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ABSTRACT 

Distributed Solar Generation (DSG) using small-scale Photo-Voltaic (PV) is an 

evolving technology with increasingly growing market penetration due to its significant 

benefits to consumers and broader power systems. DSG is sustainable, provides reliability, 

and is cost-effective where solar energy is abundant. However, the increasingly growing 

adoption of DSG creates uncertainties in forecasting electric power demand and market 

behavior. It also causes concerns of a “utility death spiral”. To this end, the goal of this 

research is to critically analyze the diffusion and benefits of DSG in the electric power 

infrastructure as a complex System-of-Systems (SoS). Specifically, this dissertation 

addresses the following five objectives: (1) investigating the relationship between the 

electric power sector and socio-economic parameters; (2) developing a complex simulation 

of electric power infrastructure and market impacted by the adoption of DSG; (3) exploring 

dynamic pricing by generating companies and the occurrence of a utility death spiral; (4) 

studying the impact of incentives on the adoption of DSG using complex sensitivity 

analysis; and (5) examining the benefits of DSG in reducing the vulnerability of the power 

infrastructure against natural disasters. As such, and as shown from the results, this 

research provided a novel holistic investigation of the complex relationship between DSG 

adoption and the electric power market and infrastructure in a multidisciplinary approach 

that combines infrastructure engineering, electric power engineering, economics, social 

science, machine learning, and computer modeling. The findings should benefit 

researchers, power system operators, and policy makers towards a sustainable DSG 

diffusion.  
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1. INTRODUCTION 

1.1. OVERVIEW 

Electric power is an essential aspect of modern life. Uninterrupted supply of electric 

power is even critical for many industries and infrastructures such as medical facilities for 

example. As such, there is a huge demand for electric power, which was estimated to be 

3.8 trillion kWh in the US in 2020 (EIA, 2021a). The electric power infrastructure is a 

major element of national economies and is associated with highly-developed nations (Ali 

& El-adaway, 2020). However, there are concerns that electric power infrastructure in the 

US is aging and struggling to reliably meet demand. The American Society of Civil 

Engineering (ASCE) rated the energy infrastructure in the US with a C- in their most recent 

2021 “Report Card for America’s Infrastructure” (ASCE, 2021). The previous report card, 

which was in 2017, had a higher rating of D+ (ASCE, 2017). The electric power 

infrastructure in the US is aging. Most of the electrical transmission and distribution lines 

were built in the ’50s and ’60s with a life expectancy of 50 years. The deterioration of the 

electric power infrastructure in combination with other causes such as severe weather 

events and acts of vandalism was among the causes of 3,571 reported power outages in 

2015, with an average duration of 49 minutes (ASCE, 2017). Weather-related events cause 

a major threat to the electric power grid. To add, although investment in the power grid has 

increased recently, there is a huge investment gap needed to reach a reliable system. This 

gap is estimated to reach $209 billion by 2029 and increase to $338 billion by 2039 (EBP 

US, 2020). To sum up, there is a need for research that investigates technologies that can 

support and modernize the electric power infrastructure.   
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1.1.1. Distributed Solar Generation (DSG). Distributed Energy Resources (DER) 

or Distributed Generation (DG) refers to small-scale power-generating units that are 

located near or at end-consumers. DER or DG can offer many advantages which may 

include being cost-effective and offering reliability as a backup system. DG systems are 

even essential for off-grid applications where there is no access to the grid. Distributed 

Solar Generation (DSG) refers to small-scale solar Photo-voltaic (PV) systems which are 

increasingly popular and accounted for 36% of the total solar generation capacity in the 

US in 2021, as shown in Figure 1.1 (EIA, 2022a, 2022b). 

 

 
 

Figure 1.1. Distribution of solar PV generation capacity in the US in 2021. 

 

1.1.2. Benefits of DSG.  DSG offers many benefits, as shown in Figure 1.2, that 

have been a driver for their increasing adoption. To begin, electric power generated from 

solar resources is renewable and sustainable, which is a major motivator for their growth 

among increasing global concerns about the environmental impact of fossil fuels and global 
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warming.  Second, DSG can increase the reliability of the electric power grid. This is a 

major advantage where electric power from the conventional electric grid is unreliable, i.e., 

there are frequent power outages. It is also important in locations that are threatened by 

natural disasters. As such, DSG can improve the resilience of the electric power grid 

(Driesen & Katiraei, 2008). Finally, installing DSG can be a feasible financial decision. 

The cost of solar PV has been decreasing gradually over the years, which increases their 

economic feasibility (Barbose & Darghouth, 2019). In addition, the cost of batteries has 

also been decreasing in the past years which enables storing power in absence of sunlight 

(Goldie-Scot, 2019). DSG systems can be especially feasible in locations where (1) 

sunlight is abundant; (2) the cost of conventional power from the grid is expensive 

compared to the cost of purchasing and maintaining a DSG system; and (3) there may be 

federal or governmental incentives that may help relieve the financial burden of purchasing 

and installing a solar system (Crago & Chernyakhovskiy, 2017). A combination of those 

reasons has led to increased adoption in some locations such as California for example 

(EIA, 2015). To conclude, DSG can have many benefits to consumers and can also have 

many broader economic benefits (Pitt & Michaud, 2015). Those benefits have been a 

motivator for their increasing adoption.  

1.1.3. Barriers Caused by DSG Adoption. Despite its many benefits to consumers 

and broader motivators, the increasing adoption of DSG creates several concerns, , as 

shown in Figure 1.2, that are worth investigating. To begin, the adoption of DSG has 

created uncertainty in estimating future demand, whether on a day-ahead basis or in the 

long term. As such, system operators are faced with the problem of estimating future 

demand. Independent System Operators (ISOs) are regional organizations that coordinate 
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and optimize generation across wide generation areas by matching generation and demand 

considering system capability and the stakeholders in the electric power market (Greer, 

2012). The integration of DSG creates technical problems as concerned from the electrical 

engineering aspect (Milano et al., 2007; Mori et al., 2017). On the broader level, the 

growing adoption of DSG creates uncertainty in estimating future demand for ISOs to 

manage the electric power grid and the market. Also, the uncertainty in estimating future 

demand creates uncertainty in estimating long-term demand growth which is needed to 

plan for future grid expansion plans regarding generation, transmission, and distribution. 

Understanding the potential problems created by the increasing adoption of DSG requires 

an understanding of how wholesale power markets operate.  

 

 

Figure 1.2. Benefits and problems associated with DSG. 

 

1.1.4. Wholesale Power Market. In many geographic regions in the US, the 

wholesale power market is managed by ISOs or Regional Transmission Operators (RTOs), 
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as shown in Figure 1.3. These markets include California Independent System Operator 

(CAISO), Midcontinent (MISO), New England (ISO-NE), New York (NYISO), PJM, 

Southwest Power Pool (SPP), and Texas (ERCOT). Other regions, which are the northwest, 

southwest, and southeast power pools are operated as traditional wholesale power markets. 

In such cases, the utilities operate the electric power system and provide power to 

consumers, i.e., the utilities own the generation, transmission, and distribution systems.  

 

 

Figure 1.3. Wholesale power markets in the US (FERC, 2021). 

 

The creation of ISOs was proposed and provided by the Federal Energy Regulatory 

Commission (FERC) in 1996 to manage the operation of the electric power market and 

provide non-discriminatory access to the grid for generators and customers (Greer, 2012). 

The ISOs manage and optimize the planning and transactions between sellers and buyers 

in the wholesale power market as illustrated in Figure 1.4.  
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Figure 1.4. Illustration of a wholesale power market with DSG adoption. 

 

Sellers are generating companies. Buyers are utilities or Load Servicing Entities 

(LSEs) that buy power from generating companies – and/or generate power at their owned 

generators – and sell electric power to the end consumers at homes, commercial customers, 

factories, etc.  ISOs or RTOs operate by relying on Locational Marginal Prices (LMPs) at 

the location of injection or withdrawal from the electric power grid (Sun & Tesfatsion, 

2007b). In other words, the price of power payable by LSEs or owed to generating 

companies depends on their location on the electric grid and the time of generation or 

consumption. This regional management and optimization task is managed by ISOs. 

Addressing the concern of the impact of the DSG on the electric power grid required an 

investigation of how DSG is integrated and interacts with the wholesale power market 

considering that consumers have the option to install DSG as shown in Figure 1.4.  

1.1.5. Utility Death Spiral. With the growing adoption of DSG, concerns were 

made regarding the possibility of a “Utility Death Spiral”, which refers to a continuous 

loop where companies would need to repeatedly increase electricity rates to cover the 
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overhead cost of generation and transmission with lower demand for electric power 

(Denning, 2013). An illustration of the death spiral loop is shown in Figure 1.5.  

 

 

Figure 1.5. Illustration of a utility death spiral. 

 

A utility death spiral is specific to market structures that rely on volumetric sales to 

cover the cost of operation and maintenance (Felder and Athawale 2014). As such, the 

concern is that the increasing penetration of DSG would be bi-directionally causing a 

continuous increase in electric power rates.  

It is argued that a catastrophic death spiral would require a combination of high 

DSG adoption rates, increasing utility prices, and favorable consumer financials that is 

unique and not the general case (Laws et al 2017). Previous research has shown that the 

effect can be managed and is even unlikely to become catastrophic. For example, an agent-

based simulation by Muaafa et al. (2017) showed that the sudden impact of a utility of a 

death spiral may be overblown and the DSG adoption is likely to increase smoothly rather 
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than suddenly. Based on findings in previous research, it is expected that utilities will likely 

have enough time to revise their business models with innovative pricing structures 

controlling the rate of DSG adoption.  

1.1.6. Effect of Pricing Mechanisms. In that matter, electric power companies are 

encouraged to replan their financials and consider innovative pricing mechanisms to 

consider and direct DSG adoption. With appropriate mechanisms and policy interventions 

such as time-of-use pricing and net metering, for example, the possibility of a death spiral 

can be circumvented and the rate of DSG adoption can be made sustainable and valuable 

to the resilience of the electric power grid (Castaneda et al., 2017; González & Rendon, 

2022). Interestingly, pricing structures such as net metering which reward DSG adopters 

can reduce undesirable defection rates and the associated risk of a death spiral, while other 

pricing structures that do not compensate DG may accelerate defection from the grid (Laws 

et al., 2017).  

A concern related to the increasing prices associated with the increasing DSG 

adoption is that customers who do not have DSG will be most affected as their electric bills 

would reflect a larger portion of the electric grid fixed fees, if calculated by demand 

volume, compared to DSG adopters. As such, non-adopters may be severely impacted by 

a utility death spiral. Other research suggests imposing buyback prices and subscription 

fees on consumers operating DSG to share the fixed cost of the electric power grid 

effectively alleviating the burden on utilities and slowing down or stopping a death spiral 

(Farajbakhsh Mamaghani & Çakanyıldırım, 2021). Fixed income-based charges and 

connection fees are also considered to improve energy equity while policy incentives such 
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as net metering may increase disparity by favoring higher-income communities that can 

afford DSG systems (Chen et al., 2022). 

1.2. PROBLEM STATEMENT 

Many previous research efforts have investigated many aspects related to the 

electric power infrastructure and wholesale power markets with an emphasis on the effect 

of the increasing adoption of DSG. Research in that domain is guided by many different 

research fields and disciplines. However, there is still a need for a holistic exploration of 

the impact of DSG on the electric power infrastructure and how to capitalize on its benefits. 

Addressing this research need requires a multidisciplinary approach that combines 

infrastructure engineering, electric power engineering, economics, social science, and 

computer modeling. The following specific problem statements are addressed in this 

research. 

1. There is a need to investigate the relationships and causality between electric power 

consumption and socioeconomic parameters such as Gross Domestic Product 

(GDP), human development, and corruption. Addressing this need would support 

the fact that the electric power infrastructure is a major element of the socio-

econometrics of nations. Improving the condition of the electric power 

infrastructure is an important target for the nation.  

2. There is a need to investigate the impact of DSG on the electric power infrastructure 

and markets as a complex System-of-Systems (SoS). The increasing adoption of 

DSG means that customers can choose to install DSG based on an economic 

decision comparing the price of conventional electric power from the grid vs the 
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cost of purchasing and installing solar resources. There is a need to simulate this 

relationship as a complex system, which would enable the exploration of DSG 

adoption and allow for further experiments.  

3. There is a need to study how the increasing adoption of DSG interacts with pricing 

mechanisms by generating companies, and if this interaction may develop into a 

concerning utility death spiral. The concern is that a feedback loop may occur 

where, as consumers choose to install DSG systems, generating companies and 

utilities may need to increase electricity rates in response to reduced demand, which 

would motivate more DSG adoption. This behavior can be studied by simulating 

this complex relationship considering the profit-seeking behavior of generating 

companies.  

4. There is a need to investigate how incentives that promote the installation of DSG 

affect their adoption rates, and how to capitalize on their benefits. The interaction 

between wholesale power market economics and DSG adoption is a complex 

relationship that may create behavior that is not necessarily simple or intuitive. As 

such, the effect of incentives can be studied using a complex simulation to study 

the locational effect of different incentives. 

5. Finally, there is a need to investigate the benefits of DSG in decreasing the 

vulnerability of the electric power system to natural disasters. DSG can improve 

the reliability of the grid because it can supply power to consumers impacted by 

electric power interruption following natural disasters. Specifically, this part 

addresses the possibility of optimizing the location and size of DSG resources to 

mitigate the impact of natural disasters on transmission lines.  
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1.3. RESEARCH SIGNIFICANCE AND OUTLINE 

This research is distinctive from similar research regarding focus, methods, and 

purpose. The framework proposed and applied in this research is intended to provide a 

holistic understanding of the effect of the adoption of DSG on the power infrastructure by 

developing a complex SoS that simulates agents in the electrical power infrastructure and 

market. This research combines multi-disciplinary perspectives from infrastructure 

engineering, electrical engineering, the economics of supply and demand, social sciences, 

complex systems simulation using ABM, optimization, and machine learning. The 

outcomes of this framework can assist researchers, system operators, and decision-makers 

in exploring the complex effect of DSG on the wholesale power market and infrastructure 

and promoting its sustainable diffusion. The research outline is divided into five parts as 

explained thoroughly in Table 1.1. 
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Table 1.1. Research objectives, methodologies, and outcomes. 

Objective Methodology Outcome 
Objective 1: 
Investigate the relationship 
between the electric power 
sector and socio-economic 
parameters. 

Statistical Analysis using 
Panel Regression, 
Correlation Analysis, and 
Granger Causality Testing. 

Developing an 
understanding of the 
relationships and causality 
between electric power 
consumption and 
socioeconomic parameters 
such as Gross Domestic 
Product (GDP), human 
development, and 
corruption. 

Objective 2: 
Study the holistic effect of 
the adoption of DSG on the 
power infrastructure and 
market as a complex 
system. 

Agent-Based Modeling 
(ABM) combined with 
Supply and Demand 
Economics and Optimal 
Power Flow Analysis. 

Creating a complex System-
of-Systems simulation that 
creates the emergent 
behavior of the impact of the 
penetration of DSG on the 
power infrastructure and 
markets. 

Objective 3: 
Explore dynamic pricing in 
power market utilities 
considering the effect of the 
adoption of DSG and the 
emergence of a Death 
Spiral. 

ABM and Machine 
Learning (ML) using 
Reinforcement Learning 
(RL). 

Enabling the agents in the 
ABM model to dynamically 
price electric power and 
understanding the risk of a 
Death Spiral on electric 
power markets and 
infrastructure. 

Objective 4: 
Examine the effect of 
policy incentives on the 
adoption of DSG. 

ABM combined with 
Sensitivity Analysis of 
policy incentives to install 
DSG. 

Analyzing and 
understanding the effect of 
policy incentives on 
consumer decision to adopt 
DER and its effect on the 
power infrastructure. 

Objective 5: 
Inspect the benefits of DER 
in improving power system 
reliability against natural 
disasters. 

ABM combined with 
Evolutionary Optimization 
and Reliability Testing. 

Performing reliability testing 
and optimization of the 
amount and location of DER 
to mitigate the effect of 
natural disasters. 
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2. BACKGROUND 

2.1. RELATIONSHIP BETWEEN THE ELECTRIC POWER SECTOR AND 
SOCIOECONOMIC INDICATORS 

The International Energy Agency (IEA, 2020) estimates the electricity 

consumption of the world has increased from 10 GWh in 1990, to 24 GWh in 2018, which 

represents a huge increase of about 127%. Electric power is a critical commodity in the 

modern world. An interrupted supply of power is even indispensable for many industries 

and critical infrastructures such as medical facilities. Population growth, development, 

industrialization, and technological advancements are all some of the factors that magnify 

the growing demand for electric power. Several socio-economic factors are bi-directionally 

affected by the performance of the power sector. The following sections focus on three 

aspects: Economic Growth, Human Development, and Corruption. 

2.1.1. Economic Growth. Many research efforts have shown that there is a 

relationship between electric power consumption and economic growth, represented by the 

Gross Domestic Product (GPD), and National Income. However, the findings are mixed 

regarding the relationship between them. For example, Shiu and Lam (2004) found that 

there is a unilateral causality between electricity consumption and the Gross GDP in China 

between 1971 and 2000. Ozturk and Acaravci (2010) found that there is no co-integration 

between energy consumption and the GDP in Albania, Bulgaria, Hungary, and Romania. 

Mozumder and Marathe (2007) showed a unilateral relationship between GDP and 

electricity consumption per capita in Bangladesh. Ghosh (2002) found a unidirectional 

causality between economic growth and electricity consumption in India. Altinay and 

Karagol (2005) found a unidirectional relationship between electricity consumption and 
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income in Turkey. To summarize, many researchers discovered a link between electrical 

power consumption and economic growth. However, the outcomes of their causality are 

mixed. 

2.1.2. Human Development. Numerous studies have looked into the connection 

between electrical energy use and human development and have discovered evidence of 

long-term causality. For example, Niu et al. (2013) conducted an analysis of panel data for 

50 countries from 1990 to 2009, using proxies for human development, such as GDP per 

capita, consumption expenditure, urbanization rate, life expectancy at birth, and adult 

literacy rate. It was found that electricity consumption and human development cause each 

other in the long run, with varying trends for each indicator depending on the income of 

the country. In another research, Ouedraogo (2013) also found a long-term relationship 

between energy, electricity, and human development, after studying data from 15 countries 

between 1988 and 2008. Overall, previous research indicates that there is a long-term 

connection between electric power use and human development. Low-income nations 

appear to be significantly impacted by this relationship, whereas high-income nations may 

have adopted higher standards of human development and levels of electricity consumption 

that are less interdependent. 

2.1.3. Corruption. Another area of research studied corruption and crime in the 

electric power sector. According to some estimates, a sizeable amount of electricity is 

produced but not billed because of fraud and theft and is instead recorded as power loss. 

Researchers have studied the effect of corruption in several countries around the world, 

such as Nigeria (Olukoju, 2004), Bangladesh (Alam et al., 2004), China (Yeh & Lewis, 

2004), Lebanon (Abdelnour, 2003), and India (Min & Golden, 2014). For example, In Uttar 
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Pradesh, one of India’s most populated cities, it is reported that a third of the electricity is 

never billed, summing up to about 300 million MWh. It is suggested that politicians benefit 

from relaxed power losses to win elections (Min & Golden, 2014). Although research 

indicates that there are theft-related power losses everywhere in the world, it is predictable 

that these losses are closely correlated with political instability, government inefficiency, 

and accountability (T. B. Smith, 2004). 

2.2. PREVIOUS RESEARCH ON DER AND DSG 

A significant amount of previous research from different perspectives and 

disciplines has been directed toward the uncertainties associated with DER, DSG, and 

related topics such as Microgrids and Virtual Power Plants (VPP) (Mahmud et al., 2020; 

Nosratabadi et al., 2017). Research from the electric engineering perspective has studied 

topics such as scheduling, grid control, and performance. Due to the increasing use of DSG, 

several optimization algorithms have been introduced to address the modified generation 

and consumption, using stochastic and deterministic formulations. Such models were 

developed to solve problems related to scheduling, uncertainty, demand response, 

emissions, and other aspects that are aggravated due to the adoption of DER and DSG 

(Nosratabadi et al., 2017; Pudjianto et al., 2007). Other research efforts focused on the 

aspects related to energy policies. Burger and Luke (2017) presented an empirical review 

of business models for deploying DER. The review shows that regulations and policies 

play a significant role in the viability of DER business models. The review advised 

avoiding regulatory and policy dependence. Many countries and states have some 

incentives that promote the installation of distributed solar resources. However, many 
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policies and incentives are not perfectly implemented to achieve their intended goals. For 

example, the adopters in the US can benefit from the Federal Solar Investment Tax Credit, 

which is the main federal policy that supports Solar PV in the US (IRS, 2021a). However, 

most solar developers lack the tax liability requirement to fully utilize this tax credit (S. 

Zhang, 2016). Also, the broader policies and regulations related to electric power markets 

can be interdependent with the penetration of DSG such that the outcomes are unexpected. 

Electric power markets are currently designed for centralized power generators and 

distributors. However, DSG represents a shift to distributed local management, automation, 

and control, instead of centralized control requiring careful forecasting and planning of 

future DSG diffusion and its effect on the electric power market and infrastructure. 

2.3. SIMULATION OF COMPLEX SYSTEMS USING ABM 

Agent-Based Modeling (ABM) is one of the techniques for creating complex SoS 

simulations. An agent is defined as a simple system that (1) follows simple rules and 

behavior protocols, (2) interacts and affects the other agents in the SoS, and (3) adapts and 

learns (M. S. Eid & El-adaway, 2017c, 2017c, 2017e). The system results in complex 

emergent behavior that evolves from the interaction of the simple rules implemented into 

the agents. This enables a bottom-up approach to simulate complex SoS interdependency. 

ABM excels in creating an emergent behavior of the system as a whole from the bottom-

up approach of defining multiple agents. This behavior can describe non-linearity, is not 

controlled by a single element, and is not necessarily easily deducted from the single 

components of the system (Siegfried, 2014).  
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ABM has proven applications in many fields, including systems engineering, social 

studies, economics, and many others. Previous papers have successfully integrated ABM 

to address research needs in several disciplines. An overview of research examples is 

provided in Table 2.1. ABM has also been proven as a technique to simulate wholesale 

power markets (Sun & Tesfatsion, 2007a, 2007b). In a wholesale power market, the 

electricity between the Generating Companies (GenCos) and the Load Servicing Entities 

(LSEs) is managed by an Independent System Operator (ISO). ISOs facilitate open access 

to transmission, operate the transmission system, and foster competition for electricity 

generation among the wholesale market participants. In other traditional wholesale power 

markets, utilities are responsible for system operations, management, and, typically, 

providing power to consumers (FERC, 2021). The shift to a decentralized, distributed, 

generation represents the shift towards a more complex system of systems, which can be 

simulated using ABM (Clausen et al., 2017; Howell et al., 2017). 

 

Table 2.1. Example of previous ABM-related research in civil engineering. 

