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ABSTRACT

This research starts with designing optimal control for uncertain systems, adding

the adaptive control input to suppress the uncertainty. It then follows with designing

the optimal control for state constraint, designing the optimal nonlinear reference model,

designing adaptive control to handle state constraint and uncertainty. Finally, it designs the

finite-time controller for uncertain multiagent systems.

It is well known that the design of the control algorithm for an uncertain dynami-

cal system is not trivial. Motivated by this standpoint, this study focuses on optimal and

adaptive control approaches with stability and performance guarantees for uncertain sole

and multiagent dynamical systems. From the different perspectives of the controller design,

designing the proper control input with the optimal method and suppressing the uncertain

part with adaptive control are considered. An adaptive guidance/control method is also

presented that has the capability to land the aircraft safely once a fault has occurred. Then,

the extension of optimal control with state constraint is considered based inverse optimal

control formulation with a set-theoretic barrier Lyapunov function (STBLF). The optimal

nonlinear reference model with the Θ-D method is also proposed since linear reference

model may not provide desired behavior of these systems. Another challenge in state

constraint problems is that the dynamical system also has uncertainty. To solve both state

constraint and uncertainty problems together, a new set-theoretic model reference adap-

tive control is further proposed with an adaptive control approach for uncertain nonlinear

systems. Finally, the nonlinear reference model is proposed for multiagent systems with

finite-time stability guarantees using a distributed adaptive control approach.

To conclude, the proposed new optimal and adaptive control methods are introduced

with stability analysis using the optimal solution and Lyapunov stability. The efficacy of

the proposed methods is further demonstrated with illustrative numerical and experimental

results.
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1. INTRODUCTION

In this section, a summary of the literature review of the mostly related control

architectures to the contributions of this dissertation is mentioned. Building the control

methods for uncertain dynamical systems is not a trivial task. There are some properties

which should be considered. For example, improve the performance, guarantee stability,

suppress the uncertainties, and not violate the system states of uncertain dynamical sys-

tems. The main goal of this dissertation is to develop control architectures with important

constraints (state, time, downrange) for uncertain dynamical systems.

1.1. INTEGRATED GUIDANCE AND CONTROL

There has been a lot of interest in control of unmanned aerial vehicles (UAVs).

Specifically, they have missions to accomplish; hence, they have a path to follow and

need a controller to keep them on a desired path. Most guidance and control systems

for path-following UAVs employ a tracking-error-correction approach [1, 2, 3, 4, 5, 6].

However, such designs do not perform well when tracking errors become large. The error-

based techniques can cause control saturation or divergence since the control command

magnitudes are usually proportional to the tracking errors.

Many researchers focus on the integrated guidance and control (IGC) algorithms for

dynamical systems [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Integrated guidance and

control is the primary approach, but they use different perspectives to solve the problem.

The higher-order sliding mode with integrated guidance and control method is shown in

[7, 17]. The higher-order sliding mode is used to design a virtual controller that helps to

avoid chattering. Some researchers focus on the adaptive control for IGC method. In [9],

the authors use adaptive control with sliding mode control and in [18], adaptive control
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with output feedback and backstepping techniques is used. In [10, 19, 16, 14], the feedback

control, backstepping control, PID control, and disturbance observer are used with IGC,

respectively.

On the other hand, the authors of [15] focus on path-based planning and control

method. It uses desired and measurable system output. It tells motion or action reference

variable, which is called an event. They derive a closed-form of time and energy optimal

motion plans with nonlinear feedback control. In [8], the authors design the integrated

guidance and control method that combines three discrete algorithms. It has been shown

that the performances of IGC and traditional (decoupled) guidance and control algorithms.

Also, in [13], the authors focused on the separated and the integrated guidance and control

design. Moreover, they analyze two different integrated guidance and control, which are

integrated single loop guidance and integrated two-loop guidance methods.

The researchers in [11] use integrated guidance and control method for trajectory

tracking controllers for AUVs (Autonomous Underwater Vehicles). In this method, they

design two systems together. This method has two advantages compared to traditional

methods. One of the advantages is that the steady-state tracking error reaches zero. The

second one is that the proposed controller cover stability of combined control and guidance.

In [12], the authors develop a unified receding horizon optimization (RHO) method

for integrated path planning and tracking control of an autonomous underwater vehicle

(AUV). The state trajectory of a virtual reference system is used as a planned path; the

virtual reference system has the same kinematic and dynamic properties as AUVs. Using

the virtual reference makes tracking control problems to the regulation problem of the error

dynamics.
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1.2. STATE CONSTRAINTS

There are some limitations (such as task space of robot arms, angle of airplanes,

and speed of motor) on the dynamical systems, which may violate the designing the control

laws when constraints of system are not considered. From this standpoint, some researchers

focus on the state constraints for systems [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

The prescribed performance bound is developed in [20, 21, 22, 28]. This method

transforms the constrained system into the unconstrained systems for feedback linearizable

nonlinear systems. Specifically, in [21], the single-input single-output (SISO) system, in

[20], the multi-input multi-output (MIMO) are used. Also, in [22], the authors extend

prescribed performance bound to the MIMO affine systems with measurable state and

unknown nonlinearities. In [28], prescribed performance bound is used with neural network

control method.

On the other hand, some researchers in [30, 32, 31, 23, 33] focus on the set-theoretic

barrier Lyapunov function. In [23], Yucelen et al work on the set-theoretic function for

multiagent systems, then [30], Arabi et al use the set-theoretic barrier Lyapunov function

method to keep the error (between actual state and reference model) under the user-defined

constant. Then, the work is extended to the user-defined time-varying performance bound

[31]. Lastly, the performance of the proposed method on the experimental testbed is

demonstrated in [32]. Also, in [29], the author developed an adaptive control method that

forced the state of the system to stay in a given region. The reason for the chosen region is

to show stability analysis for nonlinear systems. The bounding functions are used to limit

the states of a system. These bounding functions keep the states under the limit when the

growth rate of the bounding functions is sufficiently large.

The Barrier function is used in many studies [24, 34, 25, 26, 27]. They focus on

the multiple state constraints with a combination of other methods or different systems. In

[24], Ngo et al use integrator backstepping for feedback linearizable system. The Barrier

function is defined on the cost function of optimal control in [34]. In [25], the authors
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consider the symmetric and asymmetric barrier Lyapunov function for SISO feedback

linearizable nonlinear systems. Also, full-state feedback and output feedback methods with

tracking the reference trajectory within the air gap are considered in [26]. The neural

network control is used for unknown functions, and a barrier Lyapunov function is used to

keep the unknown functions within the specified compact set in [27].

The input/state hard constraint is focused in [35] with the filtering of the desired ref-

erence trajectory using reference governor. In addition, the survey is given with constrained

model predictive control in [36].

1.3. NONLINEAR REFERENCE MODEL

Although the linear model reference adaptive control is a well-known research

topic, a linearized model does not always have a better performance in nonlinear systems.

