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ABSTRACT

The overground interactive robots are potentially beneficial for humans in various

areas, such as overground rehabilitation therapies and robotic interactive assistance. How-

ever, it is unclear what the expectations and challenges are for a robot to be physically

interactive with a human during overground tasks, such as a robot helping an older adult

walk. To develop such a robot, one must first build a clear understanding of how the human

motor intent is communicated when interacting with another agent. Specifically, how do

humans understand the leader’s intention when being led?

Based on previous works, we hypothesized that humans modulate their arm impedance

to measure interaction forces and motion sensitively. To study and test this hypothesis, it

was required to measure the arm impedance during the human-agent interaction as pre-

cisely as possible and correlate the pattern of change in arm impedance with the pattern of

fluctuation of interaction forces and motion. Because the existing interactive robots were

not suitable for studying human arm impedance during overground interactive tasks, a new

experimental robot – Ophrie – was developed that is capable of performing overground

interaction with a human and can also measure arm impedance simultaneously.

Enabled by Ophire, an experiment was designed and conducted where the blind-

folded human participants were asked to follow Ophire by holding its interactive handle.

Arm stiffness were measured at the moment when A: the participants were compelled to

listen to (or sense) haptic information from the robot, and B: when they were not compelled

to. We found out that the arm stiffness of the participants at A was significantly lower

compared to B. This outcome suggests that, as we hypothesized, the human nervous system

modulates the arm stiffness to facilitate effective motor communication during overground

physical interaction.
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1. INTRODUCTION

Human communication and language skills have evolved concurrently with the

human evolution process [1]. Communication, in general, is a complex phenomenon in

which information moves from a sender to a receiver and, in the process, gets encoded

and decoded as per necessity [2]. Over time, we, humans, have developed some patterns

(or languages) that ensure the effective exchange of information among ourselves for better

communication. Some of these languages are in the form of expressions, gestures, symbolic

signs, and scripts. We use one or more such language forms to carry out social interaction

tasks successfully.

While human communication is primarily studied based on social interaction tasks,

it should not be forgotten that humans can communicate even without verbal or visual cues.

Communication during physical human-human interaction (pHHI) tasks such as partnered

dancing, assisting the elderly to walk, helping babies learn to walk (or even balance),

or coordination while moving furniture can solely be performed through contact-based

information exchange. Communication through physical interaction is not just limited to

within human individuals. Knowingly or unknowingly, in our day-to-day life activities, we

tend to accept information from the interacting external environment and make a decision

based on the received information. For instance, we tend to stiffen our hands while driving

through a rough road; we can walk holding a coffee mug full of coffee without spilling it;

we can identify a specific key from a keychain in our pocket with the help of haptic sensing;

a blind person can commute from one place to other just with the help of a cane, etc. Unlike

pHHI, which is two-way communication, such human-environment interaction involves

only one-way communication where the external environment provides some information,

and the interacting human accepts it, processes it, and implements a freestanding control

strategy; only one of those two interacting partners – i.e., human – is involved in developing

and implementing a response action.
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Having the external environment interact with the human partner and be actively

involved in two-way communication, as we do during pHHI, can have many benefits. For

example, if one wants to be replaced by a robot in assisting their elderly family member or

wants to be helped to practice dance steps, it would be expected from the interacting robot

to read and understand the motor intent of the human and respond similarly to how a human

partner would do. Such physically interacting robots can significantly impact our quality of

life by serving as robotic nurses, therapists, trainers, and caregivers.

MIT-Manus or phantom haptic interface [3, 4] are a few examples of such robots

that are capable of performing physical interaction tasks with humans. These physically in-

teractive robots are only used in seated physical interaction tasks for rehabilitation therapies

and research. In addition, these robots can effectively control and modulate the interaction

dynamics as per the need. While these robots have well justified their usefulness in the up-

per arm rehabilitation of stroke patients, other similar treatments, and research, their active

involvement in our daily activities has largely been reduced due to their limited overground

mobility.

Given that our daily activities involve a lot of overground physical interaction with

others, these physically interactive robots could find many applications if brought over-

ground. We, humans, can perform physical interaction effectively and comfortably, and in

many cases, we communicate through physical interaction. Collaboration, cooperation, and

assisting others are examples of the overground pHHI. Collaboration is an indirect contact-

based interaction where two interacting partners execute a motor task independently while

being connected through a haptic connection [5]. While during coordination, a motor task

is accomplished by the interacting partners where the haptic contact can be direct (such

as dancing) or indirect (such as moving furniture). Assistance to the elderly or disabled

person and rehabilitation therapies require the interacting partner to maintain haptic contact

directly. These interaction activities cannot be performed without effective information

exchange. Hence, it would be desired to have a physically interacting overground robot that
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can not only control the interaction dynamics but also understand the motor intent of the

interaction partner. These robots would also be expected to communicate their motor intent

to the interacting human.

What interaction characteristics can be instilled in the overground physically inter-

active robots to ensure that these robots not only interact but communicate during physical

human-robot interaction (pHRI), similar to pHHI? If we know how humans communicate

during pHHI tasks, we can replicate the same interaction characteristics in physically inter-

active robots. Some relevant prior works suggest that communication during pHHI involves

the exchange of small forces and hand movements [5–10]. However, it is unclear how

these forces and movements are exchanged during physical interaction and how the central

nervous system (CNS) interprets this language of force and movements.

Measuring and then analyzing these forces and motions while humans interact can

be one of the best possible ways to proceed. These two parameters should not be analyzed

separately; these are the cause and effect of each other. Like how current or voltage

changes based on electrical impedance in a circuit, a particular system’s force and motion

characteristics also change based on its mechanical impedance. Mechanical impedance of

the human arm can be broadly defined as the overall resistive behavior of the arm to an

external disturbance. It can be presumed to be characterized by the arm’s effective mass,

damping, and stiffness. Hence, analyzing how impedance is modulated during physical

interaction can be crucial in understanding how humans communicate through physical

interaction.

Human arm impedance has been studied for decades with a primary focus on

how humans interact with an external environment and how a freestanding impedance

control strategy is developed and implemented by the human nervous system to deal with

any external disturbance(s) [11–15]. The pHRI experiments in these studies, in general,

followed a standard protocol: a subject would be asked to sit in front of a robot and hold

the end-effector of the robot’s manipulator, they would be asked to maintain a pose or
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follow a trajectory based on the objective of the experiment, their hand (at the interaction

point) would be pushed using a force or position perturbation for a specific time at some

predefined instant, the force and hand movement data would be recorded, and the impedance

(or stiffness) would eventually be estimated using the recorded data and interpreted. A

similar experimental protocol can be adopted for the experiment from which we intend to

study haptic communication through physical interaction. Since most of the pHHI tasks are

performed overground (i.e., not seated, for example, walking), it is beneficial to interpret

the relationship between impedance and physical interaction for overground interaction

scenarios. In this view, the tools used to measure arm impedance in the experiment

protocol mentioned earlier cannot be used readily in their present form because they were

designed and developed for seated experiments.

The situation demanded a new tool that can interact with humans – similar to the

tools used in the seated experiments – and is also capable of recording parameters required

for estimating arm impedance in an overground pHRI setting. Such a physically interactive

tool (or robot) has to satisfy some unique characteristics that ensure its capability to measure

human arm impedance while interacting with a human partner during an overground pHRI

experiment. Our research team envisioned that such a robot could be built by combining

two different robots: an interactive arm and a mobile base. A detailed methodology to

design a robotic manipulator that satisfies the unique requirements, such as boasting very

low endpoint impedance of the manipulator, being able to apply and measure force as low

as 1N at the end effector, having a maximum end-to-end speed requirement of 2Hz within

the manipulator workspace of 0.15x0.15 m2, can be found in [16].

To measure human arm impedance using a robotic arm through a prior experiment,

it is crucial to make sure that the impedance of the robotic arm itself is very low. Suppose

the interaction force and the displacement of the interaction point are used to estimate the

impedance – which generally is the case. In that case, the outcome is a shared impedance

of the interacting system. If only the impedance of the interacting robotic arm is minimal,
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we can conclude that the impedance measured reflects the arm impedance of the interacting

subject. To ensure this, even before the prototype was developed, we derived the dynamics

of the interactive arm using Euler Lagrange’s method. We carried out some simulation

experiments in MATLAB to estimate the impedance of the interactive arm itself. The

simulation experiment confirmed that an interactive arm built based on our design will have

low impedance characteristics. The details were presented in ASME IMECE 2020 and can

be found in [17].

It was essential to emphasize the design and development of the interactive arm

rather than the lower body when designing an overground robot for the pHRI experiment

because the arm is expected to interact with the subject actively. In contrast, the rest of

the body is only responsible for housing the necessary mechatronics and ensuring that the

arm can be moved from one point to another alongside a human subject. Hence, after

carefully designing and fabricating the arm, a mobile robot that can carry the load of both

the frame of the robot and the interactive arm was purchased from an outdoor vendor. The

mobile robot serves as a base for the entire robot and satisfies the angular and linear velocity

requirements. A custom fabricated frame is placed on top of it, on top of which the arm is

lodged. The frame was designed to house all the mechatronics – such as the controllers,

power supplies, AC/DC converters, motor drivers, and other accessories – required for the

mobile base robot and the interactive arm. The fully assembled robot is named Ophrie - the

robot for the overground pHRI experiment.

The validation of the robot’s aptness for using it in an overground pHRI experiment

in a laboratory setting followed. Moreover, the robot’s ability to record the parameters

required for estimating arm impedance during pHRI tasks, move alongside humans as

commanded through angular and linear velocity, and apply commanded force/position

perturbation during the interaction was examined. Few pilot experiments ensured that the

robot satisfied the last two criteria. Next, an experiment was designed and conducted with

an experimental protocol similar to the aforementioned seated experiments and employing
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the newly developed Ophire robot to examine the first criterion. This new experiment

confirmed Ophrie’s capability to record parameters necessary for estimating arm impedance

in overground pHRI scenarios.

Estimating arm impedance in an overground pHRI scenario is challenging by it-

self. While estimating arm impedance during seated tasks, several constraints are generally

imposed, such as constraining shoulder movement while maintaining a posture [18]. How-

ever, it is difficult to impose restrictions on any body part while performing an overground

physical interaction task. In addition, there is no way to find a stable equilibrium point

during the interaction, which makes the impedance measurement process more difficult.

Because of these reasons, even though the methods used in previous studies for impedance

measurements are far more intuitive and have been widely used, they cannot be readily used

in overground pHRI experiments.

We proposed a new method to estimate the arm stiffness, especially applicable for

overground interaction tasks. The method is well simplified by relaxing the dependency of

the arm stiffness to the arm configuration and the direction of the disturbance. In addition,

it eliminates the need for multiple trials to estimate arm stiffness. This simplified method

helped us analyze the stiffness variation at the different instants of the same trial and the

different trials of the same experiment. The details of Ophrie’s overall design, the validation

experiment, and the arm stiffness estimation method for overground pHRI experiments can

be found in [19].

Finally, the experiment designed to test the hypothesis that humans modulate arm

impedance to facilitate effective communication during overground physical interaction

was conducted in our pHRI laboratory. Blindfolded human participants were asked to hold

the end-effector of Ophrie’s interactive arm and walk alongside leader Ophire, which was

programmed to follow one of the few available trajectories. The end-effector was the only

point of communication for the human participants. The trajectories were designed such

that the participants would have to listen to the information from the robot’s end-effector
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(i.e., haptic communication) at some predefined point (let’s say A) of the trajectory to follow

Ophrie and complete the trial successfully. After they pass point A, they could complete

the trial even without further information from the robot. Impedance was measured at

point A or any other pre-specified point after point A. A comparison was made on how

the arm stiffness varies with the ‘need to communicate.’ We observed that the stiffness is

significantly different when the participants might have felt the dire ‘need to communicate’

compared to another scenario [20]. Similar observation were reported by Rashid et. al [21]

for seated pHRI.

While the recent developments in socially interactive robots are making us more

confident about how much more significant these machines can impact our quality of life,

we expect nothing less from physically interactive overground robots shortly. Our research

is expected to start an open discussion about overground pHRI, and the findings from our

study will undoubtedly pave a path for building physically interactive overground robots.

In addition, our robot – Ophrie, can serve as a valuable tool for other researchers who are

studying overground pHRI and can be modified to be used as a rehabilitation robot for

overground therapies such as guided walking therapies.
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2. LITERATURE REVIEW

A task as simple as holding a coffee mug or as complex as a cooperative task of

helping somebody walk, a human arm can accomplish them very effectively and seemingly

effortlessly. To understand how our central nervous system takes care of these tasks so

effectively, it is necessary to understand how and why are the task-specific motor commands

generated. Does the motor control system have a pattern or a specific model of the arm that

allows it to adopt/implement such sophisticated neural strategies?

2.1. MECHANICAL PROPERTIES OF A HUMAN ARM AND ITS RELATION TO
MOTOR CONTROL

An upper limb consists of muscles, joints, ligaments, and tendons that collectively

play a role in executing a motor control command. Hammond studied electromyographic

(EMG) activity in forearm muscles, and the tension developed when externally forced, and

found that the motor control behavior is directly related to the underlying physiological

change in the muscles [22]. Researchers studied the response of the human arm to the

input disturbance through experiments involving postural control tasks and point-to-point

hand trajectory tracking tasks [23, 24]. The response was modeled as a second-order linear

differential dynamics, and the output impedance was analyzed. The analysis of output

impedance during slow trajectory tracking tasks showed that the reflex sensitivity was

different when measured before, during, and after the movement [24]. Wadman et al. [25]

carried out a fast goal-directed movement experiment to study the position, velocity, and

acceleration of the wrist and the EMG activities of biceps and triceps after the movement

is externally disturbed. He studied the activation patterns of agnostic and antagonistic

muscles with respect to the proprioceptive information available. J. D. Cooke [26] presented

an analogy between a simple mass-spring-damper system and the human limb where he

indicated that some simple tracking movements in humans might be explained just using
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the mechanical properties of the limb. The spring-like properties of the human arm was

further underscored from the work of E. Bizzi [27], A. G. Feldman et al [28, 29], W.

Abend et al [30], M. H. Vincken et al. [31], etc. Bizzi and the collaborators studied

visually triggered head, and arm movements on deafferented monkeys during open-loop

reaching tasks [27, 32, 33] and based on those studies, Bizzi proposed the equilibrium point

hypothesis (𝛼 model) to describe the relationship between muscle force and length. The

model suggested that the central motor control specifies a new intended equilibrium point

between agonists and antagonists muscles based on the target. Feldman later elaborated

the equilibrium-point hypothesis (𝜆 model) for motor control [34] where he discussed the

nonlinear spring-like behavior of muscles due to the presence of reflex in addition to the

central control mechanism. He explained how the voluntary motor control process could

differ from the involuntary process. He proposed three levels of muscle activity regulation

that result in arm movement in humans, namely external load, stretch reflex and neuronal

central (independent) influence upon the alpha and gamma motorneurons. He further

stressed that the independence might be influenced by afferent signals from the muscles,

such as force applied. Experiments similar to Feldman’s were repeated by Vincent et

al. [31]. They concluded that it is mainly reflex activity that determines the stiffness of the

effector system. So far, the discussion on the mechanical properties of the effector system

and the possible changes in these properties during posture maintenance or point-to-point

movements were limited to muscle activation, muscle forces, and the change in the muscle

lengths. The focus shifted from muscle level to joint level properties; M. H. Vincken et

al. studied whether the motor control system controls the joint properties of the effector

system [35]. The apparent stiffness around the elbow joint (invariant characteristics [34])

was estimated from the human experiments where the subjects were asked to move their

hand towards the goal as fast as possible. The forearm was constrained to rotate only

around the elbow joint. A force pulse was applied every time at some point after the

onset of perturbation, and the subjects were instructed ‘not to intervene’ for the unexpected
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force. They found out that the apparent stiffness and the decay of the apparent stiffness

are coupled to the movement and thus concluded that the stiffness control is the part of the

motor program where a fixed pattern is time-locked to the movement.

The spring-like behavior of the mechanical properties of the human arm as a whole

– that is, the dynamics of the entire effector system propagated to the endpoint – was

first analyzed by Hogan [36]. The group proposed a method to estimate the stiffness of the

multi-joint system for posture maintenance tasks [18]. In their method, subjects were seated

with their shoulder restrained and were instructed to maintain an arm posture at predefined

positions. The wrist and the palm were bandaged to the apparatus to ensure a firm and rigid

connection between the human arm and apparatus. At some point, position perturbation

of 5mm or 8mm was exerted at any of the eight pre-specified directions. The force and

the displacement data were recorded, and their ratio was obtained – i.e., stiffness. The

stiffness of the arm was represented numerically, as a matrix, and graphically, as an ellipse.

Their method was based on the previous equilibrium-point hypothesis; the magnitude of

the elastic force generated by the arm muscles after the position perturbation depends on

the hand’s displacement from the equilibrium point.

During the multi-joint arm movements for reaching tasks, CNS specifies the equi-

librium trajectory of the movement from the start to the end [29] – that is, the equilibrium

point gradually changes over time, and the elastic restoring force will cause it to track the

shifting equilibrium position. This also indicates that the mechanical property of the human

arm depends on the velocity of the hand at that instant. The validity and implications of

the equilibrium trajectory hypothesis in the context of reaching movements were investi-

gated by [37] by simulating a mathematical model of the behavior of the arm tracking the

equilibrium trajectories.

Stiffness - the static component of the arm impedance, is indeed the dominant factor

in determining the multi-joint arm movement, but what and how do the other mechanical

properties contribute? Dolan et al. [38] used a custom-developed testbed to extend the
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experiment methodology proposed by [18] to measure the dynamic components of the arm

impedance – which are viscosity and inertia. The experiment design was similar to [18]

except for some cases in which bias force was present. After the position perturbation

was applied, the time-series position and force data were recorded. The recorded force,

the displacement, and the displacement derivatives were fitted to the linear second-order

differential equation; the dynamics of the entire arm was assumed to be lumped at the human

arm endpoint in the horizontal plane and was represented by a mass-spring-damper system.

The endpoint mass, damping, and stiffness matrices of the arm model were identified using

the recursive least square fitting method [39]. Similar to the arm stiffness representation,

which was known to vary depending on the direction of the disturbance and hence used to

be represented as ellipse, the mass and the damping were also reported to follow the same

trend and were represented as ellipse. A similar method and the findings were also reported

by Tsuji and his group investigating the hand impedance in multi-joint movements during

maintaining a posture task [40, 41].

The time-varying mechanical behavior of multi-joint arm in humans was investigated

by [42] where the pseudo-random binary sequence (PRBS) force perturbation, in contrast

to the position perturbation, was applied to the elbow during a catching task. Bennett et al.

used similar force input to study the elbow joint mechanical response [43]. Likewise, [44]

applied torque pulses to the elbow during voluntary movement. The perturbed displacement

was calculated by subtracting the perturbed trajectory with the mean unperturbed trajectory.

Bennett used a similar method to calculate the unperturbed trajectory [45]. Unlike the

previous method where he used force inputs as a perturbation, Bennett applied position

perturbation with respect to the average unperturbed trajectory while investigating the

relation between the movement speed and the mechanical properties of the arm. Gomi

et al. suggested that the CNS uses the inherent spring-like properties for feed-forward

control and is also required to conduct complex inverse dynamics computations [46]. The

experiment utilized small force perturbation while the subjects performed multi-joint arm



12

movement to measure endpoint arm impedance. Burdet et al. pointed out the drawbacks of

using existing methods for measuring stiffness during voluntary point-to-point movement

tasks [47]. They proposed a method to estimate actual hand trajectory with respect to which

position perturbation can be applied to measure arm stiffness in multi-joint arm movement.

Because of the difficulty in estimating damping and inertia and their less significant role

in human physical interaction and motor control, the investigation of these impedance

characteristics has thinned out over time.

Gomi et al. investigated how the impedance behavior changes while interacting

with the external environment [48]. They suggested that humans control directional char-

acteristics of hand stiffness. The studies on how the nervous system learns arm impedance

modulation to adapt to (or control) the interacting environment followed, such as while

performing human-human cooperative task [49], learning to stabilize against external dis-

turbance [11–13, 50, 51], etc. [50] suggested that CNS optimizes arm impedance when

exposed to an unfamiliar unstable environment by maintaining large impedance in the direc-

tion of instability while maintaining lower impedance in the direction of hand movement.

Most of these studies used a least-square or similar method to estimate the mass (inertia),

spring (stiffness), and damper (viscosity) properties of the arm by using recorded force and

displacement data while a force or position perturbed the subjects. Mainly, they focused

on how these properties change to improve the accuracy of the task [51], to learn and adapt

to unstable dynamics [11–15], in the presence or absence of visual information, with the

magnitude of grasping power [52], etc. Different computational models of the multi-joint

arm for movements in a horizontal plane were proposed, and the obtained arm impedance

(or joint impedance) were compared (in most cases) with the arm impedance obtained from

the actual human experiment [11, 53–56]. Few others that have modeled movement of the

arm in 3D include the computational model form [57] and [58].
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In contrast to the traditional impedance estimation method where an impulse per-

turbation is generally applied such as in [18, 46], Davide et al. [59] perturbed arm with

a randomized force pulse during movement and used time-frequency analysis to estimate

endpoint stiffness. They tried to explain why high stiffness is reported in posture main-

taining tasks and low stiffness is reported in movement tasks. Recently, Mark et al. [60]

analyzed time-varying joint impedance using kernel-based regression and non-parametric

decomposition.

In short, we humans modulate our endpoint impedance to control and adapt to the

external environment through changing posture and muscle co-contraction. In addition,

the entire human arm can be broadly represented by a lumped mass-spring-damper system

(at least for the movement in the 2D plane), and its system parameters – endpoint inertia,

endpoint damping, and endpoint stiffness – might be the ones that are being controlled by

the central nervous system.

2.2. COMMUNICATION THROUGH PHYSICAL INTERACTION

So far, the review focus has been on the mechanical properties of the human arm;

mainly on how it can be represented, how it can be estimated, and how it can be used to

explain the learning and adaption behavior of the human nervous system when introduced

to disturbances, uncertainties or when asked to learn a novel activity. However, there is

a possibility that arm impedance modulation plays a vital role in communication during

pHHI activities as well [21].

An interaction is a two-way phenomenon where the information exchange occurs

on a give-and-take basis [61]. During overground pHHI, we interact through arms and,

meanwhile, should be exchanging some information. Previous research on overground pHHI

and pHRI suggested that small forces and motions are exchanged through interactions [8,
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62, 63], and it is reported that the arm impedance is relatively low during that process [8].

Hence, the investigation of impedance modulation might provide insight into how motor

intent is communicated during overground pHHI tasks.

2.3. APPLICATIONS

Undoubtedly, the characteristics that we try to instill in robots are inspired by how

our body works. One of the many examples is the impedance control theory [64]. For

decades, it has played a crucial role in shaping and controlling the dynamics between

humans and the interacting external environment. This theory revolutionized the control

for the industrial robots in several applications like painting, welding, etc. [65].

On the other hand, the robots such as MIT Manus [3], and phantom haptic inter-

face [66] – which were developed for human arm impedance studies in a research setting,

and Kinarm [67] – which was developed to measure arm stiffness in monkeys, proved to

be a perfect match for rehabilitation therapies, especially for upper arm rehabilitation after

stroke.

Rahman and colleagues measured human arm impedance characteristics during the

human-human cooperative task and tried to replicate those in a robot [49]. The impedance

control approach has also found its usage in teleportation and remote manipulation. In most

cases, the real-time human arm impedance (or stiffness) is measured and is replicated in the

remote machine [68]. In a different context, handshake in humans was modeled and was

replicated in robots by Wang et al. [69].

2.4. DESIGN OF AN INTERACTIVE ARM FOR MEASURING THE HUMAN ARM
IMPEDANCE

The interacting arm used for early movement studies employed two links parallel

manipulandum similar to MIT Manus [3, 18, 70]. Dolan et al. designed a two-degree

of freedom SCARA configuration, direct-drive robot arm [38]. Gomi and the colleagues
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developed a closed-loop five-link mechanism with two thin links driven by two wide links,

which are eventually driven by two electric motors separately [46]. This manipulandum

was widely used afterwards in experiments that involved measuring and analyzing human

arm impedance [12, 13, 47, 48, 50, 71, 72]. Beckers and the group also used a similar

design but with narrower proximal links [73].

Most of these above-mentioned robotic arms were designed to have thin, rigid,

and lightweight links. The mentioned manipulandums have also influenced our interactive

arm’s design; it is a two-degree of freedom closed-loop five-link mechanism driven by two

servo motors. Before finalizing the design, we investigated optimizing the length – and

hence mass – of the links based on unique requirements on the interactive arm’s workspace

and its inherent impedance characteristics [16, 17].
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ABSTRACT

We present a new design method that is tailored for designing a physical interac-

tive robotic arm for overground physical interaction. Designing such robotic arm presents

various unique requirements that differ from existing robotic arms, which are used for gen-

eral manipulation, such as being able to generate required forces at every point inside the

workspace and/or having low intrinsic mechanical impedance. Our design method identi-

fies these requirements and categorizes them into kinematic and dynamic characteristics of

the robot, and then ensures that these unique considerations are satisfied in the early design

phase. The robot’s capability for use in such tasks is analyzed using mathematical simula-

tions of the designed robot, and discussion of its dynamic characteristics is presented. With

our proposed method, the robot arm is ensured to perform various overground interactive

tasks with a human.

Keywords: Physical human-robot interaction, Manipulator design, Effective impedance,

Parallel direct drive mechanism
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1. INTRODUCTION

Following their success in many industries, robots are now moving to applications

that directly affect human movement, such as applications in medicine [1] and healthcare

[2, 3]. For example, robots have been applied to the rehabilitation and recovery of movement

in stroke patients [4–6] or in medical surgery [3, 7, 8] and have been successful in the past

few decades. These more recent applications of robots require them to physically interact

with the human body and have further triggered the vision of human-like interactive robots

that are capable of safe and effective interaction with humans, even with frail populations.

Imagine a robot helping an elderly person to walk to their day-to-day activities,

or a robotic partner helping a person prepare to dance: these human replacements could

make a large positive impact on an individual’s quality of life. Currently available physical

interactive robots cannot readily be used in these overground applications, as they are

developed to be stationary for seated rehabilitation programs that are intended for the arms

only [4–6]. On the other hand, robotic walking partners can prove their usefulness in

enhancing gait balance and postural stability, such as in patients suffering from Parkinson’s

disease [9]. Such overground physical human robot interaction (pHRI) requires a novel

robot with an ability to carry out physical interaction tasks while walking alongside a

human.

Despite the potential benefits, it is yet unclear what the expectations and challenges

are for a robot to be physically interactive with a human during overground tasks. In order

to develop such a robot, one must first understand how humans interact with other humans–

epitome for accomplishing physical interaction tasks with or without any verbal and/or

gestural information exchange [10, 11]. Therefore, if robots are to replicate the interaction

characteristics of humans and hence be used in pHRI, a clear prior understanding of humans-

complex biological systems, and their ways of communicating motor intent is needed.



