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ABSTRACT 

During the past decades, applications of Machine Learning have been explosively 

developed to solve various academic and industrial problems, and over-human 

performance has been shown in diverse areas. In geophysical research, Machine 

Learning, especially Convolutional Neural Network (CNN), has been applied in 

numerous studies and demonstrated considerable potential. In this study, we applied 

CNN to solve two geophysical problems, ranking teleseismic shear splitting (SWS) 

measurements and classifying different types of earthquakes.  

For ranking teleseismic SWS measurements, we utilized a CNN-based method to 

automatically select reliable SWS measurements. The CNN was trained by human-

verified teleseismic SWS measurements and tested using synthetic SWS measurements. 

Application of the trained CNN to broadband seismic data recorded in south-central 

Alaska reveals that CNN classifies 98.1% of human-selected measurements as acceptable 

and revealed ~30% additional measurements.  

For classifying different types of earthquakes, we utilized a CNN to classify 

natural earthquakes, mine collapses, and explosions using seismic waveforms recorded 

by 287 stations in Shandong Province, China. Cross-validation is employed to scan the 

whole dataset, and the measurements with different labels between human and the CNN 

are manually assessed and kept, corrected, or abandoned in the dataset. Testing with the 

corrected dataset, the classification accuracies of the three types of events increase from 

97.3% to 99.2% for earthquakes, from 84.9% to 95.8% for mine collapses, and from 

93.6% to 98.1% for explosions. 
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1. INTRODUCTION 

In the past few decades, the outstanding performance of Machine Learning (ML) 

has attracted the attention of scientists, which leads to a significant increase of 

applications in various areas. In geophysical research, relied on the incredible ability of 

feature extraction, Convolutional Neural Network (CNN), one of the most common ML 

techniques, shows considerable potential in classification problems based on seismic 

waveforms (Perol et al., 2018; Zhu & Beroza, 2018; Linville et al., 2019; Zhang and Gao, 

2022). In this study, we applied CNN to solve two geophysics problems: ranking 

teleseismic SWS measurements and classifying different types of earthquakes. 

Traditionally, both are manually assessed by human experts and consume large amounts 

of time in each project. 

The dissertation is mainly composed of two parts. The first part introduces the 

application in ranking teleseismic SWS measurements. The measurements in training 

dataset are from Liu et al. (2014), Yang et al. (2016) and Yang et al. (2017) for the 

contiguous United States and adjacent areas. All of measurements are manually ranked 

based on criteria proposed by Liu and Gao (2013). After the training process, our CNN 

shows high performance with a synthetic dataset and high consistency with published 

results in south central Alaska (Yang et al., 2021). To our knowledge, this is the first time 

when a ML-based technique is applied to SWS analysis. 

The second part of the dissertation utilizes CNN to classify natural earthquakes, 

mine collapses and quarry explosions. The human labeled dataset from Shandong 

Seismic Network Center (SSNC) is used to train and test our CNN. To minimize the 

influence of unreliable measurements in the dataset, a 10-fold cross validation is 
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employed to scan the whole dataset. The measurements with different labels between 

human and CNN are manually assessed and kept, corrected, or abandoned in dataset. 

Comparing with the original dataset, the classification accuracies of the three types of 

events have obviously increase and all of them are above 95%. Our results reveal that the 

unreliable measurements have negative effect in ML studies and indicate that the cross-

validation with CNN can evaluate, correct, and enhance the dataset. 
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PAPER 

I. CLASSIFICATION OF TELESEISMIC SHEAR WAVE SPLITTING 

MEASUREMENTS: A CONVOLUTIONAL NEURAL NETWORK APPROACH 

Yanwei Zhang and Stephen S. Gao 

Department of Geoscience and Geological and Petroleum Engineering, Missouri 

University of Science and Technology, Rolla, MO 65409 

ABSTRACT 

SWS analysis is widely used to provide critical constraints on crustal and mantle 

structure and dynamic models. In order to obtain reliable splitting measurements, an 

essential step is to visually verify all the measurements to reject problematic 

measurements, a task that is increasingly time consuming due to the exponential increase 

in the amount of data. In this study, we utilized a CNN based method to automatically 

select reliable SWS measurements. The CNN was trained by human-verified teleseismic 

SWS measurements and tested using synthetic SWS measurements. Application of the 

trained CNN to broadband seismic data recorded in south central Alaska reveals that 

CNN classifies 98.1% of human selected measurements as acceptable and revealed 

∼30% additional measurements. To our knowledge, this is the first study to 

systematically explore the potential of a machine-learning based technique to assist with 

SWS analysis. 
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PLAIN LANGUAGE SUMMARY 

One of the routinely utilized seismological techniques to delineate the internal 

structure and dynamics of the Earth's crust and mantle is SWS analysis. In order to obtain 

reliable measurements, it is necessary to perform manual verification of the numerous 

measurements, a task that is increasingly time consuming due to the rapid increase in the 

amount of seismic data recorded worldwide. In this study, by taking advantage of the 

recent revolutionary development of a machine-learning technique called the CNN, we 

systematically investigate the potential and performance of a CNN that is trained using 

human-labeled SWS measurements and tested using both synthetic and recorded data. 

The results demonstrate satisfactory performance of the CNN on both types of data. 

Although additional development of the CNN is needed to reach over-human 

performance, our tests suggest that if a human operator uses CNN-classified results for 

manual verification, an approximately 60% reduction of the effort will be achieved, and 

only about 2% of the measurements will be missed. 

