte Carlo simulations

[33, 34]. In addition, Vazquez et al. [35] identified a temporal analog of the Griffiths phase

in spatially disordered systems that features an unusual power-law relation between lifetime

and system size on the active side of the phase transition.

Although the effects of pure spatial disorder and pure temporal disorder have been

studied in some detail, their simultaneous influence on absorbing state transitions has

received much less attention. This is likely due to the fact that uncorrelated spatiotemporal

disorder is an irrelevant perturbation at the clean DP critical point and thus not expected to

change the critical behavior (see, e.g., Ref [2]). However, many experimental applications

do not lead to uncorrelated spatiotemporal disorder. Consider, for example, an epidemic

spreading in an inhomogeneous environment under conditions that fluctuate with time. If the

locations of favorable spatial regions do not change with time, and if favorable conditions in
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time apply uniformly to the entire population, the resulting spatiotemporal disorder features

infinite-range correlations and is thus expected to be a relevant perturbation at the clean DP

critical point.

In the present paper, we combine generalizations of the Harris criterion, optimal

fluctuation arguments, and large-scale Monte Carlo simulations to investigate the fate of

the nonequilibrium phase transition in the contact process [36] under the influence of

such spatiotemporal disorder. We find that adding weak temporal disorder to a spatially

disordered system does not change the infinite-randomness critical behavior. Analogously,

adding weak spatial disorder to a temporally disordered system does not affect the infinite-

noise critical behavior. We also explore the fate of the transitions of both disorders are

strong. In addition, we demonstrate that the functional form of the Griffiths singularities

changes in the simultaneous presence of both disorders.

Our paper is organized as follows. The contact process and our implementation of

the spatiotemporal disorder are introduced in Sec. 2. Section 3 briefly summarizes, what is

known about the phase transition in the clean contact process, the spatially disordered contact

process, and the temporally disordered contact process. The effects of rare regions and the

resulting Griffiths singularities in the contact process with purely spatial or purely temporal

disorder are summarized in Sec. 4. The computer simulations methods are introduced in

Sec. 5. Sections 6 and 7 are devoted to our results for the contact process in the presence of

spatiotemporal disorder. We conclude in Sec. 8.

2. CONTACT PROCESS

The non-equilibrium phase transition in the clean contact process is well studied and

belongs to the DP universality class [36]. We consider a 𝑑-dimensional hypercubic lattice in

which each site can be either active (infected) or inactive (healthy). As the time progresses,

an active site can either infect its lattice neighbors or spontaneously become inactive. More

specifically, the time evolution of the contact process is a continuous-time Markov process
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during which the infected sites heal at rate 𝜇, and infect their inactive neighbors at infection

rate 𝜆. Thus an inactive site become active at rate 𝜆𝑛/2𝑑. Here, 𝑛 stands for the number

of active neighbors. The long-time fate of the contact process is determined by the ratio

between the infection rate 𝜆 and the healing rate 𝜇. (Since only the ratio matters, 𝜇 can be

set to unity without loss of generality.)

For small infection rate 𝜆, the healing process is favored. Because of the lack of new

infections, all active sites will heal eventually. The system thus ends up in the absorbing

healthy state. This is called the inactive phase. For large infection rate 𝜆, the active sites

proliferate and never die out. This is called the active phase. The active and inactive phases

are separated by a transition in the DP universality class.

We now introduce spatial and temporal disorder into the infection rate 𝜆 by defining

the local infection rate 𝜆(𝑥, 𝑡) at lattice site 𝑥 and time 𝑡 with a multiplicative structure,

𝜆(𝑥, 𝑡) = 𝜆0 𝑓 (𝑥)𝑔(𝑡). (1)

Here, the random variables 𝑓 (𝑥) and 𝑔(𝑡) are nonnegative and independent of each other.

They are characterized by the averages

⟨ 𝑓 (𝑥)⟩ = 𝑓 , ⟨𝑔(𝑡)⟩ = �̄� (2)

and short-range correlations

⟨ 𝑓 (𝑥) 𝑓 (𝑥′)⟩ − 𝑓 2 = 𝜎2
𝑓 𝛿(𝑥 − 𝑥′) , (3)

⟨𝑔(𝑡)𝑔(𝑡′)⟩ − �̄�2 = 𝜎2
𝑔 𝛿(𝑡 − 𝑡′) (4)

The multiplicative structure implies that favorable (for the infection) spatial regions do not

change with time, and favorable time intervals apply to the whole system. In other words,

the disorder contains infinite-range correlations in space and time. This is reflected in the
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covariance function of 𝜆(𝑥, 𝑡) which reads

𝐺 (𝑥 − 𝑥′, 𝑡 − 𝑡′) = ⟨𝜆(𝑥, 𝑡)𝜆(𝑥′, 𝑡′)⟩ − ⟨𝜆(𝑥, 𝑡)⟩⟨𝜆(𝑥′, 𝑡′)⟩

= 𝜆2
0𝜎

2
𝑓𝜎

2
𝑔 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′)

+𝜆2
0𝜎

2
𝑓 �̄�

2𝛿(𝑥 − 𝑥′)

+𝜆2
0𝜎

2
𝑔 𝑓

2𝛿(𝑡 − 𝑡′) . (5)

Here the first term represents uncorrelated spatiotemporal disorder, the second term is

perfectly correlated in time, and the last term is perfectly correlated in space. Purely spatial

disorder can be understood as a special case of (1) with 𝑔 = const. Analogously, purely

temporal disorder emerges for 𝑓 = const.

3. SCALING SCENARIOS

In this section, we briefly summarize what is known about the critical behavior of

the nonequilibrium phase transitions in the clean contact process, the contact process with

purely spatial disorder, and the contact process with purely temporal disorder.

3.1. CLEAN CONTACT PROCESS: CONVENTIONAL POWER-LAW CRITICAL
BEHAVIOR

The (clean) DP universality class features three independent critical exponents which

can be chosen to be 𝛽, 𝜈⊥, and 𝑧 (see, e.g., Ref. [2]). The order parameter exponent 𝛽 controls

how the steady state density 𝜌stat varies as the infection rate 𝜆 approaches its critical value

𝜆𝑐 from the active side of the transition,

𝜌stat ∼ (𝜆 − 𝜆𝑐)𝛽 ∼ 𝑟 𝛽 , (6)
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with 𝑟 = (𝜆 − 𝜆𝑐)/𝜆𝑐 the dimensionless distance from criticality. The correlation length

exponent 𝜈⊥ controls the divergence of the (spatial) correlation length 𝜉⊥,

𝜉⊥ ∼ |𝑟 |−𝜈⊥ , (7)

and the dynamical exponent 𝑧 relates the correlation time 𝜉∥ to the correlation length,

𝜉∥ ∼ 𝜉𝑧⊥ . (8)

The density 𝜌 of active sites as a function of the distance 𝑟 from criticality, the time

𝑡, and the system size 𝐿 fulfills the homogeneity relation

𝜌(𝑟, 𝑡, 𝐿) = ℓ𝛽/𝜈⊥𝜌(𝑟ℓ−1/𝜈⊥ , 𝑡ℓ𝑧, 𝐿ℓ) (9)

where ℓ is an arbitrary dimensionless length scale factor. The survival probability 𝑃𝑠 is the

probability that an active cluster survives to time 𝑡 if the epidemic starts at time 0 from a

single infected site in an otherwise inactive lattice. In the DP universality class, 𝑃𝑠 has the

same scaling form as the density of active sites (9) 7,

𝑃𝑠 (Δ, 𝑡, 𝐿) = ℓ𝛽/𝜈⊥𝑃𝑠 (Δℓ−1/𝜈⊥ , 𝑡ℓ𝑧, 𝐿ℓ) . (10)

The pair connectedness function 𝐶 (𝑥, 𝑡) is given by the probability that site 𝑥 is infected at

time 𝑡 when the time evolution starts from a single infected site at 𝑥 = 0 and time 𝑡 = 0.

The scale dimension of 𝐶 is 2𝛽/𝜈⊥ because it involves a product of two densities 8. This

7This stems from a special time reversal symmetry [14]. At general absorbing state transitions, e.g., with
several absorbing states, the survival probability scales with an exponent 𝛽′ which may be different from 𝛽

(see, e.g., [2]).
8This relation relies on hyperscaling; it is only valid below the upper critical dimension 𝑑+𝑐 , which is four

for directed percolation.
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implies the scaling form

𝐶 (𝑟, 𝑥, 𝑡, 𝐿) = ℓ2𝛽/𝜈⊥𝐶 (𝑟ℓ−1/𝜈⊥ , 𝑥ℓ, 𝑡ℓ𝑧, 𝐿ℓ) . (11)

The number 𝑁𝑠 of sites in an active cluster growing from a single seed can be calculated by

integrating 𝐶 over all 𝑥,

𝑁𝑠 (𝑟, 𝑡, 𝐿) = ℓ2𝛽/𝜈⊥−𝑑𝑁𝑠 (𝑟ℓ−1/𝜈⊥ , 𝑡ℓ𝑧, 𝐿ℓ) . (12)

Because the mean-square radius 𝑅 of this active cluster has the dimension of a length, its

scaling form reads

𝑅(𝑟, 𝑡, 𝐿) = ℓ−1𝑅(𝑟ℓ−1/𝜈⊥ , 𝑡ℓ𝑧, 𝐿ℓ) . (13)

The time dependencies of 𝜌, 𝑃𝑠, 𝑁𝑠 and 𝑅 at the critical point 𝑟 = 0 and in the

thermodynamic limit 𝐿 → ∞ can be easily derived from Eqs. (9) to (13) by setting the

scale factor ℓ to suitable values. In the long-time limit, the density of infected sites and the

survival probability are expected to follow the relations

𝜌(𝑡) ∼ 𝑡−𝛿, 𝑃𝑠 (𝑡) ∼ 𝑡−𝛿 (14)

with 𝛿 = 𝛽/(𝜈⊥𝑧). The mean-square radius and the number of sites of an active cluster

starting from a single seed site behave as

𝑅(𝑡) ∼ 𝑡1/𝑧, 𝑁𝑠 (𝑡) ∼ 𝑡Θ . (15)

Here, Θ = 𝑑/𝑧 − 2𝛽/(𝜈⊥𝑧) is the critical initial slip exponent. These results imply that Θ,

𝛿, and 𝑧 are not independent, they fulfill the hyperscaling relation Θ + 2𝛿 = 𝑑/𝑧.
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Highly accurate estimates of the critical exponents for the clean DP universality

class in 𝑑 = 1 dimensions were computed by series expansions [37]: 𝛽 = 0.276486,

𝜈⊥ = 1.096854, 𝑧 = 1.580745, 𝛿 = 0.159464, and Θ = 0.313686.