The nonlinear dynamical system may have dynamic uncertainties or some limitations on

the systems. The linear reference model can achieve desired closed loop in a limited

region. Therefore, some researchers focus on the nonlinear reference model to overcome

the limitations. The researchers given in [37, 38, 39, 40, 41, 42] consider various method

to solve the nonlinear dynamical problems. For example, in [37], Scarritt uses a nonlinear

reference model to have the closest approximation of true system with variable structure

controller to track desired attitude trajectory. Peter et al use nonlinear dynamic inversion

(NDI) control with nonlinear reference model [38]. Yucelen et al consider the nonlinear

reference model based on adaptive control method to handle uncertainties and vanish the

error between uncertain dynamical system and the nonlinear reference model in steady-state

[39, 42]. The L1 adaptive control method with time-varying nonlinear reference model

is considered by researchers given in [40]. Also, the passivity based adaptive nonlinear

controller with nonlinear reference model is developed in [41].
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1.4. OPTIMAL SOLUTIONS WITH NONLINEAR CONTROL PROBLEMS

The optimal control of nonlinear dynamical systems has an ever-increasing interest.

The optimal solution depends on the solution of the Hamilton Jacobi Bellman (HJB)

equation. The HJB solution is a challenging problem. Therefore, various methods propose

to solve the HJB equation. Some researchers in [43, 44, 45, 46, 47, 48, 49, 50, 51, 52] use

an approximate solution of the HJB equation.

Another method of optimal control solution for uncertain nonlinear systems is the

actor-critic-identifier (ACI) method. This method helps to approximate the HJB equation

with neural network (NN) control with no requirement of knowledge of system dynamics

[53, 54, 55, 56, 57, 58]. The authors of [59, 60, 61, 62] propose a concurrent learning-based

approximate optimal control. Also, the authors of [63, 46] develop a concurrent learning

method for synchronization of a leader-follower network of agents.

Other method for for nonlinear system by finding the approximate solution to HJB

equation is the suboptimal feedback controller [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74].

Burghart et al in [75] and Pan et al in [76] propose a suboptimal feedback control with

Tylor’s series expansion for nonlinear systems. Also, in [77], power series expansion is

proposed.

Reinforcement learning is proposed for solving partially unknown finite-horizon

optimal control problems [78]. Zhao et al use reinforcement learning based on neural

network optimal tracking control for uncertain nonlinear systems [79]. Bradtke et al

focus on direct optimal adaptive control using reinforcement learning based on dynamic

programming. Also, the adaptive optimal tracking control is used with reinforcement

learning to solve linear quadratic regulator in [80].

The researchers propose a generalized Hamilton-Jacobi Bellman (GHJB) equation

using Galerkin approximation in [81, 82]. This method reduces the computational com-

plexity.
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In the current literature, a method called the Θ-D method [83, 84, 85, 83] achieves

effective suboptimal solutions for nonlinear dynamical systems. The advantage of this

method is that it involves reduced nonlinear computations and control signals with initially

small magnitudes. Yet, the authors of [83, 84, 85, 83] do not focus on the presence of un-

certainties. Motivated by this standpoint, this dissertation uses the Θ-D method to establish

an optimal nonlinear reference model based on the known system dynamics. Building on

the critical ideas on nonlinear reference model-based adaptive control architectures [42],

the adaptive control algorithm is designed to suppress unknown system dynamics, in this

dissertation.

1.5. FINITE-TIME FOR MULTIAGENT SYSTEM

Teams of agents (e.g., unmanned aerial, ground, water, and underwater vehicles)

operated through a network are called multiagent systems, where they will play a key role in

a wide array of civilian and military applications such as surveillance and reconnaissance,

ground and air traffic management, payload, and passenger transportation, and emergency

response; to name but a few examples. Whether civilian or military, however, there are

essential multiagent systems applications that require operations to be completed in a

finite-time duration, such as cooperative engagement, sequential execution of time-critical

network operations (i.e., multiagent automation), and rendezvous. There is an increasing

interest in problems where the final time matters. The authors of [86, 87, 88, 89, 90] focus

on the predefined time of dynamical systems. In [86], the higher order integrator is used to

have predefined time converge and in [87, 90], the researchers use sliding mode controller

for finite time stability. Likewise, the sliding mode controller is used by some researchers in

[91, 92, 93]. Other types of controller is considered by many researchers such as adaptive

control in [94], Lyapunov stability in [95, 96, 97], state feedback in [98], single integrator

in [99], and double integrator in [100, 86].
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The authors of [101, 102, 103] develop the method with time transformation. These

methods convert the user-defined finite-time into the infinite-time interval. The researchers

of [104, 105] introduce the normalized and signed gradient method with a differentiable

function. On the other hands, some researchers focus on the estimation like in [106];

that is, the observer is introduced to estimate the state for single-output observable linear

systems. Finally, [107] introduces the method with the calculation of the upper estimate of

the convergence time.

1.6. CONTRIBUTIONS

Inspired and motivated by the above research papers, the main contributions of this

dissertation are stability and performance guarantees for uncertain dynamical systems with

optimal and adaptive control approaches.

Although integrated path planning and control methods are proposed in Section 1.1

with different approaches, the adaptive control based IGC method is presented in Paper I

to land the impaired aircraft safely when the engine fails. The combination of kinematic

and dynamic equations of an aircraft helps us to design the controller. The optimal control

method is developed with a state-dependent Ricatti equation to land the aircraft, and the

adaptive control based modified state observer is used the estimate uncertainties. The

other approach of the IGC method is presented in Paper II. In this case, the frozen elevator

deflection is considered for impaired aircraft. Therefore, the thrust is considered a controller

to land the impaired aircraft. The second-order and high-order sliding mode methods are

used for designing the controller. The SOSM is used to land the impaired aircraft safely,

and HOSM is used to estimate the uncertainties. The efficacy of proposed methods are

supported with numerical simulation results.

As discussed in Section 1.2, real-life applications have some limitations. To over-

come the aforementioned limitations of the dynamical systems, the optimal solution is

proposed in Paper III and the model reference adaptive control is proposed in Paper V
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with a set-theoretic approach. The contribution of Paper III is that the set-theoretic barrier

Lyapunov function is embedded into the Hamilton-Jacobi-Bellman equation. That helps

to solve the optimal control problem when the system has state constraints. In addition,

the state constraints are considered with uncertainty for a dynamical system. Therefore, in

Paper V, the model reference adaptive control is developed for uncertain dynamical systems

when the state of the systems has limitations. The contributions of this paper are to keep

the state of the systems under the limit and suppress the uncertainties and have a better

tracking performance with suitable STBLF. Experimental studies given in Paper V support

the performance of the proposed method.

The literature review for the nonlinear reference model is given in Section 1.3. In

contrast to the given nonlinear reference model, the importance of designing a nonlinear

reference model in Paper IV is being optimal. The optimal solutions for nonlinear control

problems are also given in Section 1.4. According to this section, the Θ-D method gives a

suboptimal solution for nonlinear systems with reduced nonlinear computations. Therefore,

designing a reference model with the Θ-D method for known system dynamics provides

an optimal nonlinear reference model. Then, the adaptive control is utilized to address

the presence of system uncertainties. Also, the agent-wise nonlinear reference models are

used in Paper VI. The main contribution is that agents rely on stable reference model states

in finite-time. The finite-time methods given in Section 1.5 are considered when time is

significant.