1. INTRODUCTION 

It has long been recognized that the P-to-s converted phases from the core-mantle 

boundary such as SKS, PKS, and SKKS (hereafter referred to as XKS) split into 

orthogonally polarized fast and slow components in azimuthally anisotropic media (Ando 

et al., 1983; Long & Silver, 2009; Savage, 1999; Silver & Chan, 1991). The two splitting 

parameters, the polarization orientation of the ϕ and the δt between the two waves, reveal 

the orientation and splitting magnitude of the anisotropy, respectively. Over the past 
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several decades, the SWS analysis technique has been widely used to delineate azimuthal 

anisotropy in the upper mantle, where lattice preferred orientation of crystallographic 

axes of main constitute minerals such as olivine is the dominant cause of the observed 

anisotropy (Katayama & Karato, 2006; Savage, 1999; Silver, 1996; Zhang & 

Karato, 1995).  

Several different methods have been utilized to measure the splitting parameters 

of the XKS phases, among which the transverse energy minimization method (Silver & 

Chan, 1991) is arguably the most reliable one for its stability for noisy data (Vecsey 

et al., 2008). In this method, a grid search procedure is applied to find the optimal pair of 

splitting parameters (ϕ, δt) corresponding to the minimum XKS energy on the corrected 

transverse component. Numerous SWS studies suggest that in order to obtain reliable 

splitting measurements, an essential step is to visually verify all the measurements (e.g., 

Liu & Gao, 2013), as demonstrated in recent studies in North America (e.g., Liu 

et al., 2014; Yang et al., 2016, 2017; Yang et al., 2021). Due to the ever-increasing 

number of stations established around the world and the resultant exponential increase in 

the amount of data available for SWS analysis, this laborious task is increasingly time-

consuming, and therefore alternate time-efficient yet reliable approaches are needed. 

In recent years, applications of ML based techniques on various scientific 

problems have dramatically increased, and over-human performance has been shown in 

diverse areas. Especially after AlphaGo showed unexpectable high performance (Silver 

et al., 2016), ML became widely known and attracted the attention of researchers from 

different fields. In geophysical research, ML has been applied in numerous studies and 

demonstrated considerable potential. Such applications include earthquake early warning 
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(Li et al., 2018), earthquake detection and magnitude estimation (Lomax et al., 2019; 

Mousavi & Beroza, 2020; Perol et al., 2018), seismic phase picking (Dokht et al., 2019; 

McBrearty et al., 2019; Ross et al., 2018; Woollam et al., 2019; Zhu & Beroza, 2018), 

event classification (Linville et al., 2019; Titos et al., 2018), first-motion polarity 

determination (Ross et al., 2018), seismic denoising (Zhu et al., 2019), and earthquake 

prediction (Mignan & Broccardo, 2019; Rouet-Leduc et  al.,  2017). ML-based 

applications on structural seismological problems such as teleseismic tomography, 

receiver functions, and SWS analyses are relatively rare and are starting to takeoff (e.g., 

Bianco et al., 2019; Garcia et al., 2021).  

In this study we design a CNN to classify the automatically determined SWS 

splitting parameters measured based on the set of procedures outlined in Liu and 

Gao (2013) into acceptable and unacceptable ones. Traditionally such kind of grouping 

was conducted by trained human operators and was the most time-consuming step in 

SWS analysis (e.g., Liu & Gao, 2013), although efforts have been made to make such 

processes fully automatic for both teleseismic (Link et al., 2022; Teanby et al., 2004) and 

local S-wave (Peng & Ben-Zion, 2004) splitting measurements with promising results. 

While many SWS studies group the measurements in to “good,” “fair,” “unacceptable,” 

and “null,” the vast majority of them use the first two categories (which are collectively 

called “acceptable” in this study) indistinguishably for interpretation. For the “nulls,” 

which are characterized by a lack of XKS energy on the original transverse component 

while strong XKS energy appears on the radial component (e.g., Silver & Chan, 1991), 

we identify them in the pre-processing stage. The CNN is trained using published SWS 

measurements verified by human operators and is tested using splitting measurements 
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obtained using synthetic data. The trained CNN is applied to data from 127 stations in 

south central Alaska and the results are compared with those reported in a recent study 

(Yang et al., 2021). To our knowledge, this is the first time when a ML-based technique 

is applied to SWS analysis. 

2. TRAINING DATA SET AND PREPROCESSING 

Our CNN is trained and verified using 86,903 published human-labeled XKS 

SWS measurements recorded by 1,108 stations from Liu et al. (2014), Yang et al. (2016) 

and Yang et al. (2017) for the contiguous United States and adjacent areas (Figure 1). 

This data set was measured, manually verified, and ranked based on the procedures in Liu 

and Gao (2013), and contains 8,117 well-defined (ranks A and B) and 78,786 not well-

defined (rank C and rank N, which are for null measurements). The procedures start with 

an automatic SWS measuring step built based on the minimization of transverse energy 

method of Silver & Chan (1991). The automatically determined measurements are then 

auto-ranked based on the XKS signal to noise ratios on the original radial, original 

transverse, and the corrected transverse components (Liu et al., 2008). All the resulting 

measurements and their ranks are subsequently manually screened to validate the results 

based on the following criteria: goodness of the fitting between the fast and slow 

components, the linearity of the particle motion pattern, the robustness and uniqueness of 

the minimum value on the contour of remaining energy on the corrected transverse 

components, and the strength of the XKS arrival on the original radial and transverse 

components. If necessary, the XKS time window, the band-pass frequency, and the 
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automatically determined ranking are manually adjusted to exclude non-XKS arrivals in 

the XKS window and to improve the SNR.  

The stations cover different tectonic areas of the North America (Figure 1) so that 

our training and verification data contain measurements from various geological 

backgrounds. Additionally, the data set contains stations with both azimuthally invariant 

and azimuthally varying individual measurements, indicating the presence of simple and 

complex anisotropy, respectively. The splitting measurement procedure takes the original 

radial and transverse components as the input data, grid-searches for the optimal splitting 

parameters, and generates corrected radial and transverse components. The optimal pair 

of splitting parameters produces a corrected transverse component that has the minimum 

XKS energy among all the candidate pairs of the splitting parameters. Our CNN takes all 

Figure 1. Distribution of seismic stations (red triangles; Liu et al., 2014; Yang et al., 

2016, 2017) used for training the CNN. 
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the four seismograms as input data and groups the optimal pair of parameters as either 

acceptable (ranks A and B) or unacceptable (ranks C and N). After testing with various 

combinations of the length and the onset of the time window for the four seismograms, a 

50 s window centered at the theoretical arrival time of the XKS phase predicted based on 

the IASP91 Earth model is used in the study.  