Research Area Objective References 

Infrastructure 
Management 

Simulate and assess integrated 
management of infrastructure 
networks 

(Batouli & Mostafavi, 2014; 
Bernhardt & McNeil, 2008; 
Pereyra et al., 2016) 

Test innovative financial structures 
for infrastructure projects 

(Mostafavi, Abraham, & 
DeLaurentis, 2012; Mostafavi, 
Abraham, Delaurentis, et al., 
2012; Mostafavi et al., 2014; 
Mostafavi & Abraham, 2010) 
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Table 2.1. Example of previous ABM-related research in civil engineering (cont.). 

Research Area Objective References 

Energy 
Conservation 
and Simulation 

Model occupant behavior in 
buildings 

(Abraham et al., 2018; Azar & 
Menassa, 2012) 

Study energy conservation in 
buildings 

(Azar & Al Ansari, 2017) 

Model the interaction between 
occupants and appliances 

(Carmenate et al., 2016) 

Investigate the effect of lightning 
sensors on energy use 

(Norouziasl et al., 2019) 

Transportation 
Engineering 
and Urban 
Planning 

Create traffic simulations (L. Zhang et al., 2013) 

Simulate roundtrip bus transit lines (Huang et al., 2019) 

Study the interaction between 
travel behavior and urban forms 

(Du & Wang, 2011) 

Study the effect of driverless 
vehicles on energy use, emissions, 
and parking use 

(Harper et al., 2018) 

Assess walkability in cities (Yin, 2013) 

Optimize road surface maintenance 
management based on travel time 
and maintenance costs 

(B. Yu et al., 2019) 

Simulating electric vehicles such as 
investigating the patterns of electric 
vehicle ownership and driving 
activity to enable strategic 
deployment of charging 
infrastructure 

(Sweda & Klabjan, 2015) 

Water 
Management 

Simulating water resources 
planning problems 

(Berglund, 2015) 
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Table 2.1. Example of previous ABM-related research in civil engineering (cont.). 

Research Area Objective References 

Water 
Management 

Investigate the effect of various 
factors such as demographics, 
household characteristics, and 
social influence on the adoption of 
residential water conservation 
technology 

(Rasoulkhani et al., 2017, 
2018) 

Assess the behavior of users for 
water demand management in river 
basins 

(Xiao et al., 2018) 

Project 
Scheduling, 
Performance, 
And 
Productivity 
Analysis 

Simulate compensatory 
management to achieve distributed 
coordination of schedule changes 

(Kim & Paulson, 2003) 

Study the impact of crew 
composition and project schedule 
on knowledge sharing and task 
durations 

(Kiomjian et al., 2020) 

Simulate the interactions between 
construction crews for decision-
making and performance analysis 

(Kedir et al., 2020) 

Investigate the interaction of 
human and organizational factors 
to study construction performance 

(Du & El-Gafy, 2012) 

Simulating randomness and 
uncertainty in crew performance 
and motivation 

(Raoufi & Fayek, 2018, 2020) 

Evaluate collaboration between 
inter-organizational teams 

(Son & Rojas, 2011) 

Simulate construction sites to 
evaluate labor efficiency 

(Watkins et al., 2009) 

Evaluate the uncertainty and 
performance of integrated project 
management in complex projects 

(J. Zhu & Mostafavi, 2015, 
2016, 2018) 
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Table 2.1. Example of previous ABM-related research in civil engineering (cont.). 

Research Area Objective References 

Construction 
Safety 

Simulating workers’ unsafe 
behavior to study socio-cognitive 
processes and their interaction with 
the environment in shaping safety 
behaviors 

(Choi & Lee, 2018) 

Bidding Study bidding strategies, 
interactions between bidders, and 
learning capabilities 

(Ahmed et al., 2016; Asgari, 
2016; Awwad et al., 2015; 
Elsayegh et al., 2020) 

Simulate negotiations in public-
private partnership projects 

(L. Zhu et al., 2016) 

Disaster 
Management 
and 
Evacuation of 
Buildings 

Investigate disaster recovery 
strategies and economic resilience 

(Ahmed et al., 2016; M. S. Eid 
& El-adaway, 2017a, 2017b, 
2017d, 2018) 

Study the impact of infrastructure 
service losses due to disasters on 
households 

(Esmalian et al., 2019) 

Simulate the emergency response 
of ambulances during disasters 

(Koch et al., 2020) 

Analyze building evacuation (Z. Liu et al., 2016; Pan et al., 
2012; J. L. Smith & Brokaw, 
2012) 

 

2.4. POLICY INCENTIVES FOR DSG IN THE US 

There are many utility-wide, state-wide, and federal financial incentive programs 

in the US that are aimed to promote the installation and operation of renewable energy 

resources (EIA, 2013). Several incentives and examples are shown in Table 2.2. Federal 

incentives include production and investment tax credits. Production credits motivate the 

construction of power generation facilities that produce electricity using renewable energy 
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resources. They grant qualified renewable energy generators a corporate tax credit amount 

per kWh. For example, electricity from wind, geothermal, and closed-loop biomass 

resources can receive tax credits up to 2.5 cents/kWh (EIA, 2020). Investment tax credits 

on the other hand allow for claiming tax credits for a percentage of the cost of installing a 

qualified renewable energy system. The federal residential solar energy credit implemented 

in the US provides a 26% tax credit for systems installed between 2020 and 2022, and 22% 

for 2023. The tax credit program will expire in 2024 unless it is renewed by congress again 

(Solar Energy Technologies Office, 2020). There are other types of rebates and tax credits 

that are offered in some states. These may include exemptions of DSG systems from 

property tax, or exemptions for the sale tax of DSG systems, which also ultimately reduce 

the cost of a DSG system. This research focuses on tax credits because they are easily 

available and can directly reduce the cost of a DSG system. 

 
Table 2.2. Incentives applicable to DSG. 

Type of 
Incentive 

Description Example 

Production 
Tax Credit 

Allows a taxpayer to claim against 
the production of power on a per-
kilowatt-hour (kWh) basis using a 
qualified generating system by 
subtracting it from the federal or state 
taxes. 

Federal Renewable Energy 
Production Tax Credit (IRS, 
2021b) 

Investment 
Tax Credit 

Allows a taxpayer to claim an 
amount of the cost of the system by 
subtracting it from the federal or state 
taxes. 

Federal Investment Tax Credit 
(IRS, 2021b) 

Tax 
Exemption 

Certified renewable energy systems 
may be exempt from property taxes. 

New Jersey Property Tax 
Exemption for Property certified 
as renewable energy system 
(New Jersey Revised Statutes: 
Taxation, 2018) 
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Table 2.2. Incentives applicable to DSG (cont.). 

Type of 
Incentive 

Description Example 

Sales Tax 
Exemption 

State sales tax exemptions for the 
purchase of renewable energy 
systems. 

Sales and Use Tax Exemption 
for Renewable Energy 
Equipment in Washington State. 
(Engrossed Second Substitute 
Senate Bill 5116, 2019)  

Net Metering Allows consumers who generate 
excess electric power to “credit” or 
“roll” their extra generation to be 
used at another time such as the 
following month. Also, it may allow 
for cash reimbursement.  

Net metering is allowed in the 
State of New York (N.Y. Pub. 
Serv. Law, 2012) 

Feed-in 
Tariffs 

Long-term purchase agreement to 
sell power generated at a guaranteed 
price.  

The Renewable Market 
Adjusting Tariff (ReMAT) 
offered by the California Public 
Utilities Commission (CPUC, 
2021) 

Power 
Purchase 
Agreement 

Long-term contract between a 
homeowner and an installer where 
the installer that owns the system, 
installs it on the homeowner’s 
property and maintains it. The 
installer may be a third party. The 
owner buys power from the installer. 

Offered as a financing option by 
several companies such as 
Siemens for example (Siemens 
USA, 2018). 

Low-interest 
loans 

Loans with low interests and 
innovative payment options to install 
DSG. 

On-Bill Recovery, Smart 
Energy, and Companion loans 
offered by New York State 
Energy and Research and 
Development Authority 
(NYSERDA) (Hausman, 2016) 

Community 
Solar 

Solar programs or projects such as an 
offsite array can benefit many 
customers by buying or leasing a 
portion of it.  

Washington DC’s “Solar for 
All” Program which targets low 
to moderate income families  
(DOEE, 2022). 
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Table 2.2. Incentives applicable to DSG (cont.). 

Type of 
Incentive 

Description Example 

Renewable 
Energy 
Certificates 
(RECs) 

Tradable certificates proving that 1 
MWh of electricity was generated 
from renewable sources. They can be 
voluntary or a mandatory 
requirement for some electric 
companies. 

RECs can be used to 
demonstrate compliance with 
renewable energy goals for 
Renewable Portfolio Standards 
(EIA, 2021b).  

 

Two other forms of incentives are net metering and feed-in-tariffs, which are 

offered in some states or local utilities. Both allow owners of DSG systems to capitalize 

on power generation from their systems. The first type, net metering, allows the consumer 

to send their excess generation back into the grid. The excess generation is credited on a 

per kWh basis. The customer finally pays the net usage; receives credits that are rolled to 

the next month; or may receive payment for the excess power, depending on the applicable 

rules. The second, feed-in-tariffs, are agreements to sell power from a DSG system for a 

guaranteed price. These agreements are typically long-term and last several years. For 

example, 20-year feed-in-tariff agreements are offered in Florida (Queiroz et al., 2017). 

Another form of long-term agreement is Power Purchase Agreements (PPA), which are 

available for residential homes but is common in larger power generation projects. In a 

residential PPA, a third-party organization buys, installs, and maintains a generation 

system at the homeowner. The installer owns the system while the homeowner buys power 

generated by the system from the installed at a competitive rate according to a long-term 

contract. Accordingly, the homeowner is relieved from the burden of installing and 

maintaining the system. Low-interest loans with flexible payment plans are also offered by 

several organizations. For example, the New York State Energy and Research and 
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Development Authority (NYSERDA) offers On-Bill Recovery Loans up to $50,000 at 

2.5% interest rates with monthly payments added to the electric bills. Another option 

offered by the NYSERDA is Participation Loans, where NYSERDA would fund 50% of 

the requested loan amount up to a maximum of $50,000 at 2% interest (Hausman, 2016; 

NYSERDA, 2021). 

2.5. EFFECT OF INCENTIVES ON THE ADOPTION OF DSG 

Initially, early adopters of DSG were motivated mainly by environmental and 

technical aspects; however, as the cost of PV systems has decreased significantly in the 

previous years, installing DSG is becoming a financially feasible option (Barbose & 

Darghouth, 2019). Incentives that promote the installation of DSG further motivate the 

decision to install DSG by reducing their costs. For example, in an empirical review of 

business models for deploying DER in general conducted by Burger and Luke (2017), it 

was found that regulations and policies play a viable role in the viability of business models 

for deploying DER, in addition to cost declines and technological innovations. In a survey 

conducted in Australia, it was found that 82% of the respondents installed a solar system 

for financial reasons (Simpson & Clifton, 2017). As such, incentives fortify a change from 

deciding to adopt DSG primarily for environmental reasons to a financial decision that is 

motivated by the savings from installing a DSG system. 

Financial incentives can also improve the penetration of DSG in low-and-medium-

income homes. In a study of four cities in the US (Riverside and San Bernardino, 

California, Washington, DC, and Chicago, Illinois), it was found that low-and-medium-

income homes have high solar rooftop potential. However, they unsurprisingly have lower 
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penetration of DSG compared to high-income households (Reames, 2020). Another study 

focused on California found that adoption rates are largely affected by race and income in 

addition to other factors such as political leaning, electric power consumption, and solar 

radiation (Bennett et al., 2020). Targeted financial incentives can thus reduce the disparity 

in access to DSG resources. 

However, some obstacles are hindering incentives from achieving their ultimate 

policy goals. Research evaluating the effectiveness of over 400 state and utility incentives 

has shown that approximately 67% of them, which is nearly 1.9 billion USD spent over 11 

years, did not increase the adoption of PV installations (Matisoff & Johnson, 2017). 

Incentives that offer a reduction in price at the point of purchase are more effective than 

incentives delivered over long-terms, require an administrative burden, or are not collected 

until taxes are paid (Matisoff & Johnson, 2017). In another study, it was found that states 

offering cash incentives, such as rebates, were more effective at increasing the adoption of 

PV systems compared to other states that do not offer cash incentives. Also, states that 

offer tax incentives did not necessarily have better rates of adoption compared to other 

states (Sarzynski et al., 2012). In another study focused on the northeastern states in the 

US, it was found that rebates had the highest effect of increasing the adoption of PV 

systems compared to other incentives (Crago & Chernyakhovskiy, 2017). In summary, 

incentives that directly decrease the cost of PV at purchase are more effective. Accordingly, 

this research considers rebates and tax incentives that directly reduce the cost of DSG. 

Also, the interest percentages on loans are considered since it reduces the financial burden 

of upfront costs.  
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2.6. DISASTER MANAGEMENT APPLICATIONS OF DER  

The interrupted availability of infrastructure services is a necessity in the modern 

world. Some services and entities are especially critical, such as hospitals and 

communication for example. There are a variety of events that may disrupt the 

infrastructure, e.g., equipment failure, operational errors, or even sabotage. However, many 

catastrophic events are natural disasters, Acts of God, such as earthquakes, hurricanes, 

storms, tsunamis, etc. For example, Table 2.3 shows a summary of the frequency of 

blackouts, created by Hines et. al. (2008) using data from the Disturbance Analysis 

Working Group (DAWG) at the North American Electric Reliability Corporation (NERC, 

2020); it can be seen that a substantial number of blackouts are caused by natural causes. 

Accordingly, the resilience and reliability of infrastructure is an ongoing pursuit of 

designers, operators, and researchers.  

Many researcher efforts have been directed in the area of disaster management from 

various aspects, such as leveraging the use of Unmanned Aerial Vehicles (UAVs) (Erdelj 

et al., 2017), big data analysis (M. Yu et al., 2018), and social media analytics (Z. Wang & 

Ye, 2018). Researchers in electrical power engineering have investigated the reliability of 

the power infrastructure using DER, both pre-and-post- disaster. The concept is also 

associated with microgrids, which are networks that operate in parallel to the conventional 

power grid but can also be disconnected to operate in an “island mode”. Thus, microgrids 

provide an effective method to reduce the consequences of natural disasters (Abbey et al., 

2014; Nosratabadi et al., 2017; Y. Wang et al., 2016; Yuan et al., 2009). Nosratabadi et al. 

(2017) present a comprehensive literature review on the subject. 
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Table 2.3. Frequency of blackouts by category (Hines et al., 2008). 

Cause Percentage of 
Events 

Size of 
Blackout in 

MW 

Number of 
Customers 
Affected 

Earthquake 0.8 1,408 375,900 

Tornado 2.8 367 115,439 

Hurricane/Tropical 
Storm 

4.2 1,309 782,695 

Ice Storm 5.0 1,152 343,448 

Lightning 11.3 270 70,944 

Wind/rain 14.8 793 185,199 

Other Cold Weather 5.5 542 150,255 

Fire 5.2 431 111,244 

Intentional Attack 1.6 340 24,572 

Supply Shortage 5.3 341 138,957 

Other External Cause 4.8 710 246,071 

Equipment Failure 29.7 379 57,140 

Operator Error 10.1 489 105,322 

Voltage Reduction 7.7 153 212,900 

Volunteer Reduction 5.9 190 134,543 
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3. METHODOLOGY 

 

The outline of this research is divided into five parts as previously shown in Table 

1.1. To start, Part 1 is intended to establish the impact of electrical power markets on socio-

economic parameters. In the following Part 2, an ABM model will be developed to simulate 

the effect of the adoption of DSG on the electrical power market. The ABM model created 

in Part 2 will form the basis for the following parts. Each part is intended to address a gap 

in knowledge concerning the effect of DSG on electrical power infrastructure and the 

wholesale power market by extending the capabilities of the ABM. A full description of 

the research plan for each objective follows. 

3.1. RELATIONSHIP BETWEEN THE ELECTRIC POWER SECTOR AND 
SOCIOECONOMIC INDICATORS 

This objective studies how the electric power sector development (i.e., electrical 

power consumption per capita and electrical losses during distribution) is associated with 

socio-economic indicators of economic growth, human development, and corruption, as 

shown in Figure 3.2. Statistical tests - including Pearson correlation analysis, linear 

regression, panel analysis, polynomial regression, and Granger-causality testing – are 

performed to investigate the aforementioned relationships. Ultimately, the relevant 

relationships that affect electrical power consumption and losses are identified. The 

findings should provide a holistic understanding of the complexity of the connection 

between the electric power sector and socio-economic parameters. The following 

subsections provide more details about the methodological steps in this research. 
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Figure 3.1. Flowchart of objectives and methodologies. 

  

Methodology for Objective 1: 
Investigating the relationship between the 
electric power sector and socio-economic 
parameters using statistical and time-series 
analysis. 

Methodology for Objective 2: 
Developing an ABM electric power 
infrastructure systems impacted by DSG 
adoption, i.e., customers can choose to install 
DSG. 

Methodology for 
Objective 3: 

Adding dynamic 
pricing capabilities 
to the ABM by 
enabling 
reinforcement 
learning for 
generating 
companies. 

Methodology for 
Objective 4: 

Utilizing the ABM 
to investigate the 
impact of 
incentives on the 
adoption of DSG 
using complex 
sensitivity analysis. 

Methodology for 
Objective 5: 

Enabling the ABM 
to optimize the size 
and location of 
DSG to mitigate the 
effect of natural 
disasters on 
transmission lines. 

Statistical Analysis 

Agent-Based Modeling 
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Figure 3.2. Socio-economic relationships examined. 

 

3.1.1. Data Collection. The metrics included in the analysis cover the economy, 

development, and corruption. The data is publicly available online. The following are the 

metrics used in this research: 

1. Electric Sector: 

1.1. Electric power consumption (kWh per capita) (The World Bank, 2019e) 

1.2. Electric power transmission and distribution losses (% of output) (The World 

Bank, 2019f) 

1.3. Renewable electricity output (% of total electricity output) (The World Bank, 

2019j) 

1.4. Electricity production from renewable sources, excluding hydroelectric (kWh) 

(The World Bank, 2019g) 

1.5. Access to electricity (% of population) (The World Bank, 2019a) 

2. Economic Performance: 

Socio-economic Indicators 

Electric 
Power 

Consumption 
per Capita 

Human Development 

Corruption 

Economy 

Renewable Energy 

Access to Electricity 

Electric 
Power 

Losses in 
Distribution 
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2.1. GDP PPP Current International (The World Bank, 2019i) 

2.2. GDP per capita (current US$) (The World Bank, 2019h) 

2.3. Adjusted net national income per capita (current US$) (The World Bank, 2019b) 

3. Human Development: 

3.1. Human Development Index (HDI) (United Nations Development Programme, 

2019) (Retrieved from the World Bank) 

4. Corruption: 

4.1. Corruption Index: (Transparency International, 2018) 

4.2. CPIA transparency, accountability, and corruption in the public sector rating 

(1=low to 6=high) (The World Bank, 2019d) 

4.3. Control of Corruption (Kaufmann et al., 2011; The World Bank, 2019c) 

3.1.2. Correlation Analysis. Correlation analysis tests if any two variables have a 

linear relationship. The correlation results range between +1 and −1, where a value 

of +1 means that the variables have a perfect linear relationship, and a value of −1 means 

that the values have a perfect negative linear relationship. A value of zero means that there 

is no relationship between the variables. Correlation analysis was used in many research 

publications. Examples include correlating between initial capital costs and lower long-

term life cycle costs for private financial initiative projects in the UK (N. Wang, 2014), 

studying the success factors in design-build projects (Chan et al., 2001), examining the 

relationship between organizational learning styles and project performance (Wong Peter 

Shek et al., 2009), among many others. 

3.1.3. Regression Analysis. A thorough regression analysis is conducted using a 

variety of panel data analysis techniques. Panel data, or longitudinal data, is a multi-
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dimensional approach that combines cross-sectional and time-series data  (Greene, 2018). 

The data set used in this research is collected across different countries and years. The 

general structure of the panel data is shown in Table 3.1. To take advantage of the panel 

data, this research applies (1) Pooled OLS, (2) Random Effect Model, (3) Fixed Effect 

Model with Time Effect, (4) Fixed Effect Model with Entity Effect, and (5) Fixed Effect 

Model with Time and Entity Effect. The results of each model are compared to each other 

in order to determine the relationship between each of the variables and the dependent 

variable. A more detailed explanation of panel analysis concepts follows. 

  

Table 3.1. Structure of the panel data. 

Country Year X1 X2 Y 
Country 1 Year 1 … … … 

Year 2 … … … 
… … … … 

Country 2 Year 1 … … … 
Year 2 … … … 

… … … … 
… … … … … 

 

3.1.3.1. Pooled OLS. Pooled Regression using Ordinary Least Square Method is 

the simplest form of regression for panel analysis. It is performed with a single intercept 

(𝛼) and slope (𝛽) for all the data. Therefore, it does not take into consideration variations 

across time or entities. The formula for Pooled OLS is shown in Equation (3.1).  

𝑦௧ = 𝛼 +  𝛽 𝑥௧ + 𝜖௧ 

For entity 𝑖; time 𝑡  

(3.1) 



 

 

33

3.1.3.2. Fixed Effects Model (FEM). If there are unobserved variables affecting 

the model, and these effects are correlated with 𝑥௧, then the Fixed Effects Model (FEM) 

is more suitable for analyzing a dataset. This model takes into consideration the unobserved 

fixed effect as an entity-specific effect by including 𝛼 as shown in Equation (3.2), or time-

specific by including 𝛾௧ as shown in Equation (3.3), or both entity and time effects as shown 

in Equation (3.4). It should be noted that a fixed effect model without the inclusion of any 

effect would be reduced to the previously mentioned Pooled OLS. The meaning of time-

specific effects, for the scope of this research, are effects that change over the years for all 

countries, like for example introduction of new technologies, world economic conditions, 

etc. On the other hand, entity-specific effects would mean unobserved factors that are 

unique to each country like political, cultural, or geographical parameters, for example. 

The equations for fixed effects model with different effects are as follows: 

- Fixed Effect with Time Effect 

𝑦௧ = 𝛾௧ +  𝛽 𝑥௧ + 𝜖௧ 

For entity 𝑖; time 𝑡  

(3.2) 

- Fixed Effect with Entity Effect 

𝑦௧ = 𝛼 +  𝛽 𝑥௧ + 𝜖௧ 

For entity 𝑖; time 𝑡  

(3.3) 

- Fixed Effect with Time and Entity Effect 

𝑦௧ = 𝛾௧ + 𝛼 +  𝛽 𝑥௧ + 𝜖௧ 

For entity 𝑖; time 𝑡  

(3.4) 

3.1.3.3. Random Effects Model (REM). The Random Effects Model (REM) is 

suitable in case the unobserved heterogeneity is uncorrelated with 𝑥௧. The REM assumes 
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that the unobserved parameters affecting the model are random. The main difference 

between REM and FEM is therefore whether the unobserved heterogeneity is uncorrelated 

or correlated, respectively. The formulation in this research uses a one-way REM, which 

has the same formulation as the FEM with entity effects as shown in Equation (3.3). 