1.7. ORGANIZATION

First two papers, we focused on the uncertain dynamical system for impaired aircraft

to land at the proper location. Therefore, fixed downrange is focused. In the third paper, the

state constraint is considered with inverse optimal control method. In the fourth paper, the

nonlinear reference model is designed with optimal control. The adaptive control method

is developed with state constraints to handle both uncertainties and constraints in paper
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fifth. We developed finite-time control approaches with a nonlinear reference model for

multiagent systems in paper sixth. Finally, overall conclusions from this dissertation are

given in Section 2. Then, appendices are provided for proofs of papers.
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PAPER

I. INTEGRATED PATH PLANNING AND CONTROL FOR IMPAIRED
AIRCRAFT APPROACH AND LANDING

Meryem Deniz1, S. N. Balakrishnan1, Tansel Yucelen2
1Department of Mechanical & Aerospace Engineering

Missouri University of Science and Technology
Rolla, Missouri 65409–0050,United States of America

2Department of Mechanical Engineering
University of South Florida

Tampa, Florida 33620, United States of America

ABSTRACT

Unpredictable conditions experienced by an impaired aircraft in its flight path

demands that the guidance techniques for succeeding phases be robust. Therefore, we

need new control formalisms to improve the safe flight and landing of impaired aircraft.

In particular, new aircraft guidance and control technologies should be developed that

can accommodate for aero-surface faults, thrust variations, or dispersions from the desired

trajectory and also allow for landing at different landing sites. The developed techniques are

particularly critical during the approach and landing (A&L) phase of an impaired aircraft.

In this work, an adaptive guidance/control method is presented that lands the aircraft safely

once a fault has occurred. Typically, an aircraft travel from one place to another place takes

place with a pre planned path and the controller enabling the aircraft to fly the pre planned

path. However, once a fault has occurred, the impaired aircraft may or may not be able to

fly the pre planned path. A new path will have to be constructed online and the aircraft

may have to follow the revised trajectory in order to safely land at an alternate location.

This paper considers such a scenario and new schemes are devised based on an integrated
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path planning and control approach and adaptive control. A state model comprising of

both the kinematic states and the dynamic states are considered in this paper to account

for path planning and control of the aircraft to fly on the online defined path. Acting on a

combination of optimal and adaptive control schemes, both the path planning and control

needs to land the aircraft at a feasible landing site are satisfied. Numerical results are

shown that consider and thrust being cut off. Representative results are shown with the new

integrated path planning and control scheme.

1. INTRODUCTION

Interest in autonomous flights have increased tremendously in the last two decades.

There has been a lot of interest in unmanned air vehicle(UAV) flights. Such flights have

missions to accomplish; hence, they have a path to follow and need a controller to keep

them on the desired path. Most guidance and control systems for path-following flights of

UAVs employ a tracking-error-correction approach [1, 2, 3, 4, 5, 6]. However, such designs

do not perform well when tracking errors become large; for example, if the trajectory is a

steep, curved path or if wind turbulence exists, the error based techniques can cause control

saturation or divergence since the control command magnitudes are usually proportional

to the tracking-errors. Baba and Takano [7] proposed a fuzzy logic based technique

where variable gains are calculated in proportion to tracking-error quantities. Though

its performance was shown to be good, this technique requires many design points and

several gains iteratively selected as a part of the process before fuzzy logic is used. By

introducing a virtual waypoint along a specified trajectory [8, 9], pure pursuit guidance

(PPG)[10] methods can be gainfully used for path-following UAV applications. Results

[8, 9] demonstrate excellent results in the presence of wind turbulence. Note that PPG

requires only one gain to be tuned. It produces guidance commands that are not dependent

on tracking errors and of reasonable magnitudes. Consequently, the PPG based control

obviates control divergence; Park et. al. [11, 12] use a similar approach where the distance
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error is restricted to a pre-specified distance. The desired path is shaped with cubic spline

approximation [13] of arc lengths which are computed based on waypoints for the desired

trajectory of the UAVs. Stability analysis for such a waypoint guidance scheme is given

in [12]. There are other methods such as sliding mode based integrated guidance and

control concepts used in missile applications. An SMIGC “sliding mode based integrated

guidance and control” scheme was proposed by Harl et. al. in [14] for missile intercept

against weaving targets. Their technique showed robust performance against uncertain

target maneuvers. Shtessel has published several papers based on sliding mode [15, 16, 17]

techniques for different applications. HOSM was applied to UAV formation flying in Galzi

and Shtessel[15] for guidance alone. A sliding mode guidance and autopilot methodology

was developed based on a zero-effort-miss guidance concept by Shima, et. al.[18] for

missile applications. Sliding mode control (SMC) for a non-minimum phase system was

proposed in Shkolnikov and Shtessel [16]. HOSM (e.g., [19, 20, 17, 21]) mitigates the

chatter problems associated with SMC, i.e., HOSM is applicable for arbitrary relative

degree systems with smooth control. Shtessel et. al.[17] also applied an HOSM for missile

interception against uncertain target maneuvers. Note that the many missiles are described

as “skid-to-turn” which means that they hardly use any roll motion. The aircraft motion

however is different. An integrated tracking and control scheme was proposed and tested

on numerical simulations by Yamasaki et. al. [22].

In this study, a new integrated path planning and control problem for an impaired

aircraft is formulated. Note that an integrated path planning and control scheme averts the

need for the iterative loops used in following an independent path planning and a separate

controller design scheme. This formulation combines the kinematic and dynamic equations

of an aircraft in a vertical plane. Control of this airplane is obtained from an optimal control

expression through the state dependent riccati equation technique. Numerical results are

shown that show the efficacy of this formulation of the integrated path planning and control

approach. As a second step, uncertainties in the dynamic model are considered. A modified
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state observer is used to estimate the uncertainties and produce an adaptive extra control to

cancel the uncertainties. A representative set of plots are shown with uncertainties in the

parameters associated with the angle of attack and pitching moment equation.

2. PROCEDURE FOR CONTROL DESIGN

The general aircraft dynamics are described by

¤𝑥 = 𝑓 (𝑥) + 𝐵(𝑥)𝑢 (1)

where 𝑓 (𝑥) ∈ R𝑛 and 𝐵(𝑥) ∈ R𝑛×𝑚 are the state and control matrices, respectively. 𝑥 ∈ R𝑛

is the state vector and 𝑢 ∈ R𝑚 (𝑚 ≤ 𝑛) is the control vector. However, the actual aircraft

dynamics have some nonlinearities which is given by

¤𝑥 = 𝑓 (𝑥) + 𝐵(𝑥) (𝑢 + 𝐷 (𝑥, 𝑢)) (2)

where, 𝐷 (𝑥, 𝑢) is the uncertainty in the system dynamics. Equation (2) can be rewritten as

¤𝑥 = 𝑓 (𝑥) + 𝐵(𝑥)𝑢 + 𝐸 (𝑥, 𝑢) (3)

where 𝐸 (𝑥, 𝑢) = 𝐵(𝑥)𝐷 (𝑥, 𝑢), is simplified and 𝐸 (𝑥, 𝑢) ∈ R𝑛. 𝐸 (𝑥, 𝑢) is the unknown

function, and it is estimated using neural networks. In order to estimate unknown function,

the observer design is needed. An observer for the system given in (3) be written as

¤̂𝑥 = 𝑓 (𝑥) + 𝐵(𝑥)𝑢 + 𝐸̂ (𝑥, 𝑢) + 𝐾2(𝑥 − 𝑥) (4)

where 𝐸̂ (𝑥, 𝑢) is the estimated uncertainty and 𝐾2 is a positive definite matrix [23, 24].
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2.1. NEURAL NETWORK BASED APPROXIMATION

The output of each estimated network can be defined as

𝐸̂ (𝑥, 𝑢) = 𝑊̂𝑇𝜙(𝑥) (5)

𝑊̂ is the estimated weight matrices and 𝜙(𝑥) is defined as basis function vector [25].

