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Abstract—For many neurological disorders, including trau-
matic brain injury (TBI), neuroimaging information plays a
crucial role determining diagnosis and prognosis. TBI is a het-
erogeneous disorder that can result in lasting physical, emotional
and cognitive impairments. Magnetic Resonance Imaging (MRI)
is a non-invasive technique that uses radio waves to reveal fine
details of brain anatomy and pathology. Although MRIs are
interpreted by radiologists, advances are being made in the use of
deep learning for MRI interpretation. This work evaluates a deep
learning model based on a residual learning convolutional neural
network that predicts TBI severity from MR images. The model
achieved a high sensitivity and specificity on the test sample of
subjects with varying levels of TBI severity. Six outcome measures
were available on TBI subjects at 6 and 12 months. Group
comparisons of outcomes between subjects correctly classified by
the model with subjects misclassified suggested that the neural
network may be able to identify latent predictive information
from the MR images not incorporated in the ground truth labels.
The residual learning model shows promise in the classification
of MR images from subjects with TBI.

Index Terms—Traumatic Brain Injury, MRI, Deep learning,
Medical Imaging, Transfer learning

I. INTRODUCTION

There has been recent progress in the use of of deep convo-
lutional neural networks (CNN) [1] for analysis of medical
images [2]–[4]. A variety of imaging modalities including
magnetic resonance imaging (MRI), computed tomography
(CT), plain X-rays, and ultrasound are used for disease di-
agnosis and prognosis [5]. Healthcare data sets are complex,
context dependent, encompass many modalities, and typically
heterogeneous with regards to both classes and features. Class
imbalances or limited data set size makes the extraction of
knowledge by machine learning challenging [6]. Nonetheless,
deep learning models based on medical images have shown
promise in identifying embedded patterns that have diagnostic
and prognostic value [6].

Traumatic brain injury (TBI) is a disruption of brain func-
tion caused by a blow to the head [7]. It is heterogeneous

in cause, severity, pathology, and prognosis [8]. It is a major
cause of death and disability, accounting for over 2.8 million
emergency department (ED) visits in the United States and a
negative economic impact of $76.5 billion annually [9]. Long
term effects of TBI include physical impairments (movement,
vision, hearing), emotional changes (depression, personality
changes), or cognitive impairments (memory loss, attention,
linguistic, and others). The consequences of TBI can worsen
without timely diagnosis and treatment [10].

The heterogeneity of TBI combined with the lack of precise
outcome measures is a challenge [11]. Currently, the Glasgow
Coma Scale (GCS) score is used to stratify TBI patients into
three severity categories: severe (GCS 3-8), moderate (GCS 9-
12), and mild (GCS 13-15) [11]. The GCS score is based on
best response in three areas: eye-opening, motor, and verbal.

TBI severity can also be stratified by cranial CT abnor-
malities as CT scans are routinely obtained within the first
24 hours after brain injury [10], [12]. The Marshall and
Rotterdam scores are CT derived metrics used to predict TBI
outcome [13], [14]. The Marshall scoring system is based
on morphological abnormalities on CT scans as defined by
visible presentation of increasing evidence of mass effect
(1 is best, 6 is worst). The Rotterdam scores are based
on the sum of CT scan elements that could correlate with
poor outcomes including cistern compression, midline shift,
epidural mass lesion, and traumatic subarachnoid hemorrhage
or intraventricular hemorrhage (1 is best, 6 is worst).

Neuroimaging plays a critical role in the evaluation of TBI
patients. A CT of the head is first-line imaging in the ED [15].
For many brain disorders, including TBI, MRI is a powerful
imaging technique for diagnosis and assessment [16]. It has a
high spatial resolution and provides key information on the
anatomical structure, often in greater detail than CT. [17].
Though CT and MRI are used in the TBI clinical setting, no
single imaging modality has proven sufficient for all patients
due to the heterogeneity of TBI presentation [18]. In particular
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for mild TBI (mTBI), which constitutes about 75% of TBI
[16], studies indicate that CT scanning may be of limited
usefulness in clinical evaluation of patients presenting to the
ED [18]. Though MRI is more sensitive to brain injury than CT
scans, there remains concerns that MRI does not fully correlate
with anticipated clinical outcomes [16], [18]. Further research
is needed on predictive power of MRI in TBI.

Deep learning CNN models have shown promising results
for the automated classification of disease severity in neuro-
logical disorders such as Alzheimer’s disease based on MRI
images [19], [20]. Building on this success, in this work,
we investigate a deep CNN model framework to predict the
severity of TBI (as quantified by GCS score) from 3T MRI
brain scans. Given that CT has demonstrated usefulness in
the TBI clinical setting, we are also interested in exploring
a more comprehensive data-driven predictor model for TBI.
We extend the framework to include a joint predictor severity
model based on both GCS and a CT derived metric (either
Marshall or Rotterdam).