The clean correlation length exponent violates Harris’ inequality 𝑑𝜈⊥ > 2 [15].

Analogously, the exponent combination 𝜈∥ = 𝑧𝜈⊥ violates the corresponding inequality

𝜈∥ > 2 for temporal disorder [16]. Consequently, the clean DP critical behavior is unstable

against both purely spatial disorder and purely temporal disorder.

3.2. SPATIALLY DISORDERED CONTACT PROCESS: INFINITE-RANDOMNESS
CRITICAL BEHAVIOR

Hooyberghs et al. [18, 19] employed a strong-disorder renormalization group (RG)

[20, 21] method to demonstrate that the nonequilibrium phase transition in the spatially

disordered contact process is governed by an exotic infinite-randomness critical point in the

same universality class as the random transverse-field Ising model [38, 39]. This was later

verified by Monte-Carlo simulations in one, two, and three space dimensions [25, 26, 27, 28].

A key difference between a conventional critical point and an infinite-randomness

critical point is the replacement of the power-law relation (8) between correlation length

and time by an exponential (activated) one,

ln(𝜉∥/𝑡0) ∼ 𝜉
𝜓
⊥ . (16)

Here 𝜓 is the so-called tunneling exponent, and 𝑡0 is a microscopic time scale. This

exponential relation implies that the dynamical exponent 𝑧 is formally infinite at an infinite-

randomness critical point. In contrast, the static scaling relations remain of power-law type,

i.e., eqs. (6) and (7) remain valid.
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The scaling forms of disorder-averaged observables can be obtained by simply

substituting the variable combination ln(𝑡/𝑡0)ℓ𝜓 for 𝑡ℓ𝑧 in the arguments of the scaling

functions, yielding

𝜌(𝑟, ln(𝑡/𝑡0), 𝐿) = ℓ𝛽/𝜈⊥𝜌(𝑟ℓ−1/𝜈⊥ , ln(𝑡/𝑡0)ℓ𝜓 , 𝐿ℓ) , (17)

𝑃𝑠 (𝑟, ln(𝑡/𝑡0), 𝐿) = ℓ𝛽/𝜈⊥𝑃𝑠 (𝑟ℓ−1/𝜈⊥ , ln(𝑡/𝑡0)ℓ𝜓 , 𝐿ℓ) , (18)

𝑁𝑠 (𝑟, ln(𝑡/𝑡0), 𝐿) = ℓ2𝛽/𝜈⊥−𝑑𝑁𝑠 (𝑟ℓ−1/𝜈⊥ , ln(𝑡/𝑡0)ℓ𝜓 , 𝐿ℓ) , (19)

𝑅(𝑟, ln(𝑡/𝑡0), 𝐿) = ℓ−1𝑅(𝑟ℓ−1/𝜈⊥ , ln(𝑡/𝑡0)ℓ𝜓 , 𝐿ℓ) . (20)

The resulting critical time dependencies of 𝜌, 𝑃𝑠, 𝑁𝑠, and 𝑅 are logarithmic (in the

thermodynamic limit),

𝜌(𝑡) ∼ [ln(𝑡/𝑡0)]−𝛿, 𝑃𝑠 (𝑡) ∼ [ln(𝑡/𝑡0)]−𝛿 , (21)

𝑅(𝑡) ∼ [ln(𝑡/𝑡0)]1/𝜓 , 𝑁𝑠 (𝑡) ∼ [ln(𝑡/𝑡0)]Θ̄ , (22)

with 𝛿 = 𝛽/(𝜈⊥𝜓) and Θ̄ = 𝑑/𝜓 − 2𝛽/(𝜈⊥𝜓).

Within the strong-disorder renormalization group approach, the critical exponents

of the spatially disordered one-dimensional contact process can be calculated exactly. Their

numerical values are 𝛽 = 0.38197, 𝜈⊥ = 2, 𝜓 = 0.5, 𝛿 = 0.38197, and Θ̄ = 1.2360.

3.3. TEMPORALLY DISORDERED CONTACT PROCESS: INFINITE-NOISE CRIT-
ICAL BEHAVIOR

To attack the problem of temporal disorder in the contact process, Vojta and Hoyos

[32] developed a real-time strong-noise renormalization group that can be understood as the

temporal counterpart of the strong-disorder renormalization group for spatially disordered

systems. This renormalization group predicts (in any finite dimensionality 𝑑) a Kosterlitz-
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Thouless [40] type transition at which the critical fixed point is the end point of a line of

fixed points that describe the ordered phase. Consequently, observables at criticality show

the same qualitative behavior as in the active phase, except for logarithmic corrections. This

can be expressed in the following heuristic scaling theory [33].

The density of active sites fulfills the scaling form

𝜌(𝑟, 𝑡, 𝐿) = (ln ℓ)−𝛽/�̄�⊥𝜌(𝑟 (ln ℓ)1/�̄�⊥ , 𝑡ℓ−𝑧, 𝐿ℓ−1) (23)

with order parameter exponent 𝛽 = 1/2, correlation length exponent �̄�⊥ = 1/2, and dynami-

cal exponent 𝑧 = 1. The scaling combination 𝑟 (ln ℓ)1/�̄�⊥ reflects the exponenial dependence

of the correlation length 𝜉⊥ on the distance 𝑟 from criticality. Because the time rever-

sal symmetry of DP [14] is still valid in the presence of temporal disorder, the survival

probability has the same scaling form,

𝑃𝑠 (𝑟, 𝑡, 𝐿) = (ln ℓ)−𝛽/�̄�⊥𝑃𝑠 (𝑟 (ln ℓ)1/�̄�⊥ , 𝑡ℓ−𝑧, 𝐿ℓ−1) . (24)

The cloud of active sites originating from a single infected seed site spreads ballistically,

apart from logarithmic corrections, yielding the scaling forms

𝑁𝑠 (𝑟, 𝑡, 𝐿) = ℓ𝑑 (ln ℓ)−𝑦𝑁𝑁𝑠 (𝑟 (ln ℓ)1/�̄�⊥ , 𝑡ℓ−𝑧, 𝐿ℓ−1) , (25)

𝑅(𝑟, 𝑡, 𝐿) = ℓ(ln ℓ)−𝑦𝑅𝑅(𝑟 (ln ℓ)1/�̄�⊥ , 𝑡ℓ−𝑧, 𝐿ℓ−1) . (26)

The exponents 𝑦𝑁 and 𝑦𝑅 that govern the logarithmic corrections are not independent of

each other. Because 𝑁𝑠 ∼ 𝑃𝑠𝜌𝑅
𝑑 , they must fulfill the relation 𝑦𝑁 = 2𝛽/�̄�⊥ + 𝑑𝑦𝑅.
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Setting 𝐿 = ∞, 𝑟 = 0, and ℓ = 𝑡1/𝑧 = 𝑡 in the scaling forms (23) to (26) gives the

time dependencies of the observables at criticality,

𝜌(𝑡) ∼ (ln 𝑡)−𝛿 , 𝑃𝑠 (𝑡) ∼ (ln 𝑡)−𝛿 (27)

𝑅(𝑡) ∼ 𝑡1/𝑧 (ln 𝑡)−𝑦𝑅 , 𝑁𝑠 (𝑡) ∼ 𝑡Θ(ln 𝑡)−𝑦𝑁 (28)

with 𝛿 = 𝛽/�̄�∥ = 1 and Θ = 𝑑/𝑧 = 𝑑.

This scaling theory was confirmed by large-scale Monte Carlo simulations of the

contact process with temporal disorder in one and two space dimensions [33]. The simu-

lations resulted in the estimates 𝑦𝑁 = 3.6(4) and 𝑦𝑅 = 1.7(3) for the exponents governing

the logarithmic corrections in one dimension 9.

4. RARE EVENTS AND GRIFFITHS SINGULARITIES

Spatial and temporal disorder do not only destabilize the DP critical behavior,

rare strong disorder fluctuations also lead to unusual singularities, the Griffiths singularities

[22, 41] in an entire parameter region around the transition. This section briefly summarizes

the rare region effects in the contact process with purely spatial disorder, and in the contact

process with purely temporal disorder.

4.1. SPATIAL DISORDER

The inactive phase of a spatially disordered contact process can generally be divided

into two regions. Far away from criticality (i.e., for sufficiently small infection rate), the

system approaches the absorbing state exponentially fast in time, just as in the absence of

disorder. This is the conventional inactive phase. For infection rates closer to the disordered

critical point, the system may feature large spatial regions that are locally in the active phase

even though the system as a whole is still inactive. Because these regions are of finite size,

9The numbers in brackets indicate the errors of the last digits.
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they cannot support a nonzero steady-state density, but their density decay is very slow since

it requires a rare density fluctuation of the entire region [23, 24]. The range in parameter

space for which such rare locally active spatial regions exist is called the (inactive) Griffith

phase.

The contribution 𝜌𝑅𝑅 (𝑡) of the rare regions to system’s density can be easily esti-

mated as

𝜌𝑅𝑅 (𝑡) ∼
∫

𝑑𝐿𝑅𝑅 𝐿𝑑
𝑅𝑅 𝑤(𝐿𝑅𝑅) exp [−𝑡/𝜏(𝐿𝑅𝑅)] , (29)

where 𝑤(𝐿𝑅𝑅) is the probability for finding a rare region of linear size 𝐿𝑅𝑅, and 𝜏(𝐿𝑅𝑅) is its

decay time. For uncorrelated or short-range correlated disorder, the rare region probability

is given by 𝑤(𝐿𝑅𝑅) ∼ exp(−𝑏𝐿𝑑
𝑅𝑅

) (up to pre-exponential factors). The decay time reads

𝜏(𝐿𝑅𝑅) ∼ exp(𝑎𝐿𝑑
𝑅𝑅

) because a coordinated fluctuation of the entire rare region is required

to take it to the absorbing state.

