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ABSTRACT  

In the existing literature, merchants' trading actions are usually assumed not to 

affect market prices; however, a large-scale energy storage merchant’s actions can affect 

market prices. This work examined two electricity merchant scenarios: one with only 

energy storage and the other with both energy storage and renewable power plants. We 

approximated market impact via a linear function of the electricity traded by the merchant. 

This study began by applying dynamic programming to the optimal economic dispatch 

policy of electricity merchants and it considered the market impact, physical characteristics 

of storage systems, and the uncertainty of renewable energy sources. Then, this study 

evaluated the effect of the self-consumption demand on the co-optimization scheduling of 

prosumers with both energy storage and distributed renewable energy sources. Furthermore, 

this work investigated how the production tax credits (PTC) impacted merchants' co-

optimization scheduling policy under two common PTC subsidy policies.  

Finally, the time-coupling constraints require market participants to make decisions 

in advance based on forecasted electricity prices. However, independent system operators 

(ISOs) have the most comprehensive and detailed information regarding market operations, 

so they are more likely to generate more accurate pricing estimates than individual 

merchants. Therefore, this study analyzed whether allowing the ISO to schedule the 

generators and energy storage could bring economic benefits to the social-welfare 

maximizing ISO and the profit-maximizing electricity merchant or generators. This study 

found that if the ISO sends the cleared prices to the electricity merchant, a merchant will 

arrive at the same optimal scheduling decisions as those from the perspective of the ISO. 
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1. INTRODUCTION 

 

Governments and scientists prefer renewable energy to traditional fossil fuels 

because it produces clean electricity and few greenhouse gases or pollutants. Sustainable 

and renewable energy resources (solar, wind, etc.) were developed rapidly worldwide in 

the last two decades with the promise of no carbon emission, technology-driven cost 

reduction, and national/state-level regulations and targets (Liu et al., 2022a; Qi et al., 2015, 

Zhou et al., 2019). Renewable energy at a high penetration level, especially wind and solar 

energy, which are sensitive to weather changes and have a high level of uncertainty, and 

are intermittent and may lead to sudden and significant fluctuations in power generation 

and compromise the secure operation of the power system (Cory-Wright and Zakeri, 2020; 

Korpaas et al., 2003). The electricity supply and demand must be matched in real-time, so 

it is significant for grid operators to deal with electricity insufficiency and surpluses. 

Energy storage can rapidly respond to a control order and is expected to play an active role 

in alleviating renewable generation uncertainty. As the imbalance of electricity can be dealt 

with energy storage, storing surpluses for future resale is a common strategy for 

commodities (Ahmad et al., 2021; Lai et al., 2021).  

Energy storage can provide many different types of services for ISO (Independent 

System Operator), utilities, electricity merchants, and end-users (Bo et al., 2021). 

Considering one aspect, the merchant can utilize energy storage to engage in energy 

arbitrage by purchasing electricity to store when prices are low and sell it to the market 

when prices are high to maximize the profit (Wu et al., 2012). Storing electricity for future 

resale is a typical approach of merchants that sell commodities (Williams and Wright, 

https://www.sciencedirect.com/science/article/abs/pii/S0167637720300572#!
https://www.sciencedirect.com/science/article/abs/pii/S0167637720300572#!


2 

 

 

1991). Conversely, when energy storage owners participate in the electricity market, the 

instability of the power system and the imbalance between supply and demand in the 

electricity market will be well solved. Energy storage, such as pumped storage hydro—

having fast response abilities and high ramp rates—plays a significant role in mitigating 

fluctuations in power generation caused by increasing renewable energy sources (Kim and 

Powell, 2011; Liu et al., 2022a; Zhou et al., 2019). In the electricity market, an ISO 

(hereafter, he) clears energy and operates reserves, commits generators with the lowest 

price offers based on the required demand to minimize generation costs or maximize social 

welfare, and then generates the cleared locational marginal pricing (LMP) (Chen et al., 

2011a; Soofi and Manshadi, 2022). With the control of storage, the electricity merchant 

can regulate the intermittency of the energy, meet the demand of the market, and reduce 

costs and maximize arbitrage gains by controlling the stored energy.  

There are various energy storage technologies such as solar-thermal energy storage 

(Haslett, 1979), pumped storage hydropower (PSH) plant (Deane et al., 2010), battery 

storage (Cheng and Powell, 2018; Marcelino et al., 2019), and hydrogen energy storage 

(Feng and Menezes 2022). Hydropower has long remained the largest source of renewable 

electricity generation, accounting for roughly 40% of U.S. renewable electricity generation 

in 2018, remaining the most significant contributor to U.S. energy storage, with an installed 

capacity of 21.6 GW or roughly 95% of all commercial storage capacity in the United 

States (Water Power Technologies Office, 2020). As of 2021, renewable energy accounted 

for roughly one-quarter of global electrical supply (U.S. Energy Information 

Administration, 2021). With decreasing technology costs and the boosting of renewable 

deployment, energy storage is poised to be a valuable resource for future power grids. Will 
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et al. (2021) reported that the energy storage would exceed 125 GW by 2050, more than a 

five-fold increase from the installed storage capacity of 23 GW in 2020. As a result, 

investigating the best energy storage scheduling policy in the electrical market benefits 

both electricity merchants and independent system operators. 

Studies on electricity scheduling and operation for energy storage for the electricity 

merchant were conducted. For example, Zhou et al. (2016, 2019) concentrated on energy 

arbitrage approaches (i.e., buying electricity from the market at low prices and selling 

power to the market at high prices to maximize profit). Co-optimization of renewable 

power plants and energy storage (Garcia-Gonzalez et al., 2008; Liu and Ou et al., 2022; 

Zhou et al., 2019) can generate potential future values by mitigating the intermittent nature 

of renewable energy generation through storing electricity when the power demand is 

higher than the renewable power output. In this work, we discussed PSH or battery storage 

systems, both having their physical constraints, thus capacity of the energy storage, 

pumping/charging and generating/discharging capacities, and facility pumping/charging 

and generating/discharging efficiencies, must be considered when modeling (Liu et al., 

(2021a, 2022a); Steffen and Weber, 2016；Zhou et al., 2016). This work examined two 

electricity merchant scenarios: one with only energy storage and the other with both energy 

storage and renewable power plants.  

1.1. THE MOTIVATION AND INNOVATION OF ENERGY STORAGE 

MERCHANT PROFIT MAXIMIZATION 

When modeling energy storage, research into energy inventory has traditionally 

focused on the optimal policy or the optimal bidding decision. For example, Zhou et al. 

(2016) concentrated on energy arbitrage approaches (i.e., buying electricity from the 
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market at low prices and selling power to the market at high prices to maximize profit). 

Most extant models (Kim and Powell, 2011; Zhou et al., 2019), assumed that the storage 

capacity was sufficiently small compared to the wholesale electricity market, so its 

charging and discharging decisions did not affect the electricity prices. Thus, given the 

price in each period, a merchant (hereafter, she) buys or sells a certain quantity of energy 

at a price that is not affected by her own operational decisions (i.e., in our 

terminology, price-taker merchant). However, the value of large-scale energy storage such 

as PSH facilities, is reflected in price arbitrage (Cruise et al., 2019; Felix et al., 2012, 

Newbery et al., 2015; Sioshansi 2010, 2014; Sioshansi et al., 2009), in which case the 

merchant’s operating decisions affect electricity prices in the market (i.e., price-

maker merchant).  

Compared to the arbitrage value of energy storage for a price-taker, Sioshansi et al. 

(2009) analyzed the arbitrage value of a 1 GW of a storage device in PJM from 2002 to 

2007 and showed that the price-smoothing effect reduced the arbitrage value by more than 

20%. More specifically, the market load increased when a merchant bought electricity, thus 

leading to a rise in market prices; conversely, selling power increased the supply and 

reduced market prices. Therefore, large-scale electricity storage can reduce its energy 

arbitrage value by decreasing differences in sale prices on-peak load and purchase cost on 

off-peak periods. The first aim of this study is to develop a better understanding of the 

difference between the optimal policies under two perspectives (i.e., price impact vs. no 

price impact). 
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1.2. THE MOTIVATION AND INNOVATION OF CO-OPTIMIZATION 

ENERGY STORAGE MERCHANT PROFIT MAXIMIZATION 

To manage the intermittency of renewable sources and create the flexibility for 

energy arbitrage, most wind plants owners embraced collocating electricity generation and 

grid-connected energy storage facilities such as PSH (Al-Masri et al., 2021), compressed 

air energy storage (Yu et al., 2021), and battery (Ahmad et al., 2021). One example is the 

Wilmot Energy Center that contained a 30-MW battery energy storage and a 100-MW solar 

array system (Tucson Electric Power, 2021). Co-optimization of grid-level storage (Garcia-

Gonzalez et al., 2008; Zhou et al., 2019) with a wind farm created value by mitigating the 

intermittent nature of wind generation by pumping/charging electricity when the wind-

generated power output mismatched power demand (i.e., PSH and storage benefited the 

environment also by reducing the wind generation curtailment), by storing wind generation 

and reselling in future when prices are low, and also by enabling the merchant to buy power 

for the future. The value of co-optimization of energy storage and wind power generation 

was reported in The Electric Power Research Institute (EPRI 2004) and the Department of 

Energy (DOE 2018).  

This study analyzed how the market impact affected the co-optimization economic 

dispatch structure of merchants with co-located energy storage systems and renewable 

energy sources. As a result, considering the market impact, the profit-maximizing 

merchant's co-optimized scheduling policy depended not only on the traditional operational 

approach but also on the market impact of the merchant’s operational actions on prices and 

the uncertainty of forecasted wind generation. In this set-up, the merchant has four options: 

storing all renewable energy generation and also purchasing power to store; storing partial 

renewable energy generation and selling the rest of it; idle; discharging energy storage and 
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selling all renewable energy generation to the market at the terminal period. Therefore, it 

is valuable to examine the co-optimized economic dispatch policy for electricity merchants 

who have large-scale energy storage facilities and wind plants and their market impacts on 

energy storage operations. Thus, this work aims to provide new insight into how optimal 

co-optimized scheduling policies differ for the merchant who has co-located energy storage 

systems and renewable power plants under these two scenarios (i.e., price impact vs. no 

price impact). 

Prior research in this area and this study’s work about energy storage merchant 

supposed that energy/power in storage was worthless in the last period (Liu et al., 2021a; 

Zhou et al., 2016, 2019). This assumption meant that the merchant should reduce the state 

of charge (SOC) down to the lower boundary of the energy storage capacity, so the choice 

is either discharging or remaining idle during the last period of optimization horizon. 

However, this study incorporated the value of water in the PSH at the terminal period (Liu 

et al., 2022b; Kim and Powell, 2011; Sánchez de la Nieta et al., 2015). In the long term, 

the residual energy in the storage has potential value for the future then influences the 

current actions, which is another innovation of this study.  

1.3. THE MOTIVATION AND INNOVATION OF PROSUMER WITH ENERGY 

STORAGE AND CONSIDERING SELF-DEMAND  

Distributed renewable energy was considered a primary solution for the issues 

regarding increased energy demands, fossil fuel depletion, and CO2 emissions (Matos et 

al.,2019; Gautam et al., 2020). Furthermore, with the development of smart grid technology, 

the reliability and economics of producing and distributing electrical energy were enhanced 

(Hamidi et al.,2010). More electricity end-users installed distributed energy resources 
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(DERs), such as small wind turbines and rooftop solar panels, which are grid-connected to 

generate electricity to balance their own demand and also to participate in the local 

electricity market (Parag et al., 2016; Morstyn et al., 2018). In this case, such end users 

were also called prosumers—energy consumer who are also producers. Renewable sources 

have limitations because production and consumption are not always simultaneous, as in a 

PV system that can only generate during daytime hours and will only produce optimally 

on long and cloudless days. This dynamic between the intermittent renewable energy 

generation and the dynamic demand of prosumer creates an imbalance between the supply 

and demand of energy. Thus, only a portion of DERs production can be used locally for 

prosumers, termed self-consumption rate (Gautier et al., 2018).  

A high level of self-consumption rate benefits prosumers: however, due to 

renewable energy depending on environmental conditions, its power generation is highly 

sporadic and unpredictable irregularity (Qi et al., 2015). In such circumstances, a 

household owning a DER was used, and the consuming-electricity device with energy 

storage (e.g., battery) was connected to the local electricity market via transmission lines. 

The frequent energy flow to and from the grid affected the grid's stability and decrease 

prosumers' self-consumption (Jaszczur et al., 2020). Therefore, the energy storage systems 

are useful tools to improve self-consumption rate and balance the mismatch between 

demand and supply (Kerdphol et al., 2016) by storing surplus renewable energy when the 

renewable energy generation is larger than demand or discharging storage to satisfy the 

demand when local consumption exceeds her production.  

The current economics dispatch studies mainly from profit-maximizing electricity 

merchants, but these studies assumed that these merchants would not consume energy 
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during the optimization horizon (Kim and Powell, 2011; Zhou et al., 2019; Liu et al., 2022a; 

Liu et al., 2022b). In contrast to the merchant, the prosumers prioritized fulfilling their load 

and minimizing the total energy consumption cost (Kusakana, 2020). More specifically, 

the prosumer should first satisfy her load by generating renewable energy, discharging 

storage, or purchasing electricity from the power market. Thus, optimizing prosumers with 

storage enabled them to minimize the electricity bills by improving self-consumption rates 

of the renewable source generation (Keiner et al.,2019). Therefore, the aim of this work is 

to investigate how the prosumer's self-consumption demand affects the economic dispatch 

of energy storage.       

1.4. THE MOTIVATION AND INNOVATION OF PRODUCTION TAX CREDIT 

IMPACT ON ECONOMICS DISPATCH FOR ELECTRICITY MERCHANT 

WITH ENERGY STORAGE AND WIND FARMS 

For modeling energy storage, research on energy inventories traditionally 

concentrated on optimal bidding strategies or optimal policies. Most existent models (Avci 

et al., 2021, Kim and Powell, 2011; Lee, 2008; Qi et al., 2015; Richmond et al., 2014; Zhou 

et al., 2019) focused on joint energy arbitrage strategies (i.e., wind farm merchants have 

considered collocating electricity generation and grid-scale storage facilities); however, 

they neglect the government's economic subsidies from the U.S., such as the Production 

Tax Credit (PTC) for renewable power plants. Investing in U.S. wind farms spurred more 

than $143 billion in private investment over the last ten years because of PTC (Mai et al., 

2016). These subsidies reduced U.S. wind power costs by 70% (Cullen, 2013; Siler-

Evans et al., 2013). Furthermore, when a renewable subsidy—the production tax credit 

(PTC)—was provided to electricity merchants, the cost of wind power generation 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Siler-Evans%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23798431
https://www.ncbi.nlm.nih.gov/pubmed/?term=Siler-Evans%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23798431
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decreased, and the profit of selling electricity increased, then such merchants were 

encouraged to sell electricity rather than buy and store electricity. 

Scholars recognized the importance of PTC in wind power generation. This work 

studied how the PTC affected the optimal economic dispatch of merchants and profits. In 

the traditional study, the profit of the electricity merchant was mainly based on selling 

power to the market and buying power from the market. In contrast, considering the PTC, 

the merchant's profit depended not only on the traditional selling and buying operation 

strategy but also on the government's subsidies by selling renewable power to the market. 

Thus, the PTC significantly affected the trading decisions of merchants who have both 

energy storage and renewable power plants. Therefore, the aim of this part is to develop a 

better understanding of optimal economic dispatch policy differences in relation to the two 

assumptions (PTC vs. no PTC). 

1.5. THE MOTIVATION AND INNOVATION OF OPTIMAL DECISION 

RELATIONSHIP BETWEEN PROFIT MAXIMIZING ENERGY STORAGE 

MERCHANTS AND SOCIAL WELFARE MAXIMIZING ISO 

Energy storage can provide many different types of services for electricity 

merchants and independent system operators (ISOs). On the one hand, the merchant can 

utilize energy storage to engage in energy arbitrage by purchasing electricity to store when 

electricity prices are low and selling it to the market when prices are high to maximize her 

profit (Wu et al., 2012). On the other hand, when energy storage owners participate in the 

electricity market, the instability of the power system and the imbalance between supply 

and demand in the electricity market will be well solved. Energy storage, such as PSH, 

which has fast response abilities and high ramp rates, is playing an increasingly significant
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role in mitigating fluctuations in power generation caused by increasing renewable energy 

sources (Kim and Powell, 2011; Liu et al., 2022; Zhou et al., 2019). 

According to current rules, generators or market participants must submit, in 

advance, bids that consist of price-quantity pairs in the wholesale electricity market. In the 

Midcontinent Independent System Operator (MISO) day-ahead market, for example, the 

market bid window closes at 10:30 a.m., and the MISO market management system 

calculates and posts the trading results (including LMPs) at 1:30 p.m. As a result of time 

constraints, the merchant must determine whether to buy or sell power in quantities that 

reflect the ideal policy based on predicted pricing. In contrast, price is a result of market 

clearing based on minimizing system electricity generation costs and is (Hota et al. 2012, 

Sunar and Birge 2019), thus, difficult to predict accurately ahead of time.  

Scholars examined the best economic dispatching approach for energy storage 

electricity merchants based on forecasted electricity prices (Bo et al., 2021; Gianfreda and 

Bunn, 2018; Shi et al., 2021; Özen and Yıldırım, 2021; Lehna et al. 2022). Although 

numerous approaches are utilized to forecast electricity prices, forecasted electricity prices 

differ from LMPs. ISOs, however, have the most comprehensive and detailed information 

about market operations, thus, they are likely to generate more accurate price forecasts than 

would any individual merchants. The ISO could clear the market to compute LMP and 

dispatch quantities for each generator based on the minimum dispatch cost (Hota et al., 

2012; Sunar and Birge, 2019). 

Schiro et al. (2016) and Hua and Baldick (2017) identified individual profit-

maximizing decisions from generating companies that aligned with the welfare-

maximizing solution of the ISO when he sent electricity prices to each generating unit. In 
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other words, in ideal situations, both the generator and ISO arrived at the same optimal 

economic dispatch. Nevertheless, neither Schiro et al. (2016) nor Hua and Baldick (2017) 

considered PSH or battery storage in their studies, which caused non-convex constraints in 

modeling because the charging/pumping and discharging/generating cannot occur in the 

same period. As a result, it was evident that the scheduling problem with energy storage 

that the ISO and merchants encountered could not be addressed by a strong duality. 

Therefore, the aim of this work is to determine (a) whether it is economically beneficial to 

the merchant to be scheduled by an ISO directly and (b) whether a merchant with energy 

storage or generators will make less profit if she follows the ISO dispatch instead of seeking 

to maximize her own profit when she faces uncertainties.  

1.6. THE OUTLINE 

This research focuses on energy storage scheduling optimization, the impact of self-

consumption on scheduling policy, and the renewable energy policy subsidy influence on 

economic dispatch of energy storage. This work uses dynamic programming, mixed integer 

linear programming, nonlinear optimization, duality theory, and Lagrange relaxation to 

investigate optimal economic dispatch strategies from the perspective of profit-maximizing 

electricity merchants.  

This work was organized as follows: Section 1 summarized research motivation 

and contributions regarding energy storage electricity merchants in four different scenarios, 

and the relationship between optimal decisions made by profit-maximizing merchants and 

social-welfare maximizing ISOs. Section 2 was a review of the relevant literature. Section 

3 discussed the optimal scheduling for profit maximization merchants with only energy 
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storage, and it considered the market impact. Section 4 focused on the co-optimization 

economics dispatch strategy for electricity merchants who own both energy storage and 

renewable energy sources. Section 5 described the scheduling results when the self-

consumption demand of prosumers with energy storage was considered. Section 6 

investigated the impact of PTC subsidy policies on economic dispatch for electricity 

merchants with storage and wind farms. In Section 7, this study examined the optimal 

economic dispatch relationship between profit-maximizing electricity merchants and social 

welfare-maximizing ISOs. Finally, Section 8 concluded with a summary of the findings 

and some suggestions for future research.  

This work verified the proposed results based on synthesis data and real data of 

electricity prices and wind generation from MISO, which is one of the ISOs in North 

America and runs one of the largest electricity markets in the world.  
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2. LITERATURE REVIEW 

2.1. RENEWABLE SOURCE WITH ENERGY STORAGE  

Renewable power generation (e.g., wind/solar electricity generation) has high 

uncertainty levels and is intermittent, and the forecast reliability is low (Liu et al., 2022a; 

Memarzadeh and Keynia, 2021), which significantly affects the operation of power 

systems (Golari et al., 2016; Papavasiliou and Oren, 2013; Parker et al., 2019). Because 

the demand and supply of electricity must be matched in real time, it is critical for grid 

operators to deal with electricity surpluses and insufficiency (Bo et al., 2021; Liu et al., 

2022b). Energy storage systems (ESS) can solve this problem benefiting renewable energy 

market participation (Ding et al., 2014; Gomes et al., 2017; Luo et al., 2015; Zhang et al., 

2018) and maintaining the stability of the power system (Liu et al., 2015). Li et al. (2022) 

and Liu and Du (2020) discussed the problem of renewable energy selection, and they 

proposed a novel PROMETHEE method to rank different types of renewable energies and 

to make a sensitivity analysis for decision results. Various energy storage technologies 

including battery storage (Cheng and Powell, 2018; Rehman et al., 2022) and PSH (Deane 

et al., 2010; Wang et al., 2021), were also discussed.  

Previous scholars targeted renewable sources with energy storage. Liu et al. (2015) 

used the artificial neural network (ANN) to forest wind generation and LMP (locational 

marginal pricing) and to study the dispatch of wind farms with hybrid energy storage. Shi 

et al. (2018) optimized the generated scheduling of wind-storage systems by analyzing the 

link between wind power fluctuation and ESS based on quantization index (QI) clustering. 

Orsini et al. (2021) proposed a comprehensive computational framework for the optimal 
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operation for a solar thermal plant with energy storage. Roslan et al. (2021) explored a day-

ahead optimized scheduling controller for the optimal operation of distributed energy 

resources with energy in the microgrid. Li et al. (2021) studied the capacity design of an 

integrated energy system based on the active dispatch mode (ADM). Savolainen and 

Lahdelma (2022) solved the optimal dimension and operation of renewable energy with 

storage in the building based on a 15-minute power balance settlement.  

Various methods were used by previous researchers to model the economic dispatch 

of energy storage, including approximate dynamic programming theory (Jiang and Powell 

2015a, Zhou et al. 2016), convex relaxation method for energy arbitrage (Hashmi et al. 

2019), stochastic optimization operation model (Bafrani et al., 2021), MILP (Heine et al. 

2021, Koltsaklis and Dagoumas 2021), and hierarchical optimization algorithm (Shi et al. 

2022). Yeh (1985) presented a general review of the mathematical models and simulations 

for reservoir operations. However, these studies followed the principle that buying occurs 

when electricity demand is low and electricity prices are low, and selling occurs when 

electricity demand is high, and electricity prices are high (Deane et al., 2010). Zhang and 

Wirth (2010) developed an online heuristic algorithm to smooth wind power variations 

with battery storage. Wang et al. (2008) and Dui et al. (2018) explored the optimal energy 

storage power and capacity for energy storage using second-order cone programming 

(SOCP). Huang et al. (2018) analyzed the operation of grid-level energy storage under 

three market mechanisms and found a modified mechanism that balanced social cost and 

owner’s profit. Al-Kanj et al. (2020) adopted approximate dynamic programming 

algorithms to optimize energy storage for arbitrage. Heine et al. (2021) employed the MILP 

model to investigate the design and dispatch problem of packaged cool thermal energy 
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storage (CTES) in connected communities, based on annual cost minimization. Fan et al. 

(2022) analyzed the optimization of grid-scale energy storage in a day-ahead operation 

using a dynamic optimal power flow (DOPF)-based scheduling framework.  

Aside from PSH systems, the battery is a conventional but more expensive form of 

energy storage with constraints. Considering the nature of the battery and other stochastic 

information like electricity prices, load demand, and regulation signals, Cheng and Powell 

(2018) proposed a dynamic programming to solve the operation problem of the battery to 

charge and discharge to maximize arbitrage gains. Considering battery life, Hashmi et 

al. (2018) proposed an optimal arbitrage algorithm to control the number battery operations 

cycles to maximize battery life and arbitrage return. Nguyen et al. (2018) focused on the 

characteristic of charge or discharge efficiency of energy storage and proposed nonlinear 

energy flow models based on nonlinear efficiency models and verify them by a Vanadium 

Redox Flow Battery (VRFB) system. To simplify this study, we consider charge or 

discharge efficiency as a constant value.  

Another subsection of the literature concentrated on using storage to make better 

bidding decisions relative to periods in a market (e.g., Bathurst and Strbac, 2003; Kim and 

Powell 2011; Löhndorf et al., 2013; Jiang and Powell, 2015). In reference, this study 

assumed that any electricity offered to the market was accepted; thus, different from the 

above literature, this work did not consider bidding problems. Wiser and Bolinger (2015) 

determined that, in some U.S. electricity markets, wind generators are treated as "must-

run" in normal conditions, and 38% of the wind capacity developed in the U.S. in 2009 

was sold through merchant agreements involving no bidding; thus, this study assumption 

is acceptable. 
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In this work, unlike the previously discussed research, capacity optimization for 

energy storage and optimal coordination framework are not evaluated. Instead, from the 

profit-maximizing perspective, this study target how to get the analytically optimal 

economic dispatch policy of the electricity merchant with energy storage only and with 

both a wind farm and energy storage. Thus, the goal of the study is to find a policy that 

allows the electricity merchant to decide and compute the amount of energy (i.e., energy 

transaction quantity) to sell or buy based on the state of the environment period.   

2.2. CO-OPTIMIZAION OF ENERGY STORAGE AND WIND FARM  

U.S. DOE (2018) reported the value of co-located energy storage and wind plants. 

For the optimization of co-located energy storage and a wind plant system, Castronuovo 

and Lopes (2004) proposed a discrete optimization method to maximize daily profits and 

find the optimal daily operational strategy for a merchant with wind plants and 

hydroelectric power generation. Lee (2008) solved the short-term electricity scheduling 

problem by applying the MIPSO (multi-iteration particle swarm optimization) method on 

the combined wind farms and PSH system. Garces and Conejo (2010) studied the optimal 

bidding strategy for a price-taker producer in the day-ahead electricity market. Zhang et al. 

(2016) obtained the optimal day-ahead economic dispatch for a smart grid with renewable 

and storage device by a fully distributed algorithm. Ding et al. (2016), Kim and Powell 

(2011), Zhou et al. (2019) examined the optimal scheduling policy of a wind plant with a 

storage system. Levieux et al. (2019) discussed the complementary operation between an 

existing hydropower plant and a projected wind plant based on heuristic algorithm (HA). 

Bhoi et al. (2020) studied the optimal scheduling of Photovoltaic (PV) systems with a 

https://www.sciencedirect.com/topics/engineering/hydropower-plant
https://www.sciencedirect.com/topics/engineering/wind-farms
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battery and incorporate the storage health and consuming cost. Taghikhani (2021) studied 

micro-grid optimal scheduling with renewable resources and storage considering 

uncertainty. He et al. (2022) proposed a multi-objective evolutionary algorithm with 

decision-making based on planning-operation co-optimization of renewable energy with 

storage. However, they all ignored the market impact of energy storage's operating 

activities on prices because these analyses considered the energy storage activities to be 

small, and merchant’s operational decisions did not influence electricity prices.  

Various methods were used to model price-taker merchants; examples include the 

heuristic approach (Zhang and Wirth, 2010), mixed-integer linear programming (MILP) 

method (Wang et al., 2021), dynamic programming theory (Liu et al., 2022a; Xiao et al., 

2021), Lagrangian relaxation technique (Cruise et al., 2019), stochastic optimization 

scheme (Powell and Meisel, 2016), and approximate dynamic programming algorithms to 

co-optimize energy storage for arbitrage (Al-Kanj et al., 2020). Parastegari et al. (2013) 

evaluated the best scheduling of wind plants and pumped-storage power plants in a joint 

operation and an uncoordinated operation, finding that the joint operation enhances the 

plant’s profit and risk value. Bruninx et al. (2016) investigated system operators’ co-

optimization of PHS and controllable generation. Yang et al. (2020) used the PSO 

algorithm to investigate the best PV and BESS integrated generating system dispatch 

method. Zheng et al. (2020) researched the day-ahead optimal dispatch for an integrated 

energy system, and they considered the time-frequency characteristics of the predicted 

renewable energy source output. Liu et al. (2022a) investigate the impact of the PTC 

(production tax credit) on the optimal scheduling policy of energy storage and ignoring the 

market impact and the uncertainty of wind generation. Hou et al. (2022) investigated a 
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data-driven economic dispatch model for islanded microgrid systems that included storage, 

wind power, diesel engines, and PVs, taking into account uncertainty and demand response. 

Lu et al. (2022a) developed the joint optimal scheduling model for wind-photovoltaic-

hydropower-thermal-pumped storage.  

In conclusion, an independent merchant with co-located energy storage and a wind 

plant could effectively enhance the stability of power system operation. Optimizing the 

energy arbitrage strategy could maximize its income in the real-time market. In Section 4, 

a series of physical constraints on the energy storage system, the maximum and minimum 

limits of the generating and pumping, the capacity of the energy storage system, the 

efficiency, and the residual value of water are considered. This study examines merchants' 

operation costs, which may be daily maintenance costs or battery self-discharge loss. 

2.3. MARKET IMPACT OF ENERGY STORAGE 

For merchants in the electricity market, most studies focused on assuming that the 

merchant's operational actions (i.e., pumping/charging and generating/charging) did not 

influence market prices, which is called price-taker. Notably, large-scale energy storage 

such as PSH, was reflected in energy arbitrage actions on the power market. This was 

because the merchant's trading actions (i.e., buying and selling) were sufficiently large to 

affect the electricity prices (Cruise et al., 2019; Felix et al., 2012).  

Felix et al. (2012) offered a pioneering approach to storage valuation that 

incorporated the effect of a market impact. Along similar lines, Baslis and Bakirtzis (2011) 

used stochastic MILP to model how a hydropower company’s short-term profit 

maximization decisions affected its medium-term plans, which adopted an annual 
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stochastic self-dispatching model. Steeger et al. (2018) studied the optimal bidding plan of 

a single hydropower company whose bidding behavior influenced the market price using 

Stochastic Dual Dynamic Programming (SDDP). Cruise et al. (2019) identified large-scale 

storage (e.g., PSH) trading decisions that affected the market price and addressed 

decoupling the optimization horizon through the Lagrangian approach. Habibian et al. 

(2020) employed Lagrangian methods to the optimal power purchase decision making of 

price-maker enterprises that consumed power.  

Huang et al. (2018) compared the operation of grid-level energy storage under three 

market mechanisms and proposed a modified mechanism to balance social cost and 

owner’s profit. Huang et al. (2019) analyzed the investment and operation for price-maker 

storage under the centralized market and deregulated mechanisms and explored the 

financial incentives for the cooperative operation of multiple grid-level storage devices. 

Chabok et al. (2019) focused on the influence of the energy storage system as a price-maker 

on the operation of the power system from the perspective of ISO and proposed a bi-level 

optimization problem. These works did not investigate the energy storage economic 

dispatch problem from the perspective of electricity merchants and did not specifically 

consider wind plants to be operated with energy storage. Liu et al. (2021a) investigated 

the optimal operational policy of merchants who only have energy storage and incorporated 

the market impact based on dynamic programming. Nasiri et al. (2021) examined the 

scheduling strategy for a multi-energy system as a price-maker player in the day-ahead 

wholesale market based on a hybrid robust-stochastic approach. Later, Nasiri et al. (2022) 

investigated the tactical response of a wind integrated MES in the wholesale electricity 

https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Nasiri%2C+Nima
https://ietresearch.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Nasiri%2C+Nima
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market (WEM) and the natural gas market (NGM) as a price setter via a bi-level 

optimization model. 

Compared to the current study (Liu et al., 2022a; Jiang and Powell, 2015a; Zhou et 

al., 2019), note that the mode was non-trivial in achieving analytical results that employed 

dynamic programming approach when considering the market impact in the problem 

because it transformed the traditional study that considered only piecewise linear reward 

functions to nonlinear ones. The co-optimization policy of electricity merchants is quite 

different when uncertain renewable energy generation and the residual value of energy in 

the storage and the market impact are modeled.  

2.4. CO-OPTIMIZATION OF PROSUMERS WITH ENERGY STORAGE  

The widespread implementation of DERs and their integration with the utility grid 

added additional flexibility to the grid (Hong et al., 2022; Parizy et al.,2020). On the other 

hand, since the demand for electricity increases with the growth of the electric vehicle 

market and the increasing use of electrical equipment, the price of electricity gradually 

rises. These trends have incentivized consumers to install DERs, and then they can generate 

electricity to cover the self-demand and sell surplus energy to the market (Horta et al.,2017).  

There are various approaches to model the prosumer: a robust virtual battery model 

describing the flexibility of the prosumer (Hu et al., 2021); the marginal utility functions 

(MUFs) expressing prosumers’ trading willingness based on a stochastic approach (Ziras 

et al., 2021); a real-time rolling horizon energy management model considering the 

stochastic characteristics of PV consumers and the conditional value at risk based on the 

cooperative game theory (Ma et al., 2019); the Energy Cost Optimization via Trade (ECO-
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Trade) algorithm for Peer-to-Peer (P2P) energy trading problem (Alam et al., 2019); and 

the Variational Equilibrium and Generalized Nash Equilibrium solutions for the P2P 

market design (Cadre et al., 2020). 

With the emergence of prosumers, there are some studies on energy management 

and trading strategy optimization for prosumers. Liu et al. (2017) investigated the energy 

sharing management (ESM) model for microgrids with prosumers based on the Stackelberg 

game and obtained the optimal pricing model of ESM. Etesami et al. (2018) modeled the 

interactions between several prosumers and a utility company using stochastic game theory. 

With the number of prosumers in the smart grid increasing, Bitaraf and Rahman (2018) 

pointed to grouping prosumers into groups or coalitions by game theory and assessing the 

strategy using data sources. Kusakana (2020) developed the model for prosumer's optimal 

operation, including the residential prosumer and commercial prosumer in a P2P energy 

sharing scheme. Khorasany et al. (2021) proposed a framework for prosumers’ joint 

economics dispatch and power trading. Gutiérrez et al. (2022) determined the ideal size of 

the photovoltaic solar kit that minimizes the average net billing energy cost over a finite 

planning horizon in order to satisfy the energy requirements for grid-connected 

photovoltaic renewable energy consumption with battery storage during each period. 

Due to the uncertainty of renewable energy power and the mismatch between 

renewable energy generation and flexible electricity demand and to fully harvest the energy 

that the distributed generation can provide, storage technologies need to be utilized and 

improved. On this basis, Jaszczur et al. (2020) suggested that the development of storage 

technology, particularly battery storage, enables prosumers to maximize self-consumption 

rate and further reduce the total annual cost of energy.  
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For modeling prosumers with energy storage, Bruch and Muller (2014) conducted 

a long-term simulation of a household and reported that self-consumption rates were 

approximately 29%, 47%, and 51% for no energy storage, 2 kWh, and 4 kWh energy 

storage, respectively. Kiedanski et al. (2019) proposed a stochastic model of battery control 

by approximate dynamic programming (ADP), which significantly reduces the net energy 

exchanged with the grid and the monetary cost for production. In some countries, especially 

with high retail electricity prices, prosumers with energy storage become a valuable option 

for energy cost-saving (Keiner et al.,2019). Based on Monte Carlo simulation, Sha et al. 

(2020) pointed out that prosumers installing storage systems can significantly reduce their 

energy cost and the maximum load of the distribution network, benefiting both prosumer 

and distribution infrastructure. Faraji et al. (2020) considered the effect of the loss of life 

cost of the battery storage systems (BSSs) in the optimization and scheduling for the 

prosumer modeled as discrete nonlinear programming (DNLP) problem. Campana et al. 

(2021) indicated that introducing lithium-ion batteries as energy storage can shave the 

targeted peak, perform price arbitrage, and increase PV self-consumption for prosumers 

equipped with energy storage. A distributed two-stage reentrant hybrid flow shop bi-level 

scheduling model was developed by Dong and Ye in 2022 to minimize makespan, overall 

carbon emissions, and total energy costs. Therefore, this study considered a prosumer 

equipped with a battery to regulate the electricity demand. 

Studies have assessed the operation for prosumers with energy storage and have 

emphasized the importance of batteries. The previously cited studies focused on prosumers’ 

cooperative trading strategies and energy management, but they did not analyze the 

decision-making activities of prosumers with batteries, which will be discussed in this work. 
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The analytical solutions to quantify the optimal energy storage dispatch of prosumers based 

on dynamic programming were not achieved. In Section 5, this problem is formatted as 

Markov decision process, and solve it based on dynamic programming; it is then analyzed 

how the different load levels affect the optimal scheduling for prosumers.  

2.5. PRODUCTION TAX CREDIT 

Most existing models focus on joint energy arbitrage strategies; however, they 

neglect the government's economic subsidies from the U.S., such as the production tax 

credit (PTC) for renewable power plants. Production Tax Credit (PTC) helped reduce U.S. 

wind power costs by 70% (Cullen, 2013; Mai et al., 2016; Siler-Evans et al., 2013). 

Moreover, investing in U.S. wind farms spurred more than $143 billion in private 

investment over the last ten years because of PTC (see https://cleanpower.org/policy/tax-

policy/ for details).  

Scholars recognized the importance of PTC in wind power generation. Wiser et al. 

(2007) suggested that a long-term extension of the federal PTC would be beneficial to the 

boost of renewable energy growth. Barradale (2010) pointed out the negotiation dynamics 

of power purchase agreements (PPAs) facing the uncertainty of PTC that caused the U.S. 

wind industry’s fluctuating boom-and-bust pattern of investment. Xi et al. (2011) applied 

a spatial/GIS-based financial model to investigate the competitiveness and profitability of 

onshore wind power. They analyzed the quantified impacts of PTC on the competitive 

potential of wind power operations. Roach (2015) indicated that PTC was more effective 

at wind energy promotion in deregulated states than in regulated states using a structural 

supply model of wind power production. Eksioglu et al. (2014) developed the mixed-

https://www.ncbi.nlm.nih.gov/pubmed/?term=Siler-Evans%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23798431
https://cleanpower.org/policy/tax-policy/
https://cleanpower.org/policy/tax-policy/
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integer non-linear optimization model to capture the impact of production tax credit (PTC) 

on renewable electricity production. Shrimali et al. (2015) showed the effectiveness of the 

production tax credit that encouraged wind energy deployment in the U.S. by empirical 

examination. Goldfarb et al. (2016) pointed out that the public supported the extension of 

PTC to promote renewable energy development. The PTC played a significant role in 

increasing wind energy investments and supporting its growth in the electricity generation 

sector (Frazier et al., 2019; Esposito et al., 2021). The influences of PTC and investment 

tax credit (ITC) on reducing the costs of wind and solar technologies, the installed capacity 

of renewable generation, and the electricity market prices were reported in DOE (2016). 

Alizamir (2021) studied two types of subsidies for wind energy: the investment subsidy 

(ITC) and the production subsidy (PTC) and compared their roles.  

Although PTC promotes wind energy development and reduces power generation 

costs as well as affects the reward functions, previous researchers focused on comparing it 

with other policies, such as ITC (investment tax credit). Unlike some of the previous 

studies, this study does not focus on renewable subsidy policy comparing. Instead, this 

study assess how PTC affects the economic scheduling of electricity merchants with energy 

storage and wind farm. In addition, two PTC subsidy policies were considered, and the 

superiority of both policies was compared and studied in Section 6. 

2.6. ISO AND ELECTRICITY PRICE FORECASTING 

The ISO is a central authority in the electric power industry, which controls both 

the transmission system and the spot electricity market. He is responsible for clearing 

energy and operating reserves reliably and economically within his market footprint (Chen 
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and Li, 2011). Participants in the electricity market who want to buy from or sell electricity 

to the ISO must first submit their bids to the ISO. In the electricity market, an ISO clears 

energy and operates reserves, commits generators with the lowest price offers based on the 

required demand to minimize generation costs or maximize social welfare, and then it 

generates the cleared locational marginal pricing (LMP) (Chen and Li 2011, Soofi and 

Manshadi 2022). 

Both day-ahead and real-time electricity markets have a market-clearing process 

modeled as a unit commitment and economic dispatch (UCED) problem. There are many 

methods employed in the ISO clearing market, such as benders decomposition (BD) 

algorithms, mixed-integer programming (MILP) and primal-dual algorithm (Madani and 

Vyve, 2015; Ye et al., 2020). MISO determines when each power plant should be on or off 

by MILP and establishes energy output levels and the energy trading prices by operations 

research methods (Carlson et al., 2012). The primal-dual strategy is a classical method to 

solve the bi-level market-clearing problem in the day-ahead electricity market (Ceyhan et 

al., 2022; Chatzigiannis et al., 2017). Foroud et al. (2011) studied the optimal bidding 

strategy for generation companies and distribution companies, taking into consideration 

the ISO’s clearing market by a bi-level multi-objective optimization model. Ye et al. 

examined the non-convex generation operating characteristics in the market-clearing 

problem using bi-level optimization models. Soofi and Manshadi (2022) solved the ISO’s 

market-clearing problem by employing the full AC Optimal Power Flow (ACOPF) 

problem formulation. A ISO price clearing methods were based on the concept of optimal 

shadow prices of energy balance constraints (i.e., supply meets demand), so the optimal 

dual variables or optimal Lagrangian multipliers associated with the demand constraint in 
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the ISO clearing market problem (UCED problem) can usually be determined (Foroud et 

al., 2011; Hua and Baldick, 2017; Schiro et al., 2016). 

Market participants decide when and how much electricity to buy or sell through 

price forecasting; therefore, accuracy in forecasting electricity prices is critical for 

wholesale electricity market participants. There are a wide range of studies on electricity 

price prediction. Gianfreda and Bunn (2018) proposed a four-parameter stochastic model 

for hourly market prices forecasting that considered the impact of the influx of renewable 

power on price. Shi et al. (2021) proposed a two-stage price forecasting method based on 

a deep neural network, which improves the prediction accuracy of spike electricity prices. 

Özen and Yıldırım (2021) applied the bagging approach to the electricity price forecasting. 

Peura and Bunn (2021) studied the effect of the intermittency of wind generation on 

electricity prices in the forward market by a game-theoretic market model. Tschora et al. 

(2022) investigated the ability of several machine learning algorithms to accurately predict 

power prices as well as the role of various features in model prediction. In Germany, Lehna 

et al. (2022) analyzed four techniques for forecasting electricity spot prices and showed 

that combining the two forecasting methods was superior. Using a multivariate logistic 

regression model, Liu and Bai et al. (2022c) studied the probability of day-ahead extremely 

low and high-power prices. Lu et al. (2022b) proposed a scenario modeling method to 

improve electricity price forecasting accuracy. 

In traditional research, optimal scheduling strategies for energy storage and co-

optimization scheduling optimization for storage and wind power were studied from the 

perspective of electricity merchants to maximize their own profits. Such research did not, 

however, examine the relationship between the ISO’s optimal scheduling and that of the 
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electricity merchant. Unlike the previous studies, this study does not analyze the electricity 

price forecasting approach; instead, this study explores the relationship between merchants 

and ISOs’ optimal dispatching decisions, and this work investigate whether the optimal 

scheduling decisions from energy storage owners or generators’ profit-maximizing align 

with ISOs’ social welfare-maximizing, which can bring economic benefits to both the 

system and the merchants. This study is based on the observations reported by Hua and 

Baldick (2017), Schiro et al. (2016), and Bo et al. (2021). 
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3. OPTIMAL SCHEDULING FOR PROFIT MAXIMIZATION ENERGY 

STORAGE MERCHANTS CONSIDERING MARKET IMPACT BASED ON 

DYNAMIC PROFRAMMING 

3.1. OVERVIEW AND RESEARCH QUESTIONS  

In this Section, we focus on the application context of a price maker PSH owner or 

a battery owner, namely an electricity merchant (to facilitate the exposition, hereafter, we 

use she when referring to the electricity merchant) using a storage strategy to manage 

electricity in the wholesale market. The storage facility's main features include the storage 

facility and pumping/generating capacity limits, a time-independent efficiency of energy 

inventoried in the storage facility dissipating during one period. We also include 

operational costs when trading electricity on the market. This work (Liu et al., 2021a) 

employs dynamic programming theory to investigate merchants' optimal economic 

dispatch considering the market impact and physical characteristics of storage systems.  

With the motivations mentioned in Section 1, we aim to address the following two 

questions (1) What is the benefit of a price maker in electricity markets? Furthermore, (2) 

What is the difference in the optimal policy between both price taker and price maker? 

Toward that end, we first adjust the price by a linear function of the amount of the energy 

traded by the storage in the reward function to obtain the optimal policy considering the 

market impact. We investigate the electricity merchant's optimal decisions by employing 

the dynamic programming theory to maximize the profit according to the given available 

energy level/SOC in the storage, the current electricity prices, and the market impact. To 

the best of our knowledge, this is the first work to solve the storage problem from the 

respective price-maker using dynamic programming.  
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We organize the remaining work as follows: In Section 3.2, we highlight the main 

contribution of this work. We then formulate the model in Section 3.3. Considering the 

market impact of the trading decision on prices, we apply them to the objective profit 

functions and give the optimal solution in Section 3.4. Section 3.5 verifies the proposed 

results based on synthesis data and real data of electricity prices from MISO (Midcontinent 

Independent System Operator, USA, 2020), one of the Independent System Operators 

(ISOs) in North America and runs one of the largest electricity markets in the world. Finally, 

Section 3.6 summarizes our findings and some suggestions for future research.  

3.2. THE PRINCIPLA CONTRIBUTIONS 

Our study makes three principal contributions: First, for a price maker electricity 

merchant, the optimal trading policy at each decision time is deterministically determined 

by two optimal SOC (state of charge) reference points 
p*

t 1E + and g*

t 1E + , which depend on the 

available energy inventory or SOC tE in the storage, the current power prices tP , and the 

market impact. Considering the efficiency loss or operating cost, the feasible energy 

storage level or SOC can be divided into three regions: for the positive electricity prices, if 

there is less energy in the storage than the respective reference point (i.e., p*

t t 1E E + ), the 

merchant should buy power from the market and bring the SOC up to p*

t 1E + , and if there is 

more energy in the storage than the respective reference point (i.e., g*

t t 1E E +  ), the 

merchant should sell power to the market and bring the SOC down to g*

t 1E + as close as 

possible. However, if the stored energy is within the boundary set forth by the two reference 

points (i.e., p* g*

t 1 t t 1E E E+ +  ), the merchant should do nothing (i.e., stay in the idle mode). 

https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports/
https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports/
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Under ideal condition, if both efficiency loss and operating costs are not considered, the 

feasible energy storage level or SOC can only be divided into two regions: buying-and-

pumping and generating-and-selling.  

Second, compared with the traditional study, when both price taker and price maker 

hold the same generating/pumping max capacity limits, the market impact will increase the 

cost of pumping, reducing the revenue generated in each period, which will reduce the 

optimal expectation profit. If the market impact is small, we will get similar optimal results, 

including unit commitment (UC) and economy dispatch (ED), as the scenario price-taker. 

When the market impact is large enough, the electricity merchant should reduce the power 

transaction quantity (i.e., amount of energy) at each period to lower the negative effect of 

market impact. The profit-maximizing merchant must, therefore, assay to perfectly balance 

the trade-off between the intensity of market impact and the power transaction quantity.  

3.3. MODEL FORMULATION 

We consider an electricity merchant (PSH or battery owner) to use a storage 

strategy to manage electricity in an electricity wholesale market and thus buy and sell 

electricity. We work in discrete time, in which the merchant makes operational and trading 

decisions periodically over a finite horizon in each period t {1,2, ,T} . We assume the 

PSH storage (i.e., upper reservoir) has the maximum energy capacity E  (e.g., the total 

energy which could be stored) and the minimum energy level E , where, E E 0  , which 

means the storage capacity is finite. We also assume the PSH storage or battery has 

generating or discharging and pumping or charging capacity constraints. We denote 
PQ  

and 
pQ as the pumping/charging upper limit and lower limit that can be purchased from to 
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market in each period, gQ and 
gQ  as the generating/discharging upper limit and lower 

limit that can be sold to the market in each period, respectively. This quantity is also 

referred to as the pumping or generating power max capacity if one does not consider the 

energy loss when pumping or generating the PSH. To maintain our model’s tractability, 

we adopt the conventional assumption (Jiang and Powell, 2015a) that 
g PQ Q 0= = . 

Next, we will consider three types of efficiency with storage. The first of these is a 

fraction tη , a time-independent efficiency, of energy inventoried in the storage facility, 

dissipates during one period, t1 η−   is the self-discharging rate of the battery, or the 

evaporation and leakage as well as spill rate of the PSH, equivalently, tη [0,1]  . The 

second of these are both α  and β  represent the efficiency of pumping mode and the 

efficiency of generating mode, where, α,β (0,1]  . Both 1 α−   and 1 β−   represent the 

fraction of energy loss of pumping mode and generating mode, respectively. The third type 

of efficiency is ρ representing the fraction of transmission efficiency, that is, the ratio of 

electricity flowing out of the transmission line to that flowing into this line, so that 1 ρ−  

is the line loss rate. Losses are incurred at the end of the transmission line in either direction, 

where, ρ (0,1] . 

Based on the above discussion, we know that quantities 
PQ αρ  and 

gβρ Q  are the 

net pumping power capacity and gross generating power capacity. Different types of 

storage facilities can be modeled by varying the value of 
PQ αρ   and 

gβρ Q  . If 

gβρ Q E E  −   or PQ αρ E E −   represents slow storage, and the case 
gβρ Q E E  −  

or PQ αρ E E −   represents fast storage. In this work, we target the optimal policy 
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structure/decision rule for slow storage (i.e., a storage facility that cannot be fully emptied 

and filled up in one decision period) (Cruise et al., 2019; Secomandi, 2010; Zhou et al., 

2019). Fast storage is a special case for slow storage. 

The electricity price in period t is denoted by 
tP  (dollars per unit energy). Both 

buying and selling prices at time t are shown by tP  conveniently for a price taker. The 

sequential levels of the price by a vector of ( )1 2 TP P ,P , , P=  . The decision for each 

period t is donated by g

tq or 
p

tq  to represent the energy change (action) between period t 

and t+1 before accounting the efficiency loss. The quantity g

tq βρ is the energy released 

from the storage to generate the power to sell to the market. The quantity p

tq αρ is the 

energy/power bought from the market to pump the water to refill the upper reservoir of 

PSH or battery storage.  

Following the assumption of (Cruise et al., 2019), if the storage decision has a 

market impact, which means when the trading decisions of the electricity merchant are 

sufficiently influential (i.e., large-scale storage) to have a market impact on power prices, 

the price at which the merchant buys or sells energy can be approximated by a linear 

function of the amount of the electricity traded by the storage merchant. The adjusted prices 

are shown as follows: 

p
pt

t t t

t

g g

t t t t

q
(P λP ) (q 0) 

αρP̂ =

(P λP q βρ) (q 0)


+ 




− 

.                  (3.1) 

In Eq. (3.1), the 
tλP is a measure of the market impact of the storage on the price 

at time t. Parameter λ 0  represents the intensity of the market impact of the merchant 

javascript:;
javascript:;
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on power prices. If λ 0= , this special case corresponds to the situation of price-taker. tP̂  

are the adjusted prices resulting from buying-and-pumping the storage by units of 
p

tq αρ  

energy/power from the market and generating-and-selling the storage by units of 
g

tq βρ  

energy/power to market, respectively.  

During pumping/charging and generating/discharging, the electricity merchant 

needs to spend additional maintenance and operating costs. For the battery owner, the 

battery cycle life, a key issue when considering economic feasibility, varies between 

battery technologies and the operating conditions. In practice, the cost of maintenance and 

degradation is lower at first; after some point, costs increase much more rapidly. This work 

lets c (dollars per unit energy) denotes the maintenance and operating cost for PSH or the 

battery's degradation cost. Under the current practice of MISO, the operating cost of PSH 

is close to zero (Huang et al., 2020). To maintain the tractability of our model, in this work, 

we assume the energy storage has a linear operating cost of discharging/generating and 

pumping/charging. 

Thus, the rewards function p g

t t t
ˆR(q ,q ,P )  from performing decision pumping

p

tq  

and generating g

tq , when the prices are tP̂  defined as follows from the respective of price-

maker merchant: 

p
p p pt

t t t t t
p g

t t t

g g g g

t t t t t t

q
(P λP ) q / αρ c(q / αρ) (q 0)

αρˆR(q ,q ,P )

(P λP q βρ) q βρ c(q βρ) (q 0) 


− +  − 

= 


−   −  

.           (3.2) 

The first line in Eq. (3.2) represents the rewards when the electricity merchant 

releases the energy from storage to generate the power and sell to the market; for example, 
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the g

t tP q β ρ    and g

tc q β ρ    represent the revenue obtained and operating cost paid for 

her at time t for g

tq β ρ  units of energy (power), respectively. The second line p

t tP q / αρ

indicates the cost when the electricity merchant buys power from the market to pump into 

the storage, and p

tc q / αρ shows the operating cost.  

We denote tE  as the current energy/inventory in the storage or reservoir at the 

beginning of period t. The sequential levels of the storage by a ( )1 2 TÊ E ,E , ,E= , where 

 iE [E, E], i 1, 2, ,T   . We define the feasible action/decision set based on the current 

energy level 
tE E  as 

g p g g g g p p p p

t t t t t t t t t t tAction(E ) : {(q ,q ) :0 q Q U , q E E,  0 q Q U , q E E }=      −     − .  (3.3) 

Here, the Eq. (3.3) expresses the maximum amount of power/energy that can be 

generated and pumped. The first two constraints show the upper boundary generating due 

to the upper limit and available energy in the storage. The third and fourth constraints 

define pumping's upper boundary because of the upper limit and the storage space capacity, 

respectively. Both binary variables 
g

tU   and 
p

tU   mean the unit commitment of 

generating and pumping in [t, t 1)+ . Without loss of generality, we have p g

t tU U 1+   where, 

 g

tU 0,1 and  p

tU 0,1 , which means the PSH cannot pumping and generating at the 

same period. The merchant has three options, but at most, one of these decisions/actions is 

allowed. If the PSH unit at the mode of offline, there is 
p g

t tU U 0+ =  , that means the 

merchant does nothing (i.e., idle or offline). A ternary pumped storage system can 

simultaneously operate both the pump and generate (ANL/DIS-13/07). However, this is a 

different problem and beyond the scope of this study. 

javascript:;
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At the beginning of period t, the merchant knows the storage level tE  and the price 

tP , then she decides that the quantity of power g

tq βρ to sell to the market or p

tq / αρ to buy 

from the market will get the rewards p g

t t tR(q ,q ,P ) . At the end of the period t, the storage 

self-loss happens, so the storage level at the start of the t+1 equals p g

t t t tη (E q q )+ − . Thus, 

we can get the following equation, which represents the storage energy balance or state 

transition from period t to t+1. 

p g

t 1 t t t tE η (E q q )+ = + −                     (3.4) 

The price-taker and the price-maker differ in whether an electricity merchant can 

impact the market. Hence, we analyze the price maker scenario and find the optimal 

decision rules in the next Section.  

3.4. OPTIMIZATION AND ANALYSIS OF THE PRICE-TAKER STORAGE 

We first establish the objective profit functions in Section 3.4.1, Section 3.4.2 

identifies the optimal solutions and insights from maximizing profit. Section 3.4.3 analyzes 

the effect of market impact for maximum expected profit.  

3.4.1. Payoff Rewards and Objective Function. To maximize the profit, we 

assume for the merchant that all prices are known in advance so that the problem of 

controlling the storage is deterministic. The merchant makes operation and trading 

decisions periodically over a finite horizon in each period t {1,2, ,T} . Following the 

previous study (Zhou et al., 2016, 2019), in this work, we also model the merchant’s storage  

strategy as a finite horizon Markov dynamic programming. Each stage of the Markov DP 

corresponds to one period. The state variables in each stage t are tE  and tP , the state at 
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time t is denoted by 
t t tS(t) S (E ,P )= . The merchant’s goal is to find the optimal decision 

rule π  that maximizes the value function at stage 1 (i.e., initial stage) during the horizon.  

 As a price-maker (PM) merchant, the objective function, is shown as follows: 

pT
g g g p pt

t t t t t t t t t
π

t 1

q
max E (P λP q βρ) q βρ c(q βρ) (P λP ) q / αρ c(q / αρ) | S(1)

αρ=

  
−   −  − +  −  

  
   (3.5) 

Subject to the capacity constraints g g g g p p p p

t t t t t t t t0 q Q U ; q E E; 0 q Q U ; q E E    −     − , 

the unit commitment constraints p g

t tU U 1+  , and the storage energy balance constraints 

p g

t 1 t t t tE η (E q q )+ = + − , where, t {1,2, ,T} . 

In this work, the function (3.5) ignores the discount factor, E is the expectation 

concerning 1 1E , P . Both 1E  and 1P  are the given initial level of the storage and the price 

in advance. Let tV (S(t))  denotes the value function in period t and state 

t t t
ˆS(t) S (E ,P ) E P=   .This function satisfies the Bellman equation. Being a price-maker 

(PM) electricity merchant,  

( )
t

p g

t t t t 1
Action(E )

ˆV(S(t)) max [R(q ,q ,P ) E V (S(t 1) | S(t) ]+= + +               (3.6) 

Following the previous study (Secomandi, 2010; Zhou et al., (2016; 2019)), in this 

Section, we assume that any electricity left in the storage is worthless in the terminal period 

T 1+ . In this way, we will get 
T 1 T 1 T 1

ˆV (S(T 1)) V(E ,P ) 0+ + ++ = = , which indicates the value 

of end energy (resp. water) in storage (resp. upper reservoir of PSH) equals zero. This 

assumption is interpreted as the merchant’s only choice between generating-and-selling or 

doing nothing (offline or idle) in the last stage. T 1E +  represents the energy level at the 

beginning of period T+1; it also equals the energy level at the end of period T. 
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The optimization problem of the merchant can be described to maximize V(S(1)) . 

Eq. (3.5) is a typical binary integer Markov DP function that is too complex to obtain the 

closed-form optimal analytical solutions. In this work, we first replace the binary variables 

with an equivalent continuous decision variable and transfer the Eq. (3.5) to a traditional 

Markov DP to obtain the analytical optimal policy rule. Following Porteus (2002) and Zhou 

et al. (2016; 2019), we let p g

t 1 t t t t t t tE η (E q q ) η (E α )+ = + − = +  (i.e., p g

t t tα q q= −  ) as the 

decision variable. We are using the action (decision) tα  for each period t to replace the 

previous decision 
g

tq  and 
p

tq representing the energy storage level/SOC change between 

periods t to t+1 before accounting for the energy loss. Where tα 0 represents the storage 

decrease due to the action of generating-and-selling, so the quantity of power sold to the 

market is tα β ρ−   ; tα 0  indicates the storage increase due to the action of buying-and-

pumping, so the quantity of power buy from the market is tα / αρ  ; tα 0=   shows the 

storage level does not change, or the merchant does nothing.  

To obtain the optimal scheduling solutions, we also split the optimization in (3.6) 

into two sub-optimization problems corresponding to two different actions: buying-and-

pumping from the market and the other generating-and-selling to the market in Eq. (3.1). 

Then, we find the optimal solution to each of these two sub-optimizations.  

 

P t
t t t t t 1 t

t

g

t t t t t t 1 t

αλ
V (S(t))= P (1 α ) α c E[V (S(t 1) | S(t)]  (α 0)

αρ αρV (S(t))=

V (S(t)) P (1 λβρα ) α βρ+c α βρ  +E[V (S(t 1) | S(t)]  (α 0)

+

+

  
− +  −  + +  
 


= − +    + 

   (3.7) 

Obviously, if tα 0= , there is P g

t tV (S(t)) V (S(t))= . By using 
t t 1 t tα =E η E+ − , and 

let 
t 1E +

as the decision variable, then, the
tV (S(t)) in Eq. (3.7) can be rewritten as follows:  
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P 2t t 1 t t t 1

t t 1 t t t2 2

t t

g 2 2 2t 1 t 1

t t t t t t t

t t

(P c) E (P c) λP E
V (S(t))= E[V (S(t 1) | S(t)] ( ) E ( E ) (α 0)

αρ η αρ α ρ η

E E
V (S(t)) E[V(S(t 1) | S(t)] (P c) ( )βρ (P c)E βρ λPβ ρ ( E ) (α 0)

η η

+ +

+

+ +

  + +
+ − + − −   

 

  

= + − −  + −  − −   
 

 (3.8) 

The optimization problem can be segmented into both 
t +1

p

t
E

max V (S(t))  and 

t +1

g

t
E

max V (S(t)) subject to g g p p

t t t t t t tmax{ Q ,E E } q α α α q min{Q ,E E }− − = − =   = = − in (3.8).   

Maximizing Eq. (3.8) can be approached by obtaining the optimal results to the Eq. 

(3.9) by removing the given state S(t)   (i.e., the given value 
tE   and 

tP  ). Then, 

tV (S(t)), 1 t T     should have the following results based on the Bellman equation 

(Puterman,1994).  

t 1

t 1

P* * 2t t 1 t t 1
t t 1 t2 2E E E

t t

P* * 2t t 1 t t 1 t t 1
t t 1 t t2 2 2 2E E E

t t t

g*

t

(P c) E λP E
V (S(t))= max E[V (S(t 1) | S(t)] ( ) ( E )

αρ η α ρ η

(P c) E λP E λP E
or V (S(t))= max E[V (S(t 1) | S(t)] ( ) ( ) 2 E

αρ η α ρ η α ρ η

V (S(t)) m

+

+

+ +
+

 

+ + +
+

 

 +
+ − − − 

 

 +
+ − − + 

 

=
t 1

t 1

* 2 2 2t 1 t 1
t 1 t t t

E E E
t t

g* * 2 2 2 2 2t 1 t 1 t 1
t t 1 t t t t

E E E
t t t

E E
ax E[V (S(t 1) | S(t)] (P c) ( )βρ λPβ ρ ( E )

η η

E E E
or V (S(t)) max E[V (S(t 1) | S(t)] (P c) ( )βρ λPβ ρ ( ) 2λPβ ρ E

η η η

+

+

+ +
+

 

+ + +
+

 









  

+ − −  − −  
 


  

= + − −  − + 
 

 (3.9) 

 We will analyze the optimal results based on Eq. (3.9) in the next Section. 

3.4.2. Optimization and Optimal Policy. To obtain the closed-form optimal 

policy/decision rule in Eq. (3.9), following the previous study (Kim and Powell, 2011; Liu 

et al, 2021a; Porteus, 2002; Zhou et al., 2016), we know that for any t {1,2, ,T} , in 

every stage t, the value function tV (S(t))   and 
t 1E[V (S(t 1) | S(t)]+ +   are concave in 

tE [E,E]  for each given state 
t t tS(t) S (E ,P )=  and tP    holds. Thus, we will get 

the following relationship: 
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* *

t 1 tt 1 t
t2

t t+1t 1 t+1

E[V (S(t 1) | S(t)] EE[V (S(t 1) | S(t)] E
= E 0

E EE E

+ +

+

   +  + 
      

    
  (3.10) 

Therefore, we will get that the second-order derivatives of two sub-optimization 

problems in Eq. (3.9) are negative (i.e., g* 2

t t 1V (S(t)) E 0+   , and p* 2

t t 1V (S(t)) E 0+   ), 

so, we can find the unique optimal solutions through the first-order condition of the value 

functions. Thus, the optimal results of SOC are shown as:   

LEMMA 3.1. For the price-maker (PM) electricity merchant, let p*

t 1E +
and g*

t 1E + are 

the optimal results in (3.9) for the price-maker scenario, respectively, as shown: 

t 1

p*
t 1 t 1

t

p* * 2t t 1 t t 1 t t 1

t 1 t 1 t2 2 2 2E E E
t t t

*

t+1 t t t

t 1 t2 2 2 2 2

t 1 t t t E E

g*

t 1
E E

P c E λP E λP E
E arg max E[V (S(t 1) | S(t)] ( ) ( ) 2 E

αρ η α ρ η α ρ η

E[V (S(t 1) | S(t)] P c λP λP
 or 2 E 2 E 0

E αρη α ρ η α ρ η

E arg max

+

+ +

+ + +

+ +
 

+

+ =

+


 +
= + − − + 

 

  + +
− − + = 

 

=
1

g*
t 1 t 1

* 2 2 2 2 2t 1 t 1 t 1

t 1 t t t t
E

t t t

*

2 2 2 2t+1 t 1 t

t t t

t 1 t t t t E E

E E E
E[V (S(t 1) | S(t)] (P c) ( )βρ λP ( ) β ρ 2λP E β ρ  

η η η

E[V (S(t 1) | S(t)] E Eβρ 1
or (P c) ( ) 2λP ( ) β ρ 2λP β ρ =0

E η η η η

+

+ +

+ + +

+


+

+ =










  

+ − −  −  +   
 


   +

− −  −  +   
 

(3.11) 

In Eq. (3.11), we can safely draw that there exists two optimal reference 

points/functions p*

t 1E +
  and g*

t 1E +   depend on the current SOC tE   in the storage, the 

given price tP , and the intensity of market impact λ . In Eq. (3.11), when market impacts 

are not considered (i.e., λ 0= ), which becomes a special case for the scenario of price-

taker, we obtain the following relations:  

p* p*

t 1(λ 0) t 1(PT)E E+ = +=  and  g* g*

t 1(λ 0) t 1(PT)E E+ = += .              (3.12) 

Assume we ignore the market impact of the merchant’s trading decision on price. 

In that case, the price maker scenario becomes a particular case of the price-taker, then we 
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will get the same optimal decisions. It means that the profit-maximizing electricity 

merchant, the optimal trading policy at each decision time depends on the forecasted price, 

the available energy in the storage, and the market impact. Based on the above discussion, 

the corresponding optimal solutions are given in the following proposition (All proofs are 

given in Appendix A)  

Proposition 3.1: For every stage t {1,2, ,T} , and positive forecasted electricity 

price tP̂ P (resp. negative forecasted electricity price), when (p,g)

t0 λ λ  1, there exist a 

unique optimal storage level relationship p* g*

t 1 t 1E E E E+ +    (resp. p* g*

t 1 t 1E E E E+ +   ), 

which depend on the state ofS(t)  (i.e., current energy storage tE  and the electricity price

tP ), where (p,g) 2 2t
t t t t2 2

t

P c 1 E
λ (P c)βρ 2P ( β ρ ) E

αρ α ρ η

  +
= − − − −  
   

.  

     In this work, we only target the positive electricity prices. Thus, an optimal decision 

in each state t t t
ˆS(t) S (E ,P ) E P=   , can be specified as follows:  

Case 1: If 
2αβρ 1  (with efficiency loss) or c 0  ( with operating cost), then there 

is p* g*

t 1 t 1E E+ + , the feasible storage level or SOC can be divide into three regions: buying-

and-pumping, generating-and-selling, and do nothing (or idle/offline).  

p* P p* p*

t 1 t t 1 t t 1

* p* g*

t t t t t 1 t 1

g*

t 1 t

min{E E ,Q }(buy and pump energy up to E )            E [E,E )

ˆα (E ,P )= 0         (keep energy unchanged)                                             E [E ,E ]

max{E E , Q

+ + +

+ +

+

− 



− − g g* g*

t 1 t t 1}(generate and sell energy down to E ) E (E ,E]+ +






 

  (3.13) 

Case 2: If 2αβρ 1=   (i.e., without efficiency loss) and c 0=  (without considering 

 

1Large-scale storage/PSH capacities are around 1GW to 2GW. Considering a large competitive market (such 

as MISO which has roughly 190 GW installed capacity) and the limited presence of locational market power 

due to strong transmission and market monitoring, we focus on analyzing a relatively small market impact. 
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operating cost), then there is p* g* *

t 1 t 1 t 1E E E+ + += =  and the feasible storage level or SOC can 

be divide into only two regions: buying-and-pumping and generating-and-selling.  

* P * *

t 1 t t 1 t t 1
*

t t t
* g * *

t 1 t t 1 t t 1

min{E E ,Q }(buy and pump energy up to E )             E [E,E ]
α (E ,P )=

max{E E , Q }(generate and sell energy down to E )  E [E ,E]

+ + +

+ + +

 − 

 − − 

  (3.14)  

The first part of proposition 3.1 indicates that the price maker merchant also has 

three decision choices: generating, pumping, and idle (or offline). By comparing the current 

storage SOC with the optimal reference points, the merchant can schedule the 

corresponding optimal actions. If tE  less than p*

t 1E +
 , then the electricity merchant (i.e., 

PSH owner) should buy the power from market, then pump water and bring the SOC level 

up to p*

t 1E +
 as close as possible, and if tE is larger than g*

t 1E +
, the electricity merchant 

should release the water from the upper reservoir, generate and sell power to market then 

result in the SOC level down to g*

t 1E +
as close as possible, however, if the stored energy is 

within the boundary set forth by the two reference points (i.e., p* g*

t 1 t t 1E E E+ +  ), then keep 

the SOC unchanged or the electricity merchant should do nothing, respectively.  

The second part of proposition 3.1 indicates that without considering both operating 

cost and efficiency loss, there exists one optimal SOC threshold function *

t 1E + depends on 

the current available energy in storage tE , the prices tP , and the market impact λ . The 

merchant should generate-and-sell the power to market and down the SOC level to *

t 1E +  or 

buy-and-pump the energy to the storage and result in the SOC up to 
*

t 1E + , respectively. 

Based on the two parts of proposition 3.1, we will get the following insight.  

Managerial Insight 3.1: For a price maker electricity merchant, the optimal trading 

policy at each decision time depends on the given power price, the available energy in the 
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storage, and the intensity of market impact. From the respective price-maker to maximize 

the profit, the SOC range is segmented into three regions by two optimal SOC reference 

points, which corresponds to one of three distinct actions.  

These results for the electricity merchants bear a critical implication. Because a 

profit-maximizing merchant only needs to compare the real-time storage SOC with the 

reference points, she can get the corresponding optimal actions. This insight helps explain 

the observation and intuition that the merchant should pump (resp. generate) at full capacity 

when the prices are low (resp. high) if the SOC constraints do not bind, respectively. 

3.4.3. Market Impact Analysis. Compared with the traditional study (i.e., without 

considering the market impact), although we still get similar insights that the feasible SOC 

can be divided into three regions or two regions, the merchant market impact affects the 

objective function. When other parameters remain the same except the market impact, 

based on the above discussion and assumption, the corresponding optimal solution is given 

in the following proposition (See Appendix A (Proof of proposition 3.2)). 

Proposition 3.2: For every stage t {1,2, ,T} , and forecasted positive price tP , 

when both price-taker and price-maker merchants have the same pumping and generating 

upper limits, the optimal value function and maximum profit have the following relations:  

   

* *

t 1(λ 0) t 1(λ 0)

T T

t t (λ 0) t t (λ 0)
π π

t 1 t 1

E[V (S(t 1) | S(t)] E[V (S(t 1) | S(t)]

ˆ ˆmax E R(q ,P ) | S(1) max E R(q ,P ) | S(1)

+ = + 

= 

= =

 +  +



    
   

 
     (3.15) 

Proposition 3.2 shows that if the electricity merchants' trading decisions are of 

sufficient magnitude to have a market impact, whose trading decisions will affect the power 

prices --- when merchants choose to buy electricity, the market load will increase, leading 
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to rising market prices; on the contrary, selling power by a price-marker merchant will 

increase the supply, resulting in a decrease in market prices--- which influence decision in 

return. Therefore, with the increases in market impact, the electricity merchant will obtain 

less profit when price-taker merchants and price-maker merchants have the same 

generating and pumping limits. 

Based on the results in proposition 3.2, we will gain the following insight.  

Managerial Insight 3.2: If the electricity merchant ignores the market impact in 

power market, she will exaggerate her expectation profit theoretically when the price-taker 

merchants and price-maker merchants have the same generating and pumping limits 

offered to ISOs.  

These findings are consistent with the reported results by Felix et al., (2012) and 

Cruise et al. (2019), which means the merchant will decrease the expected profit with the 

increasing market impact. We propose our managerial insights and optimal scheduling to 

employ dynamic programming in this Section based on the forecasted price. Next, we will 

verify the proposed analytical results through a case study. 

3.5. NUMERICAL SIMULATION 

In this Section, we first validate the proposed methods and results via two cases to 

express the analytic findings' characteristics and compared them with the MILP based on 

synthesis data in Section 3.5.1. Further, Section 3.5.2 uses real data from MISO (2020) 

electricity prices to indicate optimal insights. 
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3.5.1. Case Study and Comparison. For simplicity, we use two small cases to 

show the process detail of the proposed methods. The following cases provide the 

conditions under which we can get the corresponding optimal analytical results.  

Case 1: In this case, we assume there are three time periods ( T 3= ). At each period, 

the power price takes one of the values in set    M L H

tP p ,p ,p = 5,2,10= . For simplify, we 

assume the storage energy capacity cannot refill it fully in one time period, but fewer than 

two time periods, it holds that pE Q E+   and pE 2Q E+  . We also assume the storage 

can sell it empty in one period (i.e., gE E Q−  ). We assume the storage capacity is 10 (i.e.,

E=0,E=10 ), the generating/discharging max capacity is 12 and the pumping/charging max 

capacity is 7.  

For simplicity, let the operating cost be zero, and the pumping/charging, 

generating/discharging, self-discharging, and transmission efficiencies are one. To verify 

the effect of market impact, in this case, we assume the merchant's market impact 

parameter λ 0.05=  . On this basis, we use backward dynamic programming to get the 

following optimal policy and results:  

In Stage 3: The value function is shown as follows:  

H H

3 3 3

2

3 3 3 3 3

V [p λp (E E )βρ](E E )βρ

    [10 0.5(E E )](E E ) 10E 0.5E ,E [0,10]

= − + − −

= − + − − = − 

       (3.16) 

In Stage 2: By using Eq. (3.11), we get the following results: 

( )
3

g* p* * * L L 2

3 3 3 3 3 3 2 2
E [E,E]

E E E arg max{V p E λP [E E ] } 40 E 6


= = = − − − = +         (3.17) 

Following proposition 3.1, we will get the following optimal action at stage 2.  
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( )

( )

p2 2
2

*

3 2 2
*

2

g2 2
2

*

3 2 2

40 E 40 5E
min{ E ,Q } ,

6 6

  (buying and pumping  up to  E )  if  E [0, 40 E 6);
α

40 E 40 5E
max{ E , Q } ,

6 6

 (generating and selling down to E ) if  E [ 40 E 6,10].

+ −
− =


  +


= 
+ −

− − =

  +

       (3.18) 

Thus, the optimal value functions in stage 2 are shown as follows:  

( )* * 2

2 2 3 2 2 2V R V 320 40E E 12   if  E [0,10]= + = + −            (3.19) 

In Stage 1: By using Eq. (3.11), we get the following results: 

 ( )
2

p* g* * * M M 2

2 2 2 2 2 2 1 1
E [E,E]

E E E arg max{V p E λP [E E ] } max{0, 3E 10 4}


= = = − − − = −   (3.20) 

Following proposition 3.1, we will get the following optimal action at stage 1.  

1 1

*

1
1 1

1 1

E  (generating and seling up to 0)                                    if  E [0,10 3);

α 3E 10 3E 10
E  (generating and seling down to )  if  E [10 3,10].

4 4

− 


=  − −
− 



  (3.21) 

Thus, the optimal value functions at stage 1 are shown as follows:  

2

1 1 1

2
* *

1 11 1 2

2

1 1
1

(5E 0.25E ) 80 3                                                       if  E [0,10 3)

3E 10 3E 10V R V
320 40

4 4700 60E E
  if  E [10 3 10]

64 12

 − + 

  − − = + =  +  −     + −   + 


,

(3.22) 

We will get the following optimal results: 

1) If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , (action 1: generate and sell, *

1α 1= − ), then 2E 0= ;   

Stage 2: If 2E 0= , (action 2: buy and pump, *

2α 40 6= ), then 3 2E 40 E 6 40 6= + = ;   

Stage 3: If 
3E 40 6= , (action 3: generate and sell, *

3α 40 6= − ), then 4E 0 E= = . 
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The optimal value at stage 1 is shown as * 2

1 1 1V (5E 0.25E ) 80 3 31.4167= − + = . 

2) If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= ,(action 1: generate and sell, *

1α 3.75= − ), then 2E 1.25= ;   

Stage 2: If 
2E 1.25= , (action 2: buy and pump, *

2α 33.75 6= ), then
3E 41.25 6= ;   

Stage 3: If 
3E 41.25 6= , (action 3: generate and sell, *

3α 41.25 6= − ), then 4E 0= . 

The optimal value at stage 1 is shown as  

( ) ( )* 2 2

1 1 1 1 1V 700 60E E 64 320 40 (3E 10) 4 ((3E 10) 4) 12 45.9375= + − + +  − − − = . 

Cases 2: In this case, we will show the difference in the optimal policy and 

corresponding results between both price-taker and price-maker. Following Case 1, let the 

operating cost be one(i.e., c 1= ), the pumping and generating efficiencies be 0.9 (i.e., 

α β 0.9= = ), self-discharging and transmission efficiencies be one (i.e., ρ η 1= = ), while 

other parameters (i.e., pumping and generating upper limits) remain the same. We assume 

λ 0= , λ 0.01= , and λ 0.02= corresponding to different market impact in trading (See 

Appendix A). The optimal results are shown in Table 3.1.  

 

Table 3.1 Optimal Results with Market Impact 

 1λ=0,E 1=  
1λ=0,E 5=  

1λ=0.01,E 1=  
1λ=0.01,E 5=  

1λ=0.02,E 1=  
1λ=0.02,E 5=  

g* P*

3 3(E ,E )  (10,10)  (10,10)  (10,10)  

 
g* P*

2 2(E ,E )  

 

(3,3)  
1 10.081E 10E 81 459 1500

( ,
0.22

)
0.13048 0. 4

72

285

+ +
 10.162E

( ,0)
0.26

0 2

2

.7 +
 

    
*

3α  -10 -10 -8.5 -10 -8 -10 

*

2α  7 7 7 5.16 7 5 

*

1α  2 -2 0.5 -0.16 0 0  

*

1V  44.34 64.87 34.1 55.7 28.68 46.9 
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To verify the proposed method's effectiveness, we also get the optimal results for 

the above two cases using the traditional MILP model (Chazarra et al., 2018; Zhan et al., 

2020) and compare the optimal results that obtained through Markov DP (proposed method 

this work) and MILP (traditional method). Following the discussion and assumption in 

Section 3.3, the traditional MILP model for a price-maker (PM) merchant is shown as: 

   

pT
g g g p pt

t t t t t t t t t

t 1

g g g

t t

g

t t

p p p

t t

p

t t

p g

t t

p g

t t

p g

t 1 t t t t

q
(P λP q βρ) q βρ c(q βρ) (P λP ) q / αρ c(q / αρ)

αρ

0 q Q U

q E E

0 q Q U

s.t. q E E  

U 0,1 ,U 0,1

U +U 1

E η (E q q )

=

+

 
−   −  − +  − 

 

   

  −



  


 −

  

 



= + −



     (3.23) 

The parameters and constraints of PSH, market impact, and forecasted prices 

remain the same as cases 1-2 in Section 3.5.1. The above optimal results (unit commitment 

and economy dispatch (UCED) and optimal profit) in cases 1-2 are verified in AIMMS, a 

prescriptive analytics software. We achieve the same optimal results using both MILP 

methods and dynamic programming for the above two cases.  

When the operating cost and efficiency loss are fixed values, the optimal profit and 

policy are most strongly related to the market impact λ . We confirm these findings by 

performing additional calculations, as briefly described next. We adjust the value λ  from 

0 to 0.2 increments of 0.01 and then re-run the cases in the software of AIMMS; the results 

do not differ materially from those obtained in case 1. It is, therefore, the market impact 
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that will affect the optimal results. In the meanwhile, both cases also verify the relations of 

p* g*

t 1 t 1E E+ +  for the scenario of price maker.   

3.5.2. MISO Case Study. This Section hourly time units as the power prices series 

1 2 TP {P ,P , ,P }=  ($/MW) with 336 stages ( T 336= ) corresponding to two-week periods 

in MISO for the year 2020 as supplied. The first stage corresponding to the beginning of 

06/28/2020 (the power prices are available at https://www.misoenergy.org/). Following the 

Eq. (3.2), we know that the updated prices at which the electricity merchant buys tα  units 

power from the market to increase her level (i.e., tα 0  ) can be computed by 

t t tP λP ρα α+ , and at which the electricity merchant sells tα  units power to the market 

to get revenue (i.e., tα 0 ) can be expressed by t t tP λP ρα β+ . 