3.1.4. Granger-Causality Testing. The goal of the Granger-causality test which 

was created by C. Granger (1969) is to find whether a time series has a causality effect on 

another time series. In other words, it tests whether a change in a time series causes a 

change in another time series. The general representation, for two time series 𝑦ଵ,௧ and 𝑦ଶ,௧, 

and lag order 𝑝 is shown in Equation (3.5) (Lütkepohl et al., 2004). If ∝ଵଶ,= 0, then this 

confirms the null hypothesis of the Granger-Test that 𝑦ଶ௧  does not Granger-cause 𝑦ଵ௧. 

ቂ
𝑦ଵ௧

𝑦ଶ௧
ቃ =  ቂ

∝ଵଵ, ∝ଵଶ,

∝ଶଵ, ∝ଶଶ,
ቃ ቂ

𝑦ଵ,௧ିଵ

𝑦ଶ,௧ିଵ
ቃ + 𝑢௧



ୀଵ

 

Where: 𝑖 = 1,2, … , 𝑝 ; and, 

 ∝ଵଶ,= 0 if 𝑦ଶ௧ 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝐺𝑟𝑎𝑛𝑔𝑒𝑟 𝑐𝑎𝑢𝑠𝑒 𝑦ଵ௧. 

(3.5) 

Granger causality testing was used in many previous research applications. 

Examples include stock analysis (Hiemstra & Jones, 1994), forecasting the Engineering 

News Record Construction Cost Index (Shahandashti S. M. & Ashuri B., 2013), predicting 

raw material prices (Lee Chijoo et al., 2019), residential and non-residential investment’s 

relationship with the GDP (Green, 1997), and others. It is suitable for the econometric 

analysis of the time series in this research part.  
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3.2. DEVELOPMENT OF THE ABM 

The methodology of Objective 2 revolves around developing the ABM. In the 

following objectives 3, 4, and 5, different additions are built onto the ABM to enable the 

capabilities needed for each objective. The methodology in this section is focused on how 

the ABM is developed.  

3.2.1. Overall Model Development Process. The complex SoS simulation was 

developed based on concepts from ABM combined with DC-OPF. Such integration 

attempted to attain important capabilities including power market settlement as a 

deregulated wholesale power market with hourly-based Locational Marginal Prices 

(LMPs) and consumer behavior based on the economic feasibility of installing DSG.  As 

such, the development of the model followed a multi-step methodology, as shown in Figure 

3.3, that comprised: (1) creation of the ABM model and DC-OPF solver; (2) calculation of 

the demand parameters for the LSEs; (3) calibration of the model to reduce the gap between 

the results of the model and historical real-life data; and (4) formulation of the consumer 

decision algorithm to adopt DG. 

 

 

Figure 3.3. Model development process. 

Model Development 
Process

(1)  Creation of the ABM and 
DC-OPF

(2) Calculation of Demand 
Parameters

(3) Model Calibration
(4) Formulation of 
Consumer Decision 

Behavior
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3.2.2. Application Domain. A case study is used as the application domain for the 

model to achieve the following objectives: (1) verify that the model can achieve the 

required functionalities; (2) ensure that the model can be applied to other specific cases 

after modifying its input parameters; and (3) disseminate the results to demonstrate the 

effect of incentives on electric power grids and markets. The configuration of the grid is a 

modified IEEE 6-bus system as shown in Figure 3.4 (Khurshaid et al., 2019; Tungadio et 

al., 2015). Previous research has used 6-bus systems as a case study for many topics such 

as optimizing reactive power (Mantawy & Al-Ghamdi, 2003; Sharma et al., 2012) and 

resilience evaluation (Panteli & Mancarella, 2017; Yang et al., 2018), among others. They 

were also used in cases specifically related to distributed generation such as optimizing 

reactive power flow for electric power distribution systems with integrated distributed 

generation (Leeton et al., 2010); or energy management of integrated power infrastructure 

and gas networks with renewable energy sources (Nazari-Heris et al., 2020). As such, a 6-

bus system is considered a feasible case study for this research. A 6-bus system enables an 

easier understanding of the results while avoiding unneeded complexity. Still, the model 

can be easily scaled to larger networks by adding more nodes, transmission lines, LSEs, 

and generators. 

The locations and types of generators are designed to diversify their effect on the 

market. The generation parameters are calculated from data acquired by the authors from 

the Tennessee Valley Authority (TVA). Electric power consumption published by the US 

Energy Administration Agency (EIA, 2020) is used to define electric power demand 

amount and cost per customer. The calculations of the size and cost of DSG systems are 

explained in later sections and are based on multiple sources and publications including 
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the National Renewable Energy Laboratory (NREL, 2021), Barbose et al. (2019), 

BloombergNEF (Goldie-Scot, 2019), Hyder (2021), McCloy (2019), Haruna et al. (2011), 

and Sarre et al. (2004). It should be noted that the case study (1) does not represent a limited 

geographic location; (2) represents an average US electric power market based on the data 

used to create the model; (3) is primarily intended to verify that the model can achieve the 

required functionalities and provide indicative results showing the effect of incentives on 

electrical power grids and markets; and (4) can be modified to other electric grids in 

targeted geographic locations and market conditions.  

The configuration of the grid is shown in Figure 3.4. It includes six nodes, five 

generators, six LSEs, and seven transmission lines. The transmission lines connecting the 

nodes have a maximum capacity of 450 𝑀𝑊 each and reactance of 35 Ω. The reactance 

values affect the flow of power in the lines, more specifically reactive power losses. The 

LSEs and the generators are each connected to a node. Each LSE initially has 400,000 

customers that do not have DG. Customers may detach from their LSEs if they decide to 

install DG, which affects the cumulative customers and demand requirements at the LSE 

level. The parameters for the demand are based on real data published by the EIA (2020) 

and are elaborated in a subsequent section. The parameters for the generators are shown in 

Table 3.2. The parameters 𝑎 and 𝑏 define the cost function of the generations as will be 

explained in a subsection in the methodology about the DC-OPF formulation. The 

parameters are based on the types of the generators such as natural gas, coal, or nuclear. 

The parameters are based on data acquired by the authors from the Tennessee Valley 

Authority (TVA) and calibrated as explained in a respective sub-section of the 
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methodology. The calculation of the power flow in the network is performed using DC-

OPF, which is explained in a respective subsection later.  

 

Table 3.2. Initial generation parameters. 

Generator Type 
𝒂𝒈 

ቀ$
𝑴𝑾. 𝒉ൗ ቁ 

𝒃𝒈 

ቀ$
𝑴𝑾𝟐. 𝒉

ൗ ቁ 
Max Capacity 

(MW) 

1 Natural Gas 175.048 0.000967361 700 

2 Coal 80.623 0.001198895 450 

3 Nuclear 22.054 0.000095802 2,000 

4 Coal 80.623 0.001198895 240 

5 Natural Gas 175.048 0.000967361 700 

 

 

Figure 3.4. Grid layout. 
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3.2.3. Main Model Components. The framework created in this research 

simulates a complex SoS. The framework relies on several sub-systems which together 

result in complex emergent behavior, as shown in Figure 3.5. At the center of the 

framework is the ABM. Agents, or classes, include (1) Nodes, which represent buses in the 

electric network; (2) Generators, which supply power to the network; (3) Load Servicing 

Entities (LSE), which represent the utilities that buy power for their customers; and (4) 

Transmission Lines which are connected to the nodes.  

To create the dynamic response of the market considering the adoption of DSG, the 

LSEs are connected to three modules, shown in the bottom right part of Figure 3.5; (1) 

Sub-functions to update the demand parameters of the LSEs depending on the number of 

customers that are still connected to the grid; and, (2) Investment Decisions: a module that 

defines investment decision rules that enable consumers at LSEs to decide whether to 

install DSG depending on the current locational price of electric power and cost of the 

alternative opportunity, which is to install DSG; and, (3) Price of Solar Panels: a module 

where the investment to install DSG is calculated through a separate sub-model that 

predicts the cost of PV systems using historical data.  

At a higher level, an optimization problem is formed to calculate the optimal power 

flow through the network. At every hour of the simulation time, the “interface” transforms 

the parameters of the ABM into parameters that are fed into the power flow solver (DC-

OPF) and then feeds back the results of the solver into the agents in the ABM. The 

following sections describe each part of the framework in depth.  
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Figure 3.5. Main components and agents in the ABM. 

 

The agents in the ABM are classes that represent the main “players” in the 

wholesale power market. The agents are connected so that they can communicate and 

access the parameters of each other. The parameters of each agent are shown in Figure 3.6. 

By using simple rules for each agent, the simulation results in emergent behavior, allowing 

for a bottom-up approach to simulate the complex system. The types of agents include (1) 

Nodes (or buses), (2) Generators, (3) Load Servicing Entities (LSEs), and (4) Transmission 

Lines. Nodes represent end locations for electrical power transmission, i.e. a city or town.  
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Figure 3.6. Model parameters. 

 

By calculating the DC-OPF solver, which is described in a later section, Locational 

Marginal Prices (LMPs) are calculated based. The reason that LMPs are used in the 

wholesale power market is that they account for transmission congestion and rules of 

supply and demand according to the location of injection or withdrawal. Therefore, each 

node may have different LMPs depending on grid parameters (connectivity and capacity), 

power demand (which changes during the day), and supply. Generators represent 

generating companies, which sell power to the grid. Each generator has a supply function, 

defined in the model by parameters 𝑎 and 𝑏, which determine its willingness to sell electric 

power, i.e. the variable price of power generated. Each generator also has minimum and 

maximum generation capacities. LSEs represent local utilities, which buy electric power 

from generators and supply it to end-users. Each LSE has a demand function, defined by 
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parameters 𝑐 and 𝑑, which, opposed to generators, define their willingness to buy electric 

power. Each LSE has an initial number of customers, who are connected to the grid and 

buy power from the LSE. During the simulation, the number of customers at each LSE is 

affected by the customers’ decision to install DSG and detach from the grid, effectively 

ceasing to buy power from the LSE. As such, the demand functions of the LSEs are updated 

according to the number of active customers. Each LSE also has variable demand 

boundaries which are also affected by the number of active customers. Finally, 

transmission lines connect the nodes. Each line has two main parameters; the reactance (Ω) 

and maximum capacity (MW). Both parameters affect the flow of electricity in the network 

and ultimately impact the LMPs at the nodes.  

As previously mentioned, the agents are connected, communicate, and adapt. In 

this model, the number of active customers is affected by their decision to adopt DSG and 

detach from the grid. This decision is affected by the LMPs at the node agents. The number 

of customers affects the demand parameters of the LSE agents. The collective parameters 

of the agents, including the supply, demand, and transmission parameters, are used in the 

DC-OPF solver. The agents are updated based on the results of the solver, and the loop is 

repeated until the simulation is stopped. 

3.2.4. Grid Layout Agents and Economic Agents.  The agents in the ABM 

developed in this research are defined according to the design of a wholesale power market. 

As shown in Figure 3.7, the economic entities are the stakeholders in a wholesale power 

market and the main agents in the ABM. Those agents include the generators and the LSEs. 

The generators represent the supply part of the economic market. They have pre-defined 

supply parameters that represent the cost they expect for generating power into the electric 
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grid and their maximum generation capacity. The parameters of the generators depend on 

their types, e.g., coal, natural gas, or nuclear. The LSEs represent the demand side of the 

market. Each LSE has a pre-defined initial number of customers that do not have DSG 

systems and therefore rely on electric power from the grid. The demand from LSEs is the 

cumulative demand of their customers who have not installed DSG and defected from the 

grid yet. It is assumed that each month, customers will decide whether to purchase and 

install a DSG system and defect from the grid. Accordingly, the demand from the LSEs 

will reduce and consequently affect the entire grid. More details regarding those algorithms 

are presented in subsequent sections.  

 

 

Figure 3.7. Relationships between the agents. 

 

The second agent type includes grid layout agents, which are the nodes and the 

transmission lines. Nodes represent locations on the grid such as cities or towns. The nodes 

are connected by transmission lines. Each transmission line has a reactance and maximum 
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capacity. The values of the reactance affect the flow of power through a transmission line, 

specifically they affect the flow of active and reactive power. Ultimately, the simulation is 

connected to a DC-OPF through an interface that encodes the data in the ABM into 

parameters for the DC-OPF, solves for the cost-minimizing flow of power and LMPs in 

the network, and feeds back the results into the ABM at every iteration, which represents 

an hour in real-time. 

3.2.5. Power Flow Optimization.  Planning and managing electric power grid 

resources requires the optimization of resources and is covered by a plethora of research 

(Frank & Rebennack, 2016; Padhy, 2004; Sheblé, 1999). A simple can be formulated as an 

Economic Dispatch (ED) problem. It optimizes the allocation of generators considering 

their generation cost by minimizing overall network costs. However, there may be a need 

to consider many additional constraints depending on the planning horizon and the required 

level of complexity. For example, there may be a need to consider when to start and shut 

down generators considering the associated minimum uptime/downtime time and startup 

costs, which extends to a Unit Commitment (UC) problem. There are also additional 

generation constraints that can be considered such as ramp rates which define the maximum 

change of generation output over time. There is also a need to consider transmission 

properties and constraints. At the least, there may be a need to consider the maximum 

operational capacity of transmission lines. There is also a need to consider transmission 

losses. Such requirements for more detailed analysis develop into Optimal Power Flow 

(OPF) problems which also have many variations in formulations (Wong, 2011). In this 

research, a DC Optimal Power Flow (DC-OPF) formulation adopted by Sun and Tesfatsion 

(2006) is used because it fits the requirements of the developed model for the following 
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reasons: (1) It determines the optimum allocation of generators considering their cost 

parameters and maximum capacities; (2) It calculates the power flow in transmission lines 

considering their maximum capacities and reactance which is important to study the effect 

of transmission line failure during natural disasters; (3) It minimizes losses using a penalty 

function; (4) there is no need to consider time-dependent constraints such as ramp rates; 

and (4) it is computationally fast enough considering that large numbers of iterations are 

required for the DSG optimization performed in this research. 

3.2.6. Formulation of DC-OPF. DC-OPF is an optimization problem used to 

calculate the commitment of each generator, the flow through the transmission lines, and 

the LMPs at the nodes. It is a simplification of the more tedious AC-OPF problem, which 

makes it less computationally expensive and suitable for long-term simulations of 

wholesale power markets. The DC-OPF formulation used is adapted from Sun and 

Tesfatsion (2007a, 2007b). The objective function of the DC-OPF is to minimize the total 

generation cost, as shown in Equation (3.6). In practice, a wholesale power market is settled 

through an Independent Service Operator (ISO) using the supply and demand offers 

received from the generating companies and the LSEs, respectively. The objective function 

is shown in Equation (3.6) also minimizes the phase angles (𝛿) between the nodes using a 

penalty constant (𝜋) to minimize the reactive power losses in the system (Sun & Tesfatsion, 

2007b). The equality constraint shown in Equation (3.7) represents the node balances 

where, for each node 𝑘, where 𝑃 is the demand for each LSE, 𝑃 is the commitment for 

each generator, and 𝑃 is the power flow through all the lines connected to the node. The 

inequality constraints are the generation capacity for each generator as shown in Equation 

(3.8), and the maximum capacity of each transmission line 𝑘𝑚  as shown in Equation (3.9). 
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Ultimately, the DC-OPF calculates the commitments of the generators (𝑃) and the line 

flows (𝑃). Also, the LMPs at each node are calculated using the Lagrangian of the 

equality constraint in Equation (3.7). The DC-OPF is solved using the Dual Stage 

Optimization method (Goldfarb & Idnani, 1983). The results of the DC-OPF are calculated 

at every hour of the simulation and fed back into the agents in the ABM.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:   𝑎 ∙ 𝑃  + 𝑏𝑃
ଶ + 𝜋 [𝛿 − 𝛿]



൩

ଶ

 (3.6) 

Subject To: 

- Node Balance Constraints for each Node (𝑘): 

 𝑃

∈ೖ

−   𝑃

∈ீೖ

+   𝑃 = 0 
(3.7) 

- Generation Constraints for each Generator (𝑔): 

𝐶𝑎𝑝,  ≤  𝑃  ≤  𝐶𝑎𝑝,௫ 
(3.8) 

- Transmission Line Constraints for each Transmission Line (𝑘𝑚): 

|𝑃|  ≤  𝑃ೌೣ
 

(3.9) 

3.2.7. Equilibrium of Supply and Demand. The demand parameters in the 

developed model assume that each customer has a fixed average demand represented by a 

vertical demand curve.  This follows the logic that electric power is price-insensitive in the 

short term as proven by previous research (Burke & Abayasekara, 2018; Lijesen, 2007). 

The supply offers are calculated using the generation parameters for the generators, which 

are also calibrated as explained in detail in a later section. The equilibrium of supply and 

demand, determined using the DC-OPF problem, identifies the equilibrium amount of 

power and prices, as illustrated in Figure 3.8. The agent-based behavior continuously 
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affects the equilibrium of supply and demand. First, on the supply side, the consumer 

decision to adopt DSG is based partially on the LMPs at each node and affects the 

cumulative demand requirements at the LSE level. As shown in Figure 3.8, a shift in 

demand will occur when consumers adopt DSG. The behavior of the supply side is 

determined by the Reinforcement Learning (RL) pricing algorithms used by the generators 

which learn from the market behavior and modify their supply offer curve as will be 

explained in another part of this dissertation. The shift in supply and demand is resulting 

in lower power generation and higher prices as shown in Figure 3.8. This feedback loop 

between the LSEs and the generators enables a complex system behavior and provides 

insight into how power markets are impacted by the adoption of DSG. 

 

 

Figure 3.8. Equilibrium of supply and demand. 

 

3.2.8. Demand Parameters. The amount of power consumed by each customer is 

calculated based on publicly available data published by the EIA (2020). The data includes 

monthly electricity demand quantities, electricity rates, and the number of customers. A 
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histogram of the residential hourly sales per customer, calculated from the monthly sales 

and number of customers, is shown in Figure 3.9. The data for the residential sector in all 

states in the US was used to calculate the mean demand per customer, which was found to 

be 1.283 KWh/Hour/Customer. This translates to a monthly average of approximately 923 

KWh/Month/Customer. 

 

 

Figure 3.9. Hourly sales per customer. 

 

The averages shown in Figure 3.9 represent hourly sales per customer without intra-

day variations. To account for that, the function was fitted to create an hourly factor to 

convert the average daily demand into a more accurate real-time hourly demand. The 

function was fitted using data available from the EIA (2020) using a cosine function, shown 

in Equation 5 where ℎ is the hour such as 0 ≤ ℎ ≤ 23. The fitted function has an 𝑅ଶ score 
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of 0.99. Accordingly, the function shown in Equation (3.10) and  Figure 3.10 is applied to 

the numbers shown in Figure 3.10 to create intra-day variations in the demand. Finally, the 

average hourly consumption per customer, the intra-day hourly consumption curve, and 

the number of customers for each LSE are grouped into (3.11), where 𝐶 is the number of 

active customers for each LSE 𝑗. 

𝐹𝑎𝑐𝑡𝑜𝑟 = 0.240 × cos(0.261 × ℎ + 1.742) + 1 (3.10)

𝑃, = 0.001283 
𝑀𝑊

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ∙ 𝐻𝑜𝑢𝑟
൨  

× [0.240 × cos(0.261 × ℎ + 1.742) + 1] × 𝐶  

(3.11)

 

 

Figure 3.10. Intra-day variation in demand. 

 

3.2.9. Calibration of the Supply. Simulations developed using ABM offer 

flexibility and complexity. However, there is often a need to conduct parameter calibration 

to close the gap between the results and real-world data. As ABM simulations grow in 

complexity, the task of calibrating its parameters can be tedious (Lamperti et al., 2018). In 

the model developed in this research, there is a need to reduce the gap between the LMPs 
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calculated from the model and real-world electric power rates. This is a necessary step so 

that the subsequent consumer decision to adopt DSG can be based on realistic electric 

power rates. As such, the calibration step accounts for the difference between the costs 

incurred by the generators and the final prices paid by the customers. It is set up as an 

optimization problem such that the objective function is to reduce the squared difference 

between the average LMP for the grid and the target price. The decision variables are the 

generator supply parameters. The previously shown generation parameters in Table 3.2, 

estimated using data acquired from the Tennessee Valley Authority (TVA), only represent 

the cost of generation. However, the parameters do not include additional costs that 

influence end-user prices such as transmission and distribution network charges and taxes, 

in addition to the actual cost of power (C. Eid et al., 2016; Pront-van Bommel, 2016). Such 

financial costs, as well as environmental impacts, are increasingly measured and controlled 

using cyber-physical systems (Mulrow et al. 2021). As such, the supply parameters are 

identified as the target of the calibration. The decision variable is assumed to be a single 

multiplier for the a ($/MW. h) parameter for all generators while neglecting 

b ($/MWଶ. h). This assumption is made to increase the cost of power generation linearly 

per unit generation while maintaining the incremental costs associated with generator 

efficiency (heat rate). The actual power rates are calculated using data published by the 

EIA (2020) representing the year 2020. Figure 3.11 shows a histogram of the data used. It 

was found that the average retail electricity rate in 2020 was 13.64 𝐶𝑒𝑛𝑡𝑠/𝑘𝑊ℎ which 

equals 136.47 $/𝑀𝑊ℎ. This number was used to determine a factor to increase the 𝑎 

parameter for each generator according to Equation (3.12) where 𝑥 is the needed parameter. 

Accordingly, the calculated factor is used to linearly scale the 𝑎 parameters of the 
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generators to calibrate the cost per MW for the generators, as denoted by 𝑥  in Equation 

(3.12). The objective function of the calibration is to determine the factor 𝑥 to minimize 

the squared error of the difference between the average of the calculated LMPs at every 

node 𝑖 and the historical average electricity rate, as shown in Equation (3.13). After running 

the optimization, it was found that the needed parameter value is 5.881. The final 

parameters are shown in Table 3.3. To conclude, it is important to note that the outcome of 

this calibration is critical to replicate a realistic rate of the adoption of DSG since the 

calculated LMPs are critical in the developed consumer decision algorithms. 

𝑎௪
= 𝑥 × 𝑎ௗ

 
(3.12) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: min ቆ
∑ 𝐿𝑀𝑃

ூ
ୀ

𝐼
− 136.47ቇ

ଶ

൩ (3.13) 

3.2.10. DSG Cost and Adoption Rules. The LSEs are assumed to have an initial 

number of customers who do not have DSG and rely on their respective LSEs for their 

entire electrical power needs. It is assumed that customers will consider batteries for their 

DSG systems such that they can fulfill their full-day needs. PV systems with lithium-ion 

battery storage can be more economically feasible than PV alone especially considering 

their decreasing cost over the previous years (Tervo et al., 2018). Over the duration of the 

simulation, customers at each LSE will consider installing DSG systems with battery 

storage based on an economic decision as shown in Figure 3.12. Customers will compare 

two alternatives: (1) Paying a monthly loan for a DSG system consisting of PV cells and 

batteries; and (2) Paying their regular monthly electric bills that are calculated according 

to their power consumption and LMP at their location. 
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Figure 3.11. Histogram of electricity rates in the US in 2020. 