Estimation error dynamics are used for the weight update rule to show the performance of

unknown parameters. Estimation error is expressed as

𝑒𝑎 = 𝑥 − 𝑥 (6)

Using the function approximation property of neural networks [26], it can be stated that

there exists an ideal neural network with an optimum weight vector 𝑊 and basis function

vector 𝜙(𝑥) that approximates 𝑓 (𝑥, 𝑢) to an accuracy of 𝜀 that is

𝐸 (𝑥, 𝑢) = 𝑊𝑇𝜙(𝑥) + 𝜀 (7)

then the estimation error dynamics are given by

¤𝑒𝑎 = −𝐾2𝑒𝑎 + 𝑊̃𝑇𝜙(𝑥) + 𝜀 (8)

where, 𝑊̃𝑇 ≜ 𝑊 − 𝑊̂ is the error between the actual weight and the estimated weight of the

neural network.

Theorem 2.1. A weight update rule, is proposed as

¤̂𝑊 = Γ𝜙(𝑥)𝑒𝑇𝑎𝑃 − 𝜎𝑊̂ (9)
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The error signal 𝑒𝑎 and the adaptive weights 𝑊̂ of the online networks are bounded. Γ is

the adaptation gain and 𝜎 is a sigma modification factor used to enforce bound on network

weights and provide robustness. The adaptation law in Equation (9) is designed to ensure

the decrease of the Lyapunov function with time with the Lyapunov function given by

𝑉 = 𝑒𝑇𝑎𝑃𝑒𝑎 + 𝑡𝑟 (𝑊̃𝑇Γ−1𝑊̃) (10)

The proof of the theorem can be found in [23, 24].

Control u consists of a nominal control term to stabilize system without uncertainty

and adaptive control term to cancel the effect of uncertainty given by 𝐷 (𝑥, 𝑢) . Nominal

control is calculated using the State Dependent Riccati Equation (SDRE) method which is

briefly described in the following section.

2.2. NOMINAL CONTROLLER DESIGN

In SDRE, the nonlinear state space in (1) is converted to a linear like form

¤𝑥(𝑡) = 𝐴(𝑥)𝑥(𝑡) + 𝐵(𝑥)𝑢(𝑡) (11)

where 𝐴(𝑥)𝑥(𝑡) = 𝑓 (𝑥). Assume that, state equations of x is known at each step, one can

solve the following algebraic Riccati equation (ARE) with state dependent coefficients for

𝑃(𝑥).

𝑃(𝑥)𝐴(𝑥) + 𝐴𝑇 (𝑥)𝑃(𝑥) − 𝑃(𝑥)𝐵(𝑥)𝑅−1𝐵𝑇 (𝑥)𝑃(𝑥) +𝑄 = 0 (12)

By calculating the optimal costate vector 𝜆★, solution of P(x) is needed

𝜆★ = 𝑃(𝑥)𝑥(𝑡) (13)
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Once the optimal costate vector is calculated, necessary conditions for optimal control will

yield the nominal controller expressions as

𝑢★ = −𝑅−1𝐵𝑇 (𝑥)𝜆★(𝑡) (14)

Reference [27] contains details on this derivation; for information about forming the linear

like state equation (11) from (1), one may refer to [28].

Note that SDRE is a solution to infinite horizon optimal control, however, the

guidance problem or trajectory generation problem considered here is a finite-horizon

problem. A major difference in the finite horizon case is that the feedback solution is also

time-dependent and the following differential Riccati equation (DRE) needs to be solved

[29].

𝑃(𝑥, 𝑡)𝐴(𝑥) + 𝐴𝑇 (𝑥)𝑃(𝑥, 𝑡) − 𝑃(𝑥, 𝑡)𝐵(𝑥)𝑅−1𝐵𝑇 (𝑥)𝑃(𝑥, 𝑡) +𝑄 = − ¤𝑃(𝑥, 𝑡) (15)

with the final condition given by

𝑃(𝑥, 𝑡 𝑓 ) = 𝑆 (16)

Note that the Riccati solution here does not have a steady state solution; furthermore,

the Ricatti matrix is a function of states that vary with time. An approximation is made here

that wherein the values of the states are frozen to remain constant from the current instant

to the final time. Due to (16) to be satisfied at the boundary, the traditional SDRE is not

applicable here. Note that a closed form solution can be obtained by using a transformation

with the solution to the ARE that converts the original nonlinear Riccati equation into a

linear Lyapunov equation [30] [31], [32]. More details about the approximate solutions are

given in the next section.
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2.3. SOLUTION PROCESS FOR LINEAR QUADRATIC PROBLEMS

Constant-coefficient differential Riccati equation (DRE) is expressed as

𝑃(𝑡)𝐴 + 𝐴𝑇𝑃(𝑡) − 𝑃(𝑡)𝐵𝑅−1𝐵𝑇𝑃(𝑡) +𝑄 = − ¤𝑃(𝑥, 𝑡) (17)

where final condition of (DRE) is given by

𝑃(𝑡 𝑓 ) = 𝑆 (18)

where ¤𝑃(𝑥, 𝑡) is time derivative of the Riccati equation solution of 𝑃(𝑡). Quadratic cost

function in finite-time is defined as follows:

𝐽 =
1
2
𝑥𝑇 (𝑡 𝑓 )𝑆𝑥(𝑡 𝑓 ) +

1
2

∫ 𝑡 𝑓

𝑡0

(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (19)

In order to solve the nonlinear problem, first, a steady state Algebraic Riccati Equation

(ARE) is needed to be solved and that is given by

𝑃𝑠𝑠𝐴 + 𝐴𝑇𝑃𝑠𝑠 − 𝑃𝑠𝑠𝐵𝑅−1𝐵𝑇𝑃𝑠𝑠 +𝑄 = 0 (20)

subtracting (20) from (17) leads to [32]

(𝑃(𝑡) − 𝑃𝑠𝑠)𝐴 + 𝐴𝑇 (𝑃(𝑡) − 𝑃𝑠𝑠) − 𝑃(𝑡)𝐵𝑅−1𝐵𝑇𝑃(𝑡) + 𝑃𝑠𝑠𝐵𝑅−1𝐵𝑇𝑃𝑠𝑠 = − ¤𝑃(𝑥, 𝑡) (21)

In order to simplify the equation, we define 𝐾 (𝑡) ≡ (𝑃(𝑡) − 𝑃𝑠𝑠)−1, and obtain (21)

¤𝐾 (𝑡) = 𝐴𝑐𝑙𝐾 (𝑡) + 𝐾 (𝑡)𝐴𝑇𝑐𝑙 − 𝐵𝑅
−1𝐵𝑇 (22)
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where 𝐴𝑐𝑙 ≡ 𝐴 − 𝐵𝑅−1𝐵𝑇𝑃𝑠𝑠. The boundary condition of equation (22) is then

𝐾 (𝑡 𝑓 ) = (𝑆 − 𝑃𝑠𝑠)−1 (23)

By substitution of (22) with a final condition of (23) as shown in [33]

𝐾 (𝑡) = 𝑒𝐴𝑐𝑙 (𝑡−𝑡 𝑓 ) (𝐾 (𝑡 𝑓 ) − 𝐸)𝑒𝐴
𝑇
𝑐𝑙
(𝑡−𝑡 𝑓 ) + 𝐸 (24)

𝐴𝑐𝑙𝐸 + 𝐸𝐴𝑇𝑐𝑙 = 𝐵𝑅
−1𝐵𝑇 (25)

where E is the solution of the algebraic Lyapunov equation (ALE).