We assume the minimum and maximum storage capacity (upper reservoir) E and 

E  are 2 and 20, respectively. Here, E 0 means the merchant cannot empty the storage, 

this is realistic in the power market for a PSH or battery owner. The generating and 

pumping rate constraint pQ 2=  and gQ 3= . The unit of measurement of storage can be 

interpreted as an appropriate MWH. The units of measurement of pumping and generating 

rate can be expressed as an appropriate MW)—both the pumping and the generating 

efficiency of α β 0.9= = . The time g(E E) Q 6− =  hours units for the PSH to empty the 

upper reservoir, while 
p(E E) Q 9− =  hours units for the PSH to refill the upper reservoir 

correspond entirely approximately to the Taum Sauk pumped storage plant 

in Missouri USA. In this case, the maintenance and operating cost c 1=  ($/MW). We 

assume ρ 1=  and η 1= .  

https://www.misoenergy.org/
https://en.wikipedia.org/wiki/Missouri
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When the power prices are fixed, the electricity merchant's revenue is determined 

mostly by the operating cost and efficiency in the trading. Here, we fix both the pumping 

and generating efficiencies, the operating cost, and focus on the market impact. We also 

assume the relationship between price and demand throughout the example can be obtained 

at any point in the time as the demand was varied. Usually, two weeks is an optimization 

cycle for the Taum Sauk in the power market. The optimal policy obtained from Eq. (3.5) 

is shown in Figures 3.1 and 3.2 with different initial energy in the storage, respectively. 

 

 

Figure 3.1 Optimal Storage/SOC Change Curve with Market Impact When E1=2MWH 

 

 

Figure 3.2 Optimal Storage/SOC Change Curve with Market Impact When E1=10MWH 
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Figures 3.1-3.2 lead us to the following observations and conclusions. When the 

market impact is small, the merchant will adopt a similar strategy as the traditional policy 

(i.e., price-taker). We can also find the daily cycle of SOC according to the pattern of price 

every day. The merchant should buy power as much as possible at lower prices at midnight 

and sell as much as possible during the day at higher prices. However, when the market 

impact is large enough, we see that the navy-blue curve ( λ 2= ) and green curve ( λ 3= ) 

change very smoothly. To maximize profit, the electricity merchant needs to reduce the 

energy transition quantity (i.e., amount of energy that buys from the market or sells to the 

market) each period to lower the negative effect of market impact in trading. With the 

increase of market impact, the cost of buying will increase; however, the revenue will 

decrease. To reduce the negative effect of the market impact in trading, the electricity 

merchant should choose by lowering the power transition quantity at each period. 

Therefore, a profit-maximizing electricity merchant must perfectly balance the trade-off 

between the intensity of market impact and the power transition quantity. We will show 

the relations between the expectation profit the market impact intuitively in Figure 3.3.  

 

 

Figure 3.3 The Relations between Optimal Expectation Profit and Market Impact 



51 

 

 

Figure 3.3 shows that comparing with the traditional study (i.e., price-taker 

merchant), if both price taker and price maker merchants hold the same pumping and 

generating upper limits if the market impact is small or the electricity merchant's decisions 

have a weak market impact on prices, the merchant will get higher profit during trading. In 

this case, with the decrease in market impact, the cost will go down, and the revenue will 

rise, which benefits the merchant's profit. As the market impact increases, the cost of 

buying will increase; however, the revenue will decrease, which results in a lower profit. 

The profit-maximizing merchant should reduce her market impact by balancing the 

intensity of market impact and the power transition quantity. In practice, the ratio of energy 

storage max capacity and the demand in the power market may be small, which means the 

market impact is low in trading. So, the merchant will adopt a similar optimal policy as the 

price taker; however, she may obtain less profit than theoretically maximum profit.  

We also re-run the cases in the software of AIMMS by using one day period in 

MISO for 06/28/2020 as supplied. Once again, our previous conclusions are supported 

mainly. Therefore, it is reasonable to conclude that our results (i) are robust and 

representative of the broader set of parameters that we have tested, and (ii) confirm our 

analytical results and insights. We can draw the numerical simulations are in line with the 

conclusions made in Section 3.4 from our examination of Figures 3.1–3.3. 

From the price-maker situation, results are novel and insightful—giving the 

electricity merchant an additional set of considerations when her trading decisions impact 

the market prices. 
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3.6. SECTION SUMMARY AND ANALYSIS 

Although the electricity trading policy has been extensively studied in the 

wholesale market and inventory management literature, optimal policy research from the 

respective price-maker whose trading decisions impact market prices has only started to 

gain attention recently. Our study is the first to model the problem as a Markov DP and 

derive the optimal policy structure for the slow storage to analyze electricity merchant 

management of managing a storage facility used for arbitrage and whose activities are 

sufficiently significant to have a market impact. We show that this optimal policy structure 

generalizes a classic result of Secomandi (2010) and differs significantly from typical 

threshold policies known to be optimal in the literature without considering the market 

impact. A focused yet thorough presentation required that we study only the merchant's 

objectives of maximizing profit. 

For a price maker electricity merchant, in the presence of efficiency loss or 

operating cost, the optimal trading policy corresponding to the reference points/ functions 

at each decision time not only depend on the current energy availability in the storage and 

the given prices but also rely on its market price impact. The feasible SOC can be 

segmented into three regions by two optimal reference points/functions: buying-and-

pumping, generating-and-selling, and do nothing (or idle/offline). However, suppose 

efficiency loss and operating costs are not considered. In that case, the feasible SOC can 

only be divided into two regions by one unique optimal reference point/function: buying-

and-pumping and generating-and-selling. We obtain similar results and insights for 

electricity merchants after additionally incorporating the value of water/energy at the end 

of the optimization horizon into our notion of reward functions and value functions. 
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We identify the merchant's market impact as a critical driver of optimal policy 

design. If the electricity merchant's market impact is small on the prices, we will get similar 

results as the scenario price-taker. However, when both price-takers and price-makers are 

under the same generating and pumping limits offered to ISO, the most surprising finding 

is that market impact may lead to profit-reducing by increasing the cost of buying and 

decreasing sales revenue. If, besides, the market impact of electricity is high, then revenue 

can only partially offset the increased cost. We find that the electricity merchant should 

lower the adverse effects of the market impact as much as possible by reducing the power 

transition quantity at each period to maximize the profit. In summary, the scenario of price 

maker electricity merchants requires different trading strategies than a price taker. 

 

  



54 

 

 

4. ECONOMIC DISPATCH FOR ELECTRICITY MERCHANT WITH ENERGY 

STORAGE AND WIND PLANT: SOC BASED DECISION MAKING 

CONSIDERING MARKET IMPACT AND UNCERTAINTIES  

4.1. OVERRIEW AND RESEARCH QUESTIONS  

      In the existing literature, merchants' trading actions are usually assumed not to 

affect market prices; however, a large-scale energy storage merchant’s actions can affect 

market prices. We approximate the electricity price by a linear function of the quantity of 

power traded by the merchant in the reward function to achieve decision-making 

incorporating the market impact and utilize the dynamic programming approach to analyze 

merchants' optimal multi-period decision-making incorporating market impact, uncertain 

wind generation, and energy storage constraints.This study (Liu et al., 2022b) was 

motivated to concentrate on the optimal energy operational decisions scheduling of a 

merchant who has a co-located storage system and a renewable power plant. In such 

circumstances, the merchant operates the large-scale energy storage facility to control 

electricity operation in the wholesale electricity market and incorporate the market impact, 

the forecasted uncertain wind-generated power, the constraints of energy storage (i.e., PSH 

capacity, pumping/generating limits, and efficiencies), and the residual value of water in 

the storage when modeling. This work’s analyses are intended to address the following two 

research questions: (1) How do electricity merchants with co-optimized energy storage and 

wind farm benefit from considering the market impact of buying and selling power and the 

uncertain wind generation? (2) What is the difference between the scheduling strategy 

considering market impact and the traditional scheduling strategy ignoring market impact?  
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Toward that end, this study relaxes the price-taker assumption and assumes that the 

impact of the merchant’s buy/sell decisions on the market price is approximately linear in 

the amount of power of buy/sell (Cruise et al., 2019; Liu et al, 2021a; Sioshansi, 2010, 

2014). We formulate this problem as a Markov decision process and explore the electricity 

merchant’s optimal joint operational trading strategies by utilizing the dynamic 

programming approach to maximize profit. To solve this problem and achieve the closed-

form analytical results to support multi-period decision-making, this work first split the 

original problem into three sub-optimization problems corresponding to three available 

activities of the electricity merchant at each period. Then, the optimal solution for each 

sub-optimization problem will be addressed based on the Bellman equation. Finally, we 

combine them and achieve the global conclusions of the original problem to obtain the 

optimal decision rules in the entire optimization horizon. This is the first work to manage 

the co-optimized economic dispatch scheduling of the energy storage and wind plants issue, 

considering the market impact of the merchant's actions and uncertainty of forecasted wind 

generation through dynamic programming.  

This work is organized into six Sections. First, we summarize main contribution in 

Section 4.2. Section 4.3 models an electricity merchant who has co-located energy storage 

and wind plants; then, we compare our conclusions with the existing literature in which 

merchants’ market impact is not considered. Section 4.4 demonstrates the proposed results 

through the synthesis data case study and real data case study of Midcontinent Independent 

System Operator (MISO), US. Section 4.5 extends our research by examining cases in 

which market impact is related to generating/pumping limits that offered to ISOs. Finally, 

Section 4.6 summarizes our study and points out the future research directions. 
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4.2. THE PRINCIPAL CONTRIBUTIONS  

The major contributions of this study are as follows: First, this research overcomes 

the challenges in achieving analytical results when considering market impact because it 

will change the traditional linear reward functions that overlook the market impact to 

nonlinear ones. For a storage-and-renewable energy source electricity merchant, we 

identify analytically three SOC reference points that rely on the currently available energy 

inventory in the storage, the forecasted prices, the intensity of the market impact of energy 

storage in trading, and the predicted available renewable energy source. The storage 

feasible SOC range (i.e., the energy storage capacity space) will be split into four possible 

sub-ranges by three SOC reference points corresponding to the previously listed four 

actions. The merchant can choose the optimal action simply by comparing the current 

energy inventory in the energy storage with the three optimal SOC reference points. Then, 

the electricity merchant's unique optimal decisions can be achieved through the sub-range 

within the current energy inventory level falls. 

Second, in contrast to the results from existing studies (i.e., those based on price-

taker analyses or ignoring the market impact), our results show that market impact and 

operating cost can raise the cost of pumping/buying and lower the revenue from 

generating/selling in each period. As a result, a merchant that ignores her impact on 

electricity prices will overestimate her expected profit when offering the same 

generating/discharging and pumping/charging maximum limits of the PSH in each period 

to ISOs as the price-taker merchant. To decrease the negative effect of the market impact 

of the merchant in operational decisions, the merchant needs to reduce her energy trading 

amount at each decision period. Our results find that the market impact influence the 
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merchant’s optimal economic dispatch volume by changing the value of optimal SOC 

reference point. Although the residual value of energy in the storage does not affect the 

traditional scheduling policy, it influences the value function to affect the SOC and 

indirectly changes the scheduling quantity of power. Withholding the offered 

generating/pumping capacity may be needed to offset the market impact. This paper also 

confirms the corresponding boundary that wind generation benefits merchants' profit if the 

wind generation cost is low. 

Finally, we extend our research to consider how expected profits are affected by 

the relation between the intensity of market impact and generating/discharging and 

pumping/charging maximum limits of the PSH offered to ISOs. Our findings suggest that 

the profit-maximizing merchant should try to make a trade-off between increasing the 

power transaction quantity directly and limiting the market impact's detrimental effects by 

reducing the transaction quantity. 

4.3. MODELLING AND OPTIMIZATION  

In this Section, we first model the reward and objective functions for electricity 

merchants with co-located energy storage and renewable power plants. Then, we study the 

merchant’s optimal joint profit-maximizing strategies and consider the market impact as a 

function of the forecast price.  

4.3.1. Model Setup. Here, we focus on a merchant with energy storage (here, we 

use PSH to represent large-scale storage in this work) and a renewable power plant (for 

simplicity, henceforth, we use wind plants to refer to renewable power plants), both of 

which are co-located and connected to the electricity markets via transmission lines. The 
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merchant adopts a co-optimized storage operation strategy and uses her energy storage 

plant to manage electricity. In this work, “we do not study bidding in a forward market, 

and we assume that any power offered to the wholesale electricity markets is accepted” 

(Liu et al., 2022; Sioshansi et al., 2009, Walawalkar et al., 2007; Zhou et al., (2016; 2019).  

In this work, we consider discrete time and that the merchant periodically performs 

operational actions during a finite optimization decision horizon, t {1,2, ,T}  , and 

assume that the capacity of storage is limited. The PSH has maximum storage capacity S

(i.e., the total energy/water that could be stored in the upper reservoir) and minimum energy 

inventory S , where S S 0  . Following the previous (Harsha and Dahleh, 2015; Jiang 

and Powell, 2015a, 2015 b; Moarefdoost and Snyder, 2015; Zhou et al., 2016, 2019), we 

focus on the optimal operating (e.g., charging/pumping, and discharging/generating) policy 

for a given storage capacity. However, how to optimize the storage capacity, such an 

approach would be appropriate for solving a different type of problem, thus beyond the 

scope of this work. The PSH also has generating and pumping limits. Let pQ  and pQ

represent (respectively) the maximum and minimum limits of pumping that can be stored 

into the storage in each period, and let gQ  and gQ  denote (respectively) the upper and 

lower limits of released energy from the storage in each period. To ensure that the model 

will remain analytically tractable, this work employs the conventional assumption (as in 

Kim and Powell, 2011; Liu et al., 2022a, 2022b; Zhou et al., 2016, 2019) that g pQ Q 0= =

to build the continuous reward functions. We use tw  to represent the available wind 

generation of the wind plant in period t (in energy units/period). The vector 

( )1 2 TW w ,w , ,w= represents the sequential levels of available forecasted wind generation. 
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Following the previous work (Jiang and Powell, 2015a; Kim and Powell, 2011; Qi et al., 

2015), wind generation is constrained by the maximum generation capacity W of the wind 

plants to show the uncertainty in modeling. Here, the 
tw [0, W]  follows a uniform 

distribution. In reality, the utility would require the transmission capacity to be sufficiently 

large for the wind plant, so we do not consider the transmission capacity. 

Our research involves three types of efficiency with PSH. The first type of 

efficiency is a portion ( tφ 0,1 , a time-independent efficiency of stored energy that 

dissipates in one optimization period due to the evaporation, spill rate, and leakage of the 

PSH. The second type efficiency is denoted by θ  and ξ , which represent the efficiency 

of (respectively) the pumping and generating of the PSH; here, ( θ,ξ 0,1 . The other is 

( σ 0,1 , which represents the efficiency of transmission line, that is, the proportion of 

electricity that flows out of the transmission line to that which flows into this transmission 

line. Transmission losses will be happened in two directions of the line (Liu et al., 2022b; 

Zhou et al., 2019). It follows that the quantities 
gξσ Q and 

pQ θσ  are, respectively, the 

gross generating power capacity and the net pumping power capacity.  

We suppose that the merchant’s energy storage is large enough, and her generating 

and pumping decisions have a market impact on electricity prices. As noted previously, 

there are four possible actions: storing all renewable energy generation and also purchasing 

electricity to store; storing partial wind generation and selling the rest of renewable energy 

generation; remaining idle/offline, and generating PSH storage to sell and also selling all 

wind electricity to the electricity market. Following previous work (e.g., Cruise et al., 2019; 

Liu et al., 2021a; Sioshansi, 2010, 2014), this work approximates market impact via a linear 
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function of the quantity of power traded by the merchant. Therefore, we get the following 

updated prices: 

 

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

p p p

t t t t t t t t t

p p p

t t t t t t t t t t

g g g

t t t t t t t t

P λP q θ w / σ P 1 λ q θ w / σ  (q θw )

P̂ = P λP w q θ σ P 1 λ w q θ σ     (0 q θw )

P λP (q ξ w )σ P 1 λ(q ξ w )σ         (q 0) 

 + − = + − 



− − = − −  

 − + = − + 


   (4.1) 

Here, 
tP̂   is the updated price that results from storing all renewable power 

generation and purchasing power from the market in energy units of ( )p

t tq θ w / σ− , storing 

partial wind-generated power and selling the rest of to the market in units of ( )p

t tw q θ σ− , 

and generating PSH and selling all wind source in units of g

t t(q ξ w )σ+ . Here, the parameter 

λ 0  reflects the market impact factor of the electricity merchant on electricity prices in 

trading decisions. The special case of λ 0=   represents the scenario of a price taker 

merchant for the traditional study. In the electricity market, time-coupling constraints 

require that the merchant should decide whether to buy or sell electricity in quantities that 

reflect the optimal policy based on forecasted prices. The electricity price in period t is 

denoted by tP (dollars per unit energy). Both buying and selling prices at time t are shown 

by tP   conveniently for a price taker. The sequential levels of the price by a vector of 

( )1 2 TP= P ,P , ,P .The tP  is the forecast electricity price, and tλP  is a measurement of the 

market impact of the energy storage on the price at decision time.  

From ISO perspective, power transmission network must be considered explicitly 

in market clearing. From merchant perspective, power transmission network can be 

considered in two different approaches, explicitly (through building a quasi-ISO clearing 

javascript:;
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model where power transmission network is often treated as constraints of a lower-level 

optimization problem) and implicitly (through price forecasting model where historical 

congestion of power transmission network can be included as an input). Due to concerns 

with the explicit approach (such as data and model availability, uncertainty and 

computational challenges), this work uses the latter approach, i.e., implicit consideration 

of power transmission network which is common in merchant strategy analysis (Li et al. 

2007; Radovanovic et al., 2019; Wang et al. 2017).To maximize the profit of the electricity 

merchant and get the optimal economics dispatch policy of the energy storage, following 

the previous study (Liu et al., 2021a; Liu et al, 2022a, 2022b; Zhou et al., 2016, 2019), we 

assume for the merchant that all forecasted prices are known in advance.  

By incorporating the market impact in operational decisions and analyzing the co-

optimization policy of a merchant who has both co-located energy storage and wind plants, 

this method produces the model novel and practical and generalizes the current problem 

(Liu et al., 2021a; Zhou et al., 2019), as it makes the first contribution of this work. Thus, 

the reward function g p

t t t tR(q ,q ,w ,P )   from making the decision g p

t t(q ,q )  , which 

corresponds to the decision time t, the forecast electricity prices tP , and the forecasted wind 

power generation tw , are, when considering the market impact, defined as follows: 

( )( ) ( )

( )( ) ( )

( )

p p p p p

t t t t t t w t t t

g p p p p p p

t t t t t t t t t t w t t t

g g g g g

t t t t t t w t t

P 1 λ q θ w / σ q θ w / σ c q θσ c w  (q θw )

R(q ,q ,w ,P ) P 1 λ w q θ σ w q θ σ c q θσ c w  (0 q θw )

P 1 λ(q ξ w )σ (q ξ w ) σ c q ξσ c w  (q 0) 

− + −  − − − 



= − −  − − −  

 − +  +  − − 


 (4.2) 

The first line in Eq. (4.2) indicates the costs of buying power of electricity 

merchants from the market. For example, tw represents available wind generation, 
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p

t t(q θ w ) / σ− indicates the units that the merchant purchases from the market to pump at 

time t, and 
p

tq  is the increase in storage inventory. This study lets 
gc  (resp.

pc ) (dollar-

unit energy) denote the generating (resp. pumping) operating cost for PSH or the 

discharging (resp. charging) operating cost of the battery (Huang et al., 2018, 2019; Xu et 

al., 2017). Following Liu et al. (2022b) and Xu et al. (2017), we assume that the generating 

and pumping operating costs of energy storage are a linear function. The term p p

tc q θσ  is 

the pumping operating cost, and w tc w is the wind power plant’s cost of generation. The 

second line gives the merchant’s rewards from storing part of her wind generation 
p

tq  

while selling the remaining units 
p

t t(w q θ)σ−  to the market. In the third line, g

t t(q ξ w )+  

represents the electricity merchants generated by the PSH and all available wind sources 

that are sold to the market. The term g g

tc q ξσ  denotes the generating operating cost of PSH.  

This work uses tSOC  to denote as the current available energy inventory in the 

upper reservoir of PSH at the beginning of decision time t. The sequential SOC inventories 

are represented by ( )1 TŜ SOC , ,SOC=  , where 
tSOC [S,  S]  and  t 1,2, ,T   . 

Feasible actions set based on 
t

ˆSOC S  is defined as follows:  

g p p p p p

t t t t t t

t
g g g g

t t t t

(q ,q ) : 0 q Q U ,  q S SOC ,
Action(SOC ) :

0 q Q U ,  q SOC S

      − 
=  
     − 

.          (4.3) 

This expression gives the upper limit of the quantity of energy that can be 

charged/pumped and discharged/generated at each optimization period. The first and 

second constraints define, respectively, the maximum limit of pumping and the space 

capacity of the upper reservoir. The third and the fourth constraints represent the maximum 
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limit of generating and available energy in the reservoir. Both binary variables p

tU and g

tU

denote the unit commitment of pumping and generating in decision period [t, t+1)

(respectively). Thus, we have 
p g

t tU U 1+   ; here,  g

tU 0,1  and  p

tU 0,1  , meaning the 

PSH cannot generate and pump simultaneously. If the PSH is idle, then p g

t tU U 0+ = . 

At decision time  t 1, 2, ,T , the merchant will know the storage inventory tSOC , 

the wind generation tw , the price tP , and the market impact λ . The decision for each time 

t is denoted by 
g

tq  or 
p

tq , which represents the SOC change from time t to time t+1 prior 

to considering, respectively, the generating loss and the pumping loss. The “storage self-

loss” occurs at the end of decision time t, so the energy level at the beginning of decision 

time t+1 is equal to p g

t t t tφ (SOC q q )+ − . Hence, the following equation that summarizes the 

state transition from decision time t to decision time t+1 for the PSH storage is accurate: 

 p g

t 1 t t t tSOC φ (SOC q q )+ = + −                        (4.4) 

Following Liu et al. (2022a), Secomandi (2010), and Zhou et al. (2019), this study 

also adopts a single decision (action) variable, and lets tq   (i.e., p g

t t tq q q= −  ) at as the 

decision variable of electricity merchant at each decision time  t 1, 2, ,T to substitute 

for the original two decision (action) variables g

tq  and
p

tq  , which represent the change of 

energy inventory or of SOC between two optimization periods t and t+1 (i.e., prior to 

considering accounting for the efficiency loss). Here, tq 0  denotes the SOC increase 

due to the pumping action, tq 0 means the SOC decrease because of generating, and tq =0  

indicates that the SOC does not change or that the storage remains idle or is offline. The 

state decision variables at each stage t are 
tSOC , tw , and tP . Thus, the decision state at 



64 

 

 

stage t can be indicated by 
t t t tS(t) S (SOC ,w ,P )=  . The merchant aims to achieve the 

optimal decision policy π to maximize her total expected reward functions overall feasible 

policies. Her objective function is 

  
T T

g p

t t t t t t t
π π

t 1 t 1

max E R(q ,q ,w ,P )| S(1) = max E R(q ,w ,P )| S(1)
= =

         (4.5) 

subject to the capacity constraints g p

t t tmax{ Q ,S SOC } q min{Q ,S SOC }− −   −  and to the 

storage energy balance constraints t 1 t t tSOC φ (SOC q )+ = + , as well as tw [0,W] , where 

 t 1, 2, ,T . Both 1E , 1P , and 1w are the given initial level of the storage and the price in 

advance. Because the optimization horizon is finite, this work ignores the discount factor 

in this work. This work uses E to denote the expectations concerning t t tSOC , w ,P . In our 

notation,
1SOC , 1w , and 1P  are, respectively, the given initial energy storage inventory, the 

forecasted wind generation, and advanced electricity price.  

      Let tV (S(t)) represent the value function of electricity merchant at time t and state 

t t t t
ˆS(t) S (SOC , w ,P ) S W P=     .This function of tV (S(t))   satisfies the Bellman 

equation. Thus, the merchant’s value function can be created as 

 ( )
t

t t t t 1
Action(SOC )

V(S(t)) max [R(q ,w ,P ) E V (S(t 1) | S(t) ]+= + +  (4.6) 

Most on this topic expresses the value of water (VOW) at the last optimization 

period (residual value of water in the storage) as T 1V (S(T 1)) 0+ + = (e.g., Secomandi 2010; 

Zhou et al., 2019). In Eq. (4.6), however, T 1 T 1 T 1V (S(T 1)) VOW SOC+ + ++ =  . Here, T 1VOW +  

denotes the VOW in the upper reservoir of PSH at the terminal period (Liu et al. 2022b, 
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Kim and Powell 2011), and T 1SOC + denotes the energy inventory level at the beginning of 

decision time T+1, which also represents the SOC at the end of decision time T. 

4.3.2. Model Optimization and Analysis. To obtain the optimal co-optimized 

decision rules of the electricity merchant, this study first splits the optimization problem in 

Eq. (4.6) into three sub-problems, as in Eq. (4.7), corresponding to the three different 

actions described in Eq. (4.2) since only one of these actions is allowed at the same period. 

Then, we obtain the optimal result to each of these three sub-problems. The corresponding 

value functions of the electricity merchant on three available actions are shown as follows:   

( )

( )

( )

p
pt t t

t t t w t t 1 t t

p
pt t t

t t t w t t 1 t t

t t t t t

q q q
P 1 λ w / σ w / σ c c w +E[V S(t 1) | S(t) ] (q θw ) 

θ θ θσ

q q q
V(S(t))= P 1 λ w σ w σ c c w E[V S(t 1) | S(t) ] (0 q θw )

θ θ θσ

P 1 λ((q ξ w )σ (q ξ w )

+

+

    
− + −  − − − +     

    

    
− + −  −  − − + +      

    

− + −  −  ( )g

t w t t 1 tσ c q ξσ c w E[V S(t 1) | S(t) ]  (q 0)+










+ − + + 



 (4.7) 

Since there is t t 1 t tq SOC φ SOC+= − , to simplify, we use t 1SOC + substitute tq as the 

decision variable to gain the analytical results, then maximizing Eq. (4.8) enables us to 

obtain the optimal results by removing the values in the observed current state S(t) . The 

optimal unique action of the electricity merchant at each period will be achieved by 

comparing the optimal SOC in the next period (i.e., t 1SOC + ) and the current available SOC 

(i.e., tSOC ) in the storage. Then, the Bellman equation (Liu et al., 2021a; Liu et al., 2022b; 

Zhou et al., 2019) can be used to derive the following results: 
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+

+

+

+ +
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 
+
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


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  

  
  

  + −   
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  + − + 
 
 

− 
 






 (4.8) 

This study next investigates the optimal results based on these expressions. Finally, 

we get the closed-form optimal co-optimization policy structure of merchant in Eq. (4.9) 

by following previous research on this topic (i.e., Kim and Powell, 2011; Liu et al., 2022b; 

Zhou et al., 2019). When incorporating the market impact into the reward function, for the 

forecast price of electricity Pt , if tP  , then, at each decision state t, the merchant’s value 

function tV (S(t))   and expected total reward ( )t 1E[V S(t 1) | S(t) ]+ +   are concave in 

tSOC [S,  S]   for each observed state 
t t t tS(t) S (SOC ,w ,P )=  . The SOC optimal 

analytical solution is given by the following lemma (see Appendix B). 

LEMMA 4.1. When considering an electricity merchant’s market impact in trading 

decisions, let (1)*

t 1SOC + , (2)*

t 1SOC + , and (3)*

t 1SOC +  be the closed-form optimal SOC results (e.g., 

SOC reference points in next period) in Eq.(4.9). Then, there are 
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θ σ φ
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λσ P SOC
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θ φ
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(2λP σ
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+

+

+
+

+
 

+

+
+

 

 
+ − − 

 
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+ − 
 
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t 1

p

t 1

t
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t 1 t t

t
(3)*

t 1
S SOC S

2 g t 1
t t t

t

SOC
)

θσ φ

SOC
E[V S(t 1) | S(t) ] λP ξ σ ( SOC )

φ
SOC arg max

SOC
+(2λP w ξσ P ξσ c ξσ)

φ

+

+

+
+

+
 

+










 
 
 

  
  
  

 


 
+ − − 

  =  
  − +   

       (4.9) 

Based on the scenario of an electricity merchant who has co-located PSH and a 

wind power plant, this lemma has a critical implication. Because the merchant can choose 

the optimal action simply by comparing the current SOC level in the storage with the above 

three optimal SOC reference points separately. It now follows from the preceding 

discussion that our first proposition gives the corresponding optimal results. 

Proposition 4.1: For positive forecast electricity prices tP̂ P  (negative forecast 

electricity prices) at each stage t {1,2,3, ,T} : if (1,2) (2,3)

t t0 λ min{λ , λ }  , then there 

exist unique optimal storage inventories (1)* (2)* (3)*

t 1 t 1 t 1S SOC SOC SOC S+ + +    2 (resp.,  

(1)* (2)* (3)*

t 1 t 1 t 1S SOC SOC SOC S+ + +    ) that depend on the state S(t) , where,  

 

2We discuss large-scale storage with 1–2 gigawatts (GW) capacities. Considering a sizeable competitive 

wholesale electricity market (such as MISO, which has approximately 50 (off-peak period)–80 GW (on-peak 

period) demand, roughly 100 GW online capacity) and the limited presence of locational market electricity 

because of transmission capacity constrained and electricity market monitoring, we only address the case of 

a relatively small market impact.  
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(1,2) t

t t t

t

2 p
(2 3) g 2 2t t

t t t t2

t

2P 1 σ S
λ P SOC w θ ;  

θ σ φ

Pσ c wS 1
λ (P ξσ c ξσ) 2σ P (SOC )( ξ ) ( w ξ)

θσ φ θ θ

   +
= + −   

  

   +

= − − − − + −   
   

，

   (4.10) 

Therefore, an optimal economic dispatch decision in each state 

t t t t
ˆS(t) S (SOC ,w ,P ) S W P=     can be specified as described in the following two cases. 

CASE 1: If 
p(1)*

t t 1θw min{SOC ,Q }+   (less forecasted available wind-generated 

power), then the feasible SOC range (i.e., the from the lower boundary to the upper 

boundary of energy storage capacity) can be split into four sub-ranges (i.e., regions or 

areas): storing all wind power generation and purchasing electricity to store, storing partial 

wind power generation and selling the rest of it to market, remaining idle or do nothing, and 

generating PSH and also selling all wind power to the electricity market. 

p(1)* (1)*

t 1 t t t 1 t

(1)*

t 1

(2)* (1)* (2)*

t 1 t t t t 1 t t 1

*

t t

min{SOC SOC ,Q },  SOC [S,SOC θw ],

(store renewable and buy electricity,  up to SOC );

min{SOC SOC ,θw },SOC (SOC θw ,SOC ],

q (S ) (store renewable without buyi

+ +

+

+ + +

−  −

−  −

= (2)*

t 1

(2)* (3)*

t t 1 t 1

g(3)* (3)*

t 1 t t t 1

(3)*

t 1

ng up to SOC );

0,  SOC (SOC ,SOC ],  (keep SOC unchanged);  

max{SOC SOC , Q },SOC (SOC ,S],

(generate and sell renewable down to SOC ).

+

+ +

+ +

+










 



− − 



       (4.11) 

CASE 2: If 
p(1)*

t t 1θw min{SOC ,Q }+  (more available wind-generated power), then 

the feasible SOC range of the storage can be segmented into three possible sub-ranges: 

storing partial wind power generation and selling the rest of it to market, generating PSH 

and also selling all wind power generation to the electricity market, and idle: 
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p(2)* (2)*

t 1 t t t 1

(2)*

t 1

* (2)* (3)*

t t t t 1 t 1

g(3)* (3

t 1 t t t 1

min{SOC SOC ,Q },SOC [S,  SOC ],

 (store renewable without purchasing, up to SOC );

q (S ) 0,SOC [SOC ,SOC ] (keep SOC unchanged);

max{SOC SOC , Q },SOC (SOC

+ +

+

+ +

+ +

− 

= 

− −  )*

(3)*

t 1

,  S],

 (generate and sell renewable down to SOC ).+













         (4.12) 

Case 1 of Proposition 4.1 shows analytically that, for an electricity merchant who 

has both co-located PSH and wind plant and pursues to maximize her expected profit, if 

there is less available forecasted wind power, the SOC of the storage will be segmented 

into four possible sub-ranges by three analytical SOC reference points ( (1)* (2)*

t 1 t 1SOC ,SOC ,+ +

and (3)*

t 1SOC +  , which depend on the price forecast tP  , the energy in storage tSOC  , the 

forecast wing generation tw , and the market impact λ ) that correspond to four possible 

different operational decisions: (1) storing all renewable generation and also purchasing 

electricity to store, (2) storing partial wind power and selling the rest of it, (3) remaining 

idle (i.e., offline/do nothing), and (4) releasing PSH and also selling all wind power. If the 

current available energy in the storage is more than reference point (3)*

t 1SOC + , the merchant 

will release water from the PSH to generate electricity and also sell all wind-generated 

electricity to the market, then reduce the SOC level down to (3)*

t 1SOC + . If there is less 

available energy in the PSH than (1)*

t 1 tSOC θw+ −  and less available wind power (i.e., 

p(1)*

t t 1θw min{SOC ,Q }+ ), the merchant should (1) store all the wind power and buy 

electricity and then (2) increase the SOC inventory up to (1)*

t 1SOC + . 
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According to Case 2 of the proposition, if there is more available wind generation 

(i.e., 
p(1)*

t t 1θw min{SOC ,Q }+ ), then the feasible storage inventory range will be divided 

into three sub-ranges by two analytical SOC reference points ( (2)*

t 1SOC +  and (3)*

t 1SOC +  ) that 

correspond to operational decisions 2–4. In this case, decision one will not happen since 

the merchant does not need to purchase power from the market to store when there is more 

available wind power generation. If there is less water in the PSH than (2)*

t 1SOC + , the 

merchant does not need to buy electricity to increase the SOC level but she can store 

partially wind power and increase the SOC so that it is to (2)*

t 1SOC + , and then sell the rest of 

her wind generation. Likewise, if the current available energy inventory in the storage falls 

within the boundaries established by two analytical reference points (i.e.,

(2)* (3)*

t 1 t t 1SOC SOC SOC+ +  ), then the merchant should do nothing for the PSH storage; and 

if there is more water in the upper reservoir than the SOC reference point (3)*

t 1SOC + , then the 

profit-maximizing merchant should (4) release energy from the PSH for generating and 

also sell all wind power, thereby decreasing the current inventory to (3)*

t 1SOC + . 

Further, this study has three special degenerated cases with fewer thresholds, as seen below. 

Special Case A: If σ 1= (i.e., ignoring the efficiency loss of transmission line), then 

our results have (1)* (2)*

t 1 t 1SOC SOC+ +=  . This means that storing wind power generation or 

purchasing electricity from the power market to store will yield the merchant the same 

profit, that is, without considering the energy loss from the power market to storage via the 

transmission line, as when the merchant purchases electricity to store. Considering the 

efficiency loss of transmission line, storing merchant’s own generated renewable source to 

storage is better than purchasing power from the market.   
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Special Case B: If θ ξ 1= =  (i.e., ignoring the pumping and generating efficiency 

loss) and if 
p gc c 0= =  (i.e., ignoring the generating and pumping operating costs), then

(2)* (3)*

t 1 t 1SOC SOC+ += . Moreover, the SOC range can be split into only three (or two) subranges 

that depend on the forecasted wind generation. In this case, however, no optimal strategy 

will include the “idle” state. 

Special Case C: If tw =0  (i.e., the available forecasted wind generation equals 

zero or no wind source), in this case, there will be no storing or selling of wind generation, 

and our study has only (1)*

t 1SOC +  and (3)*

t 1SOC +  as optimal reference points (See Appendix B). 

Then this work obtains the optimal policy for the previous study for a merchant with PSH 

or storage only (Liu and Bo et al., 2021). In our results, the storage state of charge (SOC) 

is segmented into four possible subranges by three analytical SOC reference points that 

correspond to four different decisions for the co-optimization merchant, compared to the 

three decisions in the previous study (Liu et al., 2021a). Obviously, the scenario that 

electricity merchant only has storage is a particular case for the merchant has storage and 

wind plant. Proposition 4.1 yields our first insight and application, as follows. 

Managemental Insight 4.1: For an electricity merchant with co-located energy 

storage and a wind plant, the feasible SOC range of the energy storage is segmented into 

different sub-ranges by the analytical SOC reference points, which depends mainly upon 

the current SOC, forecasted electricity price, and available forecasted wind source, and 

the intensity of market impact. As a result, the merchant will achieve the corresponding 

optimal operational decision for each subrange. 
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To maximize the profit, and if less available renewable source, the SOC of storage 

will be split into four possible sub-ranges by three analytical reference points

(1)* (2)*

t 1 t 1SOC ,SOC+ + and (3)*

t 1SOC + , which correspond to four possible operational actions: 

storing all wind-generated power and also purchasing electricity to store, storing and 

selling partial renewable generation, do nothing/idle/offline, and generating PSH to sell 

and also selling all wind power. By comparing the current SOC level in the storage with 

the obtained SOC reference points for next period, the merchant can obtain the related 

optimal operational decisions. However, if more available forecasted wind generation, the 

storage SOC will be segmented into three sub-ranges by two analytical reference points

(2)*

t 1SOC + and (3)*

t 1SOC + , which correspond to three possible different operational decisions: 

storing and selling partial wind electricity, doing nothing (idle/offline), and generating 

electricity by PSH to sell and also selling all wind generation. Obviously, the optimal SOC 

reference points will be adjusted based on the intensity of market impact to support 

decision-making. 

4.3.3. Market Impact and Wind Generation Analysis. This research studies the 

optimal co-optimized scheduling strategy of a merchant with large-scale energy storage 

and wind plant, whose trading decisions (i.e., buying or selling) are able to affect electricity 

prices. In traditional treatments, the electricity merchant is a price taker (Kim and Powell, 

2011; Liu et al., 2022b; Zhou et al., 2019) or only addressed the base problem without 

considering the wind plant (Cruise et al., 2019; Liu et al., 2021a; Secomandi, 2010).  

In light of our assumptions and the preceding analysis, the optimal results are 

described in the next proposition.  
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       Proposition 4.2: (a) If the electricity merchant has large-scale energy storage and 

wind plant, optimal expected profit is decreasing in the market impact and operating cost 

of energy storage.  

(b) For the electricity merchant with energy storage and wind plant, optimal 

expected profit increases with the forecasted wind generation  tw [0,W], t 1,2, ,T  = . 

(c) Suppose the *(M)

t  (λ 0)q   (resp. *(M)

t  (λ 0)q = ) represents the optimal actions of electricity 

merchants accounting for the market impact (resp. ignoring the market impact) on power 

prices, we can draw the following intuitive conclusions for the optimal expected profit of 

the merchant: 

T T
*(M) *(M)

t (λ=0) t t (λ 0) t (λ 0) t t (λ 0)

t 1 t 1

E R(q ,w ,P ) | S(1) E R(q ,w ,P ) | S(1)  

= =

                (4.13) 

Proposition 4.2 is quite intuitive. These conclusions in Part (a) are consistent with 

the insights stated by Felix et al. (2012) and Liu et al. (2021a). It is straightforward; the 

merchant will achieve less profit with the increasing of operating cost and market impact. 

It will increase the cost of buying power from the market and decrease the revenue of 

selling power to the market by smoothing the difference between the high price at peak 

hours and low prices at off-peak. Part (b) demonstrates that the electricity merchant should 

take advantage of renewable wind generation to maximize reward at each period and 

optimal profit in the optimization horizon. It implies that the merchant with energy storage 

and wind plant should not curtail wind generation (i.e., generate the wind power based on 

the max generation capacity of the wind plants installed) to benefit their profit as long as 

the electricity prices are larger than the generation cost of wind if we do not consider 

bidding in a forward market. Part (c) shows that if a merchant ignores market impact on 
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the power price and decides from the scenario of price-taker (i.e., the optimal economics 

dispatch of the storage is optimized on the wrong assumption λ 0= ; however, where the 

corresponding profit of the merchant is calculated according to the real value of market 

impact factor λ ), she will get less expected profit. Proposition 2 states that the market 

impact considerably alters the optimal policy structure and optimal expected profit, as 

detailed by the numerical results presented in Section 4.4. 

Managemental Insight 4.2: The co-optimization merchants will have a lower 

expected profit with the increase of market impact if price-maker merchant and price-taker 

merchant submit the same generating and pumping maximum capacity to ISO. However, 

if the price-maker merchant ignores market impact in trading decisions and follows the 

price-taker's solutions, she will achieve less optimal expected profit. On the other hand, 

wind generation benefits merchant's profit if the wind generation cost is low.  

Insight 4.2 has an important implication for the price-maker merchant. The 

decisions of a merchant naturally affect the market price, so the merchant will have a lower 

profit when the cost of buying power is increasing, and the revenue from selling power is 

decreasing. Therefore, to smooth the negative effect of the market impact on buying and 

selling actions of the merchant, they should reduce the amount of electricity generating or 

pumping each period. Thus, a merchant with PSH and wind plants must perfectly balance 

the power transition quantity and market impact intensity and reduce wind power 

curtailment to maximize profit. 
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4.4. CASE STUDY AND NUMERICAL SIMULATION 

Section 4.4.1 validates the presented approaches and results employing one three-

period case to represent the calculation procedure in detail and then compare them with the 

MILP method through the synthesis data. Additionally, Section 4.4.2 employs real data 

from MISO to demonstrate the related results and insights. 

4.4.1. Synthesis Date Case Study. For simplicity, this Section employs a three-

period example to show the detail of the proposed method in Section 4.3. Here, we suppose 

there are three optimization decision periods ( T 3=  ). The forecasted price takes set

    M L H

t 1 2 3P P ,P ,P = 5,2,10 ={P ,P ,P }= at each period. This work also supposes the merchant 

cannot fill her energy storage fully in one decision period but less than two (i.e., pS Q S+  , 

and pS 2Q S+  ). Meanwhile, the full storage can be emptied in one decision period (i.e., 

resp. gS S Q−  ). In detail, we suppose the energy storage capacity is 10 (i.e., S 0,S 10= = ), 

and we suppose the pumping capacity in one period is 7, and the generating capacity is 12 

in one period. Suppose the pumping and generating operating costs of the storage

p gc c 0.1= = , the pumping and generating efficiencies of the energy storage as well as the 

transmission efficiency of the line are θ ξ σ 0.9= = = .  

In this case, to illustrate the effect of market impact, this Section supposes the 

intensity market impact parameter of the merchant is λ 0.01= . In the case study, we focus 

on the scenario that the electricity merchant has energy storage and a wind plant and also 

assume the forecasted wind generation is 
t 1 2 3w {3,5,0} {w ,w ,w }= = . Based on Lemma 

4.1, our results show that both the generation cost of wind and the self-discharging do not 

affect the optimal solutions, so we assume the generation cost of wind equals zero (i.e.,
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gc 0= ). Let the operating cost be 0.1(i.e., p gc c 0.1= = ), and the pumping and generating 

efficiencies, and efficiency of transmission line be 0.9 (i.e., θ ξ σ 0.9= = =  ). For 

simplification, in this case study, we assume the residual value of water in storage is zero 

(i.e., 
4VOW 0= ). On this basis, we employ the backward dynamic programming approach 

to achieve the following optimal outcomes: 

      In decision State 3: Action 3: Since the energy in the storage and the end of the third 

period is valueless, to maximize the profit, the electricity merchant needs to sell power to 

the electricity market and bring the SOC 
*

4S 0 E= = down to the minimum boundary of the 

storage as long as the electricity prices are positive, thus 

*

3 3 3 3q (S ) SOC ,  SOC (0,S]= −                     (4.14) 

Thus, the following value function at stage 3 is achieved:  

* * g

3 3 4 t t t t t t w t t

2

3 3

V max{R V } P [1 λ(q ξ w )σ] (q ξ g ) σ c q ξσ c w (q 0)

    8.019SOC 0.06561SOC

= + = − + −  −  + − 

= −
  (4.15) 

      In decision state 2: By utilizing the functions (4.9), (4.10), and (4.11) in Section 4.3, 

we obtain the following outcomes for the optimal SOC reference points at initial of third 

period or the end of second period: 

3

3

3

p
(1)* * 23 32 2 2 2
3 3 22 2 2

SOC [0,10] 3 3

2 2 p
(2)* * 2 23 32 2 2
3 3 2 22

SOC [0,10] 3 3

(3)* *

3 3
SOC [0,10]

SOC SOCλP 2λP w P c
SOC arg max V [ SOC ] ( )

θ σ φ θσ θσ φ

SOC SOCλσ P w P σ c
SOC arg max V [ SOC ] (2λP σ )

θ φ θ ασ φ

SOC arg max V λP







 +
= − − + − 

 

 +
= − − + − 

 

= − 2 2 2 2 g3 3
2 2 2 2 2

3 3

SOC SOC
ξ θ [ SOC ] (2λP w ξσ P ξσ c ξσ)

φ φ









  

− + − + 
 

 (4.16) 
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( )

( )

3

3

(1)* 2 2

3 3 3 3 2 2
SOC [0,10]

2

(2)* 2 2

3 3 3 3 2 2
SOC [0,10]

SOC arg max 4.590 SOC 0.096 SOC 0.061 SOC SOC 0.030 SOC

           (4.590 0.061 SOC ) 0.192 10 S

SOC arg max 4.964 SOC 0.086 SOC 0.040 SOC SOC 0.020 SOC

         





=  −  +  − 

= +   =

=  −  +  − 



( )
3

2

(3)* 2 2

3 3 3 3 2 2
SOC [0,10]

2

(4.964 0.04 SOC ) 0.172 10 S

SOC arg max 7.355 SOC 0.079 SOC 0.026 SOC SOC 0.013 SOC

        (7.355 0.026 SOC ) 0.158 10 S











 = +   =



=  −  +  − 



= +   =

  (4.17) 

Here, 
tθw 0.9 5 4.5 7=  =  , by comparing the current SOC at the initial of 

second period and the above-obtained reference points, the merchant will obtain the 

following optimal decision at period 2: 

2

1*

3

2 2
*

2 2
1*

3

2 2

7,  SOC [0,3],

(store generation and purchase electricity up to SOC S);

10 SOC ,  SOC (3,5.5],  
q (S )

(store generation and purchase electricity up to SOC S);

10 SOC ,  SOC (5.5,10],  

(store genera



=

− 
=

=

− 

2*

3tion without buying up to SOC S).












 =

         (4.18) 

Then, the optimal value functions at decision time 3 can be rewritten as 

3 2

3

2

3 3 SOC SOC 7

2

2 2 2
*

3
2

3 3 SOC S 10

2

8.019 SOC 0.06561 SOC

7.1 SOC 52.92 0.06561 SOC ;  if  SOC [0,3]
V

8.019 SOC 0.06561 SOC

80.19 6.561 73.629;  if  SOC (3,10]

= +

= =

  − 


=  + −  

= 
  − 


= − = 

             (4.19) 

By combining the optimal actions and the corresponding price at period 2, we 

obtain the following reward functions at period 2:  
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2

2

2 2 2 2 2 2

2

2 2 2

7.23                                                      SOC [0,3] 

R(q ,w ,P ) 15.74 0.6361 SOC 2.93 SOC    SOC (3,5.5] 

12.84 2.34 SOC 0.01 SOC        SOC (5.5,10]

− 



= − −  +  

− +  −  

        (4.20) 

Hence, incorporating the Eq. (4.19) and the reward function at period 2, the optimal 

value functions at the second decision time are obtained: 

2

2 2 2

* 2

2 2 2 2

2

2 2 2

7.1 SOC 45.69 0.06561 SOC     SOC [0,3] 

V 0.6361 SOC 2.93 SOC + 57.89  SOC (3,5.5] 

2.34 SOC 0.01 SOC +60.79         SOC (5.5,10]

  + −  



= −  +  

  −  

          (4.21) 

In decision state 1: Similarly, by employing the functions (4.9), (4.10), and (4.11), 

we will reach optimal SOC reference points at the end of the first period or the initial of 

the second period as the following solutions: 

2

2

2

p
(1)* * 23 31 1 2 1
2 2 22 2 2

SOC [0,10] 3 3

2 2 p
(2)* * 2 23 31 2 1
2 2 2 12

SOC [0,10] 3 3

(3)* *

2 2
SOC [0,10]

SOC SOCλP 2λP w P c
SOC arg max V [ SOC ] +( )

θ σ φ θσ θσ φ

SOC SOCλσ P w Pσ +c
SOC = arg max V [ SOC ] (2λPσ )

θ φ θ θσ φ

SOC = arg max V λP







 +
= − − − 

 

 
− − + − 

 

−

( )

2

2

2 2 2 2 g3 3
1 2 1 2 1

3 3

(1)* * 2

2 2 2 1 2
SOC [0,10]

(2)* * 2

2 2 2 1 2
SOC [0,10]

(3)*

2

SOC SOC
ξ σ [ SOC ] +(2λP w ξσ Pξσ c ξσ)

φ φ

0.05
SOC arg max V [SOC SOC ] 5.88 SOC

0.81 0.81

SOC = arg max V 0.05[SOC SOC ] 4.85 SOC

SOC













  

− − + 
 

 
= − − −  

 

 − − − 

( )
2

* 2

2 2 1 2
SOC [0,10]

= arg max V 0.05 0.81 0.81[SOC SOC ] 3.75 SOC










−   − − 


    (4.22) 

Next, we analyze the SOC reference points separately based on Eq. (4.21) and 

energy storage capacity.  

(1) scenario: If 2SOC [0,  3]  
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( )

( )

( )

2

2

(1)* 2 2

2 2 1 2 1
SOC [0,3]

(1)*

1 2

(2)* 2 2

2 2 1 2 1
SOC [0,3]

SOC arg max 0.142 SOC (1.22 0.15 SOC )SOC 45.69 0.076 SOC

            1.22 0.15SOC 0.284 3 SOC 3

SOC arg max 0.116 SOC (2.25 0.1 SOC )SOC 45.69 0.05 SOC

      





= −  + +  + − 

= +   =

= −  + +  + − 

( )

( )

( )

2

(2)*

1 2

(3)* 2 2

2 2 1 2 1
SOC [0,3]

(3)*

1 2

      2.25 0.1SOC 0.232 3 SOC 3

SOC arg max 0.098 SOC (3.35 0.066 SOC )SOC 45.69 0.033 SOC

             = 3.35 0.066SOC 0.196 3 SOC 3











 = +   =



= −  + +  + − 



+   =

 (4.23) 

(2) Scenario2: If 2SOC (3,  5.5]  

( )
2

2

(1)* 2 2

2 2 2 1 2 1
SOC (3,5.5]

(1)*

1 2

(2)* 2

2 2 2 1 2
SOC (3,5.5]

SOC arg max 0.71 SOC 2.95 SOC 0.152 SOC SOC  57.89 0.076 SOC

             ( 2.95 0.152 SOC ) 1.42 0 SOC 3

SOC arg max 0.686 SOC 1.92 SOC 0.1 SOC SOC 57.89





= −  −  +  + − 

= − +    =

= −  −  +  + −( )

( )

( )

2

2

1

(2)*

1 2

(3)* 2 2

2 2 2 1 2 1
SOC (3,5.5]

(3)*

1 2

0.05 SOC

            ( 1.92 0.1 SOC ) 1.372 0 SOC 3

SOC arg max 0.669 SOC 0.82 SOC 0.066 SOC SOC  57.89 0.033 SOC

            0.82 0.066 SOC 1.338 0 SOC 3








 


 = − +    =



= −  −  +  + − 

= − +    =






(4.24) 

(3) Scenario 3: If 2SOC (5.5,  10]  

( )
2

2

(1)* 2 2

2 1 2 2 1
SOC [5.5 10]

(1)*

1 2

(2)* 2

2 1 2 2
SOC [5.5 10]

SOC arg max ( 3.54 0.152 SOC )SOC 60.79 0.086 SOC 0.076 SOC

             ( 3.54 0.152 SOC ) 0.172 0 SOC 5.5

SOC arg max ( 2.51 0.1 SOC )SOC 60.79 0.06 SOC 0





= − +  + −  − 

= − +    =

= − +  + + −  −

，

，
( )

( )
2

2

1

(2)*

1 2

(3)* 2 2

2 1 2 2 1
SOC [5.5 10]

(3)*

1 2

.05 SOC

             ( 2.51 0.1 SOC ) 0.12 0 SOC 5.5

SOC arg max ( 1.41 0.066 SOC )SOC 60.79 0.043 SOC 0.0328 SOC

             ( 1.41 0.066 SOC ) 0.086 0 SOC 5.5








 



= − +    =

= − +  + −  − 

= − +    =

，









 (4.25) 

By comparing the max value, we can find the optimal references among scenario 1, 

scenario 2, and scenario 3.  
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Thus, the merchant obtains the following three optimal SOC reference points:

(1)* (2)* (3)*

2 2 2SOC SOC =SOC 3= = . 

Since 
p(1)

t t 1θw min{SOC ,Q }+  (i.e., 0.9 3 2.7 min{3,7} 3 =  =  ), based on 

proposition 4.1 in Section 4.3, the optimal decisions of the merchant at stage 1 are 

1 1

*

1 1 1 1

1 1

3 SOC ,if  SOC [0,0.3](store generation and purchase electricity up to 3)

q (S ) 3 SOC ,if  SOC (0.3,3](store generation without buying up to 3)

3 SOC ,  if  SOC (3,10](sell inventory down to 3)

− 


= − 


− 

  (4.26) 

     When incorporating the market impact of the merchant, based on the forecasted price 

at period 1 and the optimal action in Eq. (4.26), the reward functions of electricity 

merchants at stage 1 are shown:  

1 1 1
1 1

1 1 1
1 1 1 1 1 1

1
1 1

3 SOC 3 SOC 3 SOC
P [1 λ( 3) / 0.9] ( 3) / 0.9 0.1  if SOC [0,0.3] 

0.9 0.9 0.81

3 SOC 3 SOC 3 SOC
R (q , w ,P ) P [1 λ( 3)0.9] ( 3)0.9 0.1        if SOC (0.3,3]

0.9 0.9 0.81

3 SOC
P [1 λ( 3)0.9] ((3 SOC )0.

0.9

− − −
− + −  − − 

− − −
= − + −  − − 

−
− + −  − 1 19 3)0.9 0.1(3 SOC )0.81  if SOC (3,10] 








 − − − 


 (4.27) 

Thus, the optimal value functions of the merchants at first decision state are:  

1 1 1
1

2

2 2 1

1 1 1
1

* 2
1 2 2

3 SOC 3 SOC 3 SOC
P [1 λ( 3) / 0.9] ( 3) / 0.9 0.1

0.9 0.9 0.81

+7.1 SOC 45.69 0.066 SOC  if SOC [0,0.3];

3 SOC 3 SOC 3 SOC
P [1 λ( 3)0.9] ( 3)0.9 0.1

0.9 0.9 0.81

V +7.1 SOC 45.69 0.066 SOC        if SOC

− − −
− + −  − −

 + −  

− − −
− + −  − −

=  + −  1

1 1 1 1

2

2 2 1

1 1 1 1

2

2 2

(0.3,3];

P [1 λ((3 SOC )0.9 3)0.9] ((3 SOC )0.9 3)0.9 0.1(3 SOC )0.81

0.636 SOC 2.93 SOC + 57.89 if SOC (3,5.5];

P [1 λ((3 SOC )0.9 3)0.9] ((3 SOC )0.9 3)0.9 0.1(3 SOC )0.81

2.34 SOC 0.01 SOC +



− + − −  − − − −

−  +  

− + − −  − − − −

+  −  160.79    if SOC (5.5,10].






















    (4.28) 
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Recall the previous steps, the following optimal trading actions of the merchant at 

three periods are obtained.  

1) If 1SOC 1= (The SOC in energy storage at the beginning of decision time 1) 

      State 1: If 1SOC 1= , (store wind generation 2, and make the SOC up to 3, also sell 

2 0.9 3 7 9− = −  to the market), then the SOC in the storage will approach to 2SOC 3=  

(i.e., *

1q 2= , 1R 3.23= );   

      State 2: If 2SOC 3=  , (buying and pumping), then, there is 3SOC 10=   (i.e., 

*

2 2q 7,R 7.23= = − ); 

      State 3: If 3SOC 10= , (generating and selling), the SOC in the storage will down to 

4SOC 0=  (i.e., *

3 3q 10,R 73.63= − = ).  

  By using the predicted electricity prices, the total rewards of the merchant during 

the optimization horizon are shown as *

1 2 3 1R R R R 69.63 V= + + = = .  

2) If 1SOC 5= (The SOC in energy storage at the beginning of decision time 1) 

      State 1: If 1SOC 5= ,(idle), there is 2SOC 3= (i.e., *

1q 2= − , 1R 20.5= ) holding;   

      State 2: If 2SOC 3=  ,(buying and pumping), then there exists 3SOC 10=  (i.e., 

*

2q 7= , 2R 7.23= − ); 

      State 3: If 3SOC 10= ,(generating and selling), since we have 4SOC 0 S= = , so the 

optimal action in the third period *

3q 10= − ), so there has
3R 73.63= ). 

Accordingly, the total rewards of the merchant during the given three optimization 

periods are *

1 2 3 1R R R R 86.91 V= + + = = . 
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Compared to the previous study (Liu and Bo et al., 2021) in which the electricity 

merchant with energy storage only, or the predicted wind power is zero (i.e., Special Case 

C), considering the market impact and λ 0.01= , the corresponding optimal SOC reference 

points and profits are shown in Table 4.1 under different two initial SOC in the storage. 

  

Table 4.1 Optimal dispatching strategies and profit of the electricity merchant with 

energy storage only 

 
Optimal SOC reference 

points 
Optimal economic dispatch 

Total 

rewards 

1 1SOC =  (1)*

2 1.5SOC = ; (1)*

3 10SOC =  *

1 0.5q = ; *

2 7q = ; *

3 8.5q = −  34.1R =  

1 5SOC =  (3)*

2 3SOC = ; (1)*

3 10SOC =  *

1 0.16q = − ; *

2 5.16q = ; *

3 10q = −  55.7R =  

 

This table displays that two optimal SOC reference points, (1)*

t 1SOC + and (3)*

t 1SOC + , 

were created based on the method proposed in Section 4.3 when ignoring wind power 

generation. For the scenario, the profit-maximizing merchant has energy storage only and 

only needed to buy power from the electricity market to store and make the current energy 

level in the storage up to (1)*

t 1SOC + as close as possible when there is less energy in the storage. 

If the current available energy level in the storage is larger than reference point (3)*

t 1SOC + , the 

merchant needs to discharge energy from the storage for selling, then bring the SOC down 

to (3)*

t 1SOC + as close as possible. 

To verify our research and the proposed method in this work, we also adopted the 

classic MILP method (Bo et al., 2021; Liu et al., 2021b; Wang et al., 2021; Wang et al., 

2022) to solve the above three-periods case and get the optimal results as well as compare 

them with the optimal outcomes in Section 4.4.1. It yielded the same optimal results under 
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both the dynamic programming method (i.e., our method in Section 4.4.1) and the MILP 

(i.e., traditional approach). The above optimal solutions are verified in AIMMS. 

4.4.2. Real Data Case Study. This Section will use hourly optimization period 

units as the electricity prices and wind generation sequence 
1 2 TP {P ,P , ,P }= ($/M.W.) 

and
1 2 TW {w ,w , ,w }=  (MWH) with 336 decision periods (T = 336) corresponding to 

two-weeks optimization horizons from Dec. 3 to Dec. 18, 2020) in MISO as supplied (the 

prices data is available at: https://www.misoenergy.org/). The maximum and minimum 

capacity of the PSH upper reservoir S  and S  are 20 and 2 (respectively). Here, S 0

denotes that the merchant cannot empty the upper reservoir of PSH, which is common in 

the electricity market for a PSH. The pumping and generating capacity are pQ 2=  and 

gQ 2=  . The unit of measurement of PSH can be described as GWH. The units of 

generating and pumping capacity measurement can be represented as a GW. 

Following the previous study, we also assume the pumping and the generating 

efficiencies of the PSH are α β 0.9= =  . The optimization period g(S S) Q 9− =   hours 

units for the PSH to empty the storage, while p(S S) Q 9− =  hours units for the PSH to 

fill the storage fully correspond approximately to the Ludington PSH in Michigan USA 

(the PSH detail are available at: https://www.consumersenergy.com/company/electric-

generation/renewables/hydroelectric/pumped-storage-hydro-electricity). Based on the 

existing report (Mongird, et al., 2020), we assume the operating cost c 1=  ($/MWh). We 

also ignore the transmission efficiency loss and suppose ρ 1=  and η 1= . To simplify, we 

https://www.misoenergy.org/
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assume that the residual value of the water in the storage is equal to the expected electricity 

prices during the optimization horizon (i.e., 
T

T 1 t

t 1

VOW p T+

=

= ). 

Using the same method proposed by Cruise et al. (2019) to calculate the market 

impact (e.g., we used the off-peak load and on-peak load and the corresponding prices in 

the optimization horizon and pumping and generating limits in each period offered to the 

ISOs to achieve the lambda approximately as a proxy for the market impact3).  

For a merchant who owns a large storage (such as the Ludington PSH) and a wind 

farm, the results are as follows. The merchants' optimal co-optimized economics dispatch 

actions are obtained from the value functions (4.6) when the merchant with co-located 

energy storage and wind plants is displayed in Figure 4.1 and Figure 4.2 under two different 

initial SOC in the PSH, respectively.  

 

 

Figure 4.1 The optimal decisions when 𝑆𝑂𝐶1 = 2 GWh 

 

 

3Although the merchant has PSH and wind plants, we will ignore the effect of wind generation when we 

calculate the market impact due to the high uncertainty of renewable generation. 
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Figure 4.2 The optimal decisions when 𝑆𝑂𝐶1 = 10 GWh 

 

Figures 4.1 and 4.2 show that when the market impact factor is small, merchants 

with a co-located energy storage and wind plant will choose a similar strategy to the 

traditional strategy (that is, as a price-taker merchant and ignoring the market impact of the 

energy storage in trading), that is, when the market price of electricity is low, the merchant 

will buy electricity from market and will resale it later at a high price to maximize the profit. 

As the intensity of market impact increases (such as λ 0.1= ), the transaction quantity of 

electricity merchant who has energy storage and wind farm (see green and blue curves) in 

each period decreases. In this situation, the merchant's profit mainly depends on wind 

generation and indirectly reduces the energy storage arbitrage function by decreasing the 

frequent pumping and generating actions. 

The optimal actions are obtained from Eq. (4.11) when the merchant with energy 

storage only (i.e., without wind generation) is shown in Figure 4.3 and Figure 4.4 under 

different initial SOC in the storage. 
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Figure 4.3 The optimal decisions when 𝑆𝑂𝐶1 = 2 GWh 

 

 

Figure 4.4 The optimal decisions when 𝑆𝑂𝐶1 = 10 GWh 

 

Figures 4.3 and 4.4 show that when there is no wind plant, the merchant's 

dispatching strategy is the same as when there is a wind plant. With the intensity of market 

influence increasing (such as λ 0.1= ), each period's transaction quantity decreases (see, 

red curve). Figures 4.3 and 4.4 show the relationship between the optimal action and the 

intensity of market influence under such a situation, which is the same as that of merchants 

with only energy storage. With the increasing market impact of the merchant in trading, 

the cost of purchasing power to pump will rise; however, the revenue will decrease through 

discharging energy for selling. Therefore, to decrease the negative effect of market impact 
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on operational decisions, the merchant should lower the power transition amount at each 

decision period to benefit her own profit. Consequently, a profit-maximining merchant 

with energy storage and wind plants must balance market impact intensity and energy 

transition quantity. 

Figure 4.5 corresponds to the Ludington PSH case for the relationship between the 

optimal expected profit and the intensity of market impact with wind and without wind 

plants, respectively. 

 

 

(a) Merchant with both PSH and wind farm  

 

 

(b) Merchant with PSH only  

 

Figure 4.5 The relationship between the optimal expected profit and market impact 
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Figure 4.5 indicates that regardless of whether there is wind power generation, for 

the large-scale energy storage, the operational trading decisions will influence the market 

prices. However, compared with the existing study, the increases of market impact will 

lead to decreased maximum expectation profit because purchase costs increase, and sale 

revenues decrease. It is intuition, considering the market impact of merchants in trading 

will increase the cost of buying electricity from the market and decrease the revenue of 

selling electricity to the market.  

Obviously, if the large-scale energy storage merchant schedules energy in the 

storage following the scenario of a price taker, she will lose more profit. This part further 

proves the conclusion of the previous Section through numerical simulation. These results 

are similar to the reported consequences by and Cruise et al. (2019), Felix et al. (2012), 

and Liu et al. (2021a). To maximize expected profits, merchants should mitigate the market 

impact and increase profits by reducing the amount of electricity trading each period to 

offset the negative effect of market impact. 

4.5. EXTENSION RESEARCH: MARKET IMPACT AS A FUNCTION OF 

OFFERED LIMITS TO ISO 

The results presented in Section 4.2 and Section 4.4 show that electricity merchants 

get less expected profit with growing market impact if both the price-taker electricity 

merchant and the price-maker electricity merchant offer the exact pumping/generating 

maximum capacity in one period offered to ISOs. However, in the electricity market, where 

capacity withholding is allowed, the merchant can adjust their pumping and generating 

capacity offered to ISOs to change her market impact (Mehdipourpicha and Bo, 2020, 

2021). The implications of electricity merchants' market impact change substantially when 
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considering the relationship between that impact and the generating and pumping capacity 

in each optimization period offered to ISOs. If the market impact is related to offered 

maximum pumping and generating limits, when the merchant changed her offered 

pumping (resp. generating) limit from p

nQ  (resp. g

nQ ) to p

mQ (resp. g

mQ ),  and if p p

m nQ Q  

and g g

m nQ Q  hold, we will get m n0 λ λ  . Here, the different subscript values show 

different generating and pumping limits offered to the ISOs. 

For the intensity market impact parameter, in this Section, following the previous 

study (Mehdipourpicha and Bo, 2020, 2021), we shall use the ratio of electricity merchants’ 

offered limits to the total (MISO-wide) online capacity of generators, where the latter is 

commonly about 100 GW. Thus, different market impacts correspond to different 

generating and pumping maximum limits in one period that is offered to the ISOs, which 

may result in different optimal actions and expected profits. For example, a market impact 

factor of λ 0.02=  (resp., λ 0.01=  ) corresponds to a merchant generating/pumping 

maximum limit of 2 GW (resp.,1 GW) offered to ISOs. Our results are derived simply by 

increasing the upper limits of generating and pumping that offered to MISO from 0.1 GW 

to 3 GW (i.e., 0.001 λ 0.03  ); here we also suppose all other parameters are the same 

as in Section 4.4.  

Figure 4.6 illustrates the impact of market impact by adjusting the limits that offered 

to MISO on the expected profit of the merchant for cases with wind generation (upper 

panel) and without wind generation (lower panel). 
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(a) Merchant with both PSH and wind farm  

 

 

(b) Merchant with PSH only 

  

 

Figure 4.6 Merchant’s optimal expected profit as a function of market impact 

 

Figure 4.6 indicates that, regardless of whether there is wind power generation, the 

merchant’s optimal expected profits first increase and then decrease with their market 

impact. It follows that a merchant can maximize expected profits by balancing market 

impact with offered pumping/generating maximum limits to ISOs. From the perspective of 

profit maximization, the electricity merchant must decide which is more important: the 

limits of offered transaction to ISOs or the approximately market impact. There is an 
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inherent trade-off between these two factors, since the merchant can—in each period—

increase the unit energy/power profit while lowering transaction quantity. 

Suppose the market impact is low; in that case, there is a low revenue (due to the 

limited power transaction) although the unit power profit is high. Hence the merchant 

should increase the power transmission quantity to enhance her profit by enlarging the max 

capacity offered to ISOs. The most intriguing result is that raised market impact would 

result in a reducing unit power profit by raising the cost of purchasing and lowering sales 

revenue. In that case, we recommend that the merchant should limit their market impact’s 

detrimental effects by—in each period—reducing her generating/pumping limits offered to 

ISO and increasing profit from unit power.  

We affirm these conclusions by conducting additional analyses, as briefly described 

following. Accordingly, we change the power prices and wind generation corresponding to 

one day period with 24 stages and seven days period with 168 stages, respectively, 

(corresponding to one day 12/01/2020 and one week from December 1 to December 7, 

2020) in MISO as provided. Once again, our previous findings are mainly supported. 

4.6. SECTION SUMMARY AND ANALYSIS 

The main objective of this work is to analyze the scenario when the merchants with 

both co-located large-scale energy storage systems and wind plants and build the co-

optimized policy structure of electricity merchants whose actions are sufficiently important 

to have a market impact on electricity prices. We formulate this problem as a Markov 

decision process and employ the dynamic programming method to achieve the closed-form 

analytical results to support multi-period decision-making of merchants. Although there 
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are multiple activities available each period for the electricity merchant, only one of these 

decisions/actions is allowed at the same time. On this basis, to solve this problem, this work 

first split the original problem into three sub-optimization problems corresponding to three 

different actions. Then, the optimal solution for each sub-optimization problem will be 

addressed based on the Bellman equation. Finally, we combine them and achieve the global 

conclusions of the original problem. We demonstrate that the obtained optimal strategy 

policy in this work generalizes the traditional results and differs significantly from usual 

strategies reported to be optimal in the current published work, neglecting the market 

impact and the residual value of energy in the storage. 

To maximize the profit of electricity merchant who has large-scale energy storage 

and wind power plant, considering the generating and pumping operating costs and three 

types of efficiency loss, we find the current optimal economic dispatch strategy of the 

storage relies on the SOC reference points. These SOC reference points depend on the 

current SOC inventory in the energy storage, the forecasted electricity prices, available 

forecasted wind generation currently, and the market impact of energy storage in trading. 

We show analytically that, for a merchant with both PSH and wind plant, there exist three 

SOC reference points such that the SOC range is divided into four possible sub-ranges, 

each of which corresponds to one of four distinct options. The merchant will achieve the 

unique optimal action by comparing the current SOC in the storage and the SOC reference 

points. However, suppose operating costs and efficiency loss of the energy storage are not 

modeled. Then, the feasible SOC range of the storage can also be segmented into two sub-

ranges by one unique optimal SOC reference point. In this case, storing renewable 

generation or buying power for pumping will bring the same cost for a merchant. If we 
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ignore the wind generation or not available renewable source, it equals an electricity 

merchant with only large-scale energy storage. Our study finds the condition that wind 

generation benefits merchants' profit.  

We recognize that the merchant's market impact and the residual value of energy in 

the storage play essential roles in the optimal strategy design. Although the residual value 

of energy in the storage affects the value function then influences the optimal decision, this 

work finds that it does not change the relationship among three optimal SOC reference 

points, so the residual value cannot revise the traditional policy. Our results also show that 

the price-maker merchant will obtain similar strategies as the price-taker merchant scenario 

when the market impact is small. However, considering the market impact and offering the 

same generating and pumping capacity as the price-taker, we find the market impact would 

drive profit-reducing by raising the cost of purchasing and lowering sales revenue. In that 

case, our findings recommend that the merchant needs to mitigate the market impact's 

negative effect as much as possible by lowering the power transition amount at each 

decision period to benefit her profit. These new conclusions provide more knowledge of 

managing differentiated forecasted wind generation, market impact, and co-optimized 

economic dispatch of energy storage and wind plant. To the extent that a merchant can 

influence the market impact (e.g., through adjustment of the pumping and generating 

maximum limits offered to ISOs), we identify conditions under which the trade-off is either 

beneficial or detrimental to the merchant. These new findings augment our collective 

knowledge about managing the intensity of market impact and are an essential contribution 

to research on this topic. 
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5. OPTIMAL ECONOMIC DISPATCH POLICY FOR PROSUMER WITH 

ENERGY STORAGE CONSIDERING SELF-CONSUMPTION DEMAND 

5.1. OVERVIEW AND RESEARCH QUESTIONS 

This study (Liu et al., 2022 d) analyzes how prosumers' power demand or self-

consumption (see, Figure 5.1) affects their optimal joint economic dispatch structure. Due 

to the intermittent and high levels of uncertainty regarding DERs (i.e., solar or wind) 

generation and the dynamic demand of the prosumer, production and consumption are not 

always simultaneous, as in a PV system that can only generate during daytime hours and 

will only produce optimally on long and cloudless days. Thus,there are two possible 

scenarios at each period where DERs generation can meet prosumers' demand or not. 

Therefore, a prosumer has grid connected DERs will get involved in two types of 

exchanges with the grid: energy imports when DER production is insufficient to match 

self-consumption, and energy flows are from the grid to the home; energy exports when 

DERs production is greater than or equal self-consumption, and the energy flows are from 

the home to the grid for use by others. 

 

 

Figure 5.1 Self-consumption for the prosumer with installed wind turbines in 24 hours 
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Considering these two types of exchanges, a model is carried out under two 

scenarios to analyze the optimal dispatch decision for prosumers under different load rates. 

In the first scenario, the DERs generation of the prosumer cannot satisfy her own demand 

(i.e., production is less than power demand); in such case, when all the DERs generation is 

consumed, there is still a gap between the demand and supply. Then, the prosumers will 

have three choices to fulfill that gap: prosumer internal imports (discharging storage), 

external grid imports (buying electricity), or both. Under this scenario, there are four 

decisions for prosumers: buying electricity from the market to match the gap and to store, 

buying electricity and discharging storage to meet the gap, just buying electricity to meet 

the gap and storage remaining idle, and discharging storage to meet the load and to sell. 

Second, when the DERs generation is large, the prosumers can satisfy their local demand 

by DERs (i.e., generation is more than demand). They will carry out energy arbitrage as 

the traditional electricity merchant (Liu et al., 2022b; Zhou et al., 2019) and have four 

decisions: storing the remaining DERs production and buying electricity from the 

electricity market, storing and selling the partial remaining renewable energy, selling all 

remaining energy and storage remaining idle, and selling all remaining DERs generation 

and discharging the battery.  

In contrast to the previous research, this study analyzes how prosumers' power 

demand affects their optimal joint economic dispatch structure. Due to the intermittent and 

high levels of uncertainty regarding DERs generation and the dynamic demand of the 

prosumer, production and consumption are not always simultaneous; there are two possible 

scenarios at each period where DERs generation can meet prosumers' demand or not. 

Therefore, a prosumer who has grid connected DERs will get involved in two types of 
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exchanges with the grid: energy imports when DER production is insufficient to match 

self-consumption, and energy flows are from the grid to the home; energy exports when 

DERs production is greater than or equal self-consumption, and the energy flows are from 

the home to the grid for use by others. 

 Considering these two types of exchanges, a model is carried out under two 

scenarios to analyze the optimal dispatch decision for prosumers under different load rates. 

In the first scenario, the DERs generation of the prosumer cannot satisfy her own demand; 

in such case, when all the DERs generation is consumed, there is still a gap between the 

demand and supply. Then, the prosumers will have three potential options to mitigate the 

power shortage between the self-demand and distributed energy generation: a) buying 

electricity from the grid; b) discharging the energy storage; c) or both. Under this scenario, 

there are four decisions for prosumers: buying electricity from the market to match the gap 

and to store, buying electricity and discharging storage to meet the gap, just buying 

electricity to meet the gap and storage remaining idle, and discharging storage to meet the 

load and to sell. Second, when the DERs generation is large, the prosumers can satisfy their 

local demand by DERs, then the remaining renewable power generation can be sold to the 

grid or stored in storage. They will carry out energy arbitrage as the traditional electricity 

merchant (Liu et al., 2022b; Zhou et al., 2019) and have four decisions: storing the 

remaining DERs production and buying electricity from the electricity market, storing and 

selling the partial remaining renewable energy, selling all remaining energy and storage 

remaining idle, and selling all remaining DERs generation and discharging the battery.  

Incorporating the self-demand will bring challenges in modeling since these two 

scenarios cannot happen simultaneously in each period, and different scenarios require 
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different decisions and cost or rewards functions for prosumers. In our study, we first 

analyze each scenario in isolation to determine the best energy storage scheduling strategy, 

and then we combine them to determine the best overall solution. Instead of focusing on 

profit maximization, we consider cost minimization. It should be noted that the model is 

non-trivial in achieving analytical results by employing a dynamic programming approach 

when considering the uncertainty of DERs generation and dynamic demand in the problem. 

Such challenges not fully explored in the research to date are addressed in this paper as 

original theoretical findings. 

The above analyses are intended to answer the following two questions: (1) How 

do co-optimizing prosumers benefit from considering the dynamic demand and the 

uncertain DERs generation? (2) What is the difference between the co-optimization 

scheduling strategy and the traditional co-optimization scheduling strategy ignoring self-

consumption demands in dispatching the energy storage? Toward that end, we formulate 

the prosumer's cost minimization problem as a Markov decision process. We find that 

results from the perspectives of cost-minimizing and profit-maximizing are equivalent for 

the prosumer. Then, we employ the prosumer's optimal joint operational trading strategies 

by approaching the dynamic programming to maximize her own profit. This is conceivably 

the first paper to manage the co-optimization scheduling of prosumers with energy storage, 

considering the two scenarios concerned with the uncertainty of DERs generation and self-

demand through dynamic programming. 

The rest of this work was as follows. Section 5.2 provides the principal contribution 

of this research. Section 5.3 models a prosumer installing distributed energy source and has 

energy storage, then explores the optimal storage scheduling to fulfill local demand and 



98 

 

 

arbitrage. Section 5.4 verifies the proposed results based on synthesis data and real data 

from MST (Missouri University of Science and Technology). Finally, the conclusions and 

suggestions for future study are discussed in Section 5.5. 

5.2. THE PRINCIPLA CONTRIBUTIONS 

This research makes two principal contributions. First, for a prosumer with energy 

storage: by applying the monotony of the cost function and realizing that the above two 

scenarios (i.e., DER generation is less or more than the user's self-demand) cannot happen 

simultaneously, the cost functions under each scenario was analyzed separately to find the 

optimal storage scheduling strategy, which are then combined to get the optimal global 

solution. This study analytically develops three SOC reference points in each scenario, 

which depend on the currently available energy in the storage, the forecasted electricity 

prices, the self-demand of electricity, and the available power of the DERs production. The 

feasible SOC of energy storage will be segmented into different sub-regions corresponding 

to the different decisions under two scenarios. The prosumers are able to obtain optimal 

operations strategies by analyzing the current energy in the storage with the optimal SOC 

reference points. The self-consumption demand substantially alters the optimal scheduling 

policy structures by affecting the decisions, cost functions, and SOC reference points and 

their relationships. We found the analytical results regarding the boundary conditions under 

which the merchants choose the different optimal economic dispatch policies.  

Second, in contrast to the results from traditional studies (i.e., those ignoring the 

self-demand of co-optimization electricity merchants who have energy storage and 

renewable power plant), this study shows that the prosumer needs to fulfill her power load 
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priority considering self-demand. If the DERs production can satisfy self-demand, the 

prosumer will operate as a traditional co-optimization electricity merchant with energy 

storage and renewable energy sources. We formulate this scenario as a Markov decision 

process and obtain the analytical solutions for the prosumer's scheduling strategy based on 

dynamic programming. Based on the analytical results, some conclusions and insights can 

be obtained. The numerical simulation verified that the method proposed in this paper will 

reduce the prosumer's electricity bill. Unlike the conventional study, it is required to 

determine in advance whether the prosumer's DERs generation can satisfy her own power 

demand and choose different formulas accordingly when implementing our model to 

achieve the optimal economic dispatch of energy storage for prosumers. 

5.3. OPTIMAL DISPATCH FOR PROSUUMER UNDER TWO SCENARIOS 

This Section models a prosumer who has distributed energy resource (for simplicity, 

henceforth, we use a solar panel to refer to DERs), electrical devices, and energy storage. 

We will propose the analytical optimal energy scheduling strategy of the prosumers who 

can produce and consume energy based on minimizing electricity bills through dynamic 

programming (Liu et al., 2022b; Finnah et al., 2022; Zhou et al., 2019). 

5.3.1. Model Setup. This research considered the prosumer with the energy storage 

to balance electricity demand and do electricity trading. When the solar power generation 

cannot support the prosumer's electricity demand, the prosumer can purchase electricity 

from the market through the transmission line or release the energy from the storage. The 

optimal economic dispatch strategy was studied based on the prosumer's electricity bill 

minimization aim. The prosumer performed the scheduling of the storage periodically 
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t {1,2, ,T} in a finite horizon. The structure of the prosumer transaction is shown in 

Figure 5.2. 

 

 

Figure 5.2 The structure of the prosumer transaction. 

 

Figure 5.2 shows that the prosumer owns a solar panel with energy storage (i.e., 

battery) and power-consuming devices as well as connected to the grid. There are seven 

activities from the perspective of prosumer, which can be summarized into two classes.  