Acceptable measurements are labeled as array [1 0] and unacceptable 

measurements are labeled as [0 1]. Because the number of acceptable measurements is 

significantly greater than that of the unacceptable data in the training data set, to avoid 

overfitting, we balance the data set by setting different class weights to the two sets of 

data (nine for the acceptable ones and one for the unacceptable ones), which is a common 

practice in similar situations (Japkowicz & Stephen, 2002). After random shuffling, 80% 

of the measurements are used for training and 20% for validation. 

3. STRUCTURE AND TRAINING OF THE CNN 

The CNN is built on Keras which is a high-level neural networks application 

programming interface (Gulli & Pal, 2017). Following Perol et al. (2018), we designed a 

CNN with eight 1-D convolutional layers followed by a full-connect layer. For each 

splitting measurement, the input for CNN includes four seismic waveforms each with 

1,000 nodes (50 s seismic waveforms with a sampling rate of 20 Hz) in length. Rectified 

Linear Unit is applied as the activation function between each layer (Nair & 

Hinton, 2010). The output is the probability of the acceptable and unacceptable 

measurements (Table S1 and Figure S1 in Supporting Information S1). The probability is 



 

 

10 

given by Softmax which is a popular activation function for classification problems 

(Goodfellow et al., 2016). The equation can be shown as: 

𝑝(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗2

𝑗=1

                                                          (1) 

where j = 1, 2 and i = 1, 2 represent the 2 nodes of the final layer, and 𝑝(𝑥)1 and 𝑝(𝑥)2  

represent the probability of acceptable and unacceptable measurements, respectively. If 

the probability of the acceptable measurements is greater than a threshold, this 

measurement is considered as an acceptable one. Because this is a bi-class classification 

problem and the training dataset is balanced, the threshold probability of acceptable 

measurements used in this study is 0.5.  

To numerically reveal the difference between the CNN-predicted and human-

labeled results, the cross-entropy loss is applied as the cost function (Goodfellow et al., 

2016). The equation can be shown as: 

𝐿 = − ∑ 𝑝𝑖 log(𝑞𝑖)
𝑛
𝑖=1  (𝑛 = 2)                                  (2) 

where n is 2 representing the two types of measurements (acceptable and unacceptable), p 

is the probability of the CNN predicted result and q is the human-labeled result. The 

weights of the CNN are updated to minimize the cost function Adamalgorithm (Kingma 

& Ba, 2014) with a learning rate of 0.001 during each training iteration. In each iteration, 

100 measurements are randomly selected to train the CNN and each measurement in the 

training data set is used for 64 times. The training history of accuracy and loss value 

(Figure S2 in Supporting Information S1) show a high level of similarity between the 

trends of the curves for the training and validation data sets, suggesting a low probability 

of overfitting. In addition, both curves become nearly flat at the highest epoch numbers, 

which suggests a low possibility of underfitting. 
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4. TESTING WITH SYNTHETIC SWS MEASUREMENTS 

Two sets of synthetic SWS measurements are generated based on Kong et al. 

(2015) to test the performance of the CNN. Firstly, the radial component of a pre-splitting 

XKS wave is defined as  

𝑅(𝑡) = 𝐴0sin (2𝜋𝑓𝑡)𝑒−𝛼𝑡                                      (3) 

where 𝐴0 = 5000 is the amplitude of the pre-splitting XKS wave, 𝑓 = 0.125 Hz is the 

frequency, and 𝛼 is the decaying factor which randomly changes from 0.1 to 0.5. After 

penetrating the anisotropic layer, which has a fixed ϕ of 0° and a randomly assigned 𝛿𝑡 

ranging from 0.5 s to 2.0 s, the shear wave splits into the fast and slow components. 

𝑆𝑓(𝑡) = 𝑅(𝑡)cos (𝜃)                                           (4) 

𝑆𝑠(𝑡) = −𝑅(𝑡 − 𝛿𝑡) sin(𝜃)                                         (5) 

where 𝑆𝑓 and 𝑆𝑠 are the fast and slow waves, and 𝜃 is the angle between ϕ and the BAZ 

of the event. The epicentral distances of the events are randomly assigned in the range of 

90° to 120°, and the focal depths vary from 20 to 50 km. Finally, 𝑆𝑓 and 𝑆𝑠 are projected 

to the north-south and east-west components and random noise is added to generate 

synthetic seismograms for SWS measurements. The SNR is defined as 

max(R(t))/max(N(t)), where N(t) is the trace of the random noise.  

It can be demonstrated mathematically that the energy on the original transverse 

component and the reliability of the resulting splitting parameters are dependent on 𝜃, 

which is the angular difference between the BAZ and the fast orientation (Silver & Chan, 

1991). In the modulo-90o domain, close-to-null measurements, which are characterized 

by hardly observable XKS energy on the original transverse component, are dominant if 
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𝜃 is less than 15o or greater than 75o. The relationship between 𝜃 and the reliability of the 

measurements, as well as the influence of 𝜃 on CNN’s ability to correctly separate the 

acceptable measurements from the unacceptable ones, can be quantified using synthetic 

data. 