One can use (20), (25) and (24), instead of solving (21) equation, to get the Ricatti

matrix solution as

𝑃(𝑡) = 𝐾−1(𝑡) + 𝑃𝑠𝑠 (26)

It should be noted that the authors of [34] recommend the use of the negative definite

solution of ARE (20) instead of the positive definite one for 𝑃𝑠𝑠 in order to avoid possible

singularity of 𝑃(𝑡)−𝑃𝑠𝑠 in case of time-dependent solution of DRE converging to the steady

state solution for 𝑡 << 𝑡 𝑓 . If one were to use that idea, replace A in (20) with -A, solve the

equation and flip the sign of the solution

2.4. SOLVING STATE DEPENDENT DRE FOR OPTIMAL CONTROL OF NON-
LINEAR SYSTEMS

Summary of the solution process and the controller expression are presented in

this section. This process needs backward integration and states at the final time are not

available. Therefore, there needs to be some approximations made though. That is, at each

time, we assume that the states are constant all the way until the final time. First, solve the
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following SDRE and ALE at each time step

𝑃𝑠𝑠 (𝑥)𝐴(𝑥) + 𝐴𝑇 (𝑥)𝑃𝑠𝑠 (𝑥) − 𝑃𝑠𝑠 (𝑥)𝐵(𝑥)𝑅−1𝐵𝑇 (𝑥)𝑃𝑠𝑠 (𝑥) +𝑄 = 0 (27)

𝐴𝑐𝑙 (𝑥)𝐸 (𝑥) + 𝐸 (𝑥)𝐴𝑇𝑐𝑙 (𝑥) = 𝐵(𝑥)𝑅
−1𝐵𝑇 (𝑥) (28)

where 𝐴𝑐𝑙 = 𝐴(𝑥) − 𝐵(𝑥)𝑅−1𝐵𝑇 (𝑥)𝑃𝑠𝑠 (𝑥), is closed form solution of A.

Solving the following steps

𝐾 (𝑥, 𝑡) = 𝑒𝐴𝑐𝑙 (𝑡−𝑡 𝑓 ) (𝐾 (𝑥, 𝑡 𝑓 ) − 𝐸 (𝑥))𝑒𝐴
𝑇
𝑐𝑙
(𝑥) (𝑡−𝑡 𝑓 ) + 𝐸 (𝑥) (29)

𝐾 (𝑥, 𝑡 𝑓 ) = (𝑆 − 𝑃𝑠𝑠 (𝑥))−1 (30)

Substituting of (27) and (30) to calculate of P(x,t) is given

𝑃(𝑥, 𝑡) = 𝐾−1(𝑥, 𝑡) + 𝑃𝑠𝑠 (𝑥) (31)

In order to solve feedback control, P(x,t) is calculated in (31)

𝑢∗(𝑥, 𝑡) = −𝑅−1𝐵𝑇 (𝑥)𝑃(𝑥, 𝑡)𝑥(𝑡) (32)

Note that the computational effort to be carried out in real-time at each time step solving

an SDRE and performing two matrix inversions. The assumption that the state values are

assumed constant over the entire time at each control calculation can be mitigated by making

the control computation frequency fast enough.
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3. SIMULATION STUDIES

3.1. KINEMATIC AND DYNAMICS OF AIRCRAFT IN VERTICAL PLANE

In this section the dynamic model of the landing of an impaired aircraft is presented.

Assuming zero cross range to the runway, longitudinal dynamics of the aircraft in a vertical

plane during the approach and landing phase of an impaired vehicle can be modeled as

follows:

𝑚( ¤𝑈 + 𝑞𝑊 − 𝑅𝑉) = 𝑋 − 𝑚𝑔𝑠𝑖𝑛(𝜃) (33)

𝑚( ¤𝑊 + 𝑃𝑉 − 𝑞𝑈) = 𝑍 + 𝑚𝑔𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙) (34)

𝐼𝑦𝑦 ¤𝑞 − 𝑅𝑃(𝐼𝑥𝑥 − 𝐼𝑧𝑧) + (𝑃2 − 𝑅2)𝐼𝑥𝑧 = 𝑀 (35)

where 𝑞 is a kinematics equation is defined as

𝑞 = ¤𝜃𝑐𝑜𝑠(𝜙) + ¤𝜑𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙) (36)

where assume 𝑅 = 𝑉 = 𝑃 = 𝜙 = 0

¤𝑈 = −𝑞𝑊 + 𝑋
𝑚

− 𝑔𝑠𝑖𝑛(𝜃) (37)

¤𝑊 = 𝑞𝑈 + 𝑍

𝑚
+ 𝑔𝑐𝑜𝑠(𝜃) (38)

Replacing the vertical velocity𝑊 by the angle of attack 𝛼 leads to

¤𝛼 = 𝑞 + 𝑍

𝑚𝑈
+ 𝑔𝑐𝑜𝑠(𝜃)

𝑈
(39)

¤𝑞 =
𝑀

𝐼𝑦𝑦
(40)

¤𝜃 = 𝑞 (41)
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¤ℎ = 𝑈 (𝜃 − 𝛼) (42)

The forces in the horizontal and vertical directions are respectively defined as X and Z

𝑋 = 𝑇 − 𝐷𝑐𝑜𝑠(𝛼) + 𝐿𝑠𝑖𝑛(𝛼) (43)

𝑍 = −𝐿𝑐𝑜𝑠(𝛼) − 𝐷𝑠𝑖𝑛(𝛼) (44)

The pitching moment equation is expressed as

𝑀 = 𝑀𝐴 + 𝑇ℎ𝑇 (45)

𝐿 = 𝑞𝑆𝑎𝐶𝐿 (46)

𝐷 = 𝑞𝑆𝑎𝐶𝐷 (47)

𝑀𝐴 = 𝑞𝑆𝑎𝐶𝑀𝐴𝑐 (48)

𝑞 =
1
2
𝜌𝑈2 (49)

Assuming an exponential air density profile results in

𝜌 = 𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (50)

The lift and drag coefficients are modeled as

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼
𝛼 + 𝐶𝐿 𝛿𝑒

𝛿𝑒 (51)

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝛼
𝛼 (52)

𝐶𝑀𝐴 = 𝐶𝑀0 + 𝐶𝑀𝛼
𝛼 + 𝐶𝑀𝛿𝑒

𝛿𝑒 + 𝐶𝑀𝑞
𝑞 (53)
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where

𝑞 =
𝑞𝑐

𝑈
(54)

Symbols used in expression from (33) to (54) are described below: 𝛼 is angle of attack, 𝑞 is

pitch rate , 𝜃 is pitch angle, ℎ is altitude, 𝑈 is velocity magnitude, 𝛿𝑒 is elevator deflection,

𝐶𝐷 is drag coefficient,𝐶𝐷0 is zero-lift drag coefficient, 𝐶𝐿 is lift coefficient, 𝐶𝐿0 is zero-

angle-of-attack lift coefficient, 𝐷 is drag force, 𝑔 is earth’s gravitational acceleration, 𝐻 is

scale height, 𝐿 is lift force, 𝑚 is aircraft mass, 𝑆 is aerodynamic reference area, 𝑇 is thrust,

𝜌 is air density, 𝜌0 is sea-level air density, 𝑞 is dynamic pressure.