The first class of action happens within the prosumer, that is, between the solar 

panel generator, power-consuming device, and energy storage: 

1. The device consumes solar production. 

2. Store partial solar generation into energy storage. 

3. Discharge storage for device use.  

The second class of action is the transaction between the prosumer and market: 

4. Sell partial solar power production to the market /grid. 

5. Discharge storage for sale to the market. 
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6. Purchase power from the market to charge energy storage.  

7. Purchase electricity for device to use.

We focus on the economic dispatch of energy storage for prosumers considering 

the self-demand during the optimization horizon. Thus, we assume that all the forecasted 

solar power generation, electricity prices, and power demand based on time series are 

known in advance in our model (Liu et al., 2022a; Liu et al., 2022b; Zhou et al., 2019).   

Assume that the storage capacity is limited, with a maximum capacity of E and a 

minimum capacity of E  , then E E 0   . The storage has charging and discharging 

capacity limits. The upper bound of charge is defined as 
chQ , and the upper bound of 

discharge is defined as 
disQ , which represents the maximum capacity that the storage can 

charge and discharge at a given period. Here, following the conventional study (Jiang and 

Powell, 2015a; Zhou et al., 2019), the assumed lower bound of charging and discharging 

is zero. The storage can also choose to be neither charged nor discharged during any period. 

Three types of efficiency loss were considered in this model. The first is the 

charging and discharging efficiency for energy storage, denoted by α  and β  , and 

α,β (0,1]  . The second type of efficiency is the transmission efficiency, denoted by 

ρ (0,1]  and implying the ratio of power flowing out of the transmission line to the power 

flowing into the other line. The third is tη (0,1] , an efficiency of storing energy in storage 

and t1 η−  means dissipated energy during one period due to the self-discharge of the 

energy storage. 

Following the previous study on energy economic dispatch of the electricity 

merchant (Zhou et al., 2019, Liu et al., 2021a, Liu et al., 2022b), the prosumer’s optimal 
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dispatch decision in period t is defined by tq  , which means the energy change in the 

storage between the period t and t+1 before considering efficiency loss. Where tq 0  

indicates increased storage level due to charging, tq 0   represents decreased storage 

level for the action of discharging, and tq =0  means the storage level had not changed 

(i.e., idle or offline). As a result, the above assumption also means charging and discharging 

cannot occur simultaneously.  

Here, tE  denotes as the state of charge (SOC)/storage level at the beginning of the 

period t, or the storage level at the end of the period t-1, and the sequential levels of the 

storage is defined by ( )1 2 TÊ E ,E , ,E= , where  tE [E,  E], t 1, 2, ,T   . At the end 

of the period t, the storage self-discharge occurred, then the energy balance or state 

transition formulation from the period t to t+1 is shown as follows: 

t 1 t t tE η (E q )+ = +                            (5.1) 

In this study, for simplicity, also it was assumed that the energy storage has linear 

charging and discharging costs, and 
ch dis{c c, }  (USD per unit of energy) is denoted as the 

operating cost coefficients of the energy storage charge and discharge (Liu et al., 2021a; 

Liu et al., 2022a). Assuming that solar panel follows a linear production cost 
wc , the price 

of electricity in period t is tP  (dollars per unit energy). Solar power generation is denoted 

by tW  in period t. The power demand/load of the equipment for prosumer in period t is 

defined as tL . Due to the intermittent and high levels of uncertainty regarding renewable 

sources like solar generation and dynamic demand/load of the prosumer in each period, 

there are two possible scenarios for the prosumer.  

javascript:;


103 

 

 

1) The power generation of the solar cannot satisfy her demand/load (i.e., t tW L ); 

2) The power generation of prosumer can meet her demand/load (i.e., t tW L ). 

If solar power generation can satisfy the self-demand in time t, then the remaining 

solar generation can be sold to the market or stored in energy storage, depending on the 

prices in the market. However, if the solar power generation cannot meet the power load at 

period t, there are three methods to fill the power gap between the demand and solar 

generation: prosumer internal imports (discharging storage), external grid imports (buying 

electricity), or both. 

We first analyze each scenario separately below to find the optimal storage 

scheduling strategy across scenarios 1) and 2), then we will combine them and get the 

optimal global solution. Thus, Section 5.3.2 introduces the prosumer's cost function and 

scheduling decision under scenario 1, corresponding to the periods t Γ− (i.e., t tW L ); and 

the prosumer's cost function and its optimal dispatch were shown in Section 5.3.3 for 

scenario 2 during the periods t Γ+ (i.e., t tW L ). Finally, we will merge them to derive the 

optimal global solution for  Γ 1,2, ,T Γ Γ− += =  . 

5.3.2. DERS Generation Cannot Satisfy the Self-demand. This Section concerns 

prosumers' optimal energy scheduling analysis when prosumers' solar power generations 

are lower than their own electricity demand in some decision periods (i.e., t Γ− ). 

(1) Profit function and optimization analysis. 

Based on the assumption that when t Γ−  , there are two methods to satisfy the 

power gap between the production and self-demand: 1) prosumer internal imports: buying 

electricity from the market; 2) storage external imports: releasing energy from storage to 
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satisfy the gap between the DER generation and self-consumption demand. Therefore, the 

cost function in scenario 1 is: 

( ) ( )

( ) ( )

( ) ( )( )

ch w

t t t t t t t

dis w

t t t t t t t t t t t t t

dis w

t t t t t t t t t

P q α W L ρ C q C W     q 0

C (q ,W ,L ,P ) P q β W L ρ C q C W  ( L W β q 0)

P q β W L ρ C q C W    q L W β  

−

  − −  +  +   



=  − −  −  +  − −    

  − −  −  +   − − 

  (5.2) 

Prosumer's cost function includes electricity trading cost, battery charge and 

discharge operating cost and solar power generation cost. The first line in Eq. (5.2) 

represents the costs when the prosumer buys electricity from the market to meet the gap 

and store extra energy into the storage. Here, t t t[q α (W L )] ρ− −  in the first line represents 

the amount of electricity purchased from the market considering the transmission loss. The 

second line in Eq. (5.2) represents the net cost when the gap is met by discharging storage 

and purchasing electricity from the power market, and 
t t t[q β (W L )]ρ− −   means the 

amount of electricity purchased from the market to make up for the shortfall. The last line 

represents the cost when electricity in the storage is released to fill the gap and be sold to 

the market, and 
t t t[q β (W L )]ρ− −   is equivalent to the portion of the energy storage 

discharged that is sold to the market.  

The prosumer aims to obtain the optimal dispatch decision to minimize her total 

electricity bills at the beginning (i.e., at the stage 1) during the finite period (i.e., 

optimization horizon) t {1,2,3, ,T} , which is model as Eq. (5.3). 
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 
T

t t t t
π

t 1

dis ch

t

t t

t t

t 1 t t t

min E C(q ,W ,L ,P )| S(1)

Q q Q

q E E
s.t. t {1,2,3, ,T} 

q E E

E η (E q )

=

+

−  

−  −

 
  −

 = +



                   (5.3) 

Where, E  is the expectation concerning 
t t t t(E ,W ,L ,P )  , C  represents the cost 

function for prosumer. Here, 1E  , 1W  , 1L  , and 1P   are the given initial energy level in 

storage, the forecasted solar production, the load/demand, and the forested electricity price, 

respectively. The above constraints represent storage capacity constraints and energy 

balances/state transition. Similarly, the reward function of the prosumer at each period 

t t t tR (q ,W ,L ,P )−  under scenario 1 can be given as the Eq. (5.4), which is the electricity 

trading profit minus battery operating cost and solar power generation cost: 

( ) ( )

( ) ( )

( ) ( )( )

ch w

t t t t t t t

dis w

t t t t t t t t t t t t t

dis w

t t t t t t t t t

P q α W L ρ C q C W           q 0

R (q ,W ,L ,P ) P q β W L ρ+C q C W   ( L W β q 0)

P q β W L ρ C q C W    q L W β  

−

−  − −  −  −   



= −  − −   −  − −    

−  − −  +  −   − − 

   (5.4) 

Combing the Eqs. (5.2) and (5.4) forms t t t t t t t tC (q ,W ,L ,P ) R (q ,W ,L ,P )− −− =  , to 

arrive at the following relations: 

 
T T

t t t t t t t t
π π

t 1 t 1

min E C(q ,W ,L ,P ) |  S(1) max E R (q ,W ,L ,P ) |  S(1)−

= =

             (5.5) 

Following the previous study (Zhou et al.,2019; Liu et al., 2022), to establish the 

Bellman equation, the prosumer's objective function will be built based on profit-

maximizing (i.e., the cost-minimizing). This work modeled the prosumer’s optimal 

scheduling decisions as a Markov decision process during finite horizon t {1,2,3, ,T} . 
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At the beginning of period t, prosumer knew the storage level tE , forecasted available 

solar generation tW , predicted electricity price tP , and self-demand/load tL  in advance. 

Define the state at period t as t t t t tS(t) S (E ,W ,P ,L )= . Based on these states, the prosumer 

determined the optimal economic scheduling decision tq  , as a decision variable 

representing the SOC change before considering efficiency loss.  

Let 
tV (S(t))   represents the value function under the state 

t t t t t
ˆ ˆ ˆ ˆS(t) S (E ,W ,L ,P ) E W L P=      in period t, which satisfies the Bellman equation:  

( )
t

t t t t t 1
Action(E )

V(S(t)) max [R (q ,W ,L ,P ) E V (S(t 1) | S(t)−

+= + + .             (5.6) 

The value function is represented as three sub-optimization problems as shown in 

Eq. (5.7) when solar generation cannot meet the power load (i.e., scenario 1): 

( )
( )

( )

t 1

t 1

t t(1)* ch w *t 1t 1
t t t t t t t 1

E E E
t t

t t(2)* dis w *t 1t 1
t t t t t t t 1

E E E
t t

W L EE
V (S(t)) max P E αρ P C E C W  E[V S(t 1) | S(t) ]

η ρ η

W L EE
V (S(t)) max P E β ρ P C E C W E[V

η ρ η

+

+

− ++
+

 

− ++
+

 

 −    
= − − + −  − −  + +   

     

−   
= − − + +  − −  +  

   
( )

( ) ( )
t 1

(3)* dis w *t 1 t 1

t t t t t t t t t 1
E E E

t t

S(t 1) | S(t) ]

E E
V (S(t)) max P E βρ P W L ρ C E C W  E[V S(t 1) | S(t) ]

η η+

− + +

+
 





    

+  
   


      

= − − + − +  − −  + +     
      

 (5.7) 

By using the Bellman equation, three optimal energy inventory reference points 

corresponding to the three value functions in scenario 1 are shown as Eq. (5.8):  

          

( ) ( ) 

( ) ( ) 

( ) 

t 1

t 1

t 1

(1)* ch *

t 1 t t 1 t t 1
E E E

(2)* dis *

t 1 t t 1 t t 1
E E E

(3)* dis *

t 1 t t 1 t t 1
E E E

E arg max P αρ+C E η +E[V S(t 1) | S(t) ]

E arg max P β ρ C E η E[V S(t 1) | S(t) ]

E arg max (Pβρ C )E η +E[V S(t 1) | S(t) ]

+

+

+

−

+ + +
 

−

+ + +
 

−

+ + +
 

 = − +




= − − + +



= − − +

       (5.8) 

By investigation and comparison, it was found that the relations between the three 

reference points are related to forecasted electricity prices, efficiencies of energy storage 
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and transmission line, and charging and discharging operating costs of storage. Thus, we 

can draw the following results.  

Lemma 5.1: The relationship of the optimal reference point is as follows:  

  

( ) ( )

( )
( )

( )
( )

(1)* (2)* (3)*

t t 1 t 1 t 1

dis ch (1)* (3)* (2)*

t t 1 t 1 t 1

dis ch dis ch

(3)* (1)* (2)*

t t 1 t 1 t 1

1) If  P 0, there is E E E ;

2) If C +C 1 αρ βρ P 0, there is E E E ;

C +C C +C
3) If P , there is E E E ;

1 αρ β ρ 1 αρ βρ

4) If  

− − −

+ + +

− − −

+ + +

− − −

+ + +

  

− −    

−   −  
− −

( ) ( )dis ch (3)* (2)* (1)*

t t 1 t 1 t 1P C +C 1 αρ β ρ , there is E E E .− − −

+ + +










  − −  


      (5.9) 

Similar to Liu et al. (2021a) and Liu et al. (2022a), this study targeted the positive 

electricity prices, then from Eq. (5.9), the relationships of three reference points are 

(1)* (2)* (3)*

t 1 t 1 t 1E E E− − −

+ + +  , which leads to the following proposition.   

(2) Optimal dispatch for energy storage when t Γ− . 

Proposition 5.1: When the forecasted electricity prices tP 0 ， there is 

(1)* (2)* (3)*

t 1 t 1 t 1E E E− − −

+ + +  . The optimal dispatch for storage at the period t Γ {1,2, ,T}−   in 

each state t t t t t
ˆˆ ˆ ˆS(t) S (E ,W ,L ,P ) E G L P=      can be shown as follows:  

Case1: If the demand gap is small: 
dis(3)*

t t t 1(L W ) β min{E E ,Q }−

+−  − , the optimal 

action of the prosumer is obtained as follows: 
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ch
(1)* (1)*

t 1 t t t 1

(1)*

t 1

(1)* (2)*

t t 1 t 1

*

t t

min{E E ,Q },  E [0,E ] ,

(buying power for consumption and storing,bringing SOC up to E );

0,E (E ,E ],

 (purchasing power for consumption without storing 

q (S )

− −

+ +

−

+

− −

+ +

−

− 



=
dis

(2)* (2)* (3)*

t 1 t t t t t 1 t 1 t t

(2)*

t 1

dis
(3)*

t 1 t t t 1

it or changing the SOC);

max{E E , (L W ) β, Q },E (E ,E (L W ) β],

(discharge and purchasing power for consumption, lowering SOC to E );

max{E E , Q },E (E

− − −

+ + +

−

+

−

+ +

− − − −  + −

− −  (3)*

t t

(3)*

t 1

(L W ) β,E],

 (disch arging for consumption and selling, bringing SOC down to E ).

−

−

+

















+ −



  (5.10) 

Case 2: If the demand gap is large: 
dis

(3)*

t t t 1(L W ) β min{E E ,Q }−

+−  −  , the optimal 

action of prosumer is obtained as follows: 

ch
(1)* (1)*

t 1 t t t 1

(1)*

t 1

(1)* (2)*

t t 1 t 1*

t t

min{E E ,Q },  E [0,E ],

(buying power for consumption and storing,bringing SOC up to E );

0,E (E ,E ],
q (S )

 (buying power for consumption without storing it, k

− −

+ +

−

+

− −

+ +−

− 


=

dis(2)* (2)*

t 1 t t t t t 1

(2)*

t 1

eeping SOC unchanged);

max{E E , (L W ) β, Q },E (E ,E],

(disch arging and buying for consumption,bringing SOC down to E ).

− −

+ +

−

+










 − − − − 




 (5.11) 

The proposition 5.1 shows the prosumer’s optimal scheduling dispatch for energy 

storage based on three SOC reference points 
(1)*

t 1E −

+ , (2)*

t 1E −

+ ,and (3)*

t 1E −

+ . In scenario 1, if the 

solar generation cannot meet the power load, then the gap between the supply and demand 

is t tL W . There are four different actions: 1) buying power from the market to meet the 

gap between production and demand as well as to store; 2) discharging/releasing energy 

from the storage and buying the power from the market to match the gap; 3) discharging 

power from storage for satisfying the load gap and sale; 4) remaining idle. The first action’s 
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optimal storage level at the end of period t is reference point 
(1)*

t 1E −

+ , which means that the 

decision variable tq  is greater than 0 (i.e., tq 0 ). Then, the second action corresponds 

to reference point (2)*

t 1E −

+  , meaning tq  is between 0 and 
t t(L W ) β− −   (i.e., 

t t t(L W ) β q 0− −   ). The third action corresponds to the third reference point (3)*

t 1E −

+ , and 

tq is less than 
t t(L W ) β− −  (i.e., 

t t tq (L W ) β − − ). If none of the three reference points 

can be approached in one period, the prosumer will choose to do nothing (i.e., action 4). 

The first part (i.e., Case 1) shows the optimal dispatch when the load gap is small 

(i.e., 
dis(3)*

t t t 1(L W ) β min{E E ,Q }−

+−  − ). When energy in the battery/storage is less than 

(1)*

t 1E −

+
, the prosumer should buy power to consume and store (action 1) then reach the SOC 

reference point (1)*

t 1E −

+
. When the energy in the storage/battery falls between (1)*

t 1E −

+
and 

(2)*

t 1E −

+ , either action takes the SOC away from the optimal reference point, so the prosumer 

should do nothing. When the current storage level (SOC) is between (2)*

t 1E −

+  and 

(3)*

t 1 t tE (L W ) β−

+ + − , the prosumer should release energy from the storage and buy power to 

fulfil the gap between the consumption and production (action 2) as well as bring energy 

inventory in the storage down to (2)*

t 1E −

+ as much as possible. When energy in the battery is 

more than
(3)*

t 1E −

+ , the prosumer should discharge energy from battery, part of which is used 

to fulfill the gap and part of which is sold to the market(action 3) as well as bring SOC 

down to 
(3)*

t 1E −

+ . 

The second part of Proposition 5.1 (i.e., Case 2) is the optimal scheduling dispatch 

when the gap is large (i.e., 
dis(3)*

t t t 1(L W ) β min{E E ,Q }−

+−  − ). In case 2, the prosumer 
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cannot perform action 3 for a large load gap. This is because when the power in the 

battery/storage is less than (1)*

t 1E −

+ , the prosumer should adopt action 1 and bring SOC of 

storage up to (1)*

t 1E −

+  . When the power in the battery is between (1)*

t 1E −

+  and (2)*

t 1E −

+  , the 

prosumer should do nothing. If power in the battery is more than (2)*

t 1E −

+ , the prosumer 

should perform action 2 and bring SOC of storage down to (2)*

t 1E −

+ as close as possible. 

On the whole, if the gap between the DERs generation and self-demand is small 

(i.e., Case1), when the energy inventory in storage is low, the prosumer should choose to 

purchase electricity from the market to meet the demand and keep energy storage idle. If 

the electricity prices are low, after buying power from the grid to fulfill the gap, the 

prosumer should also buy electricity to store it into the battery and sell it when the prices 

are high for energy arbitrage (actions 1 and 4). When the energy in storage is in the middle 

range, the prosumer can meet the gap by electricity discharging the storage or purchasing 

energy from the power market (action 2). When the energy in storage is large, the prosumer 

should release the power in the battery to match the gap and sell the remaining electricity 

from the storage to the electricity market (action3). If the gap is large (i.e., Case2) and the 

energy in the battery is insufficient, discharging storage cannot meet the gap, she still needs 

to purchase electricity from the grid to fulfill the gap, then action 3 does not happen. 

Special Case: if ρ 1=  (i.e., ignoring the transmission loss), the prosumer’s cost 

function (i.e., profit function) corresponding to actions 2 and 3 under scenario 1 is 

equivalent. This is because when we ignore the transmission loss, the purchased electricity 

absolute quantity corresponding to action 2 and the absolute electricity quantity sold to 

market corresponding to action 3 are the same before considering the transmission loss. 
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There is (1)* (2)* (3)*

t 1 t 1 t 1E E E− − −

+ + + =  , which is the special case of Proposition 5.1 and the 

prosumer’s optimal dispatch decision remains unchanged. 

5.3.3. DERS Generation Can Satisfy the Self-demand. This Section examines 

the prosumer's optimal energy scheduling and electricity bill minimization analysis when 

the prosumer's solar generation can satisfy her power demand (i.e., t Γ+ ). 

(1) Profit function and optimization analysis.  

In stage t Γ+ (i.e., prosumer’s solar power generation can meet her own demand,

t tW L  ), the following cost functions are obtained (Nascimento and Powell, 2013) in 

Scenario 2, showing as Eq. (5.12): 

( ) ( )( )

( ) ( )

( ) ( )

ch w

t t t t t t t t t

ch w

t t t t t t t t t t t t t

dis w

t t t t t t t

P q α W L ρ+C q +C W     q α W L

C (q ,W ,L ,P )= P q α W L ρ+C q +C W      (0 q α W L )

P q β W L ρ C q +C W            q 0  

+

  − −     − 


− − + −     −  

− − + −  −    

  (5.12) 

The first line of Eq. (5.12) indicates the cost when the prosumer stored the surplus 

solar power generation after satisfying the power-consuming device demand and also 

purchased electricity from the market to store into the battery. Additionally,

t t t[q α (W L )] ρ− −  represents the amount of electricity purchased from the market after 

considering efficiency loss. After meeting the electrical load, the remaining solar 

generation is t tW L− . If a partial solar generation is sold to the market and the rest of it is 

stored in storage, then the cost for the prosumer is shown in the second line of Eq. (5.12), 

which is the operation cost minus the profit from the electricity sold to the market, and 

t t t[ q α (W L )]ρ− + −  means the electricity quantity that sold to the market. The last line is 

the cost when the prosumer releases the energy from the storage and discharges the storage 
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as well as sells all remaining solar generation to the market, here 
t t t[ q β (W L )]ρ− + −  is the 

amount of electricity sold to the market. 

Similarly, the reward functions of the prosumer can be reported as in Eq. (5.13).  

( ) ( )

( ) ( )

( ) ( )

ch w

t t t t t t t t t

ch w

t t t t t t t t t t t t t

dis w

t t t t t t t

P q α W L ρ C q C W    q α(W L )

R (q ,W ,L ,P ) C = P q α W L ρ C q C W    0 q α(W L )

P q β W L ρ C q C W           q 0  

+ +

−  − −  −  −   − 



= − −  − −  − −    −  

−  − −  +  −   

 (5.13) 

We also find that t t t t t t t tR (q ,W ,L ,P ) C (q ,W ,L ,P )+ += −  hold. Thus, the model can 

also be built as a profit-maximizing problem. Similar to Section 5.3.2, the objective 

function in the Scenario 2 is:  

T T

t t t t t t t t
ππ

t 1 t 1

max E R (q ,W ,L ,P ) |  S(1) min E C (q ,W ,L ,P ) |  S(1)  + +

= =

   = −            (5.14) 

Eq. (5.14) indicates that when the renewable energy generation is larger than the 

demand of prosumer, then the prosumer can store the rest of solar generation or sell it to 

the market, which is equivalent to the scenario that the electricity merchant with renewable 

source plants and energy storage as discussed by Zhou et al. (2019) and Liu et al. (2022d). 

So then, there is the optimal storage level as SOC reference points as follow.   

            

( ) ( ) 

( ) ( ) 

( ) 

t 1

t 1

t 1

(1)* ch *

t 1 t t 1 t t 1
E E E

(2)* ch *

t 1 t t 1 t t 1
E E E

(3)* dis *

t 1 t t 1 t t 1
E E E

E arg max P αρ+C E η +E[V S(t 1) | S(t) ]

E arg max P ρ α+C E η E[V S(t 1) | S(t) ]

E arg max (Pβρ C )E η +E[V S(t 1) | S(t) ]

+

+

+

+

+ + +
 

+

+ + +
 

+

+ + +
 

 = − +




= − + +



= − − +

    (5.15) 

 In Eq. (5.15), three SOC reference points correspond to three different actions. 

By comparing, for positive prices tP 0  , we obtained (1)*+ (2)*+ (3)*+

t 1 t 1 t 1E  E E+ + +   holds. 

Considering the demand/load of prosumers, the following proposition will be achieved. 
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(2) Optimal dispatch for energy storage when 
t tW L 0−  .  

When the power generation can meet the load (i.e., 
t tW L ) after meeting the load 

by solar generation, the prosumer's dispatch action is similar to Zhou et al. (2019) and Liu 

et al. (2022b), shown as Proposition 5.2: 

Proposition 5.2: For every stage t Γ {1,2,3, ,T}+   , and positive forecasted 

electricity price tP P , the optimal storage level as SOC reference points in equation (5.15) 

has
(1)* (2)* (3)*

t 1 t 1 t 1E E E+ + +

+ + +   . Thus, an optimal decision for profit-maximizing merchant in 

each state t t t t t
ˆˆ ˆ ˆS(t) S (E , W ,L ,P ) E G L P=      can be shown as follows:  

Case 3: If the remaining generation is small: 
ch(1)*+

t t t 1α(W L ) min{E ,Q }+−  , the 

optimal action of prosumer is obtained as follows: 

ch(1)*+ (1)*+

t 1 t t t 1 t t

(1)*+

t 1

ch
(2)*+ (1)*+ (2)*

t 1 t t t t t 1 t t t 1

*

t t

min{E E ,Q },  E [0,E α(W L )],

(storing all remaining DERs and purchasing power, bringing SOC up to E );

min{E E ,α(W L ),Q },E (E α(W L ),E

q (S )

+ +

+

+ + +

+

−  − −

− −  − −

=

+

(2)*+

t 1

(2)*+ (3)*+

t t 1 t 1

dis(3)*+ (3)*+

t 1 t t t 1

],

(storing remaining DERs without buying power, and increasing SOC to E );

0,E (E ,E ] (keeping SOC unchanged); 

max{E E , Q },E (E ,E],

(selling all remaining DE

+

+ +

+ +



− − 

(3)*+

t 1Rs and r elasing energy, lowering SOC to E ).+



















(5.16) 

Case 4: If the remaining generation is large: 
ch(1)*+

t t t 1α(W L ) min{E ,Q }+−   , the 

optimal action is shown below: 
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ch(2)*+ (2)*+

t 1 t t t t t 1

(2)*+

t 1

* (2)*+ (3)*+

t t t t 1 t 1

dis(3)*+

t 1 t

min{E E ,α(W L ),Q },E [0,E ]

(storing remaining DERs without buying, increasing SOC to E );

q (S ) 0,E [E ,E ](keeping SOC unchanged);

max{E E , Q },

+ +

+

+

+ +

+

− − 

= 

− −

，

(3)*+

t t 1

(3)*+

t 1

E (E ,E]

(Selling remaining DERs and discharing energy,  lowering SOC to E ).

+

+








 




，

  (5.17) 

Special Case: if ρ 1= (i.e., ignoring the transmission loss), the prosumer’s profit 

function (cost function) expressions corresponding to actions 1 and 2 under scenario 2 are 

the same. Then, there is (1)* (2)* (3)*

t 1 t 1 t 1E E E+ + +

+ + +=  , which is the special case of Proposition 5.2. 

5.3.4. Optimal Dispatch for Prosumer with Energy Storage. The optimal 

scheduling in the two possible scenarios (which correspond to different relationships 

between the solar generation and self-consumption demand of prosumer), implied the 

optimal global solution across those scenarios. The prosumer's scheduling strategies were 

analyzed under two scenarios, respectively. 

Propostion 5.1 and Propostion 5.2 show the structure of the optimal dispatch 

decisions under scenario two. The storage's feasible SOC range can be segmented into 

several sub-ranges by SOC reference points, and prosumers' dispatch decisions can be 

selected based on the sub-ranges within which the current SOC falls. 

For a given finite optimization horizon  Γ 1, 2,...,T= , only scenarios 1 and 2 (solar 

power generation can satisfy the prosumers' electricity demand or not) exist, that is 

Γ Γ Γ− +=   . Recall the described optimal scheduling in propositions 5.1 and 5.2, this 

allows us to get the optimal dispatch of the energy storage is: 
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Proposition 5.3: For any  t Γ Γ Γ 1,2,...,T− + =  = , the optimal energy storage 

scheduling of prosumers for each scenario are summarized below: 

 

 
 

* *

t t t t t

* *

t t t t t

1) If  t Γ ,  there is q (S ) q (S ) S

 t T 1,2,...,T

2) If  t Γ ,  there is q (S ) q (S ) S

− −

+ +

  =


  =
  =


       (5.18) 

This expression in Proposition 5.3 indicates the optimal global results from the 

perspective of electricity bill minimization or profit maximization. Proposition 5.3 

describes the optimal energy scheduling policy structure of the storage and the prosumers' 

optimal expected minimum electricity bills.  

 

 

Figure 5.3 The flowchart of obtaining the optimal scheduling decisions for prosumer 
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Figure 5.3 shows the process of obtaining the optimal scheduling decisions for 

prosumer in the optimization period  t Γ Γ Γ 1,2,...,T− + =  =  according to the results 

proposed above using dynamic programming. First, according to whether the DERs 

generation can meeting the self-demand or not, we choose the corresponding model and 

obtain the SOC reference points. Then, by analyzing the relationship of reference point and 

the demand gap/ the remaining generation, different formula of optimal dispatch decision 

is given. Last, by the Bellman equation, we perform stepwise iterative solution to obtain 

the solution of the optimal scheduling problem in the multi-stage optimization period. The 

result of optimal dispatch in Section 5.3 yields the following insight, as shown below.         

Managerial Insight: Due to the uncertainty of DERs generation and the dynamic 

demands, an electricity bill-minimization prosumer with storage should decide in advance 

whether the DERs generation can fulfill her power demand and choose different methods. 

Our results indicate that the analytical solution based on State-of-Charge (SOC) references 

points depends on the current energy in storage, the forecast price, available production 

of solar power, and power demand, which significantly facilitates prosumer decision-

making. The feasible state of charge (SOC) range of the storage will be split into different 

sub-ranges by SOC optimal reference points; the prosumer can conveniently achieve the 

corresponding optimal decision for each region by comparing the current SOC in the 

energy storage with the reference points in the next period. 

5.4. CASE STUDY AND NUMERICAL SIMULATION 

This Section explains the three-period optimal scheduling of the prosumer using a 

synthesis data case, which contains two scenarios: generation can satisfy the demand or 



117 

 

 

not. The results will be shown in 5.4.1. Further, Section 5.4.2 uses real electricity price data 

(from MISO), solar generation, and load from Missouri University of Science and 

Technology to show relevant results and insights. 

5.4.1. Case Study. In this Section, to illustrate the detail of the proposed approaches, 

a three-period case was shown. For each period, the electricity price was set as 

 tP 5,3,10= . Moreover, the residual value of energy in battery at the end of the decision-

making cycle was defined as the mean value of the three-period electricity price (i.e., 

VOE 6= ).  

This study assumed the capacity of storage is ten (i.e., E 0, E 10= = ), maximum 

capacity of a single cycle storage discharge/charge is twelve and seven. It means that the 

full storage could be emptied in one period, and empty storage energy need more than one 

period but less than two periods to be filled, which holding that chE Q E+    (resp. 

disE E Q−  ) and chE 2Q E+  . It’s assumed that the operating cost of storage be one (i.e., 

ch disC C 1= = ), and the solar production cost is zero ( WC 0= ) since it does not affect the 

optimal strategies. Assumed the storage charging, discharging efficiency and transmission 

efficiency are 0.9 (i.e., α β ρ 0.9= = = ), and do not consider self-discharging loss of storage 

(i.e., η 1= ), the solar generations are  tw = 6,5,0 , and the local demand is  tL = 4,9,6 .  

This case uses the model and approach shown in Section 5.3, and the optimal 

dispatch result proposed in Proposition 5.3 (optimization from the perspective of prosumer) 

to get the optimal decisions and SOC reference points with two different initial SOC (i.e.,

 1E = 1,5 ), as shown in Table 5.1 (See Appendix C).  
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Table 5.1 Optimal results under two perspectives 

 
1E 1=  1E 5=  1E 1=  1E 5=  

 Considering self-consumption demand Ignoring self-consumption demand 
(1)* (2)* (3)*

4 4 4(E ,E ,E )                 (0,0,0) (0,0,0) 

(1)* (2)* (3)*

3 3 3(E ,E ,E )                   (10,10,10) (10,10,10) 

(1)* (2)* (3)*

3 3 3(E ,E ,E )                    (0,3,10)      (0,3,10) 

*

3q  -9.8 -10 -10 -10 

*

2q  7 5 7 5 

*

1q  1.8 0 2 0 

*

1V  -32.479 -10.819 69.741 90.148 

Optimal Profit -32.479 -10.819 -49.139 -28.732 

Minimum Bill 32.479 10.819 49.139 28.732 

 

To show the difference between the method proposed in this paper and the 

traditional study where the electricity merchant with storage and renewable source plants 

but ignoring the self-demand when making optimization and buys the electricity from the 

market directly to match her demand (optimization from the perspective of merchant), the 

optimal results are presented in Table 5.1. Table 5.1 indicates the results under two 

scenarios: 1) from the perspective of the prosumers who has DERs and energy storage 

(considering the self-demand during the optimization); and 2) from the perspective of the 

merchant who has renewable energy resource and energy storage (dispatch the energy 

storage based on the co-optimization scheduling policy proposed in Section 2; buy the 

electricity from the market directly to satisfy her power demand). 

This study also used the traditional MILP model (Chazarra et al., 2018; Wang et 

al., 2021) to achieve optimal results, for comparison purpose. The same optimal results for 

this case were obtained by DP and MILP methods, shown in Table 5.1, which are verified 

through the implementations in MATLAB. The scheduling decisions, cost functions, SOC 

reference points, and their relationships are all impacted by the power demand, which 
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significantly influences the analytically optimal scheduling policy structures. Hence, we 

employ the dynamic programming to obtain the analytical results regarding the boundary 

conditions under which the merchants choose the different optimal scheduling policies. 

We also confirm that the best SOC reference points (i.e., equations (6.8) and (6.9)) 

for the subsequent period (i.e., period t+1) only relied on the current state and the historical 

data. As a result, the prosumer only needs to recompute the reference points to make the 

decision in the first period when the initial SOC in the storage changes. Thus, employing 

the dynamic programming, the prosumer does not need to completely rerun the model since 

the initial SOC just modifies the reference points used to make decisions in the first 

period and has no effect on the economic dispatch policy. However, using the traditional 

MILP approach, the decision-makers should conduct the entire model again and achieve 

the best schedule for different initial SOC levels. 

5.4.2. MISO Case Study. In this Section, one-month real data from 1 to 31 May 

2021 in MISO was used (i.e., T=744), concluding hourly electricity prices series 

1 2 TLMP {LMP ,LMP , ,LMP }=  ($/MW) in the day-ahead market, solar power generation 

and clear load data with 744 stages (prices information are available at 

https://www.misoenergy.org/ ).  

The minimum and maximum battery capacities E  and E  is denoted by 0 and 

300, respectively. The maximum charging and discharging capacities are chQ 30=  and 

disQ 50= . Storage quantities used the units of KW hours, and both charging and discharging 

rates were measure by units of KW. In this case, the charging and discharging efficiencies 

are α β 0.95= =  , and transmission efficiency is ρ 0.95=  . Assume it took 

https://www.misoenergy.org/
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dis(E E) Q 6− =  hours for energy storage to empty the battery and that refilling the battery 

needed ch(E E) Q 10− =   hours. These values above corresponded to the approximate 

durations shown in Missouri SandT’s Eco-Village (see 

https://cree.mst.edu/laboratories/ecovillage/ for details). And it was assumed that the 

charging and discharging operating costs were 1 ( ch disC C 1= =  ($/ MW)), and the self-

discharging were ignored (η 1= ).  

The solar generation cost was also ignored as it did not affect the optimal strategies 

(
wC 0=  ). In this Section, the VOE at the terminal period was not considered (i.e.,

T+1VOE 0= ). Regularly, one month is an optimization cycle for the community to minimize 

the monthly electricity bill in the power market.  

In practice, considering the demand response of self-consumption of the prosumers 

who have energy storage and distributed energy resources, the original load values were 

decreased (resp., increased) by 10%, 20% are investigated, respectively. Compared with 

the existing literature, this is the first work to consider the joint scheduling strategy of 

prosumers with energy storage.  

The plots in Figures. 5.4 and 5.5 show the optimal SOC and scheduling actions of 

the battery from the perspective of the prosumers under three different demand/load rates 

when the initial energy is zero in the energy storage. In these figures, No-Lt (grey line) 

indicates that ignoring the self-consumption demand impacts the energy storage scheduling. 

Under which the prosumer 1) dispatches the energy storage based on the co-optimization 

scheduling policy proposed in Section 2; 2) buys the electricity from the market directly to 

satisfy her own power demand.  

https://cree.mst.edu/laboratories/ecovillage/
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To clearly demonstrate the difference between various load levels, we select one-

day findings from Figure 5.4 (a) and draw it in Figure 5.4 (b). 

 

 

(a) The optimal SOC under different load levels in one month 

   

                    

 

(b) The optimal SOC under different load levels in one day 

 

Figure 5.4 The optimal SOC under different load levels 
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(a) The optimal actions under different load levels in one month 

                  

                   

 

(b) The optimal actions under different load levels in one day 

 

Figure 5.5 The optimal actions under different load levels 

 

Compared with performing scheduling optimization from the traditional merchant 

ignoring self-demand, considering the self-demand can bring more profit to prosumer and 

decrease the frequency of idle for energy storage. This attributes to the prosumer can meet 

her load by discharging power in storage and DER generation rather than buying power for 

consumption and resulting in transmission loss. 



123 

 

 

According to Propositions 5.1 and 5.2 in Section 5.3, transmission efficiency played 

an essential role in decision-making process. Next, there are three different situations: 

 ρ 0.9; 0.95; 1.0=  . The prosumer's optimal SOC and dispatch actions curves when 

considering and ignoring the transmission loss are shown in Figures 5.6 and 5.7 based on 

the original load demand values. We use one-day results from Figure 5.6 (a) and portray it 

in Figure 5.6 (b) to highlight the difference between different transmission efficiencies. 

 

 

(a) The optimal SOC under different transmission efficiencies in one month 

 

 

 

(b) The optimal SOC under different transmission efficiencies in one day 

 

Figure 5.6 The optimal SOC under different transmission efficiencies 
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(a) The optimal actions under different transmission efficiencies in one month 

 

 

 

(b) The optimal actions under different transmission efficiencies in one day 

 

Figure 5.7 The optimal actions under transmission efficiencies 

 

Considering the transmission loss, when the DERs generation is less than load, 

compared with buying electricity from the market to satisfy the self-consumption, the 

prosumer is more willing to consume the DERs generation and energy in the battery. On 

the other hand, when the DERs generation is larger than self-consumption load, the 

prosumer tends to store the solar power generation and to release it in the future. 



125 

 

 

Similar to Section 5.4.1, we consider two scenarios from the perspective of 

prosumer and merchant who do not consider self-demand and show the optimal profit 

under different transmission losses in Table 5.2. 

 

Table 5.2 Optimal profit for prosumer and traditional merchant 

Transmission loss ρ=0.93 ρ=0.95 ρ=0.97 ρ=0.99 ρ=1 

Prosumer considering the self-demand 

Profit 70652.43 79539.34 88872.48 98800.36 104004.97 

Traditional merchant ignoring self-demand but buying power for consumption 

Wind-ES profit 1151070.88 1176252.74 1201436.28 1226634.98 1239228.43 

Consumption cost 1220680.36 1194981.83 1170343.03 1146699.74 1135232.74 

Profit -69609.48 -18729.09 31093.25 79935.25 103995.69 

 

In Table 5.2, ‘Wind-ES profit’ represents the profit that the merchant obtains based 

on the co-optimization scheduling of renewable energy resources and energy storage. The 

‘Consumption cost’ is the cost merchant purchased from the market to meet the self-

demand. Then, the profit from the perspective of traditional merchants ignoring self-

demand but buying power for consumption is the ‘Wind-ES profit’ minus the 

‘Consumption cost,’ which is shown in Table 5.2. Results show that, compared with 

ignoring self-demand during scheduling optimization, considering self-demand makes 

more profit or less electricity bill because of the transmission loss. Otherwise, with the 

increase in transmission loss, the cost/bill will increase, and it has a greater impact on 

merchants under scenario two. This is because merchants ignoring the self-demand will 

need to buy power from the market for consumption more frequently, producing 

transmission loss and increasing their bills. 
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The simulation results show that, for a prosumer who owns DERs and energy 

storage, taking into account her self-demand during the optimization (fulfilling her self-

demand by DER generation, discharging storage, or power purchased from the market) 

lowers her electricity bill compared to the existing method (dispatching her storage based 

on the co-optimization scheduling optimization of electricity merchant and buying power 

directly to satisfy her self-demand). Therefore, when considering the transmission loss, the 

prosumer should consider her self-demand during the optimization. 

5.5. SECTION SUMMARY AND ANALYSIS  

This section analyzed the effects of self-consumption demand on the joint economic 

dispatch of prosumers (energy consumers who are also producers), particularly for 

prosumers with both energy storage and distributed energy sources (DERs). Studies in the 

existing literature on the economic dispatch scheduling policy of energy storage, mostly 

from the perspective of electricity merchants, do not address the impacts of self-

consumption demand. We model the optimal scheduling for prosumers with energy storage 

based on dynamic programming, which achieves the optimal solution via Bellman 

equations. Furthermore, the optimal dispatch decision structure of this study theorized the 

classic results known as optimal in the literature, and it did not consider the self-

consumption demand. The results led to an optimal strategic structure to support multistage 

decision-making of prosumers with energy storage. 

Because of the uncertainty of distributed energy resource generation and the 

dynamic demands, it is critical to determine in advance whether the prosumers’ DERs 

generation can meet their own power demand and select different methods accordingly. 
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Therefore, to obtain the optimal scheduling strategy of the prosumer, different decisions 

under two scenarios were analyzed and the corresponding three SOC reference points were 

obtained at each decision stage, which were related to (a) forecasted electricity prices, (b) 

available DER generation, (c) energy in storage, and (d) electricity self-demand.  

 Our findings indicate that the analytical solution based on SOC significantly 

facilitates merchant decision-making. As the feasible SOC range of the storage is split into 

different sub-regions, the prosumer should make the corresponding scheduling decision to 

bring the current SOC in storage reach to the corresponding SOC reference point as close 

as possible considering the storage physical constraints in each sub-region. Compared with 

traditional profit-maximize electricity merchants with grid-connected storage and 

renewable energy power plants, but without considering the self-demand. When the DERs 

generation of the prosumer is larger than her own power demand, the prosumer should 

adopt similar strategies as the traditional study. However, if the DERs generation is lower 

than the power demand, the prosumer who prioritizes minimizing her electricity cost will 

discharge her energy storage or buy electricity from the market to meet her power needs. 

Finally, our results also show that considering the transmission loss of lines, the prosumer 

is willing to utilize the power in storage. 
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6. IMPLICATION OF PTC ON ECONOMICS DISPATCH FOR ELECTRICITY 

MERCHANTS WITH STORAGE AND WIND FARMS 

6.1. OVERVIEW AND RESEARCH QUESTIONS  

The production tax credit (PTC) promotes wind energy development, reduces wind 

power generation costs, and affects merchants’ joint economic dispatch, particularly for 

electricity merchants with both energy storage and wind farms. In this work (Liu et al., 

2022a), we focus on the optimal scheduling of a merchant that has both storage (e.g., PSH 

or battery) and a renewable power plant (wind farms will be used henceforth to mean power 

plants). In this configuration, the electricity merchant uses energy storage to manage power 

transactions with the wholesale power market while considering the physical constraints 

of storage (e.g., the capacity of the energy storage, charging and discharging 

limitations/efficiencies), and the wind farm receives PTC (production tax credit) by selling 

the wind-generated electricity to the market in the model. Operational costs and energy 

value at the end of the optimization horizon were included when calculating the electricity 

trade on the market. 

To capture a wide range of application scenarios, our analyses are carried out in 

two distinct settings. In the first, a wind farm is receiving PTC by selling the wind 

generation to the market and has a battery that will be able to buy electricity from the grid 

to store, but the stored wind generation cannot receive PTC for time-shifting sales (policy 

one). At this junction, the merchant has four choices: storing wind-generated power and 

buying power from the market, storing and selling wind-generated power, remaining idle, 

or discharging storage and selling all wind-generated power to the market. In the second 

scenario, a wind farm with energy storage that stored wind generation will also qualify for 
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PTC but storing energy from the grid will disqualify it from receiving PTC. In this scenario, 

the power stored in the storage must be less than or equal to wind production in each period. 

Therefore, in this case, an electricity merchant has three choices: storing and selling wind-

generated power, remaining idle, or discharging storage and selling all wind-generated 

power to the market (policy two). We are able to characterize both policies mathematically. 

Our analyses aimed to address the following questions: (i) How do joint 

optimization electricity merchants benefit from considering the PTC? (ii) Under which 

policy will an individual profit-maximizing merchant achieve more profit? To answer these 

questions, we first adjust the merchant's traditional reward function by incorporating the 

PTC subsidy based on the quantity of renewable energy sold to the power market. We then 

distinguish the optimal decisions of electricity merchant by applying dynamic 

programming method to maximize his or her profit. We also show how the optimal 

economic dispatch actions can be modified based on the different PTC credit rates under 

policies 1 and 2. It should be mentioned that it is nontrivial to achieve analytical results 

when considering PTC in the problem since it will affect product cost and the traditional 

structure of reward functions that only consider electricity prices. Such challenges are 

approached in this work. We believe these are innovative theoretical conclusions that have 

never been examined before. This was the first work to work on the energy storage 

scheduling/economics dispatch problem via dynamic programming while considering PTC 

policies to the best of our knowledge. 

The rest of this Section is organized as follows. In Section 6.2, we outline the 

principal contributions. Section 6.3 modeled a wind farm receiving a PTC or subsidy by 

selling the wind generation to the market, and it explored battery options to buy electricity 
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from the grid to store. Section 6.4 examines cases in which storing energy from the grid 

disqualified the wind farm from receiving PTC. We will verify the proposed method based 

on a synthesis data case and demonstrate the results by a real electricity price data case 

from MISO in Section 6.5. Finally, the conclusions of this work and research questions for 

future research are discussed in Section 6.6.  

6.2. THE PRINCIPAL CONTRIBUTIONS 

This research makes three principal contributions. First, for a wind (or renewable) 

farm merchant with energy storage, this study analytically showed that the state of charge 

(SOC) reference points at each decision time depended on the currently available energy, 

the forecasted price, the PTC credit rates, and the available energy of wind generation. On 

this basis, the storage SOC was divided into different regions by the SOC reference points 

corresponding to the four actions: storing renewable generation and buying power from the 

power market, storing and selling renewable generation, remaining idle, and discharging 

storage and selling all renewable generation to the market. Then, the optimal merchant's 

actions could be uniquely determined based on the region within the current SOC falls. 

Second, compared to the traditional study in which the PTC was ignored, our results 

show that the PTC influenced the merchant’s optimal economic dispatch volume by 

changing the value of the SOC reference point when the PTC was relatively small. 

However, when the PTC credit rates were relatively large, the traditional optimal storage 

policy structure was substantially reconstructed by modifying the relationships among the 

reference points. The analytical results regarding the boundary conditions (i.e., PTC is large 
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or small) under which the merchants choose the different optimal policies were explained. 

With increased PTC, the frequencies for pumping and generating decreased.  

Third, we also investigate whether stored wind generation will qualify the firm to 

receive PTC but will make it unable to buy electricity from the grid. Although the optimal 

SOC reference points in this situation are affected, we can derive valuable insights by 

employing similar analytical procedures. We find that compared to the policy allowing 

merchants to buy power from the market (i.e., policy 1), which prohibits purchasing 

electricity from the grid, and all the energy released from the storage qualifies for the PTC 

(i.e., policy 2) benefits merchants' profit when the PTC subsidy is large according to the 

current PTC credit rates. We find that the merchant must seek to balance perfectly between 

policy 1 and policy 2. 

6.3. CONSIDERATION OF PTC FOR A MERCHANT WITH BOTH STORAGE 

AND A WIND FARM UNDER POLICY 1 

In this Section, the objective functions for electricity merchants were modeled 

when the merchant had both energy storage and wind farm power plants (Kim and Powell, 

2011; Su et al., 2019; Zhou et al., 2019). A wind farm is receiving PTC by selling wind 

generation to the market and has energy storage that will be able to buy electricity from the 

grid to store. The merchant's optimal strategies to maximize the profit and to consider the 

PTC subsidy based on the forecasted price were studied. 

6.3.1. Model Setup. This research focused on the co-optimal scheduling of an 

owner of storage and wind farm plant (i.e., an electricity merchant) using an inventory 

policy to manage power in the wholesale market and considering the physical constraints  
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of storage. Considering the production tax credit (PTC), a tax policy and subsidy for 

renewable electricity production, the merchant adopted a storage strategy and managed 

electricity, generating electricity by the power plant, and buying and selling electricity on 

the wholesale electricity market. Using discrete-time parameters, the electricity merchant 

periodically executed trading decisions during a limited horizon for each period 

t {1,2,3, ,T} . 

It was assumed that the storage capacity was finite. The PSH storage had maximum 

energy capacity E  and minimum energy level E  , thus E E 0   .The PSH had 

generating/discharging and pumping/charging capacity constraints. 
gQ  and gQ   are 

denoted as the upper and lower limits of generating, respectively, that can be sold to the 

market in each period. 
PQ and PQ express the pumping maximum and minimum limits 

that can be bought from the power market in one period. For tractability, the study adopted 

the conventional assumption (Kim and Powell, 2011; Jiang and Powell, 2015a; Secomandi, 

2010; Zhou et al., 2019) that g PQ =Q =0 . 

Three efficiency types with storage were considered. One type of efficiency is 

denoted by α  and β  , describing the efficiency of the pumping/charging and 

generating/discharging modes, where α,β (0,1] . The other is ρ (0,1] , which implies the 

portion of transmission efficiency: the ratio of power flowing out of a transmission line to 

the power flowing into another. Losses are incurred at the ends of the transmission lines in 

both directions. A third of them is a portion tη [0,1]  , an efficiency of stored energy 

dissipates during one period because of the evaporation, leakage, and spill rate of the PSH 

or self-discharge rate of the battery. 
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The economic dispatch for each period t is defined by g

tq  or p

tq   to denote the 

energy change between periods t and t+1 before considering the efficiency loss. This work 

uses
p g{c ,c }  ($/unit energy) denote the operating cost of PSH storage generating and 

pumping. Following a previous study (Xu et al., 2017), it was assumed that energy storage 

had a linear operating cost. In this study, wc  indicates the cost for unit wind generation. 

For simplicity and brevity of exposition, it was assumed that the renewable power plant 

followed a linear generation cost. The electricity price in period t is tP  (dollars per unit 

energy), and the sequential levels of the price are denoted by a vector of 1 2 TP (P ,P , ,P )= . 

In this work, bidding problems were not considered, and we assumed that all electricity 

submitted to the market was accepted (Zhou et al., 2016, 2019). 

The renewable electricity production tax credit (PTC) is a per-kilowatt-hour (kWh) 

tax credit for electricity generated using qualified renewable resources. To qualify for this 

credit, the taxpayer must sell electricity to an unrelated person. In practice, there are two 

metered technologies for wind farm service (Gautier et al., 2018). An import meter can 

measure electricity drawn from the grid, and an export meter is used to measure the 

renewable power supply to the grid to qualify for the PTC subsidy (see 

https://www.energy.gov/energysaver/grid-connected-renewable-energy-systems for detail). 

To prevent the merchant from selling all wind-generated electricity to the market to gain 

high PTC from the government and then buying electricity from the market to store, it was 

assumed that selling power to the market and purchasing power from the market were not 

allowed simultaneously.  

 

javascript:;
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Based on the assumption above, the reward function g p

t t t tR(q ,q ,w ,P )  from making 

decision g p

t t(q ,q )   corresponding to time t, the forecast prices tP  , and the available 

renewable generation tw , the PTC subsidy parameter s are defined as follows: 

( )

( ) ( )

p p p

t t t p t w t t t

(s) g p p p p p

t t t t t t t p t t t w t t t

g g g

t t t g t t w t t

P q α w / ρ c q c w  (q αw )

R (q ,q ,w ,P ) P w q α ρ c q s w q α c w (0 q αw )

P (q β w ) ρ c q sw c w  (q 0) 

−  − − − 



=  − − + − −  

  +  − + − 


  (6.1) 

Here, the parameter s in superscript of Eq. (6.1) indicates the situation considering 

the subsidy under policy 1. A distinguishing feature of this model is that it incorporates the 

subsidy s into the reward function for the power generation sold to the market by a wind 

turbine. This approach rendered the model both novel and practical, as it made the first 

contribution to the reward function. 

The first line in Eq. (6.1) means the costs when the merchant buys power from the 

power market, and there is no energy sold to the market in this instance; thus, the merchant 

does not receive a subsidy. The second line shows the rewards yielded from when the 

merchant stored part of renewable generation 
p

tq  to the storage and injected the remaining 

units 
p

t t(w q α)−   into the transmission line to the market. The additional term

p

t ts (w q α) −  represents the PTC from the wind power selling to the market. The third 

equation, 
g

t t(q β w )+ , shows the reward function when the merchant released the energy 

from PSH to the market and sold all wind generation. Among all generations sold to the 

market, additional term ts w  shows the PTC from the government, which also means that 

the stored wind generation by time-shifting sales cannot receive the PTC. The terms 
p

p tc q , 
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g

g tc q , and w tc w  denote the pumping operating costs paid by the merchant at time t for 
p

tq  

units of energy (power), generating operating costs paid by the merchant at time t for 
g

tq  

units of energy (power), and the wind generation cost, respectively. 

This work did not focus on electricity price forecasting methods. Instead, it was 

assumed that the merchant observed all power prices in advance, based on the forecasted 

method, so that controlling the storage was deterministic. The target of the study was the 

situation when wind farms received PTCs or subsidies by selling wind generation to the 

market and when they had a battery to be able to buy electricity from the grid to store, as 

shown in (s) g p

t t t tR (q ,q , w ,P ) in Eq. (6.1). 

Denote tE  as the SOC level in the PSH storage at the beginning of period t and 

the sequential SOC levels of the PSH as ( )1 2 TÊ= E ,E , ,E  , where 

 iE [E, E], i 1, 2, ,T    . We defined the feasible trading decisions set based on the 

current SOC level tE E  as: 

p g p p p p g g g g

t t t t t t t t t t tAction(E ) : {(q ,q ) :0 q Q U , q E E ,0 q Q U , q E E}=      −     − .  (6.2) 

Eq. (6.2) represents the maximum quantity of energy that can be pumped and 

generated. The first two constraints defined the upper pumping boundary because the 

maximum limit and PSH storage capacity, respectively. The third and fourth constraints 

showed the upper generating boundary because of the maximum limit and available energy 

in the PSH storage. Both binary decision variables p

tU   and g

tU   represent the 

commitment of the unit to pumping and power generation in [t, t+1)  . Without loss of 
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generality, p g

t tU U 1+  , where  p

tU 0,1 and  g

tU 0,1 , means the PSH cannot pump 

and generate simultaneously, or the battery cannot charge and discharge simultaneously. 

At the beginning of period t, the electricity merchant knew the SOC of PSH tE , the 

wind generation tw , the forecasted electricity price tP , and the PTC subsidy s . The action 

for each period t is defined by p

tq  or g

tq  to represent the water/energy changes between 

periods t and t+1 before considering the generating and pumping losses. At the end of 

period t, PSH storage self-discharge occurs, so the SOC at the start of period t+1 equals 

p g

t t t tη (E q q )+ − . Thus, the following formulation that outlines the state transition or the 

energy balance from time t to t+1 for storage is true: 

p g

t 1 t t t tE η (E q q )+ = + − .                       (6.3) 

6.3.2. Optimization and Analysis. To maximize profit, the merchant periodically 

produced economic dispatch decisions over a limited horizon in each time 

t {1,2,3, ,T} . The forecasted electricity price in period t is tP . Following a previous 

study (Liu et al., 2021; Zhou et al., 2016; 2019), this work modeled the merchant’s 

economic dispatch strategy as Markov dynamic programming with a finite horizon. The 

decision variables in each stage t are tE , tw , and tP , and the state at period t is defined 

by 
t t t tS(t) S (E ,w ,P )= . The merchant aimed to find the optimal decision rule π  to limited 

period t {1,2,3, ,T} . 
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   

T
(s) g p

t t t t
π

t 1

g g g

t t

g

t t

p p p

t t

p

t t

p g

t t

p g

t t

p g

t 1 t t t t

max E R (q ,q , w ,P )| S(1)

0 q Q U

q E E

0 q Q U

s.t. q E E t {1,2,3, ,T} 

U 0,1 , U 0,1

U +U 1

E η (E q q )

=

+

  

   

  −

   



 −  


 




 = + −



             (6.4) 

This work neglects the discount factor due to the limited optimization horizon, and 

E is the expectation concerning t t t(E ,w ,P )  . Here, 1E  , 1w   and 1P  are the given initial 

storage levels, the available wind generation, and the advance price, respectively. Let 

tV (S(t))   symbolize the value function under state t t t t
ˆ ˆ ˆS(t) S (E , w ,P ) E W P=      in 

period t. This function satisfies the Bellman equation: 

( )
t

(s) g p

t t t t t 1
Action(E )

V(S(t)) max [R (q ,q ,w ,P ) E V (S(t 1) | S(t) ]+= + + .           (6.5) 

Prior research in this field typically expressed the VOE at the end optimization 

horizon or residual value of energy as 
T 1V (S(T 1)) 0+ + =  (Secomandi, 2010; Zhou et al., 

2019). Eq. (6.5), 
T 1 T 1 T 1V (S(T 1)) VOE E+ + ++ =   , indicates the residual value of energy in 

storage. As a result, the implications for economic dispatch policy design are quite different 

when PTC is considered in addition to the value of energy in storage at T. Here, T 1E +  

represents the PSH SOC at the beginning of period T+1 and the SOC at the end of period 

T. Next, the optimal policy decision rule of Eq. (6.5) was established for the slow storage 

case (Secomandi, 2010). 
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This research substituted the binary decision variables with an equivalent 

continuous variable and changed Eq. (6.5) to a traditional Markov Dynamic Programming 

to obtain the analytical optimal policy rule. Following Porteus (2002), Secomandi (2010), 

and Zhou et al. (2019), let 
p g

t 1 t t t t t t tE η (E q q ) η (E q )+ = + − = +  be the decision variable. The 

action (decision) tq was used for each time t to substitute the decision variables g

tq , and 

p

tq representing the SOC changed between t and t+1 before accounting for the energy loss. 

Similar to Liu et al. (2021a), Zhou et al. (2016, 2019), tq 0  represents the SOC 

decrease due to the action of generating, tq 0  indicates the SOC increase because of 

pumping, tq 0=   shows that the SOC did not change, or the electricity merchant did 

nothing (i.e., idle). Then, there is t t 1 t tq E η E+= − . 

The reward function 
(s) g p

t t t tR (q ,q ,w ,P )   can be rewritten as 
(s)

t t tR (q ,w ,P )   from 

decision tq  and is defined as: 

t t t w t p t t t

(s)

t t t t t t t t w t p t t t

t t t w t t g t t

P (q α w ) / ρ c w c q                         (q αw )

R (q , w ,P ) P (q α w ) ρ s(q α w ) c w c q  (0 q αw ) 

P (q β w ) ρ c w +sw +c q                      (q 0) 

−  − − − 



= −  −  − − − −  

−  −  − 

.  (6.6) 

If s 0= , a traditional reward function is yielded. The PTC subsidy will change the 

traditional reward functions, which is an innovation of this study. As a merchant who has 

both energy storage and a wind farm, the objective function is: 

T
(s)

t t t
π

t 1

max E R (q ,w ,P )| S(1)
=

   .                        (6.7) 
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subject to the capacity constraints g p

t t tmax{ Q ,E E } q min{Q ,E E }− −   −  and the storage 

energy balance constraints t t t t 1η (E q ) E ++ = , where t {1,2,3, ,T} . 

6.3.3. Profit Maximization and Optimal Decision Rule. To obtain the optimal 

decision rules, the optimization in Eq. (6.7) was first split into three optimizations 

corresponding to three different actions: storing renewable generation and buying power  

from the market, storing and selling renewable generation, and discharging storage and 

selling all renewable generation to the market. Then, the optimal solutions for these three 

optimizations were found: 

( ) 

( )( ) 

( )

t 1

t 1

t 1

(1-s)* *

t t p t t t w t 1
E E E

(2 s)* *

t t p t t t w t 1
E E E

(3 s)*

t t g t t t w t
E E E

V (S(t)) max P αρ+c q w ( P ρ c )+E[V (S(t 1) | S(t)]  

V (S(t))= max Pρ s α+c q w [ Pρ c s] E[V (S(t 1) | S(t)]

V (S(t))= max ( Pβρ c q w [ Pρ c s] E[V

+

+

+

+
 

−

+
 

−

+
 

= − − − + +

− + − − + − + +

− − − − + − + *

1(S(t 1) | S(t)]









+


.  (6.8) 

The original optimization problem can be subdivided into three subproblems 

(1 s)

tmax V (S(t))−
 , 

(2-s)

tmax V (S(t))  , and 
(3-s)

tmax V (S(t))   subject to 

g p

t t tmax{ Q ,E E } q min{Q ,E E }− −   − , and tE E E  . 

If 
tV (S(t))   is the value function, it should produce the following conclusions 

based on the Bellman equation (Puterman, 1994, Zhou et al., 2019). Similarly, 

maximization Eq. (6.8) can be addressed by removing the given state S(t)  (i.e., the given 

value tE , tw , and tP ). The optimal results are: 
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( )( )

( )( )( )

( )( )

t 1

t 1

t 1

(1-s)* *

t t 1 t p t 1 t
E E E

(2-s)* *

t t 1 t p t 1 t
E E E

(3-s)* *

t t 1 t g t 1 t
E E E

V (S(t))= max E[V (S(t 1) | S(t)] P αρ+c E η

V (S(t))= max E[V (S(t 1) | S(t)] Pρ s α+c E η

V (S(t))= max E[V (S(t 1) | S(t) Pβρ c E η  

+

+

+

+ +
 

+ +
 

+ +
 

 + −




+ − +



+ − −


.        (6.9) 

Unlike the previous study (Kim and Powell, 2011; Porteus, 2002; Zhou et al., 2019), 

we considered the PTC in the reward function, which yielded for every t {1,2,3, ,T} , 

if the price of electricity at time t, tP  +  holds, in each stage t, the value functions 

tV (S(t))  and t 1E[V (S(t 1) | S(t)]+ +  are concave in tE [E,E]   for each given state 

t t t tS(t) S (E ,w ,P )=  . The optimal solutions for these three optimizations were found. 

Hence, the different SOC solutions, as in Lemma 6.1 (see Appendix D), were obtained. 

Lemma 6.1: When considering the PTC subsidy and electricity merchant, let (1-s)*

t 1E +
, 

(2-s)*

t 1E +
, and (3-s)*

t 1E +
 be the optimal results in Eq. (6.10), respectively: 

( )( )

( )( )( )

( )( )

t 1

t 1

t 1

(1-s)* *

t 1 t 1 t p t 1 t
E E E

(2-s) *

t 1 t 1 t p t 1 t
E E E

(3-s)* *

t 1 t 1 t g t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] P αρ c E η

E arg max E[V (S(t 1) | S(t)] P ρ s α c E η

E arg max E[V (S(t 1) | S(t)] Pβρ c E η

+

+

+

+ + +
 

+ + +
 

+ + +
 

 = + − +




= + − + +



= + − −


.       (6.10) 

In Eq. (6.10), the first finding for the optimal SOC solution (i.e., SOC reference 

point) (1-s)*

t 1E + does not relate to the PTC subsidy because the merchant did not receive the 

PTC when he or she stored all renewable generation. To be qualified for credit, renewable 

electricity must be sold by the merchant to the market to an unrelated person. 

Second, a wind farm can still receive PTC when the merchant performs the 

action: storing and selling renewable generation and discharging storage. Hence, it was 
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clear that the optimal solution (2-s)*

t 1E +
 is related to the wind generation that was sold to the 

market and the PTC subsidy that was received. 

Third, although the reward function changed when the merchant discharged storage 

and sold all renewable generation to the market when the PTC was considered, neither the 

PTC nor the wind generation affected the SOC level. Therefore, the optimal solution
(3-s)*

t 1E +

was obtained and had nothing to do with wind generation. 

In Eq. (6.10), the following relations were obtained: 

(1) For positive electricity prices 
tP 0 , the following is true: 

( )

( )

2 (1-s)* (2-s)* (3-s)*

t t 1 t 1 t 1

2 (2-s)* (1-s)* (3-s)*

t t 1 t 1 t 1

1) If s P (1 ρ ) ρ, there is E E E

2) If s P (1 ρ ) ρ, there is E E E

+ + +

+ + +

  −  


  −  


.          (6.11) 

(2) For negative electricity prices 
tP 0 , the study obtained the following: 

a) When there is ( )g p t(c +c ) 1 αρ βρ P 0− −    holding, for any s 0 , we 

will get the following relationship: 

(2-s)* (1-s)* (3-s)*

t 1 t 1 t 1E E E+ + +  .                      (6.12) 

b) When ( )t g pP (c +c ) 1 αρ βρ 0 − −   hold, 

(1-s)* (2-s)* (3-s)*

t g p t 1 t 1 t 1

(1-s)* (3-s)* (2-s)*

t g p t 1 t 1 t 1

1) If  0 s (αβ 1)ρP α(c c ), we wil l  g et E E E

2) If  s (αβ 1)ρP α(c c ), we wil lg et E E E

+ + +

+ + +

   − − +  


  − − +  

.   (6.13) 

Without loss of generality, this work only focused on positive electricity price 

scenarios. The optimal operation policy was obtained by comparing the current SOC with 

the SOC reference points. It should be mentioned that when considering PTC and the PTC 

was large (e.g.,
2

ts (P (1 ρ )) ρ −  ), the traditional relationship among the optimal SOC 
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reference points was changed. Thus, the following conclusions and insights are proposed 

that have never been explored before. Based on Eq. (6.11), the corresponding optimal 

results were delivered in the following proposition (proofs are given in Appendix D): 

Proposition 6.1: For every period t {1,2,3, ,T}  and forecasted electricity price 

tP P , unique optimal SOC reference points exist (1-s)* (2-s)* (3-s)*

t 1 t 1 t 1E ,E ,E+ + + , which depend on 

the state S(t) . When the subsidy per renewable generation sold to the market was small 

(i.e., 2

ts P (1 ρ ) ρ − ), there is (1-s)* (2-s)* (3-s)*

t 1 t 1 t 1E E E+ + +  , so the optimal action in each state 

t t t t
ˆˆ ˆS(t) S (E , w ,P ) E G P=     can be specified (see the following). 

Case 1) If 
p(1-s)*

t t 1αw min{E ,Q }+   (less wind generation), the SOC can be 

segmented into four regions: storing renewable generation and buying electricity from the 

market, storing and selling renewable generation, discharging storage and selling all 

renewable generation to the market, and doing nothing. 

p
(1-s)* (1-s)*

t 1 t t t 1 t

(1-s)*

t 1

(2-s)* (1)* (2-s)*

t 1 t t t t 1 t t 1

*

t t

min{E E ,Q },  E [0,E αw ],

(store renewable and purchased electricity up to E );

min{E E ,αw },E (E αw ,E ],

q (S ) (store renewable without buying up

+ +

+

+ + +

−  −

−  −

= (2-s)*

t 1

(2-s)* (3-s)*

t t 1 t 1

g(3-s)* (3-s)*

t 1 t t t 1

(3-s)*

t 1

 to E );

0,E (E ,E ] (keep SOC unchanged); 

max{E E , Q },E (E ,E],

(generate and sell renewable down to E ).

+

+ +

+ +

+











 



− − 



         (6.14) 

Case 2) If 
p(1-s)*

t t 1αw min{E ,Q }+   (more wind generation), the SOC will be 

segmented into three regions: storing and selling renewable generation, discharging storage 

and selling all renewable generation to the market, and doing nothing (i.e., idle/offline). 
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p(2-s)* (2-s)*

t 1 t t t t 1

(2-s)*

t 1

* (2-s)* (3-s)*

t t t t 1 t 1

g(3-s)* (3-s)*

t 1 t t t 1

min{E E ,αw ,Q },E [0,E ],

(store renewable without buying up to E );

q (S ) 0,E [E ,E ](keep SOC unchanged);

max{E E , Q },E (E ,E],

(generat

+ +

+

+ +

+ +

− 

= 

− − 

(3-s)*

t 1e and sell renewable down to E ).+













                (6.15) 

The first part of proposition 6.1 (i.e., Case 1) analytically shows that for a PSH and 

wind farm merchant that seeks to maximize his or her profit when there is less available 

wind energy, the storage SOC was divided into four possible regions by three SOC 

reference points ( (1-s)*

t 1E +
, (2-s)*

t 1E +
, and (3-s)*

t 1E +
that depend on the currently available energy 

tE , the forecasted electricity price tP , the PTC s , and the wind generation source tw ) 

that corresponded to four different actions: 1) storing all wind generation and buying power 

from the market; 2) storing and selling partial wind generation; 3) remaining idle; and 4) 

releasing storage and selling all wind generation to the market. If there was less energy in 

the storage than (1-s)*

t 1 tE αw+ − and less available renewable energy (i.e., 

p(1-s)*

t t 1αw min{E ,Q }+ ), the merchant should (a) store all the renewable sources and (b) 

purchase electricity from the market, then force the SOC up to (1-s)*

t 1E +  .Otherwise, the 

optimal action is similar with the second part of Proposition 6.1 as follows. 

The second part of Proposition 6.1 (i.e., Case 2) indicated that if there were more 

available renewable sources (i.e., 
p(1-s)*

t t 1αw min{E ,Q }+ ), then the SOC storage was 

divided into three regions by two optimal reference points (
(2-s)*

t 1E +   and (3-s)*

t 1E +  ) that 

corresponded to actions 2-4. If there was less energy in the storage/reservoir than (2-s)*

t 1E + , 
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the merchant did not need to purchase power from the market to increase the SOC, but he 

or she needed to (a) store renewable sources to increase the SOC to (2-s)*

t 1E +
 as close as 

possible and then (b) sell the reset of the renewable power to the market. Considering the 

efficiency loss, the income from selling the same power to the market was less than the 

cost of buying the same energy from the market in the exact time period. Similarly, if the 

stored energy was within the boundaries of the two optimal reference points (i.e., 

(2-s)* (3-s)*

t 1 t t 1E E E+ +  ), the merchant should do nothing, and if there was more energy in the 

PSH than in the optimal reference point (3-s)*

t 1E + , the merchant should release energy from 

storage and sell all renewable generation to the market, thus reducing the SOC to (3-s)*

t 1E +  

to maximize profit. 

Proposition 6.2: If the subsidy per wind generation sold to the market was large 

(i.e., 
2

ts P (1 ρ ) ρ − ), it yielded 
(2-s)* (1-s)* (3-s)*

t 1 t 1 t 1E E E+ + +   for the optimal reference points on 

the SOC, which depended on the current state S(t)  and PTC, and the optimal decisions 

are specified as follows: 

Case 3) If 
p(2-s)*

t t 1αw min{E ,Q }+  (less wind generation), the feasible SOC can be 

classified into four regions: storing and selling renewable generation, storing renewable 

generation and buying electricity from the market, discharging storage and selling all 

renewable generation to the market, and doing nothing: 

1) If 
(1-s)* (2-s)*

t t 1 t 1αw E E+ + −  
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p
(1-s)* (2-s)*

t 1 t t t 1 t

(1-s)*

t 1

p
(2-s)* (2-s)* (2-s)*

t 1 t t t 1 t t 1

*

t t

min{E E ,Q },E (0,E αw ],

(store renewable and purchased electricity up to E );

min{E E ,Q },E (E αw ,E ],

q (S ) (store renewable and without buy u

+ +

+

+ + +

−  −

−  −

= (2-s)*

t 1

(2-s)* (3-s)*

t t 1 t 1

g
(3-s)* (3-s)*

t 1 t t t 1

(3-s)*

t 1

p to E );

0,E (E ,E ] (keep SOC unchanged); 

max{E E , Q },E (E ,E],

(generate and sell renewable down to E ).

+

+ +

+ +

+











 



− − 




.         (6.16) 

2) If 
(1-s)* (2-s)*

t t 1 t 1αw E E+ + −  

p(1-s)* (2-s)*

t 1 t t t 1 t

(1-s)*

t 1

p(2-s)* (2-s)* (2-s)*

t 1 t t t 1 t t 1

*

t t

min{E E ,Q },E (0,E αw ],

(store renewable and purchased electricity up to E );

min{E E ,Q },E (E αw ,E ],

(store renewable and without buy u

q (S )

+ +

+

+ + +

−  −

−  −

=

(2-s)*

t 1

p(1-s)* (2-s)* (1-s)*

t 1 t t t 1 t 1 t

(1-s)*

t 1

(1-s)* (3-s)*

t t 1 t t 1

(3-s)

t 1

p to E );

min{E E ,Q },E (E ,E αw ],

 (store renewable and purchased electricity up to E );

0,E (E αw ,E ] (keep SOC unchanged); 

max{E

+

+ + +

+

+ +

+

−  −

 −

g* (3-s)*

t t t 1

(3-s)*

t 1

E , Q },E (E ,E],

(generate and sell renewable down to E ).

+

+



















− − 




.           (6.17) 

Case 4) If 
p p(1-s)* (2-s)*

t 1 t t 1min{E ,Q } αw min{E ,Q }+ +    (middle-level wind 

generation), the feasible SOC can be segmented into three or four regions: 

1) If 
(1)* (2-s)* (1)*

t 1 t t 1 t 1E αw E E+ + +−    , the SOC is divided into three regions: storing 

renewable generation and buying power from the market, discharging/generating storage 

and selling all renewable generation to the market, and doing nothing (i.e., idle/offline): 
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p(2-s)* (2)*

t 1 t t t t 1

(2-s)*

t 1

* (2-s)* (3-s)*

t t t t 1 t 1

g(3-s)* (3-s)*

t 1 t t t 1

min{E E ,αw ,Q },E (0,E ],

(store renewable and without buy up to E );

q (S ) 0,E (E ,E ] (keep SOC unchanged); 

max{E E , Q },E (E ,E],

(genera

+ +

+

+ +

+ +

− 

= 

− − 

(3-s)*

t 1te and sell renewable down to E ).+













.              (6.18) 

2) If 
(1)* (1)* (2-s)*

t 1 t 1 t t 1E E αw E+ + + −  , the SOC has four regions: storing renewable 

generation and buying power from the market, storing and selling renewable generation, 

discharging/generating storage and selling all renewable generation to the market, and 

doing nothing (i.e., idle/offline): 

p(2-s)* (2-s)*

t 1 t t t 1

(2-s)*

t 1

p(1-s)* (2-s)* (1-s)*

t 1 t t t 1 t 1 t

*

t t

min{E E ,Q },E (0,E ],

(store renewable and without buy up to E );

min{E E ,Q },E (E ,E αw ],

q (S )  (store renewable and purchased electricity up t

+ +

+

+ + +

− 

−  −

= (1-s)*

t 1

(1-s)* (3-s)*

t t 1 t t 1

g(3-s)* (3-s)*

t 1 t t t 1

(3-s)*

t 1

o E );

0,E (E αw ,E ] (keep SOC unchanged); 

max{E E , Q },E (E ,E],

(generate and sell renewable down to E ).

+

+ +

+ +

+











  −



− − 




.         (6.19) 

Case 5) If 
p(1-s)*

t t 1αw min{E ,Q }+  (more wind generation), the feasible SOC can 

also be divided into three regions: storing and purchasing electricity, generating PSH 

storage and selling all renewable generation to the market, and doing nothing. Thus, an 

optimal action in each state 
t t t t

ˆS(t) S (E ,g ,P ) E G P=     can be shown as follows: 
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p(2-s)* (2-s)* (2-s)*

t 1 t t t t 1 t 1

* (2)* (3-s)*

t t t t 1 t 1

g(3-s)* (3-s)*

t 1 t t t 1

min{E E ,αw ,Q },  E [0,E ](store renewable up to E )

q (S ) 0,E (E ,E ] (keep SOC unchanged) 

max{E E , Q },E (E ,E](generate and sell renewab

+ + +

+ +

+ +

− 

= 

− −  (3-s)*

t 1le down to E )+









. (6.20) 

Compared to Proposition 6.1, the first part of Proposition 6.2 (i.e., Case 3) 

analytically shows that for a PSH and wind farm merchant seeking to maximize his or her 

profit and with relatively less available wind energy, the storage SOC was divided into four 

or five regions by three or four SOC reference points ( (2-s)*

t 1E + , (1-s)*

t 1E +  and (3-s)*

t 1E + , which 

depend on the current state S(t)  and PTC, and the relationship between them with tαw ) 

that corresponded to actions 1-4. I) If the current SOC in the storage/reservoir was more 

than (3-s)*

t 1E + , the merchant should release energy from storage and generate energy for the 

market and then decrease the SOC to (3-s)*

t 1E + . II) If there was less energy in the 

storage/reservoir than (1-s)*

t 1E +   and more energy in the storage/reservoir than (2-s)*

t 1E +  , the 

optimal actions would be as follows: if there were fewer available renewable sources (i.e., 

(1-s)* (2-s)*

t t 1 t 1αw E E+ + − ), then the merchant should (a) store all the renewable sources and (b) 

purchase power from the power market, then increase the SOC up to (1-s)*

t 1E + . If there were 

more available renewable sources (i.e., (1-s)* (2-s)*

t t 1 t 1αw E E+ + − ), the merchant should do 

nothing. III) If there was less energy in the storage/reservoir than (2-s)*

t 1E + but the SOC could 

approach (2-s)*

t 1E +  by storing power without buying, the merchant should store renewable 

sources and increase the SOC as close as possible to (2-s)*

t 1E + . Otherwise, if there was less 

energy in the storage/reservoir than (2-s)*

t 1 tE αw+ − , they should increase SOC up to (1-s)*

t 1E +  

by storing all the renewable sources and purchasing power from the market. When the 
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merchant faces two optimal choices: storing renewable generation and buying power from 

the power market to increase SOC up to (1-s)*

t 1E + or storing and selling renewable energy to 

decrease SOC as close as possible to (2-s)*

t 1E + , the second choice was more profitable and 

should be preferred. 

The second part of Proposition 6.2 (i.e., Case 4) indicated that if there was a middle 

available wind source (i.e.,
p p(2-s)* (1-s)*

t 1 t t 1min{E ,Q } αw min{E ,Q }+ +  ), then the SOC storage 

was divided into three or four regions by two or three SOC reference points ( (2-s)*

t 1E +  , 

(1-s)*

t 1 tE αw+ − , and (3-s)*

t 1E + ) that corresponded to actions 1-4 or 2-4. If there was less energy 

in the storage/reservoir than (2-s)*

t 1E + , it was recommended that the merchant store renewable 

sources and increase SOC as close as possible to (2-s)*

t 1E + . If there was less energy in the 

storage than (1-s)*

t 1E +   and more energy in the storage than (2-s)*

t 1E +  , similarly, the optimal 

actions will be as follows: If there was less available wind source (i.e., 

(1)* (1)* (2-s)*

t 1 t 1 t t 1E E αw E+ + + −  ), then the merchant should (a) store all the renewable source and 

(b) purchase electricity from the market, then increase SOC to (1-s)*

t 1E + . If there were more 

available renewable sources (i.e., (1)* (2-s)* (1)*

t 1 t t 1 t 1E αw E E+ + +−   ), it is recommended that the 

merchant do nothing. If there was more energy in the PSH than the reference point (3-s)*

t 1E + , 

the merchant should release energy from storage and sell all renewable generation, then 

reduce the SOC to (3-s)*

t 1E + . 

The last part of Proposition 6.2 (i.e., Case 5) indicated that if there was more 

available renewable source (i.e., 
p(1-s)*

t t 1αw min{E ,Q }+ ), then the storage SOC should be 
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divided into three regions by two SOC reference points (2-s)*

t 1E +   and (3-s)*

t 1E +   that 

corresponded to actions 2-4. The merchant only needed to store renewable sources, 

increase the SOC up to (2-s)*

t 1E + , and then sell partial renewable power to the market. 

Special Case A): If ρ 1=   (i.e., without transmission efficiency loss), 

(2-s)* (1-s)* (3-s)*

t 1 t 1 t 1E E E+ + +   for any s 0  is yielded, which means that the traditional results of 

proposition 6.1 do not hold. 

Special Case B): If tw =0   (i.e., no wind generation or the forecasted wind 

generation equals zero), the merchant had storage/PSH only, and the optimal reference 

point 
(2-s)*

t 1E + did not exist. 

For wind power, the merchant has two choices: store it in PSH/ storage (and sell it 

at a later time) or sell it to the market at the time the wind power is generated. There are 

two opportunity costs for the two choices respectively. The opportunity cost of the first 

choice is the lost PTC subsidies because the wind power is not sold to the market at the 

time of generation. The opportunity cost of the second choice is the lost arbitrage profit 

from selling the power at a more preferable price point at a later time. When the opportunity 

cost of storing, the first opporunity cost, is less than the opporunity cost of selling, the 

second opportunity cost, (i.e.,
2

ts P (1 ρ ) ρ −  ), the relationship between the reference 

points remain the same as those in the traditional study which do not consider PTC, but the 

PTC subsidy will affect the transaction quantity. However, sometimes the opportunity cost 

of storing is more than selling (i.e.,
2

ts P (1 ρ ) ρ − ). In this case, the PTC subsidy affects 

the optimal dispatch policy structure by changing the relationships among the reference 

points. Only when electricity price is low and wind generation is small, the merchant will 
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buy electricity from the market to store for energy arbitrage. Propositions 6.1 and 6.2 

yielded the insight and application, as follows. 