 

Determining the value of monthly payments to buy and install a DSG system is 

achieved in five steps as shown in Figure 3.13: (1) The size of the PV cells is determined 

such that it can fulfill the electric power requirements of a consumer’s house for a full day 

considering their efficiency and the number of daily sun-hours; (2) The size of battery 

storage capacity is determined considering the full day needs and the efficiency of the 

batteries; (3) The cost of the PV cells is determined using a forecast of historic data; (4) 

The cost of batteries is also determined using a forecast of historical numbers; (5) The cost 

of the system is calculated; (6) The monthly payment for a loan to buy the system is 

calculated; finally (7) the monthly payment amount is compared with the electric grid in a 

stochastic process to calculate the DSG adoption rate at each LSE. The following 

subsections explain the methodology for each step. 
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Figure 3.12. Consumer decision algorithm. 

 

 

Figure 3.13. Steps to calculate the monthly loan for a DSG system. 

 

3.2.10.1. Step 1: Calculate the size of PV cells. In the developed model, it is 

assumed that customers are considering DSG systems that can fulfill their electric power 

needs for a full day. Accordingly, the size of PV cells is determined according to three 

factors: (1) the full energy needs of a customer; (2) the daily peak sun-hours; and (3) the 
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efficiency of the system. The first item is easily determined using the consumer demand 

estimated in the previous section.  

The second item is the daily peak sun-hours which quantifies the number of hours 

per day when solar irradiance averages 1 𝑘𝑊/𝑚ଶ (DOE, 2022). The number of peak sun 

hours depends on the location and time of year. It is estimated to be 4 ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦, which 

is the average number of peak sun-hours in most states in the US based on historic data 

(Hyder, 2021).  

The third item is the efficiency of the PV cells, which quantifies their usable power 

output compared to their theoretical capacity. It accounts for losses such as the effect of 

the weather, dust, inefficiencies in the system, degradation, and other potential losses. This 

value is estimated to be the recommended value of 14.08% according to the PVWatts® 

Calculator published by the National Renewable Energy Laboratory (NREL, 2021).  

The three variables are used to calculate the size of the PV systems in 𝑊 as shown 

in Equation (3.14). The results are used to calculate the cost of the PV cells as explained in 

step 3. 

𝑆𝑖𝑧𝑒 (𝑊) =
𝐷𝑎𝑖𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑊ℎ)

4 ቀ
𝑃𝑒𝑎𝑘 𝑆𝑢𝑛 𝐻𝑜𝑢𝑟𝑠

𝐷𝑎𝑦
ቁ × 86%  (𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 %)

 
(3.14) 

3.2.10.2. Step 2: Calculate the size of batteries. The size of batteries is determined 

such that they can provide enough storage for a full day’s power needs. It is assumed that 

customers will consider installing Lithium-Ion batteries. PV systems with lithium-ion 

battery storage can be more economically feasible than PV alone (Tervo et al., 2018).  

The size of the batteries is estimated in 𝑊ℎ as shown in Equation (3.15). It includes 

(1) the daily demand, which is estimated similarly to the previous step, and (2) an efficiency 
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factor which consists of the estimated maximum charging capacity of the batteries 

compared to their full potential to consider aging and degradation (Omar et al., 2015). The 

resulting battery size is used to calculate the cost of batteries as shown later in step 4. 

𝑆𝑖𝑧𝑒௧௧௦ (𝑊ℎ) =
𝐷𝑎𝑖𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑊)

75% (𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 %)
 

(3.15) 

3.2.10.3. Step 3: Calculate the cost of PV cells. The cost of PV cells may be 

estimated as a cost per unit of power generated in $/𝑊 (Barbose & Darghouth, 2019). This 

value has been decreasing substantially in the previous years. Therefore, there is a need to 

forecast the cost of PV cells in the future to include them in the ABM considering that 

those simulations span many years or decades.  

To achieve that, an exponential function is used to calculate the cost of PV for any 

year (𝑦) as shown in (3.16). The function includes a constant (𝑐) such that the forecasted 

price never reaches zero. The equation is fitted to historical prices published by Barbose et 

al. (2019) as shown in Figure 3.14. The fitted function achieved a 𝑅ଶ of 0.86. The total 

cost of the PV cell is calculated by multiplying the result of Equation 8 by the size of the 

PV cells calculated in Step 1. 

𝐶𝑜𝑠𝑡௬ (
$

𝑊
) = 𝑒ା×௬ + 𝑐 

(3.16)

3.2.11. Step 4: Calculate the cost of batteries. The cost of Lithium-Ion batteries 

is calculated similarly to the methodology shown in step 3 for the PV cells. The cost of 

lithium-ion batteries has also been decreasing over the previous years, as shown in Figure 

3.15. An exponential function, as shown in Equation 8, is used to forecast the future cost 

of Lithium-Ion batteries. The function is fitted to data published by BloombergNEF 

(Goldie-Scot, 2019) which includes historic data between 2010 to 2018 and expected 
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values for 2024 and 2030. The fitted function reached an 𝑅ଶ of 0.98. The output of the 

fitted function is in cost per energy, or 
$

ௐ
, which is used to calculate the cost of the batteries 

by multiplying it by the size of the batteries calculated in Step 2. 

 

 

Figure 3.14. Price of PV systems. 

 

 

Figure 3.15. Price of Lithium-Ion batteries. 
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3.2.11.1. Step 5: Calculate the lifetime cost of the system. In the previous steps, 

the cost of the PV cells and the batteries were calculated separately. In this step, those two 

costs are combined to calculate the expected total present value of the system as shown in 

Equation (3.17). It is estimated that PV cells have a lifetime of 25 years which is the typical 

warranty period offered by manufacturers (McCloy, 2019). Batteries are assumed to have 

an average life of 10 years (Haruna et al., 2011; Sarre et al., 2004). Accordingly, Equation 

(3.17) uses a multiplier of 2.5 for the cost of batteries to get an investment value for the 

complete DSG system over 25 years. 

𝐶𝑜𝑠𝑡 = 

𝑆𝑖𝑧𝑒 (𝑊) × 𝐶𝑜𝑠𝑡௬,௩ ቆ
$

𝑊
ቇ  

+ 2.5 × 𝑆𝑖𝑧𝑒௧௧௦(𝑊ℎ) × 𝐶𝑜𝑠𝑡௬,௧௧௦(
$

𝑊ℎ
) 

(3.17) 

3.2.11.2. Step 6: Calculate the monthly payments for a loan. After calculating 

the initial loan amount for the complete system including PV cells and battery, it is assumed 

that prospective buyers will consider a loan with a duration matching the lifetime of the 

system which is 25 years. The monthly payments for that loan are calculated according to 

Equation (3.18) where the present value of the loan is the system cost calculated in Step 5. 

The yearly interest can be reasonably estimated to be 6% considering that the interest rates 

for loans for PV systems range between 4.5% to 7.1% depending on factors such as credit 

scores and market changes (Feldman & Schwabe, 2018). The interest rate value is tested 

in this research to understand the effect of loan-related policy incentives. 



 

 

59

𝐴 =
𝐶𝑜𝑠𝑡 ×  𝑟 ×  (1 + 𝑟)

(1 + 𝑟) − 1
 

(3.18) 

𝑤ℎ𝑒𝑟𝑒: 
 𝑛 = 25 𝑦𝑒𝑎𝑟𝑠 × 12 𝑚𝑜𝑛𝑡ℎ𝑠  

 𝑟 =  
ோ %

ଵଶ ௧௦
 =

 %

ଵଶ ௧௦
  

3.2.11.3. Step 7: Calculate the expected adoption. The final step is to make a 

comparison and decide between two economic alternatives: (1) pursue a loan to install a 

DSG system and pay the associated monthly payments; or (2) take no action and keep 

incurring the monthly cost for electric power from the grid, i.e., the regular monthly electric 

power bills calculated by multiplying the average monthly electrical power consumption 

per customer and the LMPs associated with the LSE. This decision process is made on the 

LSE level to calculate the overall adoption rate governing all the customers in an LSE. 

However, there is a need to induce a stochastic element in that process. Otherwise, the 

comparison would yield a binary decision where the entire LSE would adopt DSG at the 

same time, which is not realistic. As such, a stochastic element is needed to capture the 

uncertainty in the parameters of the adoption decision which includes the (1) variability in 

the cost of the DSG system; (2) variability in the financial terms of the loan to purchase 

the DSG system; and (3) variability in the electrical consumption across the customers. To 

mimic that effect, a lognormal distribution, as shown in Equation (3.19), is used to 

characterize the monthly cost of power where (𝑥) is the average monthly electric bill and 

(𝜎) is assumed to be 0.2 as a reasonable estimate for the variance in monthly electric bills. 

The distribution is scaled to have its mean as the monthly electrical power bill cost incurred 

by the customers attached to the targeted LSE. Customers may adopt when the monthly 

payment from the loan is less than their monthly electric bill. As illustrated in Figure 3.16, 

based on this simple adoption rule, the percentage of customers who will choose to install 
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DSG at any time is found by evaluating Equation (3.19) at the current monthly loan 

payment. It should be noted that although the model was calibrated for an average power 

rate for the entire US, it can be re-calibrated to match the power rates at any location.  

𝑓(𝑥) =
ଵ

ఙ ௫ √ଶగ
 𝑒

ି 
ౢౝమ(ೣ)

మమ   (3.19) 

 

 

Figure 3.16. Stochastic process to calculate adoption. 

3.3. DYNAMIC PRICING USING REINFORCEMENT LEARNING (RL) 

3.3.1. Overview of Learning Algorithms Used.  The following subsections 

discuss each RL algorithm used in this research: (1) Basic Learning, (2) Multiplicative 

Weights, (3) Roth-Erev, and (4) Modified Roth-Erev. Also, (5) a Gibbs-Boltzmann 

Cooling Factor method is attempted for each of the RL algorithms. 

3.3.1.1. Basic learning algorithm. A basic learning algorithm, as discussed by 

Roth and Erev (1998; 1995), follows a set of steps as shown in Figure 3.17. First, an Action 
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Set (𝒂) is defined according to a possible number (𝑁) of actions (𝑎). Also, a Propensity 

Set (𝒒) is initiated. The Probability Set (𝒑) is calculated according to Equation 14. Then, a 

loop is repeated using steps 1 through 4 as shown in Figure 3.17: (1) An action (𝑎) is 

selected from the Action Set (𝒂)  using the respective probabilities of the actions provided 

in the Probability Set (𝒑). (2) The reward 𝑅(𝑎) is calculated according to the resulting 

outcome of choosing the action (𝑎). The reward function may for example be the profit 

resulting from that action. (3) Based on the reward (𝑟), the Propensity Set (𝒒) is updated 

for each action (𝑎) according to Equation (3.21). Finally, (4) The Probability set (𝒑) is 

updated based on the new Propensity Set (𝒒𝐭ା𝟏) according to Equation (3.20). Then the 

loop is repeated in every iteration starting with step 1. 

𝒑𝒊 =
𝒒𝒊

∑ 𝒒
 (3.20) 

𝒒௧ାଵ =  ቄ
𝑞௧ + 𝑟

𝑞௧
    

𝑓𝑜𝑟  𝑎 = 𝑎

𝑓𝑜𝑟  𝑎 ≠ 𝑎
 

(3.21) 

 

 

Figure 3.17. General outline of a learning algorithm. 
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3.3.1.2. Multiplicative weights algorithm. The multiplicative weights method is 

a simple yet effective meta-algorithm that has been used in many applications such as 

machine learning, optimization, and game theory (Arora et al., 2012). Compared to the 

basic RL shown in the previous section, the multiplicative RL algorithm extends the basic 

learning algorithm by adding a Learning Rate (LR) parameter (𝜂), as shown in Equation 

(3.22). The LR controls the effect of the reward on updating the weights in the RL. 

𝑤௧ାଵ = 𝑤௧ × ( 1 +  𝜂 𝑟) (3.22) 

3.3.1.3. Roth-Erev RL algorithm. The Roth-Erev (1998; 1995) algorithm is 

similar in steps to the basic RL method. However, it introduces two variables: 𝜙 which is 

a “forgetting” parameter and 𝜖 which is an “experimenting” parameter. The two variables 

are used to update the propensities as shown in Equation (3.23). Compared to the basic RL, 

the Roth-Erev algorithm updates all the actions instead of simply increasing the propensity 

of the chosen action only based on a direct addition of the reward. This modification 

improves the learning behavior to better mimic human learning by adding: (1) a forgetting 

behavior where the agents slowly forget the rewards from previous actions, and (2) 

enabling the agents to experiment with new actions and discover the rewards associated 

with them. The probability set is updated in the same manner as the basic RL, according to 

Equation (3.23). 

𝒒௧ାଵ =  ൝
𝑞௧ × (1 − 𝜙) + 𝑟 × (1 − 𝜖)

𝑞௧ × (1 − 𝜙) +
𝑟 × 𝜖

𝑁 − 1
              

  
𝑓𝑜𝑟  𝑎 = 𝑎

𝑓𝑜𝑟  𝑎 ≠ 𝑎
 

(3.23) 

3.3.1.4. Modified Roth-Erev algorithm. The modified Roth-Erev algorithm, 

proposed by Nicolaisen et al. (2001), includes a change to the formulation for calculating 

the propensity set. The modification is shown in Equation (3.24) (Pentapalli, 2008; Sun & 
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Tesfatsion, 2007a). It should be that the Roth-Erev algorithm, shown in Equation (3.23), 

uses a function of the reward (r) to update the propensities of the actions that were not 

chosen (i.e., a୧ ≠ a୩), while the modification in Equation (3.24) relies on the previous 

propensities (q୲) instead. The probability set is updated in the same manner as the basic 

RL which is shown in Equation (3.20). 

𝒒௧ାଵ =  ൝
𝑞௧ × (1 − 𝜙) + 𝑟 × (1 − 𝜖)

𝑞௧ × (1 − 𝜙) +
𝑞௧ × 𝜖

𝑁 − 1
              

  
𝑓𝑜𝑟  𝑎 = 𝑎

𝑓𝑜𝑟  𝑎 ≠ 𝑎
 

(3.24) 

3.3.2. Gibbs-Boltzmann Cooling Factor. In the previously shown algorithms, the 

propensities or weights were converted to probabilities using the formulation shown in 

Equation (3.20). One other option is to use a Gibbs-Boltzmann cooling factor. This 

modification is used to update the probability set (p୧) as shown in Equation (3.25) 

(Pentapalli, 2008; Sun & Tesfatsion, 2007a). The equation introduces a new variable (T) 

called a Boltzmann Cooling Factor. The Gibbs-Boltzmann cooling factor was previously 

found to cause a significant effect on learning behavior (Pentapalli, 2008). A major benefit 

is that it can handle negative values, compared to the original method in Equation (3.20). 

An additional modification is made in this research where the T = avg(|q|) so that it is 

dynamic. Otherwise, a fixed 𝑇 would cause the difference between the probabilities to be 

reduced when the values in the propensity decrease. 

𝒑𝒊 =
𝒆

𝒒𝒊
𝑻

∑ 𝒆
𝒒
𝑻

 (3.25) 

3.3.3. Reward Function for Generator RL Algorithms.  It is assumed generating 

companies can alter the parameters of their supply functions every day to mimic the 

mechanism of a wholesale power market where generators send supply offers to the 
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generators daily (Sun & Tesfatsion, 2007a). The RL algorithms are used to enable the 

generators to decide their 𝑎 parameter to increase their reward (𝑟) which is discussed in 

the following paragraph. The decision of the 𝑎 parameter modifies the supply curves of 

each generator, which changes the LMPs paid by the LSEs and ultimately the consumers’ 

decision to install DSG and defect from the grid. In all the RL algorithms tested in this 

research, the action set for the generators is assumed to be in the range of [-0.50, +1.50] 

with an 0,1 interval, resulting in 21 actions. The markup for every generator during each 

hourly time tick (t) in the model is calculated according to Equation (3.26).  

𝑎,௧.ோ =  𝑚𝑎𝑟𝑘𝑢𝑝 × 𝑎,௧ (3.26) 

Where:  𝑚𝑎𝑟𝑘𝑢𝑝,௧  = 1 + 𝑎𝑐𝑡𝑖𝑜𝑛,௧  
 50% ≤  𝑚𝑎𝑟𝑘𝑢𝑝,௧ ≤ 250% 

The decision of the generating companies to increase or decrease their supply 

parameters is a profit-seeking behavior. The gross profit for a generating company is shown 

in Equation (3.27). The revenue for each generator (𝑔) is calculated according to the LMP 

at the node where it is located, multiplied by its commitment (𝑃). The variable cost of a 

generating company is the actual generating cost calculated according to its supply 

parameters 𝑎 and 𝑏 and its generated commitment 𝑃. The generators will attempt to 

improve their profits by altering the supply parameter 𝑎 reported to the ISO. The 

calculation of the revenue however relies on the actual supply parameters 𝑎,௧௨ and 

𝑏,௧௨ which are the initial parameters without the markup. The reward function for the 

RL is therefore the daily gross profit margin, as shown in Equation (3.28). The generators 

will update their supply parameters daily in accordance with the design of a wholesale 

power market where the generators supply their offers daily to the ISO (Sun & Tesfatsion, 
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2007a). The supply parameters will have a complex cascading effect on the entire network: 

(1) The demand may be committed to other less costly generating companies because of 

the dynamic wholesale power market behavior; (2) the LMPs will change throughout the 

nodes; and ultimately, (3) the rate of adoption of DSG will be affected. Therefore, an RL 

approach can be used to create an AI behavior that can determine the markups, learn from 

the outcomes of its actions, and adapt to the outcomes continuously. 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 −  𝐶𝑜𝑠𝑡 (3.27) 

𝑤ℎ𝑒𝑟𝑒:  𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝐿𝑀𝑃 × 𝑃   

𝐶𝑜𝑠𝑡 = 𝑎,௧௨ × 𝑃 + 𝑏,௧௨ × 𝑃
ଶ  

𝑟,ௗ௬   = 𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑓𝑖𝑡 𝑀𝑎𝑟𝑔𝑖𝑛,ௗ௬ =
∑ 𝑃𝑟𝑜𝑓𝑖𝑡,

ଶସ
ୀଵ

∑ 𝐶𝑜𝑠𝑡,
ଶସ
ୀଵ

 
(3.28) 

3.3.4. Exploration/Exploitation and Hyperparameter Tuning. A key element of 

RL algorithms is their ability to explore actions and learn from the outcomes. In the 

developed model, generating companies have no inherent knowledge or expectations 

regarding the expected outcomes from each action. The actions decided by the generating 

companies affect the adoption of DSG dynamically and ultimately the outcomes of the 

actions. The RL approach in this research intends to mimic dynamic pricing by generating 

companies in wholesale power markets considering that customers can choose to install 

DSG. As such, the RL algorithms rely on exploration and exploitation to maximize the 

outputs, where the exploration aspect attempts new actions, while the exploitation aspect 

selects actions that previously resulted in desirable outcomes (Assaad et al., 2021). The 

tradeoff between exploration and exploitation is controlled using the hyper-parameters for 

each algorithm. The multiplicative weights algorithm relies on the LR parameter (η) and 
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the Roth-Erev algorithm relies on the “forgetting” parameter (ϕ) and the “experimenting” 

parameter (ϵ). The Gibbs-Boltzmann cooling factor also affects the calculations of the 

probability sets which modified the learning behavior. As such, the RL hyperparameters 

are tested to balance exploration and exploitation. To perform hyperparameter tuning, the 

respective hyperparameters of each RL algorithm are tested in the range of 0.1 to 0.9 to 

create stable learning behaviors that result in the highest rewards for the generating 

company agents. The RL algorithms select actions and learn continuously for the duration 

of the simulation which is five years and terminate when the simulation ends. This behavior 

is intended to mimic the fact that the actions (markups) decided by the generating 

companies will have a direct impact on DSG adoption and their revenues. As such, they 

will interactively learn and adapt to a dynamic market. The termination time for the 

simulation is set to five years as a reasonable time horizon. However, it can be easily 

increased to create long-term simulations.  

3.4. DSG POLICY INCENTIVES 

The objective of this part is to study the effect of policy incentives on the adoption 

of DSG. The previous sections explain the steps to achieve a working model where a DSG 

adoption behavior emerges from the economic decision between (1) the electrical power 

bills impacted by the node-level LMPs, and (2) the cost of buying a DSG system reflected 

as a monthly payment for a loan. To achieve the main objective of this part, two incentive 

options are applied and compared as shown in Figure 3.18.: (1) tax credits and rebates 

which reduce the upfront cost of the system; and (2) DSG loans with lower interest rates 

which increases the long-term net benefits of a system. The purpose of this step is to 



 

 

67

investigate how different incentive scenarios affect the DSG adoption rate and the prices 

across the network. This is achieved in three steps: (1) Study the baseline case of the model, 

where it is assumed that there are no reductions in the initial cost of a DSG system and the 

interest rate is 6%; (2) Test the possible combinations of incentives at an LSE such that the 

interest rate (𝑖)  ∈  [4%, 5%, 6%, 8%, 9%] and the rebate ∈ [0%, 5%, 10%, 15%, 20%] to 

study the isolated effect on that LSE; and, finally (3) perform an exhaustive combination 

of scenarios using the aforementioned range of interest rates and rebates to study the 

relationship between incentives, DSG adoption rates, and electric power rates.  

 

 

Figure 3.18. Overview of the methodology for DSG policy incentives. 

3.5. REDUCING VULNERABILITY AGAINST NATURAL DISASTERS 

3.5.1. Meta-Heuristic Optimization Methods. In this part, a Genetic Algorithm 

(GA) is used to optimize the size and location of DSG to reduce the vulnerability of electric 

power grids against natural disasters. GA is classified as a meta-heuristic optimization 

method. In general, meta-heuristic optimization methods are widely used for optimizing 
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complex problems in many fields. Most meta-heuristic optimization methods are inspired 

by nature, involve stochastic behavior, do not require gradients, and have adjustable 

parameters (Boussaïd et al., 2013). There are many meta-heuristic methods such as Genetic 

algorithms (GA), Simulated Annealing (SA), Tabu Search (TS), Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO), Harmony Search (HS), Artificial 

Bee Colony (ABC), Cuckoo Search Algorithm (CSA), Shuffled Frog Leaping Algorithm 

(SFLA), Shuffled Bat Algorithm (SBA), Plant Growth Simulation Algorithm (PGSA), 

Biogeography Based Optimization (BBO), Firefly Algorithm (FA), and Imperialist 

Competitive Algorithm (ICA), among other techniques and variations (Abdmouleh et al., 

2017). 