In the long-time limit, the integral (29) can be evaluated using the saddle point

method, yielding an anomalous power-law decay of the density in the Griffiths phase,

𝜌(𝑡) ∼ 𝑡−𝑏/𝑎 = 𝑡−𝑑/𝑧
′
, (30)

rather then the exponential decay in the conventional inactive phase. Here 𝑧′ = 𝑑𝑎/𝑏 is the

nonuniversal Griffiths dynamical exponent. The survival probability 𝑃𝑠 shows exactly the

same time dependence. The behavior of 𝑧′ close to the infinite-randomness critical point

𝜆𝑐 follows from the strong-disorder renormalization group [19, 39],

𝑧′ ∼ |𝜆 − 𝜆𝑐 |−𝜓𝜈⊥ , (31)

where 𝜓 and 𝜈⊥ are the critical exponents of the infinite-randomness critical point. Similar

rare region effects also exist in the active phase where they govern the approach to the

nonzero steady-state density.
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4.2. TEMPORAL DISORDER

The temporal Griffiths phase, introduced by Vazquez et al. [35], is the part of the

active phase in which the life time 𝜏𝐿 of a finite-size sample shows an anomalous (non-

exponential) dependence on the system size 𝐿.

The temporal Griffiths behavior is the result of rare, long time intervals during

which the system is temporarily on the inactive side of the transition. The probability of

finding such a time interval of length 𝑇𝑅𝑅 depends exponentially on its length, 𝑤(𝑇𝑅𝑅) ∼

exp(−𝑏𝑇𝑅𝑅) (neglecting pre-exponential factors). During 𝑇𝑅𝑅, the density of active sites

decays exponentially as 𝜌 ∼ exp(−𝑎𝑡). Because the typical life time of a system of linear

size 𝐿 can be estimated as time when the density reaches the value 𝐿−𝑑 , a system of size

𝐿 will die during a rare time interval of length 𝑇𝑅𝑅 ∼ (𝑑/𝑎) ln 𝐿. The characteristic time

it takes for such a rare time interval to appear is given by 𝜏 ∼ 𝑤−1(𝑇𝑅𝑅) ∼ exp(𝑏𝑇𝑅𝑅).

Consequently, the life time 𝜏 of a finite-size system in the temporal Griffiths phase shows a

power-law dependence on its size 𝐿,

𝜏(𝐿) ∼ 𝐿𝑑𝑏/𝑎 = 𝐿𝑑/𝜅 . (32)

The infinite-noise renormalization group [32, 33] predicts that the Griffiths exponent

𝜅 = 𝑎/𝑏 take the value 𝜅𝑐 = 𝑑 right at criticality. 𝜅 decreases with increasing distance from

criticality and is expected to vanish at the boundary between the temporal Griffiths phase

and the conventional active phase (in which the life time increases exponentially with system

size). The temporal Griffiths behavior has been confirmed by Monte Carlo simulations of

the contact process with temporal disorder in one and two space dimensions [33].
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5. SIMULATIONS METHODS

Our computer simulations focus on the case of one space dimension. The numerical

implementation of the one-dimension contact process follows the method developed by

Dickman [42]. We start at 𝑡 = 0 from a system with at least one active site. For each

time step, we follow this sequence: First, an active site is randomly chosen from all 𝑁𝑎

active sites. Then we randomly let this site infect one of its neighbors with probability

𝜆(𝑥, 𝑡)/[𝜆(𝑥, 𝑡) + 1] or become inactive with probability 1/[𝜆(𝑥, 𝑡) + 1]. If the infection

process is chosen, only a single neighbor is infected, chosen randomly. The time increment

associated with this sequence is 1/𝑁𝑎.

As discussed in Sec. 2, the local infection rates take the form 𝜆(𝑥, 𝑡) = 𝜆0 𝑓 (𝑥)𝑔(𝑡),

where 𝜆0 is the control parameter used to tune the phase transition, and 𝑓 (𝑥) and 𝑔(𝑡) are

independent random variables. (In the following, we will drop the subscript 0 from 𝜆0

if the meaning is clear.) For the computer simulations, we employ the binary probability

distribution

𝑃( 𝑓 ) = (1 − 𝑝)𝛿( 𝑓 − 1) + 𝑝( 𝑓 − 𝑐) , (33)

with 0 < 𝑐 ≤ 1. This means the local infection rate is reduce by a factor 𝑐 with probability

𝑝. 𝑔(𝑡) is piecewise constant over short time intervals of length Δ𝑡 = 6, i.e., 𝑔(𝑡) = 𝑔𝑛 for

𝑡𝑛+1 > 𝑡 > 𝑡𝑛 with 𝑡𝑛 = 𝑛Δ𝑡. The 𝑔𝑛 follow a binary probability distribution

𝑃(𝑔𝑛) = (1 − 𝑝𝑡)𝛿(𝑔𝑛 − 1) + 𝑝𝑡 (𝑔𝑛 − 𝑐𝑡) . (34)

We study two sequences of parameters. The first sequence starts from (strong)

purely spatial disorder, adding an increasing amount of temporal disorders (𝑝 = 0.3,

𝑐 = 0.2, 𝑝𝑡 = 0.2 and 𝑐𝑡 varying from 1.0 to 0.12). The other sequence starts from (strong)

purely temporal disorder and adds an increasing amount of spatial disorder (𝑝𝑡 = 0.2,

𝑐𝑡 = 0.05, 𝑝 = 0.2 and 𝑐 varying from 1.0 to 0.05).
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For each parameter set 𝜆0, 𝑝, 𝑐, 𝑝𝑡 and 𝑐𝑡 , the results are averaged over many disorder

realizations (between 700 and 5 × 105). We employ two types of simulation runs, (i) decay

simulations in which the system starts with all sites being active. In this case, we perform

one simulation run per disorder configuration and observe the active site density 𝜌(𝑡). (ii)

Spreading simulation start with a single active seed site only. In this case, we perform 5 to

105 runs per disorder configuration and analyze the survival probability 𝑃𝑠 (𝑡), the average

number of active sites 𝑁𝑠 (𝑡) and the (mean-square) radius 𝑅(𝑡) of the active cloud. In order

to eliminate the finite-size effects for spreading runs, the system size is chosen to be much

larger than the maximum active cloud size.

6. RESULTS: CRITICAL BEHAVIOR

6.1. GENERALIZED HARRIS CRITERION

The Harris criterion 𝑑𝜈 > 2 controls the stability of a clean critical point against

uncorrelated (or short-range correlated) purely spatial disorder. Analogously, the inequality

𝜈∥ > 2 governs the stability against uncorrelated purely temporal disorder [16]. As pointed

out in Sec. 3.1, the clean DP critical point is unstable against both purely spatial disorder

and purely temporal disorder because its critical exponents violate both inequalities.

The effects of general spatiotemporal disorder can be ascertained by means of the

generalized Harris criterion [17]. It predicts that a critical point is (perturbatively) stable

against weak spatiotemporal disorder, if the disorder covariance function 𝐺 (𝑥, 𝑡) fulfills the

condition

𝜉
2/𝜈⊥−𝑑
⊥ 𝜉−1

∥

∫ 𝜉⊥/2

−𝜉⊥/2
𝑑𝑑𝑥

∫ 𝜉∥/2

−𝜉∥/2
𝑑𝑡 𝐺 (𝑥, 𝑡) → 0 (35)

as the critical point is approached, i.e, for 𝜉⊥, 𝜉∥ → ∞ with the appropriate scaling relation

between 𝜉⊥ and 𝜉∥ . For power-law dynamical scaling this means 𝜉∥ ∼ 𝜉𝑧⊥, and for activated

scaling ln(𝜉∥/𝑡0) ∼ 𝜉
𝜓
⊥.
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For completely uncorrelated spatiotemporal disorder with 𝐺 (𝑥, 𝑡) ∼ 𝛿(𝑥)𝛿(𝑡), the

l.h.s. of Eq. (35) behaves as 𝜉
2/𝜈⊥−𝑑
⊥ 𝜉−1

∥ . The resulting stability criterion thus reads (𝑑 +

𝑧)𝜈⊥ > 2 in the case of power law dynamical scaling. The clean DP critical exponents

fulfill this inequality implying that uncorrelated spatiotemporal disorder is not a relevant

perturbation, as was already pointed out in the literature (see, e.g., Ref. [2]).

Let us now apply the generalized Harris criterion to the disorder (1) studied in this

paper. Inserting the covariance function (5), 𝐺 (𝑥, 𝑡) = 𝜆2
0𝜎

2
𝑓
𝜎2
𝑔 𝛿(𝑥)𝛿(𝑡) + 𝜆2

0𝜎
2
𝑓
�̄�2𝛿(𝑥) +

𝜆2
0𝜎

2
𝑔 𝑓

2𝛿(𝑡), into Eq. (35) produces three contributions. The first term (which represents

uncorrelated disorder) goes to zero in the critical limit 𝜉⊥ → ∞ provided the critical

exponents fulfill the inequality (𝑑 + 𝑧)𝜈⊥ > 2. The second term vanishes for 𝑑𝜈⊥ > 2, and

the third term vanishes for 𝑧𝜈⊥ > 2. Because the DP critical exponents violate the latter

two inequalities, the disorder (1) is a relevant perturbation at the clean DP critical point and

expected to modify the critical behavior.

The generalized Harris criterion can also be used to analyze the addition of weak

temporal disorder to the already spatially disordered contact process. For purely temporal

disorder, 𝐺 (𝑥, 𝑡) ∼ 𝛿(𝑡). The l.h.s. of (35) thus behaves as 𝜉2/𝜈⊥
⊥ 𝜉−1

∥ . Because the correlation

time 𝜉∥ depends exponentially on the correlation length 𝜉⊥ at the infinite-randomness

critical point of the spatially disordered contact process (See Eq. (16)), 𝜉2/𝜈⊥
⊥ 𝜉−1

∥ vanishes as

criticality is approached, 𝜉⊥ → ∞. Thus, the infinite-randomness critical point is expected

to be stable against weak temporal disorder. The same result also follows from Kinzel’s

inequality 𝑧𝜈 > 2 because 𝑧 is formally infinite at the infinite-randomness critical point.