The proposed deep CNN model framework utilizes a resid-
ual learning method implemented with the residual network
(ResNet-50) architecture [21]. Residual learning does not
allow error accumulation on the convolutional layers thus
enabling a better representation of the content in these layers
[5]. A drawback of deep CNN models is the long training
times. Transfer learning improves learning of a new task by
the transfer of knowledge from a previously learned but related
task [22]. Models trained on one problem can be used as a
starting point for training new models on a related problem.
Transfer learning is flexible and allows the use of weights
from pre-trained models developed from standard computer
vision benchmark data into new models. Thus, we minimize
the training time drawback by integrating transfer learning in
our deep CNN model framework.

The overall objective is to evaluate the sensitivity of a CNN
model to detect anatomical changes in a brain MRI scan that
might correlate with outcome after TBI. The evaluation of
the results is performed using both quantitative metrics and
qualitative analysis (based on visual examination by domain
expert - D.B.H). In addition, using a varied set of commonly
acceptable TBI outcome measures [23], we conduct statistical
analysis of the experimental results to validate the clinical
relevance of the model for routine evaluation of TBI at
the individual patient level. We are interested in the critical
analysis of the varied severity subgroups correctly learned
in comparison to the groups that the model failed to learn
to further understand the correlations between TBI imaging
modalities, clinical data, and outcome measures.

II. METHODS

The learning framework, as illustrated in Fig. 1, consists
of five phases (data curation, data augmentation, training of
residual learning model, model validation, and assessment of
clinical relevance).

TABLE I
CLINICAL AND DEMOGRAPHIC SUMMARY OF STUDY SUBJECTS (N=203)

Characteristic Value

Gender Male 70.94%; Female 29.06%
Age ∗ 40.20 ± 15.8 [18, 79]
MRI days post injury∗ 13.54 ± 16.9 [0, 196]
GCS Mild: 77.8% , Moderate: 6.9%, Severe: 15.3%
Marshall Scores 1: 55.2%, 2: 31.0%, 3: 5.9%, 4: 1.5%, 5: 4.4%, 6: 2.0%
Rotterdam Scores 1: 1.5%, 2: 70.4%, 3: 17.7%, 4: 7.4%, 5: 3.0%
LOC Yes: 71.9%, No: 18.7%, Unknown: 9.4%
Injury severity score

> 15 (Yes/No) Yes: 36.9%, No: 63.1%

Abbrev. injury score
(Head or Neck) Yes: 71.9%, No: 18.7%, Unknown: 9.4%

LOC: Loss of consciousness; ∗: Mean ± SD, Range

A. Data Curation

Data curation is essential for any data driven learning model.
Data curation includes data extraction, cleaning, filtering, and
pre-processing of the raw data to ensure that reliable data is
available for modeling. The TBI image data analyzed in this
work is drawn from the Transforming Research and Clinical
Knowledge in Traumatic Brain Injury (TRACK-TBI) pilot data
set [11] available via Federal Interagency Traumatic Brain
Injury Research (FITBIR) [24] data repository to approved
researchers. The TRACK-TBI study [11] is a multicenter
observational pilot study aimed at validating the feasibility of
implementing the TBI Common Data Elements that span de-
mographics, clinical care, genetics and proteomic biomarkers,
neuroimaging, and a battery of outcome measures. A subset of
these subjects (252) underwent MRI brain scans. A variety of
MRI sequences were available. Based on domain expert guid-
ance, we focused on analysis of the fluid attenuated inversion
recovery (FLAIR) images using all three planes (axial, coronal,
and saggital). FLAIR, although lacking the spatial resolution
of some other MRI sequences, is sensitive to brain pathology
and facilitates the distinction between cerebrospinal fluid and
areas of brain injury. It has high sensitivity to a wide range
of central nervous system pathologies [25]. Since age could
have an effect on the brain scans [26] or outcome measures,
we focused on images from patients between 18 and 79 years
old, reducing the available sample size for this study (n = 203).
The clinical and demographics characteristics of the subjects
are summarized in Table I.

Automated analysis of MR images is challenging due to
intensity inhomogeneity, variability of the intensity ranges and
contrast, and noise [27]. Thus, preprocessing steps unique to
image data are essential prior to the learning model phase. The
brain 3T MRI scans were available in the Digital Imaging and
Communications in Medicine (DICOM) open software format.
Each DICOM image represents an individual slice of the
brain. In order to utilize the spatial information, we converted
the DICOM images into neuroimaging informatics technology
(Nifti) volumes. Skull stripping was performed to remove
the skull from images and focus on intracranial tissues [27].
Inhomogeneity correction mitigates image contrast variations
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Fig. 1. Deep learning framework for TBI severity prediction from MRI FLAIR sequences.