The GA is a heuristic optimization technique that is inspired by evolution and 

survival of the fittest. GAs have been used in countless applications and research such as 

water resources planning (Nicklow et al., 2010), construction planning and resource 

allocation (Hegazy, 1999), disaster management (M. S. Eid & El-adaway, 2017b), 

optimizing the maintenance cost of bridges (Ghodoosi et al., 2018), among many others. It 

was also used in many papers to optimize DG allocation problems under different 

considerations (Abdmouleh et al., 2017; Ganguly & Samajpati, 2015; Pisica et al., 2009). 

While GA is considered the most applied optimization technique in solving problems 

related to DG placing and sizing, many other optimization methods such as simulated 

annealing and particle swarm were applied to grid optimization and DG optimization 

(Abdmouleh et al., 2017). However, there is limited research that combines hybrid heuristic 

and OPF optimization to perform two-step optimization of DG allocation. Few papers 

presented hybrid GA and OPF methods to investigate the capacity of distributed systems 
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for new DG systems (Harrison et al., 2007, 2008), and to minimize the cost of active and 

reactive power using DG (Mardaneh & Gharehpetian, 2004). In this part, GA is used 

because (1) it is a robust method that has been used in many applications; (2) it has been 

previously used as a hybrid method with OPF; and (3) there is a technical proximity 

between ABM and GA because solutions in GA are represented as chromosomes which 

can be easily linked to the parameters of the agents. This allows seamless integration and 

cross-validation between them (M. S. Eid & El-adaway, 2021). Still, there is a need for 

future research comparing hybrid meta-heuristic techniques as related to the problem 

presented in this research. 

3.5.2. Optimizing Methods. The optimization approach in this research intends to 

determine the location and number of DSG. It is assumed that any transmission line can be 

damaged during natural disasters and therefore limit the power flow in the grid. When the 

grid is unable to meet the total demand, system operators may need to strategically reduce 

power to parts of the system instead of risking a complete blackout of the entire grid, which 

is a measure referred to as load shedding, or rolling blackout, or brownout, depending on 

the procedure (Agarwal & Khandeparkar, 2021; Y. Liu et al., 2015; Tofis et al., 2017). The 

method presented in this research proposes and compares two perspectives to allocate DSG 

at one node or several to mitigate the disruption caused by the failure of transmission lines.  

3.5.2.1. Method 1: Optimizing at a single node. The purpose of the optimization 

approach in the first method of to calculate the minimum number of DSG to place at one 

node to (1) mitigate the effect of a damaged transmission line; (2) avoid a complete system 

blackout or the need for a targeted blackout at the problematic node. The outline of the 

algorithm for Method 1 is shown in Figure 3.19.  
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Figure 3.19. Outline of the algorithm for method 1. 

 

The algorithm assumes that each transmission line is susceptible to failure in 

separate scenarios per line. In each scenario, a transmission line is considered completely 

damaged, and the electric network is recalculated to determine its feasibility, i.e., whether 

the demand from the LSEs can be satisfied. If the demand cannot be satisfied, the algorithm 

iterates each LSE to find which one would make the network feasible again if power to the 

determined LSE would be cut off to avoid a complete grid blackout instead. The algorithm 

then proceeds to search for the minimum number of DSG to allocate to the determined 

node in the previous step, which would satisfy the feasibility of the electric grid. The 
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algorithm then proceeds to iterate over each transmission line to determine the required 

DSG to mitigate against the failure of the targeted line. Ultimately, the outputs of the 

scenarios are cross-referenced to determine the number of DSG at each node needed to 

avoid the failure of any transmission line at any time. It should be noted that the algorithm 

is integrated into the ABM model, which means that the allocation of DSG would affect 

the electric power market economics of the entire grid including the supply of all the 

generators, the demands from all LSEs, and the LMPs across the nodes. 

3.5.2.2. Method 2: Network optimization using Genetic Algorithm (GA). The 

purpose of Method 2 is in the same direction as Method 1 concerning that it intends to 

mitigate against the failure of transmission lines subjected to natural disasters and avoid 

blackouts. However, in Method 2 the number of DSG is optimized across the entire grid, 

as shown in Equation (3.29) as opposed to a single node at-a-time. This can help achieve a 

lower number of DSG at the cost of spreading them across many locations. To achieve that 

objective, an ad-hoc solver was developed using GA and integrated into the ABM model.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝐷𝐺



 

Where: 0 ≤  𝐷𝐺 ≤  𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 

(3.29) 

A metaheuristic optimization layer using a Genetic Algorithm (GA) is integrated 

on top of the ABM and OPF. GA is a preferred method because there is a technical 

proximity between ABM and GA that allows seamless integration between them (M. S. 

Eid & El-adaway, 2021). Specifically, the parameters of the agents in the ABM can be 

easily integrated in a GA as chromosomes and optimized in an iterative evolutionary 

process. Collectively, ABM, OPF, and GA can be integrated in a multilayer DSG 
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optimization approach that fulfills the need for simulating and optimizing dynamic 

electrical networks as opposed to a conventional static grid model (Abdmouleh et al., 

2017). As shown in Figure 3.20, the general steps of a GA are as follows: (1) Initialization: 

An initial population of solutions is generated using chromosomes where each gene is a 

variable in a feasible solution of DSG allocation of Node 𝑖; (2) Selection: The best solutions 

in the population are kept and the rest of the solutions are omitted to mimic survival of the 

fittest; (3) Cross-over: The genes of the selected solutions are mixed in a cross-over to 

create new solutions with mixed genes from the best solutions similar to the inheritance of 

genes from parent to offspring; (4) Mutation: The variables in a few solutions are 

randomized to create new solutions outside of the search area of the current population of 

solutions to escape possible local minima and attain a global minimum. The mutation step 

is not performed on every iteration of the GA; it is performed according to a pre-set 

probability that is usually low and tweaked according to the problem. The loop is then 

repeated until a stopping criterion is reached, which can be a maximum number of epochs. 

The GA and ABM are integrated seamlessly at the agent level. The list of numbers of DSG 

for the LSEs in a grid represents a solution or a chromosome in the GA, as shown in Figure 

3.20. GA optimization is performed for each transmission line in the electric grid as shown 

in Figure 3.21. Each transmission line is considered non-operational in a separate scenario 

similar to method 1. If disconnecting a line renders the network infeasible, then the 

optimization is performed to determine the number and location of DSG to make it 

operational again. The algorithm loops through all the scenarios and returns an optimized 

allocation of 𝐷𝐺, for every node (𝑖), that can effectively mitigate the failure of any 

transmission line.  
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Figure 3.20. Outline of evolutionary algorithm. 

 

 

Figure 3.21. Outline of the algorithm in method 2. 
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3.6. TOOLS AND SOFTWARE USED 

The model was developed entirely using the programming language Python, which 

is a popular and well-established environment for scientific and engineering applications 

(Millman & Aivazis, 2011; Oliphant, 2007). Several open-source packages are used, 

including; Numpy for numerical computation (Oliphant, 2006; Van der Walt et al., 2011), 

Matplotlib and Seaborn for plotting and visualization (Hunter, 2007; Waskom et al., 2018), 

Pandas for data structures and data manipulation (McKinney, 2011), Statsmodels and 

Linearmodels for statistical analysis (Seabold & Perktold, 2010; Sheppard, 2017), SciPy 

for scientific computing (Virtanen et al., 2020), Networkx for network analysis and 

visualization (Hagberg et al., 2008), Scikit-learn / Sklearn for machine learning (Pedregosa 

et al., 2011), and Numba (Lam et al., 2015). Development relied on free and open-source 

development environments such as Microsoft’s Visual Studio Code and Jupyter Notebooks 

(Kluyver et al., 2016). A summary of the tools and software used is shown in Table 3.4. 

 

Table 3.4. Tools and software used. 

Name Description Reference 

Python Programming language 
(Millman & Aivazis, 2011; 
Oliphant, 2007) 

Numpy Numerical methods 
(Oliphant, 2006; Van der Walt et 
al., 2011) 

Matplotlib/Seaborn Visualization 
(Hunter, 2007; Waskom et al., 
2018) 

Pandas Data manipulation (McKinney, 2011) 

Statsmodels and 
Linearmodels 

Statistical analysis 
(Seabold & Perktold, 2010; 
Sheppard, 2017) 

SciPy Scientific computing (Virtanen et al., 2020) 

Networkx Network analysis  (Hagberg et al., 2008) 

VSCode and Jupyter  Coding - 
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4. RESULTS AND ANALYSIS 

4.1. RELATIONSHIP BETWEEN THE ELECTRIC POWER SECTOR AND 
SOCIOECONOMIC INDICATORS 

4.1.1. Data Collection. Data was collected from the World Bank and Transparency 

International as specified in the Methodology. The dataset was refined by cross-referencing 

against the list of 195 dependent countries in the world and removing the countries that do 

not exist in that list. Table 4.1 shows the descriptive statistics of the collected data. It should 

be noted that the data was not collected for a specific range of date, but for all available 

years for each country and metric. This decision was made to enable the analysis of the 

unique relationship against each parameter without limitations to a time range. Otherwise, 

the data range would be very limited because some of the parameters have a limited time 

range. For example, the Corruption Perception Index had a major revision of its calculation 

method starting 2012, which made it inconsistent with its previously published values. In 

addition, some of the parameters are absent for some countries. Therefore, a decision to 

remove any country that has missing inputs for any metric or for any time range would 

severely limit the availability of data. As such, the number of observations, shown in Table 

4.1, is different for each metric. A note should also be made that the negative values for 

the minimum Adjusted net national income per capita (current US$), shown in Table 4.1, 

is not a mistake; this value was negative in Angola (years 1992 and 1994) and Equatorial 

Guinea (between 2000 and 2005) (The World Bank, 2019b). 
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4.1.2. Analysis Against Electrical Consumption per Capita. The following 

shows the first part of the analysis where the relationship between the socio-economic 

parameters and the electric power consumption per capita is thoroughly analyzed.  

4.1.2.1. Visualizing the data.  Figure 4.1 to Figure 4.5 show scatter plots for each 

variable against the electrical power consumption per capita, in order to visualize the 

relationship between the dataset parameters. A linear regression line, with a confidence 

interval of 95% is added to each plot to show the trends of the relationships. Figure 4.1 

shows the Electrical Power Consumption per capita against: (a) Adjusted Net National 

Income per Capita and (b) the GDP per Capita at PPP. The positive relationship between 

those parameters, although not consistent, is very apparent. It can therefore be concluded 

that the economy, represented by the GDP per capita and the national income per capita, 

has a positive relationship with electrical consumption per capita. This trend is not 

surprising; a country that has a healthier economy is expected to have a higher electrical 

power consumption per capita. 

Figure 4.2 shows the Electrical Power Consumption per capita against the Human 

Development Index. The trend that there is a positive relationship between the HDI and 

the Electrical Power Consumption per capita. Another observation is that the trend 

decreases as the HDI and electrical power consumption increase. In other words, the 

relationship has a higher positivity in less developed countries and fades in more developed 

countries. The reason may be that developed country may have already achieved high 

levels of human development and it can only be increased with in smaller intervals. The 

underlying indicators if the HDI, which are life expectancy (health), knowledge, and 
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income per capita have already been pushed to the best possible expectations in advanced 

countries and further improvements are smaller. 

 

 

 

Figure 4.1. Scatter plot of the electrical power consumption per capita against (top) 
adjusted net national income per capita and (bottom) the GDP per capita at PPP. 
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Figure 4.2. Scatter plot of the electrical power consumption per capita against the HDI. 

 

Figure 4.3 and Figure 4.4 show the Electrical Power Consumption per capita 

against the Corruption Perception Index and the Control of Corruption, respectively. For 

both indicators of corruption, a higher value means that there is lower corruption. 

Therefore, as expected, the electrical consumption per capita is higher when the corruption 

is lower. Again, as observed in the previous visualization of the HDI, the relationship 

between electrical consumption and corruption starts to fade as corruption decreases. It 

should be noted that the maximum value for the CPI is 100 and the Control of Corruption 

Index is a standardized measurement. Figure 4.5 shows the plot CPIA transparency, 

accountability, and corruption in the public sector rating. However, this index does not 

show the expected relationship. Overall, it can be concluded that there is a relationship 

between lower corruption and higher electrical power consumption per capita. 
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Figure 4.3. Scatter plot of the electrical power consumption per capita against the 

corruption perception index. 

 

 
Figure 4.4. Scatter plot of the electrical power consumption per capita against the control 

of corruption. 



 

 

80

 

T
ab

le
 4

.1
. D

es
cr

ip
ti

on
 o

f 
da

ta
. 

M
a

xi
m

u
m

 

5
4,

7
99

.1
7

 

8
2,

4
87

.4
7

 

0
.8

0
4

 

1
89

,1
7

0.
9

0
 

1
26

,5
9

7.
6

0
 

1
00

 

1
00

 

6
5.

4
43

 

4
.5

 

2
.4

6
9

 

9
2

 

M
in

im
u

m
 

0
 

-5
9

5.
5

18
 

0
.1

7
6

 

3
4.

7
9

 

2
47

.7
6

5
7

 

0
.0

1
 

0
 

0
 

1
 

-1
.8

68
 8
 

S
ta

n
d

ar
d

 
D

e
vi

a
ti

o
n

 

4
,5

7
7.

02
 

1
0,

6
67

.7
5

 

0
.1

3
5

 

1
5,

9
61

.5
7

 

1
6,

7
87

.3
5

 

3
1.

1
96

 

3
4.

4
49

 

5
.6

2
6

 

0
.6

5
8

 

1
.0

1
3

 

1
9.

7
57

 

M
e

an
 

3
,1

6
0.

63
 

6
,2

9
2.

82
 

0
.4

4
9

 

7
,6

5
3.

00
 

1
3,

6
32

.0
2

 

7
8.

1
25

 

3
1.

8
86

 

2
.3

1
1

 

2
.8

5
9

 

-0
.0

48
 

4
2.

7
67

 

N
u

m
b

er
 o

f 
O

b
s

er
v

a
ti

o
n

s
 

5
,4

7
1

 

6
,1

2
5

 

4
08

 

8
,4

5
1

 

4
,7

9
0

 

4
,1

0
5

 

4
,6

2
8

 

5
,5

9
1

 

9
34

 

3
,2

9
0

 

1
,1

2
9

 

 

E
le

ct
ri

c 
p

ow
e

r 
co

n
su

m
p

tio
n

 

A
d

ju
st

ed
 n

e
t 

n
at

io
n

a
l i

nc
o

m
e

 

H
u

m
a

n 
d

ev
el

o
pm

en
t 

G
D

P
 p

er
 c

a
p

ita
 

(c
u

rr
en

t U
S

$
) 

G
D

P
 p

er
 c

a
p

ita
, 

P
P

P
 (

cu
rr

en
t 

A
cc

es
s 

to
 

e
le

ct
ri

ci
ty

 (
%

 o
f 

R
e

ne
w

ab
le

 
e

le
ct

ri
ci

ty
 o

u
tp

u
t 

E
le

ct
ri

ci
ty

 
p

ro
du

ct
io

n 
fr

om
 

C
P

IA
 

tr
an

sp
ar

e
nc

y,
 

C
o

nt
ro

l o
f 

C
o

rr
up

tio
n:

 

C
o

rr
up

tio
n 

P
e

rc
e

pt
io

n
 I

nd
e

x 

 



 

 

81

 

Figure 4.5. Scatter plot of the electrical power consumption per capita against the CPIA 
transparency, accountability, and corruption in the public sector rating. 

 

4.1.2.2. Correlation analysis. Pearson correlation analysis was performed on the 

data to determine the possible relationships between the parameters. Table 4.2 shows the 

results of the correlation. It can be seen that there is a high correlation between the electrical 

power consumption per capita and all of Adjusted Net National Income per Capita, Human 

Development Index, GDP per Capita, GDP PPP per Capita, and Control of Corruption 

indices. There is also a high inter-correlation between some of the parameters. The positive 

relationship between the national income and the GDP is, of course, not surprising, because 

they translate to the same underlying economic broad meaning. There is a positive 

correlation between corruption indicators and the GDP as well as the National Income, 

meaning that less corrupt countries have better economies. The positive correlation 
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between electrical power consumption per capita and the corruption perception index 

suggests that low corruption is associated with higher the electrical consumption per capita. 

Similarly, the Control of Corruption Index proves the same relationship. There is also a 

good correlation between electric power consumption per capita and the Human 

Development Index. This is also expected, because a developed country is expected to 

consume more electricity than a less developed country. 

4.1.2.3. Linear regression analysis. Linear regression analysis is performed on the 

dataset to test the relationship between each of the socio-economic variables under study 

and the electrical consumption per capita. This is performed by fitting a separate model 

between the electrical consumption per capita and each of the other variables individually, 

as shown in Equation (4.1) below: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎

= 𝛼 × 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝐼𝑛𝑡𝑒𝑐𝑒𝑝𝑡 + 𝑒𝑟𝑟𝑜𝑟 

(4.1) 

The results of the linear regression tests are shown in Table 4.3. The columns on 

the left shows the variable/parameter used to fit the model as the independent variable, 

where each row represents a separate test. The dependent variable in all the tests is the 

electrical power consumption per capita. By observing the 𝑅ଶ results, the goodness of fit 

of the model can be evaluated. The 𝑅ଶ value shows the proportion of the variance in the 

dependent variable that is predictable from the independent variable. The Human 

Development Index (HDI), adjusted net national income per capita, and GDP per capita, 

all have  𝑅ଶ values ≥ 0.5. In addition, the Control of Corruption Index, and the Corruption 

Perception Index both have noticeable 𝑅ଶ values.  
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Table 4.2. Correlation analysis for the dataset. 
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Electric power 
consumption (kWh per 
capita) 

1 0.73 0.75 0.71 0.71 0.42 -0.07 0.13 0.09 0.66 0.6

Adjusted net national 
income per capita 
(current US$) 

0.73 1 0.8 0.99 0.88 0.45 -0.13 0.21 0.38 0.78 0.82

Human development 
index (HDI) 

0.75 0.8 1 0.68 0.73 0.85 -0.33 0.23 0.23 0.41 -

GDP per capita 
(current US$) 

0.71 0.99 0.68 1 0.89 0.38 -0.09 0.23 0.41 0.72 0.79

GDP per capita, PPP 
(current international $)

0.71 0.88 0.73 0.89 1 0.49 -0.21 0.17 0.35 0.66 0.72

Access to electricity (% 
of population) 

0.42 0.45 0.85 0.38 0.49 1 -0.26 0.11 0.29 0.47 0.47

Renewable electricity 
output (% of total 
electricity output) 
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from renewable 
sources, excluding 
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sector rating (1=low to 
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Control of Corruption: 
Estimate 
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Corruption Perception 
Index 
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4.1.2.4. Panel analysis. Panel data analysis is performed using Pooled OLS, FEM, 

and REM, as previously specified in the methodology. The results are shown in Table 4.4. 

It should be noted that Pooled OLS is the same concept as the previous linear regression 

sub-section, and results in almost identical results. There are negligible differences due to 

using a different tool. The results of panel regression show that the Human Development 

Index, Adjusted Net National Income per capita, GDP per capita, and GDP per capita at 

PPP have relatively high 𝑅ଶ values. There is however a drop in 𝑅ଶ values when Entity 

Effects are considered. This is probably due to other unobserved variables that are country 

specific. Regarding the analysis of corruption related parameters, the Control of Corruption 

Estimate and the Corruption Perception Index have a significant 𝑅ଶ values using the Pooled 

OLS and FEM with Time Effect. However, the regressions using Entity Effect and RE do 

not perform well and have low T-statistics values. This means that Control of Corruption 

and Corruption Perception Index have a relationship with Electric Consumption per Capita. 

 

 
Table 4.4. Results of panel analysis for electrical power consumption per capita as the 

dependent variable. 

Variable 
  No. 
Obs. 

Method 
  R-

squared  
  P-value 
(F-stat)  

Coef. Of 
Variable 

T-Stat of 
Coef. 

Adjusted net 
national income 
per capita 
(current US$) 

4479 

[Pooled]  0.53 0.00 0.30 71.43 
[FE (Time 
Effect)]  

0.54 0.00 0.32 71.39 

[FE (Entity 
Effect)]  

0.45 0.00 0.13 59.74 

[FE (Time and 
Entity Effect)]  

0.25 0.00 0.10 37.76 

[RE]  0.44 0.00 0.13 59.74 
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Table 4.4. Results of panel analysis for electrical power consumption per capita as the 
dependent variable (cont.). 

Variable 
  No. 
Obs. 

Method 
  R-

squared  
  P-value 

(F-stat)  
Coef. Of 
Variable 

T-Stat of 
Coef. 

Human 
development 
index (HDI) 

246 

[Pooled]  0.56 0.00 3891.30 17.74 
[FE (Time 
Effect)]  

0.55 0.00 3943.70 17.07 

[FE (Entity 
Effect)]  

0.42 0.00 2736.70 12.55 

[FE (Time and 
Entity Effect)]  

0.29 0.00 3622.40 9.29 

[RE]  0.41 0.00 2154.60 13.01 

GDP per capita 
(current US$) 

5079 

[Pooled]  0.51 0.00 0.25 72.00 
[FE (Time 
Effect)]  

0.51 0.00 0.26 72.43 

[FE (Entity 
Effect)]  

0.38 0.00 0.14 55.00 

[FE (Time and 
Entity Effect)]  

0.15 0.00 0.10 28.98 

[RE]  0.39 0.00 0.15 56.63 

GDP per capita, 
PPP (current 
international $) 

3103 

[Pooled]  0.50 0.00 0.22 56.16 
[FE (Time 
Effect)]  

0.51 0.00 0.23 56.81 

[FE (Entity 
Effect)]  

0.12 0.00 0.08 20.13 

[FE (Time and 
Entity Effect)]  

0.04 0.00 0.07 11.72 

[RE]  0.16 0.00 0.10 24.12 

Access to 
electricity (% of 
population) 

2718 

[Pooled]  0.18 0.00 84.06 24.10 
[FE (Time 
Effect)]  

0.17 0.00 83.86 23.80 

[FE (Entity 
Effect)]  

0.00 0.02 12.31 2.26 

[FE (Time and 
Entity Effect)]  

0.01 0.00 -36.47  (-6.05)  

[RE]  0.03 0.00 34.06 9.68 
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Table 4.4. Results of panel analysis for electrical power consumption per capita as the 
dependent variable (cont.). 

Variable 
  No. 
Obs. 

Method 
  R-

squared  
  P-value 

(F-stat)  
Coef. Of 
Variable 

T-Stat of 
Coef. 