18

Figure 1. Envisioned pHRI Experiment

What specific human interaction characteristics are we seeking? An interaction is a

two-way phenomenon where the information exchange occurs on a give-and-take basis [11].

In many cases, the interaction happens through the arms, through which both power and

motor intent is exchanged. Previous physical human-human interaction (pHHI) experiments

[12–14] have hinted that arms are used for exchanging motor intent in the form of force and

motion during assigned interactive tasks. This view is consistent with an interactive robot

controller based on impedance [15] that relates motion to force, rather than considering

motion and force independently. Similarly, [16] has suggested the relationship of low

arm impedance with interaction tasks through small force. Thus, analyzing the real-time

impedance of the human arm during small-force physical interaction may be the first critical

step to understand the force and motion exchange attributes during physical interactions.
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Unfortunately, the existing interactive robots are not suitable for studying human

arm impedance during overground interactive tasks. Interactive robot arms such as the

Haptic Masters [17], phantom haptic interface [18, 19], KINARM [5, 20], and MIT Manus

[6, 21] are fixed to a specific location and are best fitted for traditional seated interaction

experiments [4–6, 11, 13, 19, 21]. On the other hand, mobile robots [16, 22] are not

preferable because of their incapability to measure arm impedance of its partner human.

Therefore, a new experimental robot is needed that is capable of over-ground interaction

and yet is able to measure arm impedance at the same time. We envision that the robot will

consist of a wheeled mobile base and a highly interactive arm (see Figure 1), where the

former part will only be used for locomotion and does not have to consider small interaction

forces or impedance measurement; in fact, several available robotic platforms fulfill the

overground mobility requirements and hence can be used for the robot’s body. On the other

hand, the interactive robotic arm is expected to exchange sophisticated interaction with a

human partner. Hence, the majority of the design effort should be focused on the interactive

robotic manipulator arm.

This paper presents the unique design procedure for the robotic manipulator arm as

part of an overground interactive robot. We present the unique and unconventional static

and dynamic requirements of the interactive robotic arm in the perspective of measuring

human arm impedance during overground interaction tasks, and thus, present a new design

method for physically interactive robotic arm for human arm impedance measurement.

2. DESIGN REQUIREMENTS

The envisioned overground robot will perform as an interactive system to measure

human arm impedance during overground physical interaction. Until now, the design

requirements for such robots have not been discussed specifically for overground robots,

especially when considering small interaction forces. It is clear that one cannot adopt

the same design principles that are used for industrial robots, since the application is
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vastly different. With our specific goal in mind, we consulted prior literature on stationary

interactive robots, light interaction forces, and impedance measurement to devise the unique

mechanical design requirements as follows:

2.1. R1: WORKSPACE REQUIREMENT

Interaction characteristics information shared in the 2D ground plane may be ana-

lyzed with the help of a 2D plane robotic arm aligned in a plane parallel to the ground. As

a start, we will consider interaction in a 2D plane, and hence a 2D plane parallel robotic

arm is chosen over a 3D robotic arm as used in many rehabilitation robots [4–6].

The workspace of our robotic arm was chosen to be 150 × 150 𝑚𝑚2. Based on an

earlier work on similar framework (overground pHRI during walking, [22]), the distance

between the robot and the human partner varied less than 300 𝑚𝑚, where most of the

displacement is due to the human arm length change. This suggests that the robot arm is

not expected to change lengths as much as the human arm does. Considering a factor of

50%, the robot arm is expected to move less than 150 𝑚𝑚. Hence, our 150 × 150 𝑚𝑚2

workspace is expected to be sufficient for our pHRI task, at least as an initial assessment.

2.2. R2: FORCE REQUIREMENT

Our robot must be able to deliver enough force during pHRI. The magnitude of

the required force would be comparable to the interaction forces during pHHI, such as in

overground walking tasks [14, 16] or social handshake [23]. In these work, interaction

forces are typically around 10 𝑁 with peak forces around 15 ∼ 25 𝑁 . Hence, we set the

requirement that our robotic arm must be able to generate interaction forces in the range

of 10 𝑁 . In other words, the rated force output would be around 10 𝑁 with occasional

peak force of around 20 𝑁 . The robotic manipulator end must satisfy the minimum force

requirement at every point inside the workspace, unlike typical manipulator design, which

focuses on satisfying the maximum output force only at certain points.
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2.3. R3: ENDPOINT SPEED REQUIREMENT

The robots involved in the experiment must be able to produce a speed that is similar

to human arm movement during an interaction. [24] has implied that the frequency range of

human arm movement is around 2 𝐻𝑧. Considering a cycle of a corner to corner diagonal

movement with the frequency of 2 𝐻𝑧, the speed requirement inside the workspace is

0.8485 𝑚/𝑠.

2.4. R4: IMPEDANCE REQUIREMENT

The planar robotic arm must have a low intrinsic mechanical impedance in order to be

interactive (back-drivability). This also helps with the human arm impedance measurement,

because with low impedance, the robot arm will feel smoother and less cumbersome,

and consequently, the human partner will more naturally interact with the robot without

artificially stiffening his/her arm. While the apparent mechanical impedance of a robotic

manipulator can be reduced by feedback control, it is nonetheless preferable to have low

passive impedance to begin with, such as having low inertia or damping.

3. KINEMATIC CONSIDERATIONS

3.1. LINKAGE DESIGN

Manipulators, based on the serial drive mechanism, are more popular than their

closed loop chain counterparts because parallel mechanisms are less intuitive to implement

due to their complex geometry, nonlinear dynamics, and workspace constraints. How-

ever, when considering factors such as high speed, high accuracy, high precision, high

acceleration, high stiffness, high load carrying capacity, and/or low inertia, these parallel

manipulators may be advantageous over manipulators that are based on the serial drive

mechanism [25]. One can find useful examples in various applications: industrial applica-

tions such as Hexapods or Delta Robots, medical applications such as the Stewart Platform
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Figure 2. Sketch of the robot arm and its workspace.

for precision surgery, and space application such as satellite trackers for better orientation

are just a few examples for these type of manipulators [26]. For our application, a platform

manipulator [25] – Closed Loop Five Links Mechanism (CLFLM) – is selected so that, in

addition to satisfying planar design requirement in R1, it will also extricate robotic links

from carrying heavy motors.

We note that the workspace of the closed loop robotic linkage is smaller than that of

similar-sized serial robot manipulators [25, 27, 28]. This is due to the singularities in the

closed loop linkage mechanism that restricts the smooth and continuous use of reachable

workspace. Despite this workspace restriction, due to the aforementioned advantages and

in order to measure small impedances precisely and accurately, parallel manipulators are

preferable [25].

First and foremost, the CLFLM has to satisfy the workspace area requirement in

R1 that governs the design’s final length of the links. Furthermore, the length of the links

have to be tailored to their optimal value in order to minimize the inertia. Figure 2 shows a

schematic representation of the robotic arm (𝑀1𝐴𝐶𝐵𝑀2) with its end effector (𝐶) inside

the workspace (𝑇1𝑇2𝑇3𝑇4). Let one motor (𝑀1) be lodged at the origin represented in the
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Table 1. Nomenclature of parameters used in the robotic manipulator

Symbols Parameters
𝑙𝑖 Length of a link (𝑖 = 1, 2)
𝜏𝑗 Torque applied by the motors ( 𝑗 = 1, 2)
𝜃𝑘 Angle made by a link (𝑘 = 1, 2)
𝑑0 Distance from the origin to the top of the workspace
𝑑 Length and width of the workspace
𝐹 Force applied on the end effector
𝜃𝐹 Angle at which force (𝐹) is applied
𝑑𝑚 Offset distance between the motors

Note:
• All angles are measured in CCW direction with respect to the positive x-axis.
• Torque convention is positive in CCW direction.

global coordinate system and another motor (𝑀2) at any other point (𝑋0, 𝑌0) in the 2D

space. Table 1 includes the symbols for various parameters that are used for the robotic

manipulator.

Based on preliminary knowledge of CLFLM and their previous use in human-robot

interaction experiments, the following considerations are made regarding the length of the

links:

3.1.1. A1: Symmetricity of the Mechanism. The robotic arm should be unbiased

with respect to the motor locations. This means that the human must not receive any clues

of the end effector’s location due to the asymmetry of the design itself. Even parallel

manipulators used in industries for pick and place operations generally make use of the

direct drive mechanism to justify their two degrees of freedom (DOF) requirement, and

they are symmetric as well [29]. In this view, a parallel direct drive mechanism based

robotic manipulator that is symmetric with respect to its mid axis between the motors is

desired.



24

3.1.2. A2: Avoid Singularities.

• A2 (a): The workspace defined by forward kinematics does not differentiate various

segments of the workspace that are divided by singularities. In [28, 30, 31], the

authors have distinguished three different types of singularities – type 1, type 2, and

type 3, and [27] has classified the workspace into four different segments inside which

the mechanism does not suffer any singularity. Out of four segments in [27], only

the working modes "− +" or "+ −" can be used if A1 has to be satisfied. However,

larger dexterous workspace can be exploited using mode "− +" than by using "+ −".

Hence, choosing the convex pentagon structure (the working mode "− +") yields

the largest workspace segment (dotted space in Figure 2) while satisfying A1, and

avoiding singularities as well.

• A2 (b): Restricting the internal angle between the crank link and coupler link to be

greater than 15° and less than 165° avoids type 1 singularity, whereas imposing the

same condition for the angle between coupler links avoids type 2 singularity.

3.1.3. A3: Other Kinematic Considerations.

• A3 (a): Keeping all other parameters constant, the workspace area is inversely propor-

tional to the offset distance between the motors (𝑑𝑚) (ground link 𝑀1𝑀2 in Figure 2)

[27]. It is thus preferable to have small 𝑑𝑚.

• A3 (b): [32] discussed the advantages of using small crank (proximal link, 𝑙1) in

five bar linkages. On the other hand, the small crank to ground link ratio (𝑙1/𝑑𝑚) is

desirable for favorable mechanical advantage and minimizing inertia [33]. However,

A3 (a) discourages the use of the ground link with higher length. Hence, a trade-off

between the length of the crank (𝑙1) and the length of the ground link (𝑑𝑚) has to be

made.
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• A3 (c): an arbitrary safe distance (𝑑0) from the motor to the workspace must be

assumed.

In addition to A3 (b), which requires the length of the crank (𝑙1) to be minimum,

minimizing the length of the distal links (𝑙2) is also crucial in order to decrease the overall

inertia of the robotic arm. The method of inequality is deployed to estimate the minimum

length of the links. To begin with, the initial approximation of the length of the links is taken

from [34]. The approximated length of the links, which is 25 𝑚𝑚 for proximal links, and

40 𝑚𝑚, and 45 𝑚𝑚 for distal links, are linearly magnified by four times to align with R1.

Using the forward kinematics of the robotic manipulator, an iterative process is followed on

those magnified lengths, which is 100 𝑚𝑚 for proximal links, and 160 𝑚𝑚, and 180 𝑚𝑚

for distal links, so as to approximate the appropriate location of the workspace on the 2D

plane. The iterative approximation process suggested that the safe working distance (𝑑0)

can be 95 𝑚𝑚 (A3 (c)). Given A1, we picked equal proximal links and equal distal links.

Considering A3 (a) and A3 (b) during the iterative process helped us approximate the length

of the ground link for our robotic arm (𝑑𝑚) to be 40 𝑚𝑚.

Given that we have the length of the ground link and the safe workspace distance,

we can properly specify motor positions and the location of the workspace in a 2D space.

The relationship between the length of the links and the location of the workspace can now

be represented in terms of inequality.

𝑙1 + 𝑙2 > 𝑀1𝑇𝑖 (1)

𝑙1 − 𝑙2 < 𝑀1𝑇𝑖 (2)

𝑙1 > 0 , 𝑎𝑛𝑑 𝑙2 > 0 (3)
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To align with the angle constraint on A2 (b), further inequality has to be added:

𝜋

180
15° < cos−1

( 𝑙21 + 𝑙22 − 𝑀1𝑇
2
𝑖

2 𝑙1 𝑙2

)
<

𝜋

180
165° (4)

where 𝑀1𝑇𝑖 is the shortest distance between motor one (i.e. origin) and the different points

selected on the boundary of the workspace, where 𝑖 = 1, 2, 3, 4, 5, 6. The former four points

represent the four corners of the workspace, and the latter two are chosen such that they fall

on the upper boundary of the workspace right below the motors. It is to be noticed that the

farthest and the nearest point of the workspace from the origin (i.e. 𝑀1) are respectively 𝑇3

and 𝑇5, and so are 𝑇2 and 𝑇6 respectively from 𝑀2.

Equation 1 through Equation 4 give a total of 26 inequalities – 6 from Equation 1,

6 from Equation 2, 2 from Equation 3, and 12 from Equation 4 – that have to be plotted,

and the common region that satisfies all of them has to be identified. Solving the inequality

constraints result in the common region with different pairs of the length of links (𝑙1, 𝑙2).

However, if any pair (𝑙1, 𝑙2) satisfies Equation 4, it eventually satisfies Equation 1 and

Equation 2; plotting only the latter two inequalities Equation 3 and Equation 4) will give a

set of solutions. The solution that we want among the set of feasible solutions – (𝑙1, 𝑙2) – is

one that satisfies small crank requirement (A3 (b)) as well.

The common solution (see Figure 3) is governed only by the following 4 inequalities

(out of 26) and the solution also obtained satisfies all the other 22 inequalities discussed

earlier.
𝜋

180
15° < cos−1

( 𝑙21 + 𝑙22 − 𝑀1𝑇
2
5

2 𝑙1 𝑙2

)
(5)

cos−1
( 𝑙21 + 𝑙22 − 𝑀1𝑇

2
3

2 𝑙1 𝑙2

)
<

𝜋

180
165° (6)

𝑙1 > 0 , 𝑎𝑛𝑑 𝑙2 > 0
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Figure 3. The inequalities plotted in the 𝑙1 − 𝑙2 space.

The shaded region ABC in Figure 3 is the common solution, and any pair (𝑙1, 𝑙2) that falls

inside the region meets R1, A1, A2(a), A2(b), A3(a), and A3(c). Considering A3(b), the

length of the links (87.74, 177.51) (𝑚𝑚) has to be selected. However, we wanted to have a

safe margin to type I singularity, even safer than the constraint proposed in A2 (b), that lead

us to choose the length of links to be (110, 175) (𝑚𝑚). The finalized length of the links –

proximal links (𝑙1) = 110 𝑚𝑚, and distal links (𝑙2) = 175 𝑚𝑚 – are in a comparable range

to that of the approximated length of the links after magnification, as mentioned earlier.

It is to be noted that the idea to deploy an iterative process to find the workspace

location (𝑑𝑚 and 𝑑0) and then the method of inequality to find the length of the links may

not be the only possible and effective way to do so. However, this seems to be a simpler

way to obtain the approximate minimum length of the links and the workspace location.

Moreover, regardless of how those parameters are obtained, it is to be understood that the

overall mechanism has to qualify all the dynamic considerations (as in Section 4) and hence

satisfy the impedance requirement (R4). In this view, starting with a simple and intuitive

iterative process and using inequalities may be sufficient for our work – especially when the

identified length of the links satisfies dynamic considerations as will be shown in Section 4.
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In a pursuit to find the approximate minimum length of links and the workspace

location with teachings from prior art, the loop closure equation method [35] was also

investigated. This numerical iteration technique makes use of equations based on the

trigonometric relationship of the mechanism on different configurations. In order to get a

unique solution, the number of equations used must be equal to the number of unknowns to

be solved. If this is not the case, the difference between available equations and unknowns

can be chosen as free choices, as per our design requirements. However, those free choices

have to be chosen carefully so that there should be a viable mechanism available with the

choices. In our context, we had too many unknowns to be solved using a few equations

leading toward many free choices that had to be assumed.

In the aforementioned work that uses the method of inequality, an iterative process

had to be deployed even before deploying the method to approximate 𝑑𝑚 and 𝑑0. If these

two constants in the method of inequality are compared to the free choices in the loop

closure equation method, then it should be well understood that the process of picking the

free choices itself is going to be computationally difficult and time consuming, even before

starting to solve the equations using the loop closure equation method. In addition, being

a numerical iteration technique, the variables whose values are sought have to be assumed

beforehand and should be in close proximity to the values of the original solution.

With 10 equations and 14 unknowns to solve for our direct drive CLFLM, we were

left to pick 4 free choices and 10 initial guesses. It is very difficult to choose 4 free

choices that comprise a real mechanism as well as 10 initial guesses that need to be in a

close proximity range to their respective real solution. To some extent, this hassle can be

minimized by constraining the CLFLM to one DOF system – such as in [35]. However,

constraining DOF is not feasible in direct drive mechanisms. Hence, the idea to use the

loop closure equation method seems tedious and overly complicates the design process for

our direct drive CLFLM robotic arm.
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3.2. MOTOR SELECTION

For the end effector to satisfy R2 and R3, the selection of a right motor – based

on torque and angular speed – is crucial. This implies that a proper relationship between

the linear speed and force requirement of the end effector needs to be converted to the

minimum torque and angular speed requirement of the motors, respectively. Moreover,

these requirements must be satisfied for each and every configuration defined inside the

workspace; unlike industrial robot design, where a specific force is required at a small num-

ber of endpoint positions, our robotic arm must satisfy the force and velocity requirements

within the whole workspace. This is because human-robot interaction can occur at any

given configuration of the robot.

We begin with the kinematic equations:

𝜏 = 𝐽𝑇 𝐹 (7)

𝜔 = 𝐽−1 𝑉 (8)

where [𝜏1(𝜃1, 𝜃2, 𝐹, 𝜃𝐹) 𝜏2(𝜃1, 𝜃2, 𝐹, 𝜃𝐹)]𝑇
Δ
= 𝜏, 𝐽 (𝜃1, 𝜃2)

Δ
= 𝐽,

[𝜔1(𝜃1, 𝜃2, 𝑉, 𝜃𝐹) 𝜔2(𝜃1, 𝜃2, 𝑉, 𝜃𝐹)]𝑇
Δ
= 𝜔, 𝐹 and 𝑉 are torque vector, Jacobian ma-

trix, angular speed vector, external force vector, and linear velocity vector at the effector,

respectively.

In order to solve for 𝜏 (motor torque required to produce an output force 𝐹) and 𝜔

(motor angular velocity required to produce end-effector velocity of 𝑉) within the entire

workspace, it is unrealistic to attempt to find closed-form solutions due to the presence of

motor angle (𝜃1, 𝜃2) dependent Jacobian matrix. Instead, a close-enough solution is sought

by sampling a finite number of endpoint positions and solving Equation 7 and Equation 8 at

these specific points. This notion of selecting a finite number of endpoint positions to form

a sampling region is similar to the work with feasible point-to-point trajectories in [30].
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131 × 131 uniformly distributed sample points were chosen from the workspace

such that each point represents the combinations of angular displacement of motors (motor

𝑀1 and motor 𝑀2) in 1° increments within their operational range. Considering the length

of the links and other parameters (𝑑, 𝑑0, and 𝑑𝑚) obtained in Section 3.1, we determined

that the operational range for 𝜃1 and 𝜃2 is between 135.6° (end-effector at points 𝑇2 and 𝑇3)

and 7.6° (end-effector at points 𝑇5 and 𝑇6). Then, if 𝑆1 and 𝑆2 are sets of angles of 𝜃1 and

𝜃2 respectively, each sample point can be identified as the combination of elements from

these two sets.

𝑆1 = {136°, 135°, . . . . . . , 6°} (9)

𝑆2 = {136°, 135°, . . . . . . , 6°} (10)

In addition, at any specified point inside the workspace (for example, 𝜃1 = 100° and

𝜃2 = 100°), the torque requirement of the motor is dependent on the magnitude as well as

the direction of 𝐹, and so is for the angular speed requirement of motor, which is dependent

on the magnitude as well as the direction of 𝑉 . This direction dependency of torque and

angular speed necessitates the introduction of the third set (𝑆3) that addresses the direction

of application of specified magnitude of force or velocity at the end effector.

𝑆3 = {0°, 1°, . . . . . . , 359°} (11)

A configuration set 𝑆 of triples taking each element form 𝑆1, 𝑆2, and 𝑆3 is constructed and

is shown in Equation 12. The motor torque(𝜏) and the angular speed (𝜔) will depend on

which element in set 𝑆 we are considering with a total of 131 × 131 × 359 = 6, 160, 799

scenarios.

𝑆 =
{
(136°, 136°, 0°), (136°, 136°, 1°), (136°, 136°, 2°), . . . , (136°, 135°, 0°), . . . ,

(6°, 6°, 359°)
}

(12)
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3.2.1. Force Requirement. To find the motor torques, given the estimated typical

magnitude of 𝐹 of 10 𝑁 (as in R2), using Equation 7 (kinematic equation), an online solver

is designed that updates the required parameters in Equation 7 and calculates the torque

requirement of the motor for each and every triple in the set 𝑆. The output of the solver is a

torque matrix 𝑇 such that the first row constitutes all possible 𝜏1 values and the second row

constitutes all possible 𝜏2 values (see Figure 2) calculated for each element of the set 𝑆.

𝑇 =


𝜏11 𝜏12 𝜏13 ... 𝜏1𝑘

𝜏21 𝜏22 𝜏23 ... 𝜏2𝑘


where 𝑘 = 6, 160, 799. Each column of the matrix can be visualized as the torque vector 𝜏

that is required to resist/produce 𝐹 force applied at a specific angle 𝜃𝐹 at the end effector

for a specific configuration (𝜃1, 𝜃2) of the robotic arm. The element-wise max norm of

the matrix 𝑇 (∥𝑇 ∥𝑚𝑎𝑥) gives the torque required for motors that the satisfy minimum force

requirement (R2) at each and every point inside the workspace.

3.2.2. Velocity Requirement. Similar to the torque solver, given the maximum

magnitude of 𝑉 of 0.8485 𝑚/𝑠 (as in R3), a separate solver is designed that updates the

required parameters in Equation 8 and calculates the angular speed requirement of the motor

for each and every triple in set 𝑆. The output of the solver is a speed matrix𝑊 such that the

first row constitutes all possible 𝜔1 values, whereas the second row constitutes all possible

𝜔2 values for each element of set 𝑆.

𝑊 =


𝜔11 𝜔12 𝜔13 ... 𝜔1𝑘

𝜔21 𝜔22 𝜔23 ... 𝜔2𝑘


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Each column of the matrix 𝑊 can be visualized as the speed vector 𝜔 that is required to

produce 𝑉 velocity at the specific angle 𝜃𝐹 at the end effector for a specific configuration

(𝜃1, 𝜃2) of the robotic arm. The element-wise max norm of the matrix 𝑊 (∥𝑊 ∥𝑚𝑎𝑥) gives

the angular speed required for motors that satisfy the endpoint speed requirement (R3) at

each and every point inside the workspace.

The motors’ minimum output torque requirement and minimum angular speed re-

quirement based on the force requirement (R2) and the linear speed requirement (R3) were

found to be 1.2581 𝑁𝑚 and 401.5697 𝑟 𝑝𝑚, respectively. The motor BLY343D-48V-3200-

7200SI (Anaheim Automation, Inc.), which has a rated output of 1.4 𝑁𝑚 and a rated speed

of 2700 𝑟 𝑝𝑚, is chosen.

4. DYNAMICS CHARACTERISTICS

In this section, a mathematical simulation model that resembles the real physical

system is developed using the dynamics of the robotic arm in order to observe the mechanical

impedance characteristics and thereby scrutinize the robotic manipulator’s efficacy in precise

and accurate impedance measurement tasks (R4).

Inertial and frictional losses are inevitable in any robotic system. However, when

we discuss about very low interaction forces and impedances, reducing these losses as low

as possible is strongly preferable. While one can reduce the apparent inertia and damping

through feedback control, it is nonetheless preferred to have a low intrinsic (passive) inertia

and damping to begin with.

To examine the passive mechanical impedance of our robot arm, we want to analyze

the effective inertia (EI) and the effective damping coefficient (ED). The dynamics of a

robot is defined by its equations of motion. Since most robotic arms do have complex

dynamics, it is often not a necessity to derive such equations unless a robotic simulator

model of the manipulator is desired. In some circumstances, such as this work where a
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Table 2. Values for parameters used in the robotic simulator

Parameter Value
Mass of each proximal link of the manipulator 0.11 𝑘𝑔
Mass of each distal link of the manipulator 0.175 𝑘𝑔
Rotor inertia of each motor 0.00016 𝑘𝑔 𝑚2

Width of individual link 0.015𝑚
Inner diameter of the bearings 0.008𝑚
Outer diameter of the bearings 0.014𝑚
Frictional damping coefficient (𝑏) of the bearings 0.0169 𝑘𝑔 𝑚2/𝑠
Note:
• SMR148 bearings (Boca Bearing Company) are used in robotic joints.
• The frictional damping coefficient (𝑏) of the individual bearing is approximated
based on frictional power loss vs rolling speed relationship plots in [36].

robotic simulator is required beforehand to examine its inertia and damping behavior, or

sometimes for designing the nonlinear control strategies (such as backstepping controllers

and sliding mode controllers), equations of motion are necessary to be derived.

It is a common practice to apply the Euler Lagrangian method to develop the

equations of motion of the complex system by using energy equations. All the parameters

associated with the robotic arm (such as masses of individual links, frictional damping

coefficient, and rotor inertia of the motors) have to be defined beforehand. These parameters

for our robotic arm are given in Table 2. The developed coupled second-order equation

resembles the standard robotic manipulator equation as given in Equation 13.

𝑀 (𝜃) ¥𝜃 +𝑉𝑚 (𝜃, ¤𝜃) ¤𝜃 + 𝜏𝑟 ( ¤𝜃) + 𝐺 (𝜃) + 𝜏𝑑 = 𝜏 + 𝐽𝑇 (𝜃) 𝜆 (13)

where 𝜃 (𝑡) ∈ [𝜃1 𝜃2]𝑇 is the joint space coordinate vector, 𝜏(𝑡) ∈ [𝜏1 𝜏2]𝑇 is the control

input vector, 𝑀 (𝜃 (𝑡)) is the inertia matrix,𝑉𝑚 (𝜃 (𝑡), ¤𝜃 (𝑡)) is the Coriolis/Centripetal matrix,

𝜏𝑟 ((𝑡)) are the friction terms, 𝐺 (𝜃 (𝑡)) is the gravity vector, and 𝜏𝑑 represents disturbances.

𝐽 (𝜃) is the Jacobian matrix associated with the contact surface geometry, and𝜆 (the so-called

’Lagrange multiplier’) is a vector of contact forces exerted on the external environment.
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Considering an ideal condition, any disturbances (𝜏𝑑 = 0) will not be taken into

account. Likewise, the effect of gravity is also ignored, considering its planer 2D geometry

that will be placed parallel to the ground 𝐺 (𝜃 (𝑡)) = 0.

𝑀 (𝜃) ¥𝜃 +𝑉𝑚 (𝜃, ¤𝜃) ¤𝜃 + 𝜏𝑟 ( ¤𝜃) = 𝜏 + 𝐽𝑇 (𝜃) 𝜆 (14)

All the matrices, 𝑀 , 𝑉𝑚 and 𝐽, and the vector 𝜏𝑟 , do have complex non-linear terms in

them and require the parameters from Table 2 to be substituted in addition to the values

of parameters defined in Table 1, which are mostly configuration dependent. All these

parameters are already obtained in the previous sections of this paper.