Managemental Insight: For a profit-maximization merchant with both storage and 

a wind farm, three states of charge (SOC) reference points depend on the current energy 

level, the forecast price, the available energy of wind source, and the PTC subsidy. The 

SOC range was split into different regions by SOC reference points. The electricity 

merchant will obtain identical optimal operations by examining the current storage SOC 

with the optimal SOC reference points. 

6.3.4. Production Tax Credit (PTC) Analysis. In traditional treatments, 

electricity merchants do not consider subsidies. The optimal scheduling strategy for 

merchants owning a wind farm with energy storage when considering PTC was studied. 

As described in propositions 6.1 and 6.2, the subsidy policy can influence trading decisions:  

when the subsidy was large, electricity merchants tended to sell electricity instead of 

storing and buying electricity. When subsidies rose, merchants sold more electricity, which 

is a dynamic that affected merchants’ decisions. 

Proposition 6.3: For any given level of current energy storage 
tE , available wind 

generation tw , and forecast price 
tP  ( t {1,2,3, ,T} ), the production tax credit (PTC) 

was considered, and then the optimal value functions exhibited the following relations: 

 

( ) ( )* *

t 1(s 0) t 1(s 0)

T T

t t t (s 0) t t t (s 0)
π π

t 1 t 1

E[V S(t 1) | S(t) ] E[V S(t 1) | S(t) ]

max E R(q , w ,P ) | S(1) max E R(q , w ,P ) | S(1)

+  + =

 =

= =

 +  +



       
 

. (6.21) 

Proposition 6.3 stated that the PTC considerably altered the optimal economic 

dispatch policy structure and optimal expected profits of electricity merchants under policy 
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one. An electricity merchant who ignores PTC on the power market will overestimate his 

or her power generation costs. The decisions of an electricity merchant were naturally 

affected, so when the subsidy was relatively large, the electricity merchant made trading 

decisions that deviated from optimal scheduling. 

To avoid selling all wind-generated electricity to the market to gain high PTC from 

the government rather than storing electricity for smoothing loads to improve system 

operation stability. Next, a merchant with a wind farm and an energy storage and could 

also obtain PTC for stored wind generation, but he or she could not buy electricity from 

the grid to store. That is, storing energy from the grid disqualified one from receiving PTC. 

6.4. RECEIVING PTC PROHIBITS BUYING ELECTRICITY FROM THE GRID 

TO STORE UNDER POLICY 2 

The findings presented in Section 6.3 depended on a wind farm receiving PTC by 

selling the wind generation to market and that the merchant also had a battery to buy 

electricity from the grid to store. The implications for the optimal decision changed when 

the power stored in the energy storage had to be less than or equal to the wind production, 

and the stored wind generation was also qualifying for PTC. Therefore, in Section 6.4.1, 

this work proposed a model for policy 2. Then, the optimal scheduling solutions in Section 

6.4.2 were derived. 

6.4.1. Model Setup. It was also assumed that selling power to the market and 

purchasing power from the market were not allowed simultaneously. Compared to Section 

6.3, wind farm merchants receiving PTC cannot buy electricity from the grid to store; thus, 

there are only three possible actions: a) storing and selling renewable generation, b) idling,  

and c) discharging storage and selling all renewable generation to the market. 
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Thus, we can generate the following reward functions: 

t t t t t w t p t t t
(PTC)

t t t

t t t w t t t g t t

P (q α w ) ρ s(q α w ) c w c q  (0 q αw )
R (q , w ,P )

P (q β w ) ρ c w s(q β w )+c q  (q 0) 

− −  − − − −  


= 
−  −  − − − 

. (6.22) 

Unlike Eq. (6.1), if the wind farm merchants receiving PTC cannot buy electricity 

from the grid to store, then all energy sold to the market is wind generation, so all the 

energy released from the storage was qualifying for the PTC. 

6.4.2. Optimization and Analysis. Similar to Section 6.3, with the subsidy, the 

objective function is shown: 

T
(PTC)

t t t
π

t 1

max E R (q , w ,P )| S(1)
=

   .                   (6.23) 

To obtain the optimal decision rule, we first decompose the optimization in Eq. 

(6.23) into two optimizations that corresponded to two different actions: a) and c). The 

capacity constraints and the balance constraints on stored energy remained unchanged. 

Then, by optimizing the value function t t t t
ˆV (E , w , P ))  , subject to t 1E E E+   , the 

following equations were yielded based on the Bellman equation: 

( ) 

( ) 

t 1

t 1

(2-PTC)* *

t t p t t t g t 1
E E E

(3-PTC)* *

t t g t t t g t 1
E E E

V (S(t))= max (P ρ s) α+c q w [ Pρ c s] E[V (S(t 1) | S(t)]

V (S(t))= max (P ρ s)β c q w [ P ρ c s] E[V (S(t 1) | S(t)]

+

+

+
 

+
 

 − + − − + − + +


 − + − − − + − + +


. (6.24) 

Using the same method in Section 6.3, the optimal solutions of these two 

suboptimizations were found. 

Lemma 6.2: When considering the PTC subsidy and the electricity merchant, let 

(2-PTC)*

t 1E +  and 
(3-PTC)*

t 1E +  be the optimal results in Eq. (6.24), respectively: 
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( )( )

( )( )

t 1

t 1

(2 PTC)* *

t 1 t 1 t p t 1 t
E E E

(3 PTC)* *

t 1 t 1 t g t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] (P ρ s) α+c E η

E arg max E[V (S(t 1) | S(t)] (P ρ s)β c E η

+

+

−

+ + +
 

−

+ + +
 

 = + − +


 = + − + −


.    (6.25) 

In Eq. (6.25), we obtain the following relations: 

(1) For electricity prices ( )t g pP α(c c ) s(1 βα) (ρ βαρ) − + + − − , there is 

(2 PTC)* (3 PTC)*

t 1 t 1E E− −

+ +
.                     (6.26) 

(2) For electricity prices ( )t g pP α(c c ) s(1 βα) (ρ βαρ) 0 − + + − −  , there is 

(2 PTC)* (3 PTC)*

t 1 t 1E E− −

+ + .                      (6.27) 

The optimal analytical results were obtained from the perspective of profit 

maximization. Similarly, positive electricity prices were still targeted. The conclusions and 

insights that follow were based on these analytical results (see Appendix B). 

Proposition 6.4: For every stage t {1,2,3, ,T}   and positive forecasted 

electricity prices tP̂ P , unique optimal storage levels (2-PTC)* (3-PTC)*

t 1 t 1E E+ + were generated, 

and they depended on the state S(t)   and PTC. The optimal decisions of electricity 

merchant were specified as follows: 

The feasible SOC of storage can be divided into three regions: storing and selling 

renewable generation, discharging/generating storage and selling all renewable generation 

to the market, and doing nothing (i.e., idle/offline). Thus, an optimal action in each state 

t t t t
ˆ ˆ ˆS(t) S (E ,w ,P ) E W P=     was specified: 
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p(2 PTC)* (2 PTC)*

t 1 t t t t 1

(2 PTC)*

t 1

* (2 PTC)* (3)*

t t t t 1 t 1

g(3 PTC)* (3 PTC)*

t 1 t t t 1

min{E E ,Q ,αw },E [0,E ],

(store renewable bring SOC up to E );

q (S ) 0,E (E ,E ] (keep SOC unchanged);  

max{E E , Q },E (E ,E];

(

− −

+ +

−

+

−

+ +

− −

+ +

− 

= 

− − 

(3 PTC)*

t 1disch arge make SOC down to E )−

+













.           (6.28) 

This proposition indicated that two SOC reference points (2-PTC)*

t 1E + and (3 PTC)*

t 1E −

+ were 

included, and the merchant only needed to store a portion of the renewable source, increase 

the SOC as close as possible to (2-PTC)*

t 1E + , and then sell the rest of the renewable power to 

the market. If the current storage level in the storage/reservoir was more than (3 PTC)*

t 1E −

+ , the 

merchant should generate or discharge energy from PSH and sell all renewable generation 

to the market, then decrease the SOC to (3 PTC)*

t 1E −

+  . Proposition 6.4 displays the optimal 

economic dispatch decision for the merchant when considering PTC under policy two. 

Overall, the findings confirmed that when a PTC-subsidized wind farm with energy 

storage cannot buy electricity from the grid for storage, it affects the optimal SOC reference 

points, but these insights were qualitatively unchanged by such adjustments. 

6.5. NUMERICAL SIMULATION AND CASE STUDY 

We first validated the stated approaches and outcomes using a synthesis data case 

to show the analysis process under the two policies and compared them with MILP in 

Section 6.5.1. Furthermore, Section 6.5.2 used a real data case from MISO electricity prices, 

wind generation, and PTC to show the related insights. 
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6.5.1. Case Study and Comparison. For simplicity, a three-period case was used 

to explain the details of the proposed approaches. In this case, it was assumed that there 

were three periods ( T 3= ). At each period, the electricity price took one of the values in 

set M L H

tP {p , p ,p }={6,3,10}= . This study assumed that the storage capacity was 10 (i.e.,

E 0, E 10= = ), the maximum generating/discharging capacity was 12 and the maximum 

pumping/charging capacity was 7. This means that full storage could be emptied in one 

period, and empty storage could not be filled in one period, but it could be filled in fewer 

than two periods. It holds that 
pE Q E+   (resp. 

gE E Q−  ) and 
pE 2Q E+  . Assume 

the operating cost is one (i.e., p gc c 1= = ), the wind generation cost is zero (i.e., wc 0= ), 

the charging, discharging and transmission efficiencies are 0.9 (i.e., α β 0.9 ρ= = = ), the 

self-discharging efficiency is one (i.e., η=1), and the wind generation is  tw = 3,5,0 . This 

research employed the method proposed in Section 6.3 and the optimal actions proposed 

in Propositions 6.1 and 6.2 to obtain the optimal actions and SOC reference points under 

three different PTC credit rates (i.e., s {0,1,3}= ) with two different initial SOCs, as shown 

in Table 6.1 (the proof method is given in Appendix D). 

 

Table 6.1 Optimal Results with PTC Credit Rates Under Policy 1 

 
1s=3,E 1=  1s=3,E 5=  1s=1,E 1=  1s 1,E 5= =  1s=0,E 1=  1s=0,E 5=  

(1)* (2)* (3)*

4 4 4(E ,E ,E )  (0,0,0) (0,0,0) (0,0,0) 

(1)* (2)* (3)*

3 3 3(E ,E ,E )  (10,0,10) (10,0,10) (10,10,10) 

(1)* (2)* (3)*

2 2 2(E ,E ,E )  (0,0,10) (0,0,10) (0,3,10) 

*

3q  -8 -10 -8 -10 -10 -10 

*

2q  7 5 7 5 7 5 

*

1q  0 0 0 0 2 0 

*

1V  65.7407 89.3481 59.7407 83.3478 56.9 80.3478 
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Table 6.1 indicates that PTC affects the optimal actions. Compared with the current 

study (i.e., an electricity merchant ignoring the PTC), increasing PTC leads to an increased 

maximum expectation of profits. When wind farm merchants cannot buy power from the 

grid to store (i.e., policy 2) to receive PTC subsidies, then, the method proposed in Section 

6.4 is used to obtain the SOC reference points and the optimal actions under three different 

PTC credit rates (i.e., s {0,1,3}= ) with two initial SOCs, as shown in Table 6.2. 

 

Table 6.2 Optimal Results with PTC Credit Rates Under Policy2 

 
1s=3,E 1=  1s=3,E 5=  1s=1,E 1=  1s 1,E 5= =  1s=0,E 1=  1s=0,E 5=  

(2)* (3)*

4 4(E ,E )  (0,0) (0,0) (0,0) 

(2)* (3)*

3 3(E ,E )  (10,10) (10,10) (10,10) 

(2)* (3)*

2 2(E ,E )  (0,10) (0,10) (5.5,10) 

*

3q  -5.5 -9.5 -5.5 -9.5 -8.2 -10 

*

2q  4.5 4.5 4.5 4.5 4.5 4.5 

*

1q  0 0 0 0 2.7 0.5 

*

1V  74.6 113.8 58.7 90.7 51.02 79.2 

      

Table 6.2 shows the optimal actions and profits when the wind farm merchant 

receives a PTC subsidy, but he or she cannot buy electricity from the grid to store (i.e., 

policy 2). Compared with Table 6.1, we find that when the subsidy is large, the profit under 

policy 2 may be higher, indicating that electricity merchants are willing to give up the 

opportunity to buy electricity and qualify for the subsidy for all wind generation. 

We also employed the traditional MILP model (Chazarra et al., 2018; Wang et al., 

2021) to obtain the optimal solutions and compared them with the optimal results in Table 

6.1 and Table 6.2. The same optimal results were obtained under both dynamic 
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programming and MILP methods for Case 1. The above optimal results and optimal profits 

are verified in AIMMS. 

6.5.2. MISO Case Study. In this Section, 1-hour time units were used for the 

electricity price series in the day-ahead market 
1 2 TLMP {LMP ,LMP , ,LMP }=  ($/MW). 

Wind generation with T = 336 stages corresponding to a 2-week period from 1 to 14 May 

2021 in MISO (all electricity prices and wind generation data are available at 

https://www.misoenergy.org/) was also used. This work adopted three different PTC credit 

rates 0to show the optimal results. 

Values 2000 and 20000 were assigned the minimum and maximum SOC of storage 

(upper reservoir of PSH) E  and E , respectively. Here, E 0 indicates that the merchant 

cannot empty the upper reservoir, which is a realistic statement for a PSH in the power 

market. The maximum generation rate and pumping rate are 
pQ 2000= and 

gQ 2000= , 

respectively. Units of MW hours were used for storage quantities. Units of GW were used 

to measure both pumping and generating rates, where the pumping and generating 

efficiencies in this case are α β 0.9= = . It was assumed that it took 
g(E E) Q 9− =  hours 

for the PSH to empty the upper reservoir and that it took 
p(E E) Q 9− =  hours to refill the 

upper reservoir; these values corresponded to the approximate durations exhibited by a 

large-scale pumped storage hydropower plant in Ludington, Michigan (see 

https://www.consumersenergy.com/for details).  

In this case, the pumping and generating operating costs were calculated as 

p gc c 1= =  ($/MW). Self-discharging was ignored, and it was assumed that η 1=  . The 

wind generation cost did not affect the optimal results; therefore, the wind generation cost 

https://www.misoenergy.org/
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was ignored, and the study only focused on the PTC subsidy. In this Section, the VOE at 

time T. (i.e., T+1VOE 0=  ) was not considered. Regularly, two weeks is an optimization 

cycle for Ludington in the power market.  

Based on Propositions 6.1 and 6.2 in Sections 6.3 and 6.4, the transmission 

efficiency and PTC played a crucial role in determining the optimal actions. Thus, this 

study considered two different situations: ρ 0.9=  and ρ 1= .  

The renewable electricity PTC was a per kWh credit for electricity generated using 

qualified energy resources4. Under the current law, facilities for which construction began 

before January 1, 2021, may be qualified for the PTC. However, the credit rates are various 

for wind facilities that depend on the year when one began construction. Following 

Sherlock’s report (2020) and the Renewable Electricity Production Tax Credit (see 

https://www.epa.gov/lmop/renewable-electricity-production-tax-credit-information/), five  

different PTC Credit Rates (i.e.,0,1.0,1.5,2.3,2.5¢/kWh; that are 0,10,15,23,25$/MWh) 

were considered to yield results. 

      For a merchant owning both energy storage (such as the Ludington PSH) and a 

wind farm, the plots in Figures 6.1 and 6.2 show the optimal scheduling under policy 1 

and policy 2 with the initial energy in the storage of 2000 MW hours (i.e., 2 GWh) when 

the transmission efficiency was ρ 0.9=  . The optimal decisions are made from the 

perspectives of the PSH owner, considering the four different PTC credit rates and the 

traditional approach of ignoring the PTC in each figure. 

 

 

4 The renewable electricity production credit can be found in §45 of the Internal Revenue Code (IRC). 

https://www.epa.gov/lmop/renewable-electricity-production-tax-credit-information/
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Figure 6.1 The optimal actions under policy 1 

 

 

Figure 6.2 The optimal actions under policy 2 

 

The plots in Figure 6.3 and Figure 6.4 illustrate the optimal SOC curves under 

policy 1 and policy 2 that relate to the optimal operations in Figure 6.1 and Figure 6.2 with 

the initial energy in the storage of 2 GWh from the perspectives of the PSH owners to 

maximize their profit considering the four different PTC credit rates and the traditional 

approach of ignoring the PTC in each figure. 
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Figure 6.3 The optimal SOC curves under policy 1 

 

 

Figure 6.4 The optimal SOC curves under policy 2 

 

Figures 6.1-6.4 led to the following observations and conclusions: the electricity 

merchant required different trading strategies because the PTC subsidy changed the 

objective function. Hence, it affects trading decisions under two different policies. 

Obviously, under policy 2, the charging electricity amount in each period is less than the 

optimal decision under policy 1 since the power stored in the battery must be less than or 

equal to the wind production under policy 2. Therefore, a merchant must strike a perfect 

trade-off between the PTC credit rates and the power transition quantity.  
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The optimal actions were obtained from Proposition 6.2 when the merchant ignored 

the transmission loss (i.e., ρ 1=  ), which is shown in Figure. 6.5 and Figure. 6.6 with 

different PTC policies when the initial energy (i.e., E1) in the storage was 2 GWh. 

 

 

Figure 6.5 The optimal actions under policy 1 

 

 

Figure 6.6 The optimal actions under policy 2 

 

Compared with Figures 6.1 and 6.2, ignoring the loss of transmission efficiency 

will increase the opportunity to buy and sell electricity, and then the frequency of pumping 

and generating will be increased. The plots in Figure 6.7 and Figure 6.8 illustrate the 
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optimal SOC curves with initial energy (i.e., E1) in the storage of 2000 MW hours under 

two PTC policies that corresponded to the optimal actions in Figure 6.5 and Figure 6.6 

when the merchant ignored the transmission loss. 

 

 

Figure 6.7 The optimal SOC curves under Policy 1 

 

 

Figure 6.8 The optimal SOC curves under policy 2 

 

Figures 6.5-6.8 show that regardless of whether there was transmission loss, the 

PTC credit rates impacted the optimal decisions for profit maximization for the merchant 

with energy storage and wind farms. This part proved the conclusion outlined in Section 

6.3 and Section 6.4 through numerical simulation. 
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Figures 6.1-6.8 show that the frequency of pumping and generating (i.e., the 

number of trades during the optimization horizon) was reduced with the increased PTC. 

Without considering the PTC, or when the PTC was small, the electricity merchants only 

made optimal economic dispatching decisions based on the electricity prices. Under policy 

1, when the price was very low, the electricity merchant took actions: 1) storing all wind 

generation and buying power from the market or 2) storing and selling partial wind 

generation. When the price was fairly high, the electricity merchant chose action 4), 

releasing storage and selling all wind generation to the market. Otherwise, the merchant 

took action 3) doing nothing (i.e., selling all the wind generation to market for subsidies). 

Under policy 2, the merchants have the three actions (2, 3 and 4) to choose from. 

Table 6.3 reports simulation results for the number of idle actions—based on 336 

decision periods in two weeks—of an electricity merchant with both storage and a wind 

farm under different PTC credit rates. 

 

Table 6.3 Number of Idle Actions with PTC Credit Rates Under Two Policies 

Transmission efficiency ρ 0.9=  

Policies/PTC PTC=0 PTC=10$/MWh PTC=15$/MWh PTC=23$/MWh PTC=25$/MWh 

Policy 1 196 291 291 295 301 

Policy 2 161 192 207 253 259 

Transmission efficiency ρ 1=  

Policies/PTC PTC=0 PTC=10$/MWh PTC=15$/MWh PTC=23$/MWh PTC=25$/MWh 

Policy 1 195 231 239 253 255 

Policy 2 160 185 199 231 246 

 

This table reports the number of instances in which the merchant chose to do 

nothing during the optimization horizon to maximize his or her profit. In the second row, 

where PTC = 0, we can see that there are 191 (resp., 161) periods when the merchant 
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remains idle in two weeks of optimization when PTC is not considered under policy 1 

(resp., policy 2). With improvements in the PTC credits, idle frequencies will increase 

monotonically. For different PTC credits, the number of idle actions (i.e., the storage had 

done nothing, and all the wind power generation was sold to the market) under policy 1 is 

greater than that under policy 2. 

According to the current PTC credit rates, when the PTC was large, the merchant 

was willing to sell wind power generation to obtain large subsidies instead of storing the 

wind generation, even if the market prices were low. Generally speaking, the increase of 

PTC and efficiency loss will lead to reduced frequency of the action of storing wind 

generation for electricity merchants. Therefore, the frequencies of pumping and generation 

are decreased. Furthermore, compared with policy 1, the number of idle actions for 

merchants under policy 2 is smaller. This is because under policy 2, merchants chose to 

store wind generation and sell it when prices were high and could also receive subsidies. 

Next, we compare the optimal results for the preceding two PTC policies and then analyze 

which PTC policy merchants should adopt to maximize profit. Table 6.4 demonstrates the 

Ludington PSH optimal profit results with initial energy in the storage of 2000 MW hours 

under two policies when the merchant considered and ignored the transmission loss. 

 

Table 6.4 Optimal Profit with PTC Credit Rates Under Two Policies 

Transmission efficiency ρ 0.9=  

Profit PTC=0 PTC=10$/MWh PTC=15$/MWh PTC=23$/MWh PTC=25$/MWh 

Profit on Policy 1($) 2,588,335 3,442,529 3,914,204 4,694,023 4,891,781 

Profit on Policy 2($) 2,504,431 3,445,301 3,922,480 4,697,404 4,893,548 

Transmission efficiency ρ 1=  

Policies PTC=0 PTC=10$/MWh PTC=15$/MWh PTC=23$/MWh PTC=25$/MWh 

Profit on Policy 1($) 3,229,613 4,017,197 4,452,313 5,195,041 5,387,410 

Profit on Policy 2($) 2,794,687 3,733,006 4,208,833 4,977,473 5,172,282 
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Table 6.4 exhibits the optimal profits under two PTC policies when the wind 

generation and power price correspond to 2 weeks from 1 to 14 May 2021 in the MISO for 

a merchant having both storage and a wind farm. According to the current PTC credit rates, 

the electricity merchant will achieve more profit under policy 2 than policy 1 when the 

PTC subsidy is large. Compared to allowing merchants to buy power from the market at a 

low price for time-shifting resales, a large PTC subsidy will bring more profit. If the PTC 

subsidy is small for electricity merchants, they should aim to buy power from the market 

at a low price and sell power at a high price to increase their profit by energy arbitrage. 

Therefore, policy 1 benefits an electricity merchant's profit. However, if the PTC subsidy 

is large, then the increased revenue from energy arbitrage cannot offset any loss because 

stored wind generation for time-shifting sales cannot receive PTC under policy 1. To obtain 

subsidies, under policy 1, the merchant can only sell electricity in the current period, while 

under policy 2, the merchant can store wind generation in storage when the prices are low 

and sell it when the electricity prices are high and receive subsidies at the same time.  

Tables 6.3 and 6.4 are consistent with our intuition: the electricity merchant derives 

more profit from the wholesale power market with the improvement of transmission 

efficiency in the power market. It is straightforward that the PTC led to high maximum 

expectations of profit because the PTC policy reduced the wind generation costs and 

increased the profit. When the transmission efficiency is equal to 1, the optimal profit under 

policy 1 is greater than that under policy 2. This is because policy 2 relies on storage for 

arbitrage, while policy 1 relies more on directly selling wind power to obtain the PTC, so 

no transmission loss is more beneficial to policy 1. 
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To verify the robustness of our conclusions, we conducted a numerical simulation 

of the cases where uses hourly time units as the power prices and the wind generation with 

336 stages corresponding to two weeks from December 3 to 18, 2020 in MISO as supplied. 

The results are qualitatively unchanged from our previous simulations. (See numerical 

simulation in Appendix D) 

6.6. SECTION SUMMARY AND ANALYSIS  

This research is the first to model the joint economic dispatch problem via dynamic 

programming for an electricity merchant with energy storage and a wind farm receiving 

PTC by selling wind generation to market. We derived the optimal policy structure from 

supporting multistage decision-making. The optimal decision structure theorized the 

classic results, and it differed from conventional policies, known as optimal in the literature, 

without considering the PTC. Toward the end of establishing a reasonably tractable 

framework and deriving valuable insights, we have made some simplifying assumptions 

about the linear market impact and the zero lower limits of generation and pumping. In this 

section,we also assume that the merchant's charging and discharging decisions do 

not affect electricity prices. 

For an electricity merchant with energy storage and a wind farm, the optimal 

scheduling policy that corresponds to the optimal SOC reference points at each decision 

period depends on (a) the current SOC in the storage, (b) the forecast electricity prices, (c) 

the availability of wind generation, and (d) the PTC. The study analytically showed that 

when the wind farm can receive PTC by selling the wind generation to market and be able 

to buy electricity from the grid to store, there were three SOC reference points. The SOC 
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range was segmented into four regions, each of which corresponded to one of four distinct 

actions. On the other hand, we further find that if a wind farm is receiving PTC but cannot 

buy electricity from the grid to store, there are two SOC reference points, such that the 

feasible SOC range was split into three regions, each of which corresponded to one of three 

distinct actions.  

The optimal energy storage decision of the electricity merchant was achieved by 

simply comparing the current SOC of storage with the optimal SOC reference points. 

However, the PTC credit rates changed the traditional relationships between optimal SOC 

reference points. Under the two policies, PTC played a significant driver of optimal policy 

reform. Under policy one and allowing the wind farm to buy power from the market when 

a wind farm receives PTC, the merchant should perfectly balance the opportunity cost of 

wind generation of electricity stored in the storage and the cost of buying electricity from 

the market for storage to arbitrage. When the PTC subsidy was small, although similar 

results as the traditional optimal policy structure were found, the optimal economic 

dispatch volume was changed. On the other hand, based on the current PTC credit rates, if 

the PTC was large, the merchants should adopt the corresponding optimal actions that all 

wind-generated electricity sells to the market for high PTC subsidies. Only when the 

electricity price is low and wind generation is small should the merchant buy electricity 

from the market to store to arbitrage, which will affect the merchant's decision. 

This study showed that with an increase in PTC, the frequency trading decision (i.e., 

charging and discharging) was reduced. Our results also confirmed that an electricity 

merchant should adopt policy two when the PTC subsidy is large, prohibiting the purchase 

of electricity from the grid and all the energy released from storage qualified merchants for 
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PTC subsidy and will produce more profit to the merchants. Otherwise, the electricity 

merchant should take advantage of policy one to receive the PTC subsidy if possible. These 

new findings add to the collective knowledge of managing differentiated wind generation, 

PTC subsidy policies and joint economic dispatch of energy storage and wind farm, which 

constitutes a significant contribution to this research topic. 
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7. OPTIMAL ECONOMIC DISPATCH BETWEEN PROFIT-MAXIMIIZNG 

ELECTRICITY MERCHANTS AND SOCIAL WELFARE MAXIMZING 

INDEPENDENT SYSTEM OPERATORS 

7.1. OVERVIEW AND RESEARCH QUESTIONS 

The ISO can generate more accurate price forecasts than can electricity merchants, 

as the ISO has the most comprehensive information about market operations. From the 

perspective of the ISO, modeling and optimizing these energy storage resources and 

generators across multiple market-clearing processes and planning studies with 

uncertainties and incomplete information raise new challenges. Using energy storage 

flexibility to deal with realized uncertainties in the multi-stage clearing process of 

electricity markets, in contrast, can induce deviation in the multi-stage scheduling 

procedures. The financial risks associated with the schedule variation may be unacceptable 

to energy storage owners. Unlike previous research on the economic dispatch policies of 

electricity merchants (Liu et al., 2022b; Zhou et al., 2016, 2019), the goal of this study 

problems (Liu et al., 2022e) is to address these challenges and investigate whether a 

decentralized profit-maximizing merchant with energy storage or traditional generators 

should comply with the centralized ISO’s dispatch decisions if the ISO sends price 

information to the merchant. 

We are thus motivated to focus on the following three dispatching. The first 

problem concerns ISO’s goal to minimize the system cost, which considers electricity 

supply and demand balance constraints and other physical characteristics. The second 

problem is the optimal scheduling of the energy storage merchant’s profit maximization 

through buying power from the market at low prices and selling power to the market at 
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high prices. The third problem is the economic dispatch problem of traditional thermal 

generator merchants. We begin by determining the outcome for traditional generators (i.e., 

thermal, nuclear, etc.). Then, in terms of energy storage electricity merchants, this study 

focuses on two scenarios (Kim and Powell 2011; Liu et al., 2022b; Qi et al., 2015; 

Secomandi, 2010; Zhou et al., 2016, 2019): one with only energy storage and another with 

energy storage and renewable power plants. In the first scenario, the merchant has three 

options: (a) purchasing power to store, (b) remaining idle, and (c) discharging storage and 

selling electricity to the grid. If the merchant has energy storage and renewable power 

plants, there are four options: (i) storing all renewable power production and buying 

electricity from the market, (ii) storing and selling partial renewable production, (iii) 

remaining idle, and (iv) discharging storage and selling all renewable production to the 

grid. In an extension, we explore our research through the account of a wind farm-and-

storage merchant qualified for production tax credits and prohibited from purchasing 

electricity from the grid to store as well as investigate a co-optimizing electricity merchant 

with a wind farm and a PHS facility with two linked upper and lower reservoirs.  

Our analysis addresses the following question: (1) Under which conditions will an 

individual profit-maximizing merchant and a welfare-maximizing ISO arrive at the same 

optimal economic dispatch? (2) To what extent can an ISO’s scheduling decisions be 

exploited by the merchant to increase her profit and improve the social welfare of the 

system? To answer these two questions, we first assume that the electricity generation cost 

of traditional generators is linear. To solve this problem and facilitate our modeling through 

strong duality theory, we select to relax the nonconvex constraints of charging/pumping 

and discharging/generating that cannot occur simultaneously and develop the 
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corresponding Lagrangian function. The Karush-Kuhn-Tucker (KKT) condition is utilized 

to analyze sufficient conditions for such an exact relaxation. Later, we evaluate the 

associated dual problems of the ISO and energy storage merchant scheduling models, 

which ignore the nonconvex constraints, and identify the condition under which the ISO 

and merchant arrive at the identical optimal economic dispatch results. Finally, we extend 

our investigation numerically by examining quadratic electricity generation costs. To the 

best of our knowledge, this is the first study to investigate the relationship of optimal 

scheduling solutions between ISOs and merchants while taking energy storage 

characteristics and the uncertainty of renewable energy generation into account. 

The remainder of this work is organized as follows. Section 7.2 provides the 

principal contributions of this work. Section 7.3 presents the development of three 

scheduling models and the associated dual models of the ISO, the merchant with only 

energy storage, and traditional generators. Here, we study the optimal decision-making 

relationship between the ISO and merchants. Section 7.4 focuses on the electricity 

merchant who owns both energy storage and renewable energy sources and generators. 

Section 7.5, we present the results when we use realistic MISO data to perform a numerical 

simulation to validate the stated results. Section 7.6 examines a renewable-power-plant-

and-storage merchant who receives PTCs but is not permitted to purchase electricity from 

the grid. Section 7.7 contains an investigation of a co-optimizing electricity merchant with 

a wind farm and a PHS facility with upper and lower reservoirs. We analyze cases in which 

the quadratic generation cost is considered and numerically demonstrate the robustness of 

our conclusions in Section 7.8. Finally, we conclude in Section 7.9 with a summary of our 

findings and some suggestions for future research. 
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7.2. THE PRINCIPAL CONTRIBUTIONS 

This study provides three significant contributions. First, our results illustrate that, 

in optimal economic dispatch solutions, generating/discharging and pumping/charging 

cannot occur simultaneously for any positive forecasted electricity prices. We found that, 

if the ISO sends the cleared electricity prices to the merchant based on social welfare 

maximization, and the merchant dispatches the energy storage based on that price, the ISO 

and the energy storage merchant (resp., generators) have the same optimal 

charging/pumping and discharging/generating (resp., optimal electricity generation) 

decisions if such profit-maximizing merchant has a unique optimal solution. When a 

merchant’s scheduling problem has multiple optimal solutions, the merchant can still 

achieve maximum profit by seeking her own profit optimization or following the ISO’s 

social welfare optimization scheduling. As a result, the merchant has an incentive to let the 

ISO schedule her energy storage or generators; in this instance, the merchant’s profit is 

maximized while the social welfare of the system is improved. 

Second, following the same approach, we use a duality model to demonstrate that, 

if conditions are “ideal” (namely, forecast prices align with LMPs or the ISO sends the 

cleared prices to the merchants), the profit-maximizing electricity merchant and the social 

welfare-maximizing ISO will arrive at the same optimal dispatch on energy storage and 

renewable energy source or traditional generators when the merchant’s scheduling problem 

has a unique solution. The merchant can still achieve the maximum profit by following the 

ISO’s dispatch even if she has multiple options to schedule her energy storage and 

renewable power plants or traditional generators. Thus, a wind-and-storage merchant also 

has an incentive to let the ISO take over her operations because the ISO may be better 
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equipped with information to obtain more accurate price predictions to guide the dispatch 

decision and, as a result, achieve higher social welfare for the market as well as higher 

profit for each merchant. 

Finally, we extend our research to consider a wind farm that (a) receives production 

tax credits (PTCs), (b) has energy storage, and (c) is prohibited from buying electricity 

from the grid. Thus, the energy stored in the storage can be no greater than the power 

produced from the wind farm. Although the PTCs affect the optimal state of charge (SOC) 

reference points, we can derive valuable insights by employing similar analytical 

procedures. In addition, we investigate a co-optimizing electricity merchant with a wind 

farm and a PHS facility with upper and lower reservoirs, and the results are consistent. We 

also tested our research by numerical simulation, using realistic MISO data to verify our 

findings, taking into consideration the quadratic generation cost function, which is 

untraceable, and considering, in particular, the energy balancing constraint. Our results 

show that the electricity merchant can achieve the maximum optimal profit by following 

ISO’s scheduling, which demonstrates that our conclusions are robust and hold to quadratic 

generating costs. If we can forecast pricing accurately, parallel computing to solve the 

profit maximization problems of many decentralized individual merchants simultaneously 

will be more efficient than handling the large-scale centralized economic dispatch problem 

from the perspective of ISO. 

7.3. OPTIMAL DECISIONS BETWEEN MERCHANT AND ISO 

The ISO schedules the traditional generators and energy storage in the power 

system. We investigate the relationship of the optimal dispatch decisions for conventional 
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generators and energy storage between the perspective of the ISO and merchant, the ISO 

scheduling problem, and two merchants’ scheduling problems, in which only one has 

energy storage and the other has a traditional generator modeled in this Section. The 

parameter setup is presented in Section 7.3.1. In Sections 7.3.2 and 7.3.3, we build primal 

and dual models from two perspectives: (a) a centralized ISO’s scheduling model to 

maximize the social welfare of the system, and (b) a decentralized generator merchant’s 

and a storage merchant’s scheduling model based on the profit-maximizing perspective. 

Finally, in Section 7.3.4, we examine the relationships of best scheduling decisions for 

energy storage and an individual traditional generator between the ISO and merchants. 

7.3.1. Model Setup. In this Section, we assume that energy storage (for simplicity, 

henceforth, we use PSH to refer to energy storage) and other generators (e.g., thermal, coal, 

nuclear) are connected to the electricity market through transmission lines. To maintain 

tractability and to model the dual problem, it is assumed that the generation and operation 

cost for generators and storage is a linear function (El-Meligy et al., 2022; Soofi and 

Manshadi, 2022; Xu et al., 2017) and the transmission efficiency losses are ignored, as in 

Ostrowski et al. (2012) and Xu et al. 2017. In practice, a merchant who buys electricity 

from or sells electricity to the MISO market to optimize her profit based on the power that 

she injects into and withdraws from the bus does not have to account for transmission loss. 

As a result, this assumption is realistic and reasonable. 

We work in discrete time, during which the ISO makes a set of economic dispatch 

decisions that minimize the system’s operating cost while satisfying the operational market 

requirement and physical constraints. Both the ISO and merchant make a set of scheduling 

decisions in discrete time periodically over a finite horizon, t {1,2, ,T} . In the ISO’s 
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scheduling model, it is assumed that an ISO operates energy storage and other generators 

h

ig , where i {1,2,3, ,M} , here, and M denotes the number of generators.  

For simplicity, it is assumed that each generator has one unit. Assuming that the 

unit electricity generation cost for generator i in period t is
h

itC , then the dispatched 

generation cost for generator i is 
h h

it itC g . It is also assumed that the generators have the 

generation capacity constraints and denote 
h

iG and 
h

iG  as the upper and lower limits of 

power generation that can be allocated to the grid for each period, respectively. In the 

scheduling model for a generator merchant, it is assumed that the merchant operates only 

a traditional generator-I. Then, to be consistent with that in the ISO’s model, the unit-energy 

generation cost is
h

ItC , and it has upper and lower limits of power generation, denoted as

h

IG and
h

IG , respectively. The generator merchant decides the generation amount 
h

Itg  for 

each period t based on forecasted electricity price to maximize her expected profit. 

In the scheduling model for an energy storage merchant, it is assumed that energy 

storage has the maximum energy capacity E  (i.e., the total energy that can be stored) and 

the minimum energy level E , where E E 0  ; hence, storage capacity is finite. It’s also 

assumed that storage has charging/pumping and discharging/generating capacity 

limitations in each period. Let pQ   and pQ  represent the upper and lower limits, 

respectively, of the charging/pumping electricity amount (i.e., the amount of electricity that 

can be stored to the storage) in each period. Here, 
gQ  and gQ denote the upper and lower 

limits, respectively, of the discharging/generating electricity amount in each period (i.e., 

the amount of electricity that can be released from the storage). When the lower limits of 
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charging and discharging (i.e., pQ  and 
gQ ) are greater than 0, binary variables of unit 

commitments are required to ensure that charging/pumping and discharging/generating 

cannot happen simultaneously, making it challenging to build the corresponding dual 

model. To keep the model analytically tractable, we follow the conventional studies and 

assume g PQ Q 0= =  (see Jiang and Powell, 2015b; Kim and Powell, 2011; Secomandi, 

2010; Zhou et al., 2016, 2019). Charging/pumping and discharging/generating efficiency 

are considered and denoted by α andβ ; here, α,β (0,1] . This study lets 
pc  (resp.,

gc ) 

(dollars unit energy) denote the pumping/charging (resp., generating/discharging) unit 

energy operating cost for energy storage (Mongird et al., 2020; Xu et al., 2017).  

We assume 
p

tq   and 
g

tq   denote the dispatch decisions for each period t, which 

represent the energy change in storage between period t and period t + 1 before accounting 

for the charging/pumping and discharging/generating energy loss. Let tE  represent the 

current SOC or energy inventory in storage or the upper reservoir at the beginning of t. 

Therefore, the storage energy balance (or state transition) from period t to period t + 1 is: 

p g

t 1 t t tE E q q+ = + − .  

7.3.2. Primal-Dual Scheduling Model for the ISO. The system cost from the 

ISO’s perspective includes energy storage operating costs and other generators’ electricity 

generation costs, that is, the objective function; then, the dispatch problem from the 

prespective of ISO is as follows: 
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                 (7.1) 

(Huang et al., 2020; Xu et al. 2017). 

The first three constraints in Eq. (7.1) represent the storage charging/discharging 

(pumping/generating) capacity constraints and the capacity constraints of energy in storage. 

The fourth constraint indicates the generation constraints of generators. The fifth line is the 

energy balance constraint for the electricity supply that satisfies the demand. Here, tD is 

the electricity demand at period t, which is determined based on customers’ bidding 

quantity in the electricity market, and we assume that it is known in advance. The energy 

storage state transition constraint from the current period t to the next period t + 1 is 

represented by the sixth constraint. Here, 
g p

t tq q 0 =  represents charging/pumping and 

discharging/generating, which cannot happen simultaneously (i.e., energy storage can only 

charge or discharge (pump or generate) during a single period).  

The unit commitment decision includes binary decision variables in the model, 

making the dual model difficult to develop, especially when energy balance constraints are 

considered. To maintain traceable and analytical results, we analyze dispatch decisions 
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only in Eq. (7.1), not unit commitment decisions. If h

i0 G , all generators must run in this 

system (generating units). If h

iG 0=  , this means the ISO has a unit commitment and 

economic dispatch problem for t {1,2,3, ,T}  . Here, 
h

itg   represents the decision 

variables/generation for other generators except storage.  

Because the problem of Eq. (7.1) is not convex, to satisfy strong duality and keep 

the ISO’s scheduling problem convex, we first relax the non-convex constraint 

g p

t tq q 0 =  and derive the Lagrange function. Then, from the perspective of the ISO, we 

identify the sufficient condition for avoiding simultaneous pumping/charging and 

generating/discharging using the KKT condition.  

First, we get the following Lagrange function after relaxing this non-convex 

constraint 
g p

t tq q 0 = . 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T M T M
h h g g p p h g p

it it t t t t it t t

t 1 i=1 t 1 i=1

g p p p p p p g g g g g

t+1 t 1 t t t t t t t t t t t

h h h h

t t t t it it i it it i

L C g c q c q μ1 D g q β q / α

γ1 E E q q χ1 q χ1 q Q χ1 q χ1 q Q

θ1 E E θ1 E E β1 g G β1 g G

= =

+

  
=  + + + − + −  

  

+ − + − +  − +  − +  − +  −

+  − + +  − +  − + + −

  

 (7.2) 

where p g p g

t t t it t t t it{χ1 , χ1 ,θ1 ,β1 , χ1 , χ1 ,θ1 ,β1 } 0 are Lagrange multipliers. 

Second, the KKT condition is utilized to determine whether there are sufficient 

conditions for such relaxation. The following proposition demonstrates the sufficient 

condition for 
g p

t tq q 0 =  holding. (All proofs are provided in Appendix A) 

Proposition 7.1: We demonstrate the following sufficient condition for avoiding 

simultaneous pumping/charging and generating/discharging of energy storage from the 

perspectives of the ISO, and we get the same following condition:   
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g p *

tc c u1 (1/ α β)+  − −                              (7.3) 

where 
*

tu1  is the Lagrange multiplier/shade price of the energy balance constraint 

(i.e., optimal LMP at period t), 
pc  and 

gc  is the energy storage’s charging/discharging 

operating cost, and α and β  are the charging and discharging efficiency, respectively.  

The constraint 
g p

t tq q 0 =   is obviously always true for the positive electricity 

prices (i.e.,
*

t tu1 LMP 0=   ) by Proposition 7.1. This sufficient condition in Eq. (7.3) 

illustrates that, taking into account the efficiency loss and operating cost of the energy 

storage, for all positive electricity prices, generating and pumping cannot occur 

simultaneously in optimal economic dispatch solutions from the perspective of the ISO. 

When electricity prices are positive, the cost of conducting simultaneous dispatches is 

higher than the cost of conducting separate dispatches. Negative electricity prices are 

uncommon and rarely occur in most locational electricity markets (Zhou et al., 2016) due 

to transmission capacity constraints and electricity market monitoring, which is not the 

focus of this work. There, it can be shown that energy storage can be enforced to charge or 

discharge only in a single period for any positive electricity prices. 

Thus, the non-convex constraint of 
g p

t tq q 0 = can thus be relaxed because, for the 

ISO, strong duality theorem establishes that the duality problem can be written as (All 

proofs are provided in Appendix E). 
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          (7.4) 

Here, 
g pg p

tt t 2 t+1 T+1t t itt t it
{χ ,χ ,χ ,χ ,θ ,θ ,β ,β ,μ , γ , γ , γ }  represent the corresponding 

dual variables based on Eq. (7.1) constraints without considering the non-convex constraint 

of 
g p

t tq q 0 = . To achieve our research goal of analyzing the relationship between ISO 

and electricity merchants’ optimal results, we create the primal and dual models from the 

perspective of merchants. 

7.3.3. Primal-Dual Scheduling Models for Merchant and Generators. We 

examine the case when an electricity merchant has only a PSH (Secomandi, 2010; Zhou et 

al., 2016), and a traditional generator-I (Xu et al., 2017). Both are connected to the markets 

via transmission lines. In the scheduling model, the merchant has to decide the amount of 

electricity to buy or sell in each period. In this work, we consider discrete time and that the 

two merchants periodically execute scheduling decisions during a limited horizon to 

maximize their expected profit based on the forecasted electricity price tP  ; here, 

t {1,2, ,T} .  
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Unlike Gianfreda and Bunn (2018) and Cruise et al. (2019), this work models the 

merchant as a price taker (Liu et al., 2022b; Zhou et al., 2016, 2019), which means the 

merchant's own dispatch decisions have no effect on market electricity prices. A price-taker 

PSH merchant’s profit maximization objective includes storage scheduling profit (profit 

from selling energy to the market minus the cost of buying power to pump in PSH from 

the market) minus operating cost. To facilitate comparison and maintain the same 

optimization goal as the ISO’s perspective, the modified merchant’s optimal dispatching 

model is shown. 

( ) ( ) ( ) ( )( )
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(7.5) 

The first three constraints indicate the PSH pumping capacity, generating capacity, 

and energy storage capacity. The fourth constraint is the storage energy balance constraint, 

and the last line denotes that pumping and generating cannot occur simultaneously, where 

t {1,2,3, ,T} . 

To maintain the convexity and satisfy a strong duality in the scheduling model of 

the merchant, similar to that of the ISO, first, we relax the non-convex constraint 

g p

t tq q 0 =  and build the corresponding Lagrange function of Eq. (7.5). 
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         (7.6) 

Second, employing the KKT condition, we get the following sufficient condition 

for this relaxation, where
tP  represents the forecasted price at period t.  

g p

tc c P (1/ α β)+  − −                     (7.7) 

Thus, as the first contribution of this study, Eq. (7.7) always holds for any positive 

price  tP 0,  t 1,2, ,T  = . It also demonstrates that optimal pumping/charging and 

generating/discharging decisions cannot occur simultaneously for any positive electricity 

prices for the profit-maximizing merchant. If the ISO sends the cleared electricity prices to 

the merchant, there is 
*

t tP u1= , which is the same as that in Proposition 7.1. Therefore, in 

this case, inEq.s (7.7) and (7.3) are identical (all proofs are provided in Appendix A). 

Similar to the ISO’s model, after relaxing the non-convex constraint of 

g p

t tq q 0 =  , for the merchant, the strong duality theorem establishes that the duality 

problem can be written as: 
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Here,
g pg p

tt t 2 t+1 T+1t tt t
{χ ,χ ,χ ,χ ,θ ,θ ,μ , γ , γ , γ }refer to the dual variables that correspond 

to the constraints in Eq. (7.5) without considering the non-convex constraint of 

g p

t tq q 0 = . For simplification and comparison, we use the same dual variables for the 

same constraints as that of the ISO’s dual model. 

The economics dispatch model for a traditional merchant operates a generator-I that 

takes into account the generator’s constraints to maximize her expected profit, shown as 

follows (Hua and Baldick, 2017): 
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                   (7.9) 

Here,  ItIt
β ,β  are the corresponding dual variables of Eq. (7.9). Therefore, the 

duality model of the primal problem in Eq. (7.9) is obtained below (Hua and Baldick, 2017; 

Schiro et al., 2016):  
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                             (7.10) 

In Eq. (7.1), the principal goal of an ISO in the electricity market is to maximize 

social welfare by dispatching the generators as well as supplying energy to customers at 

the lowest prices. For Eqs. (7.5) and (7.8), in contrast, the goal of an electricity merchant 

with energy storage or a traditional generator is to maximize her profit. According to Schiro 

et al. (2016) and Hua and Baldick (2017), if the ISO’s objective function is convex and 
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satisfies a strong duality, a perfect electricity price forecast provides incentives that enable 

generators’ profit-maximizing actions to align with the ISO welfare-maximizing solutions. 

These authors, however, did not take into account energy storage. Thus, we investigate the 

relationship between the optimal dispatch decisions for energy storage and generators 

under these models when the ISO sends the cleared electricity prices to the merchant. 

7.3.4. Optimal Scheduling Results Analysis Between ISO and Merchant. We 

identify the relationships between optimal solutions by Propositions 7.2 and 7.3, which 

allows us to optimize the objective functions in duality problems (Eqs. (7.4), (7.8), and 

(7.10)). Suppose that the merchant maximizes her profit by using the electricity prices 

cleared by the ISO or the merchant’s forecasted prices perfectly (i.e., 

 *

t t tP μ LMP , t 1,2, ,T= =   ). Using this assumption, we obtain the next proposition 

(see Appendix E). 

Proposition 7.2A: Suppose we ignore the transmission efficiency loss and the 

transmission capacity as well as suppose that electricity prices are predicted perfectly (i.e., 

 *

t t tP μ LMP , t 1,2, ,T= =    ). If the primal problem of merchant profit maximizing 

(i.e., Eq. (7.5)) has a unique optimal solution, then we can draw the following conclusion 

for the energy storage optimal actions 
p*(S) g*(S)

t t(q ,q )   of the ISO and 
p*(M) g*(M)

t t(q ,q )   of the 

electricity merchant: 

 

h h* h p*(S) p*(M) g*(S) g*(M)

it t t it i t t t t

h h h* h p*(S) p*(M) g*(S) g*(M)

it t t i it i t t t t

h h* h p*(S) p*(M)

it t t it i t t t

1) If  C P LMP  and g G ,  q q ,and q q ;

2) If  C P LMP  and G g G ,  q q ,and q q ;

3) If  C P LMP  and g G ,  q q ,and q

 = = = =

= =   = =

 = = = g*(S) g*(M)

tq .






 =

      (7.11) 
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If the lower bound of power generation of thermal generators is 0, that is,

 h

iG 0, i 1,2, ,M=   , then we can rewrite Eq. (7.11) as 

 

h h* h p*(S) p*(M) g*(S) g*(M)

it t t it i t t t t

h h* h p*(S) p*(M) g*(S) g*(M)

it t t it i t t t t

h h* p*(S) p*(M) g*(S

it t t it t t t

1) If  C P LMP  and g G ,  q q ,and q q ;

2) If  C P LMP  and 0 g G ,  q q ,and q q ;

3) If  C P LMP  and g 0,  q q ,and q

 = = = =

= =   = =

 = = = ) g*(M)

tq .






 =

    (7.12) 

Proposition 7.2A shows the equivalent conditions for storage scheduling decisions 

from the perspective of the ISO and merchant, when the merchant’s scheduling problem 

has a unique optimal solution. In period t, for M generating units, each generator i has a 

generation cost 
h

itC  . The following three equivalence conditions apply to the ISO and 

merchant while making optimal storage scheduling decisions: 

 (1) If the generating cost of the generator i is less than the cleared electricity price 

(i.e.,
h

it tC LMP  ), the generation of the generator i reaches the upper bound of the 

generating
h

iG to maximize the social welfare.  

(2) If the generating cost of the unit is equal to the cleared electricity price (i.e.,

h

it tC =LMP ), then there is no additional generation constraint for the “marginal” generator; 

that is, the generation falls between the upper and lower limits of the unit. The optimal 

profit of the marginal generator is zero because cost equals income. In this situation, there 

are several optimal options from the generator’s perspective; however, given the load 

balance constraint, there is only one optimal solution from the ISO’s perspective.  

(3) If the generating cost of the unit is greater than the cleared price (i.e.,
h

it tC >LMP ), 

then the generating generator i reaches its lower boundary
h

iG to minimize the generation 

cost; in this case, the ISO and merchant will make identical optimal decisions. The 
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conditions and assumptions (Bo et al., 2021; Hua and Baldick, 2017) in these three 

scenarios have been discovered to always be true to minimize the generation cost, implying 

that, when the merchant has a unique optimal solution and the ISO can provide price 

information to the merchant, the ISO and merchant will arrive at the same optimal storage 

scheduling decision. 

Proposition 7.2B: If the primal problem of the energy storage merchant (i.e., Eq. 

(7.5)) has multiple optimal solutions, then we can draw the following conclusion for the 

optimal actions 
p*(S) g*(S)

t t(q ,q )  of the ISO and 
p*(M) g*(M)

t t(q ,q )  of the merchant: 

 

( ) ( )( )

( ) ( )( )

( ) ( )( )

T
g p p p g p

t t t t t

t 1

T
g*(S) p*(S) p p*(S) g g*(S)

t t t t t

t 1

T
g*(M) p*(M) p p*(M) g g*(M)

t t t t t

t 1

max LMP q β q α c q c q

LMP q β q α c q c q

LMP q β q α c q c q

=

=

=

 
− −  +  

 

= − −  + 

= − −  + 







            (7.13) 

When the profit maximization problem for merchants has multiple optimal 

solutions, Proposition 7.2B shows the relationship between storage scheduling strategies 

from two perspectives. Assuming that the electricity merchant can get a cleared electricity 

price from the ISO based on social welfare maximization, the optimal profit earned by the 

merchant based on her profit maximization is equal to the profit obtained by following the 

ISO’s scheduling.  

Similar to the equivalent relationship for the optimal dispatches of energy storage 

between the perspective of the merchant and the ISO, the relations between the optimal 

actions h*(S)

itg of ISO and h*(M)

itg of generator    i 1,2, ,M , t 1,2, ,T     can be drawn:  
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Proposition 7.3A: For the generator, if the forecasted price matches the actual LMPs, 

when the primal problem in Eq. (7.9) from generator profit-maximizing has a unique 

optimal solution:  

 

h h* h h*(S) h*(M)

it t t it i it it

h h h* h h*(S) h*(M)

it t t i it i it it

h h* h h*(S) h*(M)

it t t it i it it

1) If  C P LMP  and g G ,  g g ;

2) If  C P LMP  and G g G ,  g g };

3) If  C P LMP  and g G ,  g g .

  = = =



= =   =

  = = =

              (7.14) 

Proposition 7.3B: For the generator, if the forecasted price aligns with the actual 

LMPs and when the primal problem in Eq. (7.9) from generator profit-maximizing has 

multiple optimal solutions:  

( ) ( ) ( )
T T T

h h h h*(S) h h*(M)

t It It t It It t It It

t 1 t 1 t 1

max LMP C g LMP C g LMP C g
= = =

−  = −  = −         (7.15) 

Proposition 7.3 shows the equivalent condition for the traditional generator i 

between the perspective of the ISO and generator by the strong duality theorem, which is 

consistent with the conclusions reported by Hua and Baldick (2017) and Baldick (2018), 

who focus solely on traditional generating firms and do not consider the energy storage 

scenario.  

Propositions 7.2A and 7.3A demonstrate that, if an electricity merchant (resp. a 

generator) accurately predicts electricity prices or the ISO sends the cleared electricity 

prices to the merchant (resp. generator) based on a welfare-maximizing solution, the 

merchant with energy storage (resp. the traditional generator) and the ISO will arrive at the 

same optimal economic dispatch. Propositions 7.2B and 7.3B imply that merchants with 

storage or a generator have the incentive to follow the ISO schedule when ISOs are able to 

produce more accurate price forecasts and incorporate the operating characteristics of 
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energy storage or a traditional generator directly, which is another contribution of this study. 

Propositions 7.2 yields Managerial Insight 7.1: 

Managemental Insight 7.1: An ISO dispatch decision that incorporates storage 

operating characteristics will be able to maximize both the social welfare of the system and 

the merchant’s profit. This statement holds not only when there is a unique optimal solution 

(from the merchant’s perspective) but also when there are multiple optimal solutions. 

This insight reflects that, for a strictly convex profit maximization problem of an 

electricity merchant and generator, a perfect price forecast would incentivize the merchant 

and generator—in response to the prices—to self-dispatch in a way that is consistent with 

the ISO’s dispatch. The issue signifies the convexity of the electricity merchant’s problem 

and satisfies the strong duality after relaxing the constraint that pumping and generating 

cannot happen simultaneously. Our findings not only strengthen those of previous studies 

but also restructure the results to accommodate the energy storage scenario.  

7.4. OPTIMAL DECISIONS BETWEEN CO-OPTIMIZED MERCHANT AND 

ISO 

In this Section, we addresses the case of an electricity merchant who owns and 

operates a renewable plant (we use wind farms to refer to renewable power plants for 

convenience) as well as PSH, both of which are connected to the electricity markets via 

transmission lines (Kim and Powell, 2011; Qi et al., 2015; Zhou et al., 2019). We 

investigate the relationship between joint optimal scheduling decisions between the 

merchant who has PSH and wind farms or generator owner to maximize her profit and the 

ISO who schedules the energy storage and wind farms directly in the electricity market to 

maximize the social welfare. 
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7.4.1. Model Setup. Unlike the merchants with storage only, as seen in Section 7.3, 

merchants with wind farms and storage must decide on the best energy storage scheduling 

and the best wind power generating decisions. In this Section, we use the same physical 

characteristics to define the energy storage/PSH constraints as was done in Section 7.3. We 

use tw to represent the available wind generation of the wind plant in period t (in energy 

units/period). The vector ( )1 2 TW w , w , , w=   represents the sequential levels of 

available forecasted wind generation. Following previous work (Jiang and Powell, 2015a; 

Kim and Powell, 2011; Liu et al., 2022b; Qi et al., 2015; Zhou et al., 2019), wind generation 

is constrained by the maximum generation capacity W  of the wind plant to show the 

uncertainty in modeling (i.e., t0 W w W=   ).  

For simplicity, the merchant would require the transmission capacity to be 

sufficiently large for her wind plant; thus, we do not consider the transmission capacity. 

The unit generation cost for wind is defined as 
wc , and the wind power generation cost in 

period t is
w

tc w . Then, there are three decision variables: 
g

tq , 
p

tq , and tw . Compared to 

what is presented in Section 7.3, from the perspective of the ISO, the objective function 

should include the cost of wind power generation. The scheduling model is shown below 

(Bo et al., 2021; Huang et al., 2020):  
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( )
T M T T

h h g g p p w

it it t t t

t 1 i=1 t 1 t 1

generating  cost ES operating cost wind  genearation cost

p p

t

g g

t

t

h h h

it it i

g p

t t t t 1

g p

t t

h

it

i=1

min[ C g c q c q c w ]

0 q Q ,

0 q Q ,

E E E,

g g G ,

s.t.
E q q E ,

q q 0,

g

= = =

+

 + + + 

 

 

 

 

− + =

 =

  

M
g p

t t t t

t

w q β q / α=D ,

W w W.

















+ + −


  



        (7.16) 

The first six lines of constraints in the ISO scheduling Eq. (7.16) are the same as 

the problem in Section 7.3 as Eq. (7.4), as we employ the same energy storage psychical 

properties. The difference in Eq. (7.16) from Eq. (7.4) is that the electricity supply matches 

the demand balance constraint in the seventh line, on the energy supply side, which 

includes wind power generation tw . In addition, we add a new constraint for wind power 

generation (i.e., tW w W  ).  

Similar to what is presented in Section 7.3, we first relax the non-convex constraint 

of 
g p

t tq q 0 = in Eq. (7.16) and get the Lagrange functions. Then, the KKT condition is 

used to analyze the sufficient conditions for 
g p

t tq q 0 = . The same results are obtained as 

in Eq. (7.17), implying that pumping and generating cannot occur simultaneously. The non-

convex constraint of 
g p

t tq q 0 =  is confirmed to always hold for all positive electricity 

prices from the perspective of the ISO (all proofs are provided in Appendix E). 
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g p *

tc c u1 (1/ α β)+  − −                         (7.17) 

After relaxing the non-convex constraint, we maintain the relaxed ISO’s scheduling 

problem convexity and conduct the corresponding dual problem as well as satisfy the 

strong duality. As previously stated, an electricity merchant with wind farms and storage 

has four options to maximize her profit: (a) storing all wind power production and 

purchasing electricity from the grid, (b) storing and selling partial wind power production, 

(c) remaining idle, and (d) discharging storage and selling all wind power production to the 

market. Thus, following previous studies (Liu et al., 2022b; Zhou et al., 2019), based on 

the above four actions, the reward function
g p

t t t tR(q ,q ,w ,P )   from making the decision 

g p

t t t(q ,q , w ) , which corresponds to time t, the forecast prices tP , is defined as follows: 

( ) ( )

( ) ( )

( ) ( )

p g g p p w p

t t t t t t t t

p g p g g p p w p

t t t t t t t t t t t t

g g g p p w g

t t t t t t t

P q / α w c q c q c w    (q w )

R(q ,q ,w ,P ) P q / α w c q c q c w    (0 q w )

P q β w c q c q c w    (q 0) 

−  − −  +  +  



= −  − −  +  +   

  + −  +  +  


   (7.18)  

Similar to what is presented in Section 7.3, the transmission efficiency loss is 

ignored. The profit of the merchant obtained from trading energy from storage (revenue 

from selling electricity minus the cost of buying electricity) and the profit from wind power 

generation are included in the merchant’s profit maximization objective. To facilitate 

comparison, the merchant’s profit maximization objective is reformulated as a cost 

minimization problem, and the scheduling model is illustrated below:  
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( )

T
g g p p w

t t t t t t

t 1
energy trading  profit wind  generation  profit

T
g g p p w

t t t t t t

t 1

p p

t

g g

t

t

g p

t t t t 1

g

t

max [(Pβ c )q (c P / α)q (P c ) w ]

min (c Pβ)q (c P / α)q (c P ) w

0 q Q ,

0 q Q ,

E E E,
s.t.

E q q E ,

q

=

=

+

− − + + − 

= − + + + − 

 

 

 

− + =





p

t

t

q 0,

W w W.










  =



 

             (7.19) 

The constraint is assigned to wind power generation, represented as tW w W  . 

In the same way, we first relax the non-convex constraint
g p

t tq q 0 =  and analyze the 

sufficient condition from the perspective of the merchant. We get the same sufficient 

condition shown as in (7.20) by developing the Lagrange function and KKT condition. 

g p

tc c P (1/ α β)+  − −                        (7.20) 

Eqs. (7.17) and (7.20) show that the optimal charging/pumping and 

discharging/generating decisions cannot occur at the same time from the view of a profit-

maximizing merchant who operates both wind farms and storage and the ISO. 

7.4.2. Optimal Scheduling Results Analysis Between ISO and Merchant. We 

build the corresponding dual problem without considering this non-convex constraint to 

derive the relationship of optimal solutions between the co-optimization profit-maximizing 

profit merchant and social welfare-maximizing ISO. If the ISO sends the cleared electricity 

prices to the electricity merchant or the merchant can predict the electricity prices perfectly 

(i.e.,  *

t t tP μ LMP , t 1,2, ,T= =   ), according to strong duality theory, the following 

two statements are demonstrated (See Appendix B). 
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Proposition 7.4A: Assume that the transmission efficiency loss is neglected, that 

electricity prices are accurately predicted (i.e.,  *

t t tP μ LMP , t 1,2, ,T= =   ), or that 

the ISO provides the cleared prices to the merchant, and that the primal profit maximization 

problem of the merchant in Eq. (7.19) has a unique optimal solution. In such a situation, 

the following conclusion applies to the ISO's optimal actions p*(S) g*(S) *(S)

t t t(q ,q ,w )  and the 

joint wind and storage merchant's optimal actions p*(M) g*(M) *(M)

t t t(q ,q ,w ) : 

h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t it i t t t t t t

h h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t i it i t t t t t t

h

it t t

1) If  C P LMP  and g G ,  then q q ,  q q ,w w ;

2) If  C P LMP  and G g G ,  then q q ,  q q ,w w ;

3) If  C P LMP  and g

 = = = = =

= =   = = =

 = h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it i t t t t t tG , then q q ,  q q ,w w .






 = = = =

(7.21) 

If the lower bound of power generation of thermal generators is 0, that is 

 h

iG 0, i 1,2, ,M=   , then (7.21) can be rewritten as 

h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t it i t t t t t t

h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t it i t t t t t t

h h* p*(

it t t it t

1) If  C P LMP  and g G ,  q q ,q q ,w w ;

2) If  C P LMP  and 0 g G ,  q q ,  q q ,w w ;

3) If  C P LMP  and g 0,  q

 = = = = =

= =   = = =

 = = S) p*(M) g*(S) g*(M) *(S) *(M)

t t t t tq ,  q q ,w w .






 = = =

  (7.22) 

Proposition 7.4A shows the equivalent condition for optimal energy storage 

scheduling and wind generation decisions from the perspectives of the ISO and the 

electricity merchant. When the profit-maximization electricity merchant with wind farms 

and storage has a unique optimal solution, the equivalent condition for optimal wind 

generation and storage scheduling decision under the two perspectives is the same as that 

in Proposition 7.2A. This means that, if the merchant predicts prices accurately or the ISO 

distributes the cleared electricity prices based on social welfare maximization to the 

merchant, and the merchant utilizes those prices to construct a schedule, the ISO and 

merchant will arrive at the same optimal economic dispatch for storage and wind farms. 
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Proposition 7.4B: If the primal problem of the merchant’s operating both storage 

and a wind farm has multiple optimal solutions (i.e., Eq. (7.19)), then the following is the 

conclusion for the optimal actions p*(S) g*(S) *(S)

t t t(q ,q ,w )  of the ISO and p*(M) g*(M) *(M)

t t t(q ,q ,w )  

of the merchant: 

 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

T
g p w p p g p

t t t t t t t

t 1

T
g*(S) p*(S) w *(S) p p*(S) g g*(S)

t t t t t t t

t 1

T
g*(M) p*(M) w *(M) p p*(M) g g*(M)

t t t t t t t

t 1

max LMP q β q α LMP c w c q c q

LMP q β q α LMP c w c q c q

LMP q β q α LMP c w c q c q

=

=

=

 
− + −  −  +  

 

= − + −  −  + 

= − + −  −  + 







    (7.23) 

When the electricity merchant’s optimal scheduling problem has multiple optimal 

solutions, Proposition 7.4B shows that the profit obtained by the merchant based on her 

profit maximization is always the same as the profit obtained by that of the merchant who 

follows the ISO’s scheduling, implying that merchants with wind farms and storage have 

a motivation to follow the ISO’s schedule when ISOs are able to produce more accurate 

price forecasts because the ISO has the most comprehensive information about the market 

operation. This finding shows that a perfect price forecast would motivate a merchant to 

self-dispatch energy storage and wind farms in a way that is consistent with the ISO’s 

economics dispatch.  

Similar to the traditional generator merchant scenario proposed in Section 7.4 (see 

Proposition 7.3), Hua and Baldick (2017) and Baldick (2018) observed that, when the ISO 

sends the cleared price to generators, the generating companies’ individual profit-

maximizing decisions align with the ISO’s welfare-maximizing solution. Propositions 7.4 

results in Managerial Insight 7.2: 
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Managemental Insight 7.2: An ISO dispatch decision that incorporates storage 

operating characteristics and uncertain wind generation will be able to maximize the 

social welfare and the merchant’s profit. This statement holds not only when there is a 

unique optimal solution (from the profit-maximizing view of the power merchant, the social 

welfare perspective of the ISO, or both) but also when there are multiple optimal solutions. 

It implies that letting the ISO schedule PSH, wind farms, and generators will improve the 

social welfare and maximize the profit of the electricity merchant.  

This insight indicates that, for a strictly convex profit maximization problem, a 

perfect price forecast would incentivize the merchant, in response to the prices, to self-

dispatch the energy storage and wind farms or generators in a way that is consistent with 

the ISO’s dispatch. If the merchant optimizes only her expected profit based on the 

forecasted prices, the accurate price forecast would help her to profit. Obviously, if the 

merchant’s forecasted prices match the actual LMP, she will make the greatest profit. As 

the ISO may be better equipped with information to obtain more accurate price predictions 

to guide the dispatch decision and, therefore, achieve higher social welfare for the market 

as well as higher profit for each participant, the wind-and-storage merchant or generator 

owner has the incentive to let the ISO control her operations. The merchant-ISO equivalent 

connection for optimal decisions is novel and instructive, giving the ISO a new set of 

considerations when scheduling energy storage, renewable power plants, and generators.  

7.5. NUMERICAL SIMULATION AND CASE STUDY 

In Sections 7.3 and 7.4, we recommend the best scheduling strategies for electricity 

merchants who own energy storage and those who have both storage and wind farms. This 
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research yields some significant managerial insights by utilizing strong duality theory 

under the assumption that the profit maximization merchants can forecast prices perfectly 

or that the electricity generation cost minimization ISO can send the cleared electricity 

prices (or share all the LMP created data) to the merchant and generators. In this section, 

we utilize a real-world example to verify our findings. 

Considering the state transition time of PSH, in this study, we concentrate only on 

the day-ahead market and on hourly-period optimization for numerical simulation. Thus, 

the state transition behaviors of PSH can be completed within an hour (Wang et al., 2021). 

We use 1-hour time units for the power prices series in the day-ahead market 

1 2 TLMP {LMP ,LMP , ,LMP }=  ($/MW). To be consistent with the model in Sections 7.3 

and 7.4, we consider the linear generation cost and ignore the transmission efficiency and 

line capacity. Then, the analytical results from the ISO and merchant perspectives are tested 

in both scenarios, taking into consideration the storage merchant or joint wind-storage 

merchant, respectively. The minimum and maximum storage levels (lower and upper 

reservoir) E and E are given the values 2 and 20, respectively. In this case, E 0  means 

that the storage cannot be emptied, which is a realistic statement for a PSH. The maximum 

discharging and charging (generating and pumping) capacity are pQ 2=   and gQ 2=  , 

respectively. Units of GW hours are used for energy quantities. Both charging/pumping 

and discharging/generating rates are measured in GW units. In this case, the charging and 

discharging efficiency is α β 0.9= = . We assume that the PSH takes g(E E) Q 9− = hours 

to empty the upper reservoir and p(E E) Q 9− = hours to refill it; these values correspond 

to the approximate times exhibited by the pumped storage plant in Ludington, Michigan ( 
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seehttps://www.consumersenergy.com/company/electricgeneration/renewables/hydroelect

ric/pumped-storage-hydro-electricity for details).  

      In this section, we consider the linear generation costs in the ISO and generator 

model as well as ignore the value of water in the storage at the end of the optimization 

horizon. First, we consider storage merchants and verify the results delivered by 

Proposition 7.2 in Section 7.3. We choose the actual model of MISO—about 5,000 

generators (e.g., thermal, nuclear) and only one PSH plant (e.g., Ludington)—and neglect 

the transmission line’s capacity in the system. Then, we randomly select a thermal 

generator-I as the traditional generator merchant. We use the day-ahead hourly load as our 

measure of demand, with 24 periods that correspond to the 1-day period of January 1, 2022 

(data on the load and wind generation are available at https://www.misoenergy.org/).  

We developed an analytical expression for the relationship between the electricity 

merchant’s optimal actions and the ISO’s optimal scheduling decision under two scenarios, 

separately. Therefore, in Section 7.5.1, we verify the results for an electricity merchant who 

has only a PSH merchant and a traditional generator. Then, we compare the optimal 

scheduling for the ISO and merchant with both storage and a wind farm. 

7.5.1. Numerical Simulation for Scenario 1. The plots in Figures 7.1 and 7.2 

correspond to the Ludington PSH optimal scheduling—with initial energy in the storage of 

2 GW hours (Figure 7.1) and 10 GW hours (Figure 7.2). The optimal decisions from the 

perspectives of the ISO and the PSH owner are shown in each figure. The parenthetical 

values of 0.9 and 0.8 represent the generating/pumping (discharging/charging) efficiency 

of storage in the optimization. 

 

https://www.consumersenergy.com/company/electricgeneration/renewables/hydroelectric/pumped-storage-hydro-electricity
https://www.consumersenergy.com/company/electricgeneration/renewables/hydroelectric/pumped-storage-hydro-electricity
http://www.miso.com/
http://www.miso.com/
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Figure 7.1 Optimal policy that considers a PSH merchant when 𝐸1 = 2 GWh 

 

 

Figure 7.2 Optimal policy that considers a PSH merchant when 𝐸1 = 10 GWh 

 

In these figures, ISO-PSH-P (resp., ISO-PSH-G) indicates the optimal pumping 

(resp., generating) scheduling of PSH from the ISO’s social welfare-maximizing 

perspective, and PSH-P (resp., PSH-G) indicates the optimal pumping (resp., generating) 

scheduling of PSH from the electricity merchant’s profit-maximizing perspective.  

Figure 7.3 shows the optimal generation of a traditional generator from the two 

perspectives. ISO-G indicates the ISO’s social welfare-maximizing perspective, and Mer-

G indicates the optimal generation from the generator’s profit-maximizing perspective. 
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Figure 7.3 Optimal policy for a traditional generator 

 

     Each figure confirms that the profit-maximizing generator complies with the ISO’s 

dispatch decisions if that merchant can accurately predict the actual electricity price that 

the ISO sends to each generating unit while considering the efficiency loss of storage.  

7.5.2. Numerical Simulation for Scenario2. We consider the scenario in which 

the merchant operates storage and a wind farm to verify the results delivered by Proposition 

7.4 in Section 7.4. On the basis of the above numerical simulation, we add a new decision 

variable of wind power generation, tw , with T = 24 periods that correspond to a 1-day 

period of January 1, 2022, in MISO (power prices and wind production values are available 

at https://www.misoenergy.org/). The wind power generation has generation capacity 

constraints, and the lower and upper limits ( W and W ) are given the values 0 and 2 GW 

hours, respectively. 

Figures 7.4 and 7.5 show the optimal scheduling with the initial 2 GW hours (Figure 

4) and 10 GW hours (Figure 7.5). Different from the figures above, the ISO and electricity 

merchant decide the optimal pumping and generation scheduling and determine the amount 

of wind power generation. The plots in Figures 7.4 and 7.5 also consider the optimal results 

under the generating/pumping (discharging/charging) efficiency of storage as 0.9 and 0.8. 

http://www.miso.com/
http://www.miso.com/
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Figure 7.4 Optimal policy that considers a co-optimization merchant when 𝐸1 = 2GWh 

 

 

Figure 7.5 Optimal policy that considers a co-optimization merchant when 𝐸1 = 10GWh 

 

Figures 7.4 and 7.5 add the optimal solution for wind generation from the 

perspective of the ISO and merchant. ISO-PSH-W indicates the optimal wind power 

generation from the ISO’s social welfare-maximizing perspective, while PSH-W represents 

the optimal wind generation from the perspective of the PSH merchant based on her profit 

maximization. Again, these figures confirm the conclusion in Section 7.4 that the electricity 

merchant who utilizes the wind farms and PSH also arrives at the same optimal solutions 

as the ISO.  
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The ISO's social welfare maximizing goal aligns with the merchant's profit 

maximization goal based on accurate price information. If we can get an exact pricing 

estimate, we won't have to deal with ISO's large-scale economic dispatch problem, which 

is taking a long time to solve. Rather, we may solve the profit maximization problem for 

each merchant by sending price information to them. Then, because each problem is 

extremely small and readily addressed, parallel computing can be utilized to handle many 

such merchant problems at the same time. 

7.6. CONSIDERING THE PRODUCTION TAX CREDIT(PTC) 

The optimal decisions derived in Section 7.4 consider the energy storage capacity 

and discharging/generating and charging/pumping capacity constraints of PSH. We also 

consider two types of efficiency related to PSH storage: the operating cost of storage and 

the generation cost of wind farms. In practice, however, generous economic subsidies, such 

as PTCs, are offered by the federal to state government to promote the development of 

renewable sources of power; these subsidies have reduced U.S. wind power costs by 70% 

(Cullen, 2013; DOE, 2016; Siler-Evans et al., 2013). Moreover, PTCs have spurred more 

than $143 billion worth of private investment in U.S. wind farms over the past ten years 

(https://www.awea.org/policy-and-issues/tax-policy).  

In this Section, we address the situation of a wind farm merchant with storage (PSH 

or battery) who receives PTCs and so is prohibited from purchasing electricity from the 

market to store (the policy 2 in Section 6). In other words, storing energy from the market 

will disqualify her from receiving PTCs; hence, in each period, the power stored by the 

merchant cannot exceed her wind production (Liu et al., 2022b). PTCs will significantly 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Siler-Evans%20K%5BAuthor%5D&cauthor=true&cauthor_uid=23798431
https://www.awea.org/policy-and-issues/tax-policy
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affect the scheduling decision of merchants who operate a wind farm and storage. We 

propose a model that captures the scenario just described. We then derive the conclusion 

that the optimal scheduling decisions between profit-maximizing merchant and social 

welfare-maximizing ISO still hold. 

We continue to assume that the merchant cannot simultaneously sell electricity to 

the grid and purchase power from the market. Because merchants with PTC-subsidized 

wind farms cannot buy electricity from the grid for purposes of storage, there are three 

possible actions: (a) storing and selling partial wind generation, (b) remaining idle, or (c) 

discharging storage and selling all wind generation to the grid. We follow the model 

developed in Section 7.4 and incorporate the subsidy(s) into the profit function for the 

wind-generated electricity sold to the grid, where the updated reward functions are: 

p p
p pt t

t t t w t p t t t
(PTC) p g

t t t t

g g g g

t t t w t t t g t t

q q
P ( w ) s( w ) c w c q     (0 q αw ) 

α αR (q ,q ,w ,P )

P (q β w ) c w s( q β w ) c q  (q 0) 


− − − − − −  

= 


 + − − − − − 

  (7.24) 

The PTC in the (∙) subscript indicates the situation in which the merchant receives 

PTCs. Following Sherlock (2020), this work also assumes that the PTC is a per-kilowatt-

hour (kWh) tax credit for electricity generated using qualified energy resources. The first 

equation gives the reward when the merchant commits some of her wind generation 
p

tq  to 

storage and sells the remaining units t t(g q α)−  to the market. The additional term 

t ts (g q α) −   represents the federally subsidized wind power that is being sold to the 

market. In the second equation, t t(q β g )−  corresponds to the electricity merchant’s 

releasing power from storage to the grid and selling all her wind-generated energy. Among 

all energy sold to the market, the term ts g captures the federal subsidy for wind energy.  
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From the perspective of the ISO, as compared with what was presented in Section 

7.4, the wind-generation cost will be decreased due to the subsidy when the wind 

production is sold to the electricity market. Wind production that is stored, in contrast, is 

not currently eligible for the government’s PTC subsidy, but it was when it was sold to the 

market. With the PTC in consideration, the scheduling problem of ISOs can be 

reformulated as Eq. (7.25). 

( ) ( ) ( )

 

T M T T T
h h g g p p w

it it t t t

t 1 i=1 t 1 t 1 t 1

p

t t

min C g c sβ q c s / α q c s w

q αw 0,
  s.t.   t 1,2, ,T

Other constraints are the same as those in Section 7.4.

= = = =

 
 + −  + +  + − 

 

 − 
 



   

    (7.25) 

Considering the PTC from the perspective of an electricity merchant who has a 

wind farm and storage, to facilitate comparison and maintain the same optimization goal 

as an ISO’s perspective, Eq. (7.26) is modified, and the updated scheduling problem of 

merchant is shown below: 

( ) ( ) ( )( )

 

g g p p w

t t t t t t

t T

p

t t

min c Pβ sβ q c P / α s / α q c P s w

q αw 0,
s.t.   t 1,2, ,T

Other constraints are the same as those in Section 7.4.



− − + + + + − − 

 − 
 





   (7.26) 

Similar to what is seen in Sections 7.3 and 7.4, we relax the non-convex constraint 

by the KKT condition and find the sufficient condition from the perspectives of both the 

ISO and the merchant:   

( )g p

tc c s 1/ α β LMP (1/ α β)+ +  −  − −                  (7.27) 

Eq. (7.27) also guarantees that the optimal charging/pumping and discharging/ 

generating actions cannot occur simultaneously for any positive prices from the 
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perspectives of the social welfare-maximizing ISO and the profit-maximizing electricity 

merchant. The relationships of the optimal scheduling decisions between the ISO and 

merchant who have energy storage and wind farms are then established using the strong 

duality theorem, which is the same as Proposition 7.4 (all proofs are provided in Appendix 

E). In addition, based on the centralized ISO electricity generation cost-minimizing model 

and the expected profit-maximizing problem of traditional decentralized generators (e.g., 

thermal, nuclear, natural gas), we reach the same conclusions as Hua and Baldick (2017) 

and Baldick (2018), who discovered that traditional generators have the same optimal 

economic dispatch decisions. 

7.7. A WIND FARM MERCHANT WITH TWO CONNECTED PSH 

RESERVOIRS  

A typical PSH system includes two reservoirs at different elevations, with the upper 

reservoir’s storing hydraulic potential energy. During off-peak periods, the merchant can 

store energy by pumping water from the lower reservoir to the upper reservoir and then 

generate energy to sell during peak periods by releasing water from the upper reservoir to 

the lower reservoir (Al-Swaiti et al., 2017; Avci et al., 2021; Ding et al., 2014). In this 

Section, we address the co-optimization of a wind farm and a PSH facility in a power 

system with two connected reservoirs.  