To study the stability of the infinite-noise critical point of the temporally disordered

contact process against weak spatial disorder, we insert 𝐺 (𝑥, 𝑡) ∼ 𝛿(𝑥) into Eq. (35). The

l.h.s. then takes the form 𝜉
2/𝜈⊥−𝑑
⊥ leading to the usual Harris inequality 𝑑𝜈⊥ > 2. As

the infinite-noise critical point features Kosterlitz-Thouless critical behavior with ln 𝜉⊥ ∼

|𝑟 |−1/2, the exponent 𝜈⊥ is formally infinite. This implies that weak spatial disorder is not a

relevant perturbation at the infinite-noise critical point.
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The generalized Harris criterion thus predicts that adding weak temporal disor-

der does not modify the critical behavior of the spatially disordered contact process and

vice versa. This raises the interesting question of what happens if both disorders are of

comparable strength. We will return to this question in Sec. 6.4.

6.2. ADDING WEAK SPATIAL DISORDER TO THE TEMPORAL DISORDERED
CONTACT PROCESS

After the discussion of the generalized Harris criterion, we turn to computer simu-

lation results. We start by adding weak spatial disorder to an already temporally disordered

contact process. To this end, we simulate a sequence of systems with fixed strong temporal

disorder, 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.05 and Δ𝑡 = 6 and increasing spatial disorder, 𝑝 = 0.2, 𝑐 varying

from 1.0 to 0.05. The case of purely temporal disorder (𝑐 = 1.0) corresponds to the param-

eters studied in detail in Ref. [33]. Based on the generalized Harris criterion, we anticipate

that the critical behavior for sufficiently weak spatial disorder remains identical to the pure

temporal disorder case, albeit with a shift of the critical infection rate 𝜆𝑐.

We therefore analyze the simulation data based on Eqs. (27) and (28). Figure 1

presents the inverse survival probability 1/𝑃𝑠 of spreading runs as a function of ln 𝑡 for the

weakest nonzero spatial disorder (𝑐 = 0.8). The figure shows that the data for 𝜆 = 28.4

follow the predicted logarithmic behavior (27) over almost five orders in magnitude in 𝑡.

The data points with higher or lower 𝜆 curve away from the straight line as expected. We

therefore identify 𝜆𝑐 = 28.4 as the critical value for 𝑐 = 0.8. For comparison, the critical

value for the case of purely temporal disorder is 𝜆𝑐 = 27.27 [33]. Figure 1 thus provides

evidence that adding weak spatial disorder does not change the strong-noise critical behavior

of the purely temporally disordered system.

To further confirm this, we test Eqs. (28) by analyzing the number of active sites 𝑁𝑠

and the cloud radius 𝑅 at criticality as functions of time in Fig. 2. To make the logarithmic

corrections visible, we modify 𝑁𝑠 and 𝑅 by dividing out the leading term 𝑡. We then plot
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Figure 1. Inverse survival probability 1/𝑃𝑠 vs ln 𝑡 close to criticality. The data are averages
over 10000 to 20000 disorder configurations, with 5 runs per configuration (𝑝𝑡 = 0.2,
𝑐𝑡 = 0.05, Δ𝑡 = 6, 𝑝 = 0.2 and 𝑐 = 0.8). The statistical errors of every fifth data point of
the critical curve are shown. The dashed line is a linear fit of the data from ln 𝑡 = 4.9 to ln 𝑡

= 13.8 (reduced 𝜒2 ≈ 0.9)
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Figure 2. (𝑁𝑠/𝑡)−1/𝑦𝑁 and (𝑅/𝑡)−1/𝑦𝑅 vs ln 𝑡 at criticality, 𝜆𝑐 = 28.4 for 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.05,
Δ𝑡 = 6, 𝑝 = 0.2 and 𝑐 = 0.8. The data are averages over 20000 disorder configurations
with 5 runs for each. The exponents 𝑦𝑁 = 3.6 and 𝑦𝑅 = 1.7 are fixed at the values found for
purely temporal disorder [33]. The straight lines are fits of the data from ln 𝑡 = 6.5 to ln 𝑡

=13.8 with Eqs. (28).
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Figure 3. Inverse survival probability 1/𝑃𝑠 vs ln 𝑡 at criticality for different 𝑐 and 𝑝𝑡 = 0.2,
𝑐𝑡 = 0.05, Δ𝑡 = 6, 𝑝 = 0.2. The data are averages over 20000 disorder configurations with
5 runs for each. The statistical errors of every fifth data point is shown. The dashed lines
are linear fits of the data.

(𝑁𝑠/𝑡)−1/𝑦𝑁 and (𝑅/𝑡)−1/𝑦𝑅 vs ln 𝑡, using the exponents 𝑦𝑁 = 3.6 and 𝑦𝑅 = 1.7 found for

the case of purely temporal disorder [33]. The data follow straight lines, confirming that

Eqs. (28) are also fulfilled.

Now, we extend the simulations to stronger spatial disorder (decreasing 𝑐 towards

0). For 𝑐 = 0.6, 0.4 and 0.2, the critical behavior can be fitted well with the infinite-noise

functional forms Eqs. (27) and (28). This can be seem in Fig. 3 that shows the inverse

survival probability as a function of ln 𝑡 of the critical curves for 𝑐 = 1, 0.8, 0.6, 0.4 and

0.2. All data follow straight lines for more than three orders of magnitude in 𝑡, confirming

Eq. (27). The resulting values for 𝜆𝑐 are presented in Fig. 4. When the spatial disorder

is further increased, the critical behavior deviates from the infinite-noise critical behavior

(27) and (28). We will discuss this case in Sec. 6.4.
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Figure 4. Left: Critical infection rate 𝜆𝑐 as a function of spatial disorder strength 𝑐 for
𝑝𝑡 = 0.2, 𝑐𝑡 = 0.05, 𝑝 = 0.2. Right: Critical 𝜆𝑐 as a function of temporal disorder strength
𝑐𝑡 for 𝑝 = 0.3, 𝑐 = 0.2, 𝑝𝑡 = 0.2.

6.3. ADDING WEAK TEMPORAL DISORDER TO SPATIAL DISORDER CASE

We now simulate a sequence of systems with fixed strong spatial disorder 𝑝 = 0.3,

𝑐 = 0.2, to which we add increasing temporal disorder with 𝑝𝑡 = 0.2 and 𝑐𝑡 varying from

1.0 to 0.12. The starting point of this sequence, the purely spatially disordered system with

𝑐𝑡 = 1, corresponds to the parameters studied in Ref. [25].

For weak temporal disorder, 𝑐𝑡 = 0.8, we anticipate the system to show the infinite-

randomness critical behavior discussed in Sec. 3.2. This is tested in Figs. 5 and 6 which

present the results of spreading simulations. Fig. 5 shows a plot of 𝑃
−1/𝛿
𝑠 vs ln 𝑡.

The predicted critical behavior (21) corresponds to a straight line in this plot. The figure

demonstrates that the data for 𝜆 = 5.52 follow (21) for almost five order of magnitude

in 𝑡. This yields evidence for the infinite-randomness critical behavior. Similarly, Fig. 6

shows that the number of active sites sites 𝑁𝑠 and the cloud radius 𝑅 fulfill Eqs. (22) for

almost four orders of magnitude in 𝑡. We conclude that the system is still controlled by

infinite-randomness critical behavior.
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Figure 5. Survival probability vs time plotted as 𝑃
−1/𝛿
𝑠 vs ln 𝑡 close to criticality, where

𝛿 = 0.38197 (𝑝𝑡 = 0.2, 𝑐𝑡 = 0.8, Δ𝑡 = 6, 𝑝 = 0.3 and 𝑐 = 0.2). The data are averages over
700 disorder configurations with 100 runs per configuration. The statistical errors of every
fifth data point of the critical curve are marked. The dashed line is a linear fit of the data
for ln 𝑡 = 6.5 to 18.4 (reduced 𝜒2 ≈ 0.9)
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Figure 6. (𝑁𝑠)1/Θ and (𝑅)𝜓 vs ln 𝑡 at criticality 𝜆𝑐 = 5.52 for 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.8, Δ𝑡 = 6,
𝑝 = 0.3, and 𝑐 = 0.2. The data are averages over 700 disorder configurations with 100 runs
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are fixed at the values of the infinite randomness critical point, Θ = 1.2360, 𝜓 = 0.5. The
solid lines represents fits to Eqs. (22) from ln 𝑡 = 12.7 to 18.4.
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Figure 7. Survival probability vs time plotted as 𝑃−1/𝛿
𝑠 vs ln 𝑡 at criticality for different 𝑐𝑡 ,

where 𝛿 = 0.38197 (𝑝𝑡 = 0.2, Δ𝑡 = 6, 𝑝 = 0.3 and 𝑐 = 0.2). The data are averages over 700
to 1000 disorder configurations with 30 to 100 runs for each. The statistical errors of every
fifth data point are marked. The dashed lines are linear fits of the data.

We repeat this analysis for systems with stronger temporal disorder. For 𝑐𝑡 = 0.6

and 0.4, we find that the critical behavior can be fitted well with the infinite-randomness

expressions (21) and (22). This can be seen in Fig. 7, which shows 𝑃−1/𝛿
𝑠 vs ln 𝑡 at criticality

for 𝑐𝑡 = 1, 0.8, 0.6, 0.4. The data feature straight-line behavior for more than four orders

of magnitude in 𝑡, confirming (22). The critical infection rates 𝜆𝑐 resulting from these

simulations are shown in the phase diagram in Fig. 4.

For even stronger temporal disorder, the critical behavior deviates from the infinite-

randomness criticality of Sec. 3.2, as will be discussed in the next section.

6.4. SPATIAL AND TEMPORAL DISORDER OF COMPARABLE STRENGTH

In Sec. 6.2, we have demonstrated that the infinite-noise critical point of the tem-

porally disordered contact process is stable against the addition of weak spatial disorder.

Analogously, the infinite-randomness critical point of the spatially disordered contact pro-
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Figure 8. Schematic renormalization group flow on the critical manifold spanned by the
spatial and temporal disorder strengths. (DP marks the direct percolation fixed point of the
clean contact process.)

cess is stable against the addition of weak temporal disorder, as shown in Sec. 6.3. Since

the infinite-noise and infinite-randomness critical behaviors differ qualitatively from each

other, novel behavior is expected to emerge if the spatial and temporal disorders are of

comparable strength.