Renewable 
electricity output 
(% of total 
electricity 
output) 

3205 

[Pooled]  0.00 0.00 -10.19  (-3.79)  
[FE (Time 
Effect)]  

0.00 0.00 -9.78  (-3.63)  

[FE (Entity 
Effect)]  

0.00 0.01 -8.14  (-2.50)  

[FE (Time and 
Entity Effect)]  

0.00 0.87 -0.51  (-0.16)  

[RE]  0.00 0.37 -2.80  (-0.90)  

Electricity 
production from 
renewable 
sources, 
excluding 
hydroelectric (% 
of total) 

5455 

[Pooled]  0.02 0.00 107.54 9.38 
[FE (Time 
Effect)]  

0.01 0.00 86.99 7.43 

[FE (Entity 
Effect)]  

0.12 0.00 217.96 26.69 

[FE (Time and 
Entity Effect)]  

0.04 0.00 117.87 15.64 

[RE]  0.12 0.00 218.70 26.89 

CPIA 
transparency, 
accountability, 
and corruption in 
the public sector 
rating (1=low to 
6=high) 

383 

[Pooled]  0.01 0.07 119.82 1.84 
[FE (Time 
Effect)]  

0.01 0.14 99.40 1.47 

[FE (Entity 
Effect)]  

0.00 0.80 8.61 0.25 

[FE (Time and 
Entity Effect)]  

0.00 0.69 -13.58  (-0.40)  

[RE]  0.03 0.00 90.19 3.19 

Control of 
Corruption: 
Estimate 

2057 

[Pooled]  0.43 0.00 3404.80 39.47 
[FE (Time 
Effect)]  

0.43 0.00 3410.80 39.42 

[FE (Entity 
Effect)]  

0.00 0.35 -153.13  (-0.94)  

[FE (Time and 
Entity Effect)]  

0.00 0.51 -104.86  (-0.66)  

[RE]  0.00 0.11 245.33 1.58 
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Table 4.4. Results of panel analysis for electrical power consumption per capita as the 
dependent variable (cont.). 

Variable 
  No. 
Obs. 

Method 
  R-

squared  
  P-value 

(F-stat)  

Coef. 
Of 

Variable 

T-Stat of 
Coef. 

 Corruption 
Perception 
Index 

387 

[Pooled]  0.35 0.00 178.71 14.54 

[FE (Time 
Effect)]  

0.35 0.00 179.62 14.34 

[FE (Entity 
Effect)]  

0.01 0.20 -9.90  (-1.30)  

[FE (Time and 
Entity Effect)]  

0.00 0.28 -8.68  (-1.07)  

[RE]  0.08 0.00 37.47 5.65 

 

4.1.2.5. Polynomial regression fitting. In order to find the best equation that 

describes the electrical power consumption per capita, an optimization problem was 

formulated to search for the best formula to fit a polynomial regression. This is performed 

by running an exhaustive enumeration search through all combinations of the independent 

variables with the goal on finding the formula with the lowest 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ. The number 

of possible variables was limited to a selection of variables that are expected to be relevant 

to the dependent variable while attempting to avoid collinearity. The variables used for the 

test are the Human Development Index, GDP per capita at PPP, Access to Electricity 

Percentage, Control of Corruption Estimate, and Corruption Perception Index. The search 

is performed on the first and second order combinations for each selected variable. The 

best formula found by the search algorithm is shown Equation (4.2). This formula was 

found to have the have the highest 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ value, which is 0.837, and has 𝑅ଶ value 

of 0.842. The number of observations is 202.  
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Table 4.5 shows the statistical parameters of the linear fit, including the values of 

the coefficients, standard errors, P-values, and Confidence Interval. It can be seen that the 

P-values are generally low for all the variables, except the Access to electricity. 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙𝑃𝑜𝑤𝑒𝑟𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎 =  
𝛼ଵ × 𝐻𝑢𝑚𝑎𝑛𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 + 𝛼ଶ ×
(𝐻𝑢𝑚𝑎𝑛𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥)ଶ  
+ 𝛼ଷ × 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑂𝑓𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛 + 𝛼ସ ×
(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑂𝑓𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒)ଶ  
+ 𝛼ହ × 𝐴𝑐𝑐𝑒𝑠𝑠𝑇𝑜𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦%  
+𝛼 ×  (GDPperCapitaAtPPP)ଶ  
+𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑒𝑟𝑟𝑜𝑟  

(4.2) 

 

Table 4.5. Statistical parameters of the linear model. 

Variable Coefficient 
Standard 

Error 
P>|t| 

Confidence Interval 
(0.95%) 

Lower Upper 

Intercept 1359.707 313.313 0 741.79 1977.624 

Human Development Index -5751.13 1364.569 0 -8442.34 -3059.92 

Access to Electricity 0.7365 1.716 0.668 -2.648 4.121 

Control of Corruption 327.9585 58.582 0 212.424 443.493 

(Human Development Index)2 7671.495 1568.062 0 4578.956 1.08E+04 

(GDP per Capita at PPP)2 2.62E-06 3.19E-07 0 1.99E-06 3.25E-06 

(Control of Corruption)2 153.7084 51.219 0.003 52.694 254.723 

 

4.1.2.6. Time series: electrical power consumption. Figure 4.6 shows the time 

series of the worldwide electrical power consumption per Capita. The first and very 

apparent observation is that Iceland has the highest electrical consumption, with a 

strikingly higher value than any other country. The reason of this fact is the unique 
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conditions of the electrical sector in Iceland. Electrical power in Iceland is generated almost 

exclusively from renewable resources and mostly sold to industrial users, which are 

generally Aluminum smelters. The electrical generator in Iceland was 18,798 GWh in 

2015, divided into 73% from hydroelectric sources, 27% geothermal power, and less than 

1% from fossil fuels. The jump in the electrical power in 2008 marks the operation of the 

Kárahnjúkar Hydropower Plant which produces 4,600 gigawatt-hours (ASKJA Energy, 

2019). In second place, with a much less consumption per capita, comes Norway. Bahrain 

is third in rank. The US is also in the upper range, with an electrical power consumption 

per capita of 12,993 kWh in 2014. The worldwide average electrical power consumption 

per capita in 2014 was 3,130 kWh. 

 

 

Figure 4.6. Electrical power consumption per capita. 
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4.1.2.7. Correlation analysis for each country. While correlation was done on the 

dataset in a previous part of this research, the correlation test in this section is performed 

for each country and variable separately. The correlation analysis done previously shows 

the relationship between the variables in the large dataset as a whole. However, the 

correlation in this section tests the relationship for each country separately. This approach 

presents a deeper understanding of how the relationships hold for each country separately 

and how ranges between them.  

Table 4.6 shows the descriptive statistics of the recorded correlation results. Figure 

4.7 shows a box plot of the same values for more convenient visualization. From the results, 

it can be observed the Adjusted Net National Income per Capita, the Human Development 

Index, the GDP per Capita, and the GDP per Capita at PPP all have very noticeable 

correlation against the Electrical Power Consumption per Capita, especially the Human 

Development Index. The Access to Electricity Percentage and the Percentage of Electricity 

from Renewables except Hydroelectric have much lower significant correlation results. 

Finally, the Renewable Electricity Output Percentage, CPIA Index, and the Corruption 

Perception Index have a very large range, which practically means the relationship could 

be negative in some countries and positive in others. It should be noted that the limitation 

of this analysis is the lack of relevant and consistent datasets across all countries and the 

same data range. Also, the approach of the correlation analysis shows the direct relationship 

between two variables without taking into consideration the simultaneous relationships 

between the entire variables. As such, another subsequent section will analysis the 

variables further using regression analysis including panel regression.  
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Figure 4.7. Box plot of the correlation against electrical power consumption per capita for 
each country. 
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4.1.2.8. Granger causality testing. Granger-causality testing is performed on two 

time series to test if one causes the other, i.e. that a change in one time-series causes change 

in the other. The null-hypothesis in this test is that the time series does not cause the other 

one. The observed outputs of this test that are the p-values. If the value is ≥ 0.05, the null 

hypothesis can be rejected and it can be concluded that a causality relationship exists. The 

test is performed in two directions: (1) test which of the variables causes the Electrical 

Power Consumption, and (2) test if the Electrical Power Consumption per Capita granger-

causes any of the other variables. In both cases, the test is performed between the Electrical 

Power Consumption per Capita and each of the variables separately, and at the same time 

for each country separately. The test is performed with a max lag of two years. This low 

range of lag some of the variables lack enough available time range. 

Causes of electrical consumption.  In the first case, the test is performed to find 

which variables grange-case the Electrical Power Consumption per Capita. The descriptive 

statistics of all the granger-causality tests are shown in Table 4.7, and visualized as box 

plots in Figure 4.8. It can be seen from the results the mean values of the P-values are 

generally large. The null hypothesis should not be rejected if P-value ≥  0.05. Therefore, 

it be concluded that none of the studied metrics has a noticeable causality effect on the 

electrical power consumption. This conclusion is at least valid for on the short-term since 

the test was performed with a maximum time lag of two years. 

Impact of electrical consumption per capita. In this section, the granger-causality 

test is performed to find which variables the Electrical Power Consumption per Capita 

cases. The descriptive statistics of all the granger-causality tests are shown in Table 4.8, 

and visualized as box plots in Figure 4.9. Similar to the findings in the previous section of 
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the Granger-causality testing, the results of the P-values in this test are also generally high 

and greater than 0.05. Therefore, the null hypothesis should not be rejected, and it can be 

concluded that, at least on the short-term, the electrical power consumption per capita does 

not cause any of the studied metrics. 

 

 

Figure 4.8. Box plot of the Granger-Causality against electrical power consumption per 
capita for each country. 
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Figure 4.9. Box plot of the Granger-Causality against electrical power consumption per 
capita for each country. 
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4.1.3. Analysis Against Electrical Losses in Distribution. The previous analysis 

showed that a relationship between electrical power consumption per capita, on one side, 

and metrics that represent economy, development, and corruption, on the other side. This 

section focuses on electrical power losses in distribution, instead of electrical power 

consumption per capita. Previous studies, covered in the literature review, highlighted that 

that illegal actions, theft, government inefficiency, and poor enforcement of the law result 

in large power losses, in the form of electricity that is generated, but not billed. In addition, 

it can be argued that the design, construction, and maintenance of an efficient power 

infrastructure is impacted by corruption. Therefore, the analysis in the following sections 

place a special interest on the effect of corruption on electrical power losses in distribution. 

4.1.3.1. Data visualization. Figure 4.10 shows the scatter plots of (a) CPIA Index, 

(b) Control of Corruption, (c) Human Development Index, and (d) Corruption Perception 

Index, vs. electric power losses. The plots of the Control of Corruption and the Corruption 

Perception Index show visually apparent negative trends. It should be mentioned the 

corruption indices are high in less corrupt countries, and low in low in more corrupt 

countries. Therefore, the trend means that in less corrupt countries, the percentage of 

electricity losses is lower. The trend is less apparent when comparing to the Human 

Development Index against the electric power losses. This means that corruption may be 

more suitable than human development to reflect the losses in distribution in a country.  
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(a) (b) 

  
(c) (d) 

Figure 4.10. Scatter plots of the (a) CPIA index, (b) control of corruption, (c) human 
development index, and (d) corruption perception index, vs. electrical power 

consumption per capita. 
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4.1.3.2. Correlation analysis. The relationship between corruption and electrical 

losses can be further studied by performing correlation analysis. Table 4.9 shows the 

correlation analysis results. The correlation of the percentage of electricity losses against 

each of the studied variables can be seen in the first column.  

The results show that there is a weak correlation between the percentage power loss 

and both the Control of Corruption Index and Corruption Perception Index. However, the 

correlations for those two indices are higher than that of the Human development Index. 

Therefore, it can be concluded from this test that corruption is somewhat correlated with 

electric power losses. However, there is a very weak correlation between human 

development and electric power losses. This, again, means that losses in distribution in a 

country may be more connected to corruption that human development. A country that has 

lower corruption has lower losses in distribution, and vice versa. 

4.1.4. Regression Analysis. In this section, regression analysis is performed to find 

the best linear model that fits the percentage of electrical power losses. The test was 

performed by searching for the formula of a polynomial regression that produces the 

highest 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ. The results of this optimization problem in shown in Table 4.10. 

From the results, it can be seen the Corruption Perception Index has the highest 𝑅ଶ 

and 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅^2, followed closely by the Control of Corruption Estimate. The Human 

Development Index and the CPIA index both have negligible results. Therefore, it can be 

concluded the best formula for this model is: 

%𝑃𝑜𝑤𝑒𝑟𝐿𝑜𝑠𝑠𝑒𝑠 = 𝛼 × 𝐶𝑃𝐼 + 𝛼ଵ × 𝐶𝑃𝐼ଶ + 𝐼𝑛𝑒𝑟𝑐𝑒𝑝𝑡 (4.3) 
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Table 4.9. Correlation analysis of electric power consumption, development, and 
corruption. 
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Electric power 
transmission and 
distribution losses (% of 
output) 

1.00 -0.02 -0.46 -0.02 -0.47 

CPIA transparency, 
accountability, and 
corruption in the public 
sector rating (1=low to 
6=high) 

-0.02 1.00 0.82 0.23 0.87 

Control of Corruption: 
Estimate 

-0.46 0.82 1.00 0.41 0.99 

Human development index 
(HDI) 

-0.02 0.23 0.41 1.00 NaN 

Corruption Perception 
Index 

-0.47 0.87 0.99 NaN 1.00 
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Table 4.10. Summary of the regression analysis. 

Parameter 
Number of 

Observations 
Adjusted 

R2 
R2 

Corruption Perception Index 381 0.24 0.236 

Control of Corruption Estimate 2038 0.216 0.215 

Human development index HDI 236 0.018 0.01 

CPIA transparency accountability and 
corruption  

371 0.007 0.001 

 

 Table 4.11 shows the statistical parameters of the best formula found, shown in 

Equation (4.3). From the numbers shown in Table 4.11, it can be seen that the p-values are 

all low and acceptable, which shows that the CPI has a high significance in the model. 

Figure 4.11 shows the scatter plot of the actual vs the fitted values using the chosen 

regression model. Overall, the model shows a good fit. It can therefore be concluded that 

corruption is strongly linked to electrical power losses in distribution. 

 

Table 4.11. Parameters of the polynomial regression model found. 

 Coefficient 
Standard 

Error 
P-Value 

Confidence (95%) 

Lower Higher 

Intercept 32.1482 2.764 0 26.714 37.583 

Corruption Perception 
Index 

-0.5879 0.121 0 -0.826 -0.35 

(Corruption Perception 
Index)2 

0.0032 0.001 0.006 0.001 0.005 
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Figure 4.11. Fitted and actual values for electric power losses calculated using the 
corruption perception index. 

 

4.1.4.1. Panel analysis. Results of Panel Analysis are shown in Table 4.12. Results 

of the Pooled OLS for Control of Corruption Estimate and Corruption Perception Index 

are in line with the previously shown linear regression analysis. It was also found that the 

FEM with Time effect for the same two factors, the Control of Corruption Estimate and 

Corruption Perception Index, are also somewhat significant. This means that those factors 

have a relationship with Electric Power Losses when taking into consideration unobserved 

time-dependent effects. Results of the REM show good results for the CIA Rating, Human 

Development Index, and the Corruption Perception Index. Overall, the results of the panel 

analysis for the relationship between corruption indices and electric power losses are mixed 
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and hard to interpret considering unobserved effects. However, the results show that there 

is a connection between corruption and electric power losses. 

 

Table 4.12. Results of panel analysis for electrical power losses as dependent variable. 

Variable 
  No. 
Obs.  

Method 
  R-

squared  
  P-value 
(F-stat)  

Coef. Of 
Variable 

T-Stat of 
Coef. 

CPIA 
transparency, 
accountability, 
and corruption 
in the public 
sector rating 
(1=low to 
6=high) 

371 

[Pooled]  0.00 0.73 -0.43  (-0.35) 

[FE (Time Effect)]  0.00 0.73 -0.42  (-0.34) 
[FE (Entity Effect)]  0.01 0.15 1.88 1.43
[FE (Time and 
Entity Effect)]  

0.01 0.16 1.89 1.42

[RE]  0.17 0.00 5.96 8.56

Control of 
Corruption: 
Estimate 

2054 

[Pooled]  0.21 0.00 -4.61  (-23.44) 
[FE (Time Effect)]  0.21 0.00 -4.62  (-23.40) 
[FE (Entity Effect)]  0.00 0.05 -1.32  (-1.94) 
[FE (Time and 
Entity Effect)]  

0.00 0.05 -1.36  (-1.99) 

[RE]  0.00 0.00 -1.97  (-3.20) 

Human 
development 
index (HDI) 

236 

[Pooled]  0.00 0.71 -2.79  (-0.37) 
[FE (Time Effect)]  0.00 0.29 -8.06  (-1.05) 
[FE (Entity Effect)]  0.03 0.01 34.07 2.57
[FE (Time and 
Entity Effect)]  

0.02 0.03 -50.17  (-2.24) 

[RE]  0.17 0.00 40.01 6.99

Corruption 
Perception 
Index 

381 

[Pooled]  0.22 0.00 -0.26  (-10.484) 
[FE (Time Effect)]  0.23 0.00 -0.26  (-10.468) 
[FE (Entity Effect)]  0.00 0.45 0.08 -0.76
[FE (Time and 
Entity Effect)]  

0.00 0.48 0.07 -0.70

[RE]  0.14 0.00 0.21 -7.96
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4.2. DEVELOPMENT OF THE ABM 

The results in this part show the results of the baseline case using the developed 

ABM, which is further developed in the following parts. The baseline case is mostly used 

as the initial building block for comparison of the results in the following parts. As shown 

in Figure 4.12, there is a slight decrease in the number of active customers, which totals 

2,249,741 at the end of the 5 years duration of the simulation. In other words, 6.2% of the 

initial 2,400,000 customers decided to install DSG and detach from the grid from their 

LSEs from an. The highest number of customers detaching is at LSE 6, which is an 

expected outcome because it is located at Node 6 which does not have any generators and 

consequently has the highest LMP. On the other hand, the lowest adoption of DSG is at 

LSE 3, which is also expected because it is located at Node 3 which has a nuclear generator 

supplying cheap power, is at the center of the network, and is connected to four adjacent 

nodes resulting in an abundance of low-cost power. The commitment percentage of the 

generators is shown in Figure 4.13. Most generators have slowly decreased commitment. 

The rate of decrease in the commitment is associated with the generation costs of each 

generator type. The nuclear generator at node 3 is the least affected because it produces the 

least expensive power, followed by the coal generators, and then the natural gas generators. 

The commitment of the generators is also affected by their location on the grid. For 

example, generator 1 is a natural gas generator and is located at the same node as generator 

2, which is a coal generator and less expensive. Therefore, generator 1 is affected by the 

competition with generator 2. The resulting total gross profit of the generators in the 

baseline case was found to be $ 1.077 × 𝑒ଵ and the final number of customers connected 

to the LSEs was 2,249,741 customers. Overall, the baseline case shows how that the 
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developed model can simulate the complexity of the interaction between the adoption of 

DSG and economics of the wholesale power market. Figure 4.14 shows the average 

monthly LMP for each LSE. It should be noted that the LMPs represent the marginal cost 

of one additional unit of power. The values of the LMPs are location based and depend on 

the complex interaction between the demand at each node on one side and the generation 

parameters and congestion in the grid on the other side. For example, it can be seen that 

the LMPs at node 6 are the highest. It can also be seen by comparing Figure 4.12 and Figure 

4.14 that the high cost of electricity at LSE 6 is related to the high adoption rate. The 

opposite is noted for LSE 3. In other words, customers at LSEs where the cost of Power is 

high are more inclined to install DSG systems as it is the more economical source of power. 

The following parts buildup on the base ABM and baseline case to add RL, incentives, and 

optimization for reducing system vulnerability. 

 

 
Figure 4.12. Number of active customers in the baseline case. 
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Figure 4.13. Commitment % of the generators in the baseline case. 

 

 
Figure 4.14. Monthly average LMPs for each LSE. 
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4.3. DYNAMIC PRICING USING REINFORCEMENT LEARNING (RL) 

The following sections show the results for the ABM with three RL algorithms as 

discussed in the methodology: (1) Baric RL; (2) Multiplicative RL; and (3) Roth-Erev RL. 

4.3.1. Basic RL. Figure 4.15 shows the number of customers using the basic 

probability formulation in Equation (3.20) and the Gibbs-Boltzmann colling factor method 

in Equation (3.25). Figure 4.16 shows the weekly average LMPs for each LSE. Figure 4.17 

shows the weekly average markups for the generators, while Figure 4.18 shows their 

commitment percentages. In comparison with the results of the baseline case, the results 

using a basic RL show that is not able to fully grasp the complexity of the problem and 

create an intelligent and steady learning behavior. To simplify the analysis of the results, it 

is assumed that the markup of a generator is calculated using the new 𝑎,ோ parameter from 

the RL and the original 𝑎, parameter such that 𝑚𝑎𝑟𝑘𝑢𝑝 =
,ೃಽ

,ೝೌ
. Figure 4.17 

shows that the markups of the generators are highly unstable where the generators keep 

testing new markups without converging to a noticeable trend. The results of the RL using 

Gibbs-Boltzmann are more acceptable in comparison with the basic probability 

formulation, as shown in Figure 4.17 (bottom). A generally observed behavior is that coal 

generators decrease their supply offer. The contrary applies to natural gas generators. This 

behavior shows how different generator types can have different strategies to compete and 

improve their gross profit. Overall, the total gross profit was 9.952 × 𝑒ଽ and the final 

number of customers was 1,797,242 using the basic probability method, and 1.330 × 𝑒ଵ 

and 1,909,465 using Gibbs-Boltzmann Cooling factor. Basic RL using basic probability 

calculation is unstable and unsatisfactory. By implanting the Gibbs-Boltzmann cooling 
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factor, the basic RL results in a total gross profit that is higher than the baseline case 

although DSG adoption is higher.  

 

 

Figure 4.15. Number of customers using basic probability (left) and Gibbs-Boltzmann 
(right). 

 

 
Figure 4.16. Weekly average LMPs using basic probability (left) and Gibbs-Boltzmann 

(right). 

 

 

Figure 4.17. Weekly average markups using basic probability (left) and Gibbs-Boltzmann 
(right). 
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Figure 4.18. Generator commitment percentages using basic probability (left) and Gibbs-
Boltzmann (right). 

 

4.3.2. Multiplicative RL. The multiplicative RL algorithm is an improvement 

upon the basic RL because it includes an LR that controls the learning behavior. A range 

of LR between 0.1 and 0.9 is tested to find the best value. Figure 4.19, Figure 4.20, Figure 

4.21, Figure 4.22, and Figure 4.23 show the markups chosen by generators 1, 2, 3, 4, and 

5, respectively. An LR of 0.1 results in distinctively steady learning behavior, specifically 

for generators 2, 3, and 4. It should be noted that natural gas generators are the most 

expensive, and therefore they are severely affected by the adoption of DSG in combination 

with the competition from the coal power plants. For example, generator 1 (natural gas) 

and generator 2 (coal) are on the same node. Generator 2 is less expensive than generator 

1 and strategically chooses the best markup to compete. Due to those reasons, generator 1 

reaches a commitment of 0% by the first year, while generator 2 maintains superior 

commitment. On the other hand, generator 3 has the lowest power overall, which allows it 

to choose the highest markups while also generating the highest amounts of power, 

reaching a minimum of 96%. Overall, the results of the multiplicative RL using Gibbs-

Boltzmann for probability calculation resulted in more stable learning behavior, as shown 

in Figure 4.20 (right), than the behavior of the basic RL. A low LR of 0.1 was found to 
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results in a steady learning behavior because it can regulate the magnitude of the reward 

calculated using the gross profits of the generators better. However, its results are worse 

than the baseline and the basic RL with a total gross profit of 1.119 × 𝑒ଵ and 1,781,148 

final number of customers.   