(a) Raw image scan

(b) Processed image after inhomogeneity correction and skull stripping
Fig. 2. Image pre-processing of an MRI scan.

due to intensity inhomogeneity. We performed skull stripping
and inhomogeneity correction on all the images using the R
fslr package [28], as illustrated in Fig. 2.

B. Data Augmentation

The available data (Table I) is of limited size and is class
imbalanced (skewed towards the mTBI group). Deep learning
models generally yield more accurate results on large data
sets. The problems of overfitting due to limited sample size or
class imbalances can be mitigated by data augmentation [20],
[29]. This involves enlarging the image data set using varied
label preserving transformations [1]. This technique generates
multiple different versions of the images from the original
slices by rotation, translation, gamma correction, random noise
addition, scaling, and random affine transformation [20]. We
applied data augmentation to the images by rotating the
volumes within a range of angles. Fig. 3 shows an example
of an image that has been augmented twice. We created an
augmented data set of n = 474 subjects such that all three
classes of GCS severity (mild, moderate, and severe) were
balanced with 158 subjects each.

C. Residual Learning Model

The residual learning model, as illustrated in Fig. 4, utilizes
a ResNet-50 [21] CNN architecture implemented in Keras
with Tensorflow backend [30]. The ResNet architecture solves

the vanishing gradient problem found in plain deep CNNs by
introducing skip connections that short circuit shallow layers
to deep layers [21]. These connections between layers add the
outputs from previous layers to the outputs of stacked layers.
The skip connections enable the network to learn residuals,
performing a kind of boosting [3]. In residual learning [21], a
building block can be defined as y = F (x,Wi) + x where x
and y are input and output vectors of the layers considered
and F represents the residual mapping to be learned. The
dimensions of x and F must be equal. To match them, if
needed, a linear projection Ws is performed by the shortcut
connection: y = F (x,Wi) +Wsx.

The ResNet-50 model (Fig. 4) consists of 5 stages, each
having a convolutional (made up of 3 stacked layers) and
identity block. The stage 1 block also includes a max-pooling
operation that performs down-sampling. At the end of the last
layer (stage 5), the data is passed in sequential order to the
fine-tuning layers that flatten, batch normalize, and perform
dropout regularization. It includes fully connected dense layers
with ReLu activation function.

Our learning framework integrates transfer learning by
adapting a well performing deep learning network (ResNet-
50) trained on a large data set (ImageNet [31]) and then sub-
sequently fine-tuned on our smaller TBI MRI data. It has been
shown that transferring the weights (and network parameters)
from a pre-trained generic network to train on a specific data
set is better than random weight initialization of the network
[27]. The weights of the layers in each stage of the ResNet-
50 are fixed during the training process. In the subsequent
fine-tuning layers, the network is trained with random weight
initialization based on the transferred weights and parameters
from the pre-trained model. Thus, the information learned
from pre-trained model is used to aid the fine-tuning layers
during the learning process.

The dropout layer sets the output of each hidden neuron
to zero with a probability of 0.5. Dropout [3] is a technique
that randomly removes neurons during training that creates
slightly different networks for each iteration of training.
Hence, weights of the network are tuned based on optimization
of multiple variations of the network. This allows the network
to learn more robust features that are useful in conjunction
with different random subsets of the other neurons. We also
employ batch normalization which serves as a regularizer for
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(a) Original image (b) First image augmentation (c) Second image augmentation
Fig. 3. Data augmentation utilizing rotation to generate two additional images

Fig. 4. Residual learning model architecture.

the network [3]. This speeds up training and makes it less
dependent on careful initialization of network parameters. It
yields normalized activation maps by subtracting the mean
divided by the standard deviation for each training batch.

Classification tasks: The learning model is designed to
perform three different classification/prediction tasks using
the RMSprop optimization function. The base configuration
(single prediction model) is to determine the GCS severity
group (mild, moderate, or severe) from a given MR image.
The single prediction model relies only on the multiclass
GCS module (Fig. 4). It has a SoftMax activation layer with
three neurons. Each neuron outputs the prediction probability
of one GCS severity category. The neuron with the highest
probability is selected as the predicted class. The model uses
the categorical cross entropy (CCE) loss function as defined
in Eq. 1.

CCE = − 1

N

N∑
i=0

J∑
j=0

yj · log(ŷj)+ (1− yj) · log(1− ŷj) (1)

N denotes the number of samples and J , the number of
classes. The actual probability that the input belongs to class
j is given by yj , while the estimated probability is ŷj .