The state vector can then be formed as

𝑥 = [𝑈, 𝛼, 𝑞, ℎ, 𝜃]𝑇 (55)

where superscript T denotes transpose operation. The cost function to be minimized is

assumed quadratic as

𝐽 =
1
2
𝑥𝑇 (𝑡 𝑓 )𝑆𝑥(𝑡 𝑓 ) +

1
2

∫ 𝑡 𝑓

𝑡0

(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (56)

3.2. RESULTS AND DISCUSSION

In this section, sample numerical results are presented with stability derivatives

values for Cessna 182. The scenario considered is that of the aircraft experiencing engine

failure (T=0) and having to land. The integrated path planning and control equations are used

in conjunction with the SDRE method to produce the elevator deflection histories to land the

aircraft successfully with acceptable level of angle attack histories, elevator angle histories,

and velocity histories. In order to investigate the aircraft performance with aerodynamic

uncertainties, we introduce lift coefficient and moment coefficient uncertainties in 𝐶𝐿𝛼
and

𝐶𝑚𝑞
.
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For simulating the proposed controller on the aircraft landing path planning problem,

the following values have been selected from Cessna 182 airplane values 𝐶𝐿0 = 4.41,

𝐶𝐷0 = 0.0270, 𝐾𝑙 = 0.0475, 𝑆/𝑚 = 2.1126 𝑓 𝑡2/𝑠𝑙𝑢𝑔 [35], [36]. The uncertainty part is

given for this numerical simulation as

¤𝛼 =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆((−𝐶𝐿0 − 0.2𝐶𝐿𝛼𝛼 − 𝐶𝐿 𝛿𝑒

𝛿𝑒)𝑐𝑜𝑠(𝛼) + (−𝐶𝐷0 − 𝐶𝐷𝛼𝛼)𝑠𝑖𝑛(𝛼))
2𝑚

+ 𝑞 + 𝑔𝑐𝑜𝑠(𝜃)
𝑈

+ 𝑑1

(57)

where 𝑑1 represents the uncertainty of 𝐶𝐿𝛼 in equation (57).

𝑑1 = 𝑊𝑇𝜙1(𝑥) (58)

¤𝑞 =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈2𝑆𝑐(𝐶𝑚0 + 𝐶𝑀𝛼𝛼 + 𝐶𝑀𝛿𝑒

𝛿𝑒 +
0.2𝐶𝑚𝑞𝑞𝑐

𝑈
+ ℎ𝑡𝐶𝑇

𝑐
)

2𝐼𝑦𝑦
+ 𝑑2 (59)

where 𝑑2 represents the uncertainty of 𝐶𝑀𝑞
in equation (59).

𝑑2 = 𝑊𝑇𝜙2(𝑥) (60)

The weight matrices were selected as

𝑅 = 108 (61)

𝑄 = diag(10−7 10−7 10−5 10−7 10−5) (62)

𝑆 = diag(0 107 0 0 107) (63)

The system dynamics was simulated for 400 seconds with a time step of 0.1. The initial

conditions for the simulation are selected with an initial altitude of 5, 000 ft, initial velocity

of 220.1 𝑓 𝑡/𝑠𝑒𝑐, while initial 𝑞, 𝛼 and 𝜃 were set at zero.
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3.3. SIMULATION RESULTS

In this section, four different simulation results are shown. Note that we use an

estimator (modified state observer) in this study though all states are assume to be measured.

This is because the uncertainties in the plant need to be estimated and compensated for.

Unlike the typical model reference adaptive control schemes, a state observer is used in

conjunction in this study. The advantage of this process is that it allows for learning the

uncertainties in a fast manner and yet providing smooth control histories. Typical control

oscillations observed with traditional model reference adaptive controllers are completely

absent in modified state observer based adaptive control results.

From Figures 1, 3, 5, 8, are worth noting that the maximum angle of attack is only

1.5 degrees.The only variable of concern is the vertical velocity, however, in an impaired

condition, one cannot expect a smooth ride. Also, these results are preliminary and with

more tuning of weights, it is expected that the maximum magnitude could be kept under

control. Note that the estimated states and the actual states are on top of each other.

Note that from Figures 2a, 4a, 6a,7a, 9a, 10a, that the uncertainties are captured

quite well and from Figures 2b, 4b, 6b, 7b, 9b, 10b, that the estimated weights converge to

the true weights. This shows the effectiveness of the observer based controller.

When an aircraft is impaired, there may arise a lot of uncertainties in its model. In

next four subsequent subsections, we investigate the online computation of uncertainties

involving 𝐶𝐿𝛼
and 𝐶𝑚𝑞

3.3.1. Simulation Results with One Time Varying Uncertainty. In the first case,

we assume that, there is a time varying uncertainty associated with 𝐶𝐿𝛼
. Relevant uncer-

tainty term in 𝐶𝐿𝛼
is given by

𝑑1 =
0.8𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆𝐶𝐿𝛼

(𝛼)𝑐𝑜𝑠(𝛼)
2𝑚

(64)
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Corresponding basis function in equation (58) is assumed as

𝜙1(𝑥) = 𝑈 (65)

The adaptation gain and a 𝜎 modification factor were chosen as 0.1 and 0.01, respectively.

An estimation error feedback gain matrix 𝐾2 = diag(10−3 10−5 10−3 10−3 10−3) was used.
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Figure 1. Histories of actual and estimated states, downrange and control [ one time varying
uncertainty]
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Ŵ

T
(t
)β
(x
(t
))

 

 

W
T
β

Ŵ
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Figure 2. History of uncertainty estimation with time [time varying 𝐶𝐿𝛼
uncertainty ].

3.3.2. Simulation Results with One Constant Uncertainty. In the second case,

we assume that, there is a constant uncertainty associated with 𝐶𝐿𝛼
. Relevant uncertainty

term in 𝐶𝐿𝛼
is given by

𝑑1 =
0.8𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆𝐶𝐿𝛼

(𝛼)𝑐𝑜𝑠(𝛼)
2𝑚

(66)

Corresponding basis function in equation (58) is assumed as

𝜙1(𝑥) =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆(𝛼)𝑐𝑜𝑠(𝛼)

2𝑚
(67)

The adaptation gain and a 𝜎 modification factor were chosen as 10 and 0.00001, re-

spectively. An estimation error feedback gain matrix 𝐾2 = diag(10−4 10−11 10−5 10−4 101)

was used.
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Figure 3. Histories of actual and estimated states, downrange and control [ one constant
uncertainty]
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Figure 4. History of uncertainty estimation with time [constant 𝐶𝐿𝛼

uncertainty].