For the PSH facility, energy can be stored by pumping water from the lower 

reservoir to the upper reservoir and be generated by releasing water from the upper 

reservoir to the lower reservoir. We assume that 
p

tq   and 
r

tq   represent the dispatch 

decisions, which indicate the energy change in the upper and lower reservoirs (i.e., the 
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electricity quantity of pumping and releasing). In each period, let 
pQ  denotes the 

maximum amount of water that can be pumped from the lower reservoir to the upper 

reservoir, and 
rQ denotes the maximum amount of water that can be released from the 

upper reservoir to the lower reservoir. Both the upper and lower reservoirs have capacity 

constraints. Upper boundaries are denoted by
U

E and 
L

E , whereas lower limits are 0 (i.e., 

U LE E 0= = ) for the upper and lower reservoirs, respectively, and water overflow is not 

permitted. In period t, the amount of water/energy in the upper and lower reservoirs is given 

as U

tE  and L

tE .  

To simplify and model this scenario, we assume that the PHS is a closed-loop 

facility with no natural inflow or spill into either reservoir (Lu et al., 2018). The ISO 

scheduling model, which includes a PSH, a wind farm, and other traditional generators, is 

presented below: 

( )
T M T T

h h r r p p w

it it t t t

t 1 i=1 t 1 t 1

electricity  generation  cos t PSH operating  cos t w in d  generation  cos t

p p p L
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r r r U

t t t

U LU L

t t

U r

t t

min[ C g c q c q c w ]

0 q Q ,q E ,

0 q Q ,q E ,

0 E E ,0 E E ,

E q

s.t.

= = =

 + + + 

  

  

   

− +
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W w W,
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+

+




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
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


+ −


  

  =



         (7.28) 
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The model differs from the traditional energy storage model if both the lower and 

upper reservoirs are included. First, we evaluate not only the upper reservoir’s energy 

balance but also that of the lower reservoir. Second, in contrast to the analyses in Sections 

7.3 and 7.4, pumping dispatch decisions are limited by pumping capacity, upper reservoir 

available space, and amount of energy available in the lower reservoir. Third, generating 

activities are limited by the quantity of energy available in the upper reservoir, generating 

capacity, and the amount of available space in the lower reservoir that can be stored. 

Similarly, the merchant who operates a wind farm and a PSH can still take four 

actions: (a) pumping water from the lower reservoir to store energy in the upper reservoir 

using both wind power generation and electricity purchased from the market, (b) pumping 

water from the lower reservoir to store energy in the upper reservoir using partial wind 

power generation and selling the remaining wind generation to the market, (c) releasing 

the water from the upper reservoir and selling all the wind generation to the market, and 

(d) keeping unchanged or idle. The merchant’s scheduling model is obtained as Eq. (7.29): 

     

( ) ( ) ( )
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       (7.29) 
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Using the same approach as in Sections 7.3 and 7.4, first, the non-convex constraint 

of r p

t tq q 0 =  that the pumping and releasing cannot occur concurrently can be  

demonstrated by holding on to all positive electricity prices from the perspectives of the 

ISO and merchant. The results for the equivalent condition for the merchant’s and generator 

owner’s optimal dispatch decisions are, thus, the same as in Section 7.4 (all proofs are 

included in Appendix E). 

7.8. QUADRATIC ELECTRICITY GENERATION COST  

The results presented in Sections 7.3 and 7.4 are based on the assumption that 

generators have linear electricity generating costs, enabling us to build a dual problem and 

derive the findings and insight. Many studies, such as Sioshansi (2014), Hua and Baldick 

(2017), and Yu et al. (2020), have modeled the electricity generation cost as a quadratic 

function, which is more precise and realistic as compared to the linear electricity generation 

cost. In this Section, we extend our model presented in Sections 7.3 and 7.4 by adopting 

quadratic electricity generation costs and investigating the optimal decisions in regard to 

the relationship between the ISO and electricity merchant.  

7.8.1. Model Setup. When the generating cost function for generators is 

characterized as a quadratic function, the optimization model can be reformulated as 

follows from the perspective of the ISO, who schedules energy storage and other generators: 

( )( ) ( )
T M T

2
h h p p g g

it it it it t t

t 1 i=1 t 1

electricity generation  cos t storage operating  cos t

min[ a g b g c q c q ]

s.t.,  The constra int s are the same as (7.1) in Section 7.3.

= =

 +  +  +  
           (7.30) 
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The electricity-generation cost for other generators and the storage operation cost 

are included in the objective function of the ISO scheduling model. Following the previous 

studies (Hua and Baldick, 2017; Sioshansi, 2014; Wang et al., 2021; Yu et al., 2020), the 

electricity generation cost of the generators is modeled as a quadratic function, as shown 

in Eq. (7.30), and the constraints in Eq. (7.30) are the same as Eq. (7.1) in Section 7.3. The 

challenge of the problem in Eq. (7.30) is represented in quadratic programming, so 

obtaining the dual problem based on strong duality theory is challenge. As a result, the 

analytical conclusions about the optimal solution for the relationship between profit-

maximizing merchants and social welfare-maximizing ISOs cannot be achieved using the 

approaches utilized in Section 7.3. 

Further, when a merchant operates storage and a wind farm, modeling the electricity 

cost function of generating generators is a quadratic function. The ISO’s model is given in 

Eq. (7.31): 

( )( ) ( )
T M T T

2
h h g g p p w

it it it it t t t

t 1 i=1 t 1 t 1

electricity generation  cos t storage operating  cos t wind generation cos t

min[ a g b g c q c q c w ]

s.t.,  The constra int s are the same those in Secti

= = =

 +  + + +  

on 7.4.

      (7.31) 

The objective function in Eq. (7.31) includes the (a) electricity generation cost of 

traditional generators, (b) operating cost of energy storage, and (c) cost of wind-power 

generation. It is too complex to develop the dual model when the ISO’s problems are 

characterized as a quadratic function. Further, it is difficult to obtain analytical findings 

using the Lagrange function when the energy balance constraint is considered. This Section 

presents data simulation to test the aforementioned results to see whether the conclusions 

made using the linear cost function hold in the two scenarios below. 
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7.8.2. Numerical Simulation and Analysis. We test two scenarios: a merchant  

who owns only energy storage and another who operates both storage and wind farms. 

Except for the data for the coefficients of power-generating cost, we use the same data as 

in Section 7.5 when doing numerical simulation. 

Figure 7.6 shows the optimal decisions from the perspectives of the ISO and 

merchant, with initial storage energy of 2 GW hours under the two scenarios. The 

parenthetical value of 0.9 represents the PSH pumping or generating efficiency, and N 

represents the quadratic electricity generation cost. The other labels in the figures have the 

same meaning as those in Section 7.5.  

 

 

Figure 7.6 Optimal policy, considering a PSH merchant and quadratic generation cost 

 

When the initial SOC in the storage E1 = 2GMh and the pumping/generating 

efficiency is 0.9, Figure 7.6 illustrates the optimal policy from the ISO and PSH merchant 

perspectives, taking into account the quadratic electricity generating cost. The simulation 

result reveals that the optimal decisions for energy storage differ from the perspectives of 

the ISO and merchant; nonetheless, the merchant can achieve the same profits by following 

the ISO schedule or pursuing her own profit maximization (which is $168,019.559). This 
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implies that the merchant, ISO, or both have various optimal options, which is consistent 

with Proposition 7.2B’s implications.  

Figure 7.7 depicts the best policy from the ISO’s and electricity merchant’s 

viewpoints, taking into account both wind farms and energy storage as well as the quadratic 

generating cost of other generators in the system. The optimal scheduling decision for 

energy storage from the social welfare maximizing ISO differs from that of the profit-

maximization merchant, similar to the results seen in Figure 7.5, whereas optimal wind 

power generation always reaches the upper limit. Both the merchant and ISO benefit from 

lower wind-generation costs. In addition, the merchant can still make the same optimal 

profit (which is $5,711,217.335) by following the ISO’s schedule or maximizing her own 

profit. The results indicate that the optimization problem of the merchant, ISO, or both 

have numerous optimal solutions and are consistent with Proposition 7.3B’s finding. 

 

 

Figure 7.7 Optimal policy, considering a co-optimization merchant and quadratic 

electricity generation cost 

 

Figures 7.6 and 7.7 show that the conclusions obtained based on linear electricity-

generation costs are still valid under two scenarios when the generating cost of units is 
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characterized as a quadratic function. Although the dispatch options may be different from 

the two optimization goals when the ISO sends the cleared prices to the merchant or the 

merchant can accurately predict the electricity prices, the merchant can earn the same 

optimal profit by seeking her own profit or following the ISO’s schedule. Regardless of the 

expected effect of this alternative definition of the optimal actions, the qualitative insights 

acquired before are unchanged. 

7.9. SECTION SUMMARY AND ANALYSIS 

Independent system operators, such as MISO, are improving their approaches to 

integrating energy storage and renewable energy resources into electricity markets so that 

they can benefit from the resources’ fast-ramping capabilities and bring significant value 

to the grid. Following the current market rules, whereby the electricity merchant optimizes 

charging and discharging hours to maximize her expected profit, this study investigates 

whether allowing the ISO to optimize energy storage and generators while taking into 

account energy storage and generators’ capacity constraints, the multi-stage clearing 

process of electricity markets, uncertainty of renewable generation, and other factors can 

benefit the system and energy storage owners as well as generators. 

This is the first study that utilizes duality theory to investigate the interaction 

between profit-maximizing electricity merchants and social welfare-maximizing ISOs 

while considering energy storage and renewable power plants. For energy storage 

merchants, we concentrated on two scenarios: those with only storage and those with a 

wind farm and storage. Unlike the classical studies of Secomandi (2010) and Zhou et al. 

(2016, 2019), which investigated how to obtain analytically optimal scheduling solutions 
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for energy storage, we investigated the relationship between optimal economic dispatch 

decisions from two perspectives. As a result, we were able to identify equivalent conditions 

and achieve managerial insight. Our results indicate that we don't need to address the large-

scale UCED problem if we have accurate price forecasts (because it takes a lot of time to 

solve). Rather, we can address the problem of profit maximization for each merchant or 

generator (although there are many such problems, one for each merchant or generator, but 

each problem is very small and can be solved easily, and we can use parallel computing to 

solve many such problems simultaneously). 

For an energy storage merchant or generator, under the assumption that the 

centralized ISO sends the cleared electricity prices to the decentralized merchant or 

generator and the electricity generation cost function of traditional generators is linear, we 

show that, if the forecast prices align with the actual LMPs or the ISO sends the cleared 

prices to the electricity merchant, our results further indicate that a merchant with a wind 

farm and storage will arrive at the same optimal economic dispatch decisions (charging, 

discharging, and wind power generating) as those from the perspective of the ISO (when 

there exists a unique optimal solution for the merchant). Further, even if there were multiple 

optimal solutions to the merchant scheduling problem, the merchant could still achieve the 

maximum profit if she follows the ISO schedule. Using the KKT condition, language 

function, and complementary slackness, we also discovered the sufficient condition that 

the optimal generating and pumping decisions cannot occur simultaneously for any positive 

electricity prices for the ISO and the energy storage merchant’s non-convex problem. Our 

findings show that the prior report about the optimal economic dispatch decisions between 

traditional generators and ISO is still valid. 
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In Section 7.6, we find that, if a wind farm with storage is receiving production tax 

credits and, thus, is not allowed to purchase electricity from the market for storage, 

although both the optimal scheduling decisions—and, hence, the optimal profit—are 

affected by those credits, our statements about the relationship between the ISO and 

merchants are still valid. The same results apply to the co-optimization of a wind farm and 

a PHS with upper and lower reservoirs in Section 7.7. Finally, we consider the quadratic 

electricity generation cost in Section 7.8, and the numerical results show that the merchant 

still obtains the maximum profit if she follows the ISO’s dispatch. We conclude that, if an 

ISO includes the storage and renewable power plant as well as traditional generators in his 

social welfare-maximizing problem with a reasonably good electricity price forecast, the 

solution will enhance the system’s social welfare and the merchant’s profit, which 

incentivizes the merchant and generator to follow the ISO’s economic dispatch. These new 

findings augment our collective knowledge about managing the scheduling of energy 

storage, generators, and renewable energy sources and are an essential contribution to the 

research on this topic. 
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8. CONCLUSIONS  

8.1. THE MAIN WORK AND CONTRIBUTIONS 

To investigate optimal economic dispatch strategies for energy storage in electricity 

markets, we apply dynamic programming, mixed integer linear programming, nonlinear 

optimization, duality theory, and Lagrange relaxation. This work studies the optimal 

economic dispatch strategy of energy storage in electricity markets from four perspectives. 

First, we investigate the scheduling policy of an electricity merchant with only energy 

storage. Second, we explore the co-optimization economic dispatch strategy for a merchant 

with energy storage and renewable energy sources. Third, we examine the impact of the 

self-consumption demand rate on economic dispatch for prosumers with energy storage. 

Fourth, we analyze the effects of PTC on economic dispatch for electricity merchants with 

storage and wind farms. Finally, we identify the relationship of the optimal economic 

dispatch above scenarios between profit-maximizing merchants and social-welfare 

maximizing ISOs. 

This work employs dynamic programming theory to investigate merchants' optimal 

economic dispatch considering the market impact and physical characteristics of storage 

systems. Our findings showed that the State-of-Charge (SOC) based analytical solution 

significantly facilitates energy storage merchants' decision-making. The SOC range is 

segmented into three regions by two optimal SOC reference points, which depend on the 

available energy in storage, forecasted electricity prices, and market impact. By comparing 

the current storage SOC with the reference points, the merchant can get the corresponding 

optimal actions. We analytically show that if the merchant neglects the market impact 
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power market, she will exaggerate her expectation profit when the price-taker and price-

maker merchants have the same generating and pumping upper limits. The profit-

maximizing merchant must, therefore, assay to balance the trade-off correctly between the 

intensity of market impact and the dispatched power. Our findings are verified by 

numerical simulation, and the results demonstrate the ramifications for electricity 

merchants in energy arbitrage decisions. 

This study investigated how the market impact of energy storage and uncertainty 

of wind generation affect co-optimized scheduling policy, specifically for merchants who 

have both energy storage and wind plants. Our results first demonstrate that for a merchant 

with co-located energy storage facilities and wind power plants, the energy storage's 

feasible state of charge (SOC) range can be segmented into four possible sub-ranges by 

three analytical SOC reference points. The unique optimal trading decision can be achieved 

by comparing the current energy inventory and the SOC reference points in the next period. 

Second, our results show that market impact and uncertainties substantially change the 

optimal storage scheduling policy by impacting the values of reference points. To smooth 

the negative effect of the merchant’s market impact on buying and selling actions, the 

merchant should reduce the amount of electricity generating or pumping each period to 

maximize profit. Moreover, we identify and investigate the trade-off between increasing 

the unit power profit and lowering the transaction quantity. Our findings provide co-

optimized scheduling guidance for electricity merchants with co-located energy storage 

and renewable power plants systems. 

This work analyzed the effects of self-consumption demand on the joint economic 

dispatch of prosumers (energy consumers who are also producers), particularly for 
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prosumers with both energy storage and distributed renewable energy sources. Self-

consumption demand can affect operational decisions; if the renewable power generation 

can satisfy self-consumption demand, then the remaining renewable power generation can 

be sold to the grid or stored in storage. On the other hand, if renewable power generation 

cannot meet the self-consumption demand, there are three potential options to fulfill the 

power shortage between the self-demand and distributed energy generation: a) buying 

electricity from the grid; b) discharging the energy storage; c) or both. In this paper, the 

above two situations were analyzed separately to find the optimal storage scheduling 

strategy, and the results were combined to get the optimal global solution. This study 

focused on prosumers' economic decision-making while considering self-consumption 

demand and the physical constraints of a battery based on dynamic programming. Our 

study showed that feasible state of charge (SOC) range of a storage can be segmented into 

several sub-ranges by SOC reference points under the above two scenarios. As a result, a 

prosumers' optimal scheduling can be uniquely and conveniently selected based on the sub-

ranges within which the current SOC falls. The results therefore provided multistage 

decision-making guidance for prosumers with energy storage. 

Two common PTC policies are studied – in the first, a wind farm is receiving PTC 

by selling the wind generation to the market and has storage to be able to buy electricity 

from the grid to store but the stored wind generation cannot receive PTC; in the second, 

the stored wind generation can also qualify for PTC but purchasing energy from the grid 

will not be allowed. We then employ dynamic programming to study merchants' optimal 

decision-making while considering PTC and the physical characteristics of storage systems. 

We analytically show that the state of charge (SOC) range can be segmented into different 
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regions by SOC reference points under two PTC policies. The merchant's optimal action 

can be conveniently and uniquely determined based on the region within which the current 

SOC falls. Moreover, this study illustrates that PTC could substantially alter the optimal 

scheduling policy structures by affecting reference points and their relationships. The 

results showed that the frequencies for charging and discharging storage decisions 

decreased with an increase in PTC subsidy. Last, we confirm that although the first policy 

allows merchants to buy electricity from the market, the second policy can bring more 

profits when the PTC is large at current PTC rates. The findings provided multistage 

decision-making guidance for electricity merchants in the wholesale power market. 

This study analyzes whether allowing the ISO to schedule the generators and energy 

storage (pumping/charging and generating/discharging as well as electricity generation 

schedules are optimized by ISO), taking into consideration multiple operating modes, 

energy limitation constraints, and multi-stage clearing process of electricity markets, can 

bring economic benefits to the social-welfare maximizing (i.e., electricity generation cost-

minimizing) centralized ISO and the decentralized profit-maximizing electricity merchant 

and generators. To that purpose, we construct the primal and dual dispatching problems 

from three perspectives: the electricity merchant, the traditional generators, and the ISO. 

We analytically identify that when the ISO sends the cleared electricity prices, based on 

the social welfare-maximizing solutions, to the merchant, under which the merchants 

benefit from letting ISOs dispatch their energy storage (and wind farms) or generators 

directly, considering the linear electricity generation cost. This implies that an electricity 

merchant has the incentive to let the ISO take over the merchant’s operations, or that instead 

of analyzing the large-scale centralized economic dispatch problem from the perspective 
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of ISO, we can utilize parallel computing to handle the profit maximization problems of 

many individual merchants simultaneously and more efficiently. Further, we investigate 

two scenarios: (a) a wind farm merchant who receives production tax credits and has 

storage but is not permitted to store power purchased from the grid, and (b) a wind farm 

merchant who has a pumped hydro energy storage facility with upper and lower reservoirs. 

We also analyze the quadratic power generation cost from the perspective of the ISO. Our 

findings are supported by numerical simulation and provide merchants and ISO with 

decision-making guidance. 

8.2. FUTURE WORK 

For analytical tractability, we assume in this work that the market impact of 

electricity merchants follows a simple linear relation. There are usually two approaches to 

model market impact‐‐‐an equilibrium model or a conjecture variation model. This work’s 

approach is a conjecture variation. Another connected concern for future research is 

confirming how to model the market impact in an equilibrium model and construct the 

corresponding reward functions. Although we expect our work's results to hold for other 

relationships, confirming this expectation is a worthy goal. It seems likely that our work's 

main structural results will also hold for other types of relation—when merchants choose 

to buy electricity, the market load will increase, leading to rising market prices; on the 

contrary, selling power by a price-marker merchant increases the supply and lowers price. 

Therefore, exploring this topic is a promising avenue for future research. 

To establish a reasonable and tractable framework and derive insightful results, we 

have followed the conventional assumptions about the generating and pumping minimum 
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limitations to get continuous reward functions. Further research could be undertaken that 

relaxes these assumptions and extends our research on this problem. It would also be 

worthwhile to investigate generating and pumping lower limitations in positive values 

other than zero. The results and optimal optimization scheduling proposed in this work are 

developed via dynamic programming based on the static price forecast for the entire 

horizon. Another related consideration for future work arises: Should the merchant’s 

decision be adjusted to account for this changing price uncertainty?  

This study led to some simplifying assumptions about DERs generation and self-

demand and assumed both are accurately predictable and regarded as known before the 

decision at each stage. The managerial insights and optimal scheduling proposed in this 

work are developed via dynamic programming based on the single-point forecasts for the 

entire horizon. Future research could relax these assumptions, and approximate dynamic 

programming is a valuable tool to address the problem, incorporating uncertainties of their 

predictions and thereby extending our understanding. In addition, this paper only studied 

the optimal scheduling policy of prosumers with storage. In the future, the optimal 

scheduling between prosumers in the community considering the P2P (peer to peer) energy 

trade will be explored. Moreover, considering the investment cost of energy storage, by 

employing parametric analysis and sensitivity analysis to identify the right energy storage 

to upgrade or add capacity is another direction of future work. 

To construct a tractable framework and obtain valuable insights, we developed 

simplified assumptions about the electricity prices that cleared the ISO and were sent to 

the merchant aligned with the actual LMP. It’s difficult to get an accurate price forecast; 

future studies could tighten these assumptions and then extend our understanding of this 
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problem, including how we can get an accurate price forecast and what inaccuracy level of 

the price forecast can be tolerated. We also assume that the transmission line capacity is 

sufficiently large. It is likely that the main structural results of this work will hold after 

relaxing the sampling assumptions. Another avenue worth exploring is the impact of the 

transmission line capacity on optimal scheduling. We tested the quadratic electricity 

generation cost numerically and suggest research on how a quadratic duality model can be 

built. In addition, an examination of how negative electricity prices affect the relationship 

between the ISO and merchant optimal decisions is needed.  
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APPENDIX A. 

PROOF OF SECTION 3 
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Proof of Proposition 3.1:  

(1) The uniqueness of the optimal results:  

The current payoff rewards are shown as follows for the price maker:  

t t t t t t

t t
t t t t

t t

(P λP α βρ) α βρ+c α βρ  (α 0) (generating-and-selling) 

ˆR(α ,P ) λP α α α
(P ) c              (α 0) (buying-and-pumping)

αρ αρ αρ

− +     


= 
− +  −  


 (A1) 

Where, tα   is the energy/inventory change from period t to period t+1 before 

accounting for energy loss. By using the same method t 1 t t tE η (E α )+ =  + , we will get the 

following rewards function at time t.  

2t t 1 t t 1

t t2 2

t t

t t

2 2 2t 1 t 1

t t t t

t t

2 2t t 1 t t t 1 t t 1 t

t t t2 2 2 2 2 2

t t t

t 1

t

t

(P c) E λP E
( E ) ( E )

αρ η α ρ η
ˆR(α ,P )

E E
(P c)βρ ( E ) λPβ ρ ( E )

η η

(P c) E (P c) λP E λP E λP
( ) E ( ) 2 E (E )

αρ η αρ α ρ η α ρ η α ρ
       

E
(P c) ( )βρ

η

+ +

+ +

+ + +

+

+
− − − −


= 

− −  − − −


+ +
− + − + −



− −  + 2 2 2 2 2 2 2 2t 1 t 1

t t t t t t t

t t

E E
(P c)E βρ λPβ ρ ( ) 2λPβ ρ E λPβ ρ (E )

η η

+ +







−  − + − 


(A2) 

We also have the following value function: 

t t t t t
ˆ ˆV (E ,P )) [R(α ,P ) E(V(S(t 1) | S(t)]= + +  

Optimization of the value function t t t
ˆV (E ,P )) , subject to t 1E E E+  , we will get 

the following equations based on the Bellman equation. 
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t 1

t 1

P* * 2t t 1 t t 1

t t+1 t t2 2E E E
t t

P* * 2t t 1 t t 1 t t 1

t t+1 t2 2 2 2E [E,E]
t t t

(P c) E λP E
V (S(t)) max E[V (S(t 1) | S(t)] ( E ) ( E )

αρ η α ρ η

P c E λP E λP E
or V (S(t)) max E[V (S(t 1) | S(t)] ( ) ( ) 2 E           

αρ η α ρ η α ρ η

+

+

+ +

 

+ + +



 +
= + − − − − 

 

 +
= + − − + 

 

t 1

t 1

g* * 2 2 2t 1 t 1

t t+1 t t t t
E E E

t t

g* * 2 2 2t 1 t 1 t 1

t t+1 t t t
E [E,E]

t t

           (A3-1) 

E E
V (S(t)) max E[V (S(t 1) | S(t)] (P c)βρ ( E ) λPβ ρ ( E )

η η

E E E
or V (S(t)) max E[V (S(t 1) | S(t)] (P c) ( )βρ λP ( ) β ρ 2λP

η η η

+

+

+ +

 

+ + +



 
= + − −  − − − 

 

= + − −  −  + 2 2

t

t

E β ρ   (A3-2)













  

 
 

    

We know that any t {1,2, ,T} , in every stage t , the value function tV (S(t))  

and 
*

t 1E[V (S(t 1) | S(t)]+ +   are concave in tE [E,E]   for each given state 

t t t tS(t) S (E ,g ,P )=  . Clearly, 
*

t 1E[V (S(t 1) | S(t)]+ +  and functions (A3-1) and (A3-2) are 

concave in t+1E [E,E]   for each given state t t tS(t) S (E ,P )=  by through the following 

equivalence relations: 

* *

t 1 t 1 t

*
t 1 t t+1t 1 t

2

t 1 t 1 t t+1

* *

t 1 t t 1 t

2

t t+1 t t+1 t

E[V (S(t 1) | S(t)] E[V (S(t 1) | S(t)] E

E E EE[V (S(t 1) | S(t)] E
=

E E E E

E[V (S(t 1) | S(t)] E E[V (S(t 1) | S(t)] E E

E E E E E

+ +

++

+ +

+ +

    +  + 
     

   +    
= 

   

  +   +  
=  +   

     

t

t+1

2
*

t 1 t

2

t t+1

E

E[V (S(t 1) | S(t)] E
0

E E

+



   + 
 =   
    

. 

1) By optimizing the function (A3-1), subject to t+1E [E,E] , we can derive the  

response function (i.e., first-order derivative) as follows: 

P* *

t t+1 t t t
t 1 t2 2 2 2 2

t 1 t 1 t t t

V (S(t)) E[V (S(t 1) | S(t)] P c λP λP
2 E 2 E

E E αρη α ρ η α ρ η
+

+ +

  + +
= − − +

 
 

Furthermore, the second-order derivative is as follows: 
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( )*P*
t+1t t

2 2 2 2 2

t 1 t 1 t

E[V (S(t 1) | S(t)]V (S(t)) λP
2 0

E E α ρ η+ +

 +
= − 

 
. 

Since the second-order derivative is negative, we can find the unique optimal 

solutions through the first-order condition. We also will get the following optimal results: 

t 1

t 1

p* * 2t t 1 t t 1 t t 1

t 1 t 1 t2 2 2 2E [E,E]
t t t

p* * 2t t 1 t t 1

t 1 t+1 t t2 2E [E,E]
t t

t+1

P c E λP E λP E
E arg max E[V (S(t 1) | S(t)] ( ) ( ) 2 E

αρ η α ρ η α ρ η

(P c) E λP E
or E arg max E[V (S(t 1) | S(t)] ( E ) ( E )

αρ η α ρ η

E[V
or 

+

+

+ + +

+ +


+ +

+


 +
= + − − + 

 

 +
= + − − − − 

 



p*
t 1 t 1

*

t t t

t 1 t2 2 2 2 2

t 1 t t t E E

(S(t 1) | S(t)] P c λP λP
2 E 2 E 0

E αρη α ρ η α ρ η
+ +

+

+ =










  + +

− − + =  
 

    (A4) 

2) By optimizing the function (A3-2), subject to 
t+1E [E,E] , we can derive the  

response function (i.e., first-order derivative) as follows: 

g* *
2 2 2 2t t+1 t 1 t

t t t

t 1 t 1 t t t t

V (S(t)) E[V (S(t 1) | S(t)] E Eβρ 1
(P c) ( ) 2λP ( ) β ρ 2λP β ρ

E E η η η η

+

+ +

  +
= − −  −  + 

 
 

Furthermore, the second-order derivative is as follows: 

( )*g*
t+1 2t

t2 2

t 1 t 1 t

E[V (S(t 1) | S(t)]V (S(t)) βρ
2λP ( ) 0

E E η+ +

 +
= − 

 
. 

Since the second-order derivative is negative, we can find the unique optimal 

solutions through the first-order condition. We also will get the following optimal results: 

t 1

t 1

g* * 2 2 2 2 2t 1 t 1 t 1

t 1 t 1 t t t t
E [E,E]

t t t

g* * 2 2 2t 1 t 1

t 1 t+1 t t t t
E [E,E]

t t

E E E
E arg max E[V (S(t 1) | S(t)] (P c) ( )βρ λP ( ) β ρ 2λP E β ρ

η η η

E E
or E arg max E[V (S(t 1) | S(t)] (P c)βρ ( E ) λPβ ρ ( E )

η η

or 

+

+

+ + +

+ +


+ +

+


 
= + − −  −  +  

 

 
= + − −  − − − 

 



g*
t 1 t 1

*

2 2 2 2t+1 t 1 t

t t t

t 1 t t t t E E

E[V (S(t 1) | S(t)] E Eβρ 1
(P c) ( ) 2λP ( ) β ρ 2λP β ρ =0

E η η η η
+ +

+

+ =










  +

− −  −  +   
 

(A5) 
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(2) The relations among two reference points:  

To simplify exposition, we define two auxiliary functions by using (A4) and (A5). 

*
(p) t+1 t t t

t 1 t 1 t2 2 2 2 2

t 1 t t t

*
(g) 2 2 2 2t+1 t 1 t

t 1 t t t

t 1 t t t t

E[V (S(t 1) | S(t)] P c λP λP
F(E ) = 2 E 2 E

E αρη α ρ η α ρ η

E[V (S(t 1) | S(t)] E Eβρ 1
F(E ) (P c) ( ) 2λP ( ) β ρ 2λP β ρ

E η η η η

+ +

+

+
+

+

  + +
− − +



  +

= − −  −  + 


  (A6) 

Obviously, the corresponding first-order functions of (A6) is the second-order 

derivative of (A3-1) and (A3-2) as follows:  

(p) * (p)*

t 1 t+1 t t

2 2 2 2 2

t 1 t 1 t t 1

(g) * 2 2 (g)*

t 1 t+1 t t

2 2 2

t 1 t 1 t t 1

F(E ) E[V (S(t 1) | S(t)] 2λP V (S(t))
= = 0

E E α ρ η E

F(E ) E[V (S(t 1) | S(t)] 2λPβ ρ V (S(t))
= 0

E E η E

+

+ + +

+

+ + +

  + 
− 

  

  + 

= − 
  

 

Thus, we know that two auxiliary functions are all decreasing with 
t 1E [E,E]+  . We 

also find the following relationships for first-order functions of (A6), that is 

(p) (g)

t 1 t 1

t 1 t 1

F(E ) F(E )

E E

+ +

+ +

 


 
. 

1) For all t 1E E,E+
 
  , if (p) (g)

t 1 t 1maxF(E ) maxF(E )+ + , then we will obtain (p)* (g)*

t 1 t 1E E+ +  

t 1

t 1

*

(p) t+1 t t t

t 1 t2 2 2 2 2

t 1 t t tE E

* 2 2 2 2

(g) t+1 t t t

t 1 t2

t 1 t t tE E

t t t

t2 2 2 2 2

t t

E[V (S(t 1) | S(t)] 2λP 2λP P c
max F(E ) E E

E α ρ η α ρ η αρη

E[V (S(t 1) | S(t)] 2λPβ ρ 2λPβ ρ Pβρ cβρ
max F(E ) E E

E η η η

2λP 2λP P c
E E

α ρ η α ρ η αρη

+

+

+

+ =

+

+ =

 + +
= − + −



 + −
 = − + −



+
 − + −

2 2 2 2

t t t

t2

t t t t

t
t

2 2 (p,g)t

t t t t2 2

t 2 2

t t2 2

t

2λPβ ρ 2λPβ ρ (Pβρ cβρ)
E E

η η η

P c
(P c)βρ

αρP c1 E
2λP ( β ρ ) E (P c)βρ λ λ

α ρ η αρ 1 E
2P ( β ρ ) E

α ρ η

   −
 − + −   

   

 + 
− −     +   

 − −  − −   =           − − 
 

(A7) 
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If the current SOC reaches the lower boundary of storage (i.e., 
t tE E η 0− = ) at 

period t, for any positive electricity price 
tP 0 and λ 0 , we will get (p)* (g)*

t 1 t 1E E+ + . In this 

situation, the merchant only has two actions: do nothing, and buy power from the market.  

To sum up, for every stage t {1,2, ,T}  and positive prices
tP 0  , when the 

market impact satisfies (p,g)

t0 λ λ  , we can draw the relationship for the optimal SOC: 

   (p)* (g)*

t 1 t 1E E+ +     

Obviously, if tP 0 , there is (p)* (g)*

t 1 t 1E E+ +  when (p,g)

t0 λ λ  . 

Therefore, for positive prices
tP 0 , we have the following results: 

1) If 
2αβρ 1 , or c 0  holds, there is  

p* g*

t 1 t 1E E E E+ +                           (A8) 

2) If there are 
2αβρ 1= and c 0= holding, we will get  

t 1

P* g* * 2t 1 t 1 t 1
t t t+1 t t t t

E [E,E]
t t t

E E E
V (S(t))=V (S(t))= max E[V (S(t 1) | S(t)] P λP ( ) 2λP E

η η η+

+ + +



 
+ −  − + 

 

 

Thus, there is   

g* p* *

t 1 t 1 t 1E E E+ + += =                        (A9) 

In summary, we get the following results:  

1) If 
2αβρ 1  (considering efficiency loss) or c 0  (considering the operating cost), 

p* P p* p*

t 1 t t 1 t t 1

* p* g*

t t t t t 1 t 1

g* g

t 1 t

min{E E ,Q }(buy and pump energy up to E )           E [E,E )

ˆα (E ,P )= 0         (keep energy unchanged)                                          E [E ,E ]

max{E E , Q }(g

+ + +

+ +

+

− 



− − g* g*

t 1 t t 1enerate and sell energy down to E )E (E ,E]+ +






 

 (A10) 

2) If 
2αβρ 1=  (no efficiency loss) and c 0=  (without considering the operating cost),  
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* P * *

t 1 t t 1 t t 1
*

t t t
* g * *

t 1 t t 1 t t 1

min{E E ,Q }(buy and pump energy up to E )            E [E,E ]
α (E ,P )

max{E E , Q }(generate and sell energy down to E ) E [E ,E]

+ + +

+ + +

 − 
= 
 − − 

   (A11) 

 

Proof of Proposition 3.2: 

Recall the proof the proposition 3.1, for any given state S(t) and we can get the 

following results:  

t 1

t 1

P* * 2t t 1 t t 1
t 1 t 1 t2 2E [E,E]

t t

g* * 2 2 2t 1 t 1
t 1 t 1 t t t

E [E,E]
t t

λP E (P c) E
E arg max E[V (S(t 1) | S(t)] [ E ] ( )

α ρ η αρ η

E E
E arg max E[V (S(t 1) | S(t)] λPβ ρ [ E ] (P c)βρ ( )

η η

+

+

+ +
+ +



+ +
+ +



  +
= + − − −  

 

  

= + − − − −   
 

. 

Recall the Proof of Proposition 3.1, and we also have the following results:  

P* * t t 1
t 1(λ=0) t 1(PT)

t

g* * t 1
t 1(λ=0) t 1(PT) t

t

(P c) E
E arg max E[V (S(t 1) | S(t)] ( )

αρ η

E
E arg max E[V (S(t 1) | S(t)] (P c) ( )βρ

η

+
+ +

+
+ +

  +
= + −  

 

  

= + − −   
 

 

By using the payoff rewards function (A1), we have the following relations:  

2

t t t

t t

2t
t t

P (α βρ) 0  (α 0)  
ˆR(α ,P )

αλ P ( ) 0    (α 0) 
αρ

−  


= 
 −  



and 
t t t t t

t t t

ˆR(α ,P ) P α α
(P α βρ) α βρ ( ) 0

λ αρ αρ


= −   −  


. 

By using 
t

T

t t t t
Action(E )

i t 1

ˆ ˆV(S(t)) max [R(α ,P ) R(α ,P )]
= +

= +   , then, for every stage 

t {1,2, ,T}  and positive prices tP 0  , the value function of *

t 1V (S(t 1) | S(t)+ +

decreases with the market impact parameter λ . Thus, we will get the following relations: 

* *

t 1(λ 0) t 1(λ 0)E[V (S(t 1) | S(t)] E[V (S(t 1) | S(t)]+ = + +  +           (A12) 
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In this way, we also get the following: 

* *

t 1(λ 0) t 1(λ 0)E[V (S(t 1) | S(1)] E[V (S(t 1) | S(1)]+ = + +  +  

Therefore, we obtain the following optimal results: 

T T

t t (λ 0) t t (λ 0)
π π

t 1 t 1

ˆ ˆmax E R(q ,P ) | S(1) max E R(q ,P ) | S(1)= 

= =

   
               (A13) 

 

Case1 in Section 3. Without Considering the Efficiency and Operation Cost 

Three stages: Prices:    1 2 3P 5,2,10 P ,P ,P= = , initial SOC: 1E , E 0= , and E 10= . 

Assumption and Constraints:  

Let the operating cost be zero (i.e., c 0= ), the efficiencies of pumping, 

generating, self-discharging, and transmission are one (i.e., α β ρ η 1= = = = ).  

pQ =7 (i.e., cannot fill up in one period) 

gQ 12= (i.e., can be emptied in one period) 

We assume the merchant’s market impact parameter λ 0.05= . 

Similarly, by using backward DP to obtain the following optimal value functions:  

In Stage 3: 

Action 3: the merchant should sell power to the market and make the storage level 

down to E . 

H H 2

3 3 3 3 3 3 3 3V [p λp (E E )βρ](E E )βρ [10 0.5(E E )](E E ) 10E 0.5E ,E [0,10]= − + − − = − + − − = −   

In Stage 2:  

By using the equations (A4) and (A5), we will get the following results for price 

maker merchant: 
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( )

3

3

3

g* p* * * L L 2

3 3 3 3 3 3 2
E [E,E]

2 2

3 3 3 3 2
E [0,10]

2 2

2 3 3 2 2
E [0,10]

E E E arg max{V p E λP [E E ] }

                       arg max{10E 0.5E 2E 0.1[E E ] }

                       arg max{(8 0.2E )E 0.6E 0.1E } 40 E 6







= = = − − −

= − − − −

= + − − = +

      (A14) 

Following proposition 3.2, we will get the following results: 

① If ( )2 2E 40 E 6 +  (i.e., 2E 8 ), the merchant should adopt buying-and-pumping up 

to ( )*

3 2E = 40 E 6+ as close as possible. 

② If ( )2 2E 40 E 6 +   (i.e., 2E 8  ), the merchant should adopt generating and selling 

down to ( )*

3 2E 40 E 6= + as close as possible. 

Thus, we will get the following optimal action at stage 2.  

 

p2 2
2

* 2
3 2

*

2

g2 2
2

* 2
3 2

40 E 40 5E
min{ E ,Q } 0  

6 6

40 E
(buying and pumping up to  E ) if  E [0, )

6
α

40 E 40 5E
max{ E , Q } 0

6 6

40 E
 (generating and selling down to E )if  E [ 10]

6

+ −
− = 


 +




= 
+ −

− − = 

 +




，

         (A15) 

The reward payoff functions at stage 2 are shown as follows:  

( )( ) ( )

L L 2 2 2 2
2 2 2 2

2

L L 2 2 2 2
2 2 2 2

2 2 2

40 E 40 5E 40 5E 40 E
(P λP α ) α    if  E [0 ) (2 0.1 )    if  E [0 )

6 6 6 6
R =

40 E 40 5E 40 5E 40 E
(P λP α ) α   if  E [ 10] (2 0.1 )    if  E [ 10]

6 6 6 6

     16 0.5E 6 16 0.5E 40 5E

+ − − + 
− +   − +   
 

=  
+ − − + 

− +   − +    

= − −  − −

， ，

， ，

( ) 26     if  E [0 10] ，  

 

The optimal value function at stage 3 can be rewritten as  

2
* 22 2 2 2
3 3 3

40 E 40 E 3200 40E E
V (10 0.5E )E 10 0.5( )

6 6 72

+ + + −
= − = − =  
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Thus, the optimal value function at stage 2 is shown as follows:  

( )* * 2

2 2 3 2 2 2V max(R V ) 320 40E E 12  if  E [0,10]= + = + −   

In Stage 1:  

By using the equation (A4) and (A5), we will get the following results: 

( )

( ) ( )

2

2

2

p* g* * * M M 2

2 2 2 2 2 2 1
E [E,E]

2 2

2 2 2 2 1
E [0,10]

2 2

1 2 2 1 1
E [0,10]

E E E argmax{V p E λP [E E ] }

                       argmax{ 320 40E E 12 5E 0.25[E E ] }

                       argmax{ 320 (20 6E )E 4E 3E ] 12} 3E 10 4







= = = − − −

= + − − − −

= − − − − = −

   (A16) 

For any given 1E [0,10]  , there is ( )1 1E 3E 10 4 −  , and we will get 

( )*

2 1E 3E 10 4 [ 2.5,5]= −  −  . We also get 1E 10 3  by using ( )13E 10 4 0−   . That is if 

10 E 10 3   , 
*

2E 0=  , 
*

2 1E E 0−   , and if 110 3 E 10   , ( )*

2 1E 3E 10 4= −  , and 

*

2 1E E 0−  . In this way, the electricity merchant should adopt the following policy:  

① 1if  E [0,10 3) , the merchant should adopt generating and selling down to
*

2E =0 . 

② If 1if  E [10 3,10]  , the merchant should adopt generating and selling down to 

( )*

2 1E 3E 10 4= − . 

Thus, we will get the following optimal action at stage 1.  

( ) ( )

1 1
*

1

1 1 1 1

E 0 (generating and selling down to 0)                                 if  E [0,10 3)
α

3E 10 4 E 0 (generating and selling down to 3E 10 4) if  E [10 3,10]

−  
= 

− −  − 

(A17) 

The reward payoff functions at stage 1 are shown as follows:  
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( ) ( )

M M
1 1 11 1 1

1
M M

1 1 11 1 1

2

1 1 1

(5 0.25( E )) ( E ),                  if  E [0 10 3)(P λP α ) α  if  E [0 10 3)
R =

(5 0.25 10 E 4) 10 E 4 if  E [10 3 10](P λP α ) α  if  E [10 3 10]

5E 0.25E ,                if  E [0 1

   

− + −  −  − +   
=  

− +  +  − +   

− 

=

，，

, ，，

，

( )2

1 1 1

0 3)

700 60E E 64,  if  E [10 3 10]





+ − 
，

Thus, the optimal value functions at stage 1 are shown as follows: 

*
2

* 1
2

2
2 2 2

1 1 1E =0

* *

1 1 2
2 2

1 1 2 2
3E 10 1

E =
4

2

1 1

320 40E E 10
(5E 0.25E ) |                  if  E [0 )

12 3
V max(R V )

700 60E E 320 40E E 10
( ) |    if  E [ 10]

64 12 3

(5E 0.25E ) 320 12  

                                =

−

 + −
− + 


= + = 

+ − + −
+ 



− +

，

，

1

21 1
2

1 1
1

                                                if  E [0 10 3)

3E 10 3E 10
320 40 ( )

700 60E E 104 4( ) if  E [ 10]
64 12 3

 



− − + −
+ −

+ 

，

，

 

We will get the following optimal results: 

1) If 1E 1= (The initial SOC in the storage) 

Stage 1: If 1E 1= ,(action 1: generating and selling), there has 

2E 0= (i.e., 
*

1α 1= − , 
2

1 1 1R 5E 0.25E =4.75= − ). 

Stage 2: If 2E 0= ,(action 2: buying and pumping), there has 

2
3

40 E 40
E

6 6

+
= =  (i.e., 

*

2

40
α

6
= , 2 2

2

16 0.5E 40 5E 160
R ( ) =

6 6 9

− −
= −  − ). 

Stage 3: If 3

40
E

6
= ,(action 3: generating and selling), there is 

4E 0 E= = (i.e., 
*

3

40
α

6
= − ,

2 2

3 3 3

40 40 400
R 10E 0.5E =10 0.5( )

6 6 9
= −  − = ). 

Total rewards 1 2 3

160 400
R R +R +R 4.75 + 31.4167

9 9
= = − = .  
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The optimal value at stage 1 is shown as 

* 2

1

320 80
V (5 1 0.25 1 ) 4.75 31.4167

12 3
=  −  + = + = . 

2) If 1E 5= (The initial SOC in the storage) 

Stage 1: If 1E 5= ,(action 1: generating and selling), there is 

1
2

3E 10 3 5 10
E 1.25

4 4

−  −
= = =  (i.e., 

*

1α 3.75= − , 
2

1 1
1

700 60E E 975
R =

64 64

+ −
= ); 

Stage 2: If 2E 1.25= ,(action 2: buying and pumping), there has 

2
3

40 E 41.25
E

6 6

+
= =  (i.e., 

*

2

33.75
α

6
= , 2 2

2

16 0.5E 40 5E 123 135
R ( ) =

6 6 48 24

− −
= −  −  ); 

Stage 3: If 3

41.25
E

6
= ,(action 3: generating and selling), there is 

4E 0 E= = (i.e., 
*

3

41.25
α

6
= − ,

2
2 2

3 3 3

40 40 412.5 (41.25)
R 10E 0.5E =10 0.5( )

6 6 6 72
= −  − = − ). 

Total rewards 

2

1 2 3

975 123 135 412.5 (41.25)
R R +R +R 45.9375

64 48 24 6 72
= = −  + − = .  

The optimal value at stage 1 is shown as  

2

*

1

5 5
320 40 ( )

975 975 320 775 7354 4V ( ) ( ) 45.9375
64 12 64 12 16 12 16

+ −

= + = + + = =


. 

 

Case2. Market Impact λ 0=  

Three stages (Price:  tP 5, 2,10= and 1E (initial SOC/given value), E 0= , and E 10= . 

Assumption and Constraints:  

Let the operating cost be one (i.e., c 1= ), the pumping and generating efficiencies be 
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0.9 (i.e., α β 0.9= = ), self-discharging, and transmission efficiencies are one (i.e., 

ρ η 1= = ).  

pQ 7=  (i.e., cannot fill up in one period) 

gQ 12=  (i.e., can be emptied in one period) 

In Stage 3:  

Action 3: the merchant should sell power and make the storage level down to E

due to 4V 0= . 

H

3 3 3 3V (p c)(E E )βρ  8.1E ,E [0,10]= − − − =   

In Stage 2:  

By using the equation (A4) and (A5), we will get the following results: 

3 3

3 3

g* * L

3 3 3 3 3
E [E,E]       E [0,10]

p* * L

3 3 3 3 3
E [E,E] E [0,10]

E arg max{V (p c)E βρ} arg max{8.1E (2 1) 0.9 E } E 10

E arg max{V (p c)E αρ} arg max{8.1E 3E 0.9} E 10

 

 

 = − − = − −   = =


 = − + = − = =


    (A18) 

If 
*

2 3E E 10=E = , buying-and-pumping up to 10 (i.e., E ) as much as possible. 

① If 2E [0,3) , * * p

2 3 2 2α min{E E ,Q } min{10 E ,7} 7= − = − = , we will get

p *

3 2 2 3E E Q E 7 E= + = +  . 

② If 2E [3,10] , * * p

2 3 2 2 2α min{E E ,Q } min{10 E ,7} 10 E= − = − = − , we will get *

3 3E =E E= . 

Following proposition 3.1, we will get the following optimal actions: 

 

p p* p

3 2 2 2
*

2
p*

2 3 2

Q 7 0  (buying and pumping up to  E =E Q E 7 E)  if  E [0,3)
α

10 E 0 (buying and pumping down to E =E)                            if  E [3,10]

 =  + = +  
= 
 −  

 (A19) 

Thus, the reward functions at stage 2 are shown as follows:  
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p p

t 2 2

2

2 22 2
t 2

Q Q
P c                   if  E [0,3) 23.33            if  E [0,3)

αρ αρ
R 10

(3E 30)  if  E [3,10]10 E 10 E
P c   if  E [3,10] 9

αρ αρ


−  −   − 
 

= = 
− − − 

−  −   


  

So, the optimal value function at stage 3 can be rewritten to  

H p p

2 2
*

3
H p

2

(p c)(E Q E)βρ if  E [E,E Q );
V

(p c)(E E)βρ         if  E [E Q ,E].

 − + −  −
= 
 − −  −

, that is 
2 2

*

3

2

8.1(E 7) if  E [0 3)
V

81               if  E [310]

+ 
= 



，

，
 

The optimal value functions at stage 2 are shown as: 

( )

( )

( ) ( )

L p H p p

2 2
* *

2 2 3
L H p

2 2

2 2

2

(P +c) Q αρ (p c)(E +Q E)βρ    if  E [E,E Q )
V max(R V )

(P +c) (10 E ) αρ +(p c)(E E)βρ      if  E [E Q ,E]

8.1E +33.37             if  E [0, 3)
                               

10 3 E 143 3   i

−  + − −  −


= + = 
− − − −  −


=

+ 2f  E [3,  10]






 

In Stage 1:  

Similarly, by using the Eqs. (A4) and (A5), we get the following results: 

 

2 2

2 2

2 2
g* * M p

2 2 2
E [E,E] E [0,10] 2 2

M 2 2
P* *

2 2 2
E [E,E] E [0,10]

2

4.5E 33.37 if  E [0 3) 

E arg max{V (p c)E βρ} arg max 3 E Q
E  if  E [310]

E 33.37  if  E [0 3) 
(P c)

E arg max V E arg max
α

4 143

15 3

43

30

10 1ρ
E

3

 

 

+ 


= − − = = = −
+ 



+ 
 

−

−

+
= − = 

  +

，

，

，
p

2

3 E Q

  if  E [
43

3
310]






 
  = = −

 


，

  (A20) 

Following proposition 3.1, we will get the following actions:  

p

1 1
*

1
p

1 1

3 E >0 (buying-and-pumping up to E Q =3)         if  E [0,3)
α

3 E <0 (generating-and-selling down to E Q =3 ) if  E [3,10]

 − − 
= 
 − − 

       (A21) 

Thus, the reward functions at stage 1 are shown as follows: 
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 

M p p

1 1 1

1
M p p

1 1 1

1 1

1 1

P (E Q E ) αρ c (E Q E ) αρ   (buy)  if  E [0, 3) 
R

P (E Q E ) βρ+c (E Q E ) βρ      (sell)  if  E [3, 10]

6 (3 E ) 0.9      if  E [0,3)
    

3.6 (3 E )           if  E [3,10]

−  − − −  − − 
= 
− − −   − −  

−  − 
= 

−  − 

 

Therefore, the optimal value functions at stage 1 are shown as  

( )

* p
2

* p
2

p
L H p p

2 2E =E Q

* *

1 1 2 1

L H p2
2E =E Q

1 1

1

Q
(P +c) (p c)(E +Q E)βρ if  E [E,E Q )

αρ
V max(R V ) R

10 E
(P +c) +(p c)(E E)βρ    if  E [E Q ,E]

αρ

20 3 E 37.67  if  E [0 3)
                              

3.6E 46.87   

−

−


−  + − −  −


= + = + 
−

− − −  −


+ 
=

+

，

1    if  E [3 10]




 ，

 

To sum up, we will get the following optimal results: 

1) If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , (action 1: buying and pumping), we will get 

2E 3= (i.e., 
*

1α 2= , 1R 5 2 / 0.9 1 2 / 0.9 13.33=  −  = −- ). 

Stage 2: If 2E 3= ,(action 2: buying and pumping), we will get 

3E 10= (i.e., 
*

2α 7= , 2R 2 7 / 0.9 1 7 / 0.9 23.33= −  −  = − ). 

Stage 3: If 3E 10= ,(action 3: generating and selling), there has  

4E 0= (i.e., 
*

3α 10= − , 3R 10 ( 10) 0.9 1 ( 10) 0.9 81= −  −  +  −  = ). 

Total rewards R 81 13.33 23.33 44.34= − − = .  

The optimal value at stage 1 is shown as ( )*

1 1V 20 3 E 37.67 44.34= + = . 

2) If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= ,(action 1: generating and selling), we have 
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2E 3= (i.e., 
*

1α 2= − , 1R 5 ( 2) 0.9 1 ( 2) 0.9 7.2=  −  +  −  =- ). 

Stage 2: If 2E 3= ,(action 2: buying and pumping), we will get 

3E 10= (i.e., 
*

2α 7= , 2R 2 7 / 0.9 1 7 / 0.9 23.33= −  −  = − ). 

Stage 3: If 3E 10= ,(action 3: generating and selling), there has  

4E 0= (i.e., 
*

3α 10= − , 3R 10 ( 10) 0.9 1 ( 10) 0.9 81= −  −  +  −  = ). 

Thus, the total rewards R 81+7.2 23.33 64.87= − = .  

The optimal value at stage 1 is shown as 
*

1 1V 3.6E 46.87 64.87= + = . 

 

Case 3. (Market Impact λ 0.01= ) 

The efficiencies α β 0.9;ρ η 1= = = = ; the operating cost c 1= . 

Unlike Case 2, we assume the merchant’s market impact parameter λ 0.01= , and 

we use the same method to obtain the following optimal value functions: 

In Stage 3:  

Action 3: Sell power to market and make the storage level down to E 0= . 

H H 2

3 3 3 3 3 3V [p λp (E E )βρ c](E E )βρ  8.1E 0.081E ,E [0,10]= − + − − − = −   

In Stage 2:  
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3

3

3

3

g* * L L 2 2

3 3 3 3 2
E [E,E]

2 2

3 3 3 3 2
E [0,10]

2 2

2 3 3 2
E [0,10]

E [0,10]

E arg max{V (p c)E βρ λP (βρ) [E E ] }

     arg max{8.1E 0.081E (2 1) 0.9 E 0.02(0.81)[E E ] }

243
     arg max{(7.2 0.0324E )E E 0.0162E }

1000

      min









= − − − −

= − − −   − −

= + − −

=

3

3

3

2

L
p* * L 23
3 3 3 22

E [E,E]

2 2

3 3 3 3 2
E [0,10]

2 2

2 3 3 2
E [0,10]

500
{ (7.2 0.0324E ),10} 10 E

243

E λP
E arg max{V (p c) [E E ] }

αρ (αρ)

3 0.02
     arg max{8.1E 0.081E E [E

81000

E ] }
0.9 0.81

143 4 8561 4
     arg max{( E )E E E

30 81 81







+ = =

= − + − −

= − − − −

= + − −

3

2

E [0,10]

}

50(3861 40E )
     min { ,10} 10 E

8561





















 +

= = =


       (A22) 

Thus, we will get the following optimal actions at stage 2. 

p p* p

3 2 2 2
*

2
p*

2 3 2

Q 7 0  (buying and pumping up to  E E Q E 7 E) if  E [0,3)
α

10 E 0 (buying and pumping up to E E)                                 if  E [3,10]

 =  = + = +  
= 
 −  = 

 (A23) 

The reward payoff functions at stage 2 are shown as follows:  

2 2 t 2

22
2 2

2 2 t 2

(2 0.02α / 0.9) α / 0.9 1 α / 0.9 25.5432                           if  E [0,3)

R
2900 310E 2E  

(2 0.02α / 0.9) α / 0.9 1 α / 0.9     if  E [3,10]
81

− +  −  = − 


=  − + −
− +  −  = 


   

The optimal value functions at stage 3 can be rewritten as 

*
3 2

*
3

2 2

3 3 2 2 2E E 7
*

3
2

3 3 2E 10

8.1E 0.081E |  = 0.081E 6.966E 52.731    if  E [0,3)

V

8.1E 0.081E | =72.9                                                    if  E [3,10]

= +

=

 − − + + 


= 
 − 


 

Thus, the optimal value functions at stage 2 are shown as follows: 

2

2 2 2

* *
22 2 3

2 2
2

0.081E 6.966E 27.1878  if  E [0 3)

V max(R V )
310E 2E  30049

+               if  E [310]
81 810

− + + 


= + =  −
 


，

，
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In Stage 1:  

2

2

g* * M M 2 2 2

2 2 2 2 1
E [E,E]

2 2

2 1 2 1 2

E [0,10] 2 2

2 1 2 1 2

E arg max{V (p c)E βρ λP β ρ [E E ] }

243 162 81
E (3.366 E )E 27.1878 E     if  E [0 3)

2000 2000 2000
      =arg max

92 162 81 30049
0.0652E ( E )E E +        if  E [

405 2000 2000 810





= − − − −

− + + + − 

− + + − 

，

310]







，

   (A24) 

If 2E [0,3) , in the first equation of (A24), we will get 
g*

2E 3= .  

If 2E [3,10] , in the second equation of (A25), we get 

g* 1
2

0.081E0.227
E

0.

2

13048

+
= if 1E (4.59 ]92,10 . We also find there is 

1
2

2

2 2

2 1 2 1 0.081E
E

0.13

0.22

04

2

2 1 3

2

2 1 E

7

92 162 81 30049
[ 0.0652E ( E )E E + | ]

405 2000 2000 810

243 162 81
[ E (3.366 E )E 27.1878 E | ] 0

2000 2000 2000

+
=

=

− + + −

− − + + + − 

 

Therefore, if 1E (4.59 ]92,10 , we will get g* 1
2

0.081E0.227
E

0.

2

13048

+
=   

2

2

M M
P* * 2

2 2 2 1 22 2
E [E,E]

2 2

2 1 2 1 2

E [0,10] 2 2

2 1 2 1 2

λP (P c)
E arg max V [E E ] E

α ρ αρ

10 449 5
0.1427E ( E )E E +27.1878  if  E [0 3)

81 1500 81
     arg max

7 10 230 5 30049
E ( E )E E +             if  E [310]

81 81 81 81 810





 +
= − − − 

 


− + + − 

= 

− + − −

，

，






     (A25) 

If 2E [0,3) , in the first equation of (A25), if 1E [0,1.89] , there is
1

p*

2

10 459
( E )
81 1500E

0.2854

+

= . 

If 2E [3,10] , in the second equation of (A25), if 1E [0,1.89] , there is
P*

2E =3 . 
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P*
2

1
p*
2

2 2

2 1 2 1 E =3

2 2

2 1 2 1 10 459
( E )
81 1500E

0.2854

10 449 5
0.1427E ( E )E E +27.1878 |

81 1500 81

10 449 5
0.1427E ( E )E E +27.1878 | 0

81 1500 81 +

=

 
− + + − 
 

 
 

− − + + −  
 
 

 

Therefore, 1if E [0,1.89) ,
1

p*

2 1

10 459
( E )
81 1500E 0.4326E 1.072

0.2854

+

= = + . 

The optimal value functions at stage 2 can be rewritten as follows:  

1
p*
2

p*
12

2

2 2 10 459 1 1 1
( E )
81 1500E

0.2854

* 2 2

2 2

2

2 1 1 1E E

2

0.081E 6.966E 27.1878 | = E E  if  E [0,1.89)

V 3.83E 0.024E +37.10 | 3.83E 0.024E +37.10                 

34.56 2.94 0.01

         if E [1.89,4.6]

3.83E 0.0 4

5

2

+

=

=

− + + 

= − = − 

−

+ −

g* 1
2

2

0.227

2

2 0.081E 1 1 1
E

0.13048

2 43.695 2.3E +37.10| = E E        if  E (4.6,10]27 0.009+
=







+ −






 

    The optimal actions at stage 1 are shown as 

1 1 1

p*

2 1 1

*

1 1

0.4326E 1.0722 E 0.5674E 1.0722 0

(buying and pumping up to  E 0.4326E 1.0722)    if  E [0  1.89);

α 0    (do nothing)                                                         if  E [1.89  4.59

+ − = − + 

= + 

= 

，

，

1 1 1

g*

2 1 1

92];

1.741 0.621E E 1.741 0.379E 0

(generating and selling down to E 1.741 0.621E )  if  E (4.5992  10].









+ − = − 

 = +  ，

   (B26) 

The reward payoff functions at stage 1 are shown as follows:  
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M M

1 1 1

1 1

M M

1 1 1

1

(P λP α / αρ c) α / αρ  if  E [0,1.89)

R 0                                                  if  E [1.89,4.6]

(P λP α βρ c) α βρ        if  E (4.6,10]

(6 0.01 5( 0.5674E 1.0722) / 0.9)( 0

      =

− + +  



= 

− + −  

− +  − + − 1 1

1

1

.5674E 1.0722) / 0.9  if  E [0 1.89)

0                                                                                                        if  E [1.89 4.6]

(4 0.01 5 0.9(1.741 0.379E )) (1.741 0.379E

+ 



− +   −  −

，

，

2

1

2

1 1

1

11

1

1

1

) 0.9            if  E (4.6 10]

E      if  E [0,1.89)

    0                                            if  

7.22 3.86 0.02E

6.39

E [1.89,4.6]

E 6   if  E (4.6,11.429 0.00 E 0]

− + −

− + −






 

 



= 

 

，

 

    Thus, the optimal value functions at stage 1 are shown as follows:  

1 1 1 1

* * 2

1 1 2 1 1

2 2

1

2

1

1 1

E + E E             if  E [0,1.89)

V max(R V ) 0 +3.83E 0.024E +37.10                                                   if

7.22 3.86 0.02E 3

 E [1.89

4.56 2.94 0.015

6.39 1.429 0.00 E

,4.6]

E 46 3



= + = − 

− + − +

− − +

−

+ 1 1 1

1 1 1

2

1 1 1

1

2

2

2

1 1

E E    if  E (4.6,10]

E E       if  E [0,1.89)

    3.83E 0.024E +37.10      if  E [1.89,4.6

.695 2.327 0.009

27.34 6.8 0.035

37.31 3.7

]

E      if  E (4.6,16E 0.015 0]




+ −

+ −




 

 



= − 

+ −




 

In summary, we will get the following optimal results: 

1) If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , (action 1: buying and pumping), there is 

2E 1.5=  (i.e., 
*

1α 0.5= , 1 (5 5 0.01 0.5 / 0.9) 0.5 / 0.9 1 0.5 / 0.9 3.35R − +   = −=  −  ). 

  Stage 2: If 2E 1.5= , (action 2: buying and pumping), there is 

3E 8.5=  (i.e., 
*

2α 7=  , 2 (2 2 0.01 7 / 0.9) 7 / 0.9 1 7 / 0.9 24.5R 4− +    −  = −= ). 

  Stage 3: If 3E 8.5= ,(action 3: generating and selling), there is 
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4E 0= (i.e., 
*

3α 8.5= − , 3R (10 0.01 10 8.5 0.9) ( 8.5) 0.9 61 3.00( 8.5) 0.9      = − − − + − = ). 

  Total rewards 1 2 3R R +R +R 3.4 24.5 63.0 34.1= = − − + = .  

  The optimal value at stage 1 is 
*

1V 27.34+6.8 0.035=34.1= − , if 1E 1= . 

2) If 1E 5=  (The initial SOC in the storage) 

  Stage 1: If 1E 5= ,(action 1: generating and selling), we will get 

2E 4.84=  (i.e., 
*

1α 0.16= − , 1 2 3R R +R +R 3.4 24.5 63.0 34.1= = − − + = ). 

  Stage 2: If 2E 4.84= ,(action 2: buying and pumping), there is 

3E 10=  (i.e., 
*

2α 5.16= , 2 (2 2 0.01 5.16 / 0.9) 5.16 / 0.9 1 5.16 / 0.9 17 8R . 6− +    −  = −= ). 

  Stage 3: If 3E 10= ,(action 3: generating and selling), there is 

4E 0 E= =  (i.e., 
*

3α 10= − , 3R (10 0.01 100 0.9) ( 10) 0.9 1 ( 10) 0.9 72.9     = − − − + − = ). 

  Total rewards 1 2 3R R +R +R 0.57 17.86 72.9 55.7= = − + = .  

  The optimal value at stage 1 is shown as  

*

1 37.31 3.76 5 0.015 25V 55.7+  −  == , if 1E 5= . 

 

Case 4. Market Impact λ 0.02=  

In this case, we assume the merchant’s market impact parameter λ 0.02= . 

    Similarly, by using backward DP to obtain the following optimal value functions: 

In Stage 3:  

  Action 3: the merchant should sell power to the market and lower the storage level 

down to E 0=  due to 4V =0 . The optimal value functions in stage 3 are:  
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H H

3 3 3

2

3 3 3 3 3

V [p λp (E E )βρ c](E E )βρ

   [9 0.2( E )0.9]( E )0.9  8.1E 0.162E ,E [0,10]

= − + − − −

= + − − = − 

 

In Stage 2:  

  By using the equation (A4) and (A5) for price maker merchant, we will get the 

following results: 

3

3

3
3

g* * L L 2 2

3 3 3 3 2
E [E,E]

2 2

3 3 3 3 2
E [0,10]

2 2 2
2 3 3 2

E [0,10]E [0,10]

E arg max{V (p c)E βρ λP (βρ) [E E ] }

    arg max{8.1E 0.162E 1 0.9 E 0.04(0.81)[E E ] }

7.2 0.0648E
   arg max{(7.2 0.0648E )E 0.1944E 0.0324E } min {

0







= − − − −

= − −   − −

+
= + − − =

3

3

3
3

L
p* * L 23
3 3 3 22

E [E,E]

2 2

3 3 3 3 2
E [0,10]

2 2

2 3 3 2
E [0,10]E [0,10]

,10} 10 E
.3888

E λP
E arg max{V (p c) [E E ] }

αρ (αρ)

3 0.04
    arg max{8.1E 0.162E E [E E ] }

0.9 0.81

4.767 0
   arg max{(4.6 0.2117 0.09E )E E 0.05E } min {







= =

= − + − −

= − − − −

+
= + − − = 2.09E

,10} 10 E
0.422


















 = =


 (A27) 

  Following proposition 3.1, we will get the following results:   

② If 
p* p

2 3E E Q =3 − , buying-and-pumping up to 
* p

3 2 2E =E Q E 7+ = + , 
* p

2α Q 7 0= =  . 

③ If 
p* p

2 3E E Q =3 − , buying-and-pumping up to *

3E =E 10= ， * p*

2 3 2 2α E E 10 E 0= − = −  .  

  Thus, we get the following optimal actions at stage 2 based on proposition 3.2. 

p p* p

3 2 2
*

2
p*

2 3 2

Q 7 0  (buying and pumping up to  E E Q E)  if  E [0 3)
α

10 E 0 (buying and pumping up to E E)                    if  E [310]

 =  = +  
= 
 −  = 

，

，
  (A28) 

  The reward payoff functions at stage 2 are shown as follows:  
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L L p* p2 2 2
2 3

2

L L p* p2 2 2
2 3

2

2

2 2 2

α α α
(P λP ) c    if  E [0 E Q )

αρ αρ αρ
R

α α α
(P λP ) c     if  E [E Q 10]

αρ αρ αρ

25.7531                                if  E [0 3)

    10 2 35 310
( E E )  if  E [310]

9 45 9 9


− +  −   −


= 

− +  −   −


− 


= 
− + − 



，

，

，

，

 

  The optimal value functions are stage 3 can be rewritten as 

*
3 2

*
3

2 2

3 3 2 2 2E E 7
*

3
2

3 3 2E 10

8.1E 0.162E | = 0.162E +5.832E 48.762  if  E [0 3)

V
8.1E 0.162E |   64.8                                         if  E [310]

= +

=

 − − + 


= 
 − = 


，

，
 

  Thus, the optimal value functions in stage 2 are shown as follows:  

2

2 2 2
* *

2 2 3
2

2 2 2

0.162E +5.832E 23.01     if  E [0 3)
V max(R V )

0.05E 4.32E +26.53         if  E [310]

− + 
= + = 

− + 

，

，
 

In Stage 1:  

  Similarly, by using the equations (A4) and (A5) for price maker merchant, we will 

get the following results: 

2

2

g* * M M 2 2 2

2 2 2 2 1
E [E,E]

2 2

2 1 2 1 2

2 2
E [0,10]

2 1 2 1 2

E arg max{V (p c)E βρ λP β ρ [E E ] }

0.243E (2.232 0.162E )E 0.081E 23.0089   if  E [0 3)
      =arg max

0.131E (0.72 0.162E )E 0.081E +26.5284     if  E [310]





= − − − −

− + + − + 

− + + − 

，

，

  (A29) 

①  If 2E [0,3) , in the first equation of (B16), for any given 1E [0,10] , there is 

( )12.232 0.162E 0.486 2.232 0.486 3+   , that is 
g*

2E 3=  if 2E [0 3) ， . 

② If 2E [3,10] , in the second equation of (B16), for any given 1E [0,10] , we get the 

relation of ( )12.748 0.162E 0.2620.7 32 8.9 1 +  . 

  By using ( )1 1 1 1 10.72 0.720.162E 0.262 E 0.162E 0.262E E 7.2+   +     
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  Thus, if ( )g*

1 2 1,10], 0E [7.2 E 0.162. 272 E 0.26 = + , we also find that 

1
2

2

0.7

2 2

2 1 2 1 0.162E
E

0.262

2 2

2 1 2 1 E 3

2 2 2

1

1

2

1

[ 0.131E (0.72 0.162E )E 0.081E +26.5284 | ]

[ 0.243E (2.232 0.162E )E 0.081E 23.0089 | ]

1 1
[ 0.131( ) ](0.72 0.162E ) 0.081E +26.5284

0.262 0.262

[ 0.243 9 (2.232 0.162E

+
=

=

− + + −

− − + + − +

= − + + −

− −  + + 2

1

2 2

1 1 1 1

2

1 1

) 3 0.081E 23.0089]

0.0309E +27.5177+0.4452E [0.486E 0.081E 27.5179]

0.0501E 0.0408E 0.0002

 − +

= − − − +

= − −

 

  So, for any 1E [7. ]2,10 , the relations of 
2

1 10.0501E 0.0408E 0.0002 0− −  holds. 

  Therefore, if 1E (7.29 ]76,10 , ( )g*

2 1E 0.162E 0.260.72 2= +  in (B16) 

2

2

M M
P* * 2

2 2 2 1 22 2
E [E,E]

2 2

2 1 2 1 2

2 2
E [0,10]

2 1 2 1 2

0.835

λP (P c)
E arg max V [E E ] E

α ρ αρ

0.285E (0.246E )E 0.123E +23.0089     if  E [0 3)
     arg max

0.173E (0.246E 2.347 E 0.123E +26.5284    if  E [310])





 +
= − − − 

 

− + − − 
= 

− + −  −

，

，

   (A30) 

① If 2E [0,3) , in the first equation of (A30), for any given 1E [0,10] , there  

( )10.246E1.4649 0.835 0.57 2.851−−    holding. So, 
p*

2E [0,2.851] . 

However, by using ( )1 1 1 110.246E 0.2460.835 0.57 E 0.835 0.57E E E 2.577− −   −   , 

so, there is an available
p*

2E =0  if 2E [0,3) .  

② If 2E [3,10] , in the second equation of (A30), for any given 1E [0,10] , there is 

( )10.246E 2.347 0.346 0.327− . 

    So, the function of 
2 2

2 1 2 10.173E (0.246E 2.347 E 0.123E +26.5 84) 2−− + −   decreases 

with 2E on [3, 10]. Thus, we will get
P*

2E =3 , if 2E [3,10] . We also find that 
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P*
2

P*
2

2 2

2 1 2 1 E 0

2 2

2 1 2 1 E 0

2 2

1 1 1

1 1 1

0.285E (0.246E )E 0.123E 23.0089

[ 0.285E (0.246E )E 0.123E 23.0089 ]

0.123E 23.0089 [ 0.123E 17.9304 0.738E  ]

5.078

0.835

0.8

5 0.738E 0 if  E 0 r E

5

 

3

o 3

=

=

− + − − +

− − + − − +

= − + − − + +

= −  = 

 

    In this way, the electricity merchant should adopt the following policy  

① If 1E [0,7.2) , the merchant should do nothing. 

② If 1E (7.2,10] , the merchant should adopt generating and selling and lower the 

storage down to ( )g*

2 1E 0.162E 0.260.72 2= + . 

Thus, we will get the following optimal action at stage 1.  

1

*

1
1 1

1 1

 0 (do nothing)                                                                                        if  E [0 7.2] 

α 0.162E 0.162E
E (generating 

0.72 0.72
and selling down to ) if  E (7.

0.262 0.262



= + +
− 

，

2,10]







(A31) 

Therefore, the optimal value functions at stage 1 are shown as follows: 

2

2 2 2
* *

2 2 3
2

2 2 2

0.162E +5.832E 23.01  if  E [0 3)
V max(R V )

0.05E 4.32E +26.53     if  E [310]

− + 
= + = 

− + 

，

，
 

  The reward payoff functions at stage 1 are shown as follows:  

1

1
M M

1 1 1

1

1 1

0                                                 if  E [0,7.2]
R

(P λP α βρ c) α βρ      if  E (7.2 10]

0                                                 if  E [0,7.2]

0.9
    

3 0.12 0.001E 2
 =

E−


= 

− + −  



−

 ，

1

2          if  E (7.2 10]




 ，

 

      Thus, the optimal value functions in stage 1 are shown as follows:  

2

1 1 1
* *

1 1 2

1 1

2

1

0.05E 4.32E +26.5284     if  E [3,

38.8 2.38 0.0202

7.2]
V max(R V )

E E         if  E (7.2,10]

− + 
=

+ −

+ = 

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  To sum up, we will get the following optimal results: 

1) If 1E 1= (The initial SOC in the storage) 

  Stage 1: If 1E 1= , (action 1: do nothing), we get 2E 1= (i.e.,
*

1α 0= , 1R 0= );   

  Stage 2: If 2E 1= , (action 2: buying and pumping), then, we will get 

3E 8=  (i.e., 
*

2α 7=  , 2 (2 2 0.02 7 / 0.9) 7 / 0.9 1 7 / 0.9R 25.7531− +    −  = −= ); 

  Stage 3: If 3E 8= ,(action 3: generating and selling), then, we have  

4E 0=E= (i.e., 
*

3α 8= − , 3R (10 0.02 80 0.9) ( 8) 0.9 1 ( 8) 0.9 54.432= − −    −  +  −  = ). 

  Total rewards is shown as 1 2 3R R +R +R 25.753 54.432 28.679= = − + = .  

The optimal value at stage 1 is 
* 2

1 1 1V 0.162E +5.832E 23.0089 28.679= − + =  if 1E 1=  

2) If 1E 5= (The initial SOC in the storage) 

  Stage 1: If 1E 5= ,(action 1: do nothing), we get 2E 5=  (i.e.,
*

1α 0= , 1R 0= ) holds;   

  Stage 2: If 2E 5= ,(action 2: buying and pumping), then there exists 

3E 10=  (i.e., 
*

2α 5= , 2 (2 2 0.02 5 / 0.9) 5 / 0.9 1 5 / 0.9 17.9012R − + − = −=     ); 

  Stage 3: If 3E 10= ,(action 3: generating and selling), then we have  

4E 0 E= = (i.e., 
*

3α 10= − ); 3R 8.1 10 0.162 100 64.8=  −  = ). 

  Therefore, total rewards in three periods are shown as 1 2 3R R +R +R 46.9= = .  

  The optimal value in stage 1 is 
*

1 0.05 25 4.32 5 26.5284 46.9V = + =+− if 1E 5=  
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APPENDIX B. 

PROOF OF SECTION 4 
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Proof of Lemma 4.1: 

(1) The uniqueness of the SOC reference points:  

Based on the equation (4.5), by replacing tq with t 1SOC + as the decision variable via

t 1 t t tSOC φ SOC q+ − = , we get the following rewards functions.  

2 2 2 pt t t t
t t t t t w t t t

2 2 2 pt t t t
t t t t t t t t w t t t

2 2 2 g

t t t t t t t t t w t t

q q q q
P ( w ) / σ λP σ [( ) 2 w w ] c c w  (q θw )  

θ θ θ θσ

q q q q
R(q ,w ,P ) P ( w ) σ λP σ [( ) 2 w w ] c c w  (0 q θw )

θ θ θ θσ

P (q θ w ) σ λP σ [(q ξ) 2(q ξ)w w ] c q ξσ c w  (q 0)


− − − − + − − 



= − −  − − + − −  

− −  − − + + − 








 (B1) 

In the end of period T, the value function is shown: 

( )T T T T T 1 T T T T 1 T 1V (S(T)) [R(q ,w ,p ) E[V S(T 1) |S(T) ] [R(q ,w ,p ) VOW SOC ]+ + += + + = +   

Thus, we get the following three sub-optimization value functions:  

( )
T 1

T 1

p
2 tT T T T T

T T T T w2 2 2 2(1)*

T
S SOC S

*

T 1

2 2 p
2 2T T T

T T T T T T w2(2)*

T
S SOC S

*

T 1

P cλP 2λP w λP P
q +( )q w ( w c )

θ σ θσ θσ σ σV (S(T)) max

+E[V S(T 1) | S(T) ]

λρ P w P σ +c
q (2λP σ )q w [P σ(λw σ 1) c ]

σ θ θσV (S(T))= max

E[V S(T

+

+

 

+

 

+

 +
− − − − + 

=  
 

+ 

− + − − − +

+ +( )

( )T 1

2 2 2 2 g

T T T T T T T T T w
(3)*

T
S SOC S *

T 1

1) | S(T) ]

λP ξ σ q (2λP w ξσ P ξσ c ξσ)q w [P σ(λw σ 1) c ]
V (S(T))= max

E[V S(T 1) | S(T) ]+ 

+







  
  
  
  

 

  − + − − − − +

   
 + +  


(B2) 

We can get the optimal results to the equation (B3) by removing the given state

S(T) (i.e., the given values TSOC , Tw , and TP ) when maximizing the (B2) . So, we get the 

following equivalent equations:  
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T 1

T 1

2
p

tT T 1 T T T 1
T T2 2 2(1)*

T TT
S SOC S

T+1 T+1

2
2 2 p

2T T 1 T T
T T2(2)*

TT
S SOC S

P cλP SOC 2λP w SOC
SOC +( ) SOC

θ σ φ θσ θσ φV (S(T)) max

VOW SOC

λρ P SOC w P σ +c SOC
SOC (2λP σ )

θ φ θ θσV (S(T))= max

+

+

+ +

 

+

 

    +
 − − − −    

=     
 
+   

 
− − + − 

 

T 1

T 1
T

T

T+1 T+1

2

2 2 2 gT 1 T 1
T T T T T T(3)*

T TT
S SOC S

T+1 T+1

SOC
φ

VOW SOC

SOC SOC
λP ξ σ SOC (2λP w ξσ P ξσ c ξσ) SOC

φ φV (S(T))= max

VOW SOC

+

+

+ +

 









  
 −   

   
  

+    

       − − + − − −         
  
 +   

 (B3) 

The first-order derivative of
*

TV (S(T)) (i.e., best response functions) on T 1SOC + are: 

p(1)*

tT T T 1 T T
T T 12 2 2

T 1 T T T

(2)* 2 2 p
2T T T 1 T T

T T T 12

T 1 T T T

(3)*

T

T

P cV (S(T)) λP SOC 2λP w1 1
2 SOC ( ) VOW             

SOC θ σ φ φ θσ θσ φ

V (S(T)) λσ P SOC w P σ c1 1
2 SOC (2λP σ ) VOW    

SOC θ φ φ θ θσ φ

V (S(T))

SOC

+
+

+

+
+

+

+

  +
= − − + − + 

  

  +
= − − + − + 

  





2 2 2 gT 1
T T T T T T 1

1 T T T

SOC 1 1
2λP ξ σ SOC (2λP w ξσ P ξσ c ξσ) VOW

φ φ φ

+
+









  

= − − + − − + 
 

 (B4) 

We have the following second-order derivative functions of *

TV (S(T)) on T 1SOC + .  

2 (1)*

T T

2 2 2 2

T 1 T

2 (2)* 2

T T

2 2 2

T 1 T

2 (3)*
2 2T

T2 2

T 1 T

V (S(T)) λP 1
= 2 0;  

SOC θ σ φ

V (S(T)) λσ P 1
= 2 0;  

SOC θ φ

V (S(T)) 1
2λP ξ σ 0.

SOC φ

+

+

+

  
−   

  



− 





= −  

                    (B5) 

Because the second-order derivative function is negative, we can achieve the 

unique optimal results by using the first-order function. Therefore,
(1)*

TV (S(t)) ,
(2)*

TV (S(t)) , 

and 
(3)*

TV (S(t))  have a unique optimal solution on T 1SOC [S,  S]+  . 