To explore the model’s ability to incorporate information
that has been derived from the CT scan, we also train another
model to jointly predict both the GCS severity category and
a CT derived metric severity group. Thus, the remainder
classification tasks are both joint prediction models: given an
MR image, determine both the GCS severity group as well as
the Marshall score or both the GCS group and the Rotterdam
score. Since the Marshall and Rotterdam are both CT derived
metrics, the models have similar configurations which we

Fig. 5. Skewed distribution of CT metric groups across augmented data.

denote as the GCS+CT metric classifier and utilize the same
module, CT metric module (Fig. 4). Due to the skewed
distribution of the CT metric groups across the augmented
data (Fig. 5), we limit the prediction tasks as binary; either
(Marshall: 1 vs. 2 or Rotterdam: 2 vs. 3). The joint prediction
classifier utilizes the CT metric module along with the GCS
module to compute the joint loss (Fig. 4). Similar to the
GCS module, the CT metric module also uses the SoftMax
activation function and the CCE loss function. Since it is a
binary classification, only 2 output neurons are used. The joint
loss function is a summation of the CCE loss from both GCS
and CT metric modules.

D. Model Evaluation

To evaluate the model performance, we utilize classification
accuracy, sensitivity, specificity, and area under curve-receiver
operating characteristics (AUC-ROC) metrics. Sensitivity and
specificity measure the ability of a model to determine if a
clinical condition is present or absent. A positive indicates
the presence of the clinical condition while a negative implies
absence of the condition. For a given sample, patients with
the clinical condition that are correctly classified are known
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as true positives while false positives are patients without
the condition incorrectly classified as having the condition. In
contrast, true negatives are subjects correctly classified as not
having the condition while false negatives denotes subjects
with the condition incorrectly classified as not having the
condition. Sensitivity (also known as the true positive rate
(TPR) or recall) is the ratio of the number of true positives to
the total number of positives present in the data. Specificity
(also known as the true negative rate (TNR)) is the ratio of
the number of true negatives to the total number of negatives
present in the data.

The ROC curve is a graphical display of the relationship of
sensitivity (y-axis) to the complement of specificity (x-axis).
AUC is a measure of the overall performance as quantified
by the average value of sensitivity for all possible values
of specificity. Increasing AUC values imply better overall
diagnostic performance of a model in predicting the severity
group of each image.

E. Clinical Relevance Assessment

A set of outcome measures, selected by domain experts, can
be used to evaluate whether identified groups have clinical
significance. We selected six TBI outcome measures [23]
(Glasgow Outcome Scale-Extended (GOS-E), Brief Symptom
Inventory 18 (BSI-18), Satisfaction with Life Scale (SWLS),
Post Traumatic Stress Disorder (PTSD) Check List-Civilian
(PCL-C), California Verbal Learning Test-II (CVLT), and
Wechsler Adult Intelligence Scale-III Processing Speed Index
(PSI)) that evaluate functional and cognitive recovery levels
to determine if the groups generated by MR image analysis
have predictive value for clinical outcome. We briefly describe
these measures, to provide a context for statistical analysis.

The GOS-E is a global outcome measure that assesses the
overall impact of TBI on the patient incorporating functional
status, independence and role participation. It is an ordinal
scale that ranges from 1 to 8: dead (1), vegetative state
(2), lower severe disability (3), upper severe disability (4),
lower moderate disability (5), upper moderate disability (6),
lower good recovery (7), and upper good recovery (8). BSI-18
quantifies subject psychological health based on a brief self-
report measure of psychological distress with three subscales
(depression, anxiety, and somatization) and a global severity
index. Increasing values indicate higher psychological stress.
SWLS is used as a measure of the life satisfaction component
of subjective well-being. Scores on the SWLS have been
linked to measures of mental health and predictive future
behaviors. It is a 7-point Likert style response scale, with the
scores ranging from 5-35 and a neutral point of 20. Scores
from 5-9 indicate extreme dissatisfaction with life, and 31-35
indicate extreme satisfaction with life.

PCL-C is a 17-item self-report measure composed of the
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition symptoms of PTSD that quantifies a patient’s psycho-
logical status. CVLT is a neuropsychological impairment mea-
sure that assesses the patient’s verbal learning and memory. It
evaluates the recollection and recognition of two lists of words

over five learning trials. Subject free recall and cued recall are
assessed after both short-term and long-term delays. Increasing
values indicates lower impairment. PSI is a score relevant to
a patient’s ability to identify, discriminate, integrate, derive a
choice about information, and to respond to both visual and
verbal information. All six outcome measures were available
at the 6-month and 12-month time points post injury.

Statistical testing can aid in determining if the severity
groups obtained from the modeling have predictive power for
prognosis. A mixed effects analysis of variance (ANOVA) is
performed to compare differences in the dependent variable
(outcome measures) between two independent variables (pre-
dicted severity groups (PSGs) and time points). A separate
mixed effects ANOVA is done for each outcome measure
and PSG comparison of interest. The PSG factor is a fixed
“between-subject” effect and the time factor is a random
“within-subject” effect. The interaction between PSG and time
is also included in the model to represent situations where
the effect of one factor depends on the value of the other
factor. If the interaction term is significant, it implies that
both the PSG and time are important in explaining differences
in the outcome measure, but further analysis is needed to
understand the nature of these differences. If the interaction
is not significant, the main effects of PSG and time can
be interpreted individually. A significant PSG effect reveals
a difference in the average outcome measure between the
PSGs, suggesting the model provides some prognostic value.
A significant time effect shows a difference in the average
outcome measure between 6 and 12 months, indicating that
the outcome measure is capturing an aspect of TBI recovery
that is changing over time. A significance level of α=0.05 is
used for all statistical tests.