3.3.3. Simulation Results with Two Constant Uncertainties. In the third case,

we assume that, there are constant uncertainties associated with 𝐶𝐿𝛼
and 𝐶𝑚𝑞

. Relevant

uncertainty term in 𝐶𝐿𝛼
is given by

𝑑1 =
0.8𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆𝐶𝐿𝛼

(𝛼)𝑐𝑜𝑠(𝛼)
2𝑚

(68)

Corresponding basis function in equation (58) is assumed as

𝜙1(𝑥) =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆(𝛼)𝑐𝑜𝑠(𝛼)

2𝑚
(69)

Relevant uncertainty term in 𝐶𝑚𝑞
is given by

𝑑2 =
0.8𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆𝑐2𝑞𝑈𝐶𝑚𝑞

𝐼𝑦𝑦
(70)

Corresponding basis function in equation (60) is assumed as

𝜙2(𝑥) =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆𝑐2𝑞𝑈

𝐼𝑦𝑦
(71)
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The adaptation gains were chosen as 0.1 and 0.01. The two 𝜎 modification factors

were chosen as 0.001 and 0.0001. An estimation error feedback gain matrix 𝐾2 =

diag(10−3 10−14 10−12 10−1 101) was used.
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Figure 5. Histories of actual and estimated states, downrange and control [ two constant
uncertainties]
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3.3.4. Simulation Results with Two Time Varying Uncertainties. In the last case,

we assume that, there are time varying uncertainties associated with𝐶𝐿𝛼
and𝐶𝑚𝑞

. Relevant

uncertainty term in 𝐶𝐿𝛼
is given by

𝑑1 =
0.8𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆𝐶𝐿𝛼

(𝛼)𝑐𝑜𝑠(𝛼)
2𝑚

(72)

Corresponding basis function in equation (58) is assumed as

𝜙1(𝑥) = 𝑈 (73)
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Relevant uncertainty term in 𝐶𝑚𝑞
is given by

𝑑2 =
0.8𝜌0𝑒𝑥𝑝(−ℎ/𝐻)𝑈𝑆𝑐2𝑞𝑈𝐶𝑚𝑞

𝐼𝑦𝑦
(74)

Corresponding basis function in equation (60) is assumed as

𝜙2(𝑥) = 𝑈 (75)

The adaptation gains were chosen as 100 and 0.1. The two 𝜎 modification factors were

chosen 0.0001 and 0.0001. An estimation error feedback gain matrix

𝐾2 = diag(10−3 10−2 10−1 10−2 10−3) was used.

4. CONCLUSIONS

An integrated path planning-controller approach was presented in this study. Equa-

tions with kinematics and dynamics were used in the process. An optimal control based

controller was used to shape the impaired aircraft’s path to safe landing. Furthermore, an

adaptive control algorithm based on a modified state observer was used to further account

for aerodynamic uncertainties. Sample results show that the integrated path planning and

control has good potential to be used for safe flight and landing of impaired aircraft.
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Figure 8. Histories of actual and estimated states, downrange and control [ two time varying
uncertainties]
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ABSTRACT

In this study, the problem of integrated path planning and control of an impaired

aircraft is formulated and solved by using a second order sliding mode control (SOSM)

and a high order sliding mode (HOSM) differentiator. As an example problem, the case

of an impaired aircraft with a frozen elevator is considered. The thrust alone is used

as the controller to land the aircraft safely. Representative simulations are presented to

demonstrate the performance of proposed controller.

1. INTRODUCTION

There has been a lot of interest in unmanned air vehicle (UAV) flights in the last

two decades. Such flights have a path to follow and need a controller to keep them on the

desired path. A tracking-error-correction approach has been used for guidance and control

systems for path-following flights [1, 2, 3, 4, 5, 6]. However, such designs have drawbacks

when tracking errors become large; for example, if the trajectory is a steep, curved path

or if wind turbulence exists, the error based techniques can cause control saturation or
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divergence since the control command magnitudes are usually proportional to the tracking-

errors. Pure pursuit guidance(PPG) is a robust method for path following UAV [7]. Note

that the PPG requires only one gain to be tuned. It produces guidance commands that are

not dependent on tracking errors and are of reasonable magnitudes. Consequently, the PPG

based control helps eliminate control divergence; Park et. al.[8, 9] use a similar approach

where the distance error is restricted to a pre-specified value. Performance and stability

analysis are presented for nonlinear pure pursuit based path following guidance method [9].

This method shows the asymptotic lyapunov stability of the nonlinear guidance method

when the UAV is follows reference circular paths. The method of dynamic inversion is used

to control the vehicle and the proportional navigation method is used to guide the trajectory

[10, 11]. There are other methods such as sliding mode based integrated guidance and

control (SMIGC) concepts used in missile applications. An SMIGC scheme was proposed

by Harl et. al. in [12] for missile intercept against weaving targets. Their technique showed

robust performance against uncertain target maneuvers. Shtessel has published several

papers based on sliding mode [13, 14, 15] techniques for different applications. HOSM

was applied to UAV formation flying in Galzi and Shtessel[13] for guidance alone. A

sliding mode guidance and autopilot methodology was developed based on a zero-effort-

miss guidance concept by Shima, et. al.[16] for missile applications. Sliding mode control

(SMC) for a non-minimum phase system was proposed in Shkolnikov and Shtessel [14].

HOSM (e.g., [17, 18, 15, 19]) mitigates the chatter problems associated with SMC, i.e.,

HOSM is applicable for arbitrary relative degree systems with smooth control. Shtessel et.

al.[15] also applied an HOSM for missile interception against uncertain target maneuvers.

Note that the many missiles are described as “skid-to-turn” which means that they hardly

use any roll motion. The aircraft motion however is different. An integrated tracking and

control scheme was proposed and tested on numerical simulations by Yamasaki et. al. [20].

In this study, an integrated path planning and controller problem for an aircraft is proposed.

The kinematics and dynamics equations of an aircraft in vertical plane are used. An SOSM
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formulation is used to design the control that will land the aircraft safely. Furthermore, a

higher order sliding mode differentiator is used to estimate the uncertainties in the dynamic

model. The rest of the paper is organized as follows: Kinematic and dynamics equations of

aircraft in a vertical plane are given in Section 2. Section 3, the procedure of integrated path

planning and controller design is described. In Section 4, A representative set of plots are

presented from numerical simulations. Conclusions from this study are given in Section 5.

2. KINEMATIC AND DYNAMICS OF AIRCRAFT IN VERTICAL PLANE

In this section the mathematical model of a fixed wing aircraft is presented [21].