An exception to all known parameters is the frictional damping coefficient for the

bearing used, which we estimated using prior work. The friction on a mating surface

(ball and bearing’s surfaces) in a ball bearing is a function of surface and load applied

only, and does not depend upon the system’s dynamic characteristics. The friction in the

bearing surface, however, is a function of angular velocity as well [36, 37]. Due to the lack of

literature on computing friction of deep groove ball bearing, we used the relation established

by [36] on the deep groove ball bearing SKF-6205, which has an inner diameter (ID), outer

diameter (OD), and width (ℎ) of 25 𝑚𝑚, 52 𝑚𝑚, and 15 𝑚𝑚, respectively. By assuming

the maximum rolling speed for our bearing SMR148, the respective maximum bearing

friction power loss under zero circumference radial preload (CRP) and no lubrication was

obtained. Since the dimension of SKF-6205 bearing does not match with the dimension

of our bearing, which has ID, OD, and ℎ of 8 𝑚𝑚, 14 𝑚𝑚, and 3.5 𝑚𝑚 respectively,

we linearly reduce the result obtained by 16 times. Now the linear relationship between

the angular speed and the power loss was exploited to calculate the maximum damping

coefficient of the system and is given in Table 2.
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The model (as shown in Equation 14) can now be used to study EI and ED of the

physical robotic systems. However, since EI and ED depend not only on the configuration

(such as S defined in Section 3.2) but also on velocities and accelerations, it is unrealistic to

attempt to calculate EI and ED for every possible scenario. Instead, we considered a number

of hypothetical, representative interaction tasks and found EI and ED at the initiation of

these tasks only. In these tasks, we assume that a human applies a force at a number of

initial configurations (details presented hereafter in this section). This can be interpreted

as the opposing force the human subject feels when an interaction is initiated on a passive

robot arm.

Considering no externally applied torque at the actuators (𝜏 = 0 in Equation 14),

we will analyze only the y-component of both EI and ED when a constant force 𝐹 = 10 𝑁

is applied on the end effector through the center of the workspace (𝜃1 = 𝜃2) at an angle

of 270° CCW with respect to positive x-axis as shown in Figure 4a. In this scenario, due

to the symmetricity of the system (A1) and force being applied through its mid axis, the

change in position of the links at any instant becomes symmetric, and so is the angle pair

(𝜃1, 𝜃2), where 𝜃1 = 𝜃2 = 34.29°, ..., 102.97°,(notated as (𝜃𝑠, 𝜃𝑠) here onward) for any

configurational geometry in the end effector’s path. Even though it does not remove the

nonlinearity in the system, it will comparatively simplify the task to analyze EI and ED;

it is easier to relate the inertial and damping behavior when they are applied in a specific

direction and through a symmetric pathway.

The experimental case designed here is solely a representative experiment and hence,

we do not expect them to fetch generalized EI and ED values for entire arm configuration.

Nonetheless the respective representative values help us find out the overall effectiveness

of the robotic arm. Furthermore, this analysis scenario is likely to happen in the actual

HRI experiment as well; during pHRI experiment, we intend to study the process of the
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(a) Robotic manipulator at angles 𝜃𝑠 = 103° and
𝜃𝑠 = 34°

(b) Effective Inertia (EI) vs Starting Angle 𝜃𝑠

(c) Effective Damping Coefficient (ED) vs Start-
ing Angle 𝜃𝑠

Figure 4. Mathematical simulation setup and results.
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information exchange in a direction aligned parallel to the symmetric mid-axis of the robotic

arm. The techniques to obtain EI and ED values for more complex scenarios is discussed

in Section 4.1.

Our procedure for estimating EI and ED for an ideal experimental case designed

earlier is as follows. For every (𝜃𝑠, 𝜃𝑠), we assume zero initial velocity, apply force 𝐹 at the

end effector, simulate the resulting position, velocity and acceleration during a short time

interval, 𝑡 = [0, 0.05] 𝑠, and then calculate EI and ED based on the linear force-velocity-

acceleration relationship observed at this time interval.

In order to estimate EI, we first assume an undamped system where the passive

impedance is solely due to the inertia only. Using an ideal undamped robotic arm similar to

Equation 15, we select (𝜃𝑠, 𝜃𝑠) configuration, and apply the aforementioned interaction sce-

nario. The EI for the specific configuration was estimated by using linear force-acceleration

relationship as given in Equation 16. Repeating the procedure for all individual starting

configurations (𝜃𝑠 = 103°, 102°, 101°, . . . , 34°), we found EI as shown in Figure 4b.

Next ED is further estimated as follows. A similar procedure was carried out with

a damped simulator system (Equation 14). A separate set of velocity and acceleration data

were calculated. We used configuration dependent EI values found previously along with

the new velocity and acceleration data to calculate the purely velocity-dependent interaction,

from which ED can be estimated using Equation 17.

𝑀 (𝜃) ¥𝜃 +𝑉𝑚 (𝜃, ¤𝜃) ¤𝜃 = 𝐽𝑇 (𝜃) 𝜆 (15)

𝐸𝐼 =
𝐹

𝑎𝑢
(16)

𝐸𝐷 =
𝐹 − 𝐸𝐼 𝑎𝑑

𝑣𝑑
(17)



38

where 𝑎𝑢, 𝑎𝑑 , and 𝑣𝑑 are accelerations of the undamped system, acceleration of the damped

system and velocity of the damped system, respectively, each measured at 0.05 𝑠 after the

force had been applied on the (𝜃𝑠, 𝜃𝑠) configuration. It is to be noted that the effective

damping force for any specific configuration can be calculated by Equation 18.

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 = 𝐸𝐷 𝑣𝑑 (18)

The cumulative mass of the robotic manipulator links at rest is 0.57 𝑘𝑔. In Figure 4b,

the range of EI is found to be within an average value of 0.396922 𝑘𝑔 with the maximum

value being 0.7247 𝑘𝑔. The maximum ED during initiation of interaction is found to be

2.6 𝑁− 𝑠/𝑚 at 34° starting angle. Taking the maximum velocity to be 0.8485 𝑚/𝑠 (R3), the

maximum effective damping force that the user will feel during an interaction is estimated

to be 2.2061 𝑁 . The result shows that the robotic arm will not be too bulky while initiating

the interaction and is acceptable for pHRI experiments.

4.1. INTERPRETATION OF THE SIMULATION RESULTS

Some values for ED in Figure 4c are very low, even as low as zero. This suggests

that the damping force felt on those specific configurations may be negligible. This may be

explained by the fact that some earlier literature have pointed out the existence of negative

damping at low velocities [37, 38]. Our approach in estimating EI and ED may not be

the most reliable for continuous motions of the end effector. Nonetheless, our approach

provides us with reasonable expected values of EI and ED near the center of the workspace

which is where most interactions will occur. We used the simulated dynamics to estimate

the EI and ED at the initiation of an interaction task, and not during the time course of

the interaction task. This was deliberately planned to avoid nonlinear effects that may

complicate the analysis. For example, different EI and ED values may be obtained from

the same endpoint position if the accelerations and velocities are different, complicating the
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interpretation of the result. In fact, our prior, prolonged and extensive attempts on obtaining

EI and ED over a continuous longer period of time and displacement was unsuccessful,

possibly due to the high complexity of the dynamics.

Earlier in this section, we used a technique to calculate EI, and ED values for ideal

representative case designed to simplify the analysis. The technique can also be extended

to any general scenarios in order to compute EI and ED values for complex unsymmetrical

configurations. Given a point on the workspace, one can apply forces in 2 or more directions

and find the 2-by-2 EI and ED matrices as follows.

The Equation 16 and Equation 17 has to be modified accordingly to Equation 19

and Equation 20, respectively.


𝐹𝑥

𝐹𝑦

 =


𝐸𝐼𝑥𝑥 𝐸𝐼𝑥𝑦

𝐸𝐼𝑥𝑦 𝐸𝐼𝑦𝑦



𝑎𝑢𝑥

𝑎𝑢𝑦

 (19)


𝐹𝑥

𝐹𝑦

 =


𝐸𝐼𝑥𝑥 𝐸𝐼𝑥𝑦

𝐸𝐼𝑥𝑦 𝐸𝐼𝑦𝑦



𝑎𝑑𝑥

𝑎𝑑𝑦

 +

𝐸𝐷𝑥𝑥 𝐸𝐷𝑥𝑦

𝐸𝐷𝑥𝑦 𝐸𝐷𝑦𝑦



𝑣𝑑𝑥

𝑣𝑑𝑦

 (20)

where 𝑎𝑢., 𝑎𝑑., and 𝑣𝑑. are accelerations of the undamped system, acceleration of the

damped system, and velocity of the damped system, respectively in x or y direction, each

measured at 0.05 𝑠 after the force had been applied at the endpoint at the configuration of

interest. 𝐹𝑥 , and 𝐹𝑦 are the components of force applied in x and y direction, respectively.

With 2 force directions and two resulting acceleration vectors, one can solve for the four

elements of EI matrix in Equation 19. Then, with two more application of forces and their

resulting acceleration and velocity vectors, one can solve for the four elements of ED matrix

in Equation 20. One may also choose to apply more than 2 directions of forces to either

or both Equation 19, and Equation 20 and apply linear least squares regression to find the

elements of EI and ED matrices [39].
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5. FUTURE WORKS

Our next step is to build a real physical system based on the design requirements

set in this paper. Furthermore, we will continue our work to develop the control strategies

required for physical interaction with a human. After the robotic arm is built, we will apply

our methods discussed in Section 4 with the built robotic arm as well. It is also of utmost

importance to find a proper mobile robotic platform base on top of which the developed

robotic arm will be lodged. The base also has to ensure that the function of the robotic arm

will not be affected during the overground movement. During the assembly of the arm and

the base, proper coordination between them has to be ensured as well. The robotic arm in

combination with a mobile robotic platform will be used in our future overground pHRI

experiments and expected to be an efficient tool to sufficiently capture human interaction

characteristics.
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II. ESTIMATION OF ENDPOINT IMPEDANCE OF A 2D PARALLEL
MANIPULATOR USING NUMERICAL SIMULATION EXPERIMENTS

Sambad Regmi, Yun Seong Song
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ABSTRACT

While endpoint impedance of manipulators can be modulated through feedback

control, it may not be feasible to reduce it below a certain bound that is dictated by

the inherent mechanical characteristics of the robot. In applications where the endpoint

impedance of a robot arm needs to be modulated within a large range, it is beneficial to

have a method that can estimate the passive characteristics (endpoint inertia and endpoint

damping) of the robot arm as early as in the design phase, and use this information to modify

the design, if necessary, before building the prototype. In our previous work, we developed

a numerical simulation method to estimate 1-D endpoint impedance that is applicable only

to limited scenarios. In this article, we present a new numerical simulation method to

estimate the 2-D endpoint impedance for any general 2-D manipulators at various locations

inside the workspace. We show that our method accurately estimates the endpoint inertia

and presents feasible estimates of endpoint damping through numerical simulations. An

analysis of the feasibility of using the robot for interaction tasks – based on the obtained

impedance characteristics – is also discussed. With our method, robot output impedance

can be tailored as early as in the design phase.

Keywords: Endpoint impedance, parallel manipulator, numerical simulation of dynamics,

physical human-robot interaction
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NOMENCLATURE

𝑙𝑖 Length of the links (i = 1,2).

𝜏𝑗 Torque applied by the motors (j=1,2).

𝜃𝑘 Angle made by the links (k = 1, 2).

𝑑0 Distance from the origin to the top of the workspace.

d Length and width of the workspace.

F Force applied on the end effector.

𝜃𝐹 Angle, measured in CCW direction with respect to the positive x-axis, at which

force (𝐹) is applied.Angle, measured in CCW direction with respect to the

positive x-axis, at which force (𝐹) is applied.

𝑑𝑚 Offset distance between the motors.

1. INTRODUCTION

Robot and human interaction has progressed over time. The progression has de-

manded the need of physically interacting robots in some situations, if not many, such as

the COVID-19 situation in 2020 that has heightened the need for interacting robots to play

a role in managing public health and infectious diseases [1]. Such robots have long been

the topic of discussion in sectors such as rehabilitation of stroke patients via movement

tasks [2] and in the assistance and guidance of the old and/or frail population.

The physical interaction between a robot and a human, similar to human-human

interaction (HHI), is usually carried out through arms – in robotics, these are often called

robotic manipulators. During HHI, the communication of intent between interacting part-

ners is crucial; the cause and effect in such a process are the information being exchanged

and the interaction, respectively. In order to interact like humans do, a robotic manipulator

has to communicate its intent as similar as the human arms do. Previous studies on HHI [3–

5] have stressed the use of force and motion through arms for physical interaction, which



46

aligns with the concept of endpoint impedance control [6] – the process of varying the

endpoint position in order to obtain the desired force output – in robots. Therefore, during

the physical human-robot interaction (pHRI), it is essential to vary the endpoint impedance

of the robotic manipulator whenever necessary to accomplish interaction behavior that is

similar to HHI.

Endpoint impedance can be regulated from a very small to a very large value with

the help of effective control strategies. However, for the stable control output, the lower

boundary threshold of the apparent impedance at the end-effector is constrained due to its

inherent impedance behaviors such as endpoint inertia (EI) and endpoint damping (ED); the

apparent inertia at the end-effector can not be lowered below half of its inherent endpoint

inertia [7]. Hence, it is often desired to have a low inherent endpoint impedance in a

manipulator to begin with. The stability is determined using control techniques such as the

location of pole and zeros, Nyquist plots, etc. In addition, the performance of the interacting

robotic manipulator can be rated from the "feel" of the interacting human [7]. And, to

achieve better interaction performance, the human-robot interaction not only demands the

robot not to provide inadvertent cues that can bias the natural interaction phenomenon,

but also requires a lighter manipulator so that it will not be felt bulky during the process

of interaction. Since these two measures – hence the inherent endpoint impedance – are

directly affected by parameters like inertia, damping, and stiffness, it may be a good idea to

estimate the endpoint impedance in the design phase itself, so that we can go back and work

on these parameters if deemed necessary before working on impedance control strategies.

Furthermore, estimating the endpoint impedance can be beneficial to cross-validate

the safety boundary as well. The safety boundary of the endpoint impedance for a manipu-

lator, that governs the maximum force allowed during human-robot interaction tasks, varies

depending on the users’ requirement and the type of collaboration environment. Nonethe-

less, whatever the safety boundary is, it can be crosschecked with the value obtained from

the simulation to validate the effectiveness of the developed manipulator.
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In our earlier work [8], an experimental robot was designed that is intended to

be used for future pHRI experiments that will be carried out in our lab. The robot was

built based on the design requirements of the pHRI, and the overall goal was to develop a

manipulator that has low passive endpoint impedance (specifically EI and ED). The process

of early estimation of characteristics that govern the endpoint impedance of this robot is

even critical because it is expected to interact with humans during the pHRI experiment and

is supposed to record impedance characteristics of the human arm. Previously, a parallel

manipulator was chosen specifically due to its low inherent inertia compared to serial

manipulators. The developed robot is a closed-loop five-link parallel manipulator whose

end-effector has a predefined workspace area inside which the manipulator is constrained

to interact. With that being said, there are a finite but a large set of configurations that

the manipulator can pose while retaining the given workspace constraints. In [8], we had

developed a numerical simulation model based on the robot’s dynamics. We also tried

estimating EI and ED for the robot but with some constraints in mind; to make the analysis

easier, we constrained the analysis only to the symmetric configuration of the manipulator

and when the force on the end-effector is applied along the line of symmetry. As a result, we

were able to estimate only a scalar (1-dimensional: 1D) value of the inertia and damping.

However, a robot workspace is rarely 1D, and thus a scalar value of EI (or ED) presents

only partial information about the robot’s endpoint impedance. Because endpoint inertia

(or damping) at a point can feel lower in certain directions than in another direction of

movement, having a single value of EI or ED presents an incomplete assessment of the

robot’s true endpoint impedance. In addition, the estimated impedance values were not

cross-validated with analytically obtainable terms, such as the endpoint inertia. Hence, our

earlier method was limited in its interpretations and applications.

In order to relax the constraints, this article presents and implements a method to

estimate 2x2 EI and ED matrices, which was suggested in the same aforementioned work, but

was never experimentally scrutinized by analyzing both the symmetrical and asymmetrical
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configurations of the manipulator. Our new method presented in this work is for any 2-D

manipulators and in any configuration defined by the user. Our method of estimating EI and

ED is inspired from the method of estimating human arm stiffness during the maintenance

of posture developed by Flash and Mussa-Ivaldi [9], in which human arm stiffness was

estimated using multiple-direction perturbation in force and linear regression analysis. The

validity of our method was investigated by comparing the EI found using our method with

the EI calculated theoretically using the method suggested in [10]. Finally, based on the

estimated parameters (i.e. the norm of the EI and ED matrices), the endpoint impedance is

analyzed to draw a conclusion on the robot’s feasibility in using it for interaction tasks.

2. METHODS

The diagrammatic representation of the closed loop five-link mechanism used for

this study is shown in Figure 1. In the figure, T1T2T3T4 represents the Cartesian workspace

of the end-effector C of the manipulator M1ACBM2. The manipulator is a 2D plane robotic

arm actuated by two motors – the first (M1) at origin and the second (M2) at (X0, Y0)

from the origin in the 2D space that is co-planar to the robot plane. The nomenclature for

parameters associated with the robot is provided in the nomenclature section and the values

for various parameters associated with the parts of the robot is tabulated in Table 1.

The Euler–Lagrangian Method was exploited to come up to a second order equation

for robot dynamics and can be molded to take the standard robotic equation form as in

Equation 1, which is the function of actuator angles 𝜃 (𝑡) ∈ [𝜃1 𝜃2]𝑇 and their derivatives,

actuator torques 𝜏(𝑡) ∈ [𝜏1 𝜏2]𝑇 and the external force 𝐹 ∈ [𝐹𝑥 𝐹𝑦]𝑇 that is applied at the

end effector.

𝑀 (𝜃) ¥𝜃 +𝑉𝑚 (𝜃, ¤𝜃) ¤𝜃 + 𝜏𝑟 (𝜃) ¤𝜃 = 𝜏 + 𝐽𝑇 (𝜃) 𝐹 (1)
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Figure 1. Sketch of the robot arm and its workspace.

where 𝑀 (𝜃 (𝑡)) and 𝑉𝑚 (𝜃 (𝑡), ¤𝜃 (𝑡)) represent the Inertia matrix and Coriolis/ Centripetal

matrix, respectively, and 𝜏𝑟 (𝜃) is a vector accommodating friction terms. Equation 1 does

not consider the gravity effect(because of the 2D planar geometry of the manipulator) as well

as disturbance terms (due to the ideal case assumption) unlike the standard robot equation.

𝐽 (𝜃) is the Jacobian matrix associated with the contact surface geometry.

As stated before, the primary intention of deriving the dynamic equations is to

estimate the robot’s effective inertia (EI) and effective damping (ED) at the endpoint. This

requires transformation of the robot dynamics in Equation 1 from polar form to Cartesian

form as in Equation 2:

𝐸𝐼 ¥𝑋 + 𝐸𝐷 ¤𝑋 = 𝐹 (2)

where, X, EI, and ED represent the endpoint displacement in 2D, the effective endpoint

inertia matrix, and the effective damping matrix, respectively.

Since EI is the function of manipulator configuration only, using Equation 3, it

can be calculated theoretically for any configuration that satisfies the Cartesian workspace

constraint of the end-effector [10]. However, ED is the function of motion parameters

(i.e. velocity, frictional coefficient e.t.c) along with manipulator configuration as shown in
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Table 1. Values for parameters associated with different parts of the robot

Parameter Value
Mass of each proximal link of the manipulator 0.11 𝑘𝑔
Mass of each distal link of the manipulator 0.175 𝑘𝑔
Rotor inertia of each motor 0.00016 𝑘𝑔 𝑚2

Width of individual link 0.015𝑚
Inner diameter of the bearings 0.008𝑚
Outer diameter of the bearings 0.014𝑚
Frictional damping coefficient (𝑏) of the bearings 0.0169 𝑘𝑔 𝑚2/𝑠
Note:
• SMR148 bearings (Boca Bearing Company) are used in robotic joints.
• Refer to [8] for the details on how to estimate b.

Equation 4), and hence should be calculated numerically using appropriate experimental

techniques:

𝐸𝐼 = 𝐽 (𝜃)−𝑇 𝑀 (𝜃) 𝐽 (𝜃)−1 (3)

𝐸𝐷 = 𝐽 (𝜃)−𝑇 [𝑀 (𝜃) 𝐽 (𝜃)−1 ¤𝐽 (𝜃) +𝑉𝑚 (𝜃, ¤𝜃) + 𝜏𝑟 (𝜃) ] 𝐽 (𝜃)−1. (4)

As mentioned previously, there are large number of configurations whose endpoint

characteristics can be examined while also satisfying the workspace criterion of the manip-

ulator. For this study, a sample set of some configurations were taken into consideration.

The uniformly sampled configurations approximately generalize the overall manipulator-

workspace combinations. The following section presents the details about the experimental

implementation of the numerical simulation model to estimate the manipulator endpoint

impedance.

The sketch of an experimental setup is shown in Figure 2. The workspace-

manipulator pair in Figure 1 is redrawn displaying different end-effector’s positions; in

other words, the figure exhibits the initial manipulator configurations in which we want to
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Figure 2. (a) Schematic representation of experimental setup, (b) Direction of force
application

estimate the endpoint impedance. The manipulator can now be represented as M1ACmBM2,

where Cm is the end-effector position. At each location Cm, we carry out ‘n’ different trials

totaling the number of trials in this simulation experiment to be m x n. Let’s name each

trial as Tmn.

For simulation experiment trial T11, the configuration of interest to initiate the trial

is M1AC1BM2. Now, to begin the trial T11, we start at zero initial velocity, apply a constant

force (F) on the end effector at an angle of 𝜃F1 (i.e. 𝜃Fn with n = 1) measured CCW with

respect to the positive x-axis of the 2D plane, and record the respective motion parameters

(position, velocity, and acceleration) for a short interval of time (t = 0.05 sec). A similar

procedure can be followed for all T1n trials. After ‘n’ trials are completed, EI and ED can

be calculated for M1AC1BM2 configuration.

As mentioned earlier, EI is only configuration dependent. Hence, for this manipula-

tor configuration M1AC1BM2, EI1 (i.e. EIm with m = 1) can be calculated using Equation 3

without even using recorded data from any of the trials T1n. Now the recorded data ( ¥𝑋, ¤𝑋 ,

and 𝐹) from all ‘n’ trials and the recently calculated EI1 can be substituted to solve the

Equation 2 in order to calculate ED1 (i.e. EDm with m = 1). It is crucial to understand
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that the experiments are conducted in 2D, and hence ED and EI are matrices; Equation 2

is a coupled equation. The method of linear regression can be deployed to solve all the

equations (n x 2 equations) obtained by using recorded data from ‘n’ trials to calculate

ED1 matrix for this configuration M1AC1BM2. A similar procedure can be followed for all

M1ACmBM2 configurations .

In general, for any manipulator configuration M1ACmBM2, EI can be theoretically

calculated using Equation 3 and can be represented using Equation 5:

𝐸𝐼𝑚 =


𝐸𝐼𝑥𝑥 𝐸𝐼𝑥𝑦

𝐸𝐼𝑥𝑦 𝐸𝐼𝑦𝑦

𝑚 (5)

where EIm represents the endpoint inertia matrix for M1ACmBM2 configuration (i.e. when

the end-effector is at Cm location).

To calculate EDm matrix using linear regression, linear force-velocity- acceleration

relationship as given in Equation 2 can be used. Expanding and rearranging Equation 2 for

2D experiments, we get Equation 6:


𝐸𝐷𝑥𝑥 𝐸𝐷𝑥𝑦

𝐸𝐷𝑥𝑦 𝐸𝐷𝑦𝑦

𝑚

¤𝑋𝑥𝑛
¤𝑋𝑦𝑛

𝑚 =


𝐹𝑥𝑛

𝐹𝑦𝑛

𝑚 −

𝐸𝐼𝑥𝑥 𝐸𝐼𝑥𝑦

𝐸𝐼𝑥𝑦 𝐸𝐼𝑦𝑦

𝑚

¥𝑋𝑥𝑛
¥𝑋𝑦𝑛

𝑚 (6)

where EDm =
[
𝐸𝐷𝑥𝑥 𝐸𝐷𝑥𝑦 ; 𝐸𝐷𝑥𝑦 𝐸𝐷𝑦𝑦

]
𝑚

represents the endpoint damping matrix

for M1ACmBM2 configuration, 𝐹𝑥𝑛 and 𝐹𝑦𝑛, ¥𝑋𝑥𝑛 and ¥𝑋𝑦𝑛, and ¤𝑋𝑥𝑛 and ¤𝑋𝑦𝑛 are the compo-

nents of F, ¥𝑋 , and ¤𝑋 in x and y directions, respectively, for the force applied in 𝜃Fn direction.

In Equation 6, ¤𝑋 and ¥𝑋 are the vectors that represent the velocity and acceleration of the

end-effector, respectively, at 0.05s time after the force is applied on the end-effector of the

configuration of interest (M1ACmBM2).
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In this article, out of many possible manipulator configurations that we could poten-

tially choose, we chose six different configurations, which were represented by six different

positions of end-effector Cm (with m = 1,2,. . . ,6) as shown in Figure 2a. These are the

configurations in which Tmn numerical simulation experiment initiates. Out of these six

configurations, three configurations (end-effector at C1, C2, and C3) are symmetric and

are aligned vertically on the mid-plane of the workspace. The other three configurations

(end-effector at C4, C5, and C6) are offset to the right by 0.0375m. The six configurations

in Figure 2a can be represented as (𝜃1, 𝜃2) = {(85.52°, 85.52°), (66.66°, 66.66°), (51.56°,

51.56°), (38.52°, 61.99°), (51.04°, 79.37°), (62.32°, 98.81°)}, each referring to configu-

ration when the end-effector is at Cm = {C1, C2, C3, C4, C5, C6} position, respectively.

We assume here that the configuration with same offset to the left produces similar results

compared to the offset to the right. Also, we chose the number of trials per configuration

to be 8 (𝜃Fn = {20°, 65°, 110°, 155°, 200°, 245°, 290°, 335°}, with n = 1,2, . . . , 8). The

directions of force application for all ‘n’ trials can be visualized in Figure 2b. In this study,

a step input force of 10N is chosen as the external force applied to the end-effector (i.e. F =

10N) that initiates the experiment.