III. RESULTS

A. Experimental Setup

We constructed three different prediction models based on
the imaging data: a single prediction model (GCS) and two
joint prediction models (GCS+Marshall and GCS+Rotterdam).
For the GCS single prediction model, a total of 474 samples
(158 per GCS group) were used. For the joint prediction
models (Table II), the sample sizes were 317 (M1 - 116, M2 -
201), and 341 (R2 - 184, R3 - 157) in the GCS+Marshall and
GCS+Rotterdam models, respectively. The single prediction
model was trained over 5000 epochs. The data set was split
into training (75%) and testing (25%) subsets. For the joint
prediction models, a stratified 4-fold cross validation with
1000 epochs per fold was used. All three models used a batch
size of 12 and a learning rate of 0.001.

B. Model Performance

Fig. 6 shows the training performance of the GCS single
prediction model. The model achieved a 90.08% training ac-
curacy. The AUC-ROC analysis (Fig. 7) reveals that the model
performed well in classifying images into GCS categories
(AUC > 0.94). Table III shows the specificity and sensitivity
values when each GCS severity category is considered as a
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TABLE II
DATA DISTRIBUTION FOR JOINT PREDICTION MODELS

Marshall (317) Rotterdam (341)

M1 M2 R2 R3
Mild 111 43 133 20
Moderate 0 101 0 101
Severe 5 57 51 36

Fig. 6. Training performance of the GCS severity prediction model

Fig. 7. AUC-ROC performance of the GCS severity prediction model

condition of interest independently. The mild group had the
highest specificity (96.5%) and lowest sensitivity (77.22%).
The severe group achieved a sensitivity of 100% indicating
the model accurately predicted all its images (no misses).

Table IV shows the performance of the GCS+Marshall joint
prediction model. The model achieved a classification accuracy
of 100% for the M1 group and 92% for M2. The sensitivity
for the M1-mild group was perfect but the model was unable
to identify any of the M1-severe groups by the MR images.
The sensitivities for the M2-mild and M2-moderate group
were perfect though the specificities were not. The model was
unable to identify any of the M2-severe groups.

The outcome of the GCS+Rotterdam joint prediction model

TABLE III
MODEL PERFORMANCE TO PREDICT GCS BASED ON MR IMAGES

Severity
group

True
Positive

False
Negative

Sensitivity
TPR (%)

Specificity
TNR (%)

Mild (158) 122 36 77.22 96.50
Moderate (158) 147 11 93.04 88.61
Severe (158) 158 0 100.00 85.12

(a)

(b)
Fig. 8. GCS mild cases classified as mild by model for two subjects.

is shown in Table V. The results indicate that the model
performed better at classifying the images in group R2 (100%)
than those in group R3 (85%). Similar to the GCS+Marshall
model, the sensitivities for the R2-mild, R3-mild, and R3-
moderate groups were perfect. However, the model was unable
to identify any of the severe groups as well. The specificity
value for the R3-mild group was relatively high (74%).

Qualitative analysis: In a FLAIR image, the cerebrospinal
fluid is inverted to black and any brain abnormality appears
white. Hence, patients with less TBI severity are expected to
have less white on their FLAIR images while the more severe
patients should have more noticeable white. The domain expert
visually inspected some images of patients within the GCS
mild group that were accurately predicted as mild by the single
prediction model. As shown in Fig. 8, there is little white
in these images. Images from the mild GCS group that were
classified as severe based on the MR images were also visually
inspected. The white areas on the FLAIR scans (indicated by
the red circles in Fig. 9) may have led to the inconsistency
between the actual mild GCS classification and the predicted
severe group from the MR images.