For this purpose, we produce 72 groups of synthetic seismograms with SNR 

ranging from 4 to 10. Each group has 1000 measurements. The BAZ (which equals to 𝜃 

because the fast orientation is set as 0° in the model) of the n-th group is (n-1)*5°. The 

other parameters, including the SNR, used for generating the synthetic seismograms in 

Equations 3-5 are the same among the groups. The same data processing procedures used 

to generate the uniform SWS database for North America (Liu et al., 2014; Yang et al., 

2016, 2017) are applied to the synthetic waveforms to automatically determine the 

splitting measurements, which are then grouped by the trained CNN into acceptable and 

unacceptable categories. The results suggest that the number of CNN-accepted 

Figure 2. Performance tests of the CNN using synthetic dataset. (a) 72 groups of synthetic 

SWS measurements with different back azimuths. (b) 20 groups of synthetic SWS 

measurements with different signal-to-noise ratios. 
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measurements reduces rapidly when the BAZ approaches 0° and 90° in the modulo-90° 

domain (Figure 2a), due to the weak XKS energy (relative to that of the noise) on the 

original transverse component. Such measurements are either ranked as C or N by human 

operators, depending on the noise level and the preference of the operators. When the 

BAZ is ≥15° from the fast or slow orientations in the modulo-90° domain, clear XKS 

energy is present on the original transverse component, and consequently the trained 

CNN successfully identified almost all the measurements with a rate of success > 99% 

(Figure 2a).  

To test the performance of the CNN on data with different SNR values, 20 groups 

of synthetic SWS measurements are generated, each with 1000 measurements. The SNR 

of each group varies from 1 to 10 with an interval of 0.5. Based on the results of the first 

test (Figure 2a), the BAZ of each of the events used for the test is at least 15° from the 

fast or slow orientation. The results show that the success rate of CNN is over 90% for 

SNR ≥ 2.5 and over 97% when SNR ≥ 6.5 (Figure 2b).  

5. APPLICATION TO SWS MEASUREMENTS IN SOUTH CENTRAL ALASKA 

We next apply the trained CNN to broadband seismic data in south central Alaska 

recorded by 127 stations with variable recording period from 1988 to October 2019. The 

procedures to request (from the Data Management Center of the Incorporated Research 

Institutions for Seismology) and preprocess the XKS data follow those described in Liu 

and Gao (2013) and are identical to those used by Yang et al. (2021). In total 19,960 pairs 

of splitting parameters are obtained at 127 Stations (Figure 3a). The SNR based auto-
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ranking procedure of Liu et al. (2008) ranked 6,314 measurements from 127 stations as 

potentially acceptable (Figure 3b) and 13,646 measurements as unacceptable. Note that 

the Liu et al. (2008) approach was intentionally designed for excluding only the 

Figure 3. SWS measurements (red bars) in south central Alaska plotted at the recording 

stations (blue triangles). The orientation of the bars represents the fast orientation, and the 

length is proportional to the splitting time.  (a) All the measurements recorded by stations 

in the study area. (b) Results of auto-ranking based on the approach of Liu et. al. (2008) 

which was designed as a pre-screening step to reduce human workload in the subsequent 

manual screening step. (c) Results of CNN with a threshold of 0.5. (d) Same as (c) by 

after removing measurements for which the angular difference between the BAZ and the 

fast or slow wave polarization orientations is smaller than 15°. (e) Same as (d) but after 

removing measurements with standard deviation of ϕ > 15° and standard deviation of δt > 

1.5 s. (f) Same as (e) but after removing measurements with δt > 2.0 s. The number of 

measurements (N) and the number of stations (Nst) are shown in the lower right corner of 

each plot. 
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measurements that are impossible to be acceptable, for the purpose of reducing the 

amount of effort for the subsequent step of visual screening and at the same time 

minimizing the risk of missing potentially acceptable measurements.  

The trained CNN is then applied to classify the 6,314 pairs of splitting parameters 

(Figure 3b). When a threshold value of 0.5 for the probability to be acceptable is used, a 

total of 2668 pairs from 124 stations are determined as acceptable (Figure 3c). We apply 

three set of conditions to refine the CNN-selected results. These conditions are necessary 

to exclude false positives caused by limitations in the current CNN, as described in 

Section 6.2 below. First, because the synthetic tests show that a measurement cannot be 

reliably classified by CNN (and human operators, as discussed below) when the 

difference between the BAZ and the fast orientation is less than ∼15° (Figure 2a), we 

excluded such near-null measurements, and the remaining data set contains 2387 pairs of 

measurements from 122 stations (Figure 3d). Second, measurements with large standard 

deviations (≥15° for ϕ or ≥1.5 s for δt) are excluded, resulting in a total of 1,751 pairs of 

measurements from 118 stations (Figure 3e). Third, because measurements with large 

splitting times are rarely found in SWS studies in Alaska and elsewhere and are 

frequently associated with erroneously determined splitting parameters, we remove the 

221 pairs (or 12.6%) of measurements with splitting times ≥2.0 s, leaving 1,530 pairs of 

measurements from 115 stations in the final data set (Figure 3f). 

Understandably, as more conditions are applied to the CNN classified 

measurements, the number of remaining measurements reduces, while the consistency 

among the measurements at the stations increases (Figures 3c–3f). Note that due to the 

existence of complex anisotropy especially in the central and southern portions of the 
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study area (Yang et  al.,  2021), variability among the measurements at the same stations 

is present at some of the stations. Such a variability does not necessarily indicate 

inaccurately determined results but are mostly the result of azimuthal and piercing-point 

variations of the splitting parameters. The former is usually an indicator of complex 

anisotropy (Rümpker & Silver, 1998; Silver & Savage, 1994), and the latter is the result 

of a station being located at the boundary of two or more regions with different 

characteristics of anisotropy (Alsina & Snieder, 1995; Jia et al., 2021). 

6. DISCUSSION 

6.1. COMPARISON WITH HUMAN-DETERMINED MEASUREMENTS 

After manually verifying the automatically ranked measurements (Figure 3b), 

Yang et al. (2021) obtained 971 measurements from 106 stations, among which 952 

(98.1%) are within the 2668 measurements classified as acceptable by CNN before the 

application of the three conditions (Figure 3c). This suggests that if a human operator 

uses the CNN accepted results (Figure 3c) rather than results from the SNR based ranking 

system (Figure 3b) as the starting point for manual verification, an approximately 60% 

reduction in the number of measurements to be verified will be achieved, and only less 

than 2% of the measurements will be missed. 