Instead of estimating EI theoretically using Equation 3, EI can also be calculated

using numerical experiments as well. To compute EI numerically, the previously designed

numerical simulation model needs to be modified to an undamped robotic manipulator’s

numerical simulation model. Now, similar numerical simulation experiment trials can

be conducted and acceleration data can be recorded while simulating this new undamped

numerical model. For this undamped system, ED becomes 0 in Equation 2 and hence,

Equation 6 can be modified to Equation 7. Deploying the method of linear regression

to solve n x 2 equations obtained by substituting acceleration and force data that were

recorded from ‘n’ trials per configuration in Equation 7, EI can be calculated for that
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Figure 3. Magnitude of EI and ED for different manipulator configuration when the end-
effector “C” is at Cm location

specific configuration: 
𝐸𝐼𝑥𝑥 𝐸𝐼𝑥𝑦

𝐸𝐼𝑥𝑦 𝐸𝐼𝑦𝑦

𝑚

¥𝑋𝑥𝑛
¥𝑋𝑦𝑛

𝑚 =


𝐹𝑥𝑛

𝐹𝑦𝑛

𝑚 . (7)

This extra work to calculate EI numerically provided us an opportunity to cross-

verify the effectiveness of our proposed numerical simulation model as well as the method;

that is, the EI obtained from this numerical simulation experiment for the undamped case

can be compared to the EI calculated theoretically. The results from both the methods (i.e.

numerically and experimentally) are desired to be in comparable range.

3. RESULTS

As discussed previously, and as shown in Equation 5 and Equation 6, EI and ED are

2x2 matrices. In this study, for simplicity, the norm (of the EI and ED matrix) is reported as

the magnitude of endpoint EI and ED. The magnitudes for all manipulator configurations

considered in this study (i.e m = 6) are shown in Figure 3.
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EI estimated using our numerical simulation experiment method and by using the un-

damped numerical simulation experiment agrees with the theoretical value of the 2x2 inertia

(EIm) obtained using Equation 3; for instance, at C1, the endpoint inertia obtained theoreti-

cally and by using the numerical simulation method were EI1 =
[
0.3376 0 ; 0 0.3976

]
(norm(EI1) = 0.3976) and EI1 =

[
0.3415 0 ; 0 0.4057

]
(norm(EI1) = 0.4057), re-

spectively. This suggests that our proposed simulation method accurately estimates the

true inertia, which further implies that the ED found using our method is an acceptable

prediction of the endpoint damping.

There are two other factors that can affect the end result of the numerical simulation

method; first, the choice of directions (𝜃Fn) and second, the type of force (F) considered in

the experiment. With that being said, the satisfactory results with respect to EI as discussed

in the previous paragraph were obtained while using force application directions to be 𝜃Fn

= {20°, 65°, 110°, 155°, 200°, 245°, 290°, 335°} and the type of force to be step input. In

contrast, ramp input of force – in lieu of step input of force – was also examined, keeping

all other simulation arrangements the same. The EI estimated using the ramp input of force

was offset by a notable amount compared to EI calculated theoretically using Equation 3 and

and also numerically using step input of force in the simulation experiment. Likewise, some

other different combinations of force application, for example 𝜃Fn = {0°, 45°, 90°, 135°,

180°, 225°, 270°, 315°}, were used while maintaining all other simulation arrangements

same. The result in this case had notable offset too.

With reference to Table 1, the total mass of the numerical simulation model is at

least 0.57 Kg (when the mass of all the links are added). When the same parameters as

given in Table 1 are used in robotic simulator, the average EI of all six configurations is

found to be 0.3443 Kg, with maximum EI reaching to 0.4057 Kg for the case when an

experiment is started with the end-effector at C1. Likewise, the maximum ED was found

to be 1.6456 N·s/m for the same configuration, M1AC1BM2. Considering the maximum

velocity of interaction to be 0.8485 m/s [8], the maximum ED the subject will feel when an
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Figure 4. (a) Typical manipulator development process with impedance requirement, (b)
Our endpoint impedance method incorporated into the process. The number of costly design
loop (red) can be reduced by adding a low-cost design loop (green) enabled by our method.

interaction is initiated is found to be 1.3963 N. The results indicate that the endpoint EI for

our robot can go even lower than than the total added mass of the manipulator, which itself

is low. The endpoint ED values also seem to be in a reasonable range. This might indicate

that the robot will not be felt bulky while initiating the interaction.

The inherent endpoint impedance behaviour based on the estimated EI and ED

values is acceptable for human-robot interaction tasks. It should also be remembered that

the EI of any robotic manipulator can be further reduced to as low as half of the open loop

value (while also maintaining stability), using impedance control strategies [7]. Hence the

robot can be considered as a probable candidate for carrying out pHRI tasks.
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4. DISCUSSION

While the method employed here in this paper is appropriate, there are a few

details that needs to be discussed before coming to a conclusion. First, one can always

consider using a greater number of configurations and/or more number of directions of

force application. Second, estimation of damping is highly dependent on the estimated

b [8], which may not be accurate, since b is non-linear in general. Nonetheless, because

the estimated ED seems reasonable, we believe our estimation of b was reasonable as well.

Third, during physical experiments, it is difficult to apply step input of force. Physical

experiments designed in a similar way to our method may thus give different values than

our numerical estimation. The similar analysis for physical experiment involving human

subjects will be followed as our succeeding work. Finally, although EI could be calculated

using Equation 3, estimating EI using our method still serves an interesting purpose; to

determine the best set of parameters and settings (such as the imposed force profile) for the

numerical simulations. If the obtained values of EI, after conducting physical experiments

(in future), are in comparable range to values obtained from the simulation experiments and

also from theoretical calculations using Equation 3, then we can directly use the experimental

procedure to analyze the impedance behaviors in the existing manipulators without deriving

the complicated dynamics of the manipulator.

On the other hand, instead of considering our method as an integral part of design

process, we would like to call it a validation step after an initial design is developed to

examine the endpoint impedance of the robotic manipulator. The flowchart in Figure 4a

shows a general manipulator development process, which may involve multiple prototype

development steps that is both time and cost intensive. On the other hand, the flowchart in

Figure 4b represents the development process which incorporates our impedance estimation

method. Because impedance estimation can be performed prior to prototype development,

our method allows minimizing the number of prototype development. After the robotic

manipulator is designed and the parameters such as link lengths, their mass, type and size
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of bearings, motors and their rotor inertia etc. are decided, but before the raw materials

and parts are purchased, one can run our numerical simulation model and carry out the

proposed numerical experiment in order to estimate the EI and ED that characterize the

endpoint impedance of the manipulator. If it is found that EI and ED meets your own

specification, one can confidently proceed to the fabrication. On the other hand, if one finds

out that EI and/or ED is too high for your application, one can go back to the design step.

One can repeat this process as much as needed until EI and ED meets the specifications.

5. CONCLUSION

The method to estimate the inherent endpoint impedance, which was proposed in

our previous work, and the experimental setup designed and implemented in this article are

reasonable. It can be used as a method to cross validate, as early as in the design phase, the

effectiveness and the safety of the robotic manipulator to be used in human-robot interaction

tasks based on its endpoint impedance characteristics.
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ABSTRACT

Many anticipated physical human-robot interaction (pHRI) applications in the near

future are overground tasks such as walking assistance. For investigating the biomechanics

of human movement during pHRI, this work presents Ophrie, a novel interactive robot

dedicated for physical interaction tasks with a human in overground settings. Unique design

requirements for pHRI were considered in implementing the one-arm mobile robot, such

as the low output impedance and the ability to apply small interaction forces. The robot

can measure the human arm stiffness, an important physical quantity that can reveal human

biomechanics during overground pHRI, while the human walks alongside the robot. This

robot is anticipated to enable novel pHRI experiments and advance our understanding of

intuitive and effective overground pHRI.

1. INTRODUCTION

Present-day robots can perform specialized and sophisticated tasks around humans.

Advancements in robotics technology have improved the robot’s interaction with humans,

in both social and physical interactions [1–4]. In particular, the development in the under-

standing of physical human-robot interaction (pHRI) has made a significant impact on how
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physically interactive robots can be employed in various aspects of human life [5, 6]. One

of the many areas where these interactive machines may find their application is to provide

assistance in overground walking. In contrast to those that don’t have to interact physically

with humans, these robots can always be questioned about their safety, intuitiveness, and

effectiveness. For this, it is desired and expected that pHRI robots will have human-like

interaction characteristics.

However, it is yet unclear what characteristics to instill in a robot to make it more

human-like in overground pHRI. In physical human-human interaction (pHHI), humans

do physical interaction solely through haptic-based information exchange even without any

verbal communication [7–10]. Whether the contact is directly between humans, such as

while dancing or assisting the elderly, or is through an object such as while moving a piece

of furniture together, pHHI studies [7, 9–13] suggest that the motor intent is communicated

in the form of coupled forces and movements. Other studies have identified human arm

impedance modulation to be a key phenomenon during pHHI tasks [9, 10]. Since impedance

prescribes the dynamic relationship between forces and movements, these works suggest

that the human arm impedance may be related to the motor communication during pHHI

and pHRI.

Prior investigations of human arm impedance were focused on identifying its re-

lationship with the motor control strategies of the upper arm in constrained seated pHRI

tasks. At first, single joint impedance and muscle mechanical properties were studied using

electromyography (EMG) signals [14, 15]. The multi-joint endpoint impedance of a human

arm was first experimentally estimated from the recorded dynamic response of the arm

after applying position perturbation during a maintained posture task [16]. Since then,

the relationship between the modulation of endpoint arm impedance and how the central

nervous system (CNS) executes the motor control strategies has been studied in relation to

arm stability, learning novel dynamics, reaching tasks, and grasping force [11, 17–27]. In
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all these works, robots played a crucial role since they allowed both applying perturbations

and recording forces and movements which provided a direct method to measure the human

arm impedance.

In this view, a specialized robot capable of measuring and analyzing the dynamics

of overground physical interaction is the key to understanding human motor communication

during overground pHRI. This robot will be faced with unique conditions and challenges

that are not present in seated pHRI studies mentioned above, such as increased kinematic

freedom of human arm postures as compared to the fixed posture in [16]. Nonetheless, this

robot should also possess the interactive-ness demonstrated by the seated pHRI robots in

earlier studies, such as the low output impedance [5, 28] or the ability to provide precise

perturbations [16, 17, 29].

To this end, this paper presents (a) the design and implementation of Ophrie – the

robot for overground pHRI experiments (Figure 1), (b) an experimental demonstration of the

interactive characteristics of the robot during overground pHRI, particularly in measuring the

human arm stiffness, and (c) discussion on experimental settings with Ophrie that may affect

future overground pHRI experiments. In addition, unique challenges of overground pHRI

experiments are presented and discussed in the perspective of arm impedance measurement,

which is a potentially impactful application of Ophrie in the near future.

2. MATERIALS AND METHODS

2.1. THE “OPHRIE" ROBOT

The developed overground pHRI robot (Ophrie) consists of an interactive robotic

arm and a wheel mobile base – that served the purpose of locomotion (Figure 1). It is

expected to exchange interaction information with a human partner via hand, similar to

the apparatuses used in seated pHRI experiments [6, 16, 28]. The unique requirements

for an overground interaction for Ophrie were identified and discussed in detail in a prior
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Figure 1. Ophrie robot. The picture of the robot with the interactive arm magnified in the
inlet, and the schematic diagram of the top view shown in the bottom right.

work [30]. These include the ability to apply and measure small interaction forces (<10

N) as well as inherently low endpoint impedance. The force requirement was achieved by

selecting the appropriate actuators and sensors. The inherent impedance requirement was

achieved by incorporating lightweight links and bearings and avoiding gear reductions. In

order to verify this requirement as early as in the design phase, a computer simulation model

of the robotic arm was developed, and a novel simulation method to estimate the endpoint
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impedance of a manipulator was proposed [31]. The feasibility of the designed arm in using

it for the pHRI experiment was validated based on the estimated impedance of the robot

arm.

A separate mobile robot capable of taking velocity commands was used for the robot

base. The robot arm is lodged on top of the mobile base with a custom-made body frame

in between for housing the electronics as shown in Figure 1. The body is height adjustable

allowing human subjects with varying heights to interact with the robot without discomfort

that may arise from height differences. The robot is approximately 100 cm in height, which

is smaller than other robots used in overground pHRI studies such as in [12].

2.1.1. Ophrie’s Mechatronics System. The interactive arm is a 2D closed-loop

five-link mechanism formed by two equal-sized distal links (0.175 m), two equal-sized

proximal links (0.110 m), and a ground link (0.040 m). This direct drive 2D mechanism

is driven by two servo motors (AKM32E-ANCNAA00: Kollmorgen Corp., VA, USA)

placed on either side of the ground link. Each servo motor requires a servo drive (AKD-

P00606-NBEC-0000: Kollmorgen Corp., VA, USA) for power supply, encoder feedback,

and control. These servo drives are controlled through a central real-time controller (cRIO

9045: NI, TX, USA). A force/torque sensor (mini45: ATI Industrial Automation, NC,

USA) is lodged on top of the joint of two distal links at the end of the robotic manipulator.

A custom-made interaction handle is placed on top of the sensor as shown in Figure 1.

The servo drives and force/torque controller are AC powered, whereas cRIO uses a 24V

DC power supply through AC to DC converter. Two additional 24V power supply modules

(PS-16: NI, TX, USA) are required to provide the logic power to the servo drives. All

these mechatronics units are placed on the robot’s body and are powered by an external AC

source via wire. The mobile base is a four-wheel differential drive robot (IG52-DB4 Heavy

duty chain and sprocket kit: SuperDroidRobots, NC, USA). A 12V DC supply powers it
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Figure 2. The flowchart for Ophrie’s mechatronics system.

through two rechargeable lithium-ion batteries seated on top of its frame. It is controlled

using a micro-controller (RoboClaw 2x30A: Basicmicro Motion Control, CA, USA) which

ultimately receives the command from the central controller.

The central controller is a central processing unit. It communicates with servo drives

through a master-slave EtherCAT protocol and the base micro-controller through RS-232

serial communication protocol. It also accepts analog voltage data from the force sensor via

force/torque controller (ATI Industrial Automation, NC, USA); a C-series module (9252

voltage input module: NI, TX, USA) is required to input voltage data to the controller. For

monitoring the health of the force/torque controller, a separate digital input-output module

(9401 module: NI, TX, USA) is required. Figure 2 shows the flowchart for Ophrie’s

mechatronic system.

LabVIEW programming language (LabVIEW 2018 with SoftMotion and Real-Time

module: NI, TX, USA) is used to deploy the commands to the central controller from the

remote computer. The designated computer and the real-time controller (on the robot) are

connected through Ethernet maintaining the same subnet mask.

2.1.2. Data Acquisition. To study the interaction dynamics during a pHRI experi-

ment, it is essential to measure and record the interaction forces at the end effector as well

as the subject’s hand location kinematics. The forces at the end effector can be measured

with respect to the force sensor axis and can later be transformed into the robot axis using an
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appropriate rotation matrix. The motor position can be recorded using a single-turn abso-

lute Biss sine encoder (2048 LPR) embedded in the servo motors. The point of interaction,

which is the end of the manipulator or the hand position, can be calculated from the motor

positions by using the forward kinematics of the robotic arm. The data are recorded with a

sampling rate of 1kHz.

When necessary, the arm length – as presented in section ‘OBSERVATIONS FROM

OPHRIE-HUMAN INTERACTION’ – can be obtained from the Vicon motion capture

system (Vicon Motion Systems Ltd., Oxford, UK). For this purpose, reflective markers can

be placed in the hand and the shoulder. This data is then be processed afterward using

Vicon Nexus and Vicon PorCalc Software. The sampling rate of the Vicon system is 200

Hz.

If the Vicon data were used for the analysis, the data from the robot was decimated

to 200Hz before combining the two data. Then, the angular position provided by the motor

encoders was compared with the respective position obtained from the Vicon system, which

is estimated with the help of 6 reflective markers attached to the robot arm (see Figure 1).

2.1.3. Robot Control. The robot arm can be programmed to provide force or

position modulation with PID control with 1 kHz. The robot can also provide force

perturbations (<10 N) when needed. The position modulation can be used to provide a

spring-like background force field towards the center of the workspace such that the handle

position (and thus the human hand position) is kept away from the edges of the workspace.

This background stiffness can be low (e.g., 50∼100 N/m) to allow smooth interaction with

the user. Having this background stiffness is particularly important for an overground robot

because, unlike in most seated pHRI tasks, it is very easy for the human user to move the

handle outside the robot arm’s workspace. Sufficient yet gentle background stiffness is

thus crucial to help the endpoint of the robot arm to remain within the workspace during

overground pHRI tasks.



67

The robot base is independently controlled and takes an input command of linear

and angular velocity. The quadrature encoder reading from the motors of the robot’s rear

wheels is used for determining the instantaneous position, which later can be used for

velocity control of the robot. The iteration rate for base control was 40 Hz.

2.2. VALIDATION EXPERIMENT

Ophrie robot’s ability to perform pHRI experiments and measure the dynamics of the

interaction was validated with an experiment. Specifically, the pHRI experiment addressed

Ophrie’s ability to apply force perturbations to human hands and measure the resulting

kinematics during overground pHRI. In addition, the experiment sought to investigate the

effect of experimental conditions, such as human behavior, and robot settings in this specific

pHRI experiment and suggest desired robot settings for future pHRI experiments.

A crucial and necessary feature of the robot is to allow arm stiffness estimation

during overground pHRI tasks. To do this, Ophrie is designed to apply force perturbations

and measure the hand displacement, similar to the methods used in [19, 32]. The procedure

is described later in the section ’Experiment Procedure’ and the more detailed discussion can

be found in the section ‘OBSERVATIONS FROM OPHRIE-HUMAN INTERACTION’.

The robot settings may affect the interaction dynamics of the overground pHRI.

Different levels of the perturbation force and the background stiffness of the robot (as

explained in the section ‘Experiment Procedure’) may affect the measurements. In addition,

the experimental protocol may affect human behavior during pHRI, such as the availability

of vision. The effects of these settings and conditions were tested in the proposed overground

pHRI experiment.

2.2.1. Subjects. A total of 5 healthy young adults (3 male and 2 female, 27.4±1.817

years) without any self-reported neurological disorder took part in the study. Subjects signed

a written consent form before participating in the experiment. The research protocol was

approved by the Institutional Review Board of the University of Missouri System.



68

2.2.2. Experiment Procedure. The experiment was designed to have twelve dif-

ferent cases defined by the various combinations of the following three variables: (a) visual

condition (eyes open or eyes closed), (b) the background stiffness level of the robotic arm

(50 N/m, 75 N/m, or 100 N/m), and (c) the level of force perturbation (3 N or 5 N). Trials

were performed in four blocks, each randomly arranging the twelve cases mentioned above.

The total number of trials per subject was 48. In this study, Ophrie acted as a leader,

considering the complexities that have to be dealt with when the robot acts as a follower

(see the section ‘OBSERVATIONS FROM OPHRIE-HUMAN INTERACTION’).

After necessary preparation for motion capture, subjects were detailed about what

was expected from them during the experiment. The robot’s height was then adjusted to

align the interaction handle to the subject’s elbow level. Subjects were informed that the

robot would stop if the interaction handle goes out of the workspace – a 0.15x0.15m2 region

inside which the subjects were asked to keep the hand while interacting with the robotic

arm. The presence of the background stiffness helped with this. The level of background

stiffness differed for different trials based on experiment design. At the beginning of each

trial, the subjects were asked to stand upright next to Ophrie by holding the interaction

handle (see Figure 3). Subjects were informed whether they had to keep their eyes closed

or open for the upcoming trial and then were asked to shake the handle three times in

the y-axis (see Figure 3) for data synchronization purposes. The process was followed by

activating the background stiffness controller; it positioned the robotic arm to the center of

the workspace. Subjects were asked to relax the arm and let Ophrie position its interaction

handle to the center of the workspace during this process. Lastly, they were asked to start

walking alongside Ophrie, as shown in Figure 3. The robot was programmed to maintain

a constant linear velocity of 0.5 m/s throughout the 5.7 m straight-line trajectories. At

the midway of the trajectory, the robot applied a force perturbation (1 second) in the axis

perpendicular to the robot’s movement direction and towards the interacting subject (- y

in Figure 3). The stiffness control loop was disabled and replaced by the force controller



69

Figure 3. Schematic of the overground pHRI experiment.

during the perturbation. For each trial, the amount of force perturbation was different.

The magnitude was determined by adding (i) the interaction forces due to the background

stiffness control at the instant when the perturbation was to be applied and (ii) the level of

perturbation commanded (i.e., 3 N or 5 N). Subjects were asked to follow the robot with

a relaxed arm throughout the entire trial except during the perturbation period in which

they were asked to keep their hand within the workspace of the robot arm. Each trial took

approximately 20 seconds.

For each trial, the manipulator’s endpoint position (which is identical to the human

hand position), the manipulator’s endpoint velocity (which is identical to the human hand

velocity), and the interaction forces between the robot and the human hand were obtained.

The endpoint position and forces were measured directly from the motor encoders and the

force sensor, respectively. The velocity was obtained from the position data after applying

the second-order Butterworth low-pass zero-lag filter with 40 Hz cutoff frequency using

Matlab (The MathWorks Inc., MA, USA).
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2.2.3. Estimation of the Arm Stiffness. From the obtained forces and kinematics,

the interaction dynamics can be estimated. For initial validations, this work used one of

the simplest and widely used models, which involves passive, linear, and time-invariant

second-order dynamics, such that:

𝑓 − 𝑓0 = 𝑚 ( ¥𝑥 − ¥𝑥0) + 𝑏 ( ¤𝑥 − ¤𝑥0) + 𝑘 (𝑥 − 𝑥0) (1)

where 𝑓 is the interaction force measured after the perturbation onset and 𝑥, ¤𝑥, and ¥𝑥

are the position, velocity and acceleration of the interaction point after the perturbation,

respectively. m, b, and k are the endpoint impedance parameters namely inertia, damping

and stiffness, respectively [33–35]. Here, m incorporates the inertia of both the human arm

and the interaction handle, whose mass is (∼0.05 kg). 𝑥0, ¤𝑥0, and ¥𝑥0 are the mean hand

position, velocity, and acceleration of the interaction point just before the perturbation,

respectively. The data of 0.1 second window before the perturbation onset was used for

averaging and are used as the operating point from which all deviations are measured. For

simplicity, only the kinematics in the direction of the force perturbation are considered,

such that the parameters m, b, and k as well as the kinematics 𝑥, ¤𝑥, ¥𝑥, 𝑥0, ¤𝑥0, and ¥𝑥0 are

scalars.

The measured kinematics and forces were fitted on the Equation 1 using Matlab fitlm

function to estimate m, b, and k. The intercept was constrained to zero to match the linear

model in fitlm with Equation 1. Otherwise, default settings were used such that modelspec

was set to linear and the observation weights were set to one. The stiffness value (k) was the

main outcome of interest, while the inertia (m) and damping (b) values were used to verify

that the regression result was acceptable (e.g., both m and b are positive and realistic). This

regression method is similar to the ARX model regression used in [35]. Further details and

justifications can be found in the discussion section ‘Assumptions and Challenges’, and in

the supplementary material. Lastly, the equilibrium point for each trial was obtained by
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applying the estimated 𝑚, 𝑏, and 𝑘 values into Equation 2, which represent the interaction

dynamics just before the perturbation:

𝑓0 = 𝑚 ¥𝑥0 + 𝑏 ¤𝑥0 + 𝑘 (𝑥0 − 𝑥𝑒𝑞) (2)

where 𝑥𝑒𝑞 is the position of the equilibrium point of the hand.

2.2.4. Statistical Analysis. The experiment was conducted in four blocks with a

randomized complete block (RCB) design. Each trial from the experiment produced one

scalar stiffness value along the axis of the perturbation (y-direction, see Figure 3), which was

always perpendicular to the robot movement. Out of 240 trials across all subjects, five trials

that resulted in a negative stiffness and one other trial whose data was lost due to exporting

error were discarded. From the remaining data, outliers – defined as the values three times

the inerquartile range past the 25th and the 75th quartiles – were screened out using JMP

statistical software (SAS Institute Inc., NC, USA). There were a total of 3 outliers that were

excluded from further analysis. The effects of the robot settings (background stiffness level

and the magnitude of the perturbation force) and the effect of the experimental condition

(eyes open/closed) were tested on the remaining 231 trials using ANOVA (JMP statistical

software). The hypothesis was that the robot settings do not affect the overground pHRI

dynamics, but the availability of vision affects the human response and alters the overground

pHRI dynamics. A significance level of p = 0.05 was used.

3. RESULTS

All subjects successfully completed all 48 trials without fatigue or safety concerns.

They quickly became accustomed to the protocol. There were no noticeable obstructions to

the experiment due to the hesitance or reluctance of the subjects.
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As explained in the section ‘Experiment Procedure’, the background stiffness is

present during the entire trial except when the perturbation is applied. The average in-

teraction force of all the subjects and all trials due to background stiffness just before the

perturbation was observed to be 2.063±1.108 N at 0.746±1.529 rad counterclockwise from

the interacting subject’s mediolateral direction (i.e., - y in Figure 3). That is, on average, the

subjects were pushing the robot away from their trunk at approximately 2 N of force. This

force is similar to the interaction force between two humans in a similar task to this study

(overground walking while holding a sensor together) [36] and lower than the interaction

forces between two humans while walking side-by-side on treadmills [37].

The participants’ hand positions before the onset of the perturbation were near the

origin of the workspace as seen in Figures 4, and 5B and D. The hand velocity was nearly

zero at the onset of the perturbation (Figures 5A and C). A typical pattern was observed

in the hand velocity time series in almost all trials of all subjects. Shortly after the force

perturbation onset, the hand velocity along the y-direction decreased as the hand was pushed

away from the robot until it reached a negative peak. Then the velocity increased towards

the robot until it passed zero and reached a positive peak at around 250∼450 ms after the

onset of the perturbation. We did not observe any noticeable pattern across trials after the

second peak, but this pattern of negative-to-positive peaks was present in all trials in all

subjects. For example, for a trial of subject 5, the interaction force, handle displacement,

and the velocity after the perturbation onset is shown in Figure 6. For this specific trial,

the second peak of the velocity was at 274 ms (Figure 6C). The average time of the second

peak of all the trials was observed to be 335.646±81.676 ms for all subjects.

This pattern resembles the velocity response of a passive second-order system given

a step input. Thus, we hypothesize that the period between the onset of the perturbation to the

second peak of the velocity contained the passive dynamics and can be used to analyze the

interaction dynamics (Equation 1). The interaction dynamics were estimated using linear

regression as discussed in the section ‘Estimation of the Arm Stiffness’. The estimated
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Figure 4. The trajectory of the interaction handle/hand in 2D for a representative trial
performed by subject 5. Red square represents the instant when force perturbation initiated,
and the red star represents the handle/hand position after 200ms of the perturbation).

stiffness was found to be 235.255± 113.581 N/m, 199.893± 92.442 N/m, 174.958± 97.043

N/m, 149.107± 67.358 N/m, and 123.195±63.871 N/m, respectively for subjects 1 to

5. Since the robot arm does not have inherent stiffness elements, this stiffness may be

interpreted as the stiffness of the arm of the human user. Indeed, the values were comparable

with the arm stiffness reported in the previous seated experiments [22, 34]. The average

of inertia estimated from all 48 trials of all the subjects was found to be 0.473±0.249 kg.