C. Clinical Relevance Assessment

From the prediction model results, we identified eight pairs
of possible meaningful groups of interest for further analysis.
Two pairs in the GCS model: (1) the mild correctly classified
(mild-CC) compared to the mild incorrectly classified as severe
(mild-IC-sev) group, and (2) the moderate correctly classified
(mod-CC) compared to the moderate incorrectly classified as
severe (mod-IC-sev) group. Using similar notation for the joint
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TABLE IV
JOINT PREDICTION MODEL PERFORMANCE (GCS+MARSHALL) USING CLASSIFICATION ACCURACY, SENSITIVITY (TPR) & SPECIFICITY (TNR)

Ground
Truth

Marshall M1 (116) M2 (201)
GCS mild (111) severe (5) mild (43) moderate (101) severe (57)

Predicted
Marshall CA: 100% CA: 92.0%

GCS TPR/mild: 100% TPR/severe: 0% TPR/mild: 100% TPR/moderate: 100% TPR/severe: 0%
TNR/mild: 0% TNR/severe: 100% TNR/mild: 64.0% TNR/moderate: 43.0% TNR/severe: 100%

CA: Classification Accuracy; TPR: True positive rate (Sensitivity); TNR: True negative rate (Specificity). Model uses MR image data to jointly predict the GCS and the Marshall
score. Sensitivity and specificity are computed for each GCS severity group individually by considering each as the condition of interest for each M1 and M2 Marshall groups.

TABLE V
JOINT PREDICTION MODEL PERFORMANCE (GCS+ROTTERDAM) USING CLASSIFICATION ACCURACY, SENSITIVITY (TPR) & SPECIFICITY (TNR)

Ground
Truth

Rotterdam R2 (184) R3 (157)
GCS mild (133) severe (51) mild (20) moderate (101) severe(36)

Predicted
Rotterdam CA: 100% CA: 85.0%

GCS TPR/mild: 100% TPR/severe: 0% TPR/mild: 100% TPR/moderate: 100% TPR/severe: 0%
TNR/mild: 0% TNR/severe: 100% TNR/mild: 74.0% TNR/moderate: 36.0% TNR/severe: 100%

CA: Classification Accuracy; TPR: True positive rate (Sensitivity); TNR: True negative rate (Specificity). Model uses MR image data to jointly predict the GCS and Rotterdam
score. Sensitivity and specificity are computed for each GCS severity group individually by considering each as the condition of interest for each R2 and R3 Rotterdam groups.

(a)

(b)
Fig. 9. GCS mild cases classified as severe by model for two subjects. Red
circles highlight areas of artifact that may have misled classifier.

prediction models (CC=correctly classified, IC=incorrectly
classified), there are three comparisons of interest for the
GCS+Marshall model: (1) M2-CC vs. M2-IC-M1, (2) M2-
mod-CC vs. M2-sev-IC-mod, and (3) M1-mild-CC vs. M1-
sev-IC-mild. There are also three comparisons of interest for
the GCS+Rotterdam joint prediction model: (1) R3-CC vs.
R3-IC-R2, (2) R3-mod-CC vs. R3-sev-IC-mod, and (3) R2-
mild-CC vs. R2-sev-IC-mild.

The mixed effects ANOVA results for these comparisons in
the six TBI outcome measures at 6 and 12 months are shown in
Table VI. For GOS-E, the median values are reported due to its
ordinal nature. For all other outcome measures, the mean and
standard deviation are reported. The time effect was significant
(�) in almost all of the comparisons of interest for BSI-18
and SWLS, indicating that these metrics exhibit changes over
time. Time was also significant in 3 of the 8 comparisons
for PCL-C and PSI. The interaction effect (∗) and/or mean

differences in the identified subgroups (†) were significant in 5
of the 8 comparisons for BSI-18, SWLS, PCL-C, GOS-E, and
CVLT (and 4 of the comparisons for PSI) suggesting that the
groups predicted by the MR imaging models are important in
explaining the difference in these outcome measures. Further
analysis is required for comparisons where the interaction is
significant.

IV. DISCUSSION AND CONCLUSION

This work investigates a residual learning model using MR
images to perform two main tasks: (1) classify TBI subjects
according level of GCS severity; (2) jointly predict GCS and
CT scan severity score (either Rotterdam or Marshall score).

The model performed well on the first task to predict GCS
severity level from MRI brain images (Fig. 6 and Table III).
Both AUC-ROC and specificity was excellent for mild, mod-
erate, and severe TBI patients (Fig. 7, Table III). Sensitivity
was excellent for both moderate and severe TBI. However,
due to a large number of false negatives in the mild TBI
group, sensitivity was lower in this group (Table III). Manual
visual inspection of the misclassified images from the mild
TBI group suggested that the model may have interpreted
MRI artifacts (Fig. 9) on the images as brain abnormalities
and erroneously assigned these images to a high level of TBI
severity. This problem could possibly have been remediated if
we had available a larger image set that would have allowed
better training to recognize the artifacts.

On the second task to jointly predict the GCS and the CT
score (either Rotterdam or Marshall), the prediction of the CT
derived metric was reduced to a binary task (either M1 or M2
on the Marshall score or R2 or R3 on the Rotterdam score).
The model showed a high classification accuracy in predicting
both the Marshall score (Table IV) and the Rotterdam score
(Table V). The model still displayed a high sensitivity (TPR)
for mild TBI but a degraded sensitivity (TPR) for severe TBI.
The model’s inability to accurately classify severe TBI subjects
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TABLE VI
STATISTICAL ANALYSIS OF TBI OUTCOME MEASURES FOR IDENTIFIED SUBGROUPS OF INTEREST FROM SINGLE & JOINT PREDICTION RESULTS.