 

 

Figure 4.19. Markups of generator 1 (natural gas) using multiplicate RL with basic 
probability (left) and Gibbs-Boltzmann (right). 

 

 

Figure 4.20. Markups of generator 2 (coal) using multiplicate RL with basic probability 
(top) and Gibbs-Boltzmann (bottom). 
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Figure 4.21. Markups of generator 3 (nuclear) using multiplicate RL with basic 
probability (left) and Gibbs-Boltzmann (right). 

 

 

Figure 4.22. Markups of generator 4 (coal) using multiplicate RL with basic probability 
(left) and Gibbs-Boltzmann (right). 

 

 

Figure 4.23. Markups of generator 5 (natural gas) using multiplicate RL with basic 
probability (left) and Gibbs-Boltzmann (right). 
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4.3.3. Roth-Erev RL. The Roth-Erev algorithm and its modified version have a 

more realistic replication of learning behavior because they replicate forgetfulness and 

experimentation using a forgetting factor (𝜙) and an experimentation factor (𝜖). To perform 

hyper-parameter optimization, the combinations from the following options were 

exhaustively tested: (1) forgetting factor between 0.1 to 0.9; (2) experimentation factor 

between 0.1 to 0.9; (3) original Roth-Erev vs. modified Roth-Erev; and (4) basic 

probability calculation vs. Gibbs-Boltzmann cooling factor probability. Figure 25 shows 

heatmaps that visualize the results from all the combinations. The heatmaps show that 

increasing or decreasing the forgetting and experimentation factors can decrease the gross 

profits. The modified Roth-Erev using a forgetting parameter of 0.2, experimentation 

parameter of 0.5 in combination with the Gibbs-Boltzmann probability method resulted in 

the highest total gross profit for the generators, as shown in Figure 4.24 (b). The resulting 

total gross profit and final number of customers were found to be 1.415 × 𝑒ଵ and 

1,910,627, respectively. The adoption of DSG is higher than the baseline case but lower 

than the other RL algorithms tested in the previous sections. However, the total gross profit 

was found to be the best among the other RL cases and the baseline case.  

To further understand the performance of the selected RL, Figure 4.25, Figure 4.26, 

and Figure 4.27 show the markups decided by the generators, the gross profits of the 

generators, and the total number of customers for each LSE, respectively. The results show 

that the generators reached convergence their optimum markups during the first 10 days of 

the simulation. The choice of markups remained unchanged during the remaining duration 

of the simulation. It can be seen from Figure 4.26 that generator 3 (nuclear) has the highest 

gross profit, followed by generator 4 (coal). Figure 4.27 shows a rate of adoption of DSG 
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that is higher than the baseline case due to the addition of generator markups. There is a 

sharp increase in the rate of adoption of DSG at LSE 6, which is located at a node with no 

generators, resulting in high LMPs at that location and in turn high electricity rates to be 

paid by customers. The rate of adoption of DSG is therefore high until the LMPs are 

reasonably close to the cost of installing a DSG system.  

 

 

Figure 4.24. Total gross profit results using: (a) modified Roth-Erev with basic 
probability and (b) Gibbs-Boltzmann probability; and (c) original Roth-Erev with basic 

probability and (d) Gibbs-Boltzmann probability. 
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Figure 4.25. Markups during the first 30 days. 

 

 

Figure 4.26. Generator gross profits. 

 

 

Figure 4.27. Number of customers. 
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To further verify the results of the Roth-Erev algorithm, it is necessary to take into 

consideration the effect of the pseudo-random number generation seed on the convergence 

of the RL. To do that, the simulation was re-run for 1,000 iterations using randomized 

seeds. Figure 4.28 shows a histogram of the results. It can be seen that the pseudorandom 

generator seeds have a crucial effect on the results. The median profit was found to be 

1.14𝑒ଵ. The highest profit was found to be 1.43𝑒ଵ and the lower profit was found to be 

9.57𝑒଼. The markups for the generators for the simulations with the highest and lowest 

runs are shown in Figure 4.29 and Figure 4.30, respectively. The generators are more likely 

to have the highest profit if they converge to a near-optimum markup early in the simulation 

and maintain it. Erratic changes in the markups may result in significant DSG adoption 

rates and loss of profit. Further elaboration on this finding is explained in the following 

discussion section.  

 

 

Figure 4.28. Histogram for total generation profits from simulation re-runs. 
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Figure 4.29. Convergence in the simulation with the highest profit. 

 

 

 

Figure 4.30. Convergence in the simulation with the lowest profit. 
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4.4. DSG POLICY INCENTIVES 

The following sections show the results and analysis for (1) the baseline case; (2) 

the effect of incentives introduced at one LSE; and (3) the effect of incentives on the 

electric power network. 

4.4.1. Baseline Case Results. The baseline case was executed with no incentives, 

i.e., there are no rebates on the initial cost of DSG, and loans are given with a 6% interest 

rate. The results show a smooth adoption rate as shown in Figure 4.31. The overall adoption 

rate for the entire network was 6.2% over the entire duration of the simulation, which is 5 

years. The highest adoption rate was found at LSE3, while the lowest adoption rate was 

found at LSE 6. Figure 4.32 shows the LMPs for each LSE. By comparing Figure 4.31 and 

Figure 4.32, it is found that the higher adoption rates of DSG are associated with high 

LMPs and vice-versa. For example, LSE 6 has the highest LMP overall in Figure 4.32 and 

the highest adoption rate in Figure 4.31. This is an expected behavior considering that 

customers at locations where the electric power rates are higher would be more inclined to 

make the switch to DSG. The opposite effect applies to LSE 3. Another observation based 

on Figure 4.32 shows that the LMPs at LSEs 1, 2, and 4 are constant throughout the 

simulation and are the highest three at the end of the simulation. LSE 1 has the highest 

LMP at the end of the simulation. The changes in the number of customers and LMPs 

manifest from the emergent behavior of the SoS. A main property of complex systems is 

that they can create emergent behaviors that are not controlled by a single component and 

may not be easily derivable from single entities (Siegfried, 2014). Accordingly, the 

following section will focus on introducing incentives at LSE1 and studying the effect on 

LSE1 for two reasons: (1) LSE 1 has an average adoption rate which makes it a good 
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representation for the effect of the network; and (2) LSE 1 is disadvantaged compared to 

the other LSEs due to having the highest LMP at the end of the simulation.  

 

 

Figure 4.31. Number of active customers for each LSE. 

 

 

Figure 4.32. Monthly average LMPs for each LSE. 
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A sensitivity analysis was performed to investigate modeling assumptions by 

isolating and observing the effect of selected variables on the final number of customers at 

each LSE. Specifically, two variables were investigated. The first variable is the variance 

parameter of the lognormal distribution used to compare the cost of electric power bills 

and the cost of installing a DSG system as part of the consumer decision process. The 

results of this sensitivity analysis are shown in Figure 4.33. As expected, increasing the 

variance would result in increased consumer adoption consistently with a lognormal 

distribution. The second variable is the daily sun hours as shown in Figure 4.34. The results 

of this sensitivity analysis are also expected because higher sun-hour values would allow 

DSG systems to generate more energy per day making them more feasible and motivating 

higher DSG adoption rates.  

 

 

Figure 4.33. Sensitivity analysis for the variance parameter. 
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Figure 4.34. Sensitivity analysis of the daily sun-hours. 

 

 
4.4.2. Isolated Effect of Incentives at LSE 1. A range of incentives was 

introduced at LSE1. This section discusses their isolated effect on LSE 1, and the following 

section discusses their rippling effect on the rest of the network. The range of incentives 

tested includes the interest rate for loans such that (𝑖) ∈  [4%, 5%, 6%, 8%, 9%] and the 

effect of tax credits or rebates on the price of DSG systems ∈ [0%, 5%, 10%, 15%, 20%]. 

Figure 4.35 shows the results in two scatter plots for (1) the effect of interest rates and 

rebates on the final number of active customers at LSE 1 and (2) the final daily average 

LMP. Figure 4.36 shows the same results visualized as heatmaps. The results show that 

decreasing the interest rate of loans and/or introducing rebates on the price of DSG both 

have a significant effect on the adoption rate at LSE 1. The results also show that interest 

rates have a large effect on the adoption rate. This is an expected observation because the 

loans are long-term (25 years) and, as such, the interest rates have a substantial effect. 
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Figure 4.35. Scatterplots for number of active customers (top) and LMPs (bottom). 
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Figure 4.36. Heatmaps for number of active customers (top) and LMPs (bottom). 
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4.4.3. Effect of Incentives at LSE 1 on Entire Network. The isolated effect of 

incentives introduced at an LSE on the adoption rate at the same LSE is rather direct and 

intuitive. However, the effect of incentives on the rest of the network as a SoS is more 

dynamic. Table 4.13 shows the effect of incentives described in the previous section on all 

LSEs in the network. Table 4.14 shows the effect on the final daily LMPs. The results show 

that the incentives at LSE 1 have widely varying effects on the other LSEs. For example, 

an observation can be that the number of customers in LSEs 2 through 5 is higher when 

the interest rate for LSE1 is lowered with the same rebate value at 0%. In other words, the 

adoption rate at LSEs 2 to 5 is lower when the interest rate for loans at LSE 1 is lower. 

Table 4.14 shows that the LMPs at the same LSEs are lower with higher interest at LSE1. 

This observation can be explained by the following series of effects: (1) The lowered 

interest rates at LSE1 increase the adoption rate at LSE1; (2) There is lower demand for 

power at LSE1 which results in lower LMPs at LSE1 and LSEs 2 to 5; and (3) the lower 

LMPs at LSEs 2 to 5 make adoption less feasible for the customers. However, this effect 

is reversed for LSE6 where the lower interest rate at LSE 1 results in higher adoption rates. 

It should be noted that there are no generators at LSE 6 which forces it to rely on power 

transmitted from other LSEs. The lower adoption rates at the nodes connected to LSE 6 

result in higher LMPs at LSE 6 and accordingly higher adoption rates. To conclude, this 

case shows that the effect of incentives on electric grids and power markets requires a 

thorough consideration of the rippling effects.  
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Table 4.13. Final number of customers for each LSEs vs. incentive percentages at LSE 1. 

Interest Rebate LSE 1 LSE 2 LSE 3 LSE 4 LSE 5 LSE 6 
4% 0% 249,020 393,902 397,564 393,589 369,396 335,888 

5% 213,152 396,506 398,620 396,344 371,140 331,279 
10% 174,152 398,127 399,340 398,057 373,396 324,717 
15% 138,581 399,139 399,725 399,113 376,017 318,610 
20% 115,432 399,698 399,910 399,690 378,986 312,421 

5% 0% 327,717 388,048 394,424 387,307 366,422 342,104 
5% 292,439 391,398 396,225 390,891 367,902 338,539 

10% 247,020 394,127 397,651 393,827 369,407 335,581 
15% 205,805 396,817 398,771 396,669 371,173 330,144 
20% 166,312 398,525 399,496 398,472 374,413 321,456 

6% 0% 376,341 384,098 392,861 383,032 366,039 347,370 
5% 353,470 385,143 393,272 384,197 366,073 346,358 

10% 322,712 388,626 394,701 387,922 366,434 340,895 
15% 279,924 391,994 396,578 391,541 368,297 338,159 
20% 232,495 395,246 398,113 395,009 370,058 333,705 

8% 0% 398,971 384,026 392,829 382,895 366,017 347,321 
5% 397,276 384,030 392,833 382,901 366,018 347,324 

10% 392,906 384,046 392,838 382,928 366,019 347,334 
15% 382,024 384,076 392,853 382,996 366,033 347,358 
20% 357,659 384,660 393,083 383,684 366,066 346,863 

9% 0% 399,817 384,025 392,828 382,890 366,016 347,320 
5% 399,460 384,026 392,828 382,893 366,017 347,320 

10% 398,437 384,027 392,829 382,897 366,018 347,321 
15% 395,528 384,039 392,836 382,913 366,018 347,327 
20% 387,516 384,063 392,846 382,962 366,027 347,344 

 

Table 4.14. LMPs ($) for each LSEs vs. incentive percentages at LSE 1. 

Interest Rebate LSE 1 LSE 2 LSE 3 LSE 4 LSE 5 LSE 6 
4% 0% 114.52 112.49 101.66 112.64 121.59 125.74 

5% 114.10 112.39 101.57 112.47 121.56 125.62 
10% 105.97 104.59 93.79 104.62 121.50 133.11 
15% 101.69 100.60 87.64 100.60 119.25 123.15 
20% 93.15 92.24 83.71 92.24 119.22 126.82 

5% 0% 123.09 120.37 109.50 120.66 121.66 123.99 
5% 122.68 120.27 109.42 120.50 121.63 123.90 

10% 114.50 112.49 101.66 112.63 121.59 125.73 
15% 114.02 112.36 101.54 112.43 121.54 125.59 
20% 105.88 104.56 91.56 104.58 119.28 125.13 
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Table 4.14. LMPs ($) for each LSEs vs. incentive percentages at LSE 1 (cont.). 

Interest Rebate LSE 1 LSE 2 LSE 3 LSE 4 LSE 5 LSE 6 
6% 0% 131.29 128.13 117.27 128.54 125.54 124.13 

5% 127.20 124.25 113.39 124.60 125.52 127.90 
10% 123.03 120.35 109.49 120.64 121.65 123.97 
15% 122.53 120.23 109.39 120.43 121.62 123.88 
20% 114.33 112.45 101.62 112.56 121.58 125.68 

8% 0% 131.58 128.20 117.34 128.68 125.56 124.18 
5% 131.55 128.20 117.33 128.67 125.56 124.18 

10% 131.50 128.18 117.32 128.64 125.56 124.17 
15% 131.36 128.15 117.28 128.57 125.55 124.15 
20% 127.25 124.26 113.40 124.62 125.52 127.91 

9% 0% 131.59 128.20 117.34 128.68 125.56 124.18 
5% 131.58 128.20 117.34 128.68 125.56 124.18 

10% 131.57 128.20 117.33 128.68 125.56 124.18 
15% 131.53 128.19 117.33 128.66 125.56 124.17 
20% 131.43 128.16 117.30 128.61 125.55 124.16 

 
 

4.4.4. Sensitivity Analysis of the Effect of Incentives Using Regression. As 

shown in the previous section, the introduction of incentives at an LSE has a rippling effect 

on all the LSE connected to the same electric power grid. Therefore, there is a need to test 

a broad spectrum of incentives at different locations of the grid to study their effect. To 

achieve that, the same ranges of inputs for the interest rates (𝑖) ∈  [4%, 5%, 6%, 8%, 9%] 

and rebates ∈ [0%, 5%, 10%, 15%, 20%] were tested at each LSEs and the results were 

recorded. This resulted in a database of 150 cases (5 × 5 × 6 𝐿𝑆𝐸𝑠). Multiple regression 

analysis was performed on this database considering two exogenous variables separately 

for each LSE: (1) the final number of active customers and (2) the final daily average 

LMPs. As such, the full analysis includes 12 separate regression models. The 𝑅ଶ values for 

each equation are shown in Table 4.15. All the 𝑅ଶ values are higher than 0.8, which shows 

a good fit for the models in general. 



 

 

128

Table 4.16 shows the coefficients of each regression model. The endogenous 

variable for each model is the final number of customers at the LSEs marked in each 

column. The rows represent the percentage of incentives (rebate or interest) at each LSE. 

The significance of the coefficients is represented by the symbol (*) where each additional 

symbol marks a p-value less than 0.05, 0.02, and 0.01, respectively. Table 4.17 shows the 

results for the final daily LMPs in a similar representation to Table 6. In other words, the 

numbers represent LMPs (𝑈𝑆𝐷) per percentage of incentives (rebate or interest). This is 

further represented in Figure 4.37, which shows a heatmap of the significant coefficients 

(p-value < 0.05) from Table 4.16 and Table 4.17.  

 

Table 4.15. 𝑹𝟐 results for the regression models.  

Endogenous LSE 𝑹𝟐 

Final Number of Customers 
LSE 1 0.898 

LSE 2 0.888 

LSE 3 0.869 

LSE 4 0.890 

LSE 5 0.918 

LSE 6 0.936 
Final Average Daily LMP 

LSE 1 0.833 

LSE 2 0.827 

LSE 3 0.843 

LSE 4 0.831 

LSE 5 0.946 

LSE 6 0.902 
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Figure 4.37. Heatmap of the significant regression parameters. 

 

 
As expected, introducing incentives at an LSE has a significant effect on the same 

LSE, which is supported by the p-values and the magnitude of the coefficients. In addition, 

the effect of incentives introduced at an LSE on other LSEs is significant in many cases. 

For example, introducing rebates at LSE 1 has a significant effect on the number of 

customers at LSEs 2, 3, and 4, as shown in Table 4.16. It should be noted LSEs 2 and 4 are 

connected to LSE 1 while LSE 3 is connected to LSEs 2 and 4, therefore they are the most 

affected. The effect on the LMPs is also significant in many cases as shown in Table 4.17. 

The results also support the fact that incentives at an LSE can affect the adoption rates and 
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LMPs at other nodes depending on the configuration of the grid. This is supported by the 

fact that the coefficients which are shown in Table 4.16 and Table 4.17 can vary between 

positive and negative values. For example, higher interest rates at LSE 4 have a significant 

negative effect on the number of customers at LSE 1 and a significant positive effect on 

the number of customers at LSE 4. In other words, when interest rates are higher at LSE 4, 

fewer consumers would adopt DSG at LSEs 4 and 6 while more customers would adopt 

DSG at LSE 1. It should be noted that LSE 1 is connected to LSE 4 through transmission 

line 3, while LSE 6 is in the furthest node away from LSE 1. As such, based on the results 

shown in Table 4.16 and Table 4.17, all of the proposed hypotheses are acceptable after 

rejecting the null hypotheses. It is concluded that (1) Rebates for DSG systems can 

positively or negatively influence the adoption of DSG; (2) Rebates for DSG systems can 

positively or negatively influence LMPs; (3) Interest rates for DSG loans can positively or 

negatively influence DSG adoption of DSG; and (4) Interest rates for DSG loans can 

positively or negatively influence LMPs. 

4.5. REDUCING VULNERABILITY AGAINST NATURAL DISASTERS 

The following sub-sections show the results and analysis related to reducing the 

vulnerability against natural disasters by capitalizing on DSG. The results and analysis are 

divided into two main subsections: (1) Single-Node Optimization; and (2) Network 

Optimization using GA.  

4.5.1. Single-Node Optimization.  The results of the proof of concept for the 

percentage allocation of DSG, demands, and generator commitments are shown in Table 

4.18, Table 4.19, and Table 4.20, respectively. As shown in Table 4.18, the results show 
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that scenario 2 did not affect the stability of the grid. However, the remaining scenarios 

affected the grid, and the DSG was needed to mitigate against the failure of transmission 

lines. Each scenario was found to have singular solutions, whereas two scenarios were 

found to have two possible solutions each: Scenario 4 can be solved by allocating 62% 

DSG at LSE 1 or LSE 4, and Scenario 5 can be solved by allocating 22% at LSE 5 or LSE 

6. In total, the entire grid may be optimized against the failure of any line by allocating a 

total of 640,000 units. It is assumed in Table 4.19 and Table 4.20 that DSG is allocated at 

LSE 4 and LSE 6 to mitigate scenarios 4 and 5. By referring again to the configuration of 

the grid, the allocation DSG at the determined LSEs is expected. For example, it is expected 

that a failure in the transmission lines of scenarios 1 and 3 would affect LSE 1, which was 

found to limit the maximum demand at 62% and 36% respectively. Similarly, LSE 6 was 

affected in scenarios 6 and 7, where the maximum demand needed to be reduced to 36% 

for each. By allocating the cumulative maximum over all scenarios, the entire grid can 

survive the impact of natural disasters on any line. Table 4.19 shows the results for the 

demands at the LSEs. The resulting changes in demands are consistent with the allocation 

of DSG shown in Table 4.18, such as LSE 1 in Scenarios 1 and 3, and LSE 6 in Scenarios 

6 and 7. The generators were affected by the disruptions as shown by their commitments 

in Table 4.20. The results show a change in the commitment of each generator according 

to the flow of power when a line is affected. A notable example is the commitment of 

Generator 1 is highest when Line 2 is disconnected. This may be due to the fact that Node 

2 is no longer receiving power from Node 3 when Line 2 is disconnected. This may also 

be confirmed by the reduced commitment of Generator 3. Several similar observations can 

be made by observing the results, which show the complex dynamics of the power 
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infrastructure and market. Also, it shows that relieving the demand using DSG, combined 

with the dynamics of the wholesale power market, can reduce vulnerability to natural 

disasters.  

 

Table 4.18. DSG allocation. 

 Scenario LSE 1 LSE 2 LSE 3 LSE 4 LSE 5 LSE 6 

Line 1 
62% 0% 0% 0% 0% 0% 

Line 2 * 
0% 0% 0% 0% 0% 0% 

Line 3 
36% 0% 0% 0% 0% 0% 

Line 4 ** 
62% 0% 0% 62% 0% 0% 

Line 5 ** 
0% 0% 0% 0% 22% 22% 

Line 6 
0% 0% 0% 0% 0% 36% 

Line 7 
0% 0% 0% 0% 0% 36% 

Maximum 62% 0% 0% 62% 0% 36% 

*Scenario does not require DSG. 
** Scenario has two possible solutions. 

 

Table 4.19. Total demand at LSEs in MW. 

Scenario LSE 1 LSE 2 LSE 3 LSE 4 LSE 5 LSE 6 

Line 1 234.02 615.84 615.84 615.84 615.84 615.84 

Line 2 615.84 615.84 615.84 615.84 615.84 615.84 

Line 3 394.14 615.84 615.84 615.84 615.84 615.84 

Line 4 615.84 615.84 615.84 234.02 615.84 615.84 

Line 5 615.84 615.84 615.84 615.84 615.84 480.36 

Line 6 615.84 615.84 615.84 615.84 615.84 394.14 

Line 7 615.84 615.84 615.84 615.84 615.84 394.14 
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Table 4.20. Generator commitments. 

Scenario Generator 1 Generator 2 Generator 3 Generator 4 Generator 5 

Line 1 0 215.84 2000 449.86 647.52 

Line 2 547.52 450 1600 450 647.52 

Line 3 159.98 450 2000 215.84 647.52 

Line 4 165.7 450 1600 450 647.52 

Line 5 295.04 450 1668.32 450 696.2 

Line 6 295.04 450 1668.32 450 609.98 

Line 7 295.04 450 2000 450 278.3 

 

4.5.2. Network Optimization Using GA. The optimization approach using a GA 

enabled the optimization of the entire network to determine the minimum DSG allocation 

over all LSEs that would mitigate the loss of any transmission line. Compared to the 

previous method, the GA algorithm was designed to find feasible solutions that mitigate 

the failure of any transmission by optimizing over all the nodes. The population size was 

set to 100 and the stopping criteria for the GA was set to 50 Epochs. This configuration 

was found to be suitable to achieve a near-optimum solution is achieved. The convergence 

of the optimization is shown in Figure 4.38. The evolutionary behavior of the GA can be 

seen in the convergence of the population as the best solutions are kept and the non-suitable 

solutions are removed in every epoch. The best solution was achieved quickly at Epoch 22 

with a total DSG requirement of 395,873 units.  