The arguably simplest scenario corresponds to the schematic renormalization group

flow diagram sketched in Fig. 8 which contains a multicritical point separating the infinite-

noise and infinite-randomness regimes. If the ratio of the spatial and temporal disorder

strengths is fine-tuned to be exactly on the separatrix (dashed line) in Fig. 8, the system

flows to the multicritical point under coarse graining. The nonequilibrium phase transition

then features novel multicritical behavior. If the system is not exactly on the dashed line, it

will eventually flow either to the infinite-noise critical point or to the infinite-randomness

critical point. However, if the system is close to (but not exactly on) the dashed line, it

will flow towards the multicritical point for a long time before eventually approaching one

of the other fixed points. This means the system will show multicritical behavior over a

wide transient time interval before eventually crossing over to either infinite-randomness or

infinite-noise critical behavior.
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Figure 9. Survival probability vs time for 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.05 𝑝 = 0.2, 𝑐 = 0.05, and Δ𝑡 = 6)
The data are averages over 20000 disorder configurations with 5 runs per configuration.

Studying the regime where the spatial and temporal disorders are of comparable

strength is extremely challenging numerically because the logarithmically slow dynamics

makes it difficult to distinguish the asymptotic behavior from slow crossovers during the

achievable simulation times. In the following, we demonstrate that our numerical data

are compatible with the multi-critical point scenario. We emphasize however, that the

unequivocal determination of the fate of the contact process in this regime is beyond our

current computational capabilities.

To identify a multicritical system, we start from the sequence of systems studied

in Sec. 6.2 and further increase the spatial disorder by reducing 𝑐, aiming at identifying a

disorder strength for which the (asymptotic) critical behavior differs from both the infinite-

randomness and the infinite-noise behavior. As the functional forms of the observables at

the multicritical point are not known, we employ Dickman’s [43] heuristic criterion of 𝜆𝑐

being the smallest 𝜆 supporting asymptotic growth of 𝑁𝑠 (𝑡) to identify the phase transition.

Figures 9 and 10 show that the system with 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.05, 𝑝 = 0.2, 𝑐 = 0.05

approximately fulfills these conditions. The data at an infection rate of about 35.82 to
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35.84 follow the functional forms

𝑃𝑠 ∼ ln−2(𝑡) , 𝑁𝑠 ∼ 𝑡𝜃 (36)

with 𝜃 ≈ 0.5 for almost six orders of magnitude in time. These functional forms differ from

the behavior in the bulk phases as well as from the infinite-randomness and infinite-noise

critical behaviors. This suggests that the parameters 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.05, 𝑝 = 0.2, 𝑐 = 0.05

put the system very close to the separatrix in Fig. 8, and (36) approximately represents the

multicritical behavior. Small deviations at late times can be attributed to the fact that the

system is likely not exactly on the separatrix. To check the consistency of the analysis, we

have confirmed that 𝑁𝑠/𝑅 behaves as ln−4(𝑡) as expected from the relation 𝑁𝑠 ∼ 𝑃𝑠𝜌𝑅
𝑑 .

The multicritical point can also be reached (approximately) by starting from the

sequence of systems in Sec. 6.3 and further increasing the temporal disorder. The system

with 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.12, 𝑝 = 0.3, 𝑐 = 0.2 follows the same multicritical functional forms

(36) at an infection rate of 𝜆 ≈ 16.35.
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It is interesting to note that the decay of 𝑃𝑠 at the putative multicritical point,

𝑃𝑠 ∼ ln−2(𝑡) is faster than its decay at both the infinite-randomness critical point and

the infinite-noise critical point (even though the 𝑃𝑠 data are not compatible with an even

faster power-law decay). This suggests that when the spatial and temporal disorders are of

comparable strength, they weaken each other. The same phenomenon is also observed for

the rare region effects and Griffiths singularities discussed in the next section.

7. RESULTS: RARE REGIONS AND GRIFFITHS SINGULARITIES

In this section, we discuss the effects of rare spatial regions and rare time intervals

on the behavior of the contact process with the combined spatial and temporal disorder of

the form 𝜆(𝑥, 𝑡) = 𝜆0 𝑓 (𝑥)𝑔(𝑡).

7.1. THEORY

Consider a spatial rare region with an above average 𝑓 (𝑥). This region can be

locally in the active phase even if the bulk system is still inactive. If 𝑓 follows the binary

distribution (33), the strongest rare regions consist of sites with 𝑓 = 1 only. As in Sec.

4.1, the probability for finding such a region rare is given by 𝑤(𝐿𝑅𝑅) ∼ exp(−𝑏𝐿𝑑
𝑅𝑅

) (up

to pre-exponential factors). However, the behavior of the lifetime 𝜏(𝐿𝑅𝑅) of such a region

depends on the strength of the temporal disorder. If the temporal disorder is sufficiently

weak such that the rare region is locally active for all times, 𝜏(𝐿𝑅𝑅) ∼ exp(𝑎𝐿𝑑
𝑅𝑅

) as in the

case of purely spatial disorder. For stronger temporal disorder, in contrast, the rare region

will still be mostly active, but inactive during rare time intervals. In this case, the lifetime

𝜏(𝐿𝑅𝑅) depends on 𝐿𝑅𝑅 via the power law 𝜏(𝐿𝑅𝑅) ≈ (𝑎𝐿𝑑
𝑅𝑅

)𝑦, as shown in Sec. 4.2.
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Inserting 𝜏(𝐿𝑅𝑅) in (29) yields the following anomalous density decay in the Grif-

fiths phase on the inactive side of the transition:

𝜌(𝑡) ∼ 𝑡−𝑏/𝑎 = 𝑡−𝑑/𝑧
′

weak temporal disorder , (37)

𝜌(𝑡) ∼ exp(−𝑏𝑡1/𝑦/𝑎) strong temporal disorder . (38)

The survival probability 𝑃𝑠 (𝑡) in spreading runs behaves in the same manner as 𝜌(𝑡).

Thus, for sufficiently strong temporal disorder, the power-law Griffiths singularities are

weakened and replaced by stretched exponential behavior. The exponent 𝑦 is non-universal

and depends on how far in the inactive phase a rare region is during the ”bad” (low 𝑔(𝑡))

time periods. 1/𝑦 is expected to decrease to zero as the transition is approached from the

inactive side.

Analogous arguments can be made for the Griffiths singularity in the lifetime 𝜏𝐿 of

a finite-size system on the active side of the phase transition. Consider a system globally

in the active phase. Temporal disorder can produce rare time intervals during which the

system is temporarily on the inactive side of the transition. For the binary distribution

(34), the strongest rare time intervals have 𝑔(𝑡) ≡ 𝑐𝑡 . The probability of finding such time

intervals depends exponentially on their lengths, 𝑤(𝑇𝑅𝑅) ∼ exp(−𝑏𝑇𝑅𝑅), as in Sec. 4.2.

However, the time evolution of the density of active sites during these rare time intervals

depends on the strength of the spatial disorder. For weak spatial disorder, the entire system

will be in the inactive phase during these intervals, leading to an exponential density decay,

𝜌 ∼ exp(−𝑎𝑡), as in the case of purely temporal disorder. For stronger spatial disorder,

the system will have spatial regions that remain locally active during the rare time interval,

leading to a slower power-law decay of the density 𝜌 ∼ (𝑎𝑡)−𝑦,
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Repeating the analysis of Sec. 4.2 for these two cases, we conclude that the life time

𝜏 of a finite-size system behaves as

𝜏(𝐿) ∼ 𝐿𝑑𝑏/𝑎 = 𝐿𝑑/𝜅 weak spatial disorder , (39)

𝜏(𝐿) ∼ exp(𝑏𝐿𝑑/𝑦/𝑎) strong spatial disorder (40)

with system size 𝐿 in the Griffiths phase on the active side of the transition. This means for

sufficiently strong spatial disorder, the power-law temporal Griffith singularities of Sec. 4.2

are weakened and replaced by stretched exponentials.

Note that the functional forms (38) and (40) have been derived assuming that the

relevant rare regions and rare time intervals are uniform in space and time, respectively. This

is justified for bounded disorder for which the strongest spatial rare regions have 𝑓 (𝑥) ≡ 𝑓𝑚𝑎𝑥

and the strongest rare time intervals have 𝑔(𝑡) ≡ 𝑔𝑚𝑖𝑛. The asymptotic behavior of 𝜌 and

𝑃𝑠 for 𝑡 → ∞ is governed by the strongest rare regions and thus given by (38). Along

the same lines, the asymptotic behavior of 𝜏(𝐿) for 𝐿 → ∞ is governed by the strongest

rare time intervals and thus given by (40). The preasymptotic behavior has contributions

from nonuniform rare regions that feature more complicated behavior, leading to nontrivial

crossovers.

7.2. SIMULATION RESULTS

We first consider the survival probability 𝑃𝑠 on the inactive side of the transition. To

test the power-law Griffiths behavior (37), we consider a system with strong spatial disorder

but weak temporal disorder (𝑝 = 0.3, 𝑐 = 0.2, 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.8 and Δ𝑡 = 6). Figure 11

presents a double-log plot of 𝑃𝑠 vs. 𝑡 for several 𝜆 below the critical value 𝜆𝑐 ≈ 5.52. The

data indicate that the survival probability follows (37) for all shown 𝜆 ≥ 4.3. Moreover, the
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Figure 11. Main panel: ln 𝑃𝑠 vs ln 𝑡 for different 𝜆 below criticality 𝜆𝑐 ≈ 5.52 for 𝑝 = 0.3,
𝑐 = 0.2, 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.8 and Δ𝑡 = 6. The data are averages over 1000 to 10000 disorder
configurations with 100 to 105 runs per configuration. The solid lines are fits to (37). Inset:
Resulting Griffiths exponent 𝑧′ as a function of the infection rate 𝜆.

Griffiths dynamical exponent 𝑧′ diverges as the critical infection rate 𝜆𝑐 is approached, in

agreement with the behavior for purely spatial disorder. For 𝜆 = 3.9, in contrast, the data

continue to curve downward to the longest times.

To explain these results, consider the strongest spatial rare regions which consist

of sites with 𝑓 ≡ 1 only. The local infection rate on such a rare region is thus either 𝜆 or

𝑐𝑡𝜆 = 0.8×𝜆. For infections rates 𝜆 > 𝜆0
𝑐/𝑐𝑡 = 4.122 (where 𝜆0

𝑐 = 3.298 is the clean critical

infection rate), the strongest rare regions are thus always on the active side of the clean

critical point, explaining the power-law form of the Griffiths singularity. For 𝜆 < 𝜆0
𝑐/𝑐𝑡

the rare regions become inactive during the “bad” (low 𝑔(𝑡)) time intervals, leading to a

crossover from the power-law decay (37) to the stretched exponential decay (38).