The average damping was observed to be 3.270±4.741 Ns/m. The low positive values

of inertia and damping were as expected since the combined inertia and damping of the

robot arm and human arm would not be very high. The inertia, damping, and stiffness

estimated for all 48 trials performed by subject 5 are plotted in Figures 7A, B, and C,

respectively. In addition, the equilibrium point of the participant’s arm per trial was also

estimated. On average, the equilibrium point was 0.031±0.031 m away from the center

of the manipulator workspace towards the robot. The mean and standard deviation of the

R2 values of the estimated dynamics of all 48 trials for each subject were 0.521±0.083
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Figure 5. Mean and standard deviation of hand velocity, and hand position with respect to
workspace center for all five subjects during the perturbation period (1 sec). (A) and (B)
represent trials with 3N perturbation, and (C) and (D) represent trials with 5N perturbation.

(subject 1), 0.489±0.072 (subject 2), 0.559±0.124 (subject 3), 0.549±0.050 (subject 4), and

0.567±0.092 (subject 5). These values are higher than the R2 values typically reported in

biomechanics literature, such as [38].

A two-way ANOVA between subjects and trial groups (earlier – first 24 trials, and

later – last 24 trials) was performed to check for a possible learning effect between earlier

trials and later ones. After observing no significant interaction effect between subjects

and trial groups (p>0.219), we found no significant difference between the trial groups

(p>0.869), indicating no apparent evidence of learning or adaptation as the trial number
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Figure 6. Measurements during force perturbation of a representative trial of subject 5. (A)
The interaction force between the robot arm and the human subject, (B) the position of the
hand/handle with respect to the origin of the workspace in y-direction, (C) the velocity of
the handle in y-direction.

Figure 7. The interaction dynamics of the subject 5 in y-direction in all trials. (A) inertia,
(B) damping, and (C) stiffness components identified through Equation 1.

increased. The stiffness parameter for trials belonging to the earlier and latter groups was

176.924.591 N/m and 174.360 N/m, with a standard deviation of 103.407 N/m and 88.430

N/m, respectively.
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Figure 8. Average stiffness and standard deviation among all subjects for different robot
settings.

The overground pHRI experiment presented in this work was designed as a three

factorial experiment (visual condition – 2 levels, level of force perturbation – 2 levels, and

level of stiffness in the robot arm – 3 levels). Including subject as a factor, the resultant

experiment design can be represented as a four factorial experiment (subject – 5 levels). A

four-way ANOVA was performed with all four factors to analyze whether the robot settings

and/or the experiment conditions affected the estimation of the interaction dynamics. The

omnibus test showed that at least one combination of those four factors (out of 60) resulted

in a significantly different stiffness value than with other combinations (𝑝=0.034, Table 1a).

The effect of the robot settings on arm stiffness of different subjects can be seen in Figure 8.

Further analysis showed that there is no interaction between the factors (Table 1b). The

main effects of the visual condition (p>0.155), the level of perturbation (p>0.955), and the

level of background stiffness (p>0.295) were all not significant, implying that neither the

robot setting nor the experimental condition (eyes open/closed) affected the human arm

stiffness measurement. In contrast, the main effect of the subject was significant (p<0.001),

implying that, like most biomechanics experiments, large inter-subject variability exists.
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Table 1. The results from the four-way ANOVA. It analyzed the effect of the subject, the
level of perturbation, the level of background stiffness, and the vision (as the factors) to
human arm impedance measurement.

(a) Analysis of Variance

Source DF Sum of Mean F Ratio
Squares Square

Model 59 705584.6 11959.1 1.4525
Error 170 1399651.9 8233.2 Prob>F
C. Total 229 2105236.5 0.0338*

(b) The main and the interaction effects

Source Nparm DF Sum of F Ratio Prob>F
Squares

Subject 4 4 350824.94 10.6527 <.0001*

Visual Condition (VC) 1 1 16788.14 2.0391 0.1551
Level of Perturbation
(LP)

1 1 26.25 0.0032 0.9550

Background Stiffness
(BS)

2 2 20257.85 1.2302 0.2948

Subject∗VC 4 4 64032.19 1.9443 0.1053
Subject∗LP 4 4 16899.21 0.5131 0.7262
Subject∗BS 8 8 62781.47 0.9532 0.4745
VC∗LP 1 1 188.80 0.0229 0.8798
VC∗BS 2 2 38342.52 2.3285 0.1005
LP∗BS 2 2 4110.66 0.2496 0.7794
Subject∗VC∗LP 4 4 11684.79 0.3548 0.8404
Subject∗VC∗BS 8 8 55189.09 0.8379 0.5705
Subject∗LP∗BS 8 8 43300.14 0.6574 0.7283
VC∗LP∗BS 2 2 15288.33 0.9285 0.3972
Subject∗VC∗LP∗BS 8 8 9637.51 0.1463 0.9968

4. DISCUSSION

4.1. OBSERVATIONS FROM OPHRIE-HUMAN INTERACTION

Overall, the robot base’s movement and the robot arm’s dynamics were accepted

well by the subjects. The forward velocity of the robot (0.5 m/s) appeared adequate while

the subjects comfortably followed Ophrie. The background stiffness of the robot arm (50
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to 100 N/m) was able to keep the human hand position near the origin of the robot arm’s

workspace most of the time. However, in some trials, the perturbation force pushed the

hand to the outside of the workspace, in which case the trials were discarded and repeated.

Although it rarely occurred, this happened more with low background stiffness (50 N/m) and

high perturbation force (5 N) when the human hand position at the onset of the perturbation

was in the −𝑦 direction. Since the robot settings did not significantly affect the interaction

dynamics (Table 1b), it is recommended to avoid the lowest background stiffness (50 N/m)

and use the lower perturbation force (3 N) settings for future experiments with Ophrie.

The equilibrium point of the human arm was estimated to be 0.031±0.031 m from the

workspace center towards the robot. Figure 5B and D show that the average hand position

right before the perturbation for all the subjects was towards the estimated equilibrium

point. That is, the preferred equilibrium position of the hand was not at the center of the

workspace where the interaction force would have been zero. This would not be a result of

the human standing too close to the robot, because they were free to choose however close

or far they could be with the robot. Instead, they all preferred to maintain a small pushing

force between them and the robot. Since the equilibrium point location is decided by the

central nervous system [39], it could be argued that it is the natural preference of humans

to maintain a gentle push with Ophrie.

The unique challenge in arm stiffness measurement during overground interaction

tasks (compared to the traditional seated interaction tasks) comes from the lack of stationary

’ground’. During seated pHRI experiments, the upper body of the subjects is stationary

and assumed to be the reference from which the hand position can be obtained. The change

in arm length due to perturbation is thus equal to the difference in the hand position at

before and after the perturbation. On the other hand, during overground pHRI tasks, it is

possible for the shoulder to also move during the force perturbation at hand. However, while

following Ophrie by holding its handle as it moves forward with no turning, with the help of

the arm movement recording from Vicon camera system, we observed that the interacting
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human partner’s shoulder move in a sinusoidal pattern in the mediolateral direction (due

to the mediolateral sway during walking). As a result, the unperturbed arm length also

followed the sinusoidal pattern since the shoulder position predominantly determined the

arm length. When a force perturbation is applied at hand, this sinusoidal pattern may shift

in response to the force. However, it was found that the shoulder did not deviate from its

original sinusoidal pattern in the presence of the force perturbation. That is, the shoulder

position seemed unaffected by the perturbation at hand. Hence, in our experiment, the

change in arm length is equal to the change in hand position, which can be obtained from

the encoders on the motors even when the shoulder position is not fixed with respect to the

robot. In such a case, the shoulder and hand position recording (such as from Vicon camera

system) is not required.

Since the availability of visual feedback during the experiment did not significantly

affect the arm stiffness measurement as explained in the section ‘Results’, there is not a

preference in eyes-open or closed conditions while designing an overground pHRI experi-

ment in the future similar to this work. The same is true for different robot setting. Hence,

any combinations of background stiffness (50, 75, or 100 N/m), perturbation level (3 or 5

N), or vision condition (eyes open or closed) could be used to measure the arm stiffness

while designing an experimental protocol for the overground pHRI experiments in future.

Nonetheless, as mentioned earlier, it was preferred by the study team to avoid the lowest

background stiffness (50 N/m) as well as the higher level of perturbation (5 N) to minimize

the possible occurrence of the hand being pushed out of the workspace of the robot arm.

Many pHHI and pHRI work discuss the effect of roles (leader or follower) in dyadic

tasks [40]. In this work, Ophrie may not be a suitable follower since the wheeled base of

Ophrie is not ideal for feedback control for adapting to quick changes in the commands (e.g.

slow control loop). In addition, the wheel controllers have a predefined velocity profile

along which the velocity increases or decreases. Nonetheless, this is acceptable for when

the robot is leading and the human partner is following. While a hierarchical controller
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that takes advantage of the fast and accurate robot arm control may allow Ophrie to take

a follower role in the future, the current work focused on assigning the leader role to the

robot. This also helped reduce variability in the experimental trials that may arise from

variable robot trajectories. Having Ophrie as the leader also simulates a potential pHRI

task of assisting people to walk.

4.2. ESTIMATING THE DYNAMICS DURING OVERGROUND PHRI EXPERI-
MENTS

4.2.1. Perturbation Method. A perturbation is provided for estimating the dynam-

ics of physical interactions while the response is collected and interpreted. Two types of

perturbations exist – force or position perturbations. Position perturbation has widely been

used for human arm stiffness estimation since it was first introduced in mid 80’s [16, 17, 20–

27, 29, 34]. Position perturbation is useful when the expected movement trajectory of the

hand is known, such as when the arm is at rest or when the unperturbed trajectory is pro-

vided [21]. However, in overground experiments similar to one presented in this work,

predicting the unperturbed trajectory of the human arm/hand is nearly impossible due to the

variability of the human movement while walking alongside the robot (as seen in Figure 4).

Hence position perturbation may not be applicable.

Given this unique situation in overground pHRI, force perturbation is the only

alternative for estimating the interaction dynamics; the recorded resultant displacement and

the known applied force can be used for system identification assuming the arm dynamics to

be linear second-order model. Force perturbation may be applied in the form of continuous

perturbations with rich frequency components. [41] and [18] used pseudo-random binary

sequence (PRBS) force inputs continuously for the entire period of the trial to estimate the

joint mechanical properties in limb motion tasks. These studies used multiple repeated

trials to obtain the ensemble mean trajectory from which deviations are calculated for

estimating the impedance parameters. Alternatively, time-frequency analysis was performed
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using force pulse to measure arm stiffness – which eliminated the requirement of multiple

trials. For example, [42] used the estimates of body segment parameters that require a rich

understanding of the inertial characteristics of the arm. In contrast, another [43] did not

require such parameters. It used a parametric and a non-parametric estimator to estimate the

continuous-time linear time-varying system of the arm dynamics. These methods require

continuous mechanical perturbations in mostly stationary body segments. However, for the

proposed pHRI experiment in this work, the arm configuration can neither be consistent

within a trial nor between the trials. Hence the continuous force perturbation may not be

applicable.

Because of these constraints, this work tested the feasibility of applying a single

force perturbation instead of continuous force pulses and then using system identification

similar to the methods used in previous studies by [19] and [32]. This would not intervene

with the continuous overground physical interaction process throughout the entire trial as

well as eliminate the need for baseline unperturbed trajectory. To this end, in this work,

we propose a method to estimate the stiffness within one trial, as presented in the section

‘Estimation of the Arm Stiffness’.

4.2.2. Assumptions and Challenges. The biggest challenge of the above method

is to ensure that, at the time of the perturbation, the state of the system is similar across trials.

For example, if the perturbation was applied at the middle of the trial, the arm configuration

better be identical at that instant across all trials. However, it is nearly impossible to

achieve this during overground pHRI tasks because the arm cannot be constrained due to

the nature of the task. As a result, in this experiment, the perturbation may have been

applied to the hand at varying arm configurations. This may have resulted in the stiffness

parameter’s relatively large variance along with inter-subject variabilities such as the muscle

cross-sectional area and co-contraction. Nonetheless, acknowledging the possible sources
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of deviations, larger sample sizes (or the number of trials) may help discern subtle changes

in the parameters between experimental conditions. Indeed, as shown in Table 1b, statistical

significance can be tested and discerned despite the potential variability.

A substantial assumption of the proposed method of estimating the dynamics of

overground pHRI is that the dynamics is passive second-order as represented in Equation 1.

While simple, this model, which was previously used in [41], served as a starting point in

estimating the pHRI dynamics during overground tasks for the first time. Other studies,

such as [33–35], have also used a similar mathematical model to represent the human

arm dynamics. Consistent with the assumed model, the velocity response showed the

characteristics of passive second-order dynamics between 0 ms and 250-400 ms. This

allowed the estimation of the inertia, damping, and stiffness parameters of Equation 1.

The estimated stiffness values were reasonable, with only five occurrences of below-zero

stiffness out of 239 trials. These few aberrant values may have occurred due to the inherent

variability of the overground pHRI experiment. The estimated damping and inertia values

were also reasonable, although the variability seemed higher than for stiffness (Figure 7).

This was somewhat expected since the first- and second-derivatives of the hand position are

inevitably noisier than the position data. Hence, in this work, we used these parameters as

indicators of the performance of the linear regression and the resulting stiffness estimate.

The estimated inertia values were mostly positive and similar to the expected inertia of

the lower arm (0.3∼0.5 Kg). Also, the average damping was low and mostly positive, as

expected. It was also comparable to the damping reported in [35]. Thus we concluded that

the proposed method for estimating the dynamics is informative despite the simplicity.

4.3. ESTIMATED STIFFNESS

As mentioned earlier, the estimated stiffness from Equation 1 may be interpreted as

the stiffness of the human arm due to the inherently low mechanical impedance of the robot

arm and the absence of a passive elastic element in the robot. When the force perturbation
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is applied in order to measure the arm stiffness, the CNS may modulate the arm stiffness

in response to it. Hence the arm stiffness before and after CNS intervention may differ. In

this view, our stiffness estimation method in the section ‘Estimation of the Arm Stiffness’

helps capture the pre-CNS intervention stiffness of the arm since the method uses the

arm displacement data before typical neural delay (approx. 50∼200 ms) even though the

dynamics hasn’t settled down to a steady-state.

In the seated pHRI experiments, it was reported that the human CNS tends to

increase the arm stiffness in the direction of unstable dynamics or disturbance [22, 24, 25].

For example, in [22], the arm stiffness was higher in the direction of instability (up to 750

N/m) compared to when there was no disturbance (as low as 160 N/m). In this view, if the

additional degree of freedom of the arm in overground pHRI (allowed by the unconstrained

upper body of the human subject) was interpreted as an additional factor aiding instability,

it may show up as increased stiffness. However, the measured arm stiffness in y-direction

was similar to the lower values in [22]. This implies that the CNS may not view the

increased freedom of arm movement in overground pHRI as a drawback. Instead, it may

maintain the low arm stiffness for the arm to be more sensitive to the small changes in the

interaction forces [38]. However, because the stiffness estimation in this work warrants

further development, the implications of such low arm stiffness values during overground

pHRI remain a topic for future research.

4.4. PROSPECTIVE BENEFITS

When physically interacting robots were first introduced for seated pHRI experi-

ments, they quickly became invaluable tools not only for research but also for rehabilitation

and physical therapies [5, 44]. We expect Ophrie to provide a similar impact and benefit

to overground pHRI research. Key research questions may be addressed such as motor

communication during overground physical interaction or to develop intuitive and effec-
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tive walking assistance in the future. The demonstration of Ophrie’s ability to perform an

overground pHRI experiment and to estimate the interaction dynamics in this work is an

important first step.
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ABSTRACT

We, humans, are able to accomplish overground physical interaction tasks adeptly.

These interaction tasks do not necessarily require visual and verbal communication, which

suggests that the interacting partners might exchange the kinematic information to com-

municate. To understand the process of motor intent exchange, we present an overground

robot-guided walking experiment designed and conducted to capture human biomechanic

response during the interaction. We tested the hypothesis that the nervous system lowers the

arm stiffness to sensitively exchange forces and motions. The outcome of the experiment

agrees with our hypotheses.

Keywords: arm stiffness, physical human-robot interaction (pHRI), overground, force

perturbation, motor communication, interaction force

1. INTRODUCTION

We can do physical interactions such as assisting an elderly walk or partnered dancing

without verbal communication. How are we able to accomplish such physical interactions

so adeptly? The nervous system executes a freestanding control strategy while interacting

with an external environment – not a human. It first adapts to and learns from instabilities,
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then develops a strategy and executes it in similar future instances [1–3]. Holding a coffee

mug without spilling the coffee, even when the posture gets unstable for a moment, is a

perfect example of the freestanding control strategy. The central nervous system (CNS)

optimizes impedance – resistance to imposed motion and force – to stabilize such unstable

dynamics [1]. Particularly, the increase in arm stiffness – a component of impedance – has

been observed in the direction of the instability [3].

The arm stiffness has largely been studied in relation to motor control for stability and

reaching tasks [1–8]. Such studies investigated interaction tasks where subjects were mostly

seated – the subject’s degree of freedom was constrained, and the interacting environment

did not play an active role in the control process. However, the physical human-human

interaction (pHHI) tasks are usually overground, and the coupled system cooperates to

accomplish a common goal. Such stable interaction would not be possible without an

efficient exchange of sophisticated information between the interacting individuals.

It has been observed that we use arms during physical interaction as a medium for

two-way motor communication [9–11]. Even though visual or verbal feedback may aid

the physical interaction process, they are not an absolute necessity [12, 13]. Moreover,

we exchange small forces via hand, which is also the point of interaction, and our nervous

system analyzes these movements – resulting due to the small interaction forces – to decode

the exchanged information [14]. Intuitively, the decoding process could have been aided

by the increased sensitivity of the arms to interaction force (i.e., resulted movement).

Hence, people may lower the mechanical impedance of their arms for increased sensitivity

to interaction force for communicating motor intent as pointed by [15]. In this view,

understanding the process of arm impedance modulation may be the crucial first step to

understanding overground physical interaction characteristics in humans.

Since the existing tools and the experimental protocols to measure arm impedance

were limited to the seated physical human-robot interaction (pHRI) experiments [1–3,

12, 16], a robot dedicated to the overground pHRI experiments was developed, and an
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experimental protocol that can record the human arm movement data and estimate the arm

impedance using those was previously proposed by our group [17]. The experimental

protocol and the ability of the robot to estimate the arm impedance from the force-motion

data recorded were validated through an overground pHRI experiment.

Using the experimental protocol suggested in [17], we investigated the hypotheses

“human arm stiffness is modulated to promote motor communication”, and “low arm

stiffness is a way to sense interaction force more accurately through the large changes in the

kinematics”. Clearly, it was crucial to design an experiment that includes tasks with a high

chance of modulation for arm impedance. In the absence of verbal or visual information

feedback, humans are compelled to listen (or sense) to the haptic information provided

by the interacting partner during overground physical interaction tasks. In this view, the

overground pHRI experiment presented in this paper examined two contrasting cases – (a)

which compels the human subjects to listen to the haptic information and (b) where humans

might not feel as compelled as before – was designed and conducted. The analysis of

variance (ANOVA) was then performed to statistically analyze if there is any evidence of

arm stiffness modulation when humans listen to haptic cues compared to when they do not.

2. METHODS

2.1. PARTICIPANTS

A total of 10 healthy young adults (1 female, 1 left-handed, 27.6±2.41 years) without

any self-reported neurological disorder took part in the study. Subjects signed a written

consent form before participating in the experiment. The research protocol was approved

by the Institutional Review Board of the University of Missouri System.
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2.2. EXPERIMENT PROTOCOL

A guided walking experiment was designed wherein the human participants were

asked to walk alongside the robot Ophri – that acted as a leader – during the trials. Ophri

was specially designed for the overground pHRI experiments. Its manipulator inherits

some unique characteristics that are critical to the overground physical interaction experi-

ments, such as low inherent endpoint impedance, ability to apply and measure small force

perturbation (<10N), and capability of endpoint movement with a speed of 2Hz [17, 18].

At the beginning of the experiment, the subjects were detailed about what was

expected from them. During each trial, the human participants were asked to stand upright

next to Ophri by holding its interaction handle using their right hand as shown in Figure

1b. The robot’s height was adjusted beforehand such that the interaction handle was

aligned to the subject’s elbow level. Also, the subjects were informed that the position

based background stiffness controller would be activated after they are ready, and hence

they should relax their arm to let the robotic arm position the handle to the center of its

workspace – a 0.15x0.15 m2 2-dimensional space parallel to the ground plane (see Figure

1a). The subjects were informed that after they hear the command START, the robot

would start to move, and they had to follow the robot with their eyes closed throughout the

entire trial. The robot was programmed to go on a straight trajectory for 1.5m. It would

either continue in the straight trajectory or turn towards or away from the subject in the

mediolateral direction after 1.5m. As shown in Figure 1a, if the robot did turn, it would turn

back to a straight trajectory parallel to the starting trajectory after 3.8s and would maintain

that for the rest of the trial. The path for the these three different trajectories were marked

on the floor using colored tapes to ensure that the subjects clearly understood (a) where the

robot might turn and (b) the experiment design that “if the robot turns once, there is no

more turning”. Given their eyes were closed, the subjects were expected to listen to haptic

information through the interaction handle to sense the speed of the robot and the deviation

in the trajectory when the robot turned. After the robot stopped, the subjects were asked to
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tell in which direction the robot deviated based on their judgment before opening their eyes.

Throughout the entire trial, the robot was programmed to maintain a constant linear velocity

of 0.5m/s. It maintained the angular velocity of 0.45rad/s while turning. The robotic arm

applied a force perturbation of 3N (0.8 seconds) when it reached B if it was not supposed

to turn, or at E or H if it did turn (see Figure 1a). The direction of force perturbation was

either towards the direction of movement or towards the subject’s mediolateral direction.

Subjects were aware that the robot might turn and will also apply a slight push at some

point on the trajectory but were unaware of the direction of the turn or the direction of

perturbation for that specific trial. Due to safety concerns, if at all the interaction handle

is out of the workspace at any time during the trial, the robot was programmed to stop; in

such a scenario, the trial was repeated. The presence of a background stiffness controller

helped the subjects maintain their hand inside the workspace; the stiffness controller was,

however, briefly turned off during the time of perturbation. Each trial took approximately

20 seconds. The top view sketch of the entire experimental setup and the ideal starting pose

for each trial is shown in Figure 1.

The decision on the magnitude of background stiffness (75 N/m2, the magnitude

of force perturbation (3N), and the subject’s visual feedback condition (eyes closed) were

taken based on our previous investigation on the overground pHRI experiments [17].

Here onward, a trial can be referred with respect to the direction of perturbation –

as ‘lateral’ for -y perturbation and ‘forward’ for -x perturbation, and with respect to the

trajectory – as ‘before’ for straight trajectory (the perturbation happened before the midway)

and ‘after’ for deviated trajectory (the perturbation happened after the midway) (see Figure

1a). ‘after-T’ and ‘after-A’ will be used for trials with trajectory deviation towards the

subject or away from the subject, respectively, whenever needed. In this view, we have

six different trial types depending on the direction of trajectory deviation (3 levels) and the

direction of force perturbation (2 levels). The experiment was designed as a randomized

complete block (RCB) design. Each block consisted of eight randomly distributed trials



93

(a) (b)

Figure 1. (a) Schematics of the overground pHRI experiment setup (top view). The
horizontal length of AB, BC, BD/BG, DE/GH, and EF/HI are 1.5m, 3.95m, 1.25m, 1.85m,
and 0.85m, respectively. The DEF/GHI part of the trajectory ABDEF/ABGHI is separated
by the perpendicular distance of 0.5m. (b) A human participant mimicking the experimental
setup before the beginning of a trial.

(2 ‘after-T’ trials, 2 ‘after-A’ trials, and 4 ‘before’ trials; each of these group had an equal

number of forward and lateral trials). The ‘before’ trials were repeated within a block to

balance the number with ‘after’ trials. There were 5 blocks totaling the number of trials per

subject to 40.

2.3. DATA ACQUISITION AND ANALYSIS

The interaction dynamics is the function of arm movement and its derivative. A

simplified model, as used previously in [17] will be used in this study where we assume

the interaction dynamics in task space as passive, linear, and time-invariant second-order

dynamics.

𝑓 − 𝑓0 = 𝑚 ( ¥𝑥 − ¥𝑥0) + 𝑏 (𝑥 − ¤𝑥) + 𝑘 (𝑥 − 𝑥0) (1)
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where 𝑓 is the interaction force measured after the onset of force perturbation, 𝑥, ¤𝑥, and ¥𝑥

are the position, velocity and acceleration of the hand after the perturbation, respectively

and 𝑚, 𝑏, and 𝑘 are the characteristics of the interaction dynamics namely inertia, damping,

and stiffness, respectively. 𝑥0, ¤𝑥0, and ¥𝑥0 are the mean hand position, velocity, and accel-

eration of the interaction point before the perturbation, respectively. Likewise, 𝑓0 is the

average interaction force before the perturbation. The data of 0.1-second window before

the perturbation onset was used for averaging.

When the force perturbation is applied, we may respond to the push by either moving

just the arm or the entire body during an overground pHRI task. In this view, the 𝑥 in the

above Equation 1 should represent the arm length – defined as the magnitude of a vector

from the shoulder to the hand – rather than the hand position. However, we will use the

coordinate of the hand position as 𝑥, as mentioned earlier, because our prior investigation

revealed that the change in hand position was identical to the change in arm length [17].

The hand position in 2D (which is identical to the manipulator’s endpoint dis-

placement) can be calculated using the motors’ encoder position with the help of forward

kinematics. The motor shaft position was measured with the single-turn absolute Biss sine

encoder (2048 LPR) embedded in the servo motors (AKM32E-ANCNAA00: Kollmorgen

Corp, VA, USA). The kinematic details of the robot arm can be found in [18]. The interac-

tion forces were measured using the mini45 force/torque sensor (ATI Industrial Automation,

NC, USA), which is lodged between the endpoint of the robotic arm and the interaction

handle. The data were recorded with a sampling rate of 1KHz. After recording, the hand

position and force data were filtered using Butterworth low-pass zero-lag filter with 40Hz

cutoff frequency in Matlab (MathWorks Inc., MA, USA).

The method of estimating arm stiffness in the direction of force perturbation during

overground pHRI experiments was proposed in our previous work [17], and the same will

be used in this article. To do so, the hand velocity versus time graph was plotted in Matlab

and the time instant of the second peak on the velocity-vs-time plot was manually identified
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and noted. The multi-variable linear regression was applied using Matlab fitlm function

to estimate 𝑚, 𝑏, and 𝑘 in Equation 1. The interaction force and the hand position data

from the onset of the perturbation (t = 0ms) to the time at which the velocity-time graph

showed the second peak was fitted on Equation 1. The stiffness (𝑘) is the main outcome

of interest, whereas the inertia (𝑚) and the damping (𝑏) will not be analyzed. Lastly, the

equilibrium point for each trial was calculated by substituting 𝑚, 𝑏, and 𝑘 values estimated

from Equation 1 in Equation 2, which represents the interaction dynamics right before the

perturbation.

𝑓0 = 𝑚 ¥𝑥0 + 𝑏 ¤𝑥0 + 𝑘 (𝑥0 − 𝑥𝑒𝑞) (2)

where 𝑥𝑒𝑞 is the position of the equilibrium point of the arm at that instant.