To objectively compare the human (Yang et al., 2021) and CNN determined final 

results (Figure 3f), the same set of three conditions applied to the CNN-accepted data are 

applied to the 971 human-determined measurements, and the remaining human-

determined data set contains 865 measurements from 102 stations (Figure 4a), among 
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which 816 from 100 stations are in the final data set that CNN determined (Figure 3f). In 

other words, CNN missed merely 49 (5.7%) of the human determined measurements. 

Most of the missed measurements are in Area B (Figure 4a) where the interaction of two 

flow systems with nearly orthogonal directions leads to weak anisotropy with small 

splitting times (Yang et al., 2021). 

In spite of the fact that the station averaged splitting parameters from the CNN 

and human determined results show a high similarity with a cross-correlation coefficient 

(XCC) of 0.9631 for ϕ and 0.7947 for δt (Figures 4b and 4c), the number of 

Figure 4. (a) Comparison of human-determined (blue bars; Yang et al., 2021) and CNN-

selected (red bars) SWS measurements in south central Alaska. Green bars are 

measurements accepted by both CNN and human operators. All the measurements are 

plotted above the XKS ray-piercing points at 200 km deep which is the most likely depth 

of the anisotropic layer (Yang et al., 2021). The contour lines show the depth of the 

subducted Pacific slab, and the thick dashed lines separate four regions (A-D) with 

different patterns of splitting measurements (Yang et al., 2021). The CNN results are the 

same as those shown in Figure 3f.  (b) Cross-plot of human and CNN determined station-

averaged ϕ measurements. The black bars are the standard deviation. (c) Same as (b) but 

for station-averaged δt measurements. (d) and (e) are respectively the same as (b) and (c) 

but the CNN station averages were computed using results that were determined by CNN 

as acceptable but rejected by the human operators.   
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measurements in the final CNN-determined data set (Figure 3f) is about twice as many as 

that in the human-determined data set. This difference might be caused by the fact that 

the human operators applied a stricter set of standards when verifying the measurements. 

To test this possibility, we computed station averages using only the CNN determined 

measurements that were not selected by the human operators. The results (Figures 4d 

and 4e) show a reduced similarity between the two sets of data, with reduced XCC values 

of 0.8814 for ϕ and 0.4463 for δt. The most obvious explanation for this reduced 

similarity is that some measurements with a marginal quality were classified as 

acceptable by CNN but were rejected by the human operators. 

6.2. COMPARISON WITH A FULLY AUTOMATED NON-MACHINE 

LEARNING SWS MEASUREMENT APPROACH 

Several non-machine learning methods have been proposed to measure SWS 

parameters in a completely automated manner (e.g., Link et al., 2022; Teanby 

et al., 2004). Here, we choose the latest one, SplitRacerAUTO (Link et al., 2022), to 

compare with the CNN-based approach proposed in this study. The MATLAB-based 

SplitRacerAUTO can automatically select the XKS time window and categorize the 

splitting measurements. The same data set in Alaska is applied to test the performance of 

SplitRacerAUTO against our ML-based approach. To be consistent with the parameters 

used in our preprocessing step, we used the frequency range of 0.04–0.5 Hz for the band-

pass filter in SplitRacerAUTO, and kept all the other parameters the same as the default 

values. The results show that this method accepts 950 measurements from 110 stations, 

and 467 of them (48.1%) are contained in results of Yang et al. (2021). After applying the 
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same constraints that produced Figure 3f, there are 586 measurements remained and 404 

(46.7%) of them are in Yang et al. (2021). In other words, the automated procedure 

missed 53.3% of the human-determined measurements, while our CNN-based approach 

merely missed 5.7% of them. The results of the automatically determined splitting 

parameters and results after various constraints are plotted in Figure S4 of Supporting 

Information S1 using the same style as Figure 3 for easy comparison. Similarly, 

comparisons of human and SplitRacerAUTO determined measurements similar to 

Figure 4 are plotted in Figure S5 of Supporting Information S1. Comparing Figures 4 and 

S5 in Supporting Information S1, it is clear that the CNN-based approach resulted in a 

significantly greater number of measurements than SplitRacerAUTO, especially in areas 

with weaker anisotropy such as Area B in Figures 4 and S5 in Supporting Information S1. 

6.3. LIMITATIONS OF THE CURRENT CNN AND SUGGESTED NEXT STEPS 

In spite of the satisfactory performance of our CNN on both synthetic and real 

data, a major drawback of the current CNN is that it does not have the capability to adjust 

the data processing parameters including the beginning and end times of the XKS 

window and the bandpass filtering frequencies. For a small portion of the measurements, 

such adjustments are required in order to obtain reliable results. For instance, if the 

epicentral distance is smaller than 90°, part of the S wave energy can be included in the 

XKS window, leading to unreliable results. Therefore, it is necessary to design and train a 

CNN that can automatically recognize the necessity and make such adjustments. One of 

the approaches is to design a separate pre-processing CNN for picking the arrival time of 

the XKS arrival, similar to those designed for picking the onset time of P or S waves 
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from local events (Zhu & Beroza, 2018). Additional work is needed to find the optimal 

ending time of the XKS window, and to detect the dominant frequency range of the noise 

and perform band pass filtering to enhance the SNR when strong noise is present. 

Alternatively, the optimal XKS window can be determined during the pre-processing 

stage using non-CNN based approaches such as the time-frequency spectrum technique 

recently proposed by Link et al. (2022). 