Then the Bellman equation can be used to derive the following results: 
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( )

( )

T 1

T 1

* 2t T 1
T 1 T2 2

T
(1)*

T 1
S SOC S p

T T T T 1

2

T

2
* 2T T 1
T 1 T2

T
(2)*

T 1
S SOC S 2

2 T T
T

λP SOC
E[V S(T 1) | S(T) ] ( SOC )

θ σ φ
SOC arg max

2λP w P c SOC
( )

θσ θσ φ

λσ P SOC
E[V S(T 1) | S(T) ] ( SOC )

θ φ
SOC arg max

w P σ c
(2λP ρ

θ

+

+

+
+

+
 

+

+
+

+
 

 
+ − − 

 
=  

+ + − 
 

+ − −

=

+
+ −

( )

T 1

p

T 1

T

* 2 2 2T 1
T 1 T T

T
(3)*

T 1
S SOC S

2 g T 1
T T T

T

SOC
)

θσ φ

SOC
E[V S(T 1) | S(T) ] λP ξ σ ( SOC )

φ
SOC arg max

SOC
(2λP w ξσ P ξσ c ξσ)

φ

+

+

+
+

+
 

+










 
 
 

  
  
  

 


  + − − 
  =
 
  + − + 

  

   (B6) 

Similarly, for the any state at t {1,2, ,T} , by maximizing of the value function 

t t t tV (SOC ,w ,P ) , subject to t 1SOC [S,  S]+  , we will obtain the following optimal functions 

based on the Bellman equation. 

( )

( )

t 1

t 1

p

(1)* 2 *t t t t t t

t t t t t w t 12 2 2 2S SOC S

2 p

* t t 1 t t t t

t 1 t 1 t2 2 2 2 2 2S SOC S
t t

λP 2λP w P c λP P
V (S(t)) max q ( )q w ( w c ) E[V S(t 1) | S(t) ]

θσ σθ σ θσ σ

λP SOC 2λP 2λP w P c SOC
max E[V S(t 1) | S(t) ] SOC SOC ( )

θσθ σ φ θ σ φ θσ

+

+

+
 

+

+ +
 

 +
= − + − − − + + + 

 

+
 + − +  + −

( )

( )

t 1

t 1

t 1

t

2 2 p

(2)* 2 2 *t t t

t t t t t t t w t 12S SOC S

22 2

* t t 1 t

t 1 2 2 2S SOC S
t

            (B7 -1)
φ

λσ P w P σ c
V (S(t)) max q (2λP σ )q w [P σ(λw σ 1) c ] E[V S(t 1) | S(t) ]

θ θσθ

λρ P SOC 2λσ P SO
max E[V S(t 1) | S(t) ]

θ φ θ

+

+

+

+
 

+

+
 

 
  
 

 +
= − + − − − + + + 

 

 + − +

( ) 

( )

t 1

t 1

2 p

2t 1 t t t 1

t t

t t

(3)* 2 2 2 2 g *

t t t t t t t t t t w t 1
S SOC S

* 2

t 1 t
S SOC S

C w Pσ c SOC
SOC (2λP σ )       (B7 - 2)

φ θ θσ η

V (S(t)) max λP ξ σ q (2λP w ξσ P ξσ c ξσ)q w [P σ(λw σ 1) c ] E[V S(t 1) | S(t) ]

max E[V S(t 1) | S(t) ] λP ξ σ

+

+

+ +

+
 

+
 

 +
+ −  

 

= − + − + − − + + +

 + −

2

2 2 2 2 gt 1 t 1 t 1

t t t t t2

t tt

SOC SOC SOC
2λP ξ σ SOC (2λP w ξσ P ξσ c ξσ) (B7 -3)

φ φφ

+ + +






















 
 + + − +  

 

 

Based on the proof at last decision period T, we know that for every optimization 

period t {1,2, ,T} , and in every state t, both tV (S(t))  and ( )*

t 1E[V S(t 1) | S(t) ]+ +  are 

concave functions on tSOC [S,  S]   for any given decision state 
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t t t tS(t) S (SOC ,w ,P )=  . Clearly, ( )*

t 1E[V S(t 1) | S(t) ]+ +  and functions (B7-1)-(B7-3) are 

concave in t 1SOC [S,  S]+   for each given state t t t tS(t) S (SOC ,w ,P )= by using  

( )

( ) ( )

( )

* *

t 1 t 1 t

*
t 1 t t 1t 1 t

2

t 1 t 1 t t 1

*

t 1 t

2

t t 1

E[V S(t 1) | S(t) ] E[V S(t 1) | S(t) ] SOC

SOC SOC SOCE[V S(t 1) | S(t) ] SOC

SOC SOC SOC SOC

E[V S(t 1) | S(t) ] SOC
                    

SOC SOC

+ +

+ ++

+ + +

+

+

    +  + 
           +    

= = 
   

 + 
=  +

 

( )

( )

*

t 1 t t

t t 1 t t 1

2*

t 1 t

2

t t 1

E[V S(t 1) | S(t) ] SOC SOC

SOC SOC SOC SOC

E[V S(t 1) | S(t) ] SOC
                      0

SOC SOC

+

+ +

+

+

 +  
       

  +  
 =   
    

 

1) When t tq θw  , by maximizing the equation (B7-1), subject to 

t 1SOC [S,  S]+  , we get the following best response function (i.e., first-order derivative): 

( )*(1)* p
t+1t t t t t t

t 1 t2 2 2 2 2 2

t 1 t 1 t t t t

E[V S(t 1) | S(t) ]V (S(t)) 2λP 2λP 2λP w P c
SOC SOC +

SOC SOC θ σ φ θ σ φ θσ φ θσφ
+

+ +

 + +
= − + −

 
. 

The second-order derivative function: 
( )*(1)*

t+1t t

2 2 2 2 2

t 1 t 1 t

E[V S(t 1) | S(t) ]V (S(t)) 2λP
= 0

SOC SOC θ σ φ+ +

 +
− 

 
. 

Thus, we can achieve the optimal references points solutions using the first-order 

function because the second-order derivative is negative. Therefore, we will obtain the 

subsequent optimal consequences: 

( )

( )

t 1

2

* t t 1 t
t 1 t 1 t2 2 2 2 2

t t
(1)*

t 1
S SOC S p

t t t t 1

2

t

*(1)*
t 1t t t

2 2 2 2 2

t 1 t 1 t

λP SOC 2λP
E[V S(t 1) | S(t) ] SOC SOC

θ σ φ θ σ φ
SOC arg max

2λP w P c SOC
( )

θσ θσ φ

E[V S(t 1) | S(t) ]V (S(t)) 2λP 2λP
or

SOC SOC θ σ φ θ σ φ

+

+
+ +

+
 

+

+

+ +

 
+ − +  

 
=  

+ 
+ − 
 

 +
= − −

 
(1)*

t 1 t 1

p

t t t
t 2

t t t SOC SOC

2λP w P c
SOC 0

θσ φ θσφ
+ +=










  +
+ − = 

 

(B8) 

2) Similarly, when t t0 q θw  ，by optimizing the function (B7-2), we can 

obtain the unique optimal reference points using the first-order function, and the optimal 
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solutions are: 

( )

( )

t 1

22 2
* t t 1 t
t 1 t 1 t2 2 2

t t
(2)*

t 1
S SOC S 2 p

2 t t t 1
t

t

*(2)* 2 2
t 1t t t

2 2 2

t 1 t 1 t

λσ P SOC 2λσ P
E[V S(t 1) | S(t) ] SOC SOC

θ φ θ φ
SOC arg max

w Pσ c E
(2λPσ )

θ θσ φ

E[V S(t 1) | S(t) ]V (S(t)) 2λσ P 2λσ P
or

SOC SOC θ φ θ φ

+

+
+ +

+
 

+

+

+ +

 
+ − +  

 
=  

+ 
+ − 
 

 +
= − −

 
( 2)*

t 1 t 1

2 p
2 t t

t t

t t SOC SOC

w Pσ c 1
SOC (2λPσ ) 0

θ θσ φ
+ +=










  +
− − = 

 

(B9) 

3) When tq 0 ，by optimizing the function (B7-3), we will obtain the optimal 

SOC results as follows: 

( )

( )

t 1

2

(3)* * 2 2 2 2 2 gt 1 t 1 t 1
t 1 t 1 t t t t t t2S SOC S

t t t

*(3)* 2 2 2 2
t 1t t t

t2

t 1 t 1 t t

E E SOC
SOC arg max E[V S(t 1) | S(t) ] λP ξ σ 2λP ξ σ E (2λP w ξσ P ξσ c ξσ)

φ φ φ

E[V S(t 1) | S(t) ]V (S(t)) 2λP ξ σ 2λP ξ σ
or SOC

SOC SOC φ φ

+

+ + +
+ +

 

+

+ +

 
= + − + + − +  

 

 +  
= − − 

    (3)*
t 1 t 1

2 g

t t t

t SOC SOC

2λP w ξσ P ξσ c ξσ
0

η
+ +=





 − +

+ =


 

(B10) 

(2) The relations among three SOC optimal results/SOC reference points:  

We define three auxiliary functions based on (B8) – (B10) to simplify illumination. 

(1)* (2)* (3)*
(1) (2) (3)t t t

t 1 t 1 t 1

t 1 t 1 t 1

V (S(t)) V (S(t)) V (S(t))
F(SOC ) = ;  F(SOC ) ;  F(SOC )

SOC SOC SOC
+ + +

+ + +

   
= =

  
 (B11) 

The related first-order functions of (B11) correspond to the second-order derivative 

functions of (B7-1), (B7-2), and (B7-3) are shown:  

( )

( )

*(1) (1)*
t 1t 1 t t

2 2 2 2 2

t 1 t 1 t 1 t

*(2) (2)* 2
t 1t 1 t t

2 2 2 2

t 1 t 1 t 1 t

(3) (3)*

t 1 t

t 1

E[V S(t 1) | S(t) ]F(SOC ) V (S(t)) 2λP
0

SOC SOC SOC θ σ φ

E[V S(t 1) | S(t) ]F(SOC ) V (S(t)) 2λσ P
 0 

SOC SOC SOC θ φ

F(SOC ) V

SOC

++

+ + +

++

+ + +

+

+

 + 
= = − 

  

 + 
= = − 

  

 
=



( )* 2 2
t 1 t

2 2 2

t 1 t 1 t

E[V S(t 1) | S(t) ](S(t)) 2λP ξ σ
0

SOC SOC φ

+

+ +










 +
= −   

         (B12) 
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Based on (B12), we find that the above three defined auxiliary functions are all 

decreasing with t 1SOC [S,  S]+  . We also get the following relations among the first-order 

functions of (B11). 

(1) (2) (3)

t 1 t 1 t 1 t 1 t 1 t 1F(SOC ) SOC F(SOC ) SOC F(SOC ) SOC+ + + + + +        . 

1) For all t 1SOC [S,  S]+  , if 
(1) (2)

t 1 t 1maxF(SOC ) maxF(SOC )+ + , then we will 

obtain 
(1)* (2)*

t 1 t 1SOC SOC+ + . 

(1) (1) (2) (2)

t 1 t 1 t 1 t 1

p

t t t t t
t2 2 2 2 2 2

t t t t

2 2 2 p
2t t t t

t t2 2 2

t t t t

2

t t

2 2

max F(SOC ) F(SOC S) max F(SOC ) F(SOC S)

2λP 2λP 2λP w P c
S SOC +

θ σ φ θ σ φ θσ φ θσφ

2λσ P 2λσ P w Pσ +c1 1
S SOC +2λP σ

θ φ θ φ θ φ θσ φ

P (1 σ ) 2P 1
λ

θσ θ σ

+ + + += =  = =

 +
 − + − 

 

 
 − + − 
 

−
 

2
2 (1,2) t

t t t t t t

t t

2PS 1+σ S
σ SOC w θ λ = P SOC w θ

φ θ σ φ

     
− + − = + −     

      

 

2) For all t 1SOC [S,  S]+  , if 
(2) (3)

t 1 t 1maxF(SOC ) maxF(SOC )+ + , then we will 

obtain 
(2)* (3)*

t 1 t 1SOC SOC+ + . 

(2) (2) (3) (3)

t 1 t 1 t 1 t 1

2 2 2 p
2t t t t

t t2 2 2

t t t t

2 2 2 2 2 g

t t t t t
t2

t t t t

2

t t

t

max F(SOC ) F(SOC S) max F(SOC ) F(SOC S)

2λσ P 2λσ P w Pσ +c1 1
S E +2λP σ

θ φ θ φ θ φ θσ φ

2λP ξ σ 2λP ξ σ 2λP w ξσ (P ξσ c ξσ)
S SOC +

φ φ φ φ

S 1
λ2σ P (SOC )(

φ

+ + + += =  = =

 
 − + − 

 

 −
 − + − 
 

 −
2 p

2 gt t
t t2

2 p
g 2 2 (2,3)t

t t t t t2

t

w Pσ +c
ξ )+( w ξ) (P ξσ c ξσ)

θ θ θρ

P σ +c S 1 1
λ (P ξσ c ξσ) 2ρ P (SOC )( ξ )+w ( ξ) λ

θσ φ θ θ

   
− −  − −   

  

  
  − − − − − =  

   
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If both the available wind generation equals zero (i.e., tw =0  ), and the current 

energy inventory reaches the minimum limit of storage (i.e., t tSOC S φ 0− =  ) at 

optimization period t, for any forecasted price tP 0 and market impact of energy storage

λ 0 , there exists 
(1)* (2)* (3)*

t 1 t 1 t 1SOC SOC SOC+ + +  .  

To sum up, for positive prices tP 0 , when the market impact of energy storage 

meets condition 
(1,2) (2,3)

t t0 λ min{λ ,λ }  , thus, we can get the following relations among 

three optimal SOC reference points: 

(1)* (2)* (3)*

t 1 t 1 t 1SOC SOC SOC+ + +   

Obviously, if tP 0  , we get 
(1)* (2)* (3)*

t 1 t 1 t 1SOC SOC SOC+ + +   when there is 

 (1,2) (2,3)

t t0 λ min λ ,λ  . 

 

Proof of Proposition 4.1: 

(1) Optimal Solutions (without consider the capacity of transmission line):  

1) 
p

(1)*

t t 1θw min{SOC ,Q }+  

p(1)* (1)*

t 1 t t t 1 t

(1)*

t 1

(2)* (1)* (2)*

t 1 t t t t 1 t t 1
*

t t

min{SOC SOC ,Q },  SOC [S,SOC θw ],

(store generation and buy electricity up to SOC );

min{SOC SOC ,θw },SOC (SOC θw ,SOC ],
q (S )

(store generation without buy

+ +

+

+ + +

−  −

−  −
=

(2)*

t 1

(2)* (3)*

t t 1 t 1

g(3)* (3)* (3)*

t 1 t t t 1 t 1

ing up to SOC );

0,  SOC (SOC ,SOC ] (keep inventory unchanged); 

max{SOC SOC , Q },SOC (SOC ,S](sell inventory down to SOC ).

+

+ +

+ + +










 



− − 

(B13) 

2) 
p

(1)*

t t 1θw min{SOC ,Q }+  
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p(2)* (2)* (2)*

t 1 t t t t 1 t 1

* (2)* (3)*

t t t t 1 t 1

g(3)* (3)*

t 1 t t t 1

min{SOC SOC ,Q ,θw },SOC [S,SOC ](store generation up to SOC )

q (S ) 0,  SOC [SOC ,SOC ] (keep inventory unchanged)

max{SOC SOC , Q },SOC (SOC ,S](sell in

+ + +

+ +

+ +

− 

= 

− −  (3)*

t 1ventory down to SOC )+









(B14) 

Special case:  

a) If 
p g(θ ξ σ 1,c c 0)= = = = = , then we will get (1)* (2)* (3)* *

t 1 t 1 t 1 t 1SOC SOC SOC SOC+ + + += = = .  

1) 
p*

t t 1θw min{SOC ,Q }+  

p
* *

t 1 t t t 1 t

*

t 1
*

t t
g

* *

t 1 t t t 1

*

t 1

min{SOC SOC ,Q },  SOC [S,SOC θw ],

(store generation and purchased electricity up to SOC );
q (S )

max{SOC SOC , Q },SOC (SOC ,S],

(sell inventory down to SOC ).

+ +

+

+ +

+

 −  −




= 
 − − 




      (B15) 

2) 
p

*

t t 1θw min{SOC ,Q }+  

p
* * *

t 1 t t t t 1 t 1
*

t t
g* * *

t 1 t t t 1 t 1

min{SOC SOC ,Q ,θw },SOC [S,SOC ](store generation up to SOC )
q (S )

max{SOC SOC , Q },SOC (SOC ,S](sell inventory down to SOC )

+ + +

+ + +

 − 
= 
 − − 

 (B16) 

b) If σ 1=  (transmission efficiency), then we will get 
(1)* (2)*

t 1 t 1SOC =SOC+ + .  

1) 
p

(1)*

t t 1θw min{SOC ,Q }+  

p
(1)* (1)*

t 1 t t t 1 t

(1)*

t 1
*

t t
(2)* (3)*

t t 1 t 1

g
(3)*

t 1 t t t

min{SOC SOC ,Q },  SOC [S,SOC θw ],

(store generation and buy power to SOC );
q (S )

0,  SOC (SOC ,SOC ] (keep inventory unchanged);  

max{SOC SOC , Q },SOC (SOC

+ +

+

+ +

+ +

−  −

=



− −  (3)* (3)*

1 t 1,S](sell power to SOC ).+











   (B17) 

2) 
p

*

t t 1θw min{SOC ,Q }+  
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p(2)* (2)* (2)*

t 1 t t t t 1 t 1

* (2)* (3)*

t t t t 1 t 1

g(3)* (3)*

t 1 t t t 1

min{SOC SOC ,Q ,θw },SOC [S,SOC ](store generation up to SOC )

q (S ) 0,SOC [SOC ,SOC ](keep inventory unchanged)

max{SOC SOC , Q },SOC (SOC ,S](sell inve

+ + +

+ +

+ +

− 

= 

− −  (3)*

t 1ntory down to SOC )+









 (B18) 

c) If 
p g(θ ξ 1,c c 0)= = = =  (we have 

(2)* (3)*

t 1 t 1SOC SOC+ += ) 

1) 
p(1)*

t t 1θw min{SOC ,Q }+  

p(1)* (1)*

t 1 t t t 1 t

(1)*

t 1

* (2)* (1)* (2)*

t t t 1 t t t t 1 t t 1

min{SOC SOC ,Q },  SOC [S,SOC θw ],

(store renewable and buy power up to SOC );

q (S ) min{SOC SOC ,θw },SOC (SOC θw ,SOC ],

(store renewable without buying up t

+ +

+

+ + +

−  −

= −  −

(2)*

t 1

g
(3)* (3)* (3)*

t 1 t t t 1 t 1

o SOC );

max{SOC SOC , Q },SOC (SOC ,S](sell energy down to SOC ).

+

+ + +












− − 

  (B19) 

2) 
p*

t t 1θw min{SOC ,Q }+  

p(2)* (2)*

t 1 t t t t 1

* (2)*

t t t 1

g(3)* (3)* (3)*

t 1 t t t 1 t 1

min{SOC SOC ,Q ,θw },SOC [S,SOC ],

q (S ) (store renewable generation up to SOC );

max{SOC SOC , Q },SOC (SOC ,S](sell energy down to SOC ).

+ +

+

+ + +

 − 



= 

 − − 

 (B20) 

 

Proof of Proposition 4.2:  

Recall the proof the proposition 4.1, when the merchant who has PSH and wind 

plants, for any given state S(t) , we can also obtain the following outcomes: 
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( )

( )

t 1

t 1

* 2t t 1
t 1 t2 2

t
(1)*

t 1 (λ 0)
S SOC S p

t t t t 1

2

t

2
* 2t t 1
t 1 t2

t
(2)*

t 1 (λ 0)
S SOC S

t

λP SOC
E[V S(t 1) | S(t) ] ( SOC )

θ σ φ
SOC arg max

2λP w P c SOC
( )

θσ θσ φ

λσ P SOC
E[V S(t 1) | S(t) ] ( SOC )

θ φ
SOC arg max

(2λP

+

+

+
+

+ 
 

+

+
+

+ 
 

 
+ − − 

 
=  

+ + − 
 

+ − −

=

+

( )

t 1

2 p
2 t t t 1

t

* 2 2 2t 1
t 1 t t

t
(3)*

t 1 (λ 0)
S SOC S

2 g t 1
t t t

t

w Pσ c SOC
ρ )

θ θσ φ

SOC
E[V S(t 1) | S(t) ] λP ξ σ ( SOC )

φ
SOC arg max

SOC
(2λP w ξσ P ξσ c ξσ)

φ

+

+

+
+

+ 
 

+










 
 
 

  
 + 

−  
 


 

+ − − 
  =  
  + − +   

    (B21) 

Through the rewards function of (B1), for any positive forecasted prices and 

decision state t {1,2, ,T} , there exist the following relationships:  

2 2

t t t t t

2 2t t t t t t
t t t t t

2 2

t t t t

P σ (q θ w ) 0       (q θw )  

R(q ,w ,P ) R(q ,w ,P )
P σ (q θ w ) 0     (0 q θw ) 0

λ λ

Pσ (q ξ w ) 0   (q 0)

−  −  


 
= −  −     

 
−  −  

      (B22) 

Suppose the *(M)

t (λ 0)q   (resp. *(M)

t  (λ 0)q =  ) represents the optimal actions of electricity 

merchants considering the market impact (resp. without considering market impact) in 

trading decisions. Thus,
T T

*(M) *(M)

t  (λ 0) t t t  (λ 0) t t

t 1 t 1

R(q ,w ,P ) R(q ,w ,P ) =

= =

   holds, which means the 

value function of the merchant *

t 1 (λ 0)V (S(t 1) | S(t))+  +  decreases with the increasing of 

market impact, then there are: 

( ) ( )* *

t 1 (λ 0) t 1 (λ 0)

T T

t t t (λ 0) t t t (λ 0)
π π

t 1 t 1

E[V S(t 1) | S(t) ] E[V S(t 1) | S(t) ]

max E R(q ,w ,P ) | S(1) max E R(q ,w ,P ) | S(1)

+  + =

 =

= =

 +  +



       
 

        (B23) 
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Obviously, if a price-maker merchant ignores her market impact and follows the 

price-taker's optimal economic dispatch, we can draw the following relationship: 

T T
*(M)

t t t (λ 0) t  (λ 0) t t (λ 0)
π

t 1 t 1

T
*(M)

t  (λ 0) t t (λ 0)

t 1

max E R(q ,w ,P ) | S(1) E R(q ,w ,P ) | S(1)

                                                      E R(q ,w ,P ) | S(1)

  

= =

= 

=

   =   

   

 



           (B24) 

Using the rewards function (B1), we get the following first-order response function:

( )

2 2t t t t
t t w w t t t t

2 2t t t t t
t t t w t w t t t t

t

2 2

t t t t w t w t t t t

P q P q
λP σ [ 2( ) 2w ] c c 2λP σ w (q θw )

σ θ σ θ

R(q ,w ,P ) q q
Pσ λPσ [ 2( ) 2w ] c P σ c 2λPσ w (0 q θw )

w θ θ

Pσ λPσ [ 2(q ξ) 2w ] c P σ c 2λP σ q ξ w (q 0)

  
− − + − = − + −  

 


   
= − − + − = − + −    

  


− − + − = − + − 



 (B25) 

We have the following relationship for t t t tR(q ,w ,P ) w   based on equation (B25).   

( )

( )

( )

( )

( )

2

1 t t t t t w t t t

t w t t

2

2 t t t t t w t t t

2 (1,2)

t w t t t t t t

2

3 t t t t t w t t t

2

t w t t t

R (q ,w ,P ) w P / σ c 2λP σ q θ w 0

P / σ c  (q θw );  

R (q ,w ,P ) w Pσ c 2λPσ q θ w 0

λ (Pσ c ) 2Pσ w q θ λ  (0 q θw );

R (q ,w ,P ) w Pσ c 2λPσ q ξ 2w 0

λ (Pσ c ) 2Pσ w q ξ

  = − + − 

  

  = − + − 

  − −   

  = − + − 

  − −  (2,3)

t tλ  (q 0).
















          (B26) 

It implies that the merchant with PSH and wind plants needs to generate the wind 

power based on the max capacity of the wind turbines installed to benefit her profit. 

Next, we will analyze how the operation cost influences the optimal scheduling 

policy of the energy storage and the revenue of the electricity merchant. Then, based on 

the rewards function of (B1), we will get the following first-order response function: 
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t t t
t t t t t t

t tp g

t t t

(q θσ) (q θw )R(q , w ,P ) R(q , w ,P )
; q ξσ (q 0)

c c(q θσ) (0 q θw )

−  
= = 

 −  

     (B27) 

Based on the equation (B27), We get the following relationship for the reward 

functions on the generating and pumping cost. 

t t t t t t

p g

R(q , w ,P ) R(q , w ,P )
0, 0

c c

 
 

 
                (B28) 

It is straightforward; the merchant will achieve less profit by increasing the 

operating cost. It plays a similar role as the market impact.  
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APPENDIX C. 

PROOF OF SECTION 5 
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Proof of Lemma 5.1: 

1) The uniqueness of the optimal results:  

The current payoff rewards in the scenario1: Electricity generation cannot meet the 

power load (i.e., ( )t tW L 0−  ) are shown as follows for the prosumer:  

( ) ( )

( ) ( )

( ) ( )( )

ch w

t t t t t t t

dis w

t t t t t t t t t t t t t

dis w

t t t t t t t t t

P q α W L ρ C q C W     q 0

R (q ,W ,L ,P )= P q β W L ρ+C q C W     ( L W β<q 0)

P q β W L ρ C q C W       q L W β  

−

−  − −  −  −   


−  − −   −  − −   

−  − −  +  −   − − 

  (C1) 

where, tq is the energy change from period t to period t+1 before accounting for 

energy loss. For the state at t {1,2, ,T}  , by optimizaing the value function 

t t t t tV (E ,W ,L ,P ) , subject to t 1E E E+  , we will get the following equations:  

( )t t t t t t t 1V (S ) [R(q ,W ,L ,P ) E[V S(t 1) |S(t) ]+= + + , where ( )T 1 T+1 T+1E[V S(T 1) |S(T) VOE E+ + =  . 

Thus, we get the following three sub-optimization value functions:  

( ) ( ) 

( ) ( ) 

( )

t 1

t 1

t 1

(1)* ch w *

t t t t t t t t t 1
E E E

* (2)* dis w *

t t t t t t t t t t 1
E E E

(3)*

t t t t t t
E E E

V (S(t)) max P q αρ P W L ρ C q C W  +E[V S(t 1) | S(t) ]

V (S(t)) V (S(t))= max P q β ρ P W L ρ+C q C W E[V S(t 1) | S(t) ]

V (S(t))= max P q βρ P W L

+

+

+

−

+
 

−

+
 

−

 

= − + − −  −  +

= − + −  −  + +

− + − ( ) dis w *

t t t 1ρ C q C W  E[V S(t 1) | S(t) ]+









+  −  + +

 (C2) 

By replacing tq with t 1E + as the decision variable through t 1 t t tE η E q+ − = , we will 

get the following rewards function at time t. Maximizing (C2) can be approached by 

obtaining the optimal results to the equation (C3) by removing the given state S(t)  (i.e., 

the given tE , tW , tL , and tP ). By doing so, we get the following equivalent equations:  
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( ) ( )

( ) ( ) ( ) 

t 1

t 1

(1)* ch w *t 1t 1
t t t t t t t t t 1

E E E
t t

(1)* ch *

t t t 1 t t 1 t t 1
E E E

EE
V (S(t)) max P E αρ P W L ρ C E C W E[V S(t 1) | S(t) ]

η η

V (S(t)) max P E η αρ C E η  E[V S(t 1) | S(t) ]                      

+

+

− ++
+

 

−

+ + +
 

    
= − − + − −  − −  + +   

     

 = − −  + +

( ) ( )

( ) ( ) ( ) 

t 1

t 1

(2)* dis w *t 1t 1
t t t t t t t t t 1

E E E
t t

(2)* dis *

t t t 1 t t 1 t t 1
E E E

          (C3 1)

EE
V (S(t)) max P E β ρ P W L ρ C E C W E[V S(t 1) | S(t) ]

η η

V (S(t)) max P E η β ρ C E η E[V S(t 1) | S(t) ]     

+

+

− ++
+

 

−

+ + +
 

−

    
= − − + − +  − −  + +   

     

 = − +  + +

( ) ( )

( ) ( )

t 1

t 1

(3)* dis w *t 1 t 1

t t t t t T t t t 1
E E E

t t

(3)* dis

t t t 1 t t 1 t t
E E E

                           (C3 2)

E E
V (S(t)) max P E βρ P W L ρ C E C W E[V S(t 1) | S(t) ]

η η

V (S(t)) max P E η βρ C E η  E[V

+

+

− + +

+
 

−

+ + +
 

−

     
= − − + − +  − −  + +    

     

 = − +  + ( ) *

1 S(t 1) | S(t) ]                                (C3 3)





















+ −


 (C3) 

For every t {1,2, ,T}  , in every stage t  , the value function tV (S(t))   and 

( )*

t 1E[V S(t 1) | S(t) ]+ +  are concave in tE [E,E]  for each given state t t t t tS(t) S (E ,W ,L ,P )= . 

Clearly, ( )*

t 1E[V S(t 1) | S(t) ]+ + and functions (C1-1)-(C3-3) are concave in t+1E [E,E]  for 

each given state t t t t tS(t) S (E ,W ,L ,P )= by using  

( ) ( )( )

( ) ( )( )

( ) ( )

**
t 1 t 1t 1

2

t 1 t 1

*

t 1 t t t+1 t

t t+1

* *

t 1 t 1t t t

2

t t+1 t t+1 t t+1

*

t 1

E[V S(t 1) | S(t) ] EE[V S(t 1) | S(t) ]
=

E E

E[V S(t 1) | S(t) ] E E E E

E E

E[V S(t 1) | S(t) ] E[V S(t 1) | S(t) ]E E E

E E E E E E

E[V

+ ++

+ +

+

+ +

+

  +  +

 

  +     
= 

 

  +  +  
=  +          


=

( )
2

t

2

t t+1

S(t 1) | S(t) ] E
0

E E

 +  
   
    

  

Therefore, 
(1)*

tV (S(t))−
 ,

(2)*

tV (S(t))−
 ,and 

(3)*

tV (S(t))−
  have a unique optimal 

solution on t+1E [E,E] . 

(1) When tq 0 , by optimizing the function (C3-1), subject to t+1E [E,E] , we 

can derive the response function (i.e., first-order derivative) as follows: 
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( ) ( )(1)* * ch

t t 1 t 1 t 1 t tV (S(t)) E E[V S(t 1) | S(t) ] E P αρ C η−

+ + +  =  +  − +  

The second-order derivative: ( )(1)* 2 * 2

t t 1 t+1 t 1V (S(t)) E = E[V S(t 1) |S(t) ] E 0−

+ +   +   . 

Since the second-order derivative is non-positive, we can get the following unique 

optimal solution through the first-order condition.  

( ) ( )

( ) ( ) ( ) 

t 1

t 1

(1)* ch w *t t 1

t 1 t t t t t t 1
E E E

t

(1)* ch *

t 1 t t 1 t t 1 t t 1
E E E

(1)* *

t t 1 t+1

P E
E arg max +C E P W L ρ C W  +E[V S(t 1) | S(t) ]

αρ η

E arg max P E η αρ C E η  +E[V S(t 1) | S(t) ]

or V (S(t)) E E[V S(

+

+

− +

+ +
 

−

+ + + +
 

−

+

    
= − − + − −  +   

    

= − −  +

  =  ( ) ( )
(1)*

t 1 t 1

ch

t 1 t t
E =E

t 1) | S(t) ] E P αρ+C η 0
−

+ +

+










+  − =


 (C4) 

(2) When ( )t t tL W β<q 0− −  ，by optimizing the function (C3-2), subject to 

t+1E [E,E] , we can derive the response function (i.e., first-order derivative) as follows: 

( ) ( )(2)* * dis

t t 1 t+1 t 1 t tV (S(t)) E E[V S(t 1) | S(t) ] E P β ρ C η−

+ +  =  +  − −  

The second-order derivative： ( )(2)* 2 * 2

t t 1 t+1 t 1V (S(t)) E = E[V S(t 1) |S(t) ] E 0−

+ +   +   . 

Since the second-order derivative is non-positive, we can find the unique optimal 

solutions through the first-order condition, and the optimal SOC results (SOC reference 

points) are shown: 

( ) ( )

( ) ( ) ( ) 

t 1

t 1

(2)* dis w *t t 1

t 1 t t t t t t 1
E E E

t

(2)* dis *

t 1 t t 1 t t 1 t t 1
E E E

(2)* *

t t 1 t 1

Pβ E
E arg max C E P W L ρ C W E[V S(t 1) | S(t) ]

ρ η

E arg max P E η β ρ C E η E[V S(t 1) | S(t) ]

or V (S(t)) E E[V S(

+

+

− +

+ +
 

−

+ + + +
 

−

+ +

    
= − − − + − −  + +   

    

= − +  + +

  =  ( ) ( )
( 2)*

t 1 t 1

dis

t 1 t t
E E

t 1) | S(t) ] E P β ρ C η 0
−

+ +

+
=










+  − − =


(C5) 

(3) When ( )t t tq L W β − − ，by optimizing the function (C3-3), subject to 

t+1E [E,E] , we can derive the response function (i.e., first-order derivative) as follows: 
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( )(3)* * dis

t t 1 t+1 t 1 t tV (S(t)) E E[V S(t 1) |S(t) ] E (Pβρ C ) η+ +  =  +  − −  

The second-order derivative: ( )(3)* 2 * 2

t t 1 t+1 t 1V (S(t)) E = E[V S(t 1) |S(t) ] E 0−

+ +   +   . 

Similarly, we can find the unique optimal solutions through the first-order condition. 

We will get the following optimal SOC results: 

( ) ( )

( ) ( ) ( ) 

t 1

t 1

(3)* dis w *t 1

t 1 t t t t t t t 1
E E E

t

(3)* dis *

t 1 t t 1 t t 1 t t 1
E E E

(3)* *

t t 1 t+1

E
E arg max (Pβρ C ) E P W L ρ C W  +E[V S(t 1) | S(t) ]

η

E arg max P E η βρ C E η  E[V S(t 1) | S(t) ]

or V (S(t)) E E[V S(t 1)

+

+

− +

+ +
 

−

+ + + +
 

+

   
= − − − + − −  +  

   

= − +  + +

  =  +( ) (3)*
t 1 t 1

dis

t 1 t t E =E
| S(t) ] E (Pβρ C ) η =0

−
+ +

+










 − −


 (C6) 

To sum up, the Bellman equation can be used to derive the following results: 

( )( ) ( ) 

( )( ) ( ) 

( ) ( ) 

t 1

t 1

t 1

(1)* ch *

t 1 t t 1 t t 1
E E E

(2)* dis *

t 1 t t 1 t t 1
E E E

(3)* dis *

t 1 t t 1 t t 1
E E E

E arg max P αρ+C E η +E[V S(t 1) | S(t) ]

E arg max P β ρ C E η E[V S(t 1) | S(t) ]

E arg max (Pβρ C ) E η +E[V S(t 1) | S(t) ]

+

+

+

−

+ + +
 

−

+ + +
 

−

+ + +
 

 = − +




= − − + +



= − − +

         (C7) 

2) The relations among three SOC optimal results/SOC reference points:   

(1) Recall the proof 1), for the state at t {1,2, ,T} ,there have the following two equations:  

( )( ) ( ) 

( )( ) ( ) 

t 1

t 1

(1)* ch *

t 1 t t 1 t t 1
E E E

(2)* dis *

t 1 t t 1 t t 1
E E E

E arg max P αρ+C E η +E[V S(t 1) | S(t) ]

E arg max P β ρ C E η +E[V S(t 1) | S(t) ]

+

+

−

+ + +
 

−

+ + +
 

 = − +


 = − − +


 

Then, we can get the following inequations:  
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( )( ) ( ) 

( )( ) ( ) 

( )( )

ch (1)* * (1)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

ch (2)* * (2)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

dis (2)* * (2)*

t t 1 t t 1 t+1 t 1 t+1 t+1

(a) P αρ+C E η +E V S (E ,W ,L ,P ) | S(t)

(b)  P αρ+C E η +E V S (E ,W ,L ,P ) | S(t)

(c) P β ρ C E η E V S (E ,W ,L ,P

− −

+ + +

− −

+ + +

− −

+ + +

 −
 

  −
 

− − + ( ) 

( )( ) ( ) 

t+1

dis (1)* * (1)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

) | S(t)

(d) P β ρ C E η E V S (E ,W ,L ,P ) | S(t)− −

+ + +







 

  

  − − +

  

    (C8) 

Based on the above inequations, we can get the relationship of (a) (d) (b) (c)−  − . 

That is, for any given current state t t t t t
ˆS(t) S (E ,W ,W ,P ) E W L P=     , we will get:  

( )( )ch dis (1)* (2)*

t t t 1 t t 1 tP αρ+C P β ρ+C E η E η 0− −

+ +− −                 (C9) 

Since there is 0 ρ 1  . Then, we can get the following inequations:  

1) If 
( )
( )

dis ch

ch dist t
t

C C ρP Pβ
C P C 0 P

αρ ρ 1 α β

+
+ − +    −

−
hold, we will get

(1)* (2)*

t 1 t 1E E− −

+ + ;  

2) If 
( )
( )

dis ch

ch dist t
t

C C ρP Pβ
C P C 0 P

αρ ρ 1 α β

+
+ − +    −

−
, there is 

(1)* (2)*

t 1 t 1E E− −

+ + . 

(2) Recall the proof 1), we also have the following two equations:  

( )( ) ( ) 

( ) ( ) 

t 1

t 1

(2)* dis *

t 1 t t 1 t t 1
E E E

(3)* dis *

t 1 t t 1 t t 1
E E E

E arg max P β ρ C E η E[V S(t 1) | S(t) ]

E arg max (Pβρ C ) E η +E[V S(t 1) | S(t) ]

+

+

−

+ + +
 

−

+ + +
 

 = − − + +


 = − − +


 

Then, we can get the following inequations:  

( )( ) ( ) 

( )( ) ( ) 

( )

dis (2)* * (2)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

dis (3)* * (3)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

dis (3)* * (3)*

t t 1 t t 1 t+1 t 1 t+1 t+

(e) P β ρ C E η E V S (E ,W ,L ,P ) | S(t)

(f ) P β ρ C E η E V S (E ,W ,L ,P ) | S(t)

(g) (Pβρ C ) E η +E V S (E ,W ,L

− −

+ + +

− −

+ + +

− −

+ + +

 − − + 
 

 − − +
 

− − ( ) 

( ) ( ) 

1 t+1

dis (2)* * (2)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

,P ) | S(t)

(h) (Pβρ C ) E η +E V S (E ,W ,L ,P ) | S(t)− −

+ + +







  

  

 − −

  

   (C10) 
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Obviously, there is (e) (h) (f ) (g)−  − , that is 

( )( )(3)* (2)*

t t t 1 t t 1 tP β ρ Pβρ E η E η 0− −

+ +− −                 (C11) 

1) For any given price tP 0 , we will get the relationship of 
(2)* (3)*

t+1 t+1E E− −  . 

2) For any given price tP 0 , there is
(2)* (3)*

t+1 t+1E E− − . 

(3) Recall the proof 1), we also have the following two equations:  

( )( ) ( ) 

( ) ( ) 

t 1

t 1

(1)* ch *

t 1 t t 1 t t 1
E E E

(3)* dis *

t 1 t t 1 t t 1
E E E

E arg max P αρ+C E η +E[V S(t 1) | S(t) ]

E arg max (Pβρ C ) E η +E[V S(t 1) | S(t) ]

+

+

+ + +
 

+ + +
 

 = − +


 = − − +


 

Then, we can get the following inequations:  

( )( ) ( ) 

( )( ) ( ) 

( )

ch (1)* * (1)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

ch (3)* * (3)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

dis (3)* * (3)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+

(i) P αρ+C E η +E V S (E ,W ,L ,P ) | S(t)

( j) P αρ+C E η +E V S (E ,W ,L ,P ) | S(t)

(k) (Pβρ C ) E η +E V S (E ,W ,L ,P

−

+ + +

−

+ + +

−

+ + +

 − 
 

 −
 

− − ( ) 

( ) ( ) 

1

dis (1)* * (1)*

t t 1 t t 1 t+1 t 1 t+1 t+1 t+1

) | S(t)

(l) (Pβρ C ) E η +E V S (E ,W ,L ,P ) | S(t)−

+ + +







  

  

 − −

  

    (C12) 

Obviously, there is (i) (l) ( j) (k)−  − , that is 

( )( )ch dis (3)* (1)*

t t t 1 t t 1 tP αρ+C Pβρ C E η E η 0− −

+ +− + −              (C13) 

Since there is 0 ρ 1  ,  

1) If ( )ch dis dis ch

t t tP αρ+C Pβρ C 0 P (C +C ) 1 αρ βρ− +   − −  hold, we will get

(1) * (3) *

t 1 t 1E E− −

+ + .    

2) If ( )ch dis dis ch

t t tP αρ+C Pβρ+C 0 P (C +C ) 1 αρ βρ−   − − , there is
(1) * (3) *

t 1 t 1E E− −

+ + . 

We have the following relationship: 
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( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

dis ch dis ch dis ch dis chC +C C +C C +C C +C
1 αρ βρ 1 αρ β ρ 0 0 0

1 αρ βρ 1 αρ β ρ 1 αρ βρ 1 αρ β ρ
−  −       −  −

− − − −
 

Thus, we can get the following results:  

( ) ( )

( )

(2)* (3)* (1)* (3)* (1)* (2)*

t t 1 t 1 t 1 t 1 t 1 t 1

dis ch

t

(1)* (3)* (2)* (3)* (1)* (2)*

t 1 t 1 t 1 t 1 t 1 t 1

dis ch

1) If  P 0, there are E E ,E E ,andE E ;

2) If C C 1 αρ βρ P 0,

there areE E ,  E E ,andE E ;

C C
3) If

1 αρ

− − − − − −

+ + + + + +

− − − − − −

+ + + + + +

   

− + −  

  

+
−
( )

( )
( )

( ) ( )

dis ch

t

(1)* (3)* (2)* (3)* (1)* (2)*

t 1 t 1 t 1 t 1 t 1 t 1

dis ch

t

(1)* (3)* (2)* (3)* (1)* (2)*

t 1 t 1 t 1 t 1 t 1 t 1

C C
P ,

β ρ 1 αρ βρ

there areE E ,  E E ,andE E ;

4) If  P C C 1 αρ β ρρ ,

there areE E ,  E E ,andE E .

− − − − − −

+ + + + + +

− − − − − −

+ + + + + +






+
  −

− −

  

 − + −

  
















      (C14) 

Therefore,  

( ) ( )

( )
( )

( )
( )

(1)* (2)* (3)*

t t 1 t 1 t 1

dis ch (1)* (3)* (2)*

t t 1 t 1 t 1

dis ch dis ch

(2)* (1)* (3)*

t t 1 t 1 t 1

t

1) If  P 0, there is E E E ;

2) If C +C 1 αρ βρ P 0, there isE E E ;

C +C C +C
3) If P , there isE E E ;

1 αρ β ρ 1 αρ βρ

4) If  P

− − −

+ + +

− − −

+ + +

− − −

+ + +

  

− −    

−   −  
− −

( ) ( )dis ch (1)* (2)* (3)*

t 1 t 1 t 1C +C 1 αρ β ρ , there is E  E E .− − −

+ + +










  − −  


       (C15) 

 

Proof of Proposition 5.1: 

For Positive price, we will get the following results about optimal solutions:  

(1)* (2)* (3)*

t t 1 t 1 t 1If  P 0, there is E E E− − −

+ + +    

1) Case 1: If 
dis dis

(3)* (3)*

t t t 1 t t t 1(L W ) β min{E E ,Q } α(W L ) max{E E, Q }− −

+ +−  −  −  − −  
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ch
(1)* (1)*

t 1 t t t 1

(1)*

t 1

(1)* (2)*

t t 1 t 1

*

t t

min{E E ,Q },  E [0,E ],

(buying power for consuming and storing,bring SOC up to E );

0,E (E ,E ],

(buying power for consuming without storing, keep SOC unch

q (S )

− −

+ +

−

+

− −

+ +

− 



=
dis

(2)* (2)* (3)*

t 1 t t t 1 t 1

(2)*

t 1

dis
(3)* (3)*

t 1 t t t 1

anged);

max{E E , Q },E (E ,E ],

(disch arging and buying partial energy for consuming, bring SOC down to E );

max{E E , Q },E (E ,E],

(disch arging energy 

− − −

+ + +

−

+

− −

+ +

− − 

− − 

(3)*

t 1for consuming and selling, bring SOC down to E ).−

+




















(C16) 

2) Case 2: If 
dis dis

(3)* (3)*

t t t 1 t t t 1(L W ) β min{E E ,Q } α(W L ) max{E E, Q }− −

+ +−  −  −  − −  

ch
(1)* (1)*

t 1 t t t 1

(1)*

t 1

(1)* (2)*

t t 1 t 1*

t t

min{E E ,Q },  E [0,E ],

 (buying power for consuming and storing,bring SOC up to E );

0,E (E ,E ],
q (S )

 (buying power for consuming without storing, keep SOC unc

− −

+ +

−

+

−

+ +

− 


=

dis(2)* (2)*

t 1 t t t 1

(2)*

t 1

hanged);

max{E E , Q },E (E ,E],

(disch arging and buying partial energy for consuming, bring SOC down to E ).

− −

+ +

−

+










 − − 




 (C17) 

 

Proof of Lemma 5.2 

1)The uniqueness of the optimal results:  

The current payoff rewards in the scenario2: Electricity generation can meet 

the power load (i.e., ( )t tW L 0−  ) are shown as follows for the prosumer:  

( ) ( )( )

( ) ( )

( ) ( )

ch w

t t t t t t t t t

w ch

t t t t t t t t t t t t t

dis w

t t t t t t t

P q α W L ρ C q C W   q α W L

R (q ,W ,L ,P )= P q α W L ρ C W C q   (0 q α W L )

P q β W L ρ C q C W     q 0  

+

−  − −  −  −   − 


−   − −   −  −   −  

−  − −  +  −   

  (C18) 

where, tq is the energy change from period t to period t+1 before accounting for 
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energy loss. For the state at t {1,2, ,T} , optimization the value function t t t t tV (E ,W ,L ,P ) , 

subject to t 1E E E+  , we will get the following equations:  

( )t t t t t t t 1V (S ) [R(q ,W ,L ,P ) E[V S(t 1) |S(t) ]+= + + , where ( )T 1 T+1 T+1E[V S(T 1) |S(T) VOE E+ + =  . 

Thus, we get the following three sub-optimization value functions:  

( ) ( ) ( ) 

( ) ( ) 

( )

t 1

t 1

t 1

(1)* ch w *

t t t t t t t t t 1
E E E

* (2)* ch w *

t t t t t t t t t t 1
E E E

(3)*

t t t t t t
E E E

V (S(t)) max P q αρ P W L ρ C q C W  +E[V S(t 1) | S(t) ]

V (S(t)) V (S(t))= max P q ρ α P W L ρ C q C W E[V S(t 1) | S(t) ]

V (S(t))= max P q βρ P W L

+

+

+

+

+
 

+ +

+
 

+

 

= − + − −  −  +

= − + − −  −  + +

− + − ( ) dis w *

t t t 1ρ C q C W  E[V S(t 1) | S(t) ]+









+  −  + +

 (C19) 

Following the previous study (Zhou et al., 2019), we derive the following results: 

( )( ) ( ) 

( )( ) ( ) 

( ) ( ) 

t 1

t 1

t 1

(1)* ch *

t 1 t t 1 t t 1
E E E

(2)* ch *

t 1 t t 1 t t 1
E E E

(3)* dis *

t 1 t t 1 t t 1
E E E

E arg max P αρ+C E η +E[V S(t 1) | S(t) ]

E arg max P ρ α+C E η E[V S(t 1) | S(t) ]

E arg max (Pβρ C ) E η +E[V S(t 1) | S(t) ]

+

+

+

+

+ + +
 

+

+ + +
 

+

+ + +
 

 = − +




= − + +



= − − +

     (C20) 

Similar, we can get the following results: 

( ) ( )

( )
( )

( )
( )

(1)*+ (2)*+ (3)*+

t t 1 t 1 t 1

dis ch (2)*+ (1)*+ (3)*+

t t 1 t 1 t 1

ch dis ch dis

(1)*+ (3)*+ (2)*+

t t 1 t 1 t 1

1) If  P 0, there is E E E ;

2) If C +C 1 αρ βρ P 0, there is E E E ;

C C C C
3) If P , there is E E E ;

ρ α βρ 1 αρ βρ

4) If  P

+ + +

+ + +

+ + +

  

− −    

+ +
−   −  

− −

( ) ( )ch dis (1)*+ (2)*+ (3)*+

t t 1 t 1 t 1C C ρ α βρ , there is E E E .+ + +










  − + −  


          (C21) 

 

Proof of Proposition 5.2: 

For Positive price, we will get the following results about optimal solutions:  

1) Case 3: If 
ch

(1)*+

t t t 1α(W L ) min{E ,Q }+−   , the optimal action of prosumer is 

obtained as follows: 
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ch
(1)*+ (1)*+

t 1 t t t 1 t t

(1)*+

t 1

ch
(2)*+ (1)*+ (2)*+

t 1 t t t t t 1 t t t 1

*

t t

min{E E ,Q },  E [0,E α(W L )],

(store residual power and purchase electricity up to E );

min{E E ,α(W L ),Q },E (E α(W L ),E ],

q (S ) (store residua

+ +

+

+ + +

−  − −

− −  − −

= (2)*+

t 1

(2)*+ (3)*+

t t 1 t 1

dis
(3)*+ (3)*+

t 1 t t t 1

(3)*+

t 1

l power without buying up to E );

0,E (E ,E ] (keep inventory unchanged); 

max{E E , Q },E (E ,E],

(Sell redisual power and r elase energy down to E ).

+

+ +

+ +

+











− − 














    (C22) 

2) Case 4: If 
ch

(1)*+

t t t 1α(W L ) min{E ,Q }+−   , the optimal action of prosumer is 

obtained as follows: 

ch(2)*+ (2)*+

t 1 t t t t t 1

(2)*+

t 1

* (2)*+ (3)*+

t t t t 1 t 1

dis(3)*+ (3)*+

t 1 t t t 1

min{E E ,α(W L )Q ,},E [0,E ],

(store residual power without buying up to E );

q (S ) 0,E [E ,E ](keep inventory unchanged);

max{E E , Q },E (E

+ +

+

+ +

+ +

− − 

= 

− − 

(3)*+

t 1

,E],

(Sell redisual power and r elase energy down to E ).+













           (C23) 

 

Cases Study 

In this case, we assume there are three time periods (T 3= ). At each period, the 

power price takes one of the values in set  tP 5,3,10= . We also assume the storage energy 

capacity cannot refill it fully or sell it empty in one time period, but fewer than two time 

periods. In detail, when the full (resp. empty) storage can be emptied (resp. filled up) in 

more than one period but fewer than two periods, it holds that pE Q E+  (resp., 
gE E Q−  ) 

and 
pE 2Q E+   (resp., gE E 2Q−   ). We assume the storage capacity is 10 (i.e., 
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E 0, E 10= = ), the generating/discharging max capacity is 12 and the pumping/charging 

max capacity is 7. Let the operating cost be one(i.e., 
ch disC C 1= = ),wind generation cost 

(i.e., wc 0= ), the pumping/ generating efficiencies and transmission efficiencies be 0.9 (i.e., 

α β 0.9 ρ= = = ), self-discharging be one (i.e., η 1= ), the wind generations are 

 tw 6,5,0= , and the local load/demand is  tL 4,9,6= . 

 

Case 1 

In stage 4:  

( )4 4 4 4 4VOE 5 3 10 / 3 6 V VOE E 6E= + + =  =  =  

We will get the following optimal references points:  

( )( ) ( ) 

( )( ) ( ) 

( ) ( ) 

4

4

4

(1)* ch *

4 3 4 3 3 4
E E E

(2)* dis *

4 3 4 3 3 4
E E E

(3)* dis *

4 3 4 3 3 4
E E E

E arg max P αρ+C E η E +E[V S(4) | S(3) ]

E arg max P β ρ C E η E E[V S(4) | S(3) ]

E arg max (P βρ C ) E η E +E[V S(4) | S(3) ]

 

 

 

 = − −




= − − − +



= − − −

 

Then, plug in the data, we will get the following equations:  

( )   

( )   

   

4 4

4 4

4 4

(1)*

4 4 4 4
E E E E E E

(2)*

4 4 4 4
E E E E E E

(3)*

4 4 4 4
E E E E E E

(1)* (2)* (3)*

4 4 4

E arg max 10 0.81 1 E 6E arg max 7.3457E

E arg max 10 0.9 0.9 1 E 6E arg max 3E

E arg max (10 0.81 1)E 6E arg max 1.1E

E E E 0

   

   

   

 = − + + = −




= −  − + = −



= −  − + = −

 = = =

      (C24) 

In Stage 3: There is 3 3W L 0 6 0− = −  . 

Action 3: Release power and make the storage level down to 
*

4E 0 E= = , thus,
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*

4V 0= . Therefore, the optimal action is 

*

3 3 3 3q (S ) E ,E (0,E]

(sell energy and make SOC down to 0 as close as possible)

= −  ，
       (C25) 

The reward function at stage3 is shown as 

( ) ( )

( ) ( )( )

   

   

dis w

3 3 3 3 3 3 3

3
dis w

3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3

P q β W L ρ C q C W    ( 6 0 0.9 E 0)

R

P q β W L ρ C q C W    E 6 0 0.9  

10 6 0.9E 0.9 E 60 9E 0.9 E 9E 60 0.9   (E 6 0.9)
    

10 6 0.9E 0.9 E 60 9E 0.9 E 7.1E 54  

−  − −  +  −  − −  −  
= 
−  − −  +  −  −  − − 

− − − = − + − = − 
=

− − − = − + − = − ( )3E 6 0.9  







    (C26) 

Therefore, the optimal value function at stage 3 is shown as:  

3 3
* *

3 3 4

3 3

9E 600 9    (E 6 0.9)
V max{R V }

7.1E 54  (E 6 0.9)

− 
= + = 

− 

               (C27) 

In stage 2: There has 2 2W L 5 9 4 0− = − = −  . 

By using the Eqs. (C4), (C5), and (C6), we get the following results for merchants: 

( )( ) 

( )( )   

( )( ) 

( )( ) 

3

3 3

3

3 3

(1)* * ch

3 3 2 3 3 2
E E E

* *

3 3 2 3 3 2
E E E E E E

(2)* * dis

3 3 2 3 3 2
E E E

* *

3 3 2 3
E E E E E E

E arg max V P αρ C E η E

        arg max V 3 0.81 1 E E arg max V 4.7037E 4.7037E

E arg max V P β ρ C E η E

        arg max V 3 1 E E arg max V

−

 

   

−

 

   

= − + −

= − + − = − +

= − − −

= − − − = − 

( ) 

( )( )   

3

3 3

3 2

(3)* * dis

3 3 2 3 3 2
E E E

* *

3 3 2 3 3 2
E E E E E E

2E 2E

E arg max V (P βρ C ) E η E

        arg max V 3 0.81 1 E E arg max V 1.43E 1.43E

−

 

   










 +


 = − − −



= −  − − = − +


  (C28) 

(1) Scenario1: If 3E [0,  6 / 0.9] , there is *

3 3V 9E 600 9= − . 
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 

 

 

3

3

3

3

(1)*

3 3 3 2
E [0, 6/0.9]

(1)*

3 2 3
E [0, 6/0.9]

(2)*

3 3 3 2
E [0, 6/0.9]

3
E [0, 6/0.9]

E arg max 9E 600 9 4.7037E 4.7037E

        arg max 4.2963E 600 9 4.7037E E 6 0.9;

E arg arg max 9E 600 9 2E 2E

        arg max 7E 600 9 2

−





−





= − − −

= − +  =

= − − −

= − + 

 

 

3

3

(2)*

2 3

(3)*

3 3 3 2
E [0, 6/0.9]

(3)*

3 2 3
E [0, 6/0.9]

E E 6 0.9;

E arg max 9E 600 9 1.43E 1.43E

        arg max 7.57E 600 9 1.43E E 6 0.9.

−














  =



= − − −



= − +  =

       (C29) 

(2) Scenario2: If 3E [6 / 0.9, 10] , there is *

3 3V =7.1E 54− . 

 

 

 

3

3

3

3

(1)*

3 3 3 2
E [6/0.9, 10]

(1)*

3 2 3
E [6/0.9, 10]

(2)*

3 3 3 2
E [6/0.9, 10]

3
E [6/0.9, 10]

E arg max 7.1E 54 4.7037E 4.7037E

        arg max 2.3963E 54 4.7037E E E 10;

E arg max 7.1E 54 2E 2E

        arg max 5.1E 54 2E

−





−





= − − −

= − +  = =

= − − −

= − + 

 

 

3

3

(2)*

2 3

(3)*

3 3 3 2
E [6/0.9, 10]

(3)*

3 2 3
E [6/0.9, 10]

E E 10;

E arg max 7.1E 54 1.43E 1.43E

         arg max 5.67E 54 1.43E E E 10.

−














  = =



= − − −



= − +  = =

          (C30) 

Next, we will compare the max value and pick up the optimal references point 

between the above two scenarios.   

(1) Compare (1)*

3E  
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 

( )

3

(1)*
3

3

(1)*

3 3

(1)*

3 3 2
E [0, 6/0.9]

3 2 2 2E 6 0.9

(1)*

3 3

(1)*

3
E

If   E [0,  6 / 0.9] E 6 0.9

1) E arg max 4.2963E 600 9 4.7037E

4.2963E 600 9 4.7037E | 38.0437 4.7037E  E 6 0.9

If   E [6 / 0.9,  10] E 10

2) E arg max

−

−

−



=

−

−




  =


= − +



 − + = − + 

  =

=  

(1)*
3

3 2
[6/0.9, 10]

3 2 2E 10

(1)*

3

2.3963E 54 4.7037E

2.3963E 54 4.7037E | 30.037 4.7037E

E 10

−
=

−









 
 
 
 
 
 − +
 
  − + = − +  

 =

 (C31) 

(2) Compare (2)*

3E  

 

( )

 

3

( 2)*
3

3

(2)*

3 3

(2)*

3 3 2
E [0, 6/0.9]

3 2 2 2E 6 0.9

(2)*

3 3

(2)*

3 3 2
E [6/0.9, 10]

If   E [0,  6 / 0.9] E 6 0.9

1) E arg max 7E 600 9 2E

7E 600 9 2E | 20.1 2E   E 6 0.9

If   E [6 / 0.9,  10] E 10

2) E arg max 5.1E 54 2E

5.1

−

−

−



=

−

−




  =


= − +



 − + = − + 

  =

= − +

 ( 2)*
3

(2)*

3

3 2 2E 10

E 10

E 54 2E | 3 2E−

−

=









 
 = 

 
 
 
 
 
  − + = − +  

   (C32) 

(3) Compare (3)*

3E  
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 
3

(3)*
3

3

(3)*

3 3

(3)*

3 3 2
E [0, 6/0.9]

3 2 2E 6 0.9

(3)*

3 3

(3)*

3 3
E [6/0.9, 10]

If   E [0,  6 / 0.9] E 6 0.9

1) E arg max 7.57E 600 9 1.43E

7.57E 600 9 1.43E | 16.201 1.43E

If   E [6 / 0.9,  10] E 10

2) E arg max 5.67E 5

−

−

−



=

−

−




  =


= − +


 − + = − +

  =

= − 

(3)*
3

(3)*

3

2

3 2 2E 10

E 10

4 1.43E

5.67E 54 1.43E | 2.7 1.43E−

−

=









 
 = 

 
 
 

+ 
 
  − + = +  

    (C33) 

Thus, we will get the optimal reference points at stage 3 that are shown as: 

(1)* (2)* (3)*

3 3 3E E E 10= = =                        (C34) 

Since there are 
g

(3)*

t t t 1(L W ) β min{E E ,Q }−

+−  − . The optimal actions at stage 2 are 

shown as  

ch
(1)* (1)*

t 1 t t t 1

(1)*

t 1

(1)* (2)*

t t 1 t 1*

t t

min{E E ,Q },  E [0,E ],

 (buying power for consu min g and storing,bring SOC up to E );

0,E (E ,E ],
q (S )

 (buying power for consu min g without storing,  keep SOC unc

− −

+ +

−

+

−

+ +

− 


=

dis
(2)* (2)*

t 1 t t t 1

(2)*

t 1

2
*

2 2

2 2

hanged);

max{E E , Q },E (E ,E],

(disch arging and buying partial energy for consu min g,  bring SOC down to E ).

7 E [0,3]
           q (S )

10 E E [3,  10]

− −

+ +

−

+












− − 





 = 

− 

，     

，





 (C35) 

The reward payoff functions at stage 2 are shown as follows:  

( ) ( )

( )

( ) ( ) ( )

( )

( )

ch w

2 2 2 2 2 2 2 2

2

2 22 2

R P q α W L ρ C q C W   q 0

3 7 / 0.9 5 9 0.9 7                        46.2593                E 3
      

4.7037E 60.337 E 33 10 E 0.9 5 9 0.9 10 E

= −  − −  −  −   

−  − −  − −   
= = 

−  −  − − −  − −  

  (C36) 

Therefore, the optimal value function at stage 3 is shown as:  
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3 2

3

3 2E E 7
* *

2 2 3

3 2 2E 10

2 2

2 2

7.1E 54 46.2593                 (E 3)

V max{R V }
7.1E 54 4.7037E 60.337   (E 3)

7.1E 50.5593   (E 3)
                                

4.7037E 43.337  (E 3)

= +

=

− − 


= + = 
− + − 

− 
= 

− 

         (C37) 

In Stage 1: There exists 1 1W L 6 4 0− = −  . 

By using the equations (C12), (C13), and (C14), we will get the following results 

for merchants: 

( )( ) 

( )( )  ( ) 

( )( ) 

( )( )  ( ) 

2

2 2

2

2 2

(1)* * ch

2 2 1 2 1 1
E E E

* *

2 2 1 2 2 1
E E E E E E

(2)* * ch

2 2 1 2 1 1
E E E

* *

2 2 1 2 2 1
E E E E E E

E arg max V P αρ C E η E

         arg max V 5 0.81 1 E E arg max V 7.1728 E E

E arg max V P ρ α C E η E

        arg max V 5 1 E E arg max V 6 E E

+

 

   

+

 

   

= − + −

= − + − = − −

= − + −

= − + − = − −

( ) 

( )  ( ) 

2

2 2

(3)* * dis

2 2 1 2 1 1
E E E

* *

2 2 1 2 2 1
E E E E E E

E arg max V (Pβρ C ) E η E

         arg max V (5*0.81 1) E E arg max V 3.05 E E

+

 

   













 = − − −



= − − − = − −


   (C38) 

(1) Scenario1: If 2E (0,3] , there is
*

2 2V 7.1E 50.5593= − . 

( ) 

 

( ) 

 

2

2

2

2

(1)*

2 2 2 1
E (0,3]

(1)*

2 1 2
E (0,3]

(2)*

2 2 2 1
E (0,3]

(2)*

2 1 2
E (0,3]

E arg max 7.1E 50.5593 7.1728 E E

         arg max 0.0728E 50.5593 7.1728E E 0;

E arg max 7.1E 50.5593 6 E E

        arg max 1.1E 50.5593 6E E 3

+



+



+



+



= − − −

= − − +  =

= − − −

= − +  =

( ) 

 

2

2

(3)*

2 2 2 1
E (0,3]

(3)*

2 1 2
E (0,3]

;

E arg max 7.1E 50.5593 3.05 E E

        arg max 4.05E 50.5593 3.05E E 3.

+



+
















= − − −



= − +  =

         (C39) 

(2) Scenario2: If 2E [3,  10] , there is 
*

3 2V 4.7037E 43.337= − . 
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( ) 

 

( ) 

2

2

2

2

(1)*

2 2 2 1
E [3, 10]

(1)*

2 1 2
E [3, 10]

(2)*

2 2 2 1
E [3, 10]

2
E [3, 10]

E arg max 4.7037E 43.337 7.1728 E E

        arg max 2.4691E 43.337 7.1728E E 3;

E arg max 4.7037E 43.337 6 E E

        arg max 1.2963E 43.337

+



+



+





= − − −

= − − +  =

= − − −

= − − + 

( ) 

 

2

2

(2)*

1 2

(3)*

2 2 2 1
E [3, 10]

(3)*

2 1 2
E [3, 10]

6E E 3;

E arg max 4.7037E 43.337 3.05 E E

        arg max 1.6537E 43.337 3.05E E 10.

+

+



+












  =



= − − −



= − +  =

         (C40) 

Next, we will compare the max value and pick up the optimal references point 

between the above two scenarios.   

(1) Compare (1)*+

2E  

 
3

(1)*
2

3

(1)*

2 2

(1)*

2 2 1
E [0, 3]

2 1 1E =0

(1)*

2 2

(1)*

2
E [6/0.9, 10]

If  E [0,  3] E =0

1) E =arg max 0.0728E 50.5593 7.1728E

0.0728E 50.5593 7.1728E | 50.5593 7.1728E

If  E [3,  10] E =3

2) E =arg max 2.4691E

+

+

−



+

−




 


− − +


 − − + = − +

 

− 

( )(1)*
2

2 1

2 1 1 1E =3

43.337 7.1728E

2.4691E 43.337 7.1728E | 50.7443 7.1728E E 3 +





− +


 − − + = − + 

，

  (C41) 

(2) Compare (3)*+

2E  
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 

 

 

2

(3)*
2

2

(3)*

2 2

(3)*

2 2 1
E [0, 3]

2 1 1E 3

(3)*

2 2

(3)*

2 2 1
E [3, 10]

If   E [0,  3] E 3

1) E arg max 4.05E 50.5593 3.05E

4.05E 50.5593 3.05E | 38.4093 3.05E

If   E [3,  10] E 10

2) E arg max 1.6537E 43.337 3.05E

+

+

−



=

+

+




  =


= − +



 − + = − +

  =

= − +

 (3)*
2

(3)*

2

2 1 1E 10

E 10

1.6537E 43.337 3.05E | 26.8 3.05E+

+

=









 
 = 

 
 
 
 
 
  − + = − +  

  (C42) 

Thus, we will get the optimal reference points at stage 2 that are shown as: 

(1)* (2)* (3)*

2 2 2E =0,  E =3,  E =10                      (C43) 

Similarly, because there are 1 1W L 6 4 0− = −  , and 
p(1)*+

t t t 1α(W L ) min{E ,Q }+−  , 

the optimal actions at stage 1 are shown as  

p(2)* (2)*

t 1 t t t t t 1

(2)*

t 1

* (2)* (3)*

t t t t 1 t 1

g(3)* (3)*

t 1 t t t 1

min{E E ,Q ,α(W L )},E [0,E ],

(store residual power without buying up to E );

q (S ) 0,E [E ,E ](keep inventory unchanged);

max{E E , Q },E (E ,E]

+ +

+ +

+

+

+ +

+ +

+ +

+ +

− − 

= 

− − 

1

1 1

1

(3)*

t 1

1.8, E [0,1.2]

3 E E (1.2,  3]

0, E (3,  10],

(Sell redisual power and relase energy down to E ).+

+






 

= −  
 

 




  

,

    

 (C44) 

The reward payoff functions at stage 1 are shown as follows:  

( )

1

W ch1
1 1 1 1 1 1 1 1

1

1.8, E [0,1.2]

q
R P ( W L ) ρ C W C q 6E 9, E (1.2,  3]

α

9, E (3,  10]

− 


= −  − −  − − = − 




   

 

      

     (C45) 

Therefore, we will get the following optimal value functions at stage 1/initial stage.  
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2 1

2

2 1

2 E E 1.8 1 1

* *

1 1 2 2 1 E 3 1 1

1 12 E E

7.1E 50.5593 1.8 | 7.1E 39.5793    (E 1.2)

V max{R V } 7.1E 50.5593 6E 9 | 6E 38.2593    (1.2 E 3)

4.7037E 34.337 (E 3)  4.7037E 43.337 9 |   

= +

=

=

 − − − 
  

= + = − + − = −   
 

−  − + 

  (C46) 

The corresponding optimal actions are shown:  

In stage 1, *

1 1 1 1 1 1q (S ) 1.8,E [0,1.2];  3 E E (1.2,  3];  E (3,  10]=  −  , 0,  

In stage 2, *

2 2 2 2 2q (S ) 7 E [0,3];  10 E E [3,  10]=  − ， ，  

In stage 3,  

*

3 3 3 3q (S ) E ,E (0,E](sell energy and make SOC down to 0 as close as possible)= −   

To sum up, we get the following results:  

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , (action 1: store the remaining wind generation), then we will get 

2E 2.8=  (i.e., 
*

1q 1.8= , 1R 1.8= − );   

Stage 2: If 2E 2.8= , (action 2: store renewable and purchased electricity up to  

p

Q ), then, we will get 3E 9.8=  (i.e., 
*

2 2q 7,R 46.2593= = − ); 

Stage 3: If 3E 9.8= ,(action 3: generating and selling), then, we have 4E 0=  (i.e., 

*

3 3q 9.8,R 15.58= − = ).  

Based on the forecasted price, total rewards are shown as 

*

1 2 3 1R R R R 32.4793 V= + + = − = .  

If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= ,(action 1: store the remaining wind generation), then, the relation 

of 2E 5=  (i.e., 
*

1q 0= , 1R 9= ) holds;   
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Stage 2: If 2E 5= ,(action 2: store renewable and purchased electricity up to 
(1-s)*

t 1E + ), 

then there exists 3E 10=  (i.e., 
*

2q 5= , 2R 36.8185= − ); 

Stage 3: If 3E 10= ,(action 3: generating and selling), then we have 4E 0 E= = (i.e., 

*

3q 10= − , 3R 17= ). 

Therefore, total rewards are shown as 
*

1 2 3 1R R R R 10.8185 V= + + = − =  if 1E 5= . 

 

Case 2: 

In stage 4:  

( )4 4 4 4 4VOE 5 3 10 / 3 6 V =VOE E 6E= + + =   =  

We will get the following optimal references points:  

( )( ) ( ) 

( )( ) ( ) 

( ) ( ) 

4

4

4

(1)* ch *

4 3 4 3 3 4
E E E

(2)* dis *

4 3 4 3 3 4
E E E

(3)* dis *

4 3 4 3 3 4
E E E

E arg max P αρ C E η E E[V S(4) | S(3) ]

E arg max P β ρ C E η E E[V S(4) | S(3) ]

E arg max (P βρ C ) E η E E[V S(4) | S(3) ]

 

 

 

 = − + − +




= − − − +



= − − − +

 

Then, plug in the data, we will get the following equations:  

( )   

( )   

   

4 4

4 4

4 4

(1)*

4 4 4 4
E E E E E E

(2)*

4 4 4 4
E E E E E E

(3)*

4 4 4 4
E E E E E E

(1)* (2)* (3)*

4 4 4

E arg max 10 0.81 1 E 6E arg max 7.3457E

E arg max 10 0.9 0.9 1 E 6E arg max 3E

E arg max (10 0.81 1)E 6E arg max 1.1E

E E E 0

   

   

   

 = − + + = −




= −  − + = −



= −  − + = −

 = = =

      (C47) 

In Stage 3: There is 3 3W L 0 0 0− = − = . 

Action 3: Release power and make the storage level down to *

4E 0 E= = , thus, 
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*

4V 0= . Therefore, the optimal action is 

*

3 3 3 3q (S ) E ,E (0,E](sell energy and make SOC down to 0 as close as possible)= −   (C48) 

The reward function at stage3 is shown as 

( ) ( )

  ( )

dis w

3 3 3 3 3 3 3 3

3 3 3 3

R P q β W L ρ C q C W     E 0  

    10 0 0.9E 0.9 E 7.1E      E 0  

= − − − +  −  −   

= − − − = 

     (C49) 

Therefore, the optimal value function at stage 3 is shown as:  

* *

3 3 4 3 3V max{R V } 7.1E   (E 0)= + =                   (C50) 

In stage 2: There is 2 2W L 5 0 5 0− = − =  . 

By using the equations (C4), (C5), and (C6), we get the following results: 

( )( ) 

( )( )   

( )( ) 

( )( ) 

3

3 3

3

3 3

(1)* * ch

3 3 2 3 2 2
E E E

* *

3 3 2 3 3 2
E E E E E E

(2)* * ch

3 3 2 3 3 2
E E E

* *

3 3 2 3
E E E E E E

E arg max V P αρ C E η E

        arg max V 3 0.81 1 E E arg max V 4.7037E 4.7037E

E arg max V P C E η E

        arg max V 3 1 E E arg max V

+

 

   

+

 

   

= − + −

= − + − = − +

= −    + −

= − + − = − 

( ) 

( )( )   

3

3 3

3 2

(3)* * dis

3 3 2 3 3 2
E E E

* *

3 3 2 3 3 2
E E E E E E

4E 4E

E arg max V (P βρ C ) E η E

        arg max V 3 0.81 1 E E arg max V 1.43E 1.43E

+

 

   










 +


 = − − −



= −  − − = − +


  (C51) 

3E [0,  10] , there is *

3 3V 7.1E= . 

   

   

 

3 3

3
3

3

(1)*

3 3 3 2 3 2
E [0, 10] E [0, 6/0.9]

(2)*

3 3 3 2 3 2
E [0, 6/0.9]E [0, 10]

(3)*

3 3 3 2
E [0, 10]

E arg max 7.1E 4.7037E 4.7037E arg max 2.2963E 4.7037E

E argarg max 7.1E 4E 4E arg max 3.1E 4E

E arg max 7.1E 1.43E 1.43E arg

+

 

+



+



= − + = +

= − + = +

= − + =  
3

3 2
E [0, 6/0.9]

(1)* (2)* (3)*

3 3 3

max 5.67E 1.43E

E E E 10











+


 = = =

(C52) 

Thus, we will get the optimal reference points at stage 3 that are shown as: 
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(1)* (2)* (3)*

3 3 3E E E 10= = =                       (C53) 

Since there are 
ch(1)*+

t t t 1α(W L ) min{E ,Q }+−  . The optimal actions at stage 2 are  

ch
(1)* (1)*

t 1 t t t 1 t t

(1)*

t 1

ch
(2)* (1)* (2)*

t 1 t t t t t 1 t t t 1

*

t t

min{E E ,Q },  E [0,E α(W L )],

(store residual power and purchase electricity up to E );

min{E E ,α(W L ),Q },E (E α(W L ),E ],

q (S ) (store residu

+ +

+ +

+

+

+ + +

+ + +

+

−  − −

− −  − −

= (2)*

t 1

(2)* (3)*

t t 1 t 1

dis
(3)* (3)*

t 1 t t t 1

(3)*

t 1

al power without buying up to E );

0,E (E ,E ] (keep inventory unchanged);  

max{E E , Q },E (E ,E],

(Sell redisual power and relase energy down to E ).

+

+

+ +

+ +

+ +

+ +

+

+










− − 















   (C54) 

2

*

2 2 2 2

2 2

7 E [0,3]

q (S ) 10 E E [3,  5.5]

10 E E [5.5,  10]




 = − 


− 

，     

，

，

 

The reward payoff functions at stage 2 are shown as follows:  

( ) ( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

ch w

2 2 2 2 2 2 2

2
ch w

2 2 2 2 2 2 2

2 2

2 2

P q α W L ρ C q C W         q 4.5

R

P q α W L ρ C q C W          (0 q 4.5)

3 7 / 0.9 5 0 0.9 7                     

    3 10 E 0.9 5 0 0.9 10 E

3 10 E 0.9 5 0 0.9 10 E

− − − −  −    
= 
− − − − −     

− − − −  

= − − − − − −  

− − − − − −  

( )

( )

( )

2

2 2

2 2

16.2593              E 3

4.7037E 30.3704 3 E 5.5

4E 26.5   E 5.5 

 − 
 
 

= −   
 
  − 

(C55) 

Therefore, the optimal value function at stage 3 is shown as:  

( )

3 2

3

3

3 E E 7 2 2

* *

2 2 3 3 2 2 2E 10

2 23 2 E 10

7.1E 16.2593            7.1E 33.4407   (E 3)

V max{R V } 7.1E 4.7037E 30.3704 4.7037E 40.6296 (3 E 5.5)

4E 44.5 E 5.57.1E 4E 26.5   

= +

=

=

 −  + 
 
 

= + = + − = +   
 
  + + − 

(C56) 
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In Stage 1: There has 1 1W L 6 0 0− = −  . 

By using the equations (A4), (A5), and (A6), we get the following results: 

( )( ) 

( )( )  ( ) 

( )( ) 

( )( )  ( ) 

2

2 2

2

2 2

(1)* * ch

2 2 1 2 1 1
E E E

* *

2 2 1 2 2 1
E E E E E E

(2)* * ch

2 2 1 2 1 1
E E E

* *

2 2 1 2 2 1
E E E E E E

E arg max V P αρ C E η E

         arg max V 5 0.81 1 E E arg max V 7.1728 E E

E arg max V P ρ α C E η E

        arg max V 5 1 E E arg max V 6 E E

+

 

   

+

 

   

= − + −

= − + − = − −

= − + −

= − + − = − −

( ) 

( )  ( ) 

2

2 2

(3)* * dis

2 2 1 2 1 1
E E E

* *

2 2 1 2 2 1
E E E E E E

E arg max V (Pβρ C ) E η E

         arg max V (5*0.81 1) E E arg max V 3.05 E E

+

 

   













 = − − −



= − − − = − −


 (C57) 

(1) Scenario1: If 2E (0,3] , there is *

2 2V 7.1E 33.4407= + . 

( ) 

 

( ) 

 

2

2

2

2

(1)*

2 2 2 1
E (0,3]

(1)*

2 1 2
E (0,3]

(2)*

2 2 2 1
E (0,3]

(2)*

2 1 2
E (0,3]

E arg max 7.1E 33.4407 7.1728 E E

        arg max 0.0728E 33.4407 7.1728E E 0;

E arg max 7.1E 33.4407 6 E E

        arg max 1.1E 33.4407 6E E 3;

+



+



+



+



= + − −

= − + +  =

= + − −

= + +  =

( ) 

 

2

2

(3)*

2 2 2 1
E (0,3]

(3)*

2 1 2
E (0,3]

E arg max 7.1E 33.4407 3.05 E E

        arg max 4.05E 33.4407 3.05E E 3.

+



+
















= + − −



= + +  =

         (C58) 

(2) Scenario2: If 2E [3,  10] , there is 
*

2 2V =4.7037E 40.6296+ . 
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( ) 

 

( ) 

2

2

2

2

(1)*

2 2 2 1
E [3, 10]

(1)*

2 1 2
E [3, 10]

(2)*

2 2 2 1
E [3, 10]

2
E [3, 10]

E arg max 4.7037E 40.6296 7.1728 E E

         arg max 2.4691E 40.6296 7.1728E E 3;

E arg max 4.7037E 40.6296 6 E E

         arg max 1.2963E 40

+



+



+





= + − −

= − + +  =

= + − −

= − + 

( ) 

 

2

2

(2)*

1 2

(3)*

2 2 2 1
E [3, 10]

(3)*

2 1 2
E [3, 10]

.6296 6E E 3;

E arg max 4.7037E 40.6296 3.05 E E

         arg max 1.6537E 40.6296 3.05E E 10.

+

+



+












 +  =



= + − −



= + +  =

       (C59) 

Next, we will compare the max value and pick up the optimal references point 

between the above two scenarios.   

(3) Compare (1)*+

2E  

 
3

(1)*
2

3

(1)*

2 2

(1)*

2 2 1
E [0, 3]

2 1 1E 0

(1)*

2 2

(1)*

2 2
E [6/0.9, 10]

If   E [0,  3] E 0

1) E arg max 0.0728E 33.4407 7.1728E

0.0728E 33.4407 7.1728E | 33.4407 7.1728E

If   E [3,  10] E 3

2) E arg max 2.4691E

+

+

−



=

+

−




  =


= − + +


 − + + = +

  =

= − 

( )(1)*
2

1

2 1 1 1E 3

(1)*

2

40.6296 7.1728E

2.4691E 40.6296 7.1728E | 30.2223 7.1728E ,   E 3 

E 0

+
=

+











 
 
 

+ + 



 − + + = +   

 =

  (C60) 

(4) Compare (3)*

2E +  
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 

 

 

2

(3)*
2

2

(3)*

2 2

(3)*

2 2 1
E [0, 3]

2 1 1E 3

(3)*

2 2

(3)*

2 2 1
E [3, 10]

If   E [0,  3] E 3

1) E arg max 4.05E 33.4407 3.05E

4.05E 33.4407 3.05E | 45.5907 3.05E

If   E [3,  10] E 10

2) E arg max 1.6537E 40.6296 3.05E

+

+

−



=

+

+




  =


= + +



 + + = +

  =

= + +

 (3)*
2

(3)*

2

2 1 1E 10

E 10

1.6537E 40.6296 3.05E | 57.1666 3.05E+

+

=









 
 = 

 
 
 
 
 
  + + = +  

   (C61) 

Thus, we will get the optimal reference points at stage 2 that are shown as: 

(1)* (2)* (3)*

2 2 2E 0,    E 3,   E 10= = =                      (C62) 

Similarly, because there are 1 1W L 6 0 0− = −   , and 
p(1)*

t t t 1α(W L ) min{E ,Q }+

+−   , 

the optimal actions at stage 1 are shown as  

p(2)* (2)*

t 1 t t t t t 1

(2)*

t 1

* (2)* (3)*

t t t t 1 t 1

g(3)* (3)*

t 1 t t t 1

min{E E ,Q ,α(W L )},E [0,E ],

(store residual power without buying up to E );

q (S ) 0,E [E ,E ](keep inventory unchanged);

max{E E , Q },E (E ,E]

+ +

+ +

+

+

+ +

+ +

+ +

+ +

− − 

= 

− − 

(3)*

t 1

1 1
*

1 1

1

,

(Sell redisual power and relase energy down to E ).