↑ Brief Symptom Inventory -18 ↓ Satisfaction With Life Scale ↑ Post-traumatic Stress Disorder Checklist - Civilian

Sig. 6 mths 12 mths Sig. 6 mths 12 mths Sig. 6 mths 12 mths
mean (std) NR (%) mean (std) NR (%) mean (std) NR (%) mean (std) NR (%) mean (std) NR (%) mean (std) NR (%)

GCS Single Prediction

Mild-CC (122) vs.
Mild-IC-Sev (36) �, ∗ 56.1 (11.8) 26.2 52.3 (10.9) 39.3 � 20.7 (7.9) 73.0 22.5 (7.4) 62.3 � 34.8 (16.0) 26.2 29.5 (12.9) 37.7

55.4 (11.4) 8.3 50.0 (10.5) 41.7 21.6 (8.5) 91.7 21.5 (8.9) 61.1 35.0 (14.6) 8.3 29.2 (11.3) 38.9
Mod-CC (147) vs.
Mod-IC-Sev (11) � 53.1 (11.3) 31.9 45.0 (7.0) 46.9 �, ∗, † 25.0 (6.7) 32.0 24.4 (9.1) 54.4 †, ∗ 26.9 (11.1) 39.5 20.3 (2.3) 61.9

54.0 (0) 0 49.0 (0) 0 20.0 (0) 0 12.0 (0) 0 21.0 (0) 0 25.0 (0) 0

GCS+Marshall Joint Prediction

M2-CC (185) vs.
M2-IC-M1 (16) � 52.1 (8.0) 35.7 48.5 (9.1) 43.8 � 23.7 (6.8) 0 22.0 (7.8) 0 Not Significant59.2 (8.4) 43.8 54.0 (10.2) 43.8 20.4 (9.2) 0 21.9 (7.7) 0

M1-Mild-CC (111) vs.
M1-Sev-IC-Mild (5) � 56.2 (11.9) 19.8 52.0 (10.5) 45.0 �, † 20.5 (8.0) 0 22.0 (8.1) 0 †, ∗ 35.8 (16.0) 19.8 29.8 (13.0) 43.2

59.0 (0) 0 60.0 (0) 0 10.0 (0) 0 10.0 (0) 0 29.0 (8.4) 0 22.3 (7.0) 0
M2-Mod-CC (101) vs.
M2-Sev-IC-Mod (52) �, ∗ 49.3 (5.5) 34.7 45.5 (8.1) 44.6 �, ∗, † 23.5 (7.4) 34.7 20.1 (8.3) 55.4 �, ∗, † 23.0 (2.7) 45.5 22.0 (0.8) 66.3

56.1 (7.1) 40.4 51.8 (6.2) 50.0 24.8 (4.1) 40.4 24.7(6.2) 50.0 29.4 (8.9) 40.4 23.0 (4.5) 59.6

GCS+Rotterdam Joint Prediction

R2-Mild-CC (133) vs.
R2-sev-IC-Mild (51) �, ∗, † 55.3 (11.9) 19.5 51.3 (11.0) 40.6 �, ∗, † 20.9 (8.2) 79.7 22.1 (7.9) 61.7 �,∗ , † 34.7 (15.7) 19.5 29.2 (12.5) 39.1

52.1 (10.7) 31.4 47.7 (8.4) 29.4 24.9 (7.2) 78.4 25.3 (7.4) 70.6 29.0 (8.4) 21.6 22.3 (7.0) 39.2
R3-Mod-CC (101) vs.
R3-Sev-IC-Mod (28) �, ∗ 49.3 (5.5) 34.7 45.5 (8.1) 44.6 �, ∗, † 23.5 (7.4) 34.7 20.1 (8.3) 55.4 Not Significant49.2 (6.9) 35.7 51.4 (6.1) 35.7 22.3 (7.1) 35.7 22.7 (7.1) 35.7

R3-CC (133) vs.
R3-IC-R2 (24) �, † 49.3 (5.9) 34.6 47.0 (7.9) 42.9 Not Significant †, ∗ 23.5 (4.0) 42.9 22.2 (1.2) 63.2

60.4 (8.5) 45.8 56.0 (9.3) 45.8 37.9 (14.7) 45.8 32.1 (13.2) 41.7

↓ Glasgow Outcome Scale - Extended ↓ California Verbal Learning Test-II ↓ Processing Speed Index

Sig. 6 mths 12 mths Sig. 6 mths 12 mths Sig. 6 mths 12 mths
median NR (%) median NR (%) mean (std) NR (%) mean (std) NR (%) mean (std) NR (%) mean (std) NR (%)

GCS Single Prediction

Mild-CC (122) vs.
Mild-IC-Sev (36) Not Significant Not Significant Not Significant

Mod-CC (147) vs.
Mod-IC-Sev (11) �, ∗ 7.0 31.97 7.0 46.9 †, ∗ 54.3 (10.2) 54.4 60.2 (8.4) 61.9 �, ∗ 95.9 (17.6) 39.36 100.7 (14.7) 54.4

6.0 0 5.0 0 67.0 (0.0) 0 62.0 (0.0) 0 108.0 (0.0) 0 94.0 (0.0) 0

GCS+Marshall Joint Prediction

M2-CC (185) vs.
M2-IC-M1 (16) † 7.0 25.4 7.0 36.2 Not Significant Not Significant6.0 12.5 6.0 6.3

M1-Mild-CC (111) vs.
M1-Sev-IC-Mild (5) ∗ 7.0 18.0 7.0 42.3 Not Significant Not Significant8.0 0 7.0 0

M2-Mod-CC (101) vs.
M2-Sev-IC-Mod (52) ∗ 7.0 34.7 7.0 44.6 † 57.8 (9.8) 56.4 62.0 (8.5) 55.4 �, ∗, † 96.4 (16.9) 45.5 100.4 (16.1) 44.6

5.0 11.5 7.0 28.9 40.5 (3.3) 40.4 48.0 (12.7) 71.2 86.2 (14.8) 40.4 90.0 (13.4) 71.2

GCS+Rotterdam Joint Prediction

R2-Mild-CC (133) vs.
R2-Sev-IC-Mild (51) Not Significant † 54.4 (11.5) 70.7 55.0 (10.6) 56.4 Not Significant45.3 (7.0) 68.6 45.2 (11.1) 43.1

R3-Mod-CC (101) vs.
R3-Sev-IC-Mod (28) ∗ 7.0 34.7 7.0 44.6 † 57.8(9.8) 56.4 62.0 (8.5) 55.4 �, ∗, † 96.4 (16.9) 45.5 100.4 (16.1) 44.6

5.0 0 6.0 17.9 40.8 (2.0) 35.7 56.6 (8.2) 71.4 80.1 (15.9) 35.7 90.6 (14.3) 53.6
R3-CC (133) vs.
R3-IC-R2 (24) � 7.0 26.3 7.0 38.4 † 52.4 (11.3) 51.1 60.6 (9.0) 58.6 ∗ 91.7 (18.1) 42.9 98.2(16.1) 46.6

6.0 20.8 7.0 20.8 46.0 (8.2) 54.2 47.3 (17.8) 45.8 95.8 (8.1) 50.0 94.0 (11.3) 45.8

↓: lower values of the measure indicates higher severity; ↑: higher values of the measure indicates higher severity; NR: Not Reported Data; SD: Standard Deviation;

on the joint prediction task (Table IV and V) is puzzling
since it accurately classified severe TBI subjects on the single
prediction task (Table III). This could be also due to the
inconsistency with GCS severe class being associated with CT
derived metrics of relatively lower severity. Future work will
be focused on improving the joint prediction learning tasks.

We also examined whether output from the single predic-
tion model or either of the two joint prediction models had
predictive value beyond that already found in the GCS or two
CT scores (Marshall and Rotterdam). Outcome measures were
available at 6 and 12 months (Table VI). Several measures
showed a strong time effect with better scores at 12 months
than 6 months consistent with improvement in most subjects
over time. To evaluate whether there is latent predictive infor-
mation in the predictive models based on the MR image data,
we performed specific comparisons between groups in which
the predictive model agreed with the ground truth assignments

(GCS, Rotterdam score, or Marshall score) and groups in
which the predictive model disagreed with the ground truth
assignments. There were numerous instances across the six
outcome measures, in which the groups with consistent classi-
fication (agreement between model and ground truth) differed
in outcome from groups with a disagreement between model
and ground truth. This suggests that the model may be able
to detect predictive information that is not in the ground truth
labels, but more investigation is needed to reveal the magnitude
and direction of this latent predictive information.

Some limitations of this study should be mentioned. First,
the image data set was relatively small though we used data
augmentation to partially address this issue. A larger data
set would likely have resulted in more accurate predictions
as well as enable the model to better discriminate between
brain MRI artifacts and brain abnormalities. The model’s
accuracy could also be improved by extending training to other

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on April 13,2023 at 16:43:16 UTC from IEEE Xplore.  Restrictions apply. 



sequences (T1, T2, diffusion weighted, etc.). Nevertheless,
deep CNNs show promise for the interpretation of MR images
to predict severity and outcome from TBI. More investigation
is needed to determine whether deep learning models can
uncover latent predictive information for outcome from TBI
not already encapsulated in traditional measures such as the
GCS, Marshall score, and Rotterdam score.
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