To explore the novel stretched exponential Griffiths behavior (38) in more detail,

we study a system with stronger temporal disorder, 𝑐𝑡 = 0.4 rather than 0.8. The other

parameters remain unchanged (𝑝 = 0.3, 𝑐 = 0.2, 𝑝𝑡 = 0.2, and Δ𝑡 = 6). The critical

infection rate for these parameters is 𝜆𝑐 ≈ 7.26. To cover the entire (inactive) Griffiths
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Figure 12. Main panel: ln 𝑃𝑠 vs 𝑡 for different 𝜆 between 2.3 and 3.9, far from criticality
𝜆𝑐 ≈ 7.26 for 𝑝 = 0.3 and 𝑐 = 0.2, 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.4 and Δ𝑡 = 6). The data are averages
over at least than 105 disorder configurations with 105 runs each. Inset: Enlarged plot for
𝜆 = 2.3; the linear fit (solid line) confirms a simple exponential decay.

phase, we perform simulations for infection rates ranging from 2.3 (below the clean critical

value 𝜆0
𝑐) to 6.9 close to the phase transition. A semi-log plot of the survival probability for

infection rates between 2.3 and 3.9 is shown in Fig. 12. For 𝜆 below the clean critical value

𝜆0
𝑐 = 3.298, the survival probability features a simple exponential decay, as expected in the

conventional inactive phase in which there are no locally active rare regions. For 𝜆 > 𝜆0
𝑐,

the system enters the Griffiths phase, and the decay of 𝑃𝑠 becomes slower than exponential.

However, as is demonstrated via the double-log plot of 𝑃𝑠 vs 𝑡 in Fig. 13(a), the decay

for all 𝜆 in the (inactive) Griffiths phase is faster than a power law. In fact, all data can

be fitted very well with the stretched exponential form (38), as shown in Fig. 13(b) which

replots the same data in the form ln 𝑃𝑠 vs 𝑡1/𝑦 with 𝑦 chosen such that the data fall onto

straight lines. The resulting values of the exponent 1/𝑦 governing the stretched exponential

evolve from unity at the clean critical infection rate 𝜆0
𝑐 towards zero at the phase transition.

Note that even the strongest rare regions ( 𝑓 ≡ 1) will be inactive during the “bad” time
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Figure 13. (a) ln 𝑃𝑠 vs ln 𝑡 for different 𝜆 below criticality 𝜆𝑐 ≈ 7.26 for 𝑝 = 0.3, 𝑐 = 0.2,
𝑝𝑡 = 0.2, 𝑐𝑡 = 0.4 andΔ𝑡 = 6). The data are averages over 104 to 105 disorder configurations
with 104 to 105 runs per configuration. (b) ln 𝑃𝑠 vs 𝑡1/𝑦 for the same data. The solid lines
are linear fits. (c) Exponent 1/𝑦 of the stretched exponential (38) vs 𝜆. For 𝜆 < 𝜆0

𝑐, the data
can be fitted well with 𝑦 = 1, as expected in the conventional inactive phase even though an
unrestricted fit yields 1/𝑦 values slightly below unity.

intervals everywhere in the Griffiths phase because 𝑐𝑡𝜆𝑐 < 𝜆0
𝑐. This explains why the decay

of the survival probability takes the stretched exponential form for all infection rates with

𝜆0
𝑐 < 𝜆 < 𝜆𝑐.

We now turn to the behavior of the lifetime of a finite-size system on the active side

of the transition. The goal is to test wether the power-law temporal Griffiths behavior (39)

gets replaced by the stretched exponential (40) if sufficiently strong spatial disorder is added

to the temporally disordered contact process. Figure 14(a) shows a double log plot of the

lifetime vs system size for 𝑝 = 0.3, 𝑐 = 0.2, 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.2, and Δ𝑡 = 6 at infection

rates slightly above the critical value 𝜆𝑐 ≈ 11.08. The figure demonstrates that the increase

is faster than a power law. The same data are replotted in Fig. 14(b) in the form ln 𝜏 vs
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Figure 14. (a) Double-log plot of lifetime 𝜏 vs system size 𝐿 for different 𝜆 above criticality
𝜆𝑐 ≈ 11.08 for 𝑝 = 0.3, 𝑐 = 0.2, 𝑝𝑡 = 0.2, 𝑐𝑡 = 0.2 and Δ𝑡 = 6. The data are determined
from decay runs, averaged over 10240 disorder configurations (one run per configuration).
(b) The same data plotted as ln 𝜏 vs 𝐿1/𝑦, with 𝑦 chosen such that the data fall onto straight
lines.

𝐿1/𝑦 motivated by Eq. (40). For properly chosen 𝑦-values, all data fall onto straight lines,

confirming that the lifetime follows the stretched exponential Griffiths behavior (40). The

exponent 1/𝑦 increases with increasing distance from criticality, as expected.

8. CONCLUSIONS

In summary, we have investigated the combined influence of spatial and temporal

random disorder on the absorbing-state phase transition in the one-dimensional contact

process. Specifically, we have studied the case of decoupled spatial and temporal disorders

for which the local infection rates 𝜆(𝑥, 𝑡) are the product of a purely spatial term and a purely

temporal term, 𝜆(𝑥, 𝑡) = 𝜆0 𝑓 (𝑥)𝑔(𝑡). In contrast to completely uncorrelated spatiotemporal

randomness, such disorder which contains infinite-range correlations in space and time is a

relevant perturbation at the clean DP critical point.
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We have employed a generalization of the Harris criterion [17] to predict that the

infinite-randomness critical point of the spatially disordered contact process is stable against

weak temporal disorder. Analogously, the criterion predicts that the infinite-noise critical

point of the temporally disorder contact process is stable against weak spatial disorder. We

have confirmed these predictions by extensive computer simulations. In the interesting

parameter region where both disorders are of comparable strength, the critical behavior

appears to differ from both the infinite-randomness and infinite-noise critical behaviors.

Our simulation data are compatible with the simplest scenario in which a single multicritical

point separates the infinite-randomness and infinite-noise regimes. However, due to the very

slow dynamics of the contact process in the presence of both disorders, we cannot exclude

more complicated scenarios that involve novel critical behavior in an extended parameter

region. In the absence of theoretical predictions, the complete quantitative understanding of

the (multi)critical behavior from simulations would require simulation times several orders

of magnitude larger than what is achievable today. This problem thus remains a task for the

future.

In addition to the nonequilibrium phase transition itself, we have also investigated the

effects of rare regions and rare time intervals in the Griffiths phases near the transition. By

means of optimal fluctuation arguments, we have shown that adding weak temporal disorder

does not change the power-law Griffiths behavior of the density and survival probability

of the spatially disordered contact process on the inactive side of the transition (at least

sufficiently close to the transition). Stronger temporal disorder, in contrast, weakens the

“spatial” Griffiths singularity in the density and survival probability, replacing the slow

power-law decay with a faster stretched exponential. The behavior of the lifetime as a

function of system size in the “temporal” Griffiths phase on the active side of the transition

is completely analogous. Adding weak spatial disorder to the temporally disordered contact

process does not change the power-law Griffiths behavior but sufficiently strong spatial

disorder weakens the singularity from power-law to stretched exponential behavior. The
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notion that the spatial and temporal disorders weaken each other is also consistent with the

observation that the decay of the survival probability with time at the putative multicritical

point is faster than the decay at either the infinite-randomness critical point or the infinite-

noise critical point.

Our explicit computer simulation results are for one space dimension. However, the

stability arguments based on the generalized Harris criterion apply equally to one, two, and

three space dimensions. The same applies to the optimal fluctuation arguments governing

the Griffiths singularities. We therefore expect most of our qualitative results to carry over

from one to two and three space dimensions.

Clearcut experimental examples of absorbing-state transitions were missing for

a long time [44]. By now, such transitions have been observed, however, in turbulent

liquid crystals [6], driven suspensions [7, 8], growing bacteria colonies [9, 10], and in the

dynamics of superconducting vortices [11]. Studying these systems under the combined

influence of spatial disorder and external noise will permit experimental tests of our results.

The influence of environmental fluctuations and inhomogeneities on the extinction of a

biological population are attracting considerable attention today in the contexts of both

epidemic spreading and of global warming and other large-scale environmental changes

(see, e.g., Ref. [45]). In the laboratory, these questions could be analyzed, e.g., by growing

bacteria or yeast populations in spatially inhomogeneous environments and fluctuating

external conditions.
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Directed percolation criticality in turbulent liquid crystals. Phys.
Rev. Lett., 99:234503, Dec 2007. doi: 10.1103/PhysRevLett.99.234503.
URL http://link.aps.org/doi/10.1103/PhysRevLett.99.234503.

[7] L. Corte, P. M. Chaikin, J. P. Gollub, and D. J. Pine. Random organization
in periodically driven systems. Nature Physics, 4:420, 2008. doi: 10.1038/
nphys891.

[8] Alexandre Franceschini, Emmanouela Filippidi, Elisabeth Guazzelli, and David
J. Pine. Transverse alignment of fibers in a periodically sheared suspension: An
absorb-ing phase transition with a slowly varying control parameter. Phys. Rev.
Lett., 107: 250603, Dec 2011. doi: 10.1103/PhysRevLett.107.250603.

[9] K. S. Korolev and David R. Nelson. Competition and coopera-
tion in one-dimensional stepping-stone models. Phys. Rev. Lett., 107:
088103, Aug 2011. doi: 10.1103/PhysRevLett.107.088103. URL
http://link.aps.org/doi/10.1103/PhysRevLett.107.088103.

[10] K. S. Korolev, Joao B. Xavier, David R. Nelson, and Kevin R. Foster. A
quantitative test of population genetics using spatiogenetic patterns in bacterial
colonies. The American Naturalist, 178:538, 2011. doi: 10.1086/661897.

[11] S. Okuma, Y. Tsugawa, and A. Motohashi. Transition from reversible to
irreversible flow: Absorbing and depinning transitions in a sheared-vortex system.
Phys. Rev. B, 83:012503, Jan 2011. doi: 10.1103/PhysRevB.83.012503.