Figure 1 shows the flight dynamics of the fixed wing aircraft. The kinematic and dynamics

model of aircraft are given as

Figure 1. Flight dynamics of the fixed wing aircraft
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¤𝑈 = −𝑄𝑊 + 𝑋
𝑚

− 𝑔 sin(𝜃) (1)

¤𝑊 = 𝑄𝑈 + 𝑍

𝑚
+ 𝑔 cos(𝜃) (2)

¤𝑄 =
𝑀

𝐼𝑦𝑦
(3)

¤𝜃 = 𝑄 (4)

¤𝑋𝐸 = 𝑈 cos(𝜃) +𝑊 sin(𝜃) (5)

¤𝑍𝐸 = −𝑈 sin(𝜃) +𝑊 cos(𝜃) (6)

The forces in the 𝑥𝑏 and 𝑧𝑏 directions are denoted respectively as X and Z

𝑋 = 𝑇 − 𝐷 cos(𝛼) + 𝐿 sin(𝛼) (7)

𝑍 = −𝐿 cos(𝛼) − 𝐷 sin(𝛼) (8)

The pitching moment equation is expressed as

𝑀 = 𝑀𝐴 + 𝑇ℎ𝑇 (9)

𝐿 = 𝑞𝑆𝑎𝐶𝐿 (10)

𝐷 = 𝑞𝑆𝑎𝐶𝐷 (11)

𝑀𝐴 = 𝑞𝑆𝑎𝐶𝑀𝐴𝑐 (12)

𝑞 =
1
2
𝜌(𝑈2 +𝑊2) (13)

Assuming an exponential air density profile results in

𝜌 = 𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (14)
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The lift and drag coefficients are modeled as

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼
𝛼 + 𝐶𝐿 𝛿𝑒

𝛿𝑒 (15)

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝛼
𝛼 (16)

𝐶𝑀𝐴 = 𝐶𝑀0 + 𝐶𝑀𝛼
𝛼 + 𝐶𝑀𝛿𝑒

𝛿𝑒 + 𝐶𝑀𝑞
𝑞 (17)

where

𝑞 =
𝑄𝑐

√
𝑈2 +𝑊2

(18)

Symbols used in expression from (1) to (18) are described below: 𝛼 is the angle of attack,𝑄

is the pitch rate , 𝜃 is the pitch angle, ℎ is the altitude,𝑈 and𝑊 are the velocity components

in 𝑥𝑏 and 𝑧𝑏 directions, respectively. 𝑋𝐸 and 𝑍𝐸 are the position components in earth fixed

coordinates. 𝛿𝑒 is the elevator deflection, 𝐶𝐷 is the drag coefficient, 𝐶𝐷0 is the zero-lift

drag coefficient, 𝐶𝐿 is the lift coefficient, 𝐶𝐿0 is the zero-angle-of-attack lift coefficient, 𝐷

represents the drag force, 𝑔 is the earth’s gravitational acceleration, 𝐻 is the scale height, 𝐿

is the lift force, 𝑚 is the aircraft mass, 𝑆 is the aerodynamic reference area, 𝑇 is the thrust

force, 𝜌 is the air density, 𝜌0 is the sea-level air density, 𝑞 is the dynamic pressure, ℎ𝑇 is the

distance of the thrustline above the 𝑥𝑏 axis. The state vector can then be formed as

𝑥 = [𝑈,𝑊,𝑄, 𝜃, 𝑋𝐸 , 𝑍𝐸 ]𝑇 (19)

where superscript (′) denotes transposition. These equations are rearranged for later use as

¤𝑈 = 𝑎 + 𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(𝐶𝑇 )
2𝑚

(20)
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where

𝑎 = −𝑄𝑊 − 𝑔 sin(𝜃)

+
𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(−(𝐶𝐷0 + 𝐶𝐷𝛼

𝛼) cos(𝛼)) + (𝐶𝐿0 + 𝐶𝐿𝛼
𝛼 + 𝐶𝐿 𝛿𝑒

𝛿𝑒) sin(𝛼)
2𝑚

(21)

¤𝑊 = 𝑄𝑈 + 𝑏 (22)

where

𝑏 =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(−(𝐶𝐷0 + 𝐶𝐷𝛼

𝛼) sin(𝛼)) − (𝐶𝐿0 + 𝐶𝐿𝛼
𝛼 + 𝐶𝐿 𝛿𝑒

𝛿𝑒) cos(𝛼)
2𝑚

+ 𝑔 cos(𝜃)
(23)

¤𝑄 = 𝑑 +
𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆𝑐 ℎ𝑇𝐶𝑇

𝑐

2𝐼𝑦𝑦
(24)

where

𝑑 =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆𝑐(𝐶𝑀0 + 𝐶𝑀𝛼

𝛼 + 𝐶𝑀𝛿𝑒
𝛿𝑒 +

𝐶𝑀𝑞𝑄𝑐√
𝑈2+𝑊2 )

2𝐼𝑦𝑦
(25)

¤𝜃 = 𝑄 (26)

3. INTEGRATED PATH PLANNING AND CONTROLLER DESIGN

The dynamics and kinematics equations required for integrated path planning and

controller design are presented in this section. The controller objective is to land the

impaired aircraft safely, that is make the final altitude zero. Note that ℎ = −𝑍𝐸 . In this

study, the control input is chosen as thrust term (𝐶𝑇 ). The position coordinate does not

have the thrust term explicitly. Therefore, the relation between position coordinate and

control input should be designed. We should take the time derivative of position earth fixed

coordinate with z pointing down until the control input appears. In our case, the control

input appears in the second derivative.
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3.1. SLIDING SURFACE DESIGN

The error between actual and desired altitude is defined as

𝑠 = ℎ − ℎ𝑐 (27)

where ℎ𝑐 is the desired altitude which is designed by using straight line. However, for

further extension we will use a waypoint-based path generation with cubic spline functions

[20],[22]. The ℎ and the ℎ𝑐 are replaced as (−𝑍𝐸 ) and (−𝑍𝑐), respectively.

𝑠 = (−𝑍𝐸 + 𝑍𝑐) (28)

Taking the first and second time derivatives of equation (28) as given

¤𝑠 = (− ¤𝑍𝐸 + ¤𝑍𝑐) (29)

¥𝑠 = (− ¥𝑍𝐸 + ¥𝑍𝑐) (30)

where ¤𝑍𝐸 has already defined in equation (6). After taking the time derivative of equation

(6), the ¥𝑍𝐸 can be calculated as

¥𝑍𝐸 = − ¤𝑈 sin(𝜃) + ¤𝑊 cos(𝜃) −𝑈 cos(𝜃) ¤𝜃 −𝑊 sin(𝜃) ¤𝜃 (31)

By substituting equations (20), (22) and (4) into (31), ¥𝑍𝐸 becomes

¥𝑍𝐸 = −
[
𝑎 + 𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(𝐶𝑇 )

2𝑚

]
sin(𝜃)

−𝑈 cos(𝜃)𝑄 −𝑊 sin(𝜃)𝑄 + [𝑄𝑈 + 𝑏] cos(𝜃)
(32)

¥𝑍𝐸 = 𝜂 − 𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(𝐶𝑇 ) sin(𝜃)
2𝑚

(33)
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where 𝜂 is defined as an uncertainty for later use and is given by

𝜂 = −𝑎 sin(𝜃) +𝑄𝑈 cos(𝜃) + 𝑏 cos(𝜃) −𝑈 cos(𝜃)𝑄 −𝑊 sin(𝜃)𝑄 (34)

The sliding surface can be constructed as

𝜎 = ¤𝑠 + 𝐾1𝑠 (35)

where 𝐾1 > 0 is a design parameter. In order to show dynamics of sliding surface, the time

derivative of (35) is calculated as

¤𝜎 = ¥𝑠 + 𝐾1 ¤𝑠 (36)

By substituting equations (6) and (33) into (36)

¤𝜎 = 𝜂 + 𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(𝐶𝑇