3 E E [0,  3]
q (S )

0 E (3,  10]

+

+













− 
 = 



， 

，    

      (C63) 

The reward payoff functions at stage 1 are shown as follows:  

( ) ( )

( ) ( )

( ) ( )

( )

( )

ch w

1 1 1 1 1 1 1 1

1 1 1 1 1

11

R P q α W L ρ C q C W        q 0

5 (3 E ) / 0.9 6 0 0.9 (3 E ) E 3 6E 9  E 3
    

27    E 35 6 0 0.9 0  E 3

= − − − −  −    

− − − − − −   +   
= = 

 − − − −    

  (C64) 
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Therefore, we will get the following optimal value functions at stage 1/initial stage.  

2

2 1

2 1

1 2 E 3 1

* *

1 1 2 2 E E 1

2 E E 1

1 1

1 1

1

6E 7.1E 42.4407 |  (E 3

V max{R V 27 4.7037E 40.6296 |   (3 E 5.5)

27 4E 44.5 |   (E 5.5) 

6E 63.7407     (E 3)

                              4.7037E 67.6296  (3 E 5.5)

4E

=

=

=

 + + 



= + = + +  

 + + 

+ 

= +  

）

171.5  (E 5.5) 






+ 

      (C65) 

      The corresponding optimal actions are shown:  

In stage 1,
1 1

*

1 1

1

3 E , E [0,  3]
q (S )

0, E (3,  10]

− 
= 



 

    
; In stage 2, 

2
*

2 2

2 2

7,  E [0,3]
q (S )

10 E E [3,  10]


= 

− 

     

, 
 

In stage 3, 

*

3 3 3 3q (S ) E ,E (0,E](sell energy and make SOC down to 0 as close as possible)= −   

To sum up, we get the following results:  

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , (action 1: store the remaining wind generation), then we will get 

2E 3=  (i.e., 
*

1q 2= , 1R 15= );   

Stage 2: If 2E 3= , (action 2: store renewable and purchased electricity up to 
p

Q ),  

then, we will get 3E 10=  (i.e., 
*

2 2q 7,R 16.2593= = − ); 

Stage 3: If 3E 10= ,(action 3: generating and selling), then, we have 4E 0=  (i.e., 

*

3 3q 10,R 71= − = ).  

The total rewards are shown as 
*

1 2 3 1R R R R 69.7407 V= + + = = .  
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If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= ,(action 1: store the remaining wind generation), then, the relation 

of 2E 5=  (i.e., 
*

1q 0= , 1R 27= ) holds;   

Stage 2: If 2E 5= ,(action 2: store renewable and purchased electricity up to
(1-s)*

t 1E + ), 

then there exists 3E 10=  (i.e., 
*

2q 5= , 2R 6.8519= − ); 

Stage 3: If 3E 10= ,(action 3: generating and selling), then we have 4E 0 E= = (i.e., 

*

3q 10= − , 3R 71= ). 

Therefore, total rewards in three periods are shown as 

*

1 2 3 1R R R R 90.1481 V= + + = =  if 1E 5= . 
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APPENDIX D. 

PROOF OF SECTION 6 
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Proof of Lemma 6.1 

1) The uniqueness of the optimal results:  

We show the current payoff rewards as follows for the merchant with the renewable 

power plant and storage and when the merchant can receive PTC s per renewable 

generation sold to the market: 

 

t t t w t p t t t

(s)

t t t t t t t t w t p t t t

t t t w t t g t t

P (q α w ) / ρ c w c q            (q αw )

R (q ,w ,P ) P (q α w ) ρ s(q α w ) c w c q  (0 q αw ) 

P (q β w ) ρ c w +sw +c q     (q 0) 

−  − − − 



= −  −  − − − −  

−  −  − 

  (D1) 

Where, tq  is the energy/inventory change from period t to period t+1 before 

accounting for energy loss. By using the method t 1 t t tE η (E q )+ =  +  , we will get the 

following rewards function at time t.  

( )

( )

( )( ) ( )

t t p t t t w t t

(s)

t t t t t p t t t w t t

t t g t t t w t

t t 1 t t p t 1 t t t t w

P αρ q c q w ( P ρ c )           (q αw )  

R (q ,w ,P ) (P ρ s) α q c q w [ Pρ c s]  (0 q αw )

Pβρq +c q w [ Pρ c s] (q 0)

P αρ E η E c E η E w ( P ρ c )        

           

+ +

− − − − + 



= − + − − − + −  

− − − + − 

− − − − − − +

 ( )( ) ( )

( ) ( )

t t

t t 1 t t p t 1 t t t t w t t

t t 1 t t g t 1 t t t t w t

   (q αw )  

(P ρ s) α E η E c E η E w [ Pρ c s]  (0 q αw )

Pβρ E η E +c E η E w [ Pρ c s] (q 0)

+ +

+ +

 


− + − − − − − + −  

− − − − − + − 

 (D2) 

In the end of the period T or in the beginning of the period T+1: 

T T T T T T T+1 T+1V (E ,P ) [R(q ,w ,P ) VOE E ]= +   

Where,  
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( ) 

 

T 1

T 1

T 1

(1-s)* *

T t T p T T T w T 1
E E E

(2 s)* *

T T T p T T T w T 1
E E E

(3 s)*

T t T g T T T w
E E E

V (S(T)) max P αρ q c q w ( P ρ c )+E[V (S(T 1) | S(T)]

V (S(T))= max (P ρ s) α q c q w [ P ρ c s] E[V (S(T 1) | S(T)]

V (S(T))= max Pβρq +c q w [ P ρ c

+

+

+

+
 

−

+
 

−

 

= −  − − − + +

− +  − − − + − + +

− − − + − *

T 1s] E[V (S(T 1) | S(T)]+









+ +

 (D3) 

Here, we can also get the following relation of equivalence: 

( )( ) 

( )( ) 

( )( ) 

T 1

T 1

T 1

(1-s)*

T t p T 1 T T T+1 T+1
E E E

(2 s)*

T T p T 1 T T T+1 T+1
E E E

(3 s)*

T t g T 1 T T T+1 T+1
E E E

V (S(T)) max P αρ+c E η E +VOE E

V (S(T))= max (P ρ s) α+c E η E VOE E

V (S(T))= max Pβρ c E η E VOE E

+

+

+

+
 

−

+
 

−

+
 

 = − − 




− + − + 



− − − + 


        (D4) 

The best response functions (first-order derivative) of *

TV (S(T)) on T 1E + are: 

( )

( )

( )

(1-s)*

T T 1 t p T T+1

(2-s)*

T T 1 T p T T+1

(3-s)*

T T 1 t g T T+1

V (S(T)) E P αρ+c η VOE        

V (S(T)) E = (P ρ s) α+c η VOE   

V (S(T)) E Pβρ c η VOE  

+

+

+

  = − +


  − + +

  = − − +


           (D5) 

We also get the following second-order derivative functions of *

TV (S(T)) on T 1E + .  

2 (1-s)* 2 2 (2-s)* 2 2 (3-s)* 2

T T 1 T T 1 T T 1V (S(T)) E 0; V (S(T)) E 0; V (S(T)) E 0+ + +  =   =   =     (D6) 

   Since there is 
2

T p T p T T TP αρ+c (P ρ s) α+c P (P ρ s)ρ s P (1 ρ ) ρ +   +   − , thus   

(1) when 
2

Ts P (1 ρ ) ρ − , there are ( ) ( ) ( )T g T T p T t p TP βρ c η (P ρ s) α+c η P αρ+c η−  +   

(a) If ( )T+1 T g TVOE P βρ c η −  ,there are (1-s)*

T T 1V (S(T)) E 0+    ,

(2-s)*

T T 1V (S(T)) E 0+   , and (3-s)*

T T 1 V (S(T)) E 0+   . We get the following optimal results: 

javascript:;
javascript:;
javascript:;
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( )( ) 

( )( ) 

( )( ) 

T 1

T 1

T 1

(1-s)* *

T 1 t p T 1 T T T 1
E E E

(2-s)* *

T 1 T p T 1 T T T 1
E E E

(3-s)* *

T 1 t g T 1 T T T 1
E E E

E arg max P αρ+c E η E E[V (S(T 1) | S(T)] E

E =arg max (P ρ s) α+c E η E E[V (S(T 1) | S(T)] E

E =arg max Pβρ c E η E E[V (S(T 1) | S(T)] E

+

+

+

+ + +
 

+ + +
 

+ + +
 

 = − − + + =

− + − + + =

− − − + + =










        (D7) 

(b) If ( ) ( )T g T T+1 T p TP βρ c η V (P ρ s) α c η−   + + , there are (1-s)*

T T 1V (S(T)) E 0+   , 

(2-s)*

T T 1V (S(T)) E 0+   , and (3-s)*

T T 1 V (S(T)) E 0+   . We get the following optimal results:  

 (1-s)* (2-s)* (3-s)*

T 1 T 1 T 1E E;    E E;     E  = E+ + += =                     (D8) 

(c) If ( ) ( )T p T T+1 T p T(P ρ s) α c η VOE P αρ c η+ +   +  , there are 

(1-s)*

T T 1V (S(T)) E 0+   , (2-s)*

T T 1V (S(T)) E 0+   , and (3-s)*

T T 1 V (S(T)) E 0+   , then we will get 

the following optimal results:  

 (1-s)* (2-s)* (3-s)*

T 1 T 1 T 1E E;    E E;      E  = E+ + += =                  (D9) 

(d) If ( )T+1 T p TVOE P αρ c η +  ,there are 
(1-s)*

T T 1V (S(T)) E 0+  

(2-s)*

T T 1V (S(T)) E 0+   , and
(3-s)*

T T 1 V (S(T)) E 0+   , we have the following optimal results:  

 (1-s)* (2-s)* (3-s)*

T 1 T 1 T 1E E;       E E;       E  = E+ + += =
                   (D10) 

(2) When
2

Ts P (1 ρ ) ρ − , there are ( )T g T T p T T p T(P βρ c ) η (P αρ c ) η (P ρ s) α c η−  +  + +  

(e) If ( )T+1 T g TVOE P βρ c η −  ,there are (1-s)*

T T 1V (S(T)) E 0+    , 

(2-s)*

T T 1V (S(T)) E 0+   , and
(3-s)*

T T 1 V (S(T)) E 0+   , we get the following optimal results: 
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( )( )( ) 

( )( ) 

( )( ) 

T 1

T 1

T 1

(1-s)* *

T 1 t p T 1 T T T 1
E E E

(2-s)* *

T 1 T p T 1 T T T 1
E E E

(3-s)* *

T 1 T g T 1 T T T 1
E E E

E arg max P αρ +c E η E E[V (S(T 1) | S(T)] E

E =arg max (P ρ s) α+c E η E E[V (S(T 1) | S(T)] E

E =arg max P βρ c E η E E[V (S(T 1) | S(T)] E

+

+

+

+ + +
 

+ + +
 

+ + +
 

 = − − + + =

− + − + + =

− − − + + =










   (D11) 

(f) If T g T T+1 T p T(P βρ c ) η VOE (P αρ c ) η−   +  ,there are (1-s)*

T T 1V (S(T)) E 0+    ,

(2-s)*

T T 1V (S(T)) E 0+   , and (3-s)*

T T 1V (S(T)) E 0+   , we get the following optimal results:  

 (1-s)* (2-s)* (3-s)*

T 1 T 1 T 1E E;    E E;     E  = E+ + += =                  (D12) 

(g) If ( )T p T T+1 T p T(P αρ c ) η VOE (P ρ s) α c η+   + +  , there are  

(1-s)*

T T 1V (S(T)) E 0+    , (2-s)*

T T 1V (S(T)) E 0+    , and (3-s)*

T T 1V (S(T)) E 0+    , we get the 

following optimal results: 

  (1-s)* (2-s)* (3-s)*

T 1 T 1 T 1E E;    E E;     E  = E+ + += =                  (D13) 

(h) If ( )T+1 T p TVOE (P ρ s) α c η + +  , there are (1-s)*

T T 1V (S(T)) E 0+    , 

(2-s)*

T T 1 V (S(T)) E 0+   , and (3-s)*

T T 1V (S(T)) E 0+   , we have the following optimal results:  

 (1-s)* (2-s)* (3-s)*

T 1 T 1 T 1E E;    E E;    E  = E+ + += =                 (D14) 

For the state at t {1,2, ,T}  

By optimizing of the value function t t t tV (E ,w ,P ) , subject to t 1E E E+  , we will 

get the following equations based on the Bellman equation. 
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( ) 

( )

( )

t 1

t 1

t 1

(1 s)* *

t t p t t t w t 1
E E E

*

t 1 t p t 1 t
E E E

(2 s)*

t t p t t t
E E E

V (S(t)) max P αρ+c q w ( P ρ c )+E[V (S(t 1) | S(t)]

                 max E[V (S(t 1) | S(t)] (P αρ+c ) (E η )               

V (S(t))= max (P ρ s) α+c q w [ P ρ

+

+

+

−

+
 

+ +
 

−

 

= − − − + +

 + − 

− + − − + 

( )( )

( ) 

t 1

t 1

t 1

*

w t 1

*

t 1 t p t 1 t
E E E

(3 s)* *

t t g t t t w t 1
E E E

*

t 1
E E E

c s] E[V (S(t 1) | S(t)]

              max E[V (S(t 1) | S(t)] (P ρ s) α+c (E η )

V (S(t))= max ( Pβρ c q w [ P ρ c s] E[V (S(t 1) | S(t)]

              max E[V (S

+

+

+

+

+ +
 

−

+
 

+
 

− + +

 + − + 

− − − − + − + +

 ( )t g t 1 t(t 1) | S(t) (Pβρ c ) (E η )  +

















+ − − 


   (D15) 

Recall the previous proof at state T, we know that every t {1,2,3, ,T} , in every 

stage t, the value function tV (S(t))  and 
*

t 1E[V (S(t 1) |S(t)]+ +  are concave in tE [E,E]  

for each given state t t t tS(t) S (E ,w ,P )=  .Clearly, *

t 1E[V (S(t 1) | S(t)]+ +  and functions (D15) 

are concave in tE [E,E]  for each given state t t t tS(t) S (E ,g ,P )= by using  

( )( )2* 2 * 2

t 1 t 1 t 1 t t t+1E[V (S(t 1) | S(t)] E E[V (S(t 1) | S(t)] E E E 0+ + + +  =  +       

(1) When t tq αw  , by optimizing the function (D15), subject to t+1E [E,E] , we can 

derive the response function (i.e., first-order derivative) as follows: 

( ) ( )( )*(1-s)* *
t+1 t t 1 tt t+1 t

p

t 1 t 1 t 1 t

E[V (S(t 1) | S(t)] P αρ E ηV (S(t)) E[V (S(t 1) | S(t)] P 1
+c

E E E αρ η

+

+ + +

 + −     +
= = −  

    

 

The second-order derivative： (1-s)* 2 * 2

t t 1 t+1 t 1V (S(t)) E = E[V (S(t 1) | S(t)] E 0 0+ +   +     

Since the second-order derivative is negative, we can find the unique optimal 

solutions through the first-order condition. We also will get the following optimal results: 

( )( )( )
t 1

(1-s)* *

t 1 t 1 t p t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] P αρ+c E η
+

+ + +
 

= + −         (D16) 

(2) When t t0 q αw  , by optimizing the function (D15), subject to t+1E [E,E] , we can 
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derive the response function (i.e., first-order derivative) as follows: 

( ) ( )( )* *
t+1 t t 1 t t+1 t

p

t 1 t 1 t

E[V (S(t 1) | S(t)] (P ρ s) α E η E[V (S(t 1) | S(t)] (P ρ s) 1
+c ]

E E α η

+

+ +

 + − +   + + 
= −  

   
 

The second-order derivative: * 2

t+1 t 1E[V (S(t 1) |S(t)] E 0+ +   . 

Since the second-order derivative is negative, we can find the unique optimal 

solutions through the first-order condition. We also will get the following optimal results: 

( )( )( )
t 1

(2-s)* *

t+1 t 1 t p t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] (P ρ s) α+c E η
+

+ +
 

= + − +          (D17) 

(3) When tq 0 , by optimizing the function (D15), subject to t+1E [E,E] , we can derive 

the response function (i.e., first-order derivative) as follows: 

( )( )* *
t+1 t t 1 t t gt+1

t 1 t 1 t

E[V (S(t 1) | S(t)] Pβρ E η Pβρ cE[V (S(t 1) | S(t)]

E E η

+

+ +

 + − − +
= −

 

 

The second-order derivative:
* 2

t+1 t 1E[V (S(t 1) |S(t)] E 0+ +   . 

Similarly, we can find the unique optimal solutions through the first-order condition. 

We also will get the following optimal results: 

( )( )( )
t 1

(3-s)* *

t 1 t 1 t g t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] Pβρ c E η
+

+ + +
 

= + − −            (D18) 

2)The relations among three reference points:  

(1) Recall the proof 1), for the state at t {1,2, ,T} ,there have the following two equations:  

( )( )( )

( )( )( )( )

t 1

t 1

(1-s)* *

t 1 t 1 t p t 1 t
E E E

(2-s) *

t 1 t 1 t p t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] P αρ+c E η

E arg max E[V (S(t 1) | S(t)] P ρ s α+c E η

+

+

+ + +
 

+ + +
 

 = + −


 = + − +


 

Then, we can get the following inequations:  
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( )( )

( )( )

( )( )( )

(1-s)* (1-s)*

t+1 t 1 t+1 t t t p t 1 t

(2-s)* (2-s)*

t 1 t 1 t+1 t t t p t 1 t

(2-s)* (2-s)*

t 1 t 1 t+1 t t t p t 1 t

(1-s)*

t 1 t 1 t+1

(a) E[V (E ,P ) | (E ,P )] P αρ+c E η

(b) E[V (E ,P ) | (E ,P )] P αρ+c E η

(c) E[V (E ,P ) | (E ,P )] P ρ s α+c E η

(d) E[V (E ,P ) |

+ +

+ + +

+ + +

+ +

− 

−

− + 

( )( )( )(1-s)*

t t t p t 1 t(E ,P )] P ρ s α+c E η+











− + 


          (D19) 

Based on the above inequations, we can get the relationship of (a) (d) (b) (c)−  − . 

That is, for any given current state
t t t t

ˆ ˆ ˆS(t) S (E ,w ,P ) E W P=    , we will get:  

( )( )( ) (2-s)* (1-s)*

t p t p t 1 t t 1 t(P αρ+c ) Pρ s α+c [E η E η ] 0+ +− + − 
 

Here, we have the following relation:  

a) 
2 2

t t t t t t tP αρ (Pρ s) α 0 P (Pρ s)ρ P Pρ sρ s P (1 ρ ) ρ +    +  −    − ; 

b) 
2 2 2

t t t t t t t0 P αρ (Pρ s) α 0 P (P s)ρ P Pρ sρ s P (1 ρ ) ρ  +    +  −    −  

Therefore, we will obtain the following relationship:  

1) For positive electricity price tP 0 , if 
2

ts P (1 ρ ) ρ − , there is 
(1-s)* (2-s)*

t 1 t 1E E+ + . 

2) For positive electricity price tP 0 , if 
2

ts P (1 ρ ) ρ − , we will get 
(1-s)* (2-s)*

t 1 t 1E E+ + . 

Obviously, if tP 0 , we will get 
2

ts 0 P (1 ρ ) ρ  − . 

So, for any s 0 , we will get 
(1-s)* (2-s)*

t 1 t 1E E+ +  for all the negative electricity price. 

(2) Recall the proof 1), we also have the following two equations:  

( )( ) ( )( )

( ) ( )( )

t 1

t 1

(2-s)* *

t 1 t 1 t p t 1 t
E E E

(3-s)* *

t 1 t 1 t g t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] P ρ s α+c E η

E arg max E[V (S(t 1) | S(t)] Pβρ c E η

+

+

+ + +
 

+ + +
 

 = + − + 


 = + − − 


 

Then, we can get the following inequations:  
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( ) ( )( )

( ) ( )( )

( ) ( )

* (2-s)* (2-s)*

t 1 t 1 t+1 t t t p t 1 t

* (3-s)* (3-s)*

t 1 t 1 t+1 t t t p t 1 t

* (3-s)* (3-s)*

t 1 t 1 t+1 t t t g t 1 t

*

t 1 t 1

(e) E[V (E ,P ) | (E ,P )] (P ρ s) α+c E η

(f ) E[V (E ,P ) | (E ,P )] (P ρ s) α+c E η

(g) E[V (E ,P ) | (E ,P )] Pβρ c E η

(h) E[V (E

+ + +

+ + +

+ + +

+ +

− +  

− + 

− −  

( ) ( )(2-s)* (2-s)*

t+1 t t t g t 1 t,P ) | (E ,P )] Pβρ c E η+











− −  

          (D20) 

Obviously, there is (e) (h) (f ) (g)−  − , that is 

( )( ) ( )(3-s)* (2-s)*

t g t p t 1 t t 1 t0 (Pβρ c ) (P ρ s) α+c E η E η+ + − − +  −
 

For any tP 0 , Since there is 0 ρ 1,0 α 1,0 β 1      , gc 0 , and pc 0 , so, 

( ) ( )t g t pPβρ c (Pρ s) α+c−  + hold.  

Therefore, we will get the relationship (2-s)* (3-s)*

t+1 t+1E E .  

Thus, we draw the relationship for positive prices tP 0  and 
2

ts P (1 ρ ) ρ − : 

(1-s)* (2-s)* (3-s)*

t 1 t 1 t 1E E E+ + +                            (D21) 

If tP 0 , we have ( )( ) ( )(3-s)* (2-s)*

t g t p t 1 t t 1 t(Pβρ c ) (Pρ s) α+c E η E η 0+ +− − +  −  . 

Here, we have the following relation:  

a) ( ) ( ) ( ) ( )t
t g p t g t p t g p

(Pρ s)
Pβρ c +c 0 Pβρ c α (Pρ s)+αc s αβ 1 ρP α c c

α

+ 
− −   −  +   − − + 

 
 ; 

b) ( ) ( ) ( ) ( )t
t g p t g t p t g p

(Pρ s)
Pβρ c +c 0 Pβρ c α (Pρ s)+αc s αβ 1 ρP α c c

α

+ 
− −   −  +   − − + 

 
 . 

For the negative price if s 0   and ( ) ( )t g ps αβ 1 ρP α c c − − +   the following 

relation: hold, we can draw  

( ) ( ) ( ) ( ) ( ) ( )( )t g p t g p t g pαβ 1 ρP α c c 0 αβ 1 ρP α c c P α c c 1 αβ ρ− − +   −  +   − + −
 

Therefore, we will obtain the following relationship:  
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1) For ( )t g pP α(c c ) (1 αβ)ρ − + −  , if t g p0 s (αβ 1)ρP α(c c )  − − +  , there is 

(2-s)* (3-s)*

t 1 t 1E E+ + . 

2) For ( )t g pP α(c c ) (1 αβ)ρ − + −  , if t g ps (αβ 1)ρP α(c c ) − − +  , we get 

(2-s)* (3-s)*

t 1 t 1E E+ + . 

To sum up, for negative prices ( )t g pP α(c c ) 1 αβ ρ − + −  and

t g p0 s (αβ 1)ρP α(c c )  − − + : 

(1-s)* (2-s)* (3-s)*

t 1 t 1 t 1E E E+ + +                         (D22) 

In this way, if there have ( )g p tα(c c ) (1 αβ)ρ P 0− + −    and s 0 , we will get 

(2-s)* (3-s)*

t 1 t 1E E+ + . 

（3）Recall the proof 1), we also have the following two equations:  

( )( )( )

( )( )( )

t 1

t 1

(1-s)* *

t 1 t 1 t p t 1 t
E E E

(3-s)* *

t 1 t 1 t g t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] P αρ+c E η

E arg max E[V (S(t 1) | S(t)] Pβρ c E η

+

+

+ + +
 

+ + +
 

 = + −


 = + − −


 

Then, we can get the following inequations:  

( )( )( )

( )( )( )

( )( )

(1-s)* (1-s)*

t+1 t 1 t+1 t t t p t 1 t

(3-s)* (3-s)*

t 1 t 1 t+1 t t t p t 1 t

* (3-s)* (3-s)*

t 1 t 1 t+1 t t t g t 1 t

* (1-s)*

t 1 t 1 t+1

(i) E[V (E ,P ) | (E ,P )] P αρ+c E η

( j) E[V (E ,P ) | (E ,P )] P αρ+c E η

(k) E[V (E ,P ) | (E ,P )] P βρ c E η

(l) E[V (E ,P ) |

+ +

+ + +

+ + +

+ +

− 

−

− − 

( )( )(1-s)*

t t t g t 1 t(E ,P )] Pβρ c E η+











− − 

           (D23) 

Obviously, there is (i) (l) ( j) (k)−  − , that is  

( )( )(3-s)* (1-s)*

t g t p p t 1 t t 1 t0 (Pβρ c ) (P αρ+c +c ) E η E η+ + − − −
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For tP 0  , ( ) ( )t p t gP αρ+c Pβρ c −   holds due to 0 ρ 1,0 α 1,0 β 1       ,

gc 0 , and pc 0 . Therefore, we will get the relationship
(1-s)* (3-s)*

t+1 t+1E E .  

      To sum up, we can draw the relationship for positive prices tP 0 and 2

ts P (1 ρ ) ρ − : 

(2-s)* (1-s)* (3-s)*

t 1 t 1 t 1E E E+ + +                          (D24) 

 Obviously, if
g pt

t g p t g p t

(c +c )P 1
(Pβρ c ) ( +c ) 0 (βρ )P c +c P

αρ αρ (1 αρ βρ)

 
− −   −    − 

− 
 

holds, there is (1 s)* (3 s)*

t 1 t 1E E− −

+ + . And if 
g p

t

(c +c )
P 0

(1 αρ βρ)
−  

−
, we still have (1-s)* (3-s)*

t+1 t+1E E . 

Therefore, we can draw the following results:  

For positive electricity prices tP 0  

2 (1-s)* (2-s)* (3-s)*

t t 1 t 1 t 1

2 (2-s)* (1-s)* (3-s)*

t t 1 t 1 t 1

If s P (1 ρ ) ρ, there is E E E

If s P (1 ρ ) ρ, there is E E E

+ + +

+ + +

  −  

  −  

             (D25) 

For negative electricity prices g p t(c +c ) (1 αρ βρ) P 0− −   . 

 (2-s)* (1-s)* (3-s)*

t 1 t 1 t 1If  s 0,we wil l  get E E E+ + +                      (D26) 

For negative electricity prices t g pP (c +c ) (1 αρ βρ) − − . 

( ) ( )

( ) ( )

(1-s)* (2-s)* (3-s)*

t g p t 1 t 1 t 1

(1-s)* (3-s)* (2-s)*

t g p t 1 t 1 t 1

1) If  0 s αβ 1 ρP α c c ,we will  get E E E

2) If  s αβ 1 ρP α c c ,we will  get E E E

+ + +

+ + +

   − − +  


  − − +  


     (D27) 

 

Proof of Proposition 6.3: Production Tax Credit (PTC) analysis  

For the electricity merchant with storage and wind farm considering production tax 

credit (PTC), recall the proof the Lemma 6.1, for any given state S(t) , and we can get the 
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following results: 

( )( ) 

( )( ) 

( )( )

t 1

t 1

t 1

(1-s)* *

t 1(s 0) t p t 1 t t t 1
E E E

(2-s)* *

t 1(s 0) t p t 1 t t t t 1
E E E

(3-s)*

t 1(s 0) t g t 1 t t t t
E E E

E arg max P αρ+c E η E E[V (S(t 1) | S(t)]

E =arg max (Pρ s) α+c E η E +sw E[V (S(t 1) | S(t)]

E =arg max Pβρ c E η E +sw E[V

+

+

+

+  + +
 

+  + +
 

+  +
 

= − − + +

− + − + +

− − − + *

1(S(t 1) | S(t)]+









+


  

If the electricity merchants ignore the production tax credit (PTC) in trading 

decisions (i.e., traditional study), we have the following results:  

( )( ) 

( )( ) 

( )( )

t 1

t 1

t 1

(1-s)* *

t 1(s 0) t p t 1 t t t 1
E E E

(2-s)* *

t 1(s 0) t p t 1 t t t 1
E E E

(3-s)* *

t 1(s 0) t g t 1 t t t 1
E E E

E arg max P αρ+c E η E E[V (S(t 1) | S(t)]

E =arg max Pρ α+c E η E E[V (S(t 1) | S(t)]

E =arg max Pβρ c E η E E[V (S(t 1) | S

+

+

+

+ = + +
 

+ = + +
 

+ = + +
 

= − − + +

− − + +

− − − + + (t)]











     (D28) 

By using the payoff rewards function (D1), there have the following relations:  

t t

(s)

t t t
t t t t

t t

0          (q αg )  

R (q ,w ,P )
(q α w ) 0    (0 q αg )

s

w 0   (q 0)




= − −   
 

 

 

Then, for positive electricity prices and state t {1,2,3, ,T} , we will get  

 (s)

t t tR (q , w , P ) s 0                              (D29) 

Thus, we will get the following relations: 

T T
(s) * (s) *

t t t t t t

t 1 t 1s 0 s 0

R (q ,w ,P ) R (q ,w ,P )
= = =

  , 

and the value function of *

t 1(s 0)V (S(t 1) | S(t))+  + increases with the PTC (s), then we will 

get the following relations: 

( ) ( )* *

t 1(s 0) t 1(s 0)E[V S(t 1) | S(t) ] E[V S(t 1) | S(t) ]+  + =+  +               (D30) 

In this way, we will get  
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T T
(s) (s)

t t t (s 0) t t t (s 0)
π π

t 1 t 1

max E R (q ,w ,P ) | S(1) max E R (q ,w ,P ) | S(1) =

= =

              (D31) 

 

Proof of Lemma 6.2 

1) The uniqueness of the optimal results:  

The current payoff rewards are shown as follows for the merchant when the 

merchant can receive PTC s per wind generation sold to the market:  

t t t t t w t p t t t
(PTC)

t t t

t t t w t t t g t t

P (q α w ) ρ s(q α w ) c w c q   (0 q αw ) 
R (q ,w ,P )

P (q β w ) ρ c w s(q β w )+c q    (q 0) 

− −  − − − −  


= 
−  −  − − − 

 (D32) 

Where, tq  is the energy/inventory change from period t to period t+1 before 

accounting for energy loss. Recall the proof for Lemma 6.1 in Appendix A, we will get the 

following rewards function at time t.  

t t t t t w t p t t t
(PTC)

t t t

t t t w t t t g t t

t t t t t w t p t t t

t t t

P (q α w ) ρ s(q α w ) c w c q     (0 q αw )
R (q , w ,P )

P (q β w ) ρ c w s(q β w )+c q  (q 0) 

(Pρ s)q α+P w ρ+sw c w c q     (0 q αw ) 
                          

(Pρ s)q β (P

− −  − − − −  


= 
−  −  − − − 

− +  − −  
=

− + + t w t g t tρ s)w c w +c q  (q 0) 





+ − 

 (D33) 

     Similarly, recall the proof for Lemma 6.1, we can achieve the following optimal SOC 

results: 

( )

( )

t 1

( 2-PTC)*
t 1 t +1

(2-PTC)* *

t+1 t 1 t t 1 t p t 1 t
E E E

*

t+1 t 1 t p t
E E

E arg max E[V (S(t 1) | S(t)] (P ρ s) α E η c E η

or E[V (S(t 1) | S(t)] E (Pρ s) α c η 0

+

+

+ + +
 

+
=

 = + − +  − 


  +  − + + =


 (D34) 

and 
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( )( )

( )

t 1

(3-PTC)*
t 1 t 1

(3-PTC)* *

t 1 t 1 t t 1 t g t 1 t
E E E

*

t 1 t 1 t g t
E E

E arg max E[V (S(t 1) | S(t)] (P ρ s)β E η c E η

or  E[V (S(t 1) | S(t)] E (P ρ s)β c η 0

+

+ +

+ + + +
 

+ +
=

 = + − +  + 


  +  − + − =


  (D35) 

The relations among two reference points:  

（1）Recall the proof 1), we can have the following two equations:  

( ) ( )( )

( ) ( )( )

t 1

t 1

(2 PTC)* *

t 1 t 1 t p t 1 t
E E E

(3 PTC)* *

t 1 t 1 t g t 1 t
E E E

E arg max E[V (S(t 1) | S(t)] (P ρ s) α c E η

E arg max E[V (S(t 1) | S(t)] (P ρ s)β c E η

+

+

−

+ + +
 

−

+ + +
 

 = + − + + 


 = + − + − 


 

Then, we can get the following inequations:  

( )( )( )

( ) ( )( )

( )

* (2 PTC)* (2 PTC)*

t 1 t 1 t+1 t t t p t 1 t

* (3 PTC)* (3 PTC)*

t 1 t 1 t+1 t t t p t 1 t

* (3 PTC)* (3 PTC)*

t 1 t 1 t+1 t t t g t 1

(a ') E[V (E ,P ) | (E ,P )] (P ρ s) α c E η

(b ') E[V (E ,P ) | (E ,P )] (P ρ s) α c E η

(c ') E[V (E ,P ) | (E ,P )] (P ρ s)β c E η

− −

+ + +

− −

+ + +

− −

+ + +

− + + 

− + + 

− + −  ( )( )

( )( )( )

t

* (2-PTC)* (2 PTC)*

t 1 t 1 t+1 t t t g t 1 t(d ') E[V (E ,P ) | (E ,P )] (P ρ s)β c E η−

+ + +











− + − 


 

Obviously, there is (a ') (d ') (b') (c')−  − , that is 

( ) (2 PTC)* (3 PTC)*

t g t p t 1 t t 1 t((Pρ s)β c ) ((Pρ s) α c ) (E η E η ) 0− −

+ ++ − − + + − 
 

For positive prices tP 0 , there is t g t p((Pρ s)β c ) ((Pρ s) α c ) 0+ − − + +  , then we will get  

(2 PTC)* (3 PTC)*

t 1 t 1E E− −

+ + . 

For tP 0 , if ( ) (2 PTC)* (3 PTC)*

t g t p t 1 t t 1 t((P ρ s)β c ) ((P ρ s) α c ) (E η E η ) 0− −

+ ++ − − + + −  holds.  

( )
( ) ( )

( ) ( )
( ) ( )

t g p g pt
t g p t

t g p g p

t t g p t

Pρ(αβ 1) α c c s(1 αβ) α c c(Pρ s)
(Pρ s)β c c 0 s 0 P

α (1 αβ) ρ(1 αβ)

Pρ(αβ 1) α c c s(1 αβ) α c c
(Pρ s)αβ (Pρ s) α c c 0 s P 0

(1 αβ) ρ(1 αβ)

 − − + − + ++ 
 + − − +       − 

− − 

 − − + − + +

+ − + − +      − 
− −

 

Therefore, we will get the following relationship: 
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If ( ) ( )t g pP α(c c ) s(1 βα) ρ(1 βα) − + + − − ,there is  

(2 PTC)* (3 PTC)*

t 1 t 1E E− −

+ +                       (D36) 

If ( )( ) ( )t g pP α c c s(1 βα) ρ(1 βα) 0 − + + − −   there is 

   (2 PTC)* (3 PTC)*

t 1 t 1E E− −

+ +                       (D37) 

For Positive price, we will get the following results: 

p(2 PTC)* (2 PTC)*

t 1 t t t 1

(2 PTC)*

t 1

* (2 PTC)* (3)*

t t t t 1 t 1

g(3 PTC)* (3 PTC)*

t 1 t t t 1

min{E E ,Q },  E [0,E ],

(store renewable without buying up to E );

q (S ) 0,E (E ,E ] (keep SOC unchanged); 

max{E E , Q },E (E ,E]

− −

+ +

−

+

−

+ +

− −

+ +

− 

= 

− − 

(3 PTC)*

t 1

;

(disch arge and sell renewable down to E ).−

+













                 (D38) 

 

Cases Study 

In this case, we assume there are three time periods (T=3). At each period, the 

power price takes one of the values in set 
M L H

tP {p ,p ,p } {6,3,10}= = . We also assume the 

storage energy capacity cannot refill it fully or sell it empty in one time period, but fewer 

than two time periods. In detail, when the full (resp. empty) storage can be emptied (resp. 

filled up) in more than one period but fewer than two periods, it holds that 
pE Q E+   

(resp. 
gE E Q−  ) and 

pE 2Q E+   (resp. 
gE E 2Q−  ). We assume the storage capacity 

is 10 (i.e., E 0, E 10= = ), the generating/discharging max capacity is 12 and the 

pumping/charging max capacity is 7. Let the operating cost be one(i.e., p gc c 1= = ),wind 

generation cost (i.e., wc =0  ), the pumping and generating efficiencies be 0.9 (i.e., 
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α β 0.9 ρ= = = ), self-discharging and transmission efficiencies be one (i.e., η 1= ), the wind 

generation are  tw 3,5,0= .  

Using the above related data, we will show the method to get the optimal solution 

based on the optimal actions proposed in propositions 6.1 and 6.2. In order to compare with 

the traditional study that without considering the PTC, the optimal results under three 

different PTC credit rates (i.e.,  s 0,1,3= ) under two initial SOC (i.e.,  1E 1,5= ). 

 

Case 1(Policy 1): When the PTC s=3. 

In stage 4:  

( )4 4 4 4 4VOE 6 3 10 / 3 6.33 V =VOE E 6.33E= + + =   =  

Plug in the data, we will get the following optimal references points:  

( )( ) ( ) 

( )   

( )( ) ( ) 

4

4 4

4

4

(1-s)* *

4 3 p 4 3 4
E E E

(1-s)*

4 4 4 4
E E E E E E

(2-s)* *

4 3 p 4 3 4
E E E

E E E

E arg max P αρ c E η E[V S(4) | S(3) ]

         arg max 10 0.81 1 E 6.33E arg max 7.0157E E 0

E arg max (P ρ s) α c E η E[V S(4) | S(3) ]

         arg max (1

 

   

 

 

= − + +

= − + + = −  =

= − + + +

= −( )   

( )( ) ( ) 

( )   

4

3

4 4

(2-s)*

4 4 4 4
E E E

(3-s)* *

4 3 g 4 3 4
E E E

(3-s)*

4 4 4 4
E E E E E E

0 0.9 3) 0.9 1 E 6.33E arg max 8.0033E E 0

E arg max P βρ c E η E[V S(4) | S(3) ]

         arg max 10 0.81 1 E 6.33E arg max 0.77E E 0

 

 

   










  + + + = −  =


 = − − +



= −  − + = −  =


(D39) 

In Stage 3:  

Action 3: Release power and make the storage level down to 
*

4E 0 E= = , thus, 
*

4V 0=  

*

3 3 3 3q (S ) E ,E (0,E],

(sell energy and make SOC down to 0 as close as possible)

= − 
          (D40) 

The reward function at stage3 is shown as 
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( ) ( )

(s)

3 3 3 3 w 3 3 g 3

3 3 3 3

R P (q β w ) ρ c w sw c q

       = 10 ( E 0.9 0) 0.9 E 7.1E  (q 0)

= −  −  − + +

−  − −  + − = 
         (D41) 

Therefore, the optimal value function at stage 3 is shown as:  

* (s) *

3 3 4 3V max{R V } 7.1E= + =                      (D42) 

In stage 2:  

By using the equations (D16), (D17), and (D18), we will get the following results 

for merchants: 

( )

3 3

3

3 3

(1-s)* * 3 32
3 3 p 3

E E E E E E
2 2

(1-s)*

3 3
E E E

(2-s) * 32
3 3 p 3

E E E E E E
2

E EP 3
E arg max V c arg max 7.1E 1

αρ η 0.9 0.9 η

arg max 2.3963E E 10;

EP ρ s 3 0.9
E arg max V c arg max 7.1E

α η

   

 

   

      
= − + = − +      

     

=  =

 +  
= − + = −  

  

( )

( ) ( )

( )

3

3 3

3

3

2

(2-s)*

3 3
E E E

(3-s)* * 3 3
3 3 2 g 3

E E E E E E
2 2

(3-s)*

3 3
E E E

E3
1

0.9 η

arg max 0.23E E 0;

E E
E arg max V P βρ c arg max 7.1E 3 0.9 0.9 1

η η

arg max 5.67E E 10.

 

   

 









 +  
+     


= −  =

    
 = − − = −   −   
    

=  =


   (D43) 

Thus, we will get the optimal reference points at stage 3 that are:   

(1-s)* (2-s)* (3-s)*

3 3 3E 10,E 0,E 10= = = .                       (D44) 

Since there are 2

2s P (1 ρ ) ρ −  , 
p(2-s)*

2 t 1αw min{E ,Q }+  , and 

(1)* (1)* (2-s)*

t 1 t 1 t t 1E E αw E+ + + −  . The optimal actions at stage 2 are shown as  
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p
(2-s)* (2-s)*

t 1 t t t 1

(2-s)*

t 1

p
(1-s)* (2-s)* (1-s)*

t 1 t t t 1 t 1 t

*

t t

min{E E ,Q },E (0,E ],

(store renewable and without buy up to E );

min{E E ,Q },E (E ,E αw ],

q (S )  (store renewable and purchased electricity up t

+ +

+

+ + +

− 

−  −

= (1-s)*

t 1

(1-s)* (3-s)*

t t 1 t t 1

g
(3-s)* (3-s)*

t 1 t t t 1

(3-s)*

t 1

o E );

0,E (E αw ,E ] (keep SOC unchanged);  

max{E E , Q },E (E ,E],

(generate and sell renewable down to E ).

+

+ +

+ +

+











  −



− − 




        (D45)  

2

*

2 2 2 2

2

7,            E (0,3]

q (S ) 10 E ,  E (3,5.5]

0,            E (5.5,10]




 = − 




 

The reward payoff functions at stage 2 are shown as follows:  

( ) ( )

2 2 2 w 2 p 2
(s)

2

2 2 2 2 2 w 2 p 2

2

2 2 2

2

P (q α w ) / ρ c w c q
R              

P (q α w ) ρ s(q α w ) c w c q

3 (7 0.9 5) / 0.9 7,    E (3,5.5]

      3 ( 10 E 0.9 5) / 0.9 10 E ,   E (3,5.5]

3 (0 0.9 5) 0.9 3(0 0.9 5) 0,       E (5.5,

−  − − −


= 
−  −  − − − −

−  − − 

= −  − − − − 

−  −  − − − 

2

2 2

2

10]

16.2593,                   E (0,3]

      4.7037E 30.3704,  E (3,5.5]

28.5,                           E (5.5,10]








− 


= − 




       (D46) 

Therefore, the optimal value function at stage 3 is shown as:  

3 2

3

3 2

3 E E 7 2 2

* (s) *

2 2 3 3 2 2 2E 10

23 E E

7.1E 16.2593               7.1E 33.4407,          E (0,3]

V max{R V } 7.1E 4.7037E 30.3704 4.7037E 40.6296,  E (0,5.5]

7.1E 28.5,       7.1E 28.5                      

= +

=

=

 − + 



= + = + − = + 


+ +


2       E (5.5,10]








     

(D47) 



306 

 

 

In Stage 1:  

By using the equations (D16), (D17), and (D18), we get the following results: 

( )

2 2

2

2 2

(1-s)* * *1 2 2
2 2 p 2

E E E E E E
1 1

*

2 2
E E E

(2-s) * *1 2
2 2 p 2

E E E E E E
1

P E E6
E arg max V +c arg max V +1

αρ η 0.9 0.9 η

          arg max V 8.4074E 28.5 ;

Pρ s E 6
E arg max V +c arg max V

α η

   

 

   

      
= − = −      

     

= − +

 +  
= − = −  

  

( )

( ) ( )

( )

2

2 2

2

2

1

*

2 2
E E E

(3-s)* * *2 2
2 2 1 g 2

E E E E E E
1 1

*

2 2
E E E

E0.9 3
+1

0.9 η

          arg max V 10.3233E 28.5 ;

E E
E arg max V Pβρ c arg max V 6 0.9 0.9 1

η η

         arg max V 3.86E 28.5 .

 

   

 









  + 
     


= − +

   
= − − = −   −   

   

= − +










 (D48) 

(1) Scenario1: If 2E (0,3] , there is *

2 2V 7.1E 33.4407= + . 

( )( )

( )

( )( )( )

( )

2

2

2

2

(1-s)*

2 2 2 1
E [0, 3]

(1-s)*

2 2
E [0, 3]

(2-s)

2 2 2 1
E [0, 3]

2 2
E [0, 3]

E arg max 7.1E 33.4407 6 0.81 1 E η

         arg max 1.3074E 33.4407 E 0;

E arg max 7.1E 33.4407 6 0.9 3 0.9 1 E η

        arg max 3.2233E 33.4407 E









= + − +

= − +  =

= + −  + +

= − + 

( )( )

( )

2

2

(2-s)*

(3-s)*

2 2 2 1
E [0, 3]

(3-s)*

2 2
E [0, 3]

0;

E arg max 7.1E 33.4407 6 0.9 0.9 1 E η

         arg max 3.24E 33.4407 E 3.














 =



= + −   −



= +  =

          (D49) 

(2) Scenario2: If 2E (3,5.5] , there is *

2 2V 4.7037E 40.6296= + . 
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( )( )

( )

( )( )( )

2

2

2

2

(1-s)*

2 2 2 1
E [3,5.5]

(1-s)*

2 2
E [3,5.5]

(2-s)

2 2 2 1
E [3,5.5]

2
E [3,5.5]

E arg max 4.7037E 40.6296 6 0.81 1 E η

         arg max 3.7037E 40.6296 E 3;

E arg max 4.7037E 40.6296 6 0.9 3 0.9 1 E η

        arg max 5.6296E









= + − +

= − +  =

= + −  + +

= − +( )

( )( )

( )

2

2

(2-s)*

2

(3-s)*

2 2 2 1
E [3,5.5]

(3-s)*

2 2
E [3,5.5]

40.6296 E 3;

E arg max 4.7037E 40.6296 6 0.9 0.9 1 E η

        arg max 0.8437E 40.6296 E 5.5.













  =



= + −   −

 = +  =


         (D50) 

(3) Scenario3: If 2E (5.5,10] , there is *

2 2V 7.1E 28.5= + . 

( )( )

( )

( )( )( )

( )

2

2

2

2

(1-s)*

2 2 2 1
E [5.5,10]

(1-s)*

2 2
E [5.5,10]

(2-s)

2 2 2 1
E [5.5,10]

(

2 2
E [5.5,10]

E arg max 7.1E 28.5 6 0.81 1 E η

         arg max 1.3074E 28.5 E 5.5;

E arg max 7.1E 28.5 6 0.9 3 0.9 1 E η

         arg max 3.2233E 28.5 E









= + − +

= − +  =

= + −  + +

= − + 

( )( )

( )

2

2

2-s)*

(3-s)*

2 2 2 1
E [5.5,10]

(3-s)*

2 2
E [5.5,10]

5.5;

E arg max 7.1E 28.5 6 0.9 0.9 1 E η

        arg max 3.24E 28.5 E 10.













 =



= + −   −

 = +  =


           (D51) 

Next, we will choose the optimal references point between the above three scenarios.  

(4) Compare (1-s)*

2E  
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( )

( )

(1-s )*
22

(1-s )*
22

(1-s)*

2 2

2 2 E 0E [0, 3]

(1-s)*

2 2

2 2 E 3E [3,5.5]

If   E [0,  3] E 0

1)
max 1.3074E 33.4407 1.3074E 33.4407 | 33.4407

If   E [3,  5.5] E 3

2)
max 3.7037E 40.6296 3.7037E 40.6296 | 29.5185

I

3)

=

=

   =



− +  − + =

   =



− +  − + =

( ) (1-s )*
22

(1-s)*

2 2

2 2 E 5.5E [5.5,10]

(1-s)*

2

f   E [5.5,  10] E 5.5

max 1.3074E 28.5 1.3074E 28.5 | 21.3093

E 0

=








 
 
 
 
    =
 

 
− +  − + =  

 =

  (D52) 

(5) Compare (2-s)*

2E  

( )

( )

( 2-s )*
22

22

(2-s)*

2 2

(2-s)*

2 2 2 E 0E [0, 3]

(2-s)*

2 2

(2-s)*

2 2 2 EE [3,5.5]

If   E [0,  3] E 0

1)
E arg max 3.2233E 33.4407 3.2233E 33.4407 | 33.4407

If   E [3,  5.5] E 3

2)
E arg max 5.6296E 40.6296 5.6296E 40.6296 |

=



   =



= − +  − + =


  =

= − +  − +

( )

( 2-s )*

( 2-s )*
22

3

(2-s)*

2 2

(2-s)*

2 2 2 E 5.5E [5.5,10]

(2-s)*

2

23.7408

If   E [5.5,  10] E 5.5

3)
E arg max 3.2233E 28.5 3.2233E 28.5 | 10.77185

E 0

=

=






 
 

  
=  

 
 

   = 
 

= − +  − + = 
 

 =

  (D53) 

(6) Compare (3-s)*

2E  

( )

( )

(3-s )*
22

(3-s )*
22

(3-s)*

2 2

(3-s)*

2 2 2 E 3E [0, 3]

(3-s)*

2 2

(3-s)*

2 2 2 EE [3,5.5]

If   E [0,  3] E 3

1)
E arg max 3.24E 33.4407 3.24E 33.4407 | 43.1607

If   E [3,  5.5] E 5.5

3)
E arg max 0.8437E 40.6296 0.8437E 40.6296 |

=



   =



= +  + =


  =

= +  +

( ) (3-s )*
22

5.5

(3-s)*

2 2

(3-s)*

2 2 2 E 10E [5.5,10]

(3-s)*

2

45.27

If   E [5.5,  10] E 10

3)
E arg max 3.24E 28.5 3.24E 28.5 | 60.9

E 10

=

=









 
= 

 


   = 


= +  + = 
 

 =

   (D54) 
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Thus, we will get the optimal reference points at stage 2 that are shown as: 

(1-s)* (2-s)* (3-s)*

2 2 2E E 0,E 10= = =                         (D55) 

Similarly, because there are 2

1s P (1 ρ ) ρ −  , 
p

(2-s)*

1 t 1αw min{E ,Q }+  , and

(1)* (2-s)* (1)*

t 1 t t 1 t 1E αw E E+ + +−    ，the optimal actions at stage 1 are shown as  

p(2-s)* (2)*

t 1 t t t t 1

(2-s)*

t 1

* (2-s)* (3-s)*

t t t t 1 t 1

g(3-s)* (3-s)*

t 1 t t t 1

min{E E ,αw ,Q },E (0,E ],

(store renewable and without buy up to E );

q (S ) 0,E (E ,E ] (keep SOC unchanged);  

max{E E , Q },E (E ,E],

(genera

+ +

+

+ +

+ +

− 

= 

− − 

(3-s)*

t 1

* (2-s)* (3-s)* *

1 1 t t 1 t 1 1 1 1

te and sell renewable down to E ).

q (S ) 0,E (E ,E ] q (S ) 0,E (0,E](keep SOC unchanged)

+

+ +













 =   = 

 (D56) 

The reward payoff functions at stage 1 are shown as follows:  

(s)

1 1 1 1 1 1 w 1 p 1

1

R P (q α w ) ρ s(q α w ) c w c q             

      6 (0 0.9 3) 0.9 3(0 0.9 3) 25.2,       E (0,E]

= −  −  − − − −

= −  −  − − = 

      (D57) 

Therefore, we will get the following optimal value functions at stage 1/initial stage.  

1 1

* (s) *

1 1 2 1 1

1 1

7.1E 58.6407,          E (0,3]

V max{R V } 4.7037E 65.8296,  E (0,5.5]

7.1E 53.7,              E (5.5,10]

+ 


= + = + 


+ 

         (D58) 

The corresponding optimal actions are shown:  

In stage 1, *

1 1 1q (S ) 0,      E (0,E] (keep SOC unchanged)=   

In stage 2, *

2 2 2 2 2 2q (S ) 7,   E (0,3];  10 E ,   E (3,5.5];  0,  E (5.5,10]=  −    

In stage 3,  

*

3 3 3 3q (S ) E ,E (0,E](sell energy and make SOC down to 0 as close as possible)= −   
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To sum up, we get the following results:  

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1=  , (action: sell generation 3 to the market, and keep SOC 

unchanged), then we will get 2E 1=  (i.e., 
*

1 1q 0,R 25.2= = );   

Stage 2: If 2E 1= , (action: store renewable and purchased electricity up to 
p

Q ), 

then, we will get 3E 8=  (i.e., *

2 2q 7, R 16.2593= = − ); 

Stage 3: If 3E 8=  ,(action: generating and selling), then, we have 4E 0=   (i.e., 

*

3 3q 8,R 56.8= − = ).  

Based on the forecasted price, total rewards are 
*

1 2 3 1R R R R 65.7407 V= + + = = . 

If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5=  ,(action 1: do nothing), then, the relation of 2E 5=   (i.e., 

*

1 1q 0,R 25.2= = ) holds;   

Stage 2: If 2E 5= ,(action 2: store renewable and purchased electricity up to 
(1-s)*

t 1E + ), 

then there exists 3E 10=  (i.e., 
*

2q 5= , 2R 6.8519= − ); 

Stage 3: If 3E 10= ,(action 3: generating and selling), then we have 4E 0 E= =  (i.e., 

*

3 3q 10,R 71= − = ). 

Therefore, total rewards in three periods are 
*

1 2 3 1R R R R 89.3481 V= + + = =  if 1E 5= . 

 

Case 2 (Policy 1): When PTC s=1 

Recall the proof of Case 1, we will get the following results:  
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(1-s)* (2-s)* (3-s)*

4 4 4

(1-s)* (2-s)* (3-s)*

3 3 3

(1-s)* (2-s)* (3-s)*

2 2 2

E E E 0

E E E 10

E E 0,E 10

 = = =



= = =


= = =

                     (D59) 

The corresponding optimal value function at stage 1 are shown:   

1 1

* (s) *

1 1 2 1 1

1 1

7.1E 52.6407,          E [0,3]

V max{R V } 4.7037E 59.8293,   E [3,5.5]

5.11E 57.589,         E [5.5,3]

+ 


= + = + 


+ 

            (D60) 

In stage 1, *

1 1 1q (S ) 0,   if E (0,E](keep SOC unchanged)=   

In stage 2,  *

2 2 2 2 2q (S ) 7,    if E [0,3];    10 E ,  if E [3,10]=  −   

In stage 3,  

*

3 3 3 3q (S ) E ,  if E (0,E](sell energy and make SOC down to 0 as close as possible)= −   

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , then we will get 2E 1=  (i.e., 
*

1q 0= , 1R 19.2= );   

Stage 2: If 2E 1= , then, we will get 3E 8=  (i.e., 
*

2 2q 7,R 16.2593= = − ); 

Stage 3: If 3E 8= , then, we have 4E 0=  (i.e., 
*

3 3q 8,R 56.8= − = ).  

Based on the forecasted price, total rewards are 
*

1 2 3 1R R R R 59.7407 V= + + = = .  

If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= , then, the relation of 2E 5=  (i.e., 
*

1 1q 0,R 19.2= = ) holds;   

Stage 2: If 2E 5= , then there exists 3E 10=  (i.e., 
*

2q 5= , 2R 6.8522= − ); 

Stage 3: If 3E 10= , then we have 4E 0 E= =  (i.e., 
*

3 3q 10,R 71= − = ). 

Therefore, total rewards in three periods are 
*

1 2 3 1R R +R +R 83.3478=V= =  if 1E 5= . 
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Case 3 (Policy 1): When PTC s=0 

Recall the proof of Case 1, we will get the following results:  

(1-s)* (2-s)* (3-s)*

4 4 4

(1-s)* (2-s)* (3-s)*

3 3 3

(1-s)* (2-s)* (3-s)*

2 2 2

E E E 0

E E E 10

E 0,E 3,E 10

 = = =



= = =

 = = =

                    (D61) 

The corresponding optimal value function at stage 1 are shown:   

1 1

1 1*

1

1 1

1 1

7.1E +49.9107,           E [0,0.3]

7E 49.9407,            E [0.3,3]
V

4.7037E 56.8293,    E [3,5.5]

4E 60.7,                   E [5.5,10]




+ 
= 

+ 


+ 

                (D62) 

The optimal decisions are shown as follows:  

In stage 1,  *

1 1 1 1 1 1q (S ) 2.7,  if E [0,0.3);   3 E ,  if  E (0,0.3];   0,  if E (3,10]=  −   ;  

In stage 2,  *

2 2 2 2 2q (S ) 7,     if E [0,3];       10 E ,    if E [3,10]=  −   

In stage 3,  

*

3 3 3 3q (S ) E ,  if E (0,E](sell energy and make SOC down to 0 as close as possible)= −   

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , (
*

1q 2= , 1R 2.2= ); Stage 2: If 2E 3= , ( *

2 2q 7, R 16.2593= = − ); 

Stage 3: If 3E 10= , ( *

3 3q 10,R 71= − = ).  

Based on the forecasted price, total rewards are 
*

1 2 3 1R R R R 56.9407 V= + + = = .  

If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= , ( *

1 1q 0,R 16.2= = ); Stage 2: If 2E 5= , (
*

2q 5= , 2R 6.8522= − ); 

Stage 3: If 3E 10= , then we have 4E 0 E= =  (i.e., 
*

3q 10= − , 3R 71= ). 
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Therefore, total rewards in three periods are 
*

1 2 3 1R R R R 80.3478 V= + + = =  if 1E 5= . 

 

Case 4(Policy 2): When the PTC s=3. 

In stage 4:  

( )4 4 4 4 4VOE 6 3 10 / 3 6.33 V =VOE E 6.33E= + + =   =  

Plug in the data, we will get the following optimal references points:  

( )( ) ( ) 

( ) 

 

( )( )

4

4

4

3

(2-PTC)* *

4 3 p 4 3 4
E E E

4 4
E E E

(2-PTC)*

4 4
E E E

(3-PTC)* *

4 3 g 4 3 4
E E E

E arg max (P ρ s) α c E η E[V S(4) | S(3) ]

            arg max (10*0.9 3) 0.9 1 E 6.33E

            arg max 8.0033E E 0

E arg max (P ρ s)β c E η E[V S(4

 

 

 

 

= − + + +

= − + + +

= −  =

= − + − + ( ) 

( ) 

 

4

4

4 4
E E E

(3-PTC)*

4 4
E E E

) | S(3) ]

            arg max (10*0.9 3)*0.9 1 E 6.33E

            arg max 3.47E E 0

 

 














= − + − +



= −  =


      (D63) 

In Stage 3:  

Action 3: Release power and make the storage level down to *

4E 0 E= = , thus, *

4V 0= . 

*

3 3 3 3q (S ) E ,E (0,E],

(sell energy and make SOC down to 0 as close as possible)

= − 
        (D64) 

The reward function at stage3 is shown as 

( ) ( )

(PTC)

3 3 3 3 w 3 3 3 g 3 3

3 3 3 3

R P (q β w ) ρ c w s(q β w ) c q              (q 0)

          10 ( E )0.9 0 0.9 3 ( E )0.9 0 ( E ) 9.8E

= −  −  − − − + 

= −  − −  −  − − + − =
       (D65) 

Therefore, the optimal value function at stage 3 is shown as:  

* (PTC) *

3 3 4 3V max{R V } 9.8E= + =                      (D66) 

In stage 2:  
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By using the equations (D3) and (D4), we have the following results for merchants: 

( )( )( )

( )

( )

3

3 3

3

3

(2-PTC) *

3 3 2 p 3 2
E E E

3
3 3

E E E E E E
2

(3-PTC)* * 3
3 3 2 g

E E E
2

3
E E E

E arg max V (P ρ s) α c E η

E3 0.9 3
           arg max 9.8E 1 arg max 2.47E

0.9 η

E
E arg max V (P ρ s)β c

η

             arg max 9.8E (3

 

   

 

 

= − + +

  + 
= − + =  

  

 
= − + − 

 

= − ( ) ( )
3

3
3

E E E
2

E
*0.9 3)*0.9 1 arg max 5.67E

η  














 
 + − = 
  

    (D66) 

Thus, we will get the optimal reference points at stage 3 that are:   

(2-PTC)* (3-PTC)*

3 3E E 10= = .                      (D67) 

The optimal actions at stage 2 are shown as  

p(2 PTC)* (2 PTC)*

t 1 t t t t 1

(2 PTC)*

t 1

* (2 PTC)* (3)*

t t t t 1 t 1

g(3 PTC)* (3 PTC)*

t 1 t t t 1

min{E E ,Q ,αw },  E [0,E ],

(store renewable bring SOC up to E );

q (S ) 0,E (E ,E ] (keep SOC unchanged); 

max{E E , Q },E (E ,E],

− −

+ +

−

+

−

+ +

− −

+ +

− 

= 

− − 

(3 PTC)*

t 1

2
* *

2 2 2 2 2 2

2 2

(disch arge make SOC down to E ).

4.5,    E (0,5.5]
q (S ) min{10 E ,4.5} if E (0,10] q (S )

10 E ,  E (3,5.5]

−

+














 = −   = 

− 

 (D68) 

The reward payoff functions at stage 2 are shown as follows:  

( )

(PTC)

2 2 2 2 2 2 w 2 p 2

2

2 2
2 2

R P (q α w ) ρ s(q α w ) c w c q              

3 (4.5 0.9 5) 0.9 3 (4.5 0.9 5) 4.5,                  E (0,5.5]

         10 E 10 E
3 ( 5) 0.9 3 ( 5 ) 10 E ,  E (5.5,10]

0.9 0.9

         

= −  −  − − − −

−  −  −  − − 


=  − − 
−  −  −  − − −   

 

2

2 2

4.5,               E (0,5.5]

7.33E 44.8,E (5.5,10]

− 
= 

− 

     (D69) 
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Therefore, the optimal value function at stage 3 is shown as:  

2 2
* (PTC) *

2 2 3

2 2

9.8E 39.6,    E (0,5.5]
V max{R V }

7.33E 53.2,  E (5.5,10]

+ 
= + = 

+ 

         (D70) 

In Stage 1:  

By using the equations (D3) and (D4), we have the following results for merchants: 

( )

( )

2 2

2

2 2

(2-PTC) * *1 2 2
2 2 p 2

E E E E E E
1 1

*

2 2
E E E

(3-PTC)* * *2
2 2 1 g 2

E E E E E E
1

Pρ s E E6*0.9 3
E arg max V c arg max V 1

α η 0.9 η

          arg max V 10.33E

E
E arg max V (Pρ s)β c arg max V (6 0.

η

   

 

   

   + +   
= − + = − +     

     

= −

 
= − + − = −  

 
( )

( )
2

2

1

*

2 2
E E E

E
9 3) 0.9 1

η

           arg max V 6.56E
 








  

+  −  
 


 = −


(D71) 

(1) scenario1: If 2E (0,5.5] , 
*

2 2V =9.8E +39.6 , 

( ) ( )

( )

( ) ( )

2 2

2

2 2

(2-PTC) *

2 2 2 2 2
E [0,5.5] E [0,5.5]

(2-PTC)*

2 2
E [0,5.5]

(3-PTC)* *

2 2 2 2 2
E [0,5.5] E [0,5.5]

E arg max V 10.33E arg max 9.8E 39.6 10.33E

          arg max 0.53E 39.6 E 0

E arg max V 6.56E arg max 9.8E 39.6 6.56E

     

 



 

= − = + −

= − +  =

= − = + −

( )
2

(3-PTC)*

2 2
E [0,5.5]

     arg max 3.24E 39.6 E 5.5












= +  =


      (D72) 

(2) scenario2: If 2E (5.5,10] , *

2 2V =7.33E 53.2+ . 

( ) ( )

( )

( )

2 2

2

2 2

(2-PTC) *

2 2 2 2 2
E [5.5,10] E [5.5,10]

(2-PTC)*

2 2
E [5.5,10]

(3-PTC)* *

2 2 2 2
E [5.5,10] E [5.5,10]

E arg max V 10.33E arg max 7.33E 53.2 10.33E

           arg max 3E 53.2 E 5.5

E arg max V 6.56E arg max 7.33E 53.2 6.56

 



 

= − = + −

= − +  =

= − = + −( )

( )
2

2

(3-PTC)*

2 2
E [5.5,10]

E

           arg max 0.77E 53.2 E 10












= +  =


    (D72) 

Next, pick up the optimal references point between the above two scenarios. 
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(3) Compare 
(2-PTC)*

2E  

( )

( )

( 2-PTC)*
22

( 2-PTC)*
22

(2-PTC)*

2 2

(2-PTC)*

2 2 2 E 0E [0,5.5]

(2-PTC)*

2 2

(2-PTC)*

2 2 2 E 5.5E [5.5,10]

If   E [0,  5.5] E 0

1)
E arg max 0.53E 39.6 0.53E 39.6 | 39.6

If   E [5.5,  10] E 5.5

2)
E arg max 3E 53.2 3E 53.2 |

=

=

   =



= − +  − + =

  =

= − +  − +

(2-PTC)*

2

36.2

E 0






 
 
 

 = 

 =

  (D73) 

(4) Compare (3-PTC)*

2E  

( )

( )

(3-PTC)*
22

(3-PTC
22

(3-PTC)*

2 2

(3-PTC)*

2 2 2 E 5.5E [0,5.5]

(3-PTC)*

2 2

(3-PTC)*

2 2 2 EE [5.5,10]

If   E [0,  5.5] E 5.5

1)
E arg max 3.24E 39.6 3.24E 39.6 | 57.42

If   E [5.5,  10] E 10

2)
E arg max 0.77E 53.2 0.77E 53.2 |

=



   =



= +  + =

  =

= +  + )*
10

(3-PTC)*

2

60.9

E 10

=






 
 
 

 = 

 =

   (D74) 

Thus, we will get the optimal reference points at stage 2 that are shown as: 

(2-PTC)* (3-PTC)*

2 2E 0,  E 10= =                        (D75) 

The optimal actions at stage 1 are shown as  

p(2 PTC)* (2 PTC)*

t 1 t t t 1

(2 PTC)*

t 1

* (2 PTC)* (3)*

t t t t 1 t 1

g(3 PTC)* (3 PTC)*

t 1 t t t 1

min{E E ,Q },  E [0,E ],

(store renewable bring SOC up to E );

q (S ) 0,E (E ,E ] (keep SOC unchanged);

max{E E , Q },E (E ,E],

(disc

− −

+ +

−

+

−

+ +

− −

+ +

− 

= 

− − 

*

1 1 1

(3 PTC)*

t 1

q (S ) 0,E (0,10]  

h arge make SOC down to E ),−

+







 = 






 (C40) 

The reward payoff functions at stage 1 are shown as follows:  

(PTC)

1 1 1 1 1 1 w 1 p 1

1

R P (q α w ) ρ s(q α w ) c w c q

         6 (0 0.9 3) 0.9 3(0 0.9 3) 25.2,   E (0,E]

= −  −  − − − −

= −  −  − − = 
          (D76) 
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Therefore, we will get the following optimal value functions at stage 1/initial stage.  

1 1
* (PTC) *

1 1 2

1 1

9.8E 64.8,    E (0,5.5]
V max{R V }

7.33E 78.4,  E (5.5,10]

+ 
= + = 

+ 

         (D77) 

The corresponding optimal actions are shown:  

In stage 1, *

1 1 1q (S ) 0,   if E (0,E](keep SOC unchanged)=   

In stage 2,  *

2 2 2 2 2q (S ) 4.5,  if E (0,5.5];   10 E ,  if E (5.5,10]=  −   

In stage 3, *

3 3 3 3q (S ) E ,  if  E (0,E](sell energy and make SOC down to 0)= −   

To sum up, we get the following results:  

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , (sell wind generation 3 to the market, and keep SOC unchanged), 

then we will get 2E 1=  (i.e., 
*

1q 0= , 1R 25.2= );   

Stage 2: If 2E 1= , (store all the wind generation 4.5), then, we will get 3E 5.5=  

(i.e., 
*

2 2q 4.5,R 4.5= = − ); 

Stage 3: If 3E 5.5=  ,(generating and selling), then, we have 4E 0=   (i.e., 

*

3 3q 5.5,R 53.9= − = ).  

Based on the forecasted price, total rewards are shown as 
*

1 2 3 1R R R R 74.6 V= + + = = .  

If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= ,(do nothing), then, 2E 5=  (i.e., *

1q 0= , 1R 25.2= ) holds;   

Stage 2: If 2E 5= ,(store all the wind generation 4.5), then there exists 3E 9.5=  

(i.e., *

2q 4.5= , 2R 4.5= − ); 
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Stage 3: If 3E 9.5=  ,(generating and selling), then we have 4E 0 E= =   (i.e., 

*

3 3q 9.5,R 93.1= − = ). 

Therefore, total rewards in three periods are *

1 2 3 1R R R R 113.8 V= + + = =  if 1E 5= . 

 

Case 5 (Policy 2): When PTC s=1 

Recall the proof of Case 4, we will get the following results:  

(2-PTC)* (3-PTC)*

4 4

(2-PTC)* (3-PTC)*

3 3

(2-PTC)* (3-PTC)*

2 2

E E 0;        

E E 10;       

E 0,E 10

 = =



= =


= =

                  (D78) 

The corresponding optimal value function at stage 1 are shown:   

2 1

2 1

2 E E 1 1
* (PTC) *

1 1 2

2 1 1E E

8E 31.5 19.2 ,      8E 50.7,     E (0,5.5]
V max{R V }

5.11E 47.389 19.2 5.11E 66.589,E (5.5,10]

=

=

+ + +  
= + = = 

+ + +  

  (D79) 

In stage 1, *

1 1 1q (S ) 0,  if E (0,E](keep SOC unchanged)=   

In stage 2,  *

2 2 2 2 2q (S ) 4.5,  if E [0,5.5];   10 E ,  if E [5.5,10]=  −   

In stage 3, *

3 3 3 3q (S ) E ,  if E (0,E](sell energy and make SOC down to 0)= −   

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , *

1q 0= , 1R 19.2= ; Stage 2: If 2E 1= , *

2 2q 4.5,R 4.5= = − ;  

Stage 3: If 3E 5.5= , *

3 3q 5.5,R 44= − = .  

Based on the forecasted prices, total rewards are shown as *

1 2 3 1R R +R +R 58.7=V= = .  

If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= , ( *

1q 0= , 1R 19.2= ); Stage 2: If 2E 5= , ( *

2q 4.5= , 2R 4.5= − );  
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Stage 3: If 3E 9.5= , ( *

3q 9.5= − , 3R 76= ). 

Therefore, total rewards in three periods are *

1 2 3 1R R R R 90.7 V= + + = =  if 1E 5= . 

 

Case 6 (Policy 2): When PTC s=0 

Recall the proof of Case 4, we will get the following results:  

(2-PTC)* (3-PTC)*

4 4

(2-PTC)* (3-PTC)*

3 3

(2-PTC)* (3-PTC)*

2 2

E E 0;        

E E 10;       

E 5.5,E 10

 = =



= =


= =

                        (D80) 

The corresponding optimal value function at stage 1 are shown:   

 *

1 1 1 1 1 1 1V = 7.1E +43.92, if E (0,2.8];7E 44.2,if E (2.8,5.5];4E 60.7,if E (5.5,10] +  +   (C46) 

In stage 1,  *

1 1 1 t 1 1q (S ) 2.7,if E (0,2.8];  5.5 E ,if  E (2.8,5.5];  0,if E (5.5,10] =  −   ;  

In stage 2,  *

2 2 2 2 2q (S ) 4.5,   if E [0,5.5];   10 E ,  if E [5.5,10]=  −   

In stage 3, *

3 3 3 3q (S ) E ,  if E (0,E](keep SOC unchanged)= −   

If 1E 1=  (The initial SOC in the storage) 

Stage 1: If 1E 1= , *

1q 2.7= , 1R 2.7= − ; Stage 2: If 2E 3.7= , *

2 2q 4.5,R 4.5= = − ; 

Stage 3: If 3E 8.2= , *

3 3q 8.2,R 58.22= − = ).  

Total rewards are *

1 2 3 1R R R R 51.02 V= + + = = .  

If 1E 5=  (The initial SOC in the storage) 

Stage 1: If 1E 5= , *

1q 0.5= , 1R 12.7= ; Stage 2: If 2E 5.5= , *

2q 4.5= , 2R 4.5= − ; 

Stage 3: If 3E 10= , *

3q 10= − , 3R 71= . 

Therefore, total rewards in three periods are *

1 2 3 1R R R R 79.2 V= + + = =  if 
1E 5= . 
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APPENDIX E. 

PROOF OF SECTION 7 
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Proof of Proposition 7.1: Discharging and Charging cannot happen Simultaneously.  

The primal problem from the perspective of ISO is shown as follows:  

( )
T M T

h h p p g g

it it t t

t 1 i=1 t 1

p p

t

g g

t

t

h h h

i it i

M
h g p

it t t t

i=1

g p

t t t t 1

g p

t t

min C g c q c q

0 q Q ,

0 q Q ,

E E E,

s.t. G g G ,

g q β q / α=D ,

E q q E ,

q q 0

= =

+

 
 +  +  

 


  

  

  



 

 + −


 − + =

  =

 



                  (E1) 

The primal scheduling problem from the perspective of the merchant is shown: 

( ) ( )( )
T

g p p p g p

t t t t t

t 1

p p

t

g g

t

g p

t t

t

g p

t t t t 1

max P q β q α c q c q

0 q Q ,

0 q Q ,

s.t. q q 0

E E E,

E q q E .

=

+

 
− −  +  

 

  

  



 =


 


− + =



                 (E2) 

Discharging/generating and charging/pumping cannot happen simultaneously for 

energy storage. Hence, we have the following non-convex complementary constraints from 

the ISO/Battery perspective: 

p g

t tq q 0 =                                    (E3) 

After relaxing the non-convex constraints, we can rewrite the ISO model as follows:   
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( )
T M T

h h g g p p

it it t t

t 1 i=1 t 1

p p p p p

t t t t

g g g g g

t t t t

t t t t

h

it

min C g c q c q

q 0,q Q 0                         (χ1 ,χ1 )

q 0,q Q  0                        (χ1 ,χ1 )

E E 0,E E 0                     (θ1 ,θ1 )

s.t. g

= =

 
 + + 

 

−  − 

−  − 

− +  − 

−

 

h h h

i it i it it

M
h g p

t it t t t

i=1

g p

t t t t 1 t+1

p g p g

t t t it t t t it

G 0,g G 0                (β1 ,β1 )

D g q β q / α 0,           (μ1 )

E q q E ,                             (γ1 )

Where,χ1 ,χ1 ,θ1 ,β1 ,χ1 ,χ1 ,θ1 ,β1 0;

+










+  − 


 
− + − = 
 

− + =





  









                       (E4) 

First, utilizing the primal model in (E4), we obtain the following Lagrange function 

after relaxing the non-convex constraint from the perspective of ISO.  

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T M T M
h h g g p p h g p

it it t t t t it t t

t 1 i=1 t 1 i=1

g p p p p p p g g g g g

t+1 t 1 t t t t t t t t t t t

h h h h

t t t t it it i it it i

L C g c q c q μ1 D g q β q / α

γ1 E E q q χ1 q χ1 q Q χ1 q χ1 q Q

θ1 E E θ1 E E β1 g G β1 g G

= =

+

  
=  + + + − + −  

  

+ − + − +  − +  − +  − +  −

+  − + +  − +  − + + −

  

  (E5) 

Second, the KKT condition is used to determine whether there are sufficient 

conditions for such an exact relaxation. In the KKT condition for the primal problem from 

the perspective of ISO, the derivative of the Lagrange function concerning energy storage 

discharging/generating variables 
g

tq  must equal zero; hence the following equation holds 

( t {1,2, ,T}  ) 

g g*(S)
t t

g g * * g* g*

t t t 1 t tq =q
L q c u1 β γ1 χ1 χ1 0+  = − + + − =                    (E6) 

Similarly, the optimal response function of (E5) on energy storage 

charging/pumping variables 
p

tq , t {1,2, ,T}  is 



323 

 

 

 
p p*(S)
t t

p p * * p* p*

t t t 1 t tq =q
L q c u1 α γ1 χ1 χ1 0+  = + − + − =                   (E7) 

Assume there exist g*(S)

tq 0 and g*(S)

tq 0 as the optimal solution of (E4) from the 

perspective of ISO at time t. Because of the complementing slackness conditions, g*

tχ1 0=  

and p*

tχ1 0=  hold. Merging (E6) and (E7), we get the following equation 

g p g* p* * *

t t t tc c χ1 χ1 u1 β u1 α 0+ + + − + =                         (E8) 

When there are p* g*

t tχ1 0 and χ1 0  , the equation (A8) can be rewritten as 

g p * * *

t t tc c u1 β u1 α u1 (1/ α β)+  − = − −                         (E9) 

The necessary condition for g*(S)

tq 0 and p*(S)

tq 0 is described in Eq. (E8). As a 

result, the sufficient condition for such exact relaxation of the complementary constraint 

of Eq.(E3) is 

g p *

tc c u1 (1/ α β)+  − −                            (E10) 

Obviously, this is true when *

tu1 0, t {1,2, ,T}   is holding.  

As a result, for all positive electricity prices, discharging/generating and 

charging/pumping cannot occur at the same time for the social welfare-maximizing ISO. 

Similarly, after relaxing the non-convex restriction, the primal problem from the 

perspective of the PSH owner of equation (E2) is rebuilt below: 



324 

 

 

( ) ( )( )

( ) ( )( )

T
g p g g p p

t t t t t

t 1

g g p p

t t t t

t T

p p p p p

t t t t

g g g g g

t t t t

t t

max P q β q / α c q c q

min c Pβ q c P / α q

q 0,q Q 0                          (χ2 ,χ2 )

q 0,q Q  0                         (χ2 ,χ2 )

s.t. E E 0,E E 0         

=



 − −  + 

 
 − + + 

 

−  − 

−  − 

− +  − 





 

t t

g p

t t t t 1 t+1

p g p g

t t t t t t

             (θ2 ,θ2 )

E q q E ,                                (γ2 )

Where, χ2 ,χ2 ,θ2 ,χ2 ,χ2 ,θ2 0.

+









− + =

 


                (E11) 

Then, based on (E11), we derive the following Lagrange functions: 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )

g g p p g p

t t t t t+1 t 1 t t t

t T

p p p p p g g g g g

t t t t t t t t

t t t t

L c Pβ q c P / α q γ2 E E q q

χ2 q χ2 q Q χ2 q χ2 q Q

θ2 E E θ2 E E

+



= − + + + − + −

+  − +  − +  − +  −

+  − + +  −



       (E12) 

The first-order derivative function of the Lagrange function (E12) on the energy 

storage discharging/generating variable g

tq , t {1,2, ,T}   must equal zero according to 

the KKT condition. As a result, the equation below is correct. 

g g*( M )
t t

g g * g* g*

t t t 1 t tq =q
L q c Pβ γ2 χ2 χ2 0+  = − + + − =                  (E13) 

Similarly, the following equation holds for energy storage charging/pumping 

variable p

tq , t {1,2, ,T}  . 

 
p p*( M )
t t

p p * p* p*

t t t 1 t tq =q
L q c P α γ2 χ2 χ2 0+  = + − + − =                  (E14) 

Assume that in the optimal solutions of the primal problem from the perspective of 

the PSH owner, g*(M)

tq 0 and p*(M)

tq 0  exist. g*

tχ2 0= and p*

tχ2 0= , on the other hand, 
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are based on slackness conditions that are complementary. The following equation holds 

when Eqs. (E13) and (E14) are combined. 

 g p g* p*

t t t tc Pβ c P α χ2 χ2 0− + + + + =                      (E15) 

Because both g* p*

t tχ2 0 and χ2 0  hold true, the Eq. (E15) will be rewritten as 

g p

t t tc c P α Pβ P (1/ α β)+  − + = − −                     (E16) 

The equation of (e16) describes the necessary condition for g*(M)

tq 0 and 

p*(M)

tq 0 . Hence, the sufficient condition for the exact relaxation of the complementary 

constraint of (E3) is 

g p

tc c P (1/ α β)+  − −                            (E17) 

Obviously, the equation (E17) is always holding when the forecasted prices 

tP 0, t {1,2, ,T}   . 