[12] H. K. Janssen. Z. Phys. B, 42:151, 1981. doi: 10.1007/BF01319549.

[13] P. Grassberger. Z. Phys. B, 47:365, 1982. doi: 10.1007/BF01313803.

[14] P. Grassberger and A. de la Torre. Ann. Phys. (NY), 122:373, 1979. doi:
10.1016/0003-4916(79)90207-0.



89

[15] A. B. Harris. Effect of random defects on the critical behaviour of Ising models.
J. Phys. C, 7:1671, 1974. doi: 10.1088/0022-3719/7/9/009.

[16] W. Kinzel. Phase transitions of cellular automata. Z. Phys. B, 58:229, 1985.
doi: 10.1007/BF01309255.

[17] Thomas Vojta and Ronald Dickman. Spatiotemporal generalization of the
harris criterion and its application to diffusive disorder. Phys. Rev. E, 93:032143,
Mar 2016. doi: 10.1103/PhysRevE.93.032143.
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[19] J. Hooyberghs, F. Iglói, and C. Vanderzande. Absorbing state phase
transitions with quenched disorder. Phys. Rev. E, 69:066140, 2004. doi:
10.1103/Phys-RevE.69.066140.

[20] S. K. Ma, C. Dasgupta, and C. K. Hu. Random antiferomagnetic chain. Phys.
Rev. Lett., 43:1434, 1979.

[21] F. Igloi and C. Monthus. Strong disorder renormalization group approach of
random systems. Phys. Rep., 412:277, 2005.

[22] R. B. Griffiths. Nonanalytic behavior above the critical point in a random
Ising ferromagnet. Phys. Rev. Lett., 23:17, 1969. doi: 10.1103/PhysRevLett.23.17.
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temporal disorder. Phys. Rev. E, 94:022111, Aug 2016. doi: 10.1103/
PhysRevE.94.022111.

[34] Hatem Barghathi, Skye Tackkett, and Thomas Vojta. Extinction phase transitions in
a model of ecological and evolutionary dynamics. Eur. Phys. J. B, 90:129, 2017.
doi: 10.1140/epjb/e2017-80220-7.

[35] Federico Vazquez, Juan A. Bonachela, Cristóbal López, and Miguel A. Muñoz. Tem-
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ABSTRACT

Proximity-induced superconductivity in three dimensional (3D) topological insula-

tors forms a new quantum phase of matter and accommodates exotic quasiparticles such as

Majorana bound states. One of the biggest drawbacks of the commonly studied 3D topolog-

ical insulators is the presence of conducting bulk that obscures both surface states and low

energy bound states. Introducing superconductivity in topological Kondo insulators such

as SmB6, however, is promising due to their true insulating bulk at low temperatures. In

this work, we develop an unconventional Josephson junction by coupling superconducting

Nb leads to the surface states of a SmB6 crystal. We observe a robust critical current at

low temperatures that responds to the application of an out-of-plane magnetic field with

significant deviations from usual Fraunhofer patterns. The appearance of Shaphiro steps

under microwave radiation gives further evidence of a Josephson effect. Moreover, we ex-

plore the effects of Kondo breakdown in our devices, such as ferromagnetism at the surface

and anomalous temperature dependence of supercurrent. Particularly, the magnetic diffrac-

tion patterns show an anomalous hysteresis with the field sweep direction suggesting the

coexistence of magnetism with superconductivity at the SmB6 surface. The experimental

work will advance the current understanding of topologically nontrivial superconductors

and emergent states associated with such unconventional superconducting phases.

PACS numbers: 85.25.Dq; 74.45.+c; 74.90.+n
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1. INTRODUCTION

Topological superconductivity [1] is expected to be a unique platform to generate

and manipulate zero energy modes, referred to as Majorana bound states [2, 3, 4, 5, 6, 7].

One way to get a topological superconductor is engineering Josephson junctions on the

surfaces of 3D topological insulators [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In such

devices, the quantum interference of electron and hole-like excitations will form low energy

Andreev bound states whose spectrum is sensitive to the relative phase difference between

the superconducting leads and the microscopic details of the barrier. Proximity-induced

supercurrent flowing through the topological insulator segment of the junction is carried by

such states.

Initially, Josephson junctions incorporating Bi-based 3D topological insulators were

favored for experimental searches for signatures of Majorana modes. However, signifi-

cant bulk and trivial surface state contribution to the electronic transport complicated the

interpretation of such experiments. Although electrostatic gating can alleviate the prob-

lem [16, 18, 19], the quest for finding a proper platform for such modes is still ongoing.

Topological Kondo insulators [20, 21] such as SmB6 are promising candidates for

solving the problems caused by trivial transport channels. At high temperatures, these

materials are metallic with a dense array of magnetic moments from 𝑓 -electrons. However,

at sufficiently low temperatures, such moments strongly couple to conduction electrons

leading to the formation of singlets. This hybridization opens up a narrow gap in the elec-

tronic band structure [22]. Point contact tunneling measurements confirmed the formation

of such a gap below 60 K [23]. At even lower temperatures (below 3-5 K), an anomalous

saturation of sample resistance was observed [24], which has been attributed to the presence

of topological surface states [25, 26, 27]. Recent low temperature transport studies with

SmB6 have revealed various anomalies such as thickness independence of Hall voltage,

suggesting that transport is dominated by surface states [28]. There has been an evidence of

helical nature of such states based on electrical detection of surface spin polarization [29].
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Moreover, the observation of a perfect Andreev reflection in a Au-SmB6/YB6 structure has

been claimed due to the topologically protected surface states as well as the absence of

a bulk conduction channel [30]. In addition, photoemission [31] and STM [32] studies

supported the presence of in-gap surface states that are topologically protected.

2. EXPERIMENTAL

We studied a set of single lateral Josephson junctions on the surface of mechanically

polished SmB6 crystals. In this paper we will show results from four different junctions

labelled as junction-1 through junction-4. The junction lengths vary from 50 nm to 200 nm.

The cubic crystal structure of SmB6 does not permit exfoliation to obtain atomically thin

flakes. Here, the entire circuit of the devices (junctions and contact leads/pads) is fabricated

on the surface of the mechanically polished single crystals.

An SEM picture of one of the studied devices, junction-1 is shown in Fig. 1(a).

Two superconducting Nb leads that are about 100 nm apart have been defined by electron

beam lithography and ∼ 60-70 nm Nb deposition via magnetron sputtering. Prior to Nb

deposition an in-situ Ar milling was applied to lightly etch the top surface of the crystal and

to ensure good interface between SmB6 and the superconductor.

All of our devices were thermally anchored to the mixing chamber of a cryogen-

free dilution refrigerator with a base temperature of 10 mK and equipped with filtered

wiring. The transport measurements were done with standard lock-in techniques at different

temperatures and magnetic fields. Figure 1(b) shows the temperature dependence of current-

voltage (IV) characteristics of the junction-1, demonstrating a clear induced supercurrent

at 10 mK. Similar to other samples, there is no significant change in the supercurrent up

to ∼ 300-400 mK. This suggests that Kondo hybridization is strong in this temperature

regime where we believe that the singlets formed on the surface states predominantly carry

the supercurrent. Beyond that regime, we see a monotonic drop in the critical current (I𝑐)

until all signs of induced superconductivity vanishes. For most of the devices, supercurrent
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Figure 1. (Color online) (a) Scanning electron microscopy SEM image of one of the studied
devices, junction-1, made with two Nb leads ∼ 100 nm apart on a polished crystal of SmB6.
(b) Current-voltage I-V characteristics of the junction-1 for a set of temperatures. The
supercurrent persists up to 3.6 K.

survives up to 3-6 K [33]. This differs in proximity-induced Nb/Bi2Se3 devices where

superconductivity often is suppressed well below the T𝑐 of the Niobium, approximately

beyond 1 K [11, 12].

To confirm the presence of the Josephson effect in our junctions, we performed AC

Josephson effect measurements by means of microwave irradiation. For a junction with 2𝜋

periodic Josephson relation, microwaves applied at a frequency of 𝑓 gives rise to stair-like

features in the IV characteristics with voltage spacing of Δ𝑉 = ℎ 𝑓 /2𝑒. These features are

known as Shaphiro steps and correspond to minima in differential resistance vs bias current

measurements [34].

To observe Shaphiro steps, the junctions are irradiated by microwaves by means of a

coaxial cable whose center pin is about 1 mm vertically away from the surface of the sample.

Figure 2(a) shows IV characteristics for a set of microwave power values for junction-1. As

the microwave power is increased, the Shaphiro steps start to appear beyond 4 dBm that

survive up to 3 K as seen from the temperature dependence measurements of dV/dI of the
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Figure 2. (Color online) (a) AC Josephson effect giving rise to Shaphiro steps in IV and (b)
corresponding peaks in differential resistance for another sample, junction-1. (c) and (d)
Color plots demonstrating such steps for junction-2 at two different frequencies.

same junction in Fig. 2(b). The voltage spacing of the Shaphiro steps is 20 𝜇V as expected

from the applied 10 GHz microwave tone, signifying that the current-phase relationship is

2𝜋 periodic.

We observed Shaphiro steps in multiple devices; Figs. 2(c) and (d) show color plots of

dV/dI vs bias current and microwave power for junction-2 at two different frequencies, 3 and

4.6 GHz respectively. Upon increasing microwave power, the 𝐼𝑐 monotonously decreases

and finally vanishes at roughly 2.5 dBm for 3 GHz and 5 dBm for 4.6 GHz. Beyond

these power levels 𝐼𝑐 starts to oscillate with higher power supporting the 2𝜋 periodic AC

Josephson effect further.

Now we turn to the out-of plane magnetic field response of the supercurrent. Fig-

ure 3(a) shows magnetic field oscillations of the I𝑐 for the junction-3 at 10 mK that is similar

to a Fraunhofer pattern. This pattern is another characteristic of the Josephson effect and is
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Figure 3. (Color online) (a), (b) Magnetic diffraction patterns of the I𝑐 for the junction-3 and
the junction-2 as the out of plane magnetic field is swept in forward and reverse directions.
(c) and (d) Color plots of dV/dI vs bias current as a function of perpendicular magnetic
field for the junction-1, clearly showing a discernible shift of I𝑐 with respect to the sweep
direction.

generated by quantum interference from phase winding induced by the magnetic flux within

the junction. When a perpendicular field is applied to a conventional junction the phase

will vary along the barrier, thus the supercurrent through the barrier will modulate with flux

according to I𝑐 (Φ)= I𝑐(0) |(sin(𝜋Φ)/Φ0)/(𝜋Φ)/Φ0)| where Φ0 is magnetic flux quantum.