Each trial from the experiment fetched one scalar stiffness value. It can be considered

as the arm’s resistance to an external perturbation towards the axis of the perturbation. In

our experiment, the perturbation was either towards the lateral direction or towards the

forward direction. Out of 400 trials performed by 10 different subjects, 17 were discarded

because the stiffness estimated was negative. From the remaining data, outliers – defined as

the values 3 times the interquantile range past the 25th and the 75th quantiles – were screened

out using JMP statistical software (SAS Institute Inc., NC, USA). 11 outliers were excluded

from the data for further analysis. ANOVA was performed using JMP in the remaining 372

stiffness values to test whether humans modulate arm stiffness when listening to haptic cues

compared to when they are not listening. A significance level of p = 0.05 was used.

3. RESULTS

The average interaction force among all the subjects and all the trials due to back-

ground stiffness right before the perturbation onset was observed to be 2.215±0.976N at

0.202±1.030rad counterclockwise from the interacting subject’s mediolateral direction (i.e.,

-y in Figure 1a). That is, on average, the subjects were pushing the robot away from their
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Figure 2. The interaction forces due to background stiffness for all trials performed by a
representative subject. The red dots represent the trials having ‘before’ trajectory, and the
green dots represent the trials having ‘after’ trajectory.

trunk at approximately 2N of force. This result aligns with the one observed in our prior

investigation [17]. The interaction force right before the perturbation initiation for all the

trials performed by subject 1 is shown in Figure 2. The interaction forces during the entire

trial for the two representative ‘after’ trials (one ‘lateral’ trial and one ‘forward’ trial) per-

formed by subject 1 are shown in Figure 3. The hand movement trajectory for 300ms after

the perturbation initiation for the first block of the trials performed by subject 1 is shown in

Figure 4.

The interaction dynamics were estimated using linear regression as discussed in the

Section 2.3. The mean and standard deviation of the R2 values of all 40 trials for each

subject were 0.568±0.108 (subject 1), 0.567±0.087 (subject 2), 0.533±0.078 (subject 3),

0.578±0.084 (subject 4), 0.528±0.047 (subject 5), 0.559±0.062 (subject 6), 0.539±0.072

(subject 7), 0.516±0.040 (subject 8), 0.520±0.071 (subject 9), and 0.582±0.175 (subject

10). These values are in a similar range to the R2 values reported in our earlier work on

overground pHRI [17]. The mean arm stiffness and the standard deviation for the individual

subjects based on the perturbation type is shown in Figure 5, and based on the trajectory

type is shown in Figure 6. The linear regression also fetched inertia and damping for each
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(a) (b)

Figure 3. The interaction forces during the entire trial of the two representative trials
performed by the subject 1. The position-based background stiffness controller was activated
at the pink circle marker. The instant when the robot started moving and the subject followed
is represented by the green circle marker. The red circle marker represents the instant when
the force perturbation was initiated; the blue shaded region shows the 800ms window
of the force perturbation. (a) is the representative ‘before’-‘lateral’ trial and (b) is the
representative ‘before’-‘forward’ trial

trial. The average of inertia estimated from all 40 trials of all the subjects was found to be

0.207±0.275 kg. The average damping was observed to be 9.114±8.321 Ns/m. The low

positive values of inertia and damping are in alignment with our previous work [17]. The

mean equilibrium point of the arm was estimated to be at 0.027±0.045 m (averaged over

all trials and all subjects) away from the workspace center towards the robot. The statistics

presented earlier in this section and afterward only include the trials excluding outliers and

negative stiffness values (n = 372).

The skewness and the excess kurtosis were 1.275 and 1.472, respectively. [19]

pointed out that either the skewness other than the one between -3 and +3 and the excess

kurtosis larger than 4 can be used as reference values for determining substantial non-

normality. In this view, the distribution of our data cannot be considered substantially

non-normal. Hence, we can proceed to analyze the data with the help of parametric
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Figure 4. The figure shows the hand movement trajectory of all the trials in block 1
performed by subject 1. The red-colored lines represent the ‘before’ trials, whereas the
green-colored lines represent the ‘after’ trials. The dashed lines represent the ‘lateral’
trials, whereas the continuous lines represent the ‘forward’ trials. ‘o’ represents the handle
location when the perturbation was initiated, and ‘*’ represents the handle location after
300ms of the perturbation initiation.

Figure 5. The mean and the standard deviation of individual subject’s arm stiffness based
on perturbation direction.

tests.When a paired t-test was performed between the members of the ‘after’ trials – ‘after-

T’ trials vs ‘after-A’ trials, it was observed that the arm stiffness between those two trial
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Figure 6. The mean and the standard deviation of individual subject’s arm stiffness based
on trajectory type.

types was not significantly different from each other (p>0.780; ‘after-T’ least square mean

= 120.099N/m, ‘after-A’ least square mean = 127.174N/m). Hence, both the ’after-T’ trials

and the ‘after-A’ trials will be grouped and labeled as ‘after’ trials for further analysis.

We performed a three-way ANOVA with the following factors: subject – 10 levels,

trajectory – 2 levels (‘before,’ and ‘after’), and perturbation direction – 2 levels (‘lateral’ and

‘forward’). The omnibus test (Table 1) showed that the mean of at least one combination

in the ANOVA model is significantly different from others (p<0.0001). Next, the main and

interaction effects were analyzed, which can be found in Table 2. The three-way interaction

of the included factors is not significant (p>0.090). Likewise, there is no significant

interaction between the subject and the trajectory (p>0.179, see Figure 6). In contrast, a

strong interaction between the subjects and the perturbation direction was observed to affect

the arm stiffness (p<0.0001), which implies that the trend in variation of the arm stiffness

in lateral to forward direction is not consistent among subjects (see Figure 5). Likewise,

a significant interaction between the experiment design parameters (perturbation direction

and trajectory) is observed (p<0.0001). This suggests that the arm stiffness in different

directions varies differently based on when it is measured – that is, before or after the
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Table 1. Analysis of Variance of the model

Source DF Sum of
Squares

Mean
Square

F Ratio

Model 39 605320.2 15521.0 5.7126
Error 332 902033.6 2717.0 Prob>F
C. Total 371 1507353.8 <0.0001*

deviation in Figure 7. However, the focus of the experiment design was to identify whether

the arm stiffness is significantly different in the ‘after’ trials compared to the ‘before’ trials

without worrying much about how the arm stiffness is influenced by the interaction between

the experimental design parameters. Hence, the main effect of the factors was analyzed

next. The main effect of the subject was significant (p<0.0001), implying that, like most

biomechanics experiments, large inter-subject variability exists. Likewise, arm stiffness

is significantly different based on the perturbation direction (p<0.0001). Arm stiffness is

generally represented as an ellipse due to its direction dependency, and the outcome obtained

in this study aligns with that. It is interesting that the arm stiffness is higher in the forward

perturbation trials than in lateral perturbation trials and will be discussed in detail later in

Section 4. More importantly, the human arm stiffness during the overground pHRI task is

significantly different in the trials with the ‘before’ trajectory compared to those with the

‘after’ trajectory (p<0.0001). The arm stiffness means for the trials with ‘before’ trajectory

was 95.530±54.661 N/m, and for those with ‘after’ trajectory was 118.604±70.247 N/m.

Lastly, when the subjects were asked to tell the perceived trajectory type after each trial

ended, they reported the trajectory deviation correctly in 386 out of 400 trials.

4. DISCUSSION

The trajectories were specially designed to capture the contrast in overground arm

stiffness between (a) when the subjects would actively listen to the haptic cues from the

robot and (b) when they would not. The former represented the ‘before’ trial where the
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Table 2. The main and interaction effects of the factors

Source Nparm DF Sum of
Squares

F Ratio Prob>F

Subject 9 9 165466.11 6.7668 <.0001*

Trajectory 1 1 56182.72 20.6785 <.0001*

Perturbation Direction 1 1 85846.42 31.5964 <.0001*

Subject∗Trajectory 9 9 34697.11 1.4189 0.1785
Subject∗Perturbation
Direction

9 9 174534.85 7.1376 <.0001*

Trajectory∗Perturbation
Direction

1 1 69678.12 25.6455 <.0001*

Subject∗Trajectory∗
Perturbation Direction

9 9 41356.29 1.6913 0.0899

Figure 7. The effects of perturbation direction on the arm stiffness (N/m) (least square
means, confidence interval of 95%) based on the trajectory type.

subjects were perturbed at the exact location where they would turn, had it been an ‘after’

trial. In this scenario, we expected the subjects to actively listen to the robot through hand

because (a) they were not told whether the robot would turn or not for that specific trial,

and hence had to entirely rely on the robot for turning if in case it turns, and (b) since

their eyes were closed, the only way they could get the speed information to synchronize

with the robot was from their interacting hand. Because the linear velocity of the robot

was constant, the need to synchronize was only expected during the earlier phase of the
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trial. Furthermore, every time the trial was completed, the participants were asked to tell

the study team the type of trajectory they had just finished. This could have acted as an

additional factor compelling the subjects to be more conscious until the robot turned. In

the ‘after’ trials, though, the arm stiffness was measured long after the robot completed

the turn, which means that the subjects did not have any compelling reason to listen to the

haptic information from the robot.

In the Section 3, we observed that the arm stiffness was significantly different

in ‘before’ trials compared to ‘after’ trials (p<0.0001). This indicates that humans can

modulate arm stiffness during overground physical interaction tasks. The decision seems

to be based on whether they have to listen to haptic information (i.e. ‘before’ trajectory)

or not (i.e. ‘after’ trajectory). In addition, the subjects reported the trajectory deviation

correctly in 386 trials out of 400, which further strengthens that subjects were actively

listening to haptic information from the robot, at least before the trajectory deviation. The

arm stiffness mean for the trials where they might have been listening was 95.530±54.661

N/m, and in those where they might not have been listening was 118.604±70.247 N/m. This

indicates that the humans maintained comparatively lower arm stiffness while listening to

motor commands than while not listening.

In this view, considering the overall arm stiffness during the overground interaction

tasks, based on the ANOVA results, it is clear that, whatever the reasons are, the arm stiffness

was lower for the ‘before’ trials compared to the ‘after’ trials. This suggests that humans

can modulate arm stiffness and, more importantly, lower their arm stiffness to facilitate an

efficient exchange of the haptic information during an overground physical interaction.

During overground interactions, like the one in this experiment, the participants had

the complete freedom to move both the upper arm and the forearm. Forward movements

cannot be completed without moving both the upper arm and the forearm. Hence, while

listening to haptic information in the forward direction, it could be beneficial to lower the

stiffness of both the upper arm and the forearm to capture the motion information sensitively.
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Figure 8. Sketch showing how the interaction proceeds after the perturbation in the ‘forward’
trial and the ‘lateral’ trials.

However, the movement in the lateral direction can be accomplished solely by moving the

lower arm around the elbow, and the entire arm does not need to move. Furthermore, while

listening to the haptic information, letting the forearm capture the motion information (by

reducing its stiffness) could be more effective than lowering the arm stiffness of both. In

such a case, the upper arm can act as a very high impedance link, and the stiffness of the

lower arm could be decreased, resulting in the overall arm stiffness not changing a lot.

This could be the reason why we observed significantly lower arm stiffness in ‘forward’ +

‘before’ trials compared to ‘forward’ + ‘after’ trials, but at the same time did not see any

significant difference of the arm stiffness between ‘lateral’ + ‘before’ trials and ‘lateral’ +

‘after’ trials (see Figure 7). The sketch in Figure 8 depicts the discussed scenario of the arm

movement.

The main effect of the subjects is significant, which was expected because every

individual is different and might respond to similar perturbation differently. It is not

uncommon to have higher inter-subject variability in the experiments involving humans.

More uncertainty could have been added due to the nature of the experiment itself (i.e.,

overground scenario). A similar effect was observed in our previous study involving the
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overground pHRI experiment [17]. Some of the other factors that could have introduced

variation within subjects in this study are the difference in the participants’ walking habits

(posture), which could have resulted in different arm postures within individuals while

walking, the difference in their arm build (muscle cross-sectional area), etc.

Further, the structure of the arm might affect the stiffness differently in different

directions. For example, stronger triceps would lead to higher arm stiffness in the forward

direction than less strong triceps. However, it might not matter to the arm stiffness in

the lateral direction if, as explained earlier, the stiffness of the lower arm contributes

significantly to the overall arm stiffness. Because of this reason, we might have seen a

significant interaction between the subjects and the perturbation direction.
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SECTION

3. DYNAMICS OF THE INTERACTIVE ARM

Previously, in the Paper II and the Section 4 of the Paper I, we mentioned about

using a simulation model of Ophrie’s interactive arm. This section presents the detailed

derivation of the mathematics behind the simulation model.

Apart from its usage as a simulation model, the detailed dynamic model can be a

valuable asset while designing the advanced model-based controllers such as impedance

control, non-linear control, etc. In our case, we chose to use a proportional-integral-

derivative (PID) controller because since the inherent inertia and damping were pretty low

for our robotic arm – as found out in [17], the non-linearity induced due to them is expected

to be negligible. In our robot, while implementing a stiffness controller, a position based

PID force controller was used, whereas during force perturbation, a separate PID force

controller was used.

The top-view schematic diagram of the arm is shown in Figure 3.1.

Let, 𝑀1𝐴𝐶𝐵𝑀2 represents the closed loop five link interactive arm of the robot

Ophrie. The length of the proximal (𝑀1𝐴 and 𝑀2𝐵) and the distal (𝐴𝐶 and 𝐵𝐶) are

represented by 𝐿1, 𝐿2, 𝐿3, and 𝐿4 respectively. 𝐶 is the end effector of the arm on top of

which the interaction handle is lodged, and 𝑇1𝑇2𝑇3𝑇4 is the desired end-effector workspace

(square area of 𝑑 × 𝑑). 𝑃 is a point on 𝑀1𝐴𝐶𝐵𝑀2 plane. 𝑀1 and 𝑀2 represent the

position where the motors are located; the motors are responsible for generating control

signal 𝜏1 and 𝜏2. 𝜃1 and 𝜃2 are the angles formed by the links 𝐿1 and 𝐿2 in clockwise and

counterclockwise direction with respect to y-axis respectively. 𝜓(𝑋𝑌𝑍) represents an angle
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Figure 3.1. Top-view schematic representation of Ophrie’s interactive arm

formed by three points X, Y and Z. 𝐹 is the force applied by the robot to the environment in

𝜙 direction measured CCW with respect to the positive x-axis. 𝑑0 is the distance between

the motor 𝑀1 and the nearest side of the workspace 𝑇1𝑇2𝑇3𝑇4 (i.e. T1T4).

3.1. DYNAMICS OF THE INTERACTIVE ARM IN JOINT SPACE

The Cartesian coordinate of the joint positions A and B, and the end-effector C can

be represented be (Ax, Ay), (Bx, By), and (Cx, Cy), respectively.

𝐴𝑥 = −𝐿1 sin 𝜃1 (3.1)

𝐴𝑦 = −𝐿1 cos 𝜃1 (3.2)

𝐵𝑥 = 𝑥1 + 𝐿2 sin 𝜃2 (3.3)

𝐵𝑦 = 𝑦1 − 𝐿2 cos 𝜃2 (3.4)

𝐴𝐵 =

√︃
(𝐴𝑥 − 𝐵𝑥)2 + (𝐴𝑦 − 𝐵𝑦)2 (3.5)
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𝜓𝐴𝐵𝑃 = arctan
(𝐵𝑦 − 𝐴𝑦
𝐵𝑥 − 𝐴𝑥

)
(3.6)

𝜓𝐵𝐴𝐶 = arccos
( 𝐴𝐵2 + 𝐿2

3 − 𝐿
2
4

2 𝐴𝐵 𝐿3

)
(3.7)

𝜓𝑃𝐶𝐴 = 𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃 (3.8)

Likewise,

𝜓𝐴𝐵𝐶 = arccos
( 𝐴𝐵2 + 𝐿2

4 − 𝐿
2
3

2 𝐴𝐵 𝐿4

)
(3.9)

𝜓𝑃𝐵𝐶 = 𝜓𝐴𝐵𝐶 + 𝜓𝑃𝐵𝐴 (3.10)

Hence,

𝐶𝑥 = 𝐴𝑥 + 𝐿4 cos(𝜓𝑃𝐶𝐴) (3.11)

𝐶𝑦 = 𝐴𝑦 − 𝐿4 sin(𝜓𝑃𝐶𝐴) (3.12)

Using Equations (3.1), (3.2) and (3.8) in Equation (3.11) and Equation (3.12), we get:

𝐶𝑥 = −𝐿1 sin 𝜃1 + 𝐿4 cos(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃) (3.13)

𝐶𝑦 = −𝐿1 cos 𝜃1 − 𝐿4 sin(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃). (3.14)

The Jacobian matrix can, now, be obtained by performing the partial derivative of 𝐶𝑥 and

𝐶𝑦 with respect to 𝜃1 and 𝜃2. It requires partial differentiation of 𝜓𝐴𝐵𝑃 and 𝜓𝐵𝐴𝐶 with

respect to 𝜃1 and 𝜃2. Using Equation (3.6), we first define

𝜓𝐴𝐵𝑃 = arctan(𝛼(𝜃1, 𝜃2))

where

𝛼(𝜃1, 𝜃2) =
𝛼𝑛 (𝜃1, 𝜃2)
𝛼𝑑 (𝜃1, 𝜃2)

=
𝐵𝑦 − 𝐴𝑦
𝐵𝑥 − 𝐴𝑥

=
𝑦1 − 𝐿2 cos 𝜃2 + 𝐿1 cos 𝜃1
𝑥1 + 𝐿2 sin 𝜃2 + 𝐿1 sin 𝜃1

(3.15)

where 𝛼𝑛 and 𝛼𝑑 are both the functions of 𝜃1 and 𝜃2.
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Now, let’s find the partial differentiation of 𝜓𝐴𝐵𝑃 with respect to 𝜃1 and 𝜃2 as in

Equations (3.16) and (3.17).

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1
=
𝜕 (arctan(𝛼(𝜃1, 𝜃2)))

𝜕𝜃1
=

1
1 + (𝛼𝑛/𝛼𝑑)2

−𝛼𝑛𝐿1 cos 𝜃1 − 𝛼𝑑𝐿1 sin 𝜃1

𝛼2
𝑑

(3.16)

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2
=
𝜕 (arctan(𝛼(𝜃1, 𝜃2)))

𝜕𝜃2
=

1
1 + (𝛼𝑛/𝛼𝑑)2

−𝛼𝑛𝐿2 cos 𝜃2 + 𝛼𝑑𝐿2 sin 𝜃2

𝛼2
𝑑

(3.17)

Next, to get the partial differentiation of 𝜓𝐵𝐴𝐶 , lets define Equation (3.7) as

𝜓𝐵𝐴𝐶 = arccos(𝛽(𝜃1, 𝜃2))

where

𝛽(𝜃1, 𝜃2) =
𝛽𝑛 (𝜃1, 𝜃2)
𝛽𝑑 (𝜃1, 𝜃2)

=
𝐴𝐵

2 + 𝐿2
3 − 𝐿

2
4

2 𝐴𝐵 𝐿3
=
𝛼2
𝑛 + 𝛼2

𝑑
+ 𝐿2

3 − 𝐿
2
4

2
√︃
𝛼2
𝑛 + 𝛼2

𝑑
𝐿3

(3.18)

where, 𝛽𝑛 and 𝛽𝑑 are both function of 𝜃1 and 𝜃2.

Then, we find the partial differentiation of 𝜓𝐵𝐴𝐶 with respect to 𝜃1 and 𝜃2 as shown

in Equations (3.19) and (3.20).

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1
=
𝜕 (arccos(𝛽(𝜃1, 𝜃2)))

𝜕𝜃1
=

−1√︁
1 − (𝛽𝑛/𝛽𝑑)2

1
𝛽2
𝑑

(
𝜕𝛽𝑛

𝜕𝜃1
𝛽𝑑 −

𝜕𝛽𝑑

𝜕𝜃1
𝛽𝑛

)
(3.19)

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2
=
𝜕 (arccos(𝛽(𝜃1, 𝜃2)))

𝜕𝜃2
=

−1√︁
1 − (𝛽𝑛/𝛽𝑑)2

1
𝛽2
𝑑

(
𝜕𝛽𝑛

𝜕𝜃2
𝛽𝑑 −

𝜕𝛽𝑑

𝜕𝜃2
𝛽𝑛

)
(3.20)

where
𝜕 (𝛽𝑛)
𝜕𝜃1

= −2 𝐿1 (𝛼𝑛 sin 𝜃1 − 𝛼𝑑 cos 𝜃1) (3.21)

𝜕 (𝛽𝑛)
𝜕𝜃2

= 2 𝐿2 (𝛼𝑛 sin 𝜃2 + 𝛼𝑑 cos 𝜃2) (3.22)

and
𝜕𝛽𝑑

𝜕𝜃1
= 𝐿3(𝛼2

𝑛 + 𝛼2
𝑑)

− 1
2

(𝜕 (𝛼2
𝑛)

𝜕𝜃1
+
𝜕 (𝛼2

𝑑
)

𝜕𝜃1

)
(3.23)
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𝜕𝛽𝑑

𝜕𝜃2
= 𝐿3(𝛼2

𝑛 + 𝛼2
𝑑)

− 1
2

(𝜕 (𝛼2
𝑛)

𝜕𝜃2
+
𝜕 (𝛼2

𝑑
)

𝜕𝜃2

)
. (3.24)

The differential term inside Equations (3.23) and (3.24) can be represented as

𝜕 (𝛼2
𝑛)

𝜕𝜃1
= −2 𝐿2

1 sin 𝜃1 cos 𝜃1 − 2 𝑦1 𝐿1 sin 𝜃1 + 2 𝐿1 𝐿2 sin 𝜃1 cos 𝜃2 (3.25)

𝜕 (𝛼2
𝑛)

𝜕𝜃2
= −2 𝐿2

2 sin 𝜃2 cos 𝜃2 + 2 𝑦1 𝐿2 sin 𝜃2 + 2 𝐿1 𝐿2 sin 𝜃2 cos 𝜃1 (3.26)

𝜕 (𝛼2
𝑑
)

𝜕𝜃1
= 2 𝐿2

1 sin 𝜃1 cos 𝜃1 + 2 𝑥1 𝐿1 cos 𝜃1 + 2 𝐿1 𝐿2 sin 𝜃2 cos 𝜃1 (3.27)

𝜕 (𝛼2
𝑑
)

𝜕𝜃2
= 2 𝐿2

2 sin 𝜃2 cos 𝜃2 + 2 𝑥1 𝐿2 cos 𝜃2 + 2 𝐿1 𝐿2 sin 𝜃1 cos 𝜃2. (3.28)

Given Equations (3.16), (3.17), (3.19), and (3.20), we can finally compute the

Jacobian matrix, 𝐽 (𝜃1, 𝜃2) as,

𝐽 (𝜃1, 𝜃2) =

𝜕𝐶𝑥

𝜕𝜃1
𝜕𝐶𝑥

𝜕𝜃2

𝜕𝐶𝑦

𝜕𝜃1

𝜕𝐶𝑦

𝜕𝜃2

 (3.29)

where
𝜕𝐶𝑥

𝜕𝜃1
= −𝐿1 cos 𝜃1 − 𝐿4 sin(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
(3.30)

𝜕𝐶𝑥

𝜕𝜃2
= −𝐿4 sin(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
(3.31)

𝜕𝐶𝑦

𝜕𝜃1
= 𝐿1 sin 𝜃1 − 𝐿4 cos(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
(3.32)

𝜕𝐶𝑦

𝜕𝜃2
= −𝐿4 cos(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
. (3.33)

Finally, we can represent the dynamics of the closed loop five link interactive arm

of Ophrie as

𝑀 (𝜃) ¥𝜃 +𝑉𝑚 (𝜃, ¤𝜃) ¤𝜃 + 𝜏𝑟 ( ¤𝜃) + 𝐺 (𝜃) + 𝜏𝑑 = 𝜏 + 𝐽𝑇 (𝜃)𝜆, (3.34)
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where 𝜃 (𝑡)𝜖𝑅2 is the joint space coordinate vector, 𝜏(𝑡)𝜖𝑅2 is the control input vector,

𝑀 (𝜃) is the inertial matrix, 𝑉𝑚 (𝜃, ¤𝜃) is the Coriolis/Centripetal matrix, 𝜏𝑟 ( ¤𝜃) represents

the friction terms, 𝐺 (𝜃) is the gravity vector, and 𝜏𝑑 (𝑡) represents the disturbances. 𝐽 (𝜃)

is a Jacobian matrix associated with the contact surface geometry, and 𝜆 (the ’Lagrange

multiplier’) is a vector of contact forces exerted from the external environment. Ophrie’s

interactive arm is a planar 2D robot and is always aligned parallel to the ground. Hence the

effect due to 𝐺 (𝜃) will be ignored here-onwards.

In Equation (3.34), 𝜃 =
[
𝜃1 𝜃2

]𝑇
, 𝜏 =

[
𝜏1 𝜏2

]𝑇
, and

𝑀 (𝜃) =

𝐸3(𝜃) 𝐸1(𝜃)

𝐸2(𝜃) 𝐸4(𝜃)

 (3.35)

𝑉𝑚 (𝜃, ¤𝜃) =

𝐸5(𝜃) ¤𝜃1 + 1

2𝐸7(𝜃) ¤𝜃2 𝐸6(𝜃) ¤𝜃2 + 1
2𝐸7(𝜃) ¤𝜃1

𝐸11(𝜃) ¤𝜃1 + 1
2𝐸13(𝜃) ¤𝜃2 𝐸12(𝜃) ¤𝜃2 + 1

2𝐸13(𝜃) ¤𝜃1

 (3.36)

𝜏𝑟 (𝜃) =

𝐸8(𝜃) 𝐸9(𝜃)

𝐸9(𝜃) 𝐸10(𝜃)

 . (3.37)

The Jacobian matrix in Equation (3.29) can be expanded by substituting respective

terms from Equations (3.30) - (3.33) as

𝐽 (𝜃) =

−𝐿4 sin 𝜃4

(
𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1
− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
− 𝐿1 cos 𝜃1 −𝐿4 sin 𝜃4

(
𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2
− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
−𝐿4 cos 𝜃4

(
𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1
− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
+ 𝐿1 sin 𝜃1 −𝐿4 cos 𝜃4

(
𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2
− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
with 𝜃3 and 𝜃4 representing the angles given by

𝜃3 = 𝜓𝑃𝐵𝐶 = 𝜓𝑃𝐵𝐴 + 𝜓𝐴𝐵𝐶 𝜃4 = 𝜓𝐶𝐴𝑃 = 𝜓𝐵𝐴𝐶 + 𝜓𝐴𝐵𝑃 .
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The Lagrange multiplier in Equation (3.34) can be represented as

𝜆 =


𝐹 cos 𝜙

𝐹 sin 𝜙

 . (3.38)

Lastly, the functions 𝐸𝑖 (𝜃) for 𝑖 = 1, 2...13 in Equations (3.35) - (3.37) are listed in

Equations (3.39) - (3.51). Let, 𝑚𝑖 represents the mass of the the proximal links (𝑖 = 1, 2)

and the distal links (𝑖 = 3, 4). b represents the width of the links, and 𝐶 represents the

coefficient for angular viscous damping. The moment of inertia due to motor shaft can be

estimated as 1
2𝑚𝑚𝑠𝑟

2
𝑚𝑠 where 𝑚𝑚𝑠 is the mass of motor shaft and 𝑟𝑚𝑠 is the radius of the

motor shaft.