Table 4.21 shows the optimized DSG allocation size and percentage for each LSE. 

The optimization algorithm found an allocation of DSG that is better distributed and lower 

than the allocation resulting from the one-node-at-a-time optimization in the previous 

method. By strategically allocating DSG across the grid, the effect of natural disasters on 
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transmission lines was mitigated with fewer resources: The total number was 395,873 using 

the Genetic Optimization vs. 640,000 using the previous method of optimizing single 

nodes. Further, as shown in Table 4.22, the distribution of the generator commitment is 

close to the average results from the previous method. Also, the average total generation 

in the previous method was 3,499 MW and in the GA method it was found to be 3,085 

MW. Although the total demands from both methods are therefore close, the GA achieved 

a better distribution of DSG. It can be seen the optimized solution allocated most DSG at 

LSE 1, LSE 4, and LSE 6, which are the same LSEs identified in the single-node 

optimization approach. Overall, the results show that optimizing the entire network, 

combined with the capabilities of ABM, has resulted in less DSG needed to mitigate the 

effect of natural disasters on transmission lines. 

 

 

Figure 4.38. Convergence of the GA. 
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Table 4.21. Optimized allocation of DSG. 

LSE # Allocation 
Percentage 

LSE 1 42.43% 
LSE 2 0.11% 
LSE 3 0.45% 
LSE 4 19.60% 
LSE 5 1.11% 
LSE 6 35.27% 

 

Table 4.22. Generator commitments. 

Scenario Generator 1 Generator 2 Generator 3 Generator 4 Generator 5 

Line 1 0 427.24 2000 450 208.31 
Line 3 119.72 450 2000 307.52 208.31 
Line 4 164.84 450 1812.41 450 208.31 
Line 5 0 392.44 1813.09 272.39 607.63 
Line 6 0 392.44 1813.09 272.39 607.63 
Line 7 0 450 2000 426.56 208.99 

 

Although the GA reached a minimum allocation of DSG, the issue of the LMPs 

requires a deeper analysis. Figure 4.39 shows separate plots for the average LMP and 

variation in the LMP as the difference between the highest and lower LMPs, for each of 

the critical transmission lines. It can be seen that although the GA achieved a near-optimum 

DSG allocation minima, the best solution is associated with the highest LMP, and in some 

cases high variations in LMPs between the nodes in the network. In some cases, such as 

line 3 for example, a lower average LMP may be achieved with minimal addition of DSG 

beyond the optimum solution. The effect of LMPs should be taken into consideration to 

mitigate against natural disasters while avoiding exuberant electricity rates for customers. 

The results of the GA show that this can be achieved by strategically motivating the best 

allocation of DSG that results in reasonable real-time electricity rates for customers.  



 

 

138

 
Figure 4.39. GA population by transmission line failure: average LMP vs. DSG 

allocation (left); variation in LMP vs. DSG allocation (right). 
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5. DISCUSSION 

5.1. RELATIONSHIP BETWEEN THE ELECTRIC POWER SECTOR AND 
SOCIOECONOMIC INDICATORS 

Electric demand increased significantly in the past decades, and it is expected to 

keep increasing in the future. Aside from the fact that the world population is growing, the 

increase in demand can be attributed to economic growth, and human development, among 

other factors. This research investigates the relationship between electrical power 

consumption per capita and three types of socio-economic indicators: economic growth, 

human development, and corruption. In addition, the relationship between electrical losses 

in distribution and both human development and corruption was studied.  

The results show that there is a positive correlation between electrical power 

consumption per capita, on one side, and economic growth, human development, and 

corruption on the other side. This relationship, however, does not necessarily hold for every 

country separately; in some countries, this relationship is stronger than others. Overall, in 

all countries, there is a good relationship between electric consumption per capita, and both 

economic growth and human development. These findings are expected, because, 

naturally, countries that have healthier economies and more improved human development 

are expected to have higher electric power consumption per capita. However, the results of 

causality on electrical power consumption per capita are mixed. Results of Granger-

causality testing showed that there is no causality effect, at least in the short term, between 

electrical power consumption and any of the studies indicators. Overall, the findings show 

that there is a generally positive relationship between electrical power consumption on one 
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side, and socioeconomic indicators of economic growth, human development, and 

corruption, on the other side.   

The relationship between electrical losses in distribution and both corruption and 

human development was tested. The results are mixed and hard to interpret. However, as 

an overall conclusion, it was found that there is an apparent relationship between lower 

corruption and lower electrical losses. In other words, countries that have a highly corrupt 

environment and low enforcement of the law are more prone to electrical losses in 

distribution. This is not surprising because corruption results in increased power theft 

through illegal connections or corrupt consumers who do not pay bills. These results show 

that corruption, politics, ineffective law enforcement, and theft affect electrical losses in 

distribution. These losses are generated but are not billed, and cause unjustified strain on 

the electrical grid and infrastructure. Therefore, it is necessary to understand that strict law 

enforcement regarding electrical power theft and corruption is critical to reducing the 

unjustified strain on the power grid. 

To sum up, there is a direct relationship between economic growth, human 

development, and lower corruption, on one side, and electrical power consumption on the 

other. In general, countries that have stronger economies and improved human 

development have higher electrical power consumption than countries that are not. There 

is also a relationship between corruption and electrical power losses. Countries that have 

less corruption and stricter law enforcement have lower electrical power losses than 

countries that are more corrupt.  
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5.2. DYNAMIC PRICING USING REINFORCEMENT LEARNING (RL) 

5.2.1. Learning and Convergence Process of RL. RL, using a modified Roth-

Erev, was found to be an effective approach for generating companies to maximize their 

gross profits considering the effect of electricity on accelerating DSG adoption. In this 

research, the chosen parameters for the modified Roth-Erev, which was found to result in 

the highest total generation profits, resulted in an early convergence after ten iterations, as 

shown in Figure 26. It should be noted that the purpose of this research is not to determine 

the optimum results but rather to identify the best pricing strategy for generating companies 

to maximize their profits considering the effect of the adoption of DSG which can be 

accelerated by high electricity rates. The highly dynamic nature of the complex problem in 

this research results in an emergent behavior where generating companies are more likely 

to make the highest profit if they converge earlier. The results where other algorithms and 

parameters are tested show that the generators will test other markup actions at the cost of 

higher adoption rates and ultimately profits. Therefore, it is recommended that generating 

companies maintain their price rates. Increasing prices to increase profits and/or recover 

from reduced demand may exacerbate the problem.  

5.2.2. Occurrence of a Death Spiral. The results show that the early convergence 

of the RL algorithm may be the best course of action for generating companies as opposed 

to changing the prices in response to the adoption of DSG. Any increase in prices may 

exacerbate the problem and any decrease may lower profits. As generating companies are 

rational profit-seeking entities, it is expected that they would follow the same behavior. A 

feedback loop consistent with a death spiral was not identified in the results. Therefore, the 

effect of a death spiral is not expected to be catastrophic, which is in line with findings 
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from literature (Muaafa et al. 2017; Castaneda et al. 2017). Still, as the results suggest, the 

penetration of DSG may be noticeable in isolated areas on the electric grid where local 

generation is not available, and the transmission and congestion costs are high.  

5.2.3. Effect of DSG Adtopion on Generators.  The results show that low-cost 

generators are the least affected by the adoption of DSG and may increase their prices given 

that: (1) there is enough demand for low-cost generators to fill; (2) there are no other lower-

priced generators that may compete with them and low-bid their offers; and, (3) their 

production costs are lower than the cost of the alternative opportunity to install a DSG 

system. On the other hand, high-cost generators are the most affected, specifically when 

their generation costs result in electricity rates that are at a financial disadvantage compared 

to the cost of installing a DSG system and lower-priced generators that are competing with 

them. One consideration that is not included in this research is that high-cost generators 

may have the advantage of being able to fulfill short-term or sudden demand peaks if their 

ramp rate requirements are adequate. However, this consideration is beyond the scope of 

this research due to the excessive complexity of implementing it in a long-term simulation 

and combining it with RL. Still, this effect may be less critical in the future with the 

emerging advances in large-scale power storage using innovative battery systems and 

distributed power storage such as electric cars.  

5.2.4. Emergent Behavior of ABM. The multiple interactions between the agents 

in an ABM create an emergent behavior that is not controlled by a single component. This 

behavior may not be obviously derivable from the behavior of the individual components 

of the ABM (Siegfried 2014). In this research, the behavior of the ABM model is affected 

by the following multiple elements including the complex feedback loops between them: 
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(1) the decrease in the cost of PV systems and batteries, (2) the dynamic pricing decided 

by the RL, (3) the power flow in the grid which affects wholesale pricing, and (4) consumer 

behavior to adopt DSG. The emergent behavior from those elements allows for studying 

the adoption of DSG as a complex emergent behavior of an SoS. 

5.3. DSG POLICY INCENTIVES 

Many incentives are offered to encourage DSG adoption, such as tax credits and 

loans with low interest. The goal of this research part is to investigate the effect of such 

incentives on the electric power infrastructure and market. This was achieved by 

developing a SoS framework to simulate electric power networks affected by incentivized 

adoption of DSG. The effects of tax credits and loans were simulated to study the effect of 

incentives at one LSE on other locations on the grid. The model was applied to a case study 

using a modified IEEE 6-bus grid and real electric power market data. The case study is 

intended to verify that the model achieved the required functionalities and to show an 

example of the complexity of the effect of incentives on electric power infrastructure and 

markets. The results show that incentives can have widely varying effects on other 

locations across electric grids. In some cases, introducing incentives at an LSE may locally 

encourage DSG adoption while discouraging DSG adoption in other locations due to 

decreasing prices in response to the decreasing demand from the electric power grid. In 

some other cases, incentives may have the opposite effect where they might increase prices 

at other locations and hence encourage DSG adoption. The results support the notion that 

incentives have a rippling effect on other locations across the electric power grid. 

Significant effects of incentives were identified by running multiple scenarios and 
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performing statistical testing of the results using multiple regression analysis. As such, the 

framework suggested in this research can benefit ISOs and policymakers to simulate 

electric power grids and markets to investigate the effect of incentives on electric power 

grids and strategically capitalize on their benefits. Careful management of incentives if 

needed to achieve the intended objectives considering that consumer behavior to adopt 

DSG. For example, if two different LSEs have DSG incentives, their interaction may result 

in unexpected market conditions in those two LSEs or even other locations on the grid. The 

developed model can be modified to represent electric grids at specific geographic 

locations, electric grids, and supply and demand parameters. 

5.4. REDUCING VULNERABILITY AGAINST NATURAL DISASTERS 

The framework developed in this model combined ABM, economics of supply and 

demand in wholesale power markets, OPF optimization, and reliability assessment to create 

a complex SoS and investigate the requirements for DSG to mitigate the impact of natural 

disasters. The results show that the developed approach can capitalize on the benefits of 

DSG to reduce the vulnerability of the electric power grid. Two optimization methods were 

used in this research to optimize the use of DSG and mitigate the impact of natural disasters 

on transmission lines. The first method involved the allocation of a minimum number of 

DSG at one location on the grid such as to avoid a targeted blackout following the failure 

of a transmission line. In practical application, the calculated number of DSG may be 

deployed post-disaster to the determined location on the grid to meet demand and recover 

the stability of the electric grid. The results of this method also show that a few selected 

locations can be assigned an optimized number of DSG pre-disaster to mitigate the loss of 
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any transmission line to natural disasters. The second method improves on the first method 

by optimizing the entire grid for any transmission line failure using a GA. The optimization 

resulted in a lower number of DSG that can be strategically distributed across the electric 

power grid pre-disaster to mitigate against the failure of any transmission line. Further 

analysis of the results shows that, although there are many feasible allocations of DSG that 

can mitigate against the failure of transmission lines, the shifts in demand and electricity 

rates should be taken into consideration. If left unchecked, the locational prices at some 

locations on the grid may reach unreasonably high electrical power prices, which is a 

known problem that may occur due to electric power congestion when the electric grid is 

disrupted. 
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6. CONCLUSION 

This research explored several aspects related to the electric power infrastructure 

and markets with a focus on the increasing adoption of DSG. The outcomes of this research 

can be separated into four distinct outcomes. First, the relationship between the electric 

power sector and socio-economic indicators was studied using statistical time-series 

analysis. Second, this research explored the dynamic pricing in power market utilities 

considering the effect of the adoption of DSG and the emergence of a Death Spiral. Third, 

the effect of policy incentives on the adoption of DSG was explored to show and optimize 

their complex relationships. Fourth, the benefits of DSG to improve system reliability 

against natural disasters were examined. To achieve the outcomes of this research, a novel 

ABM framework was developed to simulate the complex relationship between DSG 

adoption and the wholesale power market and used as the founding block to achieve each 

objective separately. A detailed conclusion for each part follows.  

6.1. RELATIONSHIP BETWEEN THE ELECTRIC POWER SECTOR AND 
SOCIOECONOMIC INDICATORS 

6.1.1. Research Summary. This research objective investigates (1) the 

relationship between electrical power consumption per capita and three types of socio-

economic indicators: economic growth, human development, and corruption; and (2) the 

relationship between electrical losses in distribution and both human development and 

corruption was studied. The results show a positive correlation between electrical power 

consumption per capita, on one side, and economic growth, human development, and 

corruption on the other side. Countries with healthier economies and human development 
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have higher electric power consumption per capita. There is also a relationship between 

corruption and electrical power losses. Countries that have less corruption and stricter law 

enforcement have lower electrical power losses than countries that are more corrupt. 

Overall, the results show that there is an apparent connection between the electric power 

sector and various socio-economic indicators.  

6.1.2. Research Contribution. This research presents a holistic and worldwide 

perspective on the relationship between the electric sector, on one side, and economic 

growth, human development, and corruption, on the other side. It also emphasizes that the 

dynamics of the electrical power sector should be examined from the economic and social 

perspectives, and not only the engineering technical perspective. In addition, this research 

highlights the notion that electrical power production and consumption are linked to 

national well-being and development, giving additional reason to fund and improve 

electrical power infrastructure. 

6.1.3. Limitations and Future Work. The limitations of this research arise in 

principle from inconsistencies and missing values in the data. There are missing values for 

certain countries and years such that the variables cannot be concatenated into a single 

dataset. This prevents performing multivariate regression or panel analysis using all 

variables at once. In order to overcome this obstacle, the methodology was designed to test 

each variable in an exhaustive manner to study the sole respective relationships for each 

variable. Though it is not doable using the mentioned dataset, a multivariate panel analysis 

is however recommended for future work using a refined selection of variables. Also, 

future work is suggested to use Instrument Value (IV) Regression and Two-Stage Least 

Squares (2SLS) Regression. These methods were not performed in this research, again due 
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to limitations in the data. Concerns of endogeneity in this research were checked through 

scatter plots of the residuals, causality testing, and panel analysis using random effects and 

fixed effects. However, the suggested methods for future work should be able to resolve 

concerns of endogeneity further, if any. 

6.2. DYNAMIC PRICING USING REINFORCEMENT LEARNING (RL) 

6.2.1. Research Summary. The effect of the penetration of DSG on the power 

infrastructure and wholesale power markets considering dynamic pricing was investigated 

using ABM and RL. In particular, the occurrence of a utility death spiral, which may 

emerge from the feedback loop between the adoption rate of DSG and electricity prices, 

was investigated. This was achieved by developing a complex SoS framework using ABM, 

DC-OPF, and several RL algorithms. Low-cost generators were found to be the least 

affected by the adoption of DSG, while high-cost generators are the most affected.  It was 

proven that a modified Roth-Erev algorithm can maximize the gross profits of generating 

companies impacted by increasing DSG adoption. The results also showed that a utility 

death spiral is unlikely. The feedback between increasing DSG adoption and electricity 

rates will span many years and will most likely not result in a sudden devastating effect.  

6.2.2. Research Contribution. This research part investigated the impact of DSG 

on the electrical power market considering the dynamic pricing of electrical power by 

generating companies. This research adds to the body of knowledge by introducing a 

complex simulation framework that can assist different associated stakeholders in 

understanding and simulating the interaction between dynamic pricing in wholesale power 

markets and the adoption of DSG. By simulating the long-term effect of DSG on the 



 

 

149

electric power infrastructure and market, policymakers can introduce regulations and 

pricing mechanisms that can strategically influence the rate of adoption of DSG. 

6.2.3. Limitations and Future Work. The RL module in this research tested 

multiple RL algorithms and compares them. However, there may be other RL, game-

theory-related, or broader machine learning algorithms that may be worth testing in future 

work. In addition, the behavior of the generating companies is assumed to follow wholesale 

power market mechanisms and financial structures. However, future work can investigate 

regulated markets, monopolies, and specific financial conditions of generating companies 

and utilities that may have unique interplay with DSG diffusion and the occurrence of a 

utility death spiral. Future research can also consider the ramp rates of generators to fulfill 

electric demand peaks that are not served by DSG, the effect of carbon taxes, and recent 

advances in power storage that can enhance DSG integration. 

6.3. DSG POLICY INCENTIVES 

6.3.1. Research Summary. This part explored the effect of DSG policy incentives 

on the wholesale power market. Specifically, this part focused on rebates that affect the 

cost of DSG systems, and reduced interest rates for loans. This was achieved using the 

developed ABM model with enhancement to add the effect of policy incentives. An 

exhaustive array of scenarios were executed and their results were thoroughly investigated 

using multiple regression analysis. The findings show that incentives at a location on the 

grid can have unexpected effects on other locations, which supports the need to carefully 

consider wholesale power markets and infrastructures as complex systems.  
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6.3.2. Research Contribution. This research part contributes to the body of 

knowledge with a novel framework to simulate the effect of incentives on electrical power 

grids and wholesale power markets considering the power system constraints and power 

market economics. The framework and findings from this research support the notion that 

policies and incentives should be carefully studied regarding their complex effect on the 

market and the electric grid. The interplay between policies, power rates, and DSG 

adoption may result in unexpected behavior that is not necessarily intuitive.  

6.3.3. Limitations and Future Work. This research is limited to studying the 

effect of rebates and interest for loans to install DSG. Future research may study additional 

types of incentives and market structures that are relevant to grid-tied DSG system owners, 

such as feed-in-tariff and net metering, as they can allow for “selling” power back to the 

grid and consuming power from the grid when needed. 

6.4. REDUCING VULNERABILITY AGAINST NATURAL DISASTERS 

6.4.1. Research Summary. Every year, natural disasters, such as storms, 

hurricanes, or earthquakes, cause significant damage to the electrical power infrastructure 

and result in significant losses and necessary repair costs. Accordingly, the goal of this 

research was to investigate reducing the vulnerability of the electric power infrastructure 

against natural disasters by leveraging DSG. This was achieved by extending the ABM 

with reliability analysis and planning. DSG optimization was performed using two 

different approaches: (1) single-node optimization, and (2) entire network optimization 

using GA. The results show that GA combined with ABM is an effective approach to test 

strategic allocations of DSG that mitigate the effect of natural disasters. Further analysis of 
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the results shows that LMPs should be taken into consideration to further mitigate 

unreasonable electricity rates, which is a problem that can occur in wholesale power 

markets impacted by natural disasters.  

6.4.2. Research Contribution. This research can benefit future researchers to 

optimize electric power infrastructure and markets by reducing their vulnerability against 

natural disasters as complex systems. The parameters and layout of the simulated network 

tested in the model developed in this research can be easily modified to various grids and 

locations. The developed framework integrates ABM, OPF, and GA in a multilayer DSG 

optimization approach that fulfills the need for simulating and optimizing dynamic 

electrical networks as opposed to a conventional static grid model. Overall, the framework 

and methods presented in this research are intended to support the understanding of the 

benefits of DSG in reducing the vulnerability of the electric power grid against natural 

disasters, which can be achieved pre-or-post-disaster. The vulnerability of the grid may be 

improved by adjusting market regulations and policy incentives such as tax incentives to 

strategically promote the adoption of DSG at targeted locations on the electric grid. DSG 

can also be strategically allocated for emergency post-disaster relief. 

6.4.3. Limitations and Future Work. The limitations of this research, which are 

also suggested for future work, are (1) to account for the cost of installing DSG systems at 

different locations on the grid, which can lead to the development of a multi-objective 

optimization problem that investigates the trade-off between vulnerability and the cost of 

expansion; (2) design a multi-objective optimization that also considers the LMPs; (3) test 

and compare other optimization algorithms in addition to GA such as simulated annealing, 

particle swarm optimization, and others; (4) perform a probabilistic analysis considering a 
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daily variation in demand for each LSE; (5) consider the effect of natural disasters such as 

earthquakes on power generation plants of different parameters such as their types, scales, 

and seismic zones; and (6) verify the model using a large-scale case study with a realistic 

natural hazard scale of impact, geographic system footprint, and market conditions.  

6.5. OVERALL LIMITATIONS AND FUTURE WORK 

The overall limitations and future work of this research as related to the ABM 

framework include: (1) the consumer behavior to adopt DSG is assumed to compare the 

monthly electric cost from the grid and the cost to install a DSG system in a stochastic 

process as discussed in the methodology. Future work may include the social and economic 

factors, such as income, education, concerns of environmental impact, and/or home type 

to improve this process. (2) The generator parameters were calibrated to match historical 

electricity prices. Future research may enhance this process by calibrating additional 

parameters to better describe the financial elements related to generation and/or utilities. 

(3) DSG systems are assumed to include PV and batteries such that they supply the needed 

electrical energy for a full day under average efficiency parameters. Further research may 

consider increasing power storage, considering efficiencies of different PV and battery 

technologies, and other relevant effects such as weather. 

6.6. CONCLUDING REMARKS 

This research provides distinct contributions to the body of knowledge. The 

findings in this research support sustainable DSG diffusion and prove the potential benefits 

to consumers and the electric power system. This research introduced, implemented, and 
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tested a novel ABM-based framework that can simulate electric power markets and 

infrastructure impacted by DSG adoption. The framework combined ABM, OPF, RL, and 

GA in a data-driven complex optimization. The novelty of this research is that is presents 

a holistic framework to many aspects of DSG adoption that is highly multidisciplinary as 

it combines infrastructure engineering, electric power engineering, economics, social 

science, and computer modeling. Overall, the findings of this research can assist 

researchers, system operators, and decision-makers to plan and/or promote DSG adoption, 

capitalize on their many benefits, and improve the efficiency, reliability, and sustainability 

of the electric power infrastructure.  
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APPENDIX 

The code created in this research is part of an ongoing collaborative research. 

Accordingly, it cannot be shared for confidentiality and proprietary reasons. For those 

interested in specific parts of the code, they can provide their request to the author and the 

advisor who will reasonably evaluate it at that point in time.  
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