The inset of the Fig. 3(a) shows a theoretical Fraunhofer pattern plotted with the measured

data acquired with increasing magnetic field sweep, demonstrating a reasonable agreement

between the two.

The magnetic field response of I𝑐 is quite different for junction-2, as shown Fig 3(b).

First, there is a distinct lack of side lobes in the diffraction pattern demonstrating significant

deviations from a conventional Fraunhofer pattern. Second, the maximum critical current

occurs at about ± 5 mT instead of zero field. We attribute this shift in applied field axis

with respect to the ideal Fraunhofer diffraction pattern to the existence of magnetization
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in the SmB6 surface states, which generates additional flux that must be cancelled out by

an applied magnetic field in order to observe maximal critical current. The origin of such

magnetism will be discussed later in the text. Although the direction where the central peak

of diffraction pattern shifts is unexpected, similar hysteresis was observed in Sr2RuO4 due

to multiple, dynamical domains of order parameter generating chiral supercurrents [35].

As we were performing these hysteresis measurements, we observed discernible

suppressed supercurrent at zero field when the magnetic field is ramped down from a

positive value. To check whether such suppression might be due to flux trapping or vortex

entry, the fridge was warmed up to 20 K, well above the critical temperature of Nb and

the superconducting magnet and then cooled back down to base temperature again. Before

applying any magnetic field, we observed similar suppressed critical current at zero field

which confirmed that the hysteresis in our diffraction patterns is not due to trapped vortices

but possibly due to ferromagnetic behavior of surface states in SmB6. The maximum critical

current was only revived after sweeping the magnet in the opposite polarity.

The color plots of dV/dI vs bias current and applied magnetic field for junction-1

at 10 mK are shown in Fig. 3(c) and (d). Once again the diffraction pattern lacks side

lobes. However, here the shift is in the opposite direction as for junction-2. Previously,

superconductor-ferromagnet-superconductor (SFS) Josephson junctions showed anomalous

Fraunhofer patterns with hysteretic behavior similar to data shown in Fig. 3(c) and (d);

demonstrating maximal supercurrent occurring at nonzero applied field [36]. More recently,

hysteretic magnetotransport has been observed in topological systems such as magnetically

doped Bi2Se3 [37] and SmB6, which have been also associated with ferromagnetic domain

walls in surface states [27].

At low temperatures, we expect the formation of Kondo singlets in SmB6 without

magnetic behavior. We can explain the appearance of ferromagnetic behavior by invoking a

Kondo breakdown [38, 39], which liberates a large number of randomly oriented magnetic

moments that were previously coupled to conduction electrons inside Kondo singlets. When
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Figure 4. (Color online) (a) Color plot of dV/dI vs bias current as a function of temperature
for junction-4. (b) Temperature evolution of hysteresis in normal state resistance with sweep
direction for junction-4. (c) Rate dependence of magnetic field hysteresis in normal state
resistance of junction-4.

we have a significant population of 𝑓 -electrons, the material can have magnetic behavior

even at mK temperatures. The breakdown of the Kondo effect at the layers close to the

boundary of the sample stems from the reduced screening of the local moments due to

broken translational symmetry at the outmost layers. This leads to a major modification in

the band structure and reduces the Kondo temperature significantly.

When the Kondo hybridization is strong and the surface states are not subject to

Kondo breakdown, we obtain more conventional magnetic diffraction patterns with no

sensitivity to field sweep direction as shown in Fig. 3(a). As the spins are freed from

the Kondo singlets due to the breakdown, they can form ferromagnetic domains on the

surface generating negative or positive flux within the junction barrier. This will lead to

modifications in Fraunhofer patterns with the shifts of the maximum supercurrent towards

either positive or negative magnetic field. Similar phenomenon was observed in Ref [35].

Finally, in junction-4 we observe an anomalous temperature dependence of the I𝑐

that can also be explained by a Kondo breakdown. Figure 4(a) shows a color plot of dV/dI

vs temperature and bias current demonstrating the full evolution of I𝑐 as the sample is

heated. Critical current shows distinctive behavior in three different temperature regimes.

For very low temperatures (i.e. below 300 mK), it exhibits almost no change. In this



101

regime, we expect that Kondo hybridization is strong and that the supercurrent is carried

purely by the protected surface states. Then the I𝑐 gradually increases between 300 mK

and 1.6 K. Although this observation is unexpected from a usual Josephson junction, it

could be consistent with the thermal population of trivial carriers either in the bulk or

surface at higher temperatures that can carry additional supercurrent in parallel with the

topological surface states (Kondo singlets) in SmB6 triggered by the Kondo breakdown.

Indeed, we observe the normal state resistance monotonically decreases with increasing

temperature, as trivial states are being thermally activated. Furthermore, it is reported that

especially the (001) surface of SmB6 is polar [40] which gives rise to various modifications

of the surface states, such as band bending, formation of 2D electron gases and quantum

well confinements [41]. It is conceivable that different conditions at the surface could be

caused by uncontrolled variations of the nanofabrication or sample/crystal preparation such

as polishing. Beyond 1.6 K the critical current monotonously declines until the induced

superconductivity is destroyed beyond 3-4 K. In this regime, the free magnetic moments

due to Kondo breakdown are possibly too dominant to be screened by the Kondo singlets.

Thermal dephasing of such moments can explain the rapid decrease in supercurrent.

In the same junction we also observe unusual properties of the normal state. Normal

state conductance has been studied by applying a bias current that is much larger than the

critical current. The longitudinal magnetoresistance data at low temperatures and low

fields exhibits a sharp suppression in normal state resistance (R𝑁 ) near zero field as seen in

Fig. 4(b). Intriguingly, when we change the sweep direction of the magnetic field, we observe

a butterfly-shaped hysteretic behavior of magnetoresistance [42] with two separate minima

at B𝑚𝑖𝑛 = ± 24 mT. This feature was previously attributed elsewhere to edge channels

between ferromagnetic domains in SmB6 [27]. However, one must also consider trivial

explanations for such magnetic hysteresis, including magnetocaloric effects or magnetic

impurity scattering on the surface of the material [43]. As we increase the temperature, the

hysteretic signal gets weaker as the ferromagnetism is suppressed by thermal fluctuations.
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The dip feature is reminiscent of data that appears at zero field magnetoresistance

in spin-orbit coupled materials due to weak antilocalization effect, which is a correction to

classical magnetoresistance arising from quantum interference of scatted electron waves.

The clear hysteresis of the dips and magnetic sweep rate dependent R𝑁 as seen in Fig. 4(c)

suggest that the features emerging in low temperature magnetoresistance are not due to a

weak antilocalization effect.

3. CONCLUSION

In conclusion, we created and studied an unconventional Josephson junction using

the surface states of a Kondo insulator as a weak link between superconducting leads.

The observed critical temperature of the induced supercurrent is much higher compared

to other proximity-induced topological Josephson devices [33, 44]. With the microwave

irradiation of the junctions, we obtained clear Shaphiro steps in IV characteristics and dV/dI

oscillations beyond the suppression of the supercurrent which are manifestations of the AC

Josephson effect. The junctions demonstrated hysteretic response to out-of-plane magnetic

field. The ferromagnetism at the surface at low temperatures can be attributed to a Kondo

breakdown which generates free magnetic spins by breaking the Kondo singlets. Similar

hysteresis was also observed in the normal state magnetoresistance supporting the claims

about magnetic properties of the outmost layers further.
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SECTION

2. SUMMARY AND CONCLUSIONS

In this dissertation, we have studied the effects of disorder on two different kinds of 

problems: (i) the formation of stripe phase in a frustrated magnet and (ii) the nonequilibrium 

transition in the contact process. We have also included an experimental study of Josephson 

junctions.

In the first section of the dissertation, we introduced some general concepts in the 

physics of phase transitions such as Laudau theory, order parameter, and scaling 

hypothesis. Because clean systems are well-studied and hard to achieve in the real world, 

we then introduced phase transitions under the influence of disorder. We distinguished two 

different kinds of disorder: random-field disorder and random-mass disorder. We discussed 

how the Imry-Ma and Harris criteria determine the stability of phases and phase transitions 

against disorders. We then gave a short introduction into rare regions and Griffiths effects. 

In order to familiarlize the reader with topics of papers 1 to 3, we gave a basic introduction 

into the contact process and the 𝐽1 − 𝐽2 Ising model. We then introduced two basic concepts 

of my experimental study: Josephson junctions and topological insulators.

The first paper studied the stability of the stripe phase in disordered s ystem. Such 

a stripe phase is unstable under uncorrelated disorder due to random-field m echanism. By 

combining symmetry arguments, percolation theory and large-scale Monte Carlo simula-

tions, we proved that introducing a weak spatial interaction anisotropy can restore the stripe 

phase. We also explained the phase transition using percolation theory.
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The second paper studied the 1D contact process under both spatial and temporal

disorders. We discussed the stability of directed percolation universality class against such

disorder by using a generalized Harris criterion. We confirmed our theory by performing

large-scale Monte Carlo simulations. We also studied the Griffiths singularities to further

compare theory and simulations.

The third, experimental paper studied unconvensional Josephson junction using the

Kondo insulator 𝑆𝑚𝐵6. We have constructed a Josephson junction by coupling supercon-

ducting Nb leads to surface states of a 𝑆𝑚𝐵6 crystal, and found a robust critical current at

low temperatures. Such critical currents as well as their Shaphiro steps behavior prove the

existence of Josephson effect.

Our research raises a number of interesting questions that can be studied in the future.

The study of the effects of simultaneous spatial and temporal disorders can be extended

to higher dimensions and to other nonequilibrium transitions. To better understand the

stability of the stripe phase, weak interlayer couplings (that are present in real 3D materials)

need to be included. Although the present research focused on the thermodynamic behavior

of the stripe phase, it is also interesting to study the real-time dynamics. More realistic

models can be used to estimate quantitatively the phase transition of real materials and

real-world problems such as the spreading of a disease.
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