Therefore, for all positive electricity prices, discharging and charging cannot 

happen simultaneously to maximize the profit of electricity merchants. 

 

Proof of Proposition 7.2:  

(1) Primal and duality problems for ISO, storage merchant, and traditional  

generator from the respective of ISO:  

The primal scheduling problem from perspectives of ISO who operates energy  

storage and traditional generators is shown as follow:  
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( )
T M T

h h g g p p

it it t t

t 1 i=1 t 1

ppp p p

t t tt

ggg g g

t t tt

ttt t

h h

it i

min C g c q c q

q 0,   q Q ,                        (χ ,χ )

q 0,  q Q ,                         (χ ,χ )

E E,  E E,                            (θ ,θ )

g G ,   g
s.t.

= =

 
 + + 

 

 

 

 



 

h h

it i itit

M
h g p

it t t t t

i=1

g p

1 1 1 2 2

g p

t t t t 1 t+1

g p

T T T T 1 T+1

G ,                      (β ,β )

g q β q / α=D ,               (μ )

start state : E q q E ,            (γ )

middle state : E q q E ,    (γ )

end state : E q q E ,       (γ )

+

+








+ −

− + =

− + =

− + =



  



















                     (E18) 

Here,  
g pg p

tt t 2 t+1 T+1t t itt t it
χ ,χ ,χ ,χ ,θ ,θ ,β ,β ,μ , γ , γ , γ  are the corresponding dual 

variables based on the constraints in (E18). The duality model of the fundamental problem 

in (E18) is as follows as a result of the application of duality theory:  

( ) ( )
T T M T

p g
p g h h

tt i i t t 1 2 T 1 T+1t t itit
t 1 t 1 i 1 t 1

ppp p

t t ttt

ggg g

t t ttt

h h

it t ititit

ttt t t 1

max Q χ Q χ E θ E θ G β G β μ D E γ E γ

for q : χ χ μ / α γ c ,

for q : χ χ μ β γ c ,

s.t. for  g :  β β μ C

for E :  γ γ θ θ 0,

Wher

+

= = = =

+

 +  +  +  +  +  +  −  + 

+ − − =

+ + + =

+ + =

− + + + =

  

,

   

 

p gp g
tt t t itt t it

t 1,2, ,T

e, χ ,χ ,θ ,β 0;  χ , χ ,θ ,β 0.








 





 

  (E19) 

From the respective of energy storage merchant: The primal problem of electricity 

merchants with PSH or energy storage only is shown as follows: 
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( ) ( )( ) ( ) ( )( )
T

g p g g p p g g p p

t t t t t t t t t

t 1 t T

ppp p p

t t tt

ggg g g

t t tt

t t

max P q β q / α c q c q min c Pβ q c P / α q

q 0,  q Q ,                        (χ ,χ )

q 0,  q Q ,                        (χ ,χ )

E E,  E E,                         s.t.

= 

 
 − −  +   − + + 

 

 

 

 

 

tt

g p

1 1 1 2 2

g p

t t t t 1 t+1

g p

T T T T 1 T+1

 (θ ,θ )  

start state : E q q E ,            (γ )

middle state : E q q E ,    (γ )

end state : E q q E ,       (γ )

+

+








 − + =



− + =



− + =

 (E20) 

Similarly, 
g pg p

tt t 2 t+1 T+1t tt t
χ ,χ ,χ ,χ ,θ ,θ ,μ , γ , γ , γ are the corresponding dual variables 

of (E20). Therefore, the duality model of the primal problem in (E20) is obtained below:  

( )

 

T
p gp g

tt 1 2 T 1 T+1t t

t 1

ppp p

t t ttt

ggg g

t t ttt

ttt t t 1

p gp g
tt t tt t

max Q χ Q χ E θ E θ E γ E γ

for q : χ χ γ c P / α,

for q : χ χ γ c Pβ,
s.t. t 1,2, ,T

for E :  γ γ θ θ 0,

Where,χ ,χ ,θ 0;χ ,χ ,θ 0.

+

=

+

 +  +  +  −  + 

 + − = +



+ + = −
 

 − + + + =



 



                (E21) 

From the respective of traditional generator I : The primal problem of merchant 

who operates a traditional generator is shown as follows: 

( ) ( )
T T

h h h h

t It It It t It

t 1 t 1

h h

It I It

h h

It I It

max P C g min C P g

g G ,                     (β )  
s.t.  

g G ,                     (β )

= =

−   − 

 


 

 

                     (E22) 

Similarly,  ItIt
β ,β  are the corresponding dual variables of (E22). Therefore, the 

duality model of the primal problem in (E22) is obtained below:  
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( )
T

h h

I I ItIt
t 1

h

It tItIt

ItIt

max G β G β

β β C P
s.t.

β 0,β 0;

=

 + 

 + = −



 



                               (E23) 

(2) Compare these duality problems 

1) We suppose that  g*(1) p*(1) *(1) *(1)g*(1) p*(1) *(1) *(1)*(1) *
ttt tt t itt t it

χ ,χ ,χ ,χ ,γ ,θ ,θ β ,β ,μ,  

represents the best solutions to the duality problem from ISO's perspective (i.e., (E19)). 

Then, plugging these optimal results into the duality problem (E19), we get  

( )

( )

T T
p*(1) g*(1) *(1)*(1)p g * *(1) *(1)

tt t t 1 2 T 1 T+1t t

t 1 t 1

T M
*(1)*(1)h h

i i itit
t 1 i 1

p*(1)p*(1)p * *(1) p

t t ttt

g*(1)g*(1)g

t tt

Q χ Q χ E θ E θ μ D E γ E γ

max

G β G β

for q : χ χ μ / α γ c ,

for q : χ χ

s.t.

+

= =

= =

 
 +  +  +  +  −  +  

 
 
 +  +  
 

+ − − =

+

 



   

 

* *(1) g

t t

*(1)*(1)h * h

it t ititit

*(1)*(1)*(1) *(1)
ttt t t 1

p gp g
tt t t itt t it

μ β γ c ,

for  g : β β μ C , t 1,2, ,T

for E : γ γ θ θ 0,

Where, χ ,χ ,θ ,β 0;  χ ,χ ,θ ,β 0.

+





+ + =



+ + =  

 − + + + =



 


 (E24) 

Obviously,  g*(1) p*(1) *(1) *(1)g*(1) p*(1) *(1) *(1)*(1)
tttt t itt t it

χ ,χ ,χ ,χ ,γ ,θ ,θ ,β ,β  are still the 

optimal solutions in the following equation (E24) when we assign *

t tμ μ= : 
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( ) ( )
T T M T

p gp g h h *
tt i i t t 1 2 T 1 T+1t t itit

t 1 t 1 i 1 t 1

ppp p *

t t ttt

ggg g *

t t ttt

h h

it t ititit

ttt t t 1

max Q χ Q χ E θ E θ G β G β μ D E γ E γ

for q : χ χ γ c μ / α,

for q : χ χ γ c μ β,

s.t. for  g :  β β μ C

for E :  γ γ θ θ 0,

W

+

= = = =

+

 +  +  +  +  +  +  −  + 

+ − = +

+ + = −

+ + =

− + + + =

  

,  

p gp g
tt t t itt t it

t 1,2, ,T

here,χ ,χ ,θ ,β 0;  χ ,χ ,θ ,β 0.








 





 


(E25) 

The Eq.(E25) can be divided into two subproblems, each with the following optimal 

solutions: 

( ) ( )

( )

( )

T T M T
p g

p g h h *
tt i i t t 1 2 T 1 T+1t t itit

t 1 t 1 i 1 t 1

T T
p g

p g *
tt t t 1 2 T 1 T+1t t

t 1 t 1

T M
h h

i i itit
t 1 i 1

max Q χ Q χ E θ E θ G β G β μ D E γ E γ

(1)max Q χ Q χ E θ E θ μ D E γ E γ

(2)max G β G β

+

= = = =

+

= =

= =

 +  +  +  +  +  +  −  + 


 +  +  +  +  −  + 


 


 + 




  

 



(E26) 

Based on the constraints in equation (E25) and  t 1,2, ,T  , we can get the 

following relations: 

pp p *
pt tt p p *t

t ttt
gg g *

gt tt g g *t
t ttt

h

t ititit
tt t 1

ttt t 1

p g

tt t it

p g

t tt t it

χ χ γ c μ / α,
χ χ γ c μ / α,

χ χ γ c μ β,
χ χ γ c μ β,

β β μ C ,
(1) γ γ θ θ

γ γ θ θ 0,

Where,χ ,χ ,θ ,β 0;

            χ ,χ ,θ ,β 0, γ .

+

+

 + − = +
 + − = +


+ + = −
+ + = −

 + + =
 − + + +

− + + + =

 



 

* h

t ititit

t

itp g it

tt t

p g

t tt t

β β μ C
0, (2)

β 0,β 0.
Where,χ ,χ ,θ 0;

            χ ,χ ,θ 0, γ .






 + + =
 

= + 
  




 


 (E27) 

The equation (E27) states that the dual variables set of 

g*(1) p*(1) *(1)g*(1) p*(1) *(1)*(1)
tttt tt t

{χ , χ , χ , χ , γ ,θ ,θ }  is independent of 
*(1)*(1)

itit
{β ,β }  for any given 

*

t tμ μ= . As a result, the optimal solutions to subproblem one and subproblem two should 
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produce the same optimal results as Eq. (E28); then, the new duality problem can be 

divided into two subproblems: 

      Subproblem one: 

  

( )

( )

  ( )

T T
p g

p g *
tt t t 1 2 T 1 T+1t t

t 1 t 1

T
p g

p g
tt 1 2 T 1 T+1t t

t 1

pp p *

t ttt

gg g *

t ttt

ttt t 1

p gp g
tt t tt t

max Q χ Q χ E θ E θ μ D E γ E γ  

max Q χ Q χ E θ E θ E γ E γ

χ χ γ c μ / α,

χ χ γ c μ β,
s.t.

γ γ θ θ 0,

Where, χ ,χ ,θ 0; χ ,χ ,θ 0,

+

= =

+

=

+

 +  +  +  +  −  + 

  +  +  +  −  + 

+ − = +

+ + = −

− + + + =

 

 



 

t

 t 1,2,3, ,T

γ .






 


 


     (E28)

 

     Subproblem two: 

( )
T M

h h

i i itit
t 1 i 1

* h

t ititit

tt

max G β G β

β β μ C
s.t.

β 0,β 0;

= =

 + 

 + + =



 



                      (E29) 

Let *

t tP μ= , which indicates the electricity merchant can make a perfect price 

prediction, or the ISO sends the cleared LMP to the merchant, which is obtained based on 

the shadow price of energy balance constraint. Then, comparing the subproblem one from 

the ISO’s perspective and the duality problem from the merchant’s perspective.  

      The subproblem one from ISO: 
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( )

 

   

T
p g

p g
tt 1 2 T 1 T+1t t

t 1

g*(1) p*(1) *(1)g*(1) p*(1) *(1)*(1)
tttt tt t

pp p *

t ttt

gg g *

t ttt

ttt t 1

p gp g
tt tt tt t

max Q χ Q χ E θ E θ E γ E γ

χ ,χ ,χ ,χ , γ ,θ ,θ

χ χ γ c μ / α,

χ χ γ c μ β,
s.t.

γ γ θ θ 0,

Where, χ ,χ ,θ 0;  χ ,χ ,θ 0,γ .

+

=

+

 +  +  +  −  + 



 + − = +

+ + = −


− + + + =

  



  










            (E30) 

      Duality problem from storage merchant: 

( )

 

T
p g

p g
tt 1 2 T 1 T+1t t

t 1

g*(2) p*(2) *(2)g*(2) p*(2) *(2)*(2)
tttt tt t

pp p

t ttt

gg g

t ttt

ttt t 1

p g

tt t

p g

tt t

t

max Q χ Q χ E θ E θ E γ E γ

χ ,χ ,χ ,χ , γ ,θ ,θ

χ χ γ c P / α,

χ χ γ c Pβ,

γ γ θ θ 0,
s.t.

χ ,χ ,θ 0;

χ ,χ ,θ 0;

γ .

+

=

+

 +  +  +  −  + 



 + − = +



+ + = −

− + + + =

 








pp p *

t ttt

gg g *

t ttt

ttt t 1

p g

tt t

p g

tt t

t

χ χ γ c μ / α,

χ χ γ c μ β,

γ γ θ θ 0,

χ ,χ ,θ 0;

χ ,χ ,θ 0;

γ .

+

 + − = +



+ + = −

− + + + =

 
 


 
 

 
 

             (E31) 

Due to the identical objective function and constraints, subproblem one from the 

ISO perspective is equivalent to the duality problem from the perspective of the storage 

merchant. Thus 

   

 

g*(1) p*(1) *(1) g*(2) p*(2) *(2)g*(1) p*(1) *(1) g*(2) p*(2) *(2)*(1) *(2)
t tt tt tt t t tt t t t

g* p* *g* p* **
tttt tt t

χ ,χ ,χ ,χ ,γ ,θ ,θ χ ,χ ,χ ,χ ,γ ,θ ,θ

χ ,χ ,χ ,χ , γ ,θ ,θ

=

=
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Then, comparing the subproblem two from the ISO’s perspective and the duality 

problem from the traditional generator’s perspective.  

      Subproblem two from ISO: 

( ) ( ) ( )
T M T M\I

h h h h h h

i i i i I Iit it Itit it It
t 1 i 1 t 1 i 1

* h

t ititit

itit

max G β G β max G β G β G β G β

β β μ C

s.t.

β 0,β 0.

= = = =

  +    +  +  + 
 

 + + =


  


 

  (E32) 

      Dual problem from the generator I: 

( )
T

h h

I I ItIt
t 1

h

It tItIt

ItIt

max G β G β

β β C P

s.t.

β 0,β 0.

=

 + 

 + = −


  




                               (E33) 

Due to the identical objective function and constraints, the optimal generation for 

generator I from the ISO perspective  *(1)*(1)

ItIt
β ,β  is equivalent to the duality problem from 

the perspective of generator I  *(3)*(3)

ItIt
β ,β . Thus 

     
*(1) *(3) **(1) *(3) *

It It ItIt It It
β ,β β ,β β ,β= =                   (E34) 

(3) Use the duality theorem to compare the optimal solution 

 p*(M) g*(M) h*(M)

t t Itq ,q g， for electricity merchants and  p*(S) g*(S) h*(S)

t t Itq ,q g，  from ISOs.  

From ISO perspective, the objective functions of primal and dual problems are: 
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( )

( ) ( )

T M T
h h g g(S) p p(S)

it it t t

t 1 i=1 t 1

T T M
p g

p g h h
tt i it t itit

t 1 t 1 i 1

T

t t 1 2 T 1 T+1

t 1

Primal: min C g c q c q

Q χ Q χ E θ E θ G β G β

Dual: max

μ D E γ E γ

= =

= = =

+

=

  
 + +  

 

  

 +  +  +  +  +   
  
  
  +  −  +    

 

 



 

From storage merchant perspective, the objective functions of primal and dual 

problems are: 

( ) ( )( )

( )

g g(M) p p(M)

t t t t

t T

T
p gp g

tt 1 2 T 1 T+1t t

t 1

Pr imal : min c Pβ q c P / α q

Dual : max Q χ Q χ E θ E θ E γ E γ



+

=

  
− + +  

 



 +  +  +  −  + 






 

From the perspective of generator-I, the objective functions of primal and dual 

problems are:   

( )

( )

T
h h

It t It

t 1

T
h h

I I ItIt
t 1

Primal : min C P g

Dual : max G β G β

=

=


− 





 + 







    

(4) Relation between the ISO and storage merchant scheduling models 

We can derive the following from the strong duality theorem, which states that the 

optimal objective function value of the primal problem and the duality problem are equal: 

( )
( ) ( )

( ) ( )( )

T T M
p* g* * ** *p g h h

tt i it t ititT M T
t 1 t 1 i 1h h* g g*(S) p p*(S)

it it t t
T

t 1 i=1 t 1 * * *

t t 1 2 T 1 T+1

t 1

p* g*
g g*(M) p p*(M) p g

t t t t t t

t T

Q χ Q χ E θ E θ G β G β

C g c q c q

μ D E γ E γ

c Pβ q c P / α q Q χ Q χ E

= = =

= =

+

=



 
 +  +  +  +  +  

 
 + + =  

 
+  −  + 
 
 

− + + =  +  +

 
 



 ( )
T

** * *
tt 1 2 T 1 T+1

t 1

θ E θ E γ E γ+

=









  +  −  + 




 

The energy balance constraint always holds. Let's consider the following equation: 
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M
h* g*(S) p*(S)

it t t t

i 1

g q β q / α D
=

+ − = . 

Then, we can derive the following equivalent equations: 

( )

( )

( ) ( ) ( )( )

T M T
h h* g g*(S) p p*(S)

it it t t

t 1 i=1 t 1

T M T T M
h h* g g*(S) p p*(S) p*(S) g*(S) h*

it it t t t t t t it

t 1 i=1 t 1 t 1 i=1

T M T
h h* g g*(S) p p*(S)

it t it t t t t t

t 1 i=1 t 1

C g c q c q

C g c q c q P D q / α q β g

C P g c Pβ q c P / α q P

= =

= = =

= =

 + +

 
=  + + +  + − − 

 

= −  + − + + + 

 

   

 

( ) ( )

( ) ( )( ) ( )

T

t

t 1

T T M T
p* g* * ** *p g h h * * *

tt i i t t 1 2 T 1 T+1t t itit
t 1 t 1 i 1 t 1

T T M T
**g g*(M) p p*(M) h h *

t t t t i i t t t titit
t 1 t 1 i 1 t 1

D

Q χ Q χ E θ E θ G β G β μ D E γ E γ

c Pβ q c P / α q G β G β P D (if P μ )

=

+

= = = =

= = = =

=  +  +  +  +  +  +  −  + 

= − + + +  +  +  =



  

  

 

That is, 

( ) ( ) ( )( )

( ) ( ) ( )( )

T M T
h h* g g*(S) p p*(S)

it t it t t t t

t 1 i=1 t 1

T M T
**h h g g*(M) p p*(M)

i i t t t titit
t 1 i 1 t 1

C P g c Pβ q c P / α q

G β G β c Pβ q c P / α q

= =

= = =

−  + − + +

=  +  + − + +

 

 

 

To find the relation for the optimal decisions between these two problems, we first 

confirm the following equations: 

( ) ( )
T M T M

**h h* h h

it t it i i itit
t 1 i=1 t 1 i 1

C P g G β G β
= = =

−  =  +                           (E35) 

We can also find there is ( ) ( )
T M T M

**h * h* h h

it t it i i itit
t 1 i=1 t 1 i 1

C μ g G β G β
= = =

 
− =  +  

 
   . 

In Eq. (D32), we have 
* h

t ititit
β β μ C+ + =  (i.e., 

** h *

it titit
β β C μ+ = − ).  Thus, we only 

need to find that there is ( ) ( )
T M T M

* ** *h* h h

it i iit itit it
t 1 i=1 t 1 i 1

β β g G β G β
= = =

 
+ =  +  

 
    holding.  

Obviously, there is 
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( ) ( ) ( ) ( )
T M T M T M T M

* * ** * *h* h* h h h* h h h*

it it i i it i i itit it itit it it
t 1 i 1 t 1 i 1 t 1 i=1 t 1 i=1

g β g β G β G β g G β G g β
= = = = = =

   
 +  =  +   − = −   

   
      . 

Since there are itit
β 0,β 0  , and h h h

i it iG g G  , we can get ( ) *h* h

it i it
g G β 0−   and 

( )
*

h h*

i it it
G g β 0−  . Thus, we have the following relation: 

( ) ( )
T M T M

**h* h h h*

it i i it itit
t 1 i=1 t 1 i=1

g G β 0;  G g β 0
= =

    
−  −     

   
     

If ( ) ( )
T M T M

**h* h h h*

it i i it itit
t 1 i=1 t 1 i=1

g G β G g β
= =

   
− = −   

   
     holding, then there is 

( ) ( )
T M T M

**h* h h h*

it i i it itit
t 1 i=1 t 1 i=1

g G β G g β 0
= =

   
− = − =   

   
    . 

That is, for i {1,2, ,M},and t {1,2, ,T}    , there is  

( ) ( )
**h* h h h*

it i i it itit
g G β G g β 0  − = − =                    (E36) 

Next, recall the proof of subproblem two from the ISO’s perspective: 

( )  
T M

**h h *

i i t tit itit it
t 1 i 1

* h

t ititit

itit

*

t t

max G β G β β ,β ,μ LMP

β β μ C

s.t. β 0,β 0;

μ LMP

= =

 +   =

 + + =



 

 =




 

Here, we assume *

t t t tμ μ LMP =P= = . Let 
h h

it t it tit itit
β C (β P ) C P β= − + = − − , we 

have the following: 

 
h h
it t it it titit h

it tit

itit

β C P β 0 β C P
β min 0,C P

β 0β 0

 = − −   − 
   − 

  

 

As a result, the objection function of subproblem two can be rewritten as: 
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( ) ( )( )( ) ( ) ( )( )
T M T M T M

h h h h h h h h h

it t it tit it it itit
t 1 i 1 t 1 i 1 t 1 i 1

G β G β G C β P G β G C P G G β
= = = = = =

 +  =  − + +  =  − + −     

Since h h(G G ) 0−  is holding, the objection function of subproblem two increases 

with itβ . In this case, when h

it titβ min{0,C P }= − , the objection function in subproblem two 

reaches its maximum value. Then, we can derive 
it

β  as follows: 

( )
 

h h h

it t it t it t
h h

it t it titit
h h h

it t it t it t

C P C P 0,  if  C P 0
β C P β max 0,C P

C P 0 C P ,     if  C P 0

 − − − = − 


= − − = = −
 − − = − − 

 

That is,  

     
* *h h

it t it tit it
β min 0,C P ;  β max 0,C P i 1,2, ,M= − = −  ,         (E37) 

1) When there has  h

it t tC P LMP , i 1,2, ,M =   , we get 

 

 

* h

it tit

* h h

it t it tit

β min 0,C P 0

β max 0,C P C P

 = − =

 = − = −


, then (D36) can be shown as 

h* h h h h*

it i it t i it(g G ) (C P ) (G g ) 0 0−  − = −  = , thus, we will get
h* h

it ig G= . 

2) When there has  h

it t tC P LMP , i 1,2, ,M= =   , we can get 

*

it

*

it

β 0

β 0

 =


=

, then 

the equation (A36) is satisfied. Thus, there is h h* h

i it iG g G  . 

3) When  h

it t tC P LMP , i 1,2, ,M =   is holding, we can get 

* h

it tit

*

it

β C P

β 0

 = −


=

, then equation (A36) can be shown as

h* h h h* h

it i i it it t(g G ) 0 (G g )(C P ) 0−  = − − = , thus, we can obtain 
h* h

it ig G= .  
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Thus, for  i 1,2, ,M  the following conclusion can be drawn: 

( )

h h* h

it t t it i

h h h* h

it t t i it i

h h* h

it t t it i

T M M T M
**h h* h* h h

it it t it i i itit
t 1 i=1 i=1 t 1 i 1

1) If  C P =LMP  and g G ;

2) or If  C P =LMP  and G g G ;

3) or If  C P =LMP  and g G ;

there are C g P g G β G β .
= = =

  =



=  


 =

 
− =  +  

 
   

     (E38) 

When there is ( )
T M M T M

**h h* h* h h

it it t it i i itit
t 1 i=1 i=1 t 1 i 1

C g P g G β G β
= = =

 
− =  +  

 
     holding, we 

can achieve the following equivalence relationship 

( ) ( )
T

g g*(S) p p*(S) g g*(M) p p*(M)

t t t t t t t t

t 1 t T

(c Pβ)q (c P / α)q (c Pβ)q (c P / α)q
= 

− + + = − + +  , which is 

also the objection function of primal problem from the merchant’s perspective. In this 

case, the merchant will get the optimal profit if she follows ISO’s dispatch.  

(5) The relation between the ISO’s and the generator I’s scheduling models 

We can derive the following from the strong duality theorem, which states that the 

optimal objective function value of the primal problem and the duality problem are equal: 

( )
( ) ( )

( ) ( )

T T M
p* g* * ** *p g h h

tt i it t ititT M T
t 1 t 1 i 1h h*(S) g g*(S) p p*(S)

it it t t
T

t 1 i=1 t 1 * * *

t t 1 2 T 1 T+1

t 1

T T
**h h*(M) h h

It t It I I ItIt
t 1 t 1

Q χ Q χ E θ E θ G β G β

C g c q c q

μ D E γ E γ

C P g G β G β

= = =

= =

+

=

= =

  
 +  +  +  +  +   

 
 + + =  

 
+  −  +   
 

−  =  + 

 
 



 










 

Then, we can derive the following equivalent equations: 
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( )

( )

( ) ( ) ( )( )

T M T
h h* g g*(S) p p*(S)

it it t t

t 1 i=1 t 1

T M T T M
h h* g g*(S) p p*(S) p*(S) g*(S) h*

it it t t t t t t it

t 1 i=1 t 1 t 1 i=1

T M T
h h* g g*(S) p p*(S)

it t it t t t t t

t 1 i=1 t 1

C g c q c q

C g c q c q P D q / α q β g

C P g c Pβ q c P / α q P

= =

= = =

= =

 + +

 
=  + + +  + − − 

 

= −  + − + + + 

 

   

 

( ) ( )

( ) ( )( ) ( )

T

t

t 1

T T M T
p* g* * ** *p g h h * * *

tt i i t t 1 2 T 1 T+1t t itit
t 1 t 1 i 1 t 1

T T M T
**g g*(M) p p*(M) h h *

t t t t i i t t t titit
t 1 t 1 i 1 t 1

D

Q χ Q χ E θ E θ G β G β μ D E γ E γ

c Pβ q c P / α q G β G β P D (if P μ )

=

+

= = = =

= = = =

=  +  +  +  +  +  +  −  + 

= − + + +  +  +  =



  

  

 

That is, 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

T M\I T T
h h* h h*(S) g g*(S) p p*(S)

it t it It t It t t t t

t 1 i=1 t 1 t 1

T M\I T T
**h h h h*(M) g g*(M) p p*(M)

i i It t It t t t titit
t 1 i 1 t 1 t 1

C P g C P g c Pβ q c P / α q

G β G β C P g c Pβ q c P / α q

= = =

= = = =

−  + −  + − + +

=  +  + −  + − + +

  

  

 

When the conditions (E38) are holding on, there has   

( ) ( ) ( )( )

( ) ( ) ( )( )

T M\I T
h h* g g*(S) p p*(S)

it t it t t t t

t 1 i=1 t 1

T M\I T
**h h g g*(M) p p*(M)

i i t t t titit
t 1 i 1 t 1

C P g c Pβ q c P / α q

G β G β c Pβ q c P / α q

= =

= = =

−  + − + +

=  +  + − + +

 

 

. 

Therefore, there exist ( ) ( )
T T

h h*(S) h h*(M)

It t It It t It

t 1 t 1

C P g C P g
= =

−  = −   , which is also the 

objective function of the primal problem for the generator I to maximize her own profit. In 

this case, the generator will get the optimal profit if she follows ISO’s dispatch. For 

   i 1,2, ,M , t 1,2, ,T     ,the relations between the optimal actions 

*(S) p*(S) g*(S)

t t tq {q ,q }=  of ISO and *(M) p*(M) g*(M)

t t tq {q ,q }= of storage merchant can be drawn: 

(1) For the PSH merchant, if the forecasted price matches the actual LMPs, when 

the primal problem from profit-maximizing has a unique optimal solution:  
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   

   

 

h h* h p*(S) g*(S) p*(M) g*(M)

it t t it i t t t t

h h h* h p*(S) g*(S) p*(M) g*(M)

it t t i it i t t t t

h h* h p*(S) g*(S) p*(M) g*(M

it t t it i t t t t

1) If  C P =LMP  and g G ,  q ,q q ,q ;

2) If  C P =LMP  and G g G ,  q ,q q ,q ;

3) If  C P =LMP  and g G ,  q ,q q ,q

 = =

=   =

 = =  ) .









     (E39) 

(2) If the lower bound of power generation of thermal generators is 0, that is 

 h

iG 0, i 1,2, ,M=   , then we can rewrite (E39) as 

 

h h* h p*(S) p*(M) g*(S) g*(M)

it t t it i t t t t

h h* h p*(S) p*(M) g*(S) g*(M)

it t t it i t t t t

h h* p*(S) p*(M) g*(S

it t t it t t t

1) If  C P =LMP  and g G ,  q q ,and q q ;

2) If  C P =LMP  and 0 g G ,  q q ,and q q ;

3) If  C P =LMP  and g 0,  q q ,and q

 = = =

=   = =

 = = ) g*(M)

tq .







=

   (E40) 

(3) For the storage merchant, if the forecasted price aligns with the actual LMPs, 

when the primal problem from profit-maximizing has multiple optimal solutions:  

( ) ( )( )

( ) ( )( )

( ) ( )( )

T
g p g g p p

t t t t t

t 1

T
g*(S) p*(S) g g*(S) p p*(S)

t t t t t

t 1

T
g*(M) p*(M) g g*(M) p p*(M)

t t t t t

t 1

max LMP q β q / α c q c q

LMP q β q / α c q c q

LMP q β q / α c q c q

=

=

=

 − −  + 

=  − −  + 

=  − −  + 







           (E41) 

For    i 1, 2, , M , t 1,2, ,T    , the relations between the optimal actions 

h*(S)

itg of ISO and h*(M)

Itg of generator-I can be drawn: 

(1) For the generator, if the forecasted price matches the actual LMPs, when the 

primal problem from individual profit-maximizing has a unique optimal solution:  

h h* h h*(S) h*(M)

it t t it i it it

h h h* h h*(S) h*(M)

it t t i it i it it

h h* h h*(S) h*(M)

it t t it i it it

1) If  C P =LMP  and g G ,  g g ;

2) If  C P =LMP  and G g G ,  g g };

3) If  C P =LMP  and g G ,  g g .

  = =



=   =


 = =

             (E42) 
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(2) For the generator, if the forecasted price aligns with the actual LMPs, when the 

primal problem from individual profit-maximizing has multiple optimal solutions:  

( ) ( ) ( )
T T T

h h h h*(S) h h*(M)

t It It t It It t It It

t 1 t 1 t 1

max LMP C g LMP C g LMP C g
= = =

−  = −  = −          (E43) 

 

Proof of Scenario for Merchant with Energy Storage and Wind Farms 

Discharging/Generating and Charging/Pumping cannot happen at the same period.  

Considering the merchant who manages both wind farms and energy storage, the 

scheduling problem from the perspective of the ISO is shown as follows: 

( )
T M T T

h h g g p p w

it it t t t

t 1 i=1 t 1 t 1

p p

t

g g

t

t

h h h

it it i

g p

t t t t 1

M
h g p

it t t t t

i=1

t

g p

t t

min C g c q c q c w

0 q Q ,

0 q Q ,

E E E,

g g G ,

s.t. E q q E ,

g w q β q / α=D ,

W w W,

q q 0.

= = =

+

 
 + + +  

 

  

  

  

  

 − + =



+ + −



 


 =

  



              (E44) 

If ignoring the transmission efficiency loss and startup cost of PSH or energy 

storage, the reward function of p g

t t t tR(q ,q , w , P ) can be rewritten as  
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( ) ( )

( ) ( )

( ) ( )

( )

p g g p p w p

t t t t t t t t

p g p g g p p w p

t t t t t t t t t t t t

g g g p p w g

t t t t t t t

p g g

t t t

P q / α w c q c q c w    (q w )

R(q ,q ,w ,P ) P q / α w c q c q c w  (0 q w ) 

P q β w c q c q c w          (q 0) 

P q / α c q
                        

−  − −  +  +  



= −  − −  +  +   

  + −  +  +  


−  −  +
=

( ) ( )

( ) ( ) ( )

p p w p

t t t t

g g g p p w g

t t t t t t t

c q P c w  (q 0) 

P q β c q c q P c w        (q 0) 

  + −  



 −  +  + −  


   (E45)  

Then, the objective function of electricity merchants is shown as follows:  

( ) ( ) ( )( )

 

T
g p g g p p w

t t t t t t t

t 1

p p

t

g g

t

t

g p

t t t t 1

t

g p

t t

max P q β q / α c q c q P c w

0 q Q ,

0 q Q ,

W w W,
s.t.   t 1,2, ,T

E q q E ,

E E E,

q q 0.

=

+

 − −  +  + − 

  

  

  

 
− + =


 


 =



          (E46) 

Suppose the charging/generating and discharging/generating cannot happen in one 

period. We have the following non-convex complementary constraint from the perspective 

of ISO or electricity merchant: 

p g

t tq q 0 =                                 (E47) 

Similar to Appendix A, we use the KKT condition to analyze sufficient conditions 

for such an exact relaxation of Eq. (E4). The primal problem from perspective of ISO after 

only relaxing the non-convex constraint is shown: 
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( )
T M T T

h h g g p p w

it it t t t

t 1 i=1 t 1 t 1

p p p p p

t t t t

g g g g g

t t t t

t t t

min C g c q c q c w

q 0,q Q 0                          (χ1 ,χ1 )

q 0,q Q  0                         (χ1 ,χ1 )

E E 0,E E 0                  (θ1

s.t.

= = =

 
 + + +  

 

−  − 

−  − 

− +  − 

  

t

h h h h

it i it i it it

M
h g p

t it t t t t

i=1

g p

t t t t 1 t+1

t t it it

,θ1 )

g G 0,g G 0             (β1 ,β1 )

D g q β w q / α 0,       (μ1 )

E q q E ,                            (γ1 )

w W,w W                         (ω1 ,ω1 )

Where,

+

− +  − 

 
− + + − = 
 

− + =

−  − 



 p g p g

t t t it t t t it

  

χ1 ,χ1 ,θ1 ,β1 ,χ1 ,χ1 ,θ1 ,β1 0.


















 


                     (E48) 

The Lagrange function of equation (E49) is obtained: 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T M T T M
h h g g p p w h g p

it it t t t t t it t t t

t 1 i=1 t 1 t 1 i=1

g p p p p p p g g g g g

t+1 t 1 t t t t t t t t t t t

h h h

t t t t it it i it it

L C g c q c q c w μ1 D g w q β q / α

γ1 E E q q χ1 q χ1 q Q χ1 q χ1 q Q

θ1 E E θ1 E E β1 g G β1 g

= = =

+

  
=  + + +  + − + + −  

  

+ − + − +  − +  − +  − +  −

+  − + +  − +  − + + −

   

( )

( ) ( )

h

i

it t it t

G

ω1 w W ω1 w W+  − + + −

  (E49) 

In the KKT condition for the primal problem from the perspective of ISO, the first-

order derivative of the Lagrangian function concerning energy storage discharging 

variables 
g

tq  and charging variables
p

tq  must equal to zero; hence the following equation 

holds (i.e., t {1,2, ,T}  ) 

g g*(S)
t t

p p*(S)
t t

g g * * g* g*

t t t 1 t tq =q

p p * * p* p*

t t t 1 t tq =q

L q c u1 β γ1 χ1 χ1 0

L q c u1 α γ1 χ1 χ1 0

+

+

  = − + + − =


  = + − + − =


                  (E50) 
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Assume g*(S)

tq 0 and p*(S)

tq 0  are the optimal solutions of the primal problem 

from perspectives of ISO at time t. We also know there have g*

tχ1 0= and p*

tχ1 0=  because 

of the complementary slackness conditions. When you combine two sub-equations in (E50), 

you get the following equation. 

g p g* p* * *

t t t tc c χ1 χ1 u1 β u1 α 0+ + + − + =                        (E51) 

Because there are p* g*

t tχ1 0 and χ1 0  , the equation (E52) can be rewritten as 

g p * * *

t t tc c u1 β u1 α u1 (1/ α β)+  − = − −                        (E52) 

The Eq. (B9) describes the necessary condition for g*(S)

tq 0 and p*(S)

tq 0 .Hence, 

the sufficient condition for exact relaxation of the complementary constraint of (E53) is 

g p *

tc c u1 (1/ α β)+  − −                               (E53) 

Similarly, the equation (E53) is true for any *

tu1 0 ,where t {1,2, ,T}  . 

The primal problem from the perspective of an electricity merchant who has energy 

storage and wind farms after relaxing the non-convex constraint is shown as follows:  

( ) ( ) ( )( )g g p p w

t t t t t t

t T

p p p p p

t t t t

g g g g g

t t t t

t t t t

g

t t

min c Pβ q c P / α q c P w

q 0,q Q 0                          (χ2 ,χ2 )

q 0,q Q  0                         (χ2 ,χ2 )

E E 0,E E 0                     (θ2 ,θ2 )
s.t.

E q



 
− + + + −  

 

−  − 

−  − 

− +  − 

−



 

p

t t 1 t+1

t t it it

p g p g

t t t it t t t it

q E ,                              (γ2 )

w W,w W                         (ω2 ,ω2 )

Where, χ2 ,χ2 ,θ2 ,ω2 ,χ2 ,χ2 ,θ2 ,ω2 0.

+









+ =

−  − 

 


             (E54) 

We have the following Lagrange function based on the Eq. (E54): 
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( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

g g p p w g p

t t t t t t t+1 t 1 t t t

t T

p p p p p g g g g g

t t t t t t t t t t

t t it t it t

L c Pβ q c P / α q c P w γ2 E E q q

χ2 q χ2 q Q χ2 q χ2 q Q θ2 E E

θ2 E E ω2 w W ω2 w W

+



= − + + + −  + − + −

+  − +  − +  − +  − +  − +

+  − +  − + + −



   (E55) 

Based on the KKT condition for the primal problem from the perspective of the 

merchant, the first-order derivative of the Lagrangian function with respect to energy 

storage discharging variable 
g

tq  and charging variable 
p

tq  must equal to zero. Hence, the 

following equation holds (∀t∈T) 

g g*(M)
t t

p p*(M)
t t

g g * g* g*

t t t 1 t tq =q

p p * p* p*

t t t 1 t tq =q

L q c Pβ γ2 χ2 χ2 0

L q c P α γ2 χ2 χ2 0

+

+

  = − + + − =


  = + − + − =


                (E56) 

Assume g*(M)

tq 0 and p*(M)

tq 0  represent the optimal solutions of the primal 

problem from perspectives of merchant. Then, we will get  g*

tχ2 0= and p*

tχ2 0=  because 

of the complementary slackness conditions. In Eq.(E56), there are g* p*

t tχ2 0 and χ2 0  . 

Summing Eq. (E56) and the following inequation holds 

g p

t t tc c P α Pβ P (1/ α β)+  − + = − −                       (E57) 

        The Eq.(E57) shows the necessary condition for g*(M)

tq 0 and p*(M)

tq 0 . Hence, 

the sufficient condition for the exact relaxation of the complementary constraint of (E49) 

is shown as follows: 

g p

tc c P (1/ α β)+  − −                             (E58) 

Therefore, for all positive electricity prices, discharging/generating and 

charging/pumping cannot happen simultaneously for profit-maximizing merchants.  
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Proof of Proposition 7.4: 

(1) For ISO: incorporating the wind generation, we get the following primal 

problem after relaxing the non-convex constraint p g

t tq q 0 = : 

( )
T M T T

h h g g p p w

it it t t t

t 1 i=1 t 1 t 1

ppp p

t tt

ggg g

t tt

ttt

t

min C g c q c q c w

0 q Q ,                               (χ ,χ )

0 q Q ,                               (χ ,χ )

W w W,                             (ν , ν )

s.t. E

= = =

 
 + + + 

 

 

 

 

−

  

 g p

t t t 1 t+1

M
h g p

it t t t t t

i=1

ttt

h h h

i it i itit

q q E ,                     (γ )   t 1,2, ,T

g w q β q / α=D ,     (μ )

E E E,                                (θ ,θ )

G g G ,                          (β ,β )

+










+ =  

 + + −


  

  




               (E59) 

Here,
g pg p

t tt t t 2 t+1 T+1t t itt t it
{χ ,χ ,χ ,χ ,θ ,θ , ν , ν ,β ,β ,μ ,γ ,γ ,γ }  represent the corresponding 

dual variables based on the constraints in (E59). The duality model of the primal problem 

of (E59) is shown as: 

( )

( )

T
p gp g

t tt tt t

t 1

T M T
h h

i i t t 1 2 T 1 T+1itit
t 1 i 1 t 1

ppp p

t t ttt

ggg g

t t ttt

h h

it t ititit

Q χ Q χ E θ E θ W ν W ν

max

G β G β μ D E γ E γ

for q : χ χ μ / α γ c ,

for q : χ χ μ β γ c ,

for  g :  β β μ C
s.t.

for w

=

+

= = =

 
 +  +  +  +  +  

 
 
 +  +  +  −  +  
 

+ − − =

+ + + =

+ + =



 

,

   

 
w

ttt t

ttt t t 1

p gp g
t tt t t t itt t it

t 1,2, ,T

:  ν ν μ c ,

for E :  γ γ θ θ 0,

Where, χ ,χ ,θ , ν ,β 0;  χ ,χ ,θ , ν ,β 0.

+









 
 + + =

 − + + + =



 

       (E60) 
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(2) From merchant with storage and wind farm: After relaxing the non-convex 

constraint, the primal scheduling problem of the electricity merchant who manages both 

wind farms and energy storage is shown as follows:  

( ) ( ) ( )( )

( ) ( ) ( )( )

T
g p g g p p w

t t t t t t t

t 1

g g p p w

t t t t t t

t T

ppp p

t tt

ggg g

t tt

t

max P q β q / α c q c q P c w

min c Pβ q c P / α q c P w

0 q Q ,                               (χ ,χ )

0 q Q ,                               (χ ,χ )

s.t. W w W,             

=



 − −  +  + − 

 − + + + − 

 

 

 





 tt

g p

t t t t 1 t+1

ttt

                (ν , ν )   t 1,2, ,T

E q q E ,                     (γ )

E E E,                                (θ ,θ )

+








 


− + =

  


         (E61) 

Similarly, 
g pg p

t tt t t 2 t+1 T+1t tt t
{χ , χ , χ , χ ,θ ,θ , ν , ν ,μ , γ , γ , γ }  are the corresponding 

dual variables in model (E61). Therefore, the corresponding duality problem of the primal 

problem in (E61) is obtained below:  

( )
T

p gp g
t tt t 1 2 T 1 T+1t t

t 1

ppp p

t t ttt

ggg g

t t ttt

w
ttt t

ttt t t 1

p gp g
t tt t t tt t

max Q χ Q χ E θ E θ W ν W ν E γ E γ

for q : χ χ γ c P / α,

for q : χ χ γ c Pβ,

s.t. for w :  ν ν c P ,

for E :  γ γ θ θ 0,

Where,χ ,χ ,θ , ν 0;χ ,χ ,θ , ν .

+

=

+

 +  +  +  +  +  −  + 

 + − = +

+ + = −

+ = −

− + + + =

 



 t 1,2, ,T







 






   (E62) 

We can split the new duality problem (E62) into two subproblems when the 

electricity merchant can make a perfect price forecast, or the ISO sends the cleared LMP 
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to the merchant and assume *

t t tP μ LMP= = . Then, using the duality theorem, compare the 

best solution between  *(S) p*(S) g*(S) *(S)

t t t tq q ,q ,w=  of ISO and 

 *(M) p*(M) g*(M) *(M)

t t t tq q ,q ,w= of merchant. 

Thus, for  i 1,2, ,M  the following conclusion can be drawn: 

( )

h h* h

it t t it i

h h h* h

it t t i it i

h h* h

it t t it i

T M M T M
**h h* h* h h

it it t it i i itit
t 1 i 1 i 1 t 1 i 1

1) If  C P LMP  and g G ;

2) or If  C P LMP  and G g G ;

3) or If  C P LMP  and g G ;

there is C g P g G β G β .
= = = = =

  = =



= =  


 = =

 
− =  +  

 
   

            (E63) 

When ( )
T M M T M

**h h* h* h h

it it t it i i itit
t 1 i=1 i=1 t 1 i 1

C g P g G β G β
= = =

 
− =  +  

 
     is holding, we achieve  

( ) ( ) ( )( ) ( ) ( ) ( )( )
T

g g*(S) p p*(S) w *(S) g g*(M) p p*(M) w *(M)

t t t t t t t t t t t t

t 1 t T

c Pβ q c P / α q c P w c Pβ q c P / α q c P w
= 

− + + + −  = − + + + −  

, which is the objection function of the primal problem from merchant perspective. In this 

situation, the merchant will also get the maximum profit. The relations between the optimal 

actions  *(S) p*(S) g*(S) *(S)

t t t tq q ,q ,w=  of ISO and   *(M) p*(M) g*(M) *(M)

t t t tq q ,q ,w= of 

electricity merchant can be drawn: 

(1) For the merchant who operates both wind farms and energy storage, if the 

forecasted price aligns with the actual LMPs (i.e., t tP LMP , t {1,2, ,T}=   ) and when 

the primal problem from individual profit-maximizing has a unique optimal solution, we 

have the following results 
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h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t it i t t t t t t

h h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t i it i t t t t t t

h

it t t

1) If  C P =LMP  and g G ,  then q q ,  q q ,w w ;

2) If  C P =LMP  and G g G ,  then q q ,  q q ,w w ;

3) If  C P =LMP  and g

 = = = =

=   = = =

 h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it i t t t t t tG ,  then q q ,  q q ,w w .






 = = = =

(E64) 

(2) For the merchant, if the forecasted price aligns with the actual LMPs and when 

the primal problem from individual profit-maximizing in equation (E61) has multiple 

optimal solutions, we have the following relations 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

T
g p w p p g p

t t t t t t t

t 1

T
g*(S) p*(S) w *(S) p p*(S) g g*(S)

t t t t t t t

t 1

T
g*(M) p*(M) w *(M) p p*(M) g g*(M)

t t t t t t t

t 1

max LMP q β q α LMP c w c q c q

LMP q β q α LMP c w c q c q

LMP q β q α LMP c w c q c q

=

=

=

 
− + −  −  +  

 

= − + −  −  + 

= − + −  −  + 







    (E65) 

 

Proof of Considering the Production Tax Credit (PTC) 

Discharging/Generating and Charging/Pumping cannot happen at the same period.  

Considering the production tax credit (PTC) offered by the federal government in 

the US, the scheduling problem from the perspective of the ISO is shown as follows: 
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T M T T T
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it it t t t
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q αw 0,

0 q Q ,  

0 q Q ,

W w W, 

s.t. E q q E ,  

g w q β q / α=D ,

E E E,  

G g G ,

q q 0.

= = = =

+

 
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 
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 − 
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  
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  
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
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

+ + −

 

 
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

   t 1,2, ,T 










    (E66) 

To qualify for PTC, wind farm merchant with storage will not be allowed to store 

energy in storage from the grid. The reward function of p g

t t t tR(q ,q ,w ,P ) can be shown as  

( ) ( ) ( )

p p
p pt t

t t t w t p t t t
(PTC) p g

t t t t

g g g g

t t t w t t t g t t

(PTC) p g p g

t t t t t p t t g t t w t

q q
P ( w ) s( w ) c w c q     (0 q αw ) 

α αR (q ,q ,w ,P )

P (q β w ) c w s( q β w ) c q  (q 0) 

R (q ,q ,w ,P ) P / α c s / α q Pβ c sβ q P s c w


− − − − − −  

= 


 + − − − − − 

 = − − −  + − +  + + − 

   (E67)  

Then, the objective function of electricity merchants is shown as follows:  
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( ) ( ) ( )( )
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0 q Q ,
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E E E,

q q 0.
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
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 − 

  

  



   


− + =


 


 =





     (E68) 

Suppose the charging/pumping and discharging/generating cannot happen in one 

period. Then, we have the following non-convex complementary constraint from the 

perspective of ISO or merchant: 

p g

t tq q 0 =                                    (E69) 

Recall the proof of Appendix A, we use the KKT condition to analyze sufficient 

conditions for such an exact relaxation of Eq. (E69). The primal problem from perspective 

of ISO after only relaxing the non-convex constraint is shown: 
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Where,χ1 ,χ1 ,χ1 ,θ1 ,β1 ,χ1 ,χ1 ,θ1 ,β1 0.
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
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


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
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

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      (E70) 

The Lagrange function of Eq. (E70) is obtained: 

( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )

( )

T M T T T
h h g g p p w

it it t t t

t 1 i=1 t 1 t 1 t 1

M
h g p g p

t t it t t t t+1 t 1 t t t

i=1

p p p p p P p g g g g g

t t t t t t t t t t t

t t t

L C g c sβ q c s / α q c s w

μ1 D g w q β q / α γ1 E E q q

χ1 q χ1 q Q χ1 q αw χ1 q χ1 q Q

θ1 E E θ1 E

= = = =

+

=  + −  + +  + −

  
+ − + + − + − + −  

  

+  − +  − +  − +  − +  −

+  − + + 

   



( ) ( ) ( )

( ) ( )

h h h h

t it it i it it i

it t it t

E β1 g G β1 g G

ω1 w W ω1 w W

− +  − + + −

+  − + + −

     (E71) 

In the KKT condition for the primal problem from the perspective of ISO, the first-

order derivative of the Lagrangian function concerning PSH generating variables 
g

tq  and 

pumping variables
p

tq  must equal to zero; hence the following equation holds, where,

t {1,2, ,T}  . 

g g*(S)
t t

p p*(S)
t t

g g * * g* g*

t t t 1 t tq =q

p p * * p* p* P*

t t t 1 t t tq =q

L q c sβ u1 β γ1 χ1 χ1 0

L q c s / α u1 α γ1 χ1 χ1 χ1 0

+

+

  = − − + + − =


  = + + − + − + =


          (E72) 
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Assume g*(S)

tq 0 and p*(S)

tq 0  are the optimal solutions of the primal problem 

from perspectives of ISO at time t. We also know there have g*

tχ1 0= and p*

tχ1 0=  because 

of the complementary slackness conditions. When we combine two functions in Eq. (E72), 

we get the following equation. 

g p g* p* P* * *

t t t t tc sβ c s / α χ1 χ1 χ1 u1 β u1 α 0− + + + + + − + =                (E73) 

Because there are p* P* g*

t t tχ1 0, χ1 0, and χ1 0   , the Eq. (E73) can be rewritten 

as follows: 

g p * * *

t t tc sβ c s / α u1 β u1 α u1 (1/ α β)− + +  − = − −                    (E74) 

The Eq.(E74) describes the necessary condition for g*(S)

tq 0 and p*(S)

tq 0 . Hence, 

the sufficient condition for the exact relaxation of the complementary constraint of 

equation (E71) is 

g p *

tc c s / α sβ u1 (1/ α β)+ + −  − −                           (E75) 

Similarly, the Eq.(E75) is always true for *

tu1 0 , where, t {1,2, ,T}  . 

Similarly, the primal problem from the perspective of an electricity merchant who 

has energy storage and wind farms after relaxing the non-convex constraint is:  

( ) ( ) ( )( )g g p p w

t t t t t t

t T

p p p p p p P

t t t t t t t

g g g g g

t t t t

t t t t

t t

min c Pβ sβ q c P / α s / α q c P s w

q 0,q Q 0,q αw 0,   (χ2 ,χ2 ,χ2 )

q 0,q Q  0                         (χ2 ,χ2 )

E E 0,E E 0                     (θ2 ,θ2 )
s.t.

E q



 
− − + + + + − −  

 

−  −  − 

−  − 

− +  − 

−



g p

t t 1 t+1

t t it it

P p g p g

t t t t it t t t it

q E ,                              (γ2 )

w W,w W                         (ω2 ,ω2 )

Where,χ2 ,χ2 ,χ2 ,θ2 ,ω2 ,χ2 ,χ2 ,θ2 ,ω2 0.

+








 + =

−  − 

 

         (E76) 
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We have the following Lagrange function based on Eq. (E76): 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

g g p p w g p

t t t t t t t+1 t 1 t t t

t T

p p p p p P p g g g g g

t t t t t t t t t t t

t t t t it t it t

L c Pβ sβ q c P / α s / α q c P s w γ2 E E q q

    χ2 q χ2 q Q χ2 q αw χ2 q χ2 q Q

    θ2 E E θ2 E E ω2 w W ω2 w W

+



= − − + + + + − −  + − + −

+  − +  − +  − +  − +  −

+  − + +  − +  − + + −



(E77) 

Based on the KKT condition for the primal problem from the perspective of the 

merchant, the first-order derivative of the Lagrangian function with respect to energy 

storage discharging variables 
g

tq  and charging variable 
p

tq  must equal to zero, where,

t {1,2, ,T}  . Hence, the following equation holds. 

g g*(M )
t t

p p*(M)
t t

g g * g* g*

t t t 1 t tq =q

p p * p* P* p*

t t t 1 t t tq =q

L q c Pβ sβ γ2 χ2 χ2 0

L q c P / α s / α γ2 χ2 χ2 χ2 0

+

+

  = − − + + − =


  = + + − + + − =


        (E78) 

Assume g*(M)

tq 0 and p*(M)

tq 0  represent the optimal solutions of the primal 

problem from perspectives of merchant. Then, we will get  g*

tχ2 0= , p*

tχ2 0=  based on 

the complementary slackness conditions.   

In Eq.(E78), there are g* P* p*

t t tχ2 0, χ2 0 and χ2 0   .  

Merging two sub-equations in (E78) and the following inequation holds 

( )g p

t t tc c s 1/ α β P α Pβ P (1/ α β)+ +  −  − + = − −                 (E79) 

The Eq.(E79) describes the necessary condition for g*(M)

tq 0 and p*(M)

tq 0 . Hence, 

the sufficient condition for the exact relaxation of the complementary constraint of (E71) 

is shown as follows: 

( )g p

tc c s 1/ α β P (1/ α β)+ +  −  − −                           (E80) 
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Therefore, for all positive electricity prices, discharging/generating and 

charging/pumping cannot happen simultaneously for profit-maximizing merchants.  

 

Proof of Proposition 7.5: 

For ISO: considering the production tax credit (PTC), we get the following primal 

problem after relaxing the non-convex constraint p g

t tq q 0 = : 

( ) ( ) ( )
T M T T T

h h g g p p w

it it t t t

t 1 i=1 t 1 t 1 t 1

p p

t t t

ppp p

t tt

g g

t

min C g c sβ q c s / α q c s w

q αw 0,                               (χ )

0 q Q ,                               (χ ,χ )

0 q Q ,                        

s.t.

= = = =

 
 + −  + +  + − 

 

− 

 

 

   

gg

tt

ttt

g p

t t t t 1 t+1

M
h g p

it t t t t t

i=1

ttt

h h h

i it i

       (χ ,χ )

W w W,                             (ν , ν )

E q q E ,                     (γ )

g w q β q / α=D ,     (μ )

E E E,                                (θ ,θ )

G g G ,        

+

 

− + =

+ + −

 

 



 

itit

t 1,2, ,T   

                  (β ,β )











 










       (E81) 

The duality model of Eq. (E81) is shown as: 



355 

 

 

( )

( )

T
p gp g

t tt tt t

t 1

T M T
h h

i i t t 1 2 T 1 T+1itit
t 1 i 1 t 1

ppp p p

t t t ttt

ggg g

t t ttt

h

it itit

Q χ Q χ E θ E θ W ν W ν

max

G β G β μ D E γ E γ

for q : χ  χ χ μ / α γ c s / α,

for q : χ χ μ β γ c sβ,

for  g :  β β μ
s.t.

=

+

= = =

 
 +  +  +  +  +  

 
 
 +  +  +  −  +  
 

+ + − − = +

+ + + = −

+ +



 

   

 

h

t it

p w
ttt t t

ttt t t 1

p gp g p
t tt t t t t itt t it

C
t 1,2, ,T

for w :  αχ ν ν μ c s,

for E :  γ γ θ θ 0,

Where, χ ,χ ,θ , ν ,β 0;  χ ,χ ,χ ,θ , ν ,β 0.

+






 =

 
 − + + + = −

 − + + + =



 

,

   (E82) 

From merchant with storage and wind farm: After relaxing the non-convex 

constraint, the primal scheduling problem of the electricity merchant who manages both 

wind farms and energy storage when considering the PTC is shown as follows: 

( )

( )

T
g p

t g t t p t t w t

t 1

g g p p w

t t t t t t

t T

p p

t t t

pp p

t t

max (Pβ c sβ) q ( P / α c s / α) q (P s c ) w

min (c Pβ sβ)q (c P / α s / α)q (c P s) w

q αw 0,                               (χ )

0 q Q ,                               (χ ,

s.t.

=



− +  + − − −  + + − 

 − − + + + + − − 

− 

 





p

t

ggg g

t tt

ttt

g p

t t t t 1 t+1

ttt

χ )

0 q Q ,                               (χ ,χ )
  t 1

W w W,                            (ν , ν )

E q q E ,                     (γ )

E E E,                                (θ ,θ )

+







 
 

  

 − + =



 

 ,2, ,T

         (E83) 

Similarly, 
g pg pp

t tt tt t 2 t+1 T+1t tt t
{χ , χ , χ , χ , χ ,θ ,θ , ν , ν ,μ , γ , γ , γ } are the corresponding 

dual variables in Eq.(E83). Therefore, the duality problem of the primal problem in 

Eq.(E83) is obtained below:  
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T
p gp g

t tt t 1 2 T 1 T 1t t

t 1

ppp p p

t t t ttt

ggg g

t t ttt

p w
ttt t t

ttt t t 1

p g

tt t

max (Q χ Q χ E θ E θ W ν W ν ) E γ E γ

for q :  χ χ χ γ c P / α s / α,

for q :  χ χ γ c Pβ sβ,

s.t. for w :  αχ ν ν c P s,

for E :  γ γ θ θ 0,

Where,χ ,χ ,θ , ν

+ +

=

+

 +  +  +  +  +  −  + 

+ + − = + +

+ + = − −

− + + = − −

− + + + =



p gp
t tt t t t

t

0;χ ,χ ,χ ,θ , ν 0












  


 (E84) 

Similar to Appendix A, we can split the new duality problem of Eq.(C17) into two 

subproblems when the electricity merchant makes a perfect price forecast, or the ISO sends 

the cleared LMP to the merchant and assume *

t t tP μ LMP , t {1,2, ,T}= =   . Then, using 

the duality theorem, compare the best solution between *(S) p*(S) g*(S) *(S)

t t t tq {q ,q ,w }=  of ISO 

and *(M) p*(M) g*(M) *(M)

t t t tq {q ,q ,w }= of merchant. 

Thus, for  i 1,2, ,M  the following conclusion can be drawn: 

( )

h h* h

it t t it i

h h h* h

it t t i it i

h h* h

it t t it i

T M M T M
**h h* h* h h

it it t it i i itit
t 1 i 1 i 1 t 1 i 1

1) If  C P LMP  and g G ;

2) or If  C P LMP  and G g G ;

3) or If  C P LMP  and g G ;

there are C g P g G β G β .
= = = = =

  = =



= =  


 = =

 
− =  +  

 
   

         (E85) 

When ( )
T M M T M

**h h* h* h h

it it t it i i itit
t 1 i 1 i 1 t 1 i 1

C g P g G β G β
= = = = =

 
− =  +  

 
     is holding, we can achieve  

( ) ( ) ( )( )

( ) ( ) ( )( )

T
g g*(S) p p*(S) w *(S)

t t t t t t

t 1

g g*(M) p p*(M) w *(M)

t t t t t t

t T

c Pβ sβ q c P / α s / α q c P s w

c Pβ sβ q c P / α s / α q c P s w

=



− − + + + + − − 

= − − + + + + − − 




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The relations between the optimal actions  *(S) p*(S) g*(S) *(S)

t t t tq q ,q , w=  of ISO and  

 *(M) p*(M) g*(M) *(M)

t t t tq q ,q , w= of electricity merchant can be drawn: 

(1) For the merchant, if the forecasted price aligns with the actual LMPs (i.e.,

t tP LMP , t {1,2, ,T}=   ) and when the primal problem from individual profit-

maximizing has a unique optimal solution, we will get 

h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t it i t t t t t t

h h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t i it i t t t t t t

h

it t t

1) If  C P =LMP  and g G ,  then q q ,  q q ,w w ;

2) If  C P =LMP  and G g G ,  then q q ,  q q ,w w ;

3) If  C P =LMP  and g

 = = = =

=   = = =

 h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it i t t t t t tG ,  then q q ,  q q ,w w .







= = = =

 (E86) 

(2) If the lower bound of power generation of thermal generators is 0, that is 

 h

iG 0, i 1,2, ,M=   , then equation (E86) can be rewritten as 

 

h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t it i t t t t t t

h h* h p*(S) p*(M) g*(S) g*(M) *(S) *(M)

it t t it i t t t t t t

h h* p*(

it t t it t

1) If  C P =LMP  and g G ,  q q ,q q ,w w ;

2) If  C P =LMP  and 0 g G ,  q q ,  q q ,w w ;

3) If  C P =LMP  and g 0,  q

 = = = =

=   = = =

 = S) p*(M) g*(S) g*(M) *(S) *(M)

t t t t tq ,  q q ,w w .







= = =

    (E87) 

(3) For the merchant, if the forecasted price perfectly and when the primal problem 

from profit-maximizing in Eq.(E83) has multiple optimal solutions, we have   

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

T
g p

t g t t p t t w t

t 1

T
g*(S) p*(S) *(S)

t g t t p t t w t

t 1

T
g*(M) p*(M) *(M)

t g t t p t t w t

t 1

max LMPβ c sβ q LMP / α c s / α q LMP s c w

LMPβ c sβ q LMP / α c s / α q LMP s c w

LMPβ c sβ q LMP / α c s / α q LMP s c w

=

=

=

− +  + − − −  + + − 

= − +  + − − −  + + − 

= − +  + − − −  + + − 







 (E88) 

      Recall the proof of Appendix D, for    i 1, 2, ,M , t 1,2, ,T    , the relations 

between the optimal actions h*(S)

itg  of ISO and h*(M)

itg of generator-I are still holding.  
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(4) For the generator, if the forecasted price matches the actual LMPs, when the 

primal problem from individual profit-maximizing has a unique optimal solution:  

h h* h h*(S) h*(M)

it t t it i it it

h h h* h h*(S) h*(M)

it t t i it i it it

h h* h h*(S) h*(M)

it t t it i it it

1) If  C P =LMP  and g G ,  g g ;

2) If  C P =LMP  and G g G ,  g g };

3) If  C P =LMP  and g G ,  g g .

  = =



=   =


 = =

          (E89) 

(5) For the generator, if the forecasted price aligns with the actual LMPs, when the 

primal problem from individual profit-maximizing has multiple optimal solutions:  

( ) ( ) ( )
T T T

h h h h*(S) h h*(G)

t It It t It It t It It

t 1 t 1 t 1

max LMP C g LMP C g LMP C g
= = =

−  = −  = −            (E90) 

 

Proof of Scenaro for a Wind Farm and PSH Merchant With Two Linked Reservoirs 

The scheduling model for merchant operating a wind farm and PSH facility with 

two connected reservoirs is obtained:                

( ) ( ) ( )

( ) ( )( ) ( )

T T
r p r r p p w

t t t t t t t

t 1 t 1

T
r r p p w

t t t t t t

t T t 1

p p p p L

t t t t

r r r r U

t t t t

U
U U

t t

U
L L

t t

U r p U

t t t t 1

max P q β q / α c q c q P c w

min c Pβ q c P / α q c P w

q 0,   q Q ,q E ,  

q 0,  q Q ,q E ,  

E 0,E E , 

E 0,E E ,
s.t.

E q q E ,  

= =

 =

+

 
 − −  +  + −  

 

 
 − + + + −  

 

  

  

 

 

− + =

 

 

L r p L

t t t t 1

t

r p

t t

    

E q q E ,  

W w W,

q q 0.

+












 + − =

  

  =

         (E91) 
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The scheduling model from ISO’s perspective when considering a wind farm and 

the PSH facility with two connected reservoirs (i.e., both the upper reservoir and the lower 

reservoir) is shown below: 

( )
T M T T

h h r r p p w

it it t t t

t 1 i=1 t 1 t 1

p p p p L

t t t t

r r r r U

t t t t

UU U

t t

UL L

t t

h h h h

it i it i

M
h r p

it t t t t

i=1

U r p U

t t t t 1

min C g c q c q c w

q 0,   q Q ,q E ,

q 0,  q Q ,q E ,

E 0,E E

E 0,E E   

g G ,   g G ,   

s.t.

g q β q / α w =D ,  

E q q E ,

E

= = =

+

 
 + + +  

 

  

  

 

 

 

+ − +

− + =

  



L r p L

t t t t 1

t

r p

t t

  

q q E ,  

W w W,

q q 0.

+



















+ − =


 

  =

                      (E92) 

 

Proof of Discharging and Charging cannot happen at the same period.  

Because a PSH can only pump/discharge or /generate/release at one period, we have 

the following non-convex complementary constraint from the perspective of ISO/merchant: 

p r

t tq q 0 =                                (E93) 

The KKT condition is then used to examine sufficient conditions for an exact 

relaxation of p r

t tq q 0 =  in Eq. (E93). The ISO’s primal UCED problem and its 

corresponding dual variables for all constraints are: 
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( )
T M T T

h h r r p p w

it it t t t

t 1 i=1 t 1 t 1
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t t t t t t t
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min C g c q c q c w
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U U
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h h h h
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M
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U U r p
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      (θ1 ,θ1 )
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E E q q 0       +

−  − 

− +  − 

 
− + − − = 
 

− + − =



U

t 1

L L r p L

t 1 t t t t 1
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p r U L p1 p2 r1 r2 U
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where,χ1 ,χ1 ,β1 ,θ1 ,θ1 ,χ1 ,χ1 ,χ1 ,χ1 ,β1 ,θ1 ,

+

+ +− − + =

−  − 

L
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θ1 0.


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


















 

    (E94) 

Similarly, we have the following Lagrangian functions: 

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

T M T T
h h r r p p w

it it t t t

t 1 i=1 t 1 t 1

T M
h r p

t t it t t t

t 1 i=1

T
p p p1 p p p2 p L r r r r r r2 r U

t t t t t t t t t t t t t t

t 1

U U

t t t

L C g c q c q c w

μ1 D g q β q / α w

χ1 q χ1 q Q χ1 q E χ1 q χ1 q Q χ1 q E

θ1 E θ1

= = =

=

=

=  + + + 

   
+ − + − −    

   

 +  − +  − +  − +  − +  − +  −
 

+  − +

  

 



( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

T
U L

U U L L L L

t t t t t

t 1

T M
h h h h

it it i it it i

t 1 i=1

T
U U U r p L L L r p

t 1 t 1 t t t t 1 t 1 t t t it t it t

t 1

E E θ1 E θ1 E E

β1 g G β1 g G

[γ1 E E q q γ1 E E q q ω1 w W ω1 w W ]

=

=

+ + + +

=

  − +  − +  −
  

 +  − + + −
 

+ − + − + − − + +  − + + −







(E95) 

For the ISO’s model, the first-order derivative of the Lagrangian function with 

respect to PHES pumping/releasing variables p

tq and r

tq  must equal zero in the KKT 

condition for the primary issue, hence the following equation holds. 
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r r*(S)
t t

p p*(S)
t t

r r * r* r1* r2* U* L*

t t t t t t 1 t 1q =q

p p * p* p1* p2* U* L*

t t t t t t 1 t 1q =q

L q c u1 β χ1 χ1 χ1 γ1 γ1 0

L q c u1 α χ1 χ1 χ1 γ1 γ1 0

+ +

+ +

  = − − + + + − =


  = + − + + − + =


          (E96) 

Assume that at decision time t, r*(S)

tq 0 and 
p*(S)

tq 0 exist in the ideal solution of 

the primal problem from the perspective of ISO. We have r*

tχ1 0= and p*

tχ1 0=  by using 

the complementary slackness conditions. The following equation is obtained by adding two 

sub-equations in Eq.(E96). 

r p r1* r2* p1* p2* * *

t t t t t tc c χ1 χ1 χ1 χ1 u1 β u1 α 0+ + + + + − + =               (E97) 

Because  r1* r2* p1* p2*

t t t tχ1 ,χ1 ,χ1 ,χ1 0  are holding, equation (E97) can be rewritten as 

r p * * *

t t tc c u1 β u1 α u1 (1/ α β)+  − = − −                     (E98) 

Equation (E98) describes the necessary condition for r*(S)

tq 0 and 
p*(S)

tq 0  to 

hold. Hence, the sufficient condition for the exact relaxation of the complementary 

constraint of equation (E99) is 

r p *

tc c u1 (1/ α β)+  − −                             (E99) 

which is true when *

tu1 0 for all t∈T. Similarly, the primal problem from the 

perspective of the merchant with its corresponding constraint coefficients is shown below: 
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( ) ( )( ) ( )r r p p w

t t t t t t

t T

p p p p L p p1 p2
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r r r r U r r1 r2

t t t t t t t

UU U U
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min c Pβ q c P / α q c P w

q 0,  q Q 0,  q E 0      (χ2 ,χ2 ,χ2 )
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s.t.



 
− + + + − 

 

−  −  − 

−  −  − 

−  − 



U

L
L L L L
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U U r p U

t 1 t t t t 1
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t 1 t t t t 1

t t

                         

)

E 0,  E E 0                            (θ2 ,θ2 )

E E q q 0 (γ2 )

E E q q 0                           (γ2 )

w W,w W                        

  + +

+ +

−  − 

− + − =

− − + =

−  −  it it

p r U L p1 p2 r1 r2 U L

t t t t t t t t t t

  

       (ω1 ,ω1 )

where,χ2 ,χ2 ,θ2 ,θ2 ,χ2 ,χ2 ,χ2 ,χ2 ,θ2 ,θ2 0.
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
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






            (E100) 

We have the following Lagrange functions as shown in equation (E101): 

( )r r p p w
T t t t t t t

U U U r p L L L r pt 1
t 1 t 1 t t t t 1 t 1 t t t

p p p1 p p p2 p L
T t t t t t t t

r r r r r r2 r Ut 1
t t t t t t t

(c Pβ)q (c P / α)q (c P )w
L

γ2 (E E q q ) γ2 (E E q q )

χ2 ( q ) χ2 (q Q ) χ2 (q E )

χ2 ( q ) χ2 (q Q ) χ2 (q E )

=
+ + + +

=

 − + + + −
 =
 
+ − + − + − − + 

  − +  − +  −
 +
 
+  − +  − +  − 

+





U L
U U U U L L L L

T
t t t t t t t t

t 1
it t it t

θ2 ( E ) θ2 (E E ) θ2 ( E ) θ2 (E E )

ω1 ( w W) ω1 (w W)=

  − +  − +  − +  −
 
 
+  − + + − 



        (E101) 

In the KKT condition for the primal problem from perspectives of ISO, the first-

order derivative of the Lagrangian function with respect to PHES releasing/pumping 

variables r

tq  and p

tq must equal to zero, hence the following equation holds (∀t∈T) 

( )

( )

r*(M)r
t t

p p*(M)
t t

r r r* r1* r2* U* L*

t t t t t t 1 t 1q =q

p p p* p1* p2* U* L*

t t t t t t 1 t 1q =q

L q c P β χ2 χ2 χ2 γ2 γ2 0

L q c P α χ2 χ2 χ2 γ2 γ2 0

+ +

+ +

  = − − + + + − =


  = + − + + − + =


       (E102) 

Assume there exist r*(M)

tq 0 and p*(M)

tq 0  at time t in the optimal solution of the 

primal problem from perspectives of Owner. We have r*

tχ2 0= and p*

tχ2 0=  because of 
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the complementary slackness conditions. Summing two sub-equations (E102) yields the 

following equation 

( ) ( )r p r1* r2* p1* p2*

t t t t t tc Pβ c P / α χ2 χ2 χ2 χ2 0− + + + + + + + =            (E103) 

Because there are  r1* r2* p1* p2*

t t t tχ2 ,χ2 ,χ2 ,χ2 0 , thus, Eq.(E103) can be rewritten as 

r p

t t tc c P α Pβ P (1/ α β)+  − + = − −                       (E104) 

The equation (E104) describes the necessary condition for r*(M)

tq 0 and 

p*(M)

tq 0 . Hence, the sufficient condition for the exact relaxation of equation (E101) is 

r p

tc c P (1/ α β)+  − −                              (E105) 

which is true when tP 0 for all t∈T. Therefore, for all positive electricity prices, 

discharging/releasing and charging/pumping cannot happen simultaneously.  

The relationship of optimal economics dispatch between ISO and merchant 

From the respective of ISO: The primal model from the perspective of ISO is:  
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

                        (E106) 

Here, on the right-side hand of constraints,  

 p1 p2 r1 r2 U Lp r U L U U U L L L
t t tt t tt 2 t 1 T 1 2 t 1 T 1t t t t itt t it

χ ,χ ,χ ,χ ,χ ,χ ,θ ,θ ,θ ,θ ,β ,β ,μ ,γ ,γ ,γ ,γ ,γ ,γ , ν , ν+ + + + denotes the 

corresponding dual variables based on the constraints in Eq.(E106). Therefore, based on 

the relaxed primal problem in Eq. (E106), by using strong duality theory the duality 

problem is shown as:  
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p1 p2 r1p r U L

t t t t t tt t it

: χ χ χ μ β γ γ c β,
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for E : χ θ θ γ γ 0,

for E : χ θ θ γ γ 0,
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,
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  (E107) 

From the respective of electricity merchant: The primal objective function of 

electricity merchant with a PSH is shown as follows: 

( ) ( ) ( )( )

( ) ( )( ) ( )
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E 0,E E                          (θ ,θ )
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         (E108) 

In Eq. (E108), on the right-side hand of the constraints,  
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 
p1 p2 r1 r2 U Lp r U L U U U L L L

t t tt t t2 t 1 T 1 2 t 1 T 1t t t tt t
χ , χ , χ , χ , χ , χ ,θ ,θ ,θ ,θ , γ , γ , γ , γ , γ , γ , ν , ν+ + + +  are the 

corresponding dual variables. Therefore, for the primal problem in Eq.(E108), the duality 

problem is obtained below: 
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t t 1 t 1 tt tt
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  (E109) 

Compare these two duality problems 

       Similarly, when the *

t tμ μ= is fixed, the new duality problem can be broken into 

two subproblems: 

Subproblem one: 
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  (E110) 

Subproblem two: 

( )
T M

h h

i i itit
t 1 i 1

* h

t ititit

tt

max G β G β

β β μ C

s.t.

β 0,β 0;

= =

 + 

 + + =


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



                          (E111) 

Let *

t tP μ= , which means the electricity merchant can make perfect prices 

prediction, or the ISO sends the LMPs to the merchant. Similar with that above, it can be 

found that subproblem one of the new duality problems from the ISO perspective is 

equivalent to the duality problems from the electricity merchant perspective due to the 

same objective function and the same constraints. Thus 
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Use the duality theorem to compare the optimal solution for

 *(S) p*(S) r*(S) *(S)

t t t tq q ,q ,w= and  *(M) p*(M) r*(M) *(M)

t t t tq q ,q ,w= from the ISO and the electricity 

merchant perspectives, respectively.  

From ISO’s perspective: 
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h h r r(S) p p(S) w (S)

it it t t t

t 1 i=1 t 1 t 1

T
p1 p2 r1 r2 U U L L

p L r U
t t ttt tt t t t

t 1

U U U U L L L L

1 2 T 1 T 1 1 2 T 1 T 1

Primal: min C g c q c q c w

Q χ E χ Q χ E χ E θ E θ W ν W ν
Dual: max

E γ E γ E γ E γ

= = =

=

+ + + +

  
 + + +  

 


 
 +  +  +  +  +  +  +  

 
 
−  +  −  +  

  





 

From merchant’s perspective:   

( ) ( )( ) ( )

( )

r r(M) p p(M) w (M)

t t t t t t

t T

T
p1 p2 r1 r2 U U L L

p L r U
t t ttt tt t t t

t 1

U U U U L L L L

1 2 T 1 T 1 1 2 T 1 T 1

Pr imal : min c Pβ q c P / α q c P w

Q χ E χ Q χ E χ E θ E θ W ν W ν
Dual : max

E γ E γ E γ E γ



=

+ + + +

  
− + + + −  

 


 
 +  +  +  +  +  +  +  

 
 
−  +  −  +  




 

From the optimality theorem of the duality problem (that is, the optimal objective 

function value of the original problem and the duality problem are identical), we can get:  
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( )

( )

( )

T M T T
h h* r r*(S) p p*(S) w *(S)

it it t t t

t 1 i=1 t 1 t 1

T
p1* p2* r1* r2* U U* L L* **p L r U

t t ttt tt t t t

t 1

T M T
**h h * U U* U U* L L

i i t t 1 2 T 1 T 1 1 2itit
t 1 i 1 t 1

C g c q c q c w

Q χ E χ Q χ E χ E θ E θ W ν W ν

G β G β μ D E γ E γ E γ

= = =

=

+ +

= = =

 + + +

 +  +  +  +  +  +  + 

=

+  +  +  −  +  − 

  



 

( ) ( )( ) ( )

( )

* L L*

T 1 T 1

r r*(M) p p*(M) w *(M)

t t t t t t

t T

T
p1* p2* r1* r2* U U* L L* **p L r U

t t ttt tt t t t

t 1

U U* U U* L L* L L*

1 2 T 1 T 1 1 2 T 1 T 1

E γ

c Pβ q c P / α q c P w

Q χ E χ Q χ E χ E θ E θ W ν W ν

E γ E γ E γ E γ

+ +



=

+ + + +




 
 
 
 
 +  
 

− + + + −

 
 +  +  +  +  +  +  +  

=  
 
−  +  −  +  























 

We also have the following energy balance equation: 

M
h* g*(S) p*(S) *(S)

it t t t t

i 1

g q β q / α w D
=

+ − + = , that is, electricity supply matches demand.  

        Similarly, by the equation above, there are the following conclusion for 

   i 1, 2, ,M , t 1,2, ,T     holding: 

( )

h h* h

it t t it i

h h h* h

it t t i it i

h h* h

it t t it i

T M M T M
**h h* h* h h

it it t it i i itit
t 1 i=1 i=1 t 1 i 1

1) If  C P =LMP  and g G ;

2) or If  C P =LMP  and G g G ;

3) or If  C P =LMP  and g G ;

there are C g P g G β G β .
= = =

  =



=  

  =

 
− =  +  

 
   

         (E112)                    

When ( )
T M M T M

**h h* h* h h

it it t it i i itit
t 1 i=1 i=1 t 1 i 1

C g P g G β G β
= = =

 
− =  +  

 
     ,we can achieve  

( ) ( ) ( )( )

( ) ( ) ( )( )

T
r r*(S) p p*(S) w *(S)

t t t t t t

t 1

r r*(M) p p*(M) w *(M)

t t t t t t

t T

c Pβ q c P / α q c P w

c Pβ q c P / α q c P w

=



− + + + −

= − + + + −





, 
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which is the objection function of primal problem from merchant perspective. In this way, 

the merchant will get the optimal profit. The relations between the optimal actions 

 *(S) p*(S) r*(S) *(S)

t t t tq q ,q ,w=  of the ISO and  *(M) p*(M) r*(M) *(M)

t t t tq q ,q ,w= of the electricity  

merchant can be drawn: 

(1) For the merchant, if the forecasted LMPs equal the actual LMPs, and when the 

primal problem from individual profit-maximizing in Eq.(E108) has a unique optimal 

solution:  

   

   

h h* h p*(S) r*(S) *(S) p*(M) r*(M) *(M)

it t t it i t t t t t t

h h h* h p*(S) r*(S) *(S) p*(M) r*(M) *(M)

it t t i it i t t t t t t

h h* h

it t t it i t

1) If  C P =LMP  and g G ,  q ,q ,w q ,q ,w ;

2) If  C P =LMP  and G g G ,  q ,q ,w q ,q ,w ;

3) If  C P =LMP  and g G ,  q

 = =

=   =

 =    p*(S) r*(S) *(S) p*(M) r*(M) *(M)

t t t t t,q ,w q ,q ,w .






 =


 (E113) 

(2) For the merchant, if the forecasted LMPs align with the actual LMPs, and when 

the primal problem from individual profit-maximizing in Eq.(E108) has multiple optimal 

solutions:  

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

T
r p r r p p w

t t t t t t t

t 1

T
r*(S) p*(S) r r*(S) p p*(S) w

t t t t t t t

t 1

T
r*(M) p*(M) r r*(M) p p*(M) w

t t t t t t t

t 1

max LMP q β q / α c q c q LMP c w

LMP q β q / α c q c q LMP c w

LMP q β q / α c q c q LMP c w

=

=

=

 − −  +  + −

=  − −  +  + −

=  − −  +  + −







      (E114) 
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