𝐸1(𝜃) =
[
− 1

2
𝑚3𝐿2𝐿3 sin(𝜃2 − 𝜃3)

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

)
+ 1

3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

)
(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)
− 1

2
𝑚4𝐿1𝐿4 sin(𝜃1 − 𝜃4)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)]
(3.39)

𝐸2(𝜃) =
[
− 1

2
𝑚3𝐿2𝐿3 sin(𝜃2 − 𝜃3)

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

)
+ 1

3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

)
(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)
− 1

2
𝑚4𝐿1𝐿4 sin(𝜃1 − 𝜃4)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)]
(3.40)
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(Note that 𝐸1 and 𝐸2 are identical.)

𝐸3(𝜃) =
[1
3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

)
+ 1

2

(1
2
𝑚𝑚𝑠𝑟

2
𝑚𝑠

)
+ 𝑚4𝐿

2
1 − 𝑚4𝐿1𝐿4 sin(𝜃1 − 𝜃4)(𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1
− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
+ 1

3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

)2
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

)
(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)2]
(3.41)

𝐸4(𝜃) =
[1
3
𝑚2

(
𝐿2

2 +
1
4
𝑏2

)
+ 1

2

(1
2
𝑚𝑚𝑠𝑟

2
𝑚𝑠

)
+ 𝑚3𝐿

2
2 − 𝑚3𝐿2𝐿3 sin(𝜃2 − 𝜃3)(𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2
+ 𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2

)
+ 1

3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)2
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

)
(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)2]
(3.42)

𝐸5(𝜃) =
[1
3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

) (𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
1

+ 𝜕
2𝜓𝐵𝐴𝐶

𝜕𝜃2
1

)
− 1

2
𝑚4𝐿1𝐿4 sin(𝜃1 − 𝜃4)

(𝜕2𝜓𝐵𝐴𝐶

𝜕𝜃2
1

− 𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
1

)
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

) (𝜕2𝜓𝐵𝐴𝐶

𝜕𝜃2
1

− 𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
1

)
− 1

2
𝑚4𝐿1𝐿4 cos(𝜃1 − 𝜃4)

(
1 + 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1
− 𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)]
(3.43)

𝐸6(𝜃) =
[
− 1

2
𝑚3𝐿2𝐿3 cos(𝜃2 − 𝜃3)

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

)
− 1

2
𝑚4𝐿1𝐿4 sin(𝜃1 − 𝜃4)

(𝜕2𝜓𝐵𝐴𝐶

𝜕𝜃2
2

− 𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
2

)
+ 1

3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

) (𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
2

+ 𝜕
2𝜓𝐵𝐴𝐶

𝜕𝜃2
2

)
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

) (𝜕2𝜓𝐵𝐴𝐶

𝜕𝜃2
2

− 𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
2

)
+ 1

2
𝑚4𝐿1𝐿4 cos(𝜃1 − 𝜃4)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)2]
(3.44)
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𝐸7(𝜃) =
[
+ 1

3
𝑚3

(
2𝐿2

3 +
1
2
𝑏2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

) (𝜕2𝜓𝐴𝐵𝑃
𝜕𝜃1𝜕𝜃2

+ 𝜕
2𝜓𝐵𝐴𝐶
𝜕𝜃1𝜕𝜃2

)
− 𝑚4𝐿1𝐿4 sin(𝜃1 − 𝜃4)

(𝜕2𝜓𝐵𝐴𝐶
𝜕𝜃1𝜕𝜃2

− 𝜕2𝜓𝐴𝐵𝑃
𝜕𝜃1𝜕𝜃2

)
+ 𝑚4𝐿1𝐿4 cos(𝜃1 − 𝜃4)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
+ 1

3
𝑚4

(
2𝐿2

4 +
1
2
𝑏2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

) (𝜕2𝜓𝐵𝐴𝐶
𝜕𝜃1𝜕𝜃2

− 𝜕2𝜓𝐴𝐵𝑃
𝜕𝜃1𝜕𝜃2

)]
(3.45)

𝐸8(𝜃) =
[
6𝐶

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

)2
+ 2𝐶

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

)2]
(3.46)

𝐸9(𝜃) =
[
6𝐶

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)
+ 2𝐶

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

)]
(3.47)

𝐸10(𝜃) =
[
6𝐶

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)2
+ 2𝐶

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

)2]
(3.48)

𝐸11(𝜃) =
[
− 1

2
𝑚4𝐿1𝐿4 cos(𝜃1 − 𝜃4)

(𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
− 1

2
𝑚3𝐿2𝐿3 sin(𝜃2 − 𝜃2)

(𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
1

+ 𝜕
2𝜓𝐵𝐴𝐶

𝜕𝜃2
1

)
+ 1

3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

) (𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
1

+ 𝜕
2𝜓𝐵𝐴𝐶

𝜕𝜃2
1

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

) (𝜕2𝜓𝐵𝐴𝐶

𝜕𝜃2
1

− 𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
1

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
+ 1

2
𝑚3𝐿2𝐿3 cos(𝜃2 − 𝜃3)

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

)2]
(3.49)

𝐸12(𝜃) =
[1
3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

) (𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
2

+ 𝜕
2𝜓𝐵𝐴𝐶

𝜕𝜃2
2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)
− 1

2
𝑚3𝐿2𝐿3 sin(𝜃2 − 𝜃3)

(𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
2

+ 𝜕
2𝜓𝐵𝐴𝐶

𝜕𝜃2
2

)
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

) (𝜕2𝜓𝐵𝐴𝐶

𝜕𝜃2
2

− 𝜕2𝜓𝐴𝐵𝑃

𝜕𝜃2
2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
− 1

2
𝑚3𝐿2𝐿3 cos(𝜃2 − 𝜃3)

(
1 − 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2
− 𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)]
(3.50)
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𝐸13(𝜃) =
[
+ 1

3
𝑚3

(
𝐿2

3 +
1
4
𝑏2

) (𝜕2𝜓𝐴𝐵𝑃
𝜕𝜃1𝜕𝜃2

+ 𝜕
2𝜓𝐵𝐴𝐶
𝜕𝜃1𝜕𝜃2

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)
− 𝑚3𝐿2𝐿3 sin(𝜃2 − 𝜃3)

(𝜕2𝜓𝐴𝐵𝑃
𝜕𝜃1𝜕𝜃2

+ 𝜕
2𝜓𝐵𝐴𝐶
𝜕𝜃1𝜕𝜃2

)
+ 𝑚3𝐿2𝐿3 cos(𝜃2 − 𝜃3)

(𝜕𝜓𝐴𝐵𝑃
𝜕𝜃1

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

) (𝜕𝜓𝐴𝐵𝑃
𝜕𝜃2

+ 𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

)
+ 1

3
𝑚4

(
𝐿2

4 +
1
4
𝑏2

) (𝜕2𝜓𝐵𝐴𝐶
𝜕𝜃1𝜕𝜃2

− 𝜕2𝜓𝐴𝐵𝑃
𝜕𝜃1𝜕𝜃2

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)]
(3.51)

3.2. DYNAMICS OF THE INTERACTIVE ARM IN CARTESIAN SPACE

Let X represent the coordinate of the end-effector in Cartesian space (workspace) at

any instant.

𝑋 =


𝐶𝑥

𝐶𝑦

 (3.52)

where𝐶𝑥 and𝐶𝑦 can be obtained by using Equations (3.11) and (3.12), respectively. Hence,

X is the function of joint angles (𝜃𝑖), which are themselves the function of time (t).

𝑋 (𝑡) = 𝑓 (𝜃 (𝑡)) (3.53)

with 𝑋𝜖𝑅2 and 𝜃𝜖𝑅2.

Differentiating Equation (3.53) with respect to t results,

¤𝑋 = 𝐽 (𝜃) ¤𝜃 (3.54)

∴ ¤𝜃 = 𝐽 (𝜃)−1 ¤𝑋 (3.55)

And, differentiating Equation (3.54) with respect to t results,

¥𝑋 = ¤𝐽 (𝜃) ¤𝜃 + 𝐽 (𝜃) ¥𝜃 (3.56)
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Substituting Equations (3.55) in (3.56) and rearranging

¥𝜃 = 𝐽 (𝜃)−1 ¥𝑋 − 𝐽 (𝜃)−1 ¤𝐽 (𝜃) 𝐽 (𝜃)−1 ¤𝑋 (3.57)

Substituting Equations (3.55) and (3.57) in (3.34), we get

𝑀 (𝜃)𝐽 (𝜃)−1 ¥𝑋 − 𝑀 (𝜃)𝐽 (𝜃)−1 ¤𝐽 (𝜃) 𝐽 (𝜃)−1 ¤𝑋 +𝑉𝑚 (𝜃, ¤𝜃) 𝐽 (𝜃)−1 ¤𝑋 + 𝜏𝑟 (𝜃) 𝐽 (𝜃)−1 ¤𝑋 + 𝐺 (𝜃)

+𝜏𝑑 = 𝜏 + 𝐽𝑇 (𝜃)𝜆

(3.58)

Multiplying both sides by 𝐽 (𝜃)−𝑇 , we get

𝐽 (𝜃)−𝑇 𝑀 (𝜃)𝐽 (𝜃)−1 ¥𝑋 − 𝐽 (𝜃)−𝑇 [𝑀 (𝜃) 𝐽 (𝜃)−1 ¤𝐽 (𝜃) 𝐽 (𝜃)−1 ¤𝑋 +𝑉𝑚 (𝜃, ¤𝜃) 𝐽 (𝜃)−1 ¤𝑋

+ 𝜏𝑟 (𝜃) 𝐽 (𝜃)−1 ¤𝑋 + 𝐺 (𝜃) + 𝜏𝑑] = 𝐽 (𝜃)−𝑇 𝜏 + 𝜆
(3.59)

Representing 𝑀∗ = 𝐽 (𝜃)−𝑇 𝑀 (𝜃)𝐽 (𝜃)−1, ℎ∗ = [𝑀∗ ¤𝐽 (𝜃) 𝐽 (𝜃)−1 + 𝐽 (𝜃)−𝑇 𝑉𝑚 (𝜃, ¤𝜃) 𝐽 (𝜃)−1],

𝐾 = 𝐽 (𝜃)−𝑇 [𝐺 (𝜃) + 𝜏𝑑], and 𝐹∗
𝑟 = 𝐽 (𝜃)−𝑇 𝜏𝑟 (𝜃) 𝐽 (𝜃)−1, we get

𝑀∗ ¥𝑋 + (ℎ∗ + 𝐹∗
𝑟 ) ¤𝑋 + 𝐾 = 𝐹 + 𝜆 (3.60)

where, 𝐹 = 𝐽 (𝜃)−𝑇 𝜏. F has to be found out so as to apply appropriate control on actuators.

Equation (3.60) contains ¤𝐽, which can be obtained by differentiating Equation (3.29)

with respect to t.

¤𝐽 (𝜃1, 𝜃2) =

𝑑
𝑑𝑡
𝜕𝐶𝑥

𝜕𝜃1
𝑑
𝑑𝑡
𝜕𝐶𝑥

𝜕𝜃2

𝑑
𝑑𝑡

𝜕𝐶𝑦

𝜕𝜃1
𝑑
𝑑𝑡

𝜕𝐶𝑦

𝜕𝜃2

 (3.61)
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where

𝑑

𝑑𝑡

𝜕𝐶𝑥

𝜕𝜃1
= 𝐿1 sin 𝜃1 ¤𝜃1 − 𝐿4 cos(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝑑 𝜓𝐵𝐴𝐶
𝑑𝑡

− 𝑑 𝜓𝐴𝐵𝑃

𝑑𝑡

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
− 𝐿4 sin(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

( 𝑑
𝑑𝑡

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1
− 𝑑

𝑑𝑡

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
(3.62)

𝑑

𝑑𝑡

𝜕𝐶𝑥

𝜕𝜃2
= −𝐿4 cos(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝑑 𝜓𝐵𝐴𝐶
𝑑𝑡

− 𝑑 𝜓𝐴𝐵𝑃

𝑑𝑡

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
− 𝐿4 sin(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

( 𝑑
𝑑𝑡

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2
− 𝑑

𝑑𝑡

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

) (3.63)

𝑑

𝑑𝑡

𝜕𝐶𝑦

𝜕𝜃1
= 𝐿1 cos 𝜃1 ¤𝜃1 + 𝐿4 sin(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝑑 𝜓𝐵𝐴𝐶
𝑑𝑡

− 𝑑 𝜓𝐴𝐵𝑃

𝑑𝑡

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃1

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
− 𝐿4 cos(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

( 𝑑
𝑑𝑡

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1
− 𝑑

𝑑𝑡

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1

)
(3.64)

𝑑

𝑑𝑡

𝜕𝐶𝑦

𝜕𝜃2
= 𝐿4 sin(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

(𝑑 𝜓𝐵𝐴𝐶
𝑑𝑡

− 𝑑 𝜓𝐴𝐵𝑃

𝑑𝑡

) (𝜕𝜓𝐵𝐴𝐶
𝜕𝜃2

− 𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

)
− 𝐿4 cos(𝜓𝐵𝐴𝐶 − 𝜓𝐴𝐵𝑃)

( 𝑑
𝑑𝑡

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2
− 𝑑

𝑑𝑡

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2

) (3.65)

where
𝑑 𝜓𝐵𝐴𝐶

𝑑𝑡
= − 1√︂

1 −
(
𝛽𝑛
𝛽𝑑

)2

1
(𝛽𝑑)2

(𝑑𝛽𝑛
𝑑𝑡

𝛽𝑑 −
𝑑𝛽𝑑

𝑑𝑡
𝛽𝑛

)
(3.66)

𝑑 𝜓𝐴𝐵𝑃

𝑑𝑡
=

1
𝛼2
𝑛 + 𝛼2

𝑑

(𝑑𝛼𝑛
𝑑𝑡
𝛼𝑑 −

𝑑𝛼𝑑

𝑑𝑡
𝛼𝑛

)
(3.67)

where

𝑑 𝛽𝑛

𝑑𝑡
= 2(𝐴𝑥 − 𝐵𝑥)

(
− 𝐿1 cos 𝜃1 ¤𝜃1 − 𝐿2 cos 𝜃2 ¤𝜃2

)
+ 2(𝐴𝑦 − 𝐵𝑦)

(
𝐿1 sin 𝜃1 ¤𝜃1 − 𝐿2 sin 𝜃2 ¤𝜃2

)
(3.68)

𝑑 𝛽𝑑

𝑑𝑡
=
𝐿3

𝐴𝐵

𝑑 𝛽𝑛

𝑑𝑡
(3.69)

𝑑 𝛼𝑛

𝑑𝑡
= 𝐿2 sin 𝜃2 ¤𝜃2 − 𝐿1 sin 𝜃1 ¤𝜃1 (3.70)
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𝑑 𝛼𝑑

𝑑𝑡
= 𝐿2 cos 𝜃2 ¤𝜃2 + 𝐿1 cos 𝜃1 ¤𝜃1 (3.71)

For Equations (3.62) to (3.65), we also need

𝑑

𝑑𝑡

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1
=

−𝛽2
𝑑

√︂
1 −

(
𝛽𝑛
𝛽𝑑

)2 (
𝛽𝑑

𝑑
𝑑𝑡

𝜕𝛽𝑛
𝜕𝜃1

+ 𝜕𝛽𝑛
𝜕𝜃1

𝑑𝛽𝑑
𝑑𝑡

− 𝛽𝑛 𝑑𝑑𝑡
𝜕𝛽𝑑
𝜕𝜃1

− 𝜕𝛽𝑑
𝜕𝜃1

𝑑𝛽𝑛
𝑑𝑡

)
− 𝜕𝜓𝐵𝐴𝐶

𝜕𝜃1

(
2𝛽3

𝑑

𝑑𝛽𝑑
𝑑𝑡

− 𝛽2
𝑛𝛽𝑑

𝑑𝛽𝑑
𝑑𝑡

− 𝛽2
𝑑
𝛽𝑛

𝑑𝛽𝑛
𝑑𝑡

)
𝛽4
𝑑
− 𝛽2

𝑛 𝛽
2
𝑑

(3.72)

𝑑

𝑑𝑡

𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2
=

−𝛽2
𝑑

√︂
1 −

(
𝛽𝑛
𝛽𝑑

)2 (
𝛽𝑑

𝑑
𝑑𝑡

𝜕𝛽𝑛
𝜕𝜃2

+ 𝜕𝛽𝑛
𝜕𝜃2

𝑑𝛽𝑑
𝑑𝑡

− 𝛽𝑛 𝑑𝑑𝑡
𝜕𝛽𝑑
𝜕𝜃2

− 𝜕𝛽𝑑
𝜕𝜃2

𝑑𝛽𝑛
𝑑𝑡

)
− 𝜕𝜓𝐵𝐴𝐶

𝜕𝜃2

(
2𝛽3

𝑑

𝑑𝛽𝑑
𝑑𝑡

− 𝛽2
𝑛𝛽𝑑

𝑑𝛽𝑑
𝑑𝑡

− 𝛽2
𝑑
𝛽𝑛

𝑑𝛽𝑛
𝑑𝑡

)
𝛽4
𝑑
− 𝛽2

𝑛 𝛽
2
𝑑

(3.73)

𝑑

𝑑𝑡

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃1
=

(𝛼2
𝑛 + 𝛼2

𝑑
)
(
− 𝐿1 cos 𝜃1

𝑑𝛼𝑛
𝑑𝑡

+ 𝛼𝑛𝐿1 sin 𝜃1 ¤𝜃1 − 𝐿1 sin 𝜃1
𝑑𝛼𝑑
𝑑𝑡

− 𝛼𝑑𝐿1 cos 𝜃1 ¤𝜃1

)
+ (𝛼𝑛𝐿1 cos 𝜃1 + 𝛼𝑑𝐿1 sin 𝜃1)

(
2𝛼𝑑 𝑑𝛼𝑑𝑑𝑡 + 2𝛼𝑛 𝑑𝛼𝑛𝑑𝑡

)
(𝛼2
𝑛 + 𝛼2

𝑑
)2

(3.74)

𝑑

𝑑𝑡

𝜕𝜓𝐴𝐵𝑃

𝜕𝜃2
=

(𝛼2
𝑛 + 𝛼2

𝑑
)
(
− 𝐿2 cos 𝜃2

𝑑𝛼𝑛
𝑑𝑡

+ 𝛼𝑛𝐿2 sin 𝜃2 ¤𝜃2 + 𝐿2 sin 𝜃2
𝑑𝛼𝑑
𝑑𝑡

+ 𝛼𝑑𝐿2 cos 𝜃2 ¤𝜃2

)
− (−𝛼𝑛𝐿2 cos 𝜃2 + 𝛼𝑑𝐿2 sin 𝜃2)

(
2𝛼𝑑 𝑑𝛼𝑑𝑑𝑡 + 2𝛼𝑛 𝑑𝛼𝑛𝑑𝑡

)
(𝛼2
𝑛 + 𝛼2

𝑑
)2

(3.75)

where,

𝑑

𝑑𝑡

𝜕𝛽𝑑

𝜕𝜃1
=

𝐿3

√︃
(𝛼2
𝑛 + 𝛼2

𝑑
)
(
𝑑
𝑑𝑡

𝜕𝛼2
𝑛

𝜕𝜃1
+ 𝑑
𝑑𝑡

𝜕𝛼2
𝑑

𝜕𝜃1

)
− 𝐿3

𝜕𝛽𝑑
𝜕𝜃1

(
𝛼𝑛

𝑑𝛼𝑛
𝑑𝑡

+ 𝛼𝑑 𝑑𝛼𝑑𝑑𝑡
)

𝛼2
𝑛 + 𝛼2

𝑑

(3.76)

𝑑

𝑑𝑡

𝜕𝛽𝑑

𝜕𝜃2
=

𝐿3

√︃
(𝛼2
𝑛 + 𝛼2

𝑑
)
(
𝑑
𝑑𝑡

𝜕𝛼2
𝑛

𝜕𝜃2
+ 𝑑
𝑑𝑡

𝜕𝛼2
𝑑

𝜕𝜃2

)
− 𝐿3

𝜕𝛽𝑑
𝜕𝜃2

(
𝛼𝑛

𝑑𝛼𝑛
𝑑𝑡

+ 𝛼𝑑 𝑑𝛼𝑑𝑑𝑡
)

𝛼2
𝑛 + 𝛼2

𝑑

(3.77)

𝑑

𝑑𝑡

𝜕𝛽𝑛

𝜕𝜃1
= −2𝐿1

(
sin 𝜃1

𝑑𝛼𝑛

𝑑𝑡
+ 𝛼𝑛 cos 𝜃1 ¤𝜃1 − cos 𝜃1

𝑑𝛼𝑑

𝑑𝑡
+ 𝛼𝑑 sin 𝜃1 ¤𝜃1

)
(3.78)

𝑑

𝑑𝑡

𝜕𝛽𝑛

𝜕𝜃2
= 2𝐿2

(
sin 𝜃2

𝑑𝛼𝑛

𝑑𝑡
+ 𝛼𝑛 cos 𝜃2 ¤𝜃2 + cos 𝜃2

𝑑𝛼𝑑

𝑑𝑡
− 𝛼𝑑 sin 𝜃2 ¤𝜃2

)
(3.79)
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For Equations (3.76) to (3.79), we also need

𝑑

𝑑𝑡

𝜕𝛼2
𝑛

𝜕𝜃1
= −2𝐿2

1 𝑐𝑜𝑠2𝜃1 ¤𝜃1 − 2𝑦1𝐿1 cos 𝜃1 ¤𝜃1 + 2𝐿1𝐿2(cos 𝜃1 cos 𝜃2 ¤𝜃1 − sin 𝜃1 sin 𝜃2 ¤𝜃2)

(3.80)
𝑑

𝑑𝑡

𝜕𝛼2
𝑛

𝜕𝜃2
= −2𝐿2

2 𝑐𝑜𝑠2𝜃2 ¤𝜃2 + 2𝑦1𝐿2 cos 𝜃2 ¤𝜃2 + 2𝐿1𝐿2(cos 𝜃1 cos 𝜃2 ¤𝜃2 − sin 𝜃1 sin 𝜃2 ¤𝜃1)

(3.81)
𝑑

𝑑𝑡

𝜕𝛼2
𝑑

𝜕𝜃1
= 2𝐿2

1 𝑐𝑜𝑠2𝜃1 ¤𝜃1 − 2𝑥1𝐿1 sin 𝜃1 ¤𝜃1 + 2𝐿1𝐿2(cos 𝜃1 cos 𝜃2 ¤𝜃2 − sin 𝜃1 sin 𝜃2 ¤𝜃1)

(3.82)
𝑑

𝑑𝑡

𝜕𝛼2
𝑑

𝜕𝜃2
= 2𝐿2

2 𝑐𝑜𝑠2𝜃2 ¤𝜃2 − 2𝑥1𝐿2 sin 𝜃2 ¤𝜃2 + 2𝐿1𝐿2(cos 𝜃1 cos 𝜃2 ¤𝜃1 − sin 𝜃1 sin 𝜃2 ¤𝜃2)

(3.83)
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4. SUMMARY AND CONCLUSIONS

Overground pHRI experiments are essential to understanding human communica-

tion during physical interaction. Since no robot is available for such experiment, a robot was

developed capable of performing overground physical interaction with humans. This disser-

tation details the design and development of the same robot and reports some experiments

and preliminary results of overground pHRI experiments.

Knowing that we humans use our arms during physical interaction, it was clear that

more attention should be given to the robotic manipulator – the interactive arm. From

the existing knowledge of pHHI, the unique characteristics that the interactive arm should

possess were outlined, such as boasting inherently low impedance, being capable of applying

low force perturbation and measuring interaction force accurately, etc. [Paper I]. A design

of the interactive arm was drafted. The proposed design’s capability to meet the outlined

characteristics was verified even before fabricating a prototype using a MATLAB simulation

model [Paper II]. After the interactive arm was built, it was lodged on top of a custom frame,

which itself sat on top of a mobile four-wheel robot.

After Ophrie was fully functional, a few trials of the pHRI experiment ensured that

Ophrie was well up to the mark to what we had envisioned. It was fully capable of leading

human participants in an overground pHRI task and, at the same time, was able to capture

all the required dynamics to estimate human arm impedance [Paper III].

Human arm impedance has been studied for decades but has been primarily focused

on seated pHRI tasks. Hence, a new arm impedance estimation method was proposed to

extend the applicability of traditional and existing approaches to overground experiments

[Paper III]. The proposed method might not be an ideal way to deal with the arm impedance,

but this first step certainly helps analyze how the dynamical response of the human arm

changes based on different situations.
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The fourth paper extensively discussed how the human nervous system modulates

the arm dynamics to enable smooth motor communication during overground physical

interaction with an external agent. During the pHRI experiment conducted in our laboratory

setting, Ophire led the blindfolded human participants in guided walking tasks and recorded

the arm dynamics of the participant throughout the trials. Using the recorded information,

we estimated the participant’s arm impedance at two different locations in the walking path.

We noticed that we, humans, tend to lower our arm impedance when we anticipate any

motor information from the interacting partner – i.e., Ophire in this experiment. Based on

this, we concluded that the human nervous system lowers the arm impedance to capture the

motor intent (i.e., interaction forces and motion) from the interacting partner sensitively.

This is significant because this implied that, during overground pHRI, communication was

enabled through sensing movements rather than the interaction force itself.

Ophrie played a crucial role during pHRI experiments in a laboratory setting. It

perturbed the human arm at the specified locations with accurate target force and, simulta-

neously, measured human arm response – i.e., interaction forces and motions. Participants

completed each trial successfully as instructed, and we did not notice any hesitance or

reluctance of the subjects to continue the trials during the experiments regarding experi-

ment design or interacting with the robot. We believe that the demonstration of Ophrie’s

ability to perform an overground pHRI experiment and record the interaction dynamics is

an important first step.

When physically interacting robots were first introduced for seated pHRI experi-

ments, they quickly became invaluable tools not only for research but also for rehabilitation

and physical therapies. We expect Ophrie to provide a similar impact not only in overground

pHRI research but also in overground rehabilitation.
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5. RECOMMENDATIONS

A workspace size of 0.15x0.15m2 was one of the requirements set while designing

Ophrie’s interactive arm [Paper I]. It served its purpose as intended. As a safety feature,

the robot was programmed to force stop if the handle goes out of the specified workspace

during the overground pHRI experiment. Most of the trials were completed without the

need for repetition because of the robot getting force-stopped. It might, partly, be because

the participants were instructed to try to maintain their hand position around the center of

the workspace. The presence of background stiffness might have also played a significant

role. However, a bigger workspace is desirable if the robot is used for experiments where

subjects should be asked ’not to intervene to the perturbation.’ The current workspace can

be widened by replacing the links following the procedures discussed in Paper I.