7. CONCLUSION 

In this study, we have established a CNN to automatically classify teleseismic 

SWS measurements. The CNN is trained by published human-labeled datasets and tested 

using synthetic SWS measurements to evaluate its performance against different levels of 

noise and its dependence on the difference between the fast orientation and the back-

azimuth of the events. When the SNR is greater than 6.5, more than 97% of the non-null 

synthetic measurements can be correctly accepted by the CNN. Application of the CNN 

to data from south central Alaska shows that it can classify almost all human-accepted 

measurements (98.1%) as acceptable when a threshold probability of 0.5 is used. The 

study suggests a high potential for CNN-based methods to significantly improve the 

efficiency of measuring SWS parameters. 
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(https://doi.org/10.7914/SN/XE_1999), XR (https://doi.org/10.7914/SN/XR_2004), XV 
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SUPPORTING INFORMATION 

 

 

 

  

 Length Depth Kernel size Stride Activation function 

Input 1000 4 - - - 

Conv-1D 500 32 3 2 ReLU 

Conv-1D 125 32 3 2 ReLU 

Conv-1D 62 32 3 2 ReLU 

Conv-1D 31 32 3 2 ReLU 

Conv-1D 15 32 3 2 ReLU 

Conv-1D 7 32 3 2 ReLU 

Conv-1D 4 32 3 2 ReLU 

Conv-1D 2 32 3 2 ReLU 

Flatten 64 1 - - - 

Output 2 1 - - Softmax 

Table S1. Structure of the convolutional neural network used in the study 
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Figure S1. The structure of the convolutional neural network used in the study. The blue 

arrows are convolutional layers with ReLU, the green arrow represents the flatten layer, 

and the black arrow is a full-connect layer with Softmax. The blue dots are input data, 

yellow dots are nodes in the network, and the red dots are the output of the network. The 

length and depth are noted at the bottom of the columns of dots. 
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Figure S2. Accuracy and Loss in each epoch during training CNN. The red curves and 

triangles are based on training dataset. The blue curves and triangles are based on 

validation dataset. 
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Figure S3. Performance tests of the CNN using synthetic dataset 

based on 2 anisotropic layers. 
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Figure S4. SWS measurements (red bars) in south central Alaska plotted at the recording 

stations (blue triangles). The orientation of the bars represents the fast orientation, and the 

length is proportional to the splitting time.  (a) All the measurements recorded by stations 

in the study area. (b) Results of auto-ranking based on the approach of Liu et. al. (2008) 

which was designed as a pre-screening step to reduce human workload in the subsequent 

manual screening step. (c) Results of auto-checking method from Link et al. (2022). (d) 

Same as (c) but after removing measurements for which the angular difference between 

the BAZ and the fast or slow wave polarization orientations is smaller than 15°. (e) Same 

as (d) but after removing measurements with standard deviation of ϕ > 15° and standard 

deviation of δt > 1.5 s. (f) Same as (e) but after removing measurements with δt > 2.0 s. 

The number of measurements (N) and the number of stations (Nst) are shown in the 

lower right corner of each plot. 
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Figure S5. (a) Comparison of human-determined (blue bars; Yang et al., 2021) SWS 

measurements and results from auto-checking method (red bars; Link et al., 2022) in 

south central Alaska. Green bars are measurements accepted by both auto-checking 

method and human operators. All the measurements are plotted above the XKS ray-

piercing points at 200 km deep which is the most likely depth of the anisotropic layer 

(Yang et al., 2021). The contour lines show the depth of the subducted Pacific slab, and 

the thick dashed lines separate four regions (A-D) with different patterns of splitting 

measurements (Yang et al., 2021). The auto-checking method results are the same as 

those shown in Figure 3f.  (b) Cross-plot of human and auto-checking determined station-

averaged ϕ measurements. The black bars are the standard deviation. (c) Same as (b) but 

for station-averaged δt measurements. (d) and (e) are respectively the same as (b) and (c) 

but the station averages from auto-checking method were computed using results that 

were determined by auto-checking method as acceptable but rejected by the human 

operators. 
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ABSTRACT 

Convolutional neural network (CNN) has been widely applied in geophysics and 

shows outstanding performance in various sub-areas of geophysical research. Usually, a 

huge amount of high-quality data is necessary to train the CNN in order to obtain reliable 

results. Mis-labeled and ambiguous measurements in the dataset would negatively 

influence the training process and reduce the performance of the CNN. In this study, we 

established a CNN to classify natural earthquakes, mine collapses, and explosions using 

seismic waveforms recorded by 287 stations in Shandong Province, China. The data set 

contains 1035 earthquakes, 159 mine collapses, and 586 explosions. In order to reduce 

the influence of unreliable measurements in the dataset, cross-validation is employed to 

scan the whole dataset. The measurements with different labels between human and the 

CNN are manually assessed and kept, corrected, or abandoned in dataset. Testing with 

the new dataset, the classification accuracies of the three types of events obviously 

increase and all above 95%. The CNN shows over-human behavior in this task and the 

performance is highly influenced by the quality and distribution of the dataset. 
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1. INTRODUCTION 

With the rapidly developing demand of mineral products in the modern society, 

the number of non-tectonic earthquake events, like mine collapses and explosions, 

quickly increase as well. Therefore, reliable classification of natural earthquakes, 

collapses, and explosions becomes a common and tough challenge in applied 

seismological research (Astiz et al., 2014).  

Because the events often occurred in deserted and hard-to-access areas, the 

features from seismic waveform are significant criteria for analysts to make event labels 

of tectonic and non-tectonic earthquakes. Several different automated and semiautomated 

methods have been developed to classify the source based on seismic waveforms. Fäh 

and Koch (2002) compared the ratio between P and S phases with various time windows 

and frequency bands to discriminate earthquakes and chemical explosions. The Lg phases 

or Rg phases are also analyzed to classify different types of sources (Douglas et al., 1990; 

Rourke and Baker, 2017). These studies reveal that seismic waveforms contain 

significant information of the event source, but the performance of the waveform-based 

techniques is highly dependent on the depth and distance of the event and background 

environments. Traditionally, therefore, classification of earthquakes, mine collapses, and 

explosions are operated by human analysts. 

Recently, high-performance Machine Learning (ML) techniques have attracted 

the attention of geophysical researchers. Relied on the outstanding ability of feature 

extraction, convolutional neural network (CNN), one of the most common ML 

techniques, shows considerable potential in classification problems based on seismic 

waveforms (Perol et al., 2018; Zhu & Beroza, 2018; Linville et al., 2019; Zhang and Gao, 
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2022). Usually, a huge amount of high-quality data is necessary to train the CNN in order 

to obtain reliable results. Some previous studies, however, pointed out that mis-labeled 

and ambiguous measurements commonly existing in human labeled dataset can 

degenerate the results (Zhu & Beroza, 2018; Garcia et al., 2021; Zhang and Gao, 2022). 

Linville et al. (2019) reported over 50% CNN misclassified events were mislabeled by 

human analysts. It is the common sense in ML world that the dataset is more important 

than the model itself. These low-quality measurements would negatively influence the 

training process and reduce the performance of the CNN. 

In this study, we established a 11-layers CNN on the task of classification for 

tectonic earthquakes, mine collapses and explosions. The human labeled dataset is from 

Shangdong Seismic Network Center (SSNC). To minimize the influence of unreliable 

measurements in the dataset, a ten-fold cross validation is employed to scan the whole 

dataset. The measurements with different labels between human and CNN are manually 

assessed and kept, corrected, or abandoned in the dataset. Comparing with the original 

dataset, the classification accuracies of three types of events increase from 97.3% to 

99.2% for earthquake, from 84.9% to 95.8% for mine collapses, and from 93.6% to 

98.1% for explosion. Our results reveal that the unreliable measurements have negative 

effects in ML studies and indicate that cross-validation with CNN can evaluate, correct, 

and enhance the dataset.  
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2. DATA AND METHOD 

SSNC provides a seismic dataset recorded during the period from Aug. 2017 to 

Jan. 2022. Totally 31754 three-component seismic waveforms from 4410 events were 

recorded by 287 seismic stations (Figure 1). The P-wave arrival time of each waveform is 

manually picked and the corresponding event is categorized into earthquake, collapse, or 

explosion by human experts. Based on the determination method of magnitude of 

completeness (Mc) from Cao and Gao (2002), the earthquake frequency-magnitude 

distribution reveals that the Mc of the dataset from the SSNC is 1.5. Thus we excluded all 

Figure 1. Stations and events distribution of dataset in the study area. The dataset is 

from SSNC. The red triangles are stations, the purple dots are earthquakes, the blue 

dots are collapses, and the black dots are explosions. 
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events whose magnitudes are less than 1.5. Finally, 17,557 seismic waveforms are kept in 

our dataset, including 11901 waveforms from 1035 earthquakes, 1511 waveforms from 

159 collapses, and 4145 waveforms from 586 explosions. After detrending, seismic 

waveforms in the time window 10 s before and 40 s following the P-wave arrival time are 

used in this study, and the sampling interval is 0.01 s. Zeros are appended to the seismic 

waveforms that do not have enough length.   

In our dataset, the number of waveforms from each event are significantly 

unbalanced. This situation would cause the overfitting of CNN (Goodfellow et al., 2016). 

To balance our dataset, different class weights are set for different types of the events (1 

for the earthquakes, 8 for the collapses, and 2.5 for the explosions), which is a common 

approach to treat unbalanced situations (Japkowicz & Stephen, 2002; Zhang & Gao, 

2022). The earthquakes are labeled as array [1 0 0], the collapses are labeled as array [0 1 

0], and the explosions are labeled as array [0 0 1]. 

Based on practice from previous studies, we established a CNN with 10 

convolutional layers and a full connected layer using Keras (Gulli & Pal, 2017) (Figure 

2). The inputs are 5000 nodes long three-component seismic waveforms and after 

Figure 2. The workflow of CNN in this study. The input of CNN is 3 component (N, E, 

and Z) seismic waveforms. The output of CNN is 3 probabilities of natural earthquakes, 

collapses, and explosions. 
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convolution, the outputs are the probability of each of the three-types of events. The 

activation function between each layer is LeakyReLU with a 0.05 negative slope (Maas et 

al., 2013). During the convolutional process, 3 by 1 filters are applied to extract the 

features from seismic waveforms. The stride is set to 2, so the length of each layer is 

down sampling to half of the previous one. The Softmax is used as the activation function 

to classify each seismic waveform in the output layer (Goodfellow et al., 2016): 

𝑝(𝑥)
𝑖

=
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗3

𝑗=1
                                                          (1) 

where 𝑗 = 1, 2, 3 and 𝑖 = 1, 2, 3 represent the 3 nodes of the last layer, and 𝑝(𝑥)
1
, 𝑝(𝑥)

2
, 

and 𝑝(𝑥)
3
 represent the probability of earthquakes, collapses, and explosions. The result 

of CNN follows the highest value of 𝑝(𝑥).  

The cross-entropy between human-labeled and CNN-predicted results is defined 

as the loss function of our CNN (Goodfellow et al., 2016): 

𝐿 = − ∑ 𝑝𝑖 log(𝑞𝑖)
𝑛
𝑖=1  (𝑛 = 3)    (2) 

where 𝑛 is 3 representing the three types of events (earthquakes, collapses, and 

explosions), 𝑝 is the probability of the CNN-predicted result given by Softmax, and 𝑞 is 

for human-labeled result. The weights of the filters and fully connected layer are 

automatically optimized by minimizing the loss function during the training process.  The 

optimizer is Adam with a learning rate of 0.001 (Kingma & Ba, 2014), and the epoch is 

64. 
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3. RESULTS 

Firstly, a ten-fold cross validation is employed to scan all the dataset. The dataset 

is evenly separated into 10 groups and at each iteration, 9 groups serve as the training 

dataset and 1 group serves as the testing dataset. Because each event can be received by 

multiple stations, the majority vote algorithm is applied to determine each event in the 

network level. The results will be the sum of output of all the stations that recorded the 

event. Finally, the CNN successfully recognized 97.3% (1007/1035) earthquakes, 93.7% 

(549/586) explosions, and 84.9% (135/159) collapses (Figure 3a, b, and c).  

Figure 3. The performance of the CNN. The red bars are number of each type in each 

group. The blue bars are number of events with same label between CNN and human. 

(a), (b), and (c) are results with original dataset. (d), (e), and (f) are results with 

corrected dataset. 
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All the measurements which have different labels between the CNN and human 

are manually assessed. 10 out of 28 earthquakes, 18 out of 24 collapses, and 18 out of 37 

explosions are considered as mislabeled by human; 5 earthquakes, 1 collapse, and 12 

explosions are hard to classify due to unclear features on the seismograms. Even assume 

human is correct with all the ambiguous events, there are still over 50% measurements 

mislabeled by human in different-labels events. In the other word, the CNN shows over-

human behavior with original dataset.  

Themis-labeled and ambiguous measurements commonly exist in various datasets 

and would decrease the accuracy of ML models. To minimize the influence of unreliable 

measurements, we corrected all the mis-labeled measurements and removed ambiguous 

ones with unclear features. The same ten-fold cross validation is employed again with the 

corrected dataset. After the same process as that used for the first scanning, the accuracies 

of CNN increase from 97.3% to 99.2% (1040/1048) for natural earthquakes, from 84.9% 

to 95.9% (137/143) for collapses, and from 93.6% to 98.1% (560/571) for explosions 

(Figure 3d, e, and f). The overall accuracy of each type is over 95% with the corrected 

dataset. The CNN mislabeled 25 events, and 10 of them are the same as those in the first 

training with the original data, and 15 of them are unique in the second training with the 

corrected dataset. Additionally, the results of all the corrected events are same with the 

new labels.. Therefore, the CNN agrees all the manually corrected events and gives 

consistent label with human for 15 uncorrected mislabeled events in the first training. We 

also manually assessed the 15 unique events, and found that 1 earthquake and 1 collapse 

were considered as mislabeled by human, and features of the 2 explosions and 1 

earthquake are unclear on the seismograms.  
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4. DISCUSSION 

After correcting human mislabeled events and removing ambiguous events, the 

accuracy of CNN has obviously increased. For the true mislabeled events, most of them 

were given vague results by the CNN for which the maximum value is close to the other 

two values; Moreover, even after balance, the accuracy of CNN is higher with a larger 

number of events. The large dataset would include various situations and the CNN has a 

higher probability to avoid overfitting.  

The distribution of true mislabeled events in the CNN results is evaluated. We 

plot the accuracy of the CNN versus magnitude and the number of measurements of each 

event. As Figure 4 shows, the accuracy of the CNN increases with the magnitude and the 

number of measurements, and when the magnitude larger is than 2.5 and the number of 

measurements is larger than 20, the CNN can successfully classify all the measurements. 

Figure 4. (a) the accuracy of CNN with corrected dataset various with number of 

measurements of each event. (b) the accuracy of CNN with corrected dataset various 

with magnitude. 
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It is also consistent with the common sense that larger magnitude would generate more 

clear features on the seismograms and a large number of measurements would reduce the 

influence of bias.  

In the ML research, the CNN is known as possessing a poor interpretability and is 

hard to calibrate (Guo et al., 2017). The dataset, however, is easier to be evaluated and 

corrected. Data-centric AI is proposed by Ng (2021) and suggests that instead of 

calibrating models, AI researchers should pay more attention to make better datasets. The 

results of CNN in this study also reveal that the performance of CNN is highly correlated 

with the quality and distribution of the dataset.  

5. CONCLUSIONS 

With rapidly developing of ML, the CNN, with the out-standing ability of feature 

extraction, has shown high potential in classification problem based on seismic 

waveforms. In this study, we built an 11-layers CNN to classify natural earthquakes, 

mine collapses and explosions in Shandong Province, China. A ten-fold cross validation 

is applied to scan all the dataset, and the results reveal that the CNN has higher 

performance than human. Moreover, all the measurements with different labels between 

the CNN and human are assessed and kept, corrected, or abandoned in the dataset. The 

accuracy of the CNN has obviously improved with the corrected dataset, and all of them 

are above 95%. The performance of CNN is also influenced by the magnitudes, and the 

number of measurements of each event received by stations. This study suggests that the 
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performance of CNN is highly correlated with the quality and distribution of the dataset 

used to train and validate the neural network.  
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SECTION 

2. CONCLUSION 

In this study, we designed two CNNs for ranking teleseismic SWS measurements 

and classifying natural earthquakes, mine collapses, and explosions. 

For ranking teleseismic SWS measurements, the CNN is trained by published 

human-labeled datasets and tested using synthetic SWS measurements to evaluate its 

performance against different levels of noise and its dependence on the difference 

between the fast orientation and the back-azimuth of the events. When the SNR is greater 

than 6.5, more than 97% of the non-null synthetic measurements can be correctly 

accepted by the CNN. Application of the CNN to data from south central Alaska shows 

that it can accept almost all human-accepted measurements (98.1%) as acceptable when a 

threshold probability of 0.5 is used. The study suggests a high potential for CNN-based 

methods to significantly improve the efficiency of measuring shear wave splitting 

parameters.  

For classifying natural earthquakes, mine collapses and explosions, a ten-fold 

cross validation is applied to scan the entire dataset, and all the measurements with 

different labels between the CNN and human are assessed and kept, corrected, or 

abandoned in dataset. The accuracy of CNN has obviously improved with the corrected 

dataset, and all of them are above 95%. The performance of CNN is also influenced by 

the magnitudes, and the number of measurements of each event received by stations. This 

study suggests that the performance of CNN is highly correlated with the quality and 

distribution of the dataset used to train and validate the neural network.  
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