Even though we did not notice any hesitance or reluctance from the subjects re-

garding Ophrie’s interactive behavior or its overall design, a lighter design would add an

aesthetic appeal to the robot.

Furthermore, the mobile robot base was purchased with preinstalled wheel encoders

and a motor driver. For better performance, replacing the encoders with higher resolution

ones is recommended. The motor driver can also be custom developed. It will provide

more flexibility to handle the encoder feedback to the motor controller and the output control

command. Likewise, the trajectory tracking performance can be improved by adding lasers

or camera feedback in addition to encoder feedback.

Since the wheeled base of Ophrie takes simple velocity commands (linear and

angular) and executes it at a slow rate of 40 Hz, the base is not ideal for feedback control

for adapting to quick changes in the commands. In addition, the wheel controllers have

a predefined velocity profile along which the velocity increases or decreases. This is

acceptable for when the robot is leading and the human partner is following, but may not be

suitable for following an arbitrary trajectory of a human leader. In the current work where
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we focused on assigning the leader role to the robot, Ophrie worked perfectly fine. This

also helped reduce variability in the experimental trials that may arise from variable robot

trajectories. Having Ophrie as the leader also simulates a potential pHRI task of assisting

people to walk. A hierarchical controller that takes advantage of the fast and accurate robot

arm control while the base slowly adjusts to the human lead may allow Ophrie to take a

follower role in the future.

Last but not least, like any other mechatronics system, the robot Ophri also has

room for improvements from its controller design to replacing the force/torque sensor with

a higher resolution one, improving error handling technique, etc. Likewise, the power

source to the mobile base, which currently is a rechargeable lithium-ion battery, can be

replaced with the already available AC source, which powers the rest of the robot, using an

appropriate AC to DC converter.



APPENDIX A.

SUPPLEMENTARY MATERIALS FOR PAPER III



125

INTERACTION DYNAMICS OF THE COMBINED HUMAN ARM-ROBOT MA-
NIPULATOR SYSTEM

The interaction dynamics of a human arm is assumed to behave like a mass-spring-

damper system, which involves passive, linear and time-invariant second-order dynamics.

Figure A.1 shows a schematic representation of combined interaction dynamics of the

robotic manipulator and the human arm right before the onset of perturbation (Figure A.1A),

and during the perturbation (Figure A.1B).

Figure A.1. The schematic representation of the interaction dynamics of the robot-human
arm system during the experiment. Human arm model is characterized by mass (𝑚𝐻),
stiffness (𝑘𝐻), and viscosity(𝑏𝐻). The equilibrium point of the human arm is assumed to be
at 𝑥𝐻 . 𝑚𝑖𝐻 be the mass of the interaction handle. (A) At the instant right before the onset
of the perturbation, stiffness controller with 𝑘𝑅 stiffness is active whose equilibrium point
is set at 𝑥𝑅. The interaction handle is at 𝑥0 at this instant. (B) During the perturbation, the
stiffness controller is replaced by interaction force controller (target force = 𝑓𝑡𝑎𝑟𝑔𝑒𝑡). The
position of interaction handle at any instant during perturbation is represented by 𝑥(𝑡). The
interaction force measured at that instant be 𝑓 (𝑡). All the positions are represented with
respect to the robot frame in this discussion.

The arm dynamics right before the onset of the perturbation can be represented as

𝑓𝐻0 = (𝑚𝐻 + 𝑚𝑖𝐻) ¥𝑥0 + 𝑏𝐻 ¤𝑥0 + 𝑘𝐻 (𝑥0 − 𝑥𝐻) (A.1)
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where 𝑓𝐻0 is the elastic restoring force of the arm right before the onset of perturbation. ¥𝑥0

and ¤𝑥0 are the velocity and acceleration of the interaction handle at that instant, respectively.

The robotic manipulator is stiffness controlled with respect to the displacement

from the workspace center (𝑥𝑅). Hence, the force maintained by the stiffness controller

right before the onset of perturbation is,

𝑓𝑅0 = 𝑘𝑅 (𝑥0 − 𝑥𝑅) (A.2)

At any instant before the perturbation onset, the force measured by force/torque

sensor is equal to the elastic restoring force from the arm and the force maintained by the

stiffness controller. Hence, force measured right before the onset of perturbation is

𝑓0 = 𝑓𝑅0 = 𝑓𝐻0. (A.3)

Substituting Equation A.1 in Equation A.3, we get

𝑓0 = (𝑚𝐻 + 𝑚𝑖𝐻) ¥𝑥0 + 𝑏𝐻 ¤𝑥0 + 𝑘𝐻 (𝑥0 − 𝑥𝐻) (A.4)

The stiffness controller is deactivated when the force perturbation 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 is applied.

The interaction dynamics after the perturbation is,

𝑓 (𝑡) = (𝑚𝐻 + 𝑚𝑖𝐻) ¥𝑥(𝑡) + 𝑏𝐻 ¤𝑥(𝑡) + 𝑘𝐻 (𝑥(𝑡) − 𝑥𝐻) (A.5)

Subtracting Equation A.4 from Equation A.5, we get

𝑓 (𝑡) − 𝑓0 = (𝑚𝐻 + 𝑚𝑖𝐻) ( ¥𝑥(𝑡) − ¥𝑥0) + 𝑏𝐻 ( ¤𝑥(𝑡) − ¤𝑥0) + 𝑘𝐻 (𝑥(𝑡) − 𝑥0) (A.6)

For our experiment, all the variables except the system parameters (𝑚𝐻 + 𝑚𝑖𝐻 , 𝑏𝐻 ,

and 𝑘𝐻) are known. Hence, the system parameters can be estimated using linear regression.
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This section describes the feature of Ophrie and contains information about mecha-

tronics, software, and operating the robot.

Figure B.1. Ophrie
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1. MECHATRONICS FRAMEWORK

1.1. CONNECTING OPHRIE TO HOST COMPUTER

You must connect Ophrie to the host computer using the Ethernet Cable. The host

computer is the one where you will have a full functioning LabVIEW program ready to be

deployed to Ophrie. Make sure that Ophrie is connected to an Ethernet port that shares

the same subnet mask as that of your host computer. The blue cat5e cable can be seen

in Figure B.1, which is wrapped around the white power cable on the right-hand side of

Figure B.1.

1.2. CONNECTING THE SUB-SYSTEMS

Five mechatronics sub-systems – a NI c-RIO 9045, a force/torque transducer

(mini45), two servo motors, and a four-wheel differential drive (IG52-DB 4WD, Super-

droid Roobts) robot – constitute Ophrie, wired together with the necessary accessories. A

detailed mechatronic framework of Ophrie is shown in Figure B.2. The flowchart shows

some cable color code conventions that are currently being used in Ophrie. The convention

can be changed if needed.

Each servo motor (AKM32E-ANCNAAA0) is designed to be controlled using a

servo drive (AKD-P00606-NBEC-0000). A power cable (CP-507CCAN-03-0) supplies

power to the motors and a feedback cable (CFSB7374N-03-0) feeds the encoder reading

back to the respective servo drive. The servo drives require a separate AC input and two

extra 24V DC inputs for their operation (NI PS-16).

The master real-time controller (c-RIO) is connected to the two servo drive slaves in

a daisy chain fashion (Ethernet port 1 of c-RIO to X5 port of the servo drive 1, and X6 port

of the servo drive 1 to X5 port of the servo drive 2) and are controlled using the EtherCAT

Protocol. The controller also receives the analog voltages from the force/torque control

(ATI Industrial Automation Inc.) using NI 9252 analog voltage input module. The six
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different voltages correspond to forces and torques measured by the force/torque transducer

(mini45, ATI Industrial Automation, Inc.) which is mounted at the end-effector. The mux

board electronics connect directly to the transducer’s sensing elements and provide high

level output signals (Fx, Fy, Fz, Tx, Ty, and Tz). In addition, the controller accepts discrete

signals from F/T controller using digital I/O module (NI 9401), here used for monitoring

the health of the transducer.

The c-RIO controller also serves as the motor controller for the wheels. The mobile

robot, on top of which the entire body and the interactive arm of Ophrie rests, was purchased

from Superdroid Robots. It consists of two motors (of the wheels) powered by the Roboclaw

2x30A motor driver. Two 24V lithium-ion batteries power the motor driver. The motor

encoders, which are powered by the motor driver (+5V), feedback the quadrature pulses

to the motor driver. The c-RIO controller communicates with the motor driver through

serial communication. We have used the RS-232 serial port for this purpose and have used

‘RS-232, S8 Serial Cable, 10-Position Modular Plug to 9-Pin DSUB’ cable from NI. The

operating voltage of the c-RIO RS-232 is higher than that of the motor driver. Hence, we

have used RS-232 to 5V TTL converter, which was purchased from Jeddy Ventures LLC -

SerialComm.

1.3. POWERING THE SUB-SYSTEMS

The robot needs to be powered using an external AC source. The base part is powered

by two 12V rechargeable lithium-ion batteries. Ensure that the batteries are adequately

charged before operating the robot. A power extension has been used to provide power

to six different sub-systems, namely the c-RIO controller, two power supplies, two AKD

servo drives, and a force/torque controller, as shown in Figure B.2. A proper inspection is

required to ensure that all the circuits are complete. The safe working voltage for the c-RIO

controller is +24V, and hence, an AC to DC converter is required.
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2. SOFTWARE FRAMEWORK

LabVIEW programming language is used to program the commands required to op-

erate Ophrie. Two additional modules (LabVIEW SoftMotion module 2018 and LabVIEW

Real-Time module 2018) are required to deploy the commands from the remote computer

(Host) to the central controller. The designated computer and the central controller should

be connected to Ethernet and maintain the same subnet mask. NI stopped releasing a

new version of the LabVIEW SoftMotion module after LabVIEW SoftMotion module 2018.

Hence, it is advised not to update the LabVIEW program or any accessories to a higher

version for the smooth operation of Ophrie.

Figure B.3. LabVIEW project main tab
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2.1. LABVIEW PROJECT: IMPEDANCE CONTROL.LVPROJ

All the LabVIEW programs, in host and remote c-RIO controller, are controlled by

a single LabVIEW project, ‘impedance control.lvproj’ in this case. Figure. B.3 shows the

main tab of the LabVIEW project programmed for Ophrie. The folder ‘My Computer’ con-

tains all the programs that run on the host computer, and the folder ‘r-phrilab(131.151.112.3)’

contains the programs that runs on the central controller.

2.1.1. My Computer. In this project, the ‘My Computer’ folder only contain a

program that receives and records the data passed from the remote controller. Figure B.4

shows the program ‘save_data.vi’. Make sure to run this after all the programs on the remote

computer are completed.

(a) (b)

Figure B.4. Save_data.vi (a) Front panel (b) Block diagram

2.1.2. r-phrilab(131.151.112.3). r-phrilab(131.151.112.3) in Figure B.3 represents

the real-time controller of Ophrie. It is registered as ’r-phrilab’ in the university network

with an IP address of 131.151.112.3. It contains all the LabVIEW VIs, sub-VIs, libraries,

and the external modules attached, such as c-RIO chassis, EtherCAT master and the slave

axes. Axis 1 represents the servo motor 1 and axis 2 represents the servo motor 2. Both of

these axes are controlled through two servo drives as described earlier.
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The VIs whose names start with mainVI are the main programs and call different

other VIs when they are functioning. Four such VIs can be seen in Figure B.3. These are

very similar but might have been modified to serve different experiments and trial types.

During a specific experiment design, one mainVI is self-sufficient, and there is no need to

switch to a different one. The Figures B.5 and B.6 show the front panel and block diagram

of ‘mainVI_experiments.vi’.

The front panel of the ‘mainVI____.vi’ VI lets the user input the magnitude of

background stiffness (75N/m in both x and y direction is used in Figure B.5a). Likewise,

the user can choose the trial number (‘Case’) that will be conducted (default = 0). The

graph to view instantaneous forces in real-time is available, as shown in the top left of

Figure B.5. After the VI stops, a time series plots of the forces is generated in the bottom

two plots of Figure B.5. The iteration time of the interactive arm and the base control are

plotted separately as well. Ophrie starts moving only after latching ‘Engage Manipulator’

and ‘Start Experiment’ in sequence. It stops after the trial is completed or the ‘disable axis

& stop robot’ switch is pressed.

The block diagram of the ‘mainVI____.vi’ VI is shown in Figures B.5a, and B.6.

The program uses several subVIs, which are listed below.

• v_omega_to_QPPS: converts the asked linear and angular velocity command to re-

quired quadrature pulses for left and right wheels (Figure B.7).

• QPPS_to_v_and_omega: converts the measured right and left wheel speeds into

linear and angular velocity of Ophrie (Figure B.8).

• forward_kinematics(SubVI).vi: accepts the instantaneous angular position of the

two servo motors driving the interactive arm, and computes the Jacobian matrix

(Figure B.9).
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(a)

(b)

Figure B.5. mainVI_experiments.vi (part 1) (a) Front panel (b) Block diagram part 1 (left).
Note: see also Figure B.6.
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(a)

(b)

(c)

Figure B.6. mainVI_experiments.vi (part 2) (a) Block diagram part 2 (upper row- middle),
(b) Block diagram part 3 (upper row –right), c) Block diagram part 4 (lower row) – robot
control. Note: see also Figure B.5.

• Jacobian(SubVI).vi: accepts the instantaneous angular position of the two servo

motors driving the interactive arm and computes the end-effector position using

forward kinematics (Figure B.10).
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• gain_conversion(SubVI): converts the PID gains (Kp, Ki, and Kd) to parameters that

PID function block accepts, which are Kc, Ti, and Td (Figure B.11).

• initilize.vi∗∗: initializes the motor driver for the robot base.

• ResetEncoders.vi∗∗: resets the wheel encoders.

• ReadSpeedM1.vi∗∗: read speed of the right front wheel

• ReadSpeedM2.vi∗∗: read speed of the left front wheel

• SpeedAccelerationM1M2.vi∗∗: command the motor driver to run at the specified

speed and acceleration.

• close.vi∗∗: clears the current task.

∗∗These subVIs are placed in the library named ‘Ion Motion Roboxlaw.lvlib’ (see Fig-

ure B.3). These are used to command Roboclaw 2x30A to do required tasks, and were

provided by Basic Micromotions Inc.

For calibration of servo motor positions before operating Ophrie, ‘Reset position.vi’

has to be run. Proper instruction has to be followed. If procedures are correctly followed, this

VI sets the servo motor positions to zero when the proximal links are aligned perpendicular

to the robot frame towards the robot handle. The block diagram and the front panel for this

VI can be seen in Figure B.12.

The VI ‘Read and Clear Faults’ lets user view the error message if there are any. It

clears the errors as well. Make sure to understand the cause of the error. Clearing the errors

without understanding why they occurred in the first place may lead to accidents. The block

diagram and the front panel for this VI can be seen in Figure B.13.

The ‘F_b4_perturbation.vi’ VI (in Figure B.3) is a global variable and is used to

record the force vector right before the perturbation onset.

The ‘disable_drive.vi’ VI (in Figure B.3) can be used to disable the AKD drives and

stop the move if in case the servo motors have to be force stopped (see Figure B.14).
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(a)

(b)

Figure B.7. v_and_omega_to_QPPS.vi (a) Front panel (b) Block diagram

The library named ‘shared_variables.lvlib’ has one shared variable block used to

record and transfer the variables that have to be stored for future analysis. The sender node

of this variable can be seen on the top-right position of Figure B.6b. The receiver node
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(a)

(b)

Figure B.8. QPPS_to_v_and_omega.vi (a) Front panel (b) Block diagram

of this variable can be seen in Figure B.4. After the data is loaded (inside c-RIO) in this

variable, it stores it and spits out (in the host computer) whenever asked – that is, whenever

‘save_data.vi’ is called.

Some of the features used in the VIs discussed in these sections are available only

with LabVIEW Softmotion module 2018 and LabVIEW Real-Time module 2018.
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(a)

(b)

Figure B.9. forward_kinematics(SubVI).vi (a) Front panel (b) Block diagram
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(a)

(b)

Figure B.10. Jacobian(SubVI).vi (a) Front panel (b) Block diagram
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(a) (b)

Figure B.11. gain_conversion (SubVI).vi (a) Front panel (b) Block diagram



143

(a)

(b)

Figure B.12. Reset position.vi (a) Front panel (b) Block diagram
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(a)

(b)

Figure B.13. Read and Clear Faults.vi (a) Front panel (b) Block diagram
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(a)

(b)

Figure B.14. disable_drive.vi (a) Front panel (b) Block diagram
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3. OPERATING OPHRIE

This section provides the step-by-step procedure for operating Ophrie.

1. Ensure all the circuits are complete as shown in Figure B.2. Plug Ophrie’s power

cable into the AC source. Connect c-RIO to Ethernet. Ensure that the host computer

shares the same subnet mask with Ophrie. Turn on the power to the base robot.

Ensure all other mechatronics sub-systems are not turned off.

2. Configure cRIO (if not done already). You can use Ni Max for doing so. Do not

update LabVIEW or its modules to versions higher than 2018. This step is only

required if cRIO is being connected for the first time. The present Ophrie design is

already configured, and no extra input is needed.

3. Configure and calibrate F/T controller (if not done already). For more information

on performing calibration, check for the company user manual. This step is only

required during the initial installation of either the F/T controller, transducer, or both.

For the present Ophrie design, it is already configured and calibrated. Hence this step

can be skipped.

4. Create a LabVIEW project. Right-click on the project and add ‘Target and devices.’

Select and add the desired device. If you are using ‘impedance_control.lvproj’, Real-

Time CompactRIO (r-phrilab) is already added. Hence, this step can be skipped.

5. Right-click on the device named r-phrilab(131.151.112.3) and connect to the remote

device. You won’t be able to connect to the device if your device’s IP address is input

wrong. You can check your device’s IP address through NI MAX. If the IP address

is wrong on your project, go to the properties tab by right-clicking on the device, and

you should be able to change the IP address in the ‘general’ tab.
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6. Right click and go to properties. Set the required scan engine properties. Currently,

it is set to scan period of 1ms, network publishing period of 500ms, and the scan

engine priority is set to ‘above time critical.’

7. You should already see the c-RIO chassis in the list of targets and devices available

to the added device.

8. Add ‘EtherCAT Master’ to your devices. To do that, right-click on your device and

navigate through ‘New’ and ‘Target and devices.’ You should find ‘EtherCAT Master

Device’ there. The installed software and modules can be navigated using NI MAx.

In NI MAX, select your device and go to software. You should be able to spot all

the software, including ‘NI-industrial Communication for EtherCAT 18.0’, which is

required to work with EtherCAT protocol.

9. Add ’SoftMotion Axis.’ To do that, right-click on your device and navigate through

‘New’ and ‘SoftMotion Axis,’ and add two axes.

10. Configure the ‘Softmotion Axis’ accordingly. If you are using ‘impedance con-

trol.lvproj’ project, it is already configured. Hence, this step can be skipped.

11. After you add ‘SoftMotion Axis’, two scan engine modes will be available. Right-

click on the device, go to ‘Utilities,’ navigate to ‘Scan Engine Mode’ and choose either

of those two modes, as required. If LabVIEW throws the error “An error occurred

while attempting to switch the I/O scan mode. NI SoftMotion: Parameter specified

exceeds the valid data range. Refer to .... ranges”, the step 6 is not configured properly.

12. If you are creating a new project, right-click on your device and navigate through

‘New,’ and then ‘VI.’ If you are using ‘impedance control.lvproj’, proceed to step 13.

The steps after this will assume that the user will be using ‘impedance control.lvproj’

project.
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13. Open "Read and Clear Faults.vi". Chose axis 1. Run the VI. Press ‘Clear Faults’. If

there are no errors, press stop. If you get any errors in the error message, go back and

change the ‘Scan engine mode’ (follow step 11).

14. If step 13 is successfully completed without any error message or the error pop-up

tab, skip this step. If you get an error saying, “An error occurred while attempting to

switch the I/O scan mode: LabVIEW: (Hex 0x 80DF000A) A communication error

between the host and target occurred” or if NI-cRIO device disconnects, connect to

the c-RIO device again and restart c-RIO. Then, repeat 13.

15. Repeat step 13 and step 14 for axis 2 using the same VI as in step 13.

Calibration of interactive arm position: Step 16 to step 19.

16. Move the manipulator Clockwise until the proximal link of Motor 1 touches the

back frame. Press gently towards the Clockwise direction so that the link maintains

continuous contact with the frame. At the same time, the proximal link from the

motor 2 should be pressed against the motor 1 axis.

17. (a) Open "Reset Postion.vi"; (b) run the VI; (c) press reset position switch; (d) wait

until program stops; (e) if no errors, close the VI and proceed to step 20.

18. If there is an error, check whether the NI scan engine is in ‘active status’ or not. If

not, change it to ‘active status.’ If it is already ‘active,’ change to configuration status

and revert to ‘active status.’

19. Repeat step 17 after step 18. (Note, you do not have to do step 18 and step 19 if the

VI does not throw any error after step 17.)

Staring Ophrie: using mainVI____.vi

20. Open either of the four VIs (‘MainVI____.vi’) shown in Figure B.3.
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21. Set the required background stiffness value and choose the trial number you want to

run. Then run the VI.

22. Make sure that someone is holding the interaction handle. FAILING TO FOLLOW

THIS MAY CAUSE DAMAGE TO THE INTERACTIVE ARM.

23. Engage manipulator by pressing ‘Start Manipulator.’ This will activate the position-

based background stiffness controller.

24. Whenever ready, press ‘Start Experiment’ to trigger the robot base movement.

25. The entire system can be shut down by pressing ‘Stop: disable axis & stop robot’ at

any time. To stop the robot base, the switch on the back of the robot base frame has

to be turned off.

26. With the current control design, Ophrie is programmed to follow either of the 3

trajectories mentioned in Paper IV, provide 0.8ms of perturbation, and automatically

stop after the trial ends. This sequence (or experiment design) can be changed

through some algorithm changes inside the math script shown in Figure B.6a. A

couple of changes have to be done in the robot base algorithm accordingly (that is, in

Figure B.6c).
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Table B.1. More information on the parts and software (and modules) used in Ophrie’s
current version can be found using the link provided in this table.

Parts and software (and modules) External link to the product page
NI c-RIO 9045 https://www.ni.com/en-us/

support/model.crio-9045.html
NI 9252 module https://www.ni.com/en-us/

support/model.ni-9252.html
NI 9401 module https://www.ni.com/en-us/

support/model.ni-9401.html
NI PS-16 https://www.ni.com/en-us/

support/model.ps-16.html
‘10-Position Modular Plug to 9-Pin
DSUB’ cable, NI

https://www.ni.com/en-us/
support/documentation/
product-certifications/model.
rj50-db9-serial-cable.html

LabVIEW 2018 https://www.ni.com/
LabVIEW 2018 SoftMotion Module https://www.ni.com/
LabVIEW 2018 Real-Time Module https://www.ni.com/
Servo Motor (AKM32E-ANCNAAA0) https://www.kollmorgen.com/

en-us/service-and-support/
technical/product-selectors/
?shareResults=zzAKM32E&
productType=Servo-Motor

AKD Drive (AKD-P00606-NBEC-0000) https://www.kollmorgen.com/
en-us/products/drives/servo/
akd/

ATI F/T sensor: mini45 https://www.ati-ia.com/
products/ft/ft_models.aspx?
id=mini45

ATI F/T controller https://www.ati-ia.com/app_
content/documents/9620-05-CTL.
pdf

Motor driver (Roboclaw 2x30A) https://www.basicmicro.com/
RoboClaw-2x30A-Motor-Controller_
p_9.html

Robot base (Superdroid Robots: IG52-
DB, 4WD)

https://www.
superdroidrobots.com/robots/
robotic-kits-platforms/
wheeled-robots/product=1648

RS-232 to 5V TTL https://www.serialcomm.com/
datasheets/TTL-232-5IE.pdf
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4. PRE-PROCESSING ARM MOVEMENT DATA

In our lab, it is possible to record the human biomechanics movement data with

the help of the Vicon vantage cameras mounted all around the lab. Vicon Nexus software

and ProCal are required to record and pre-process the data. More information about the

cameras and required software and instructions on how to operate the system can be found

at https://www.vicon.com/hardware/cameras/.

This section will briefly discuss what data was recorded and how it can be pre-

processed to extract biomechanics movement information during the experiments that were

reported in Paper III and Paper IV.

In both the papers, robot position and its links’ positions were recorded with the

help of 10 markers arranged in the same way as the template as shown in Figure B.15. The

markers’ positions can also be seen in Figure B.1, and more clearly on the figure included

in Paper III. The markers defined 3 rigid parts of Ophrie. When viewed from the back of

Ophrie towards the interactive handle, markers RA, RT, and RL represent the right proximal

link (green). Likewise, markers LA, LT, and LL represent the left proximal link (red), and

RBB, LBB, RFB, and LFB represent the robot’s frame (blue). From the time-series data

collected, we can extract the angular position of the robot links and the location of Ophrie

with respect to lab origin. The naming convention for the markers can be found in Table B.2.

In the experiment reported in Paper III, we used the standard template ‘PlugIn Gait

FullBody ai’ provided by Vicon Nexus. There are 39 markers required for this template,

which requires a significant amount of time for the subject preparation. We used a custom

template for the human right arm and the shoulder in the experiment reported in Paper IV.

The marker positions can be seen Figure B.16. Markers LSHO, C7, and CLV represent

the shoulder, RSHO, UPA and ELB represent the upper arm, FRMBB, FRMBA, and

FRMF represent the forearm, and WRA, WRB, and FIN represent the hand. The naming

convention for the markers can be found in Table B.3.
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Figure B.15. Ophrie’s skeleton template as captured by the camera system.

Table B.2. Marker notations for the custom build robot template that were used to record
the links’ positions and the robot’s location.

Abbreviation Marker notation
RA Right (motor) Axis
RT Right Top (the rotational joint between right proximal and distal

links)
RL Right Lower (parallel to the right proximal link)
LA Left (motor) Axis
LT Left Top(the rotational joint between left proximal and distal links)
LL Left Lower (parallel to the left proximal link)
RFB Right Forward (of the robot) Base (forward is towards handle)
RBB Right Backward (of the robot) Base (backward is towards the motors)
LFB Left Forward (of the robot) Base
LBB Right Backward (of the robot) Base
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(a) (b)

Figure B.16. Right arm of the participant (a) captured by vicon camera system (custom
arm template) (b) picture taken after the markers were attached to the subject.

Table B.3. Marker notations for the right arm template that was used to record the subject’s
right arm movement during the experiment that is reported in Paper IV.

Abbreviation Marker notation
LSHO Left SHOulder (on the right shoulder end of the clavicle bone)
C7 7th Cervical – the largest and most inferior vertebra in the neck region
CLV clavicle (upper end of the sternum)
RSHO Right SHOulder
UPA UPper Arm
ELB Elbow (on the elbow axis)
FRMBB FoRe arM Back B – pinky finger side
FRMBA FoRe arM Back A – thumb finger side
FRMF FoRe arM Front
WRB WRist B – pinky finger side
WRA WRist A – thumb finger side
FIN FINger (on top of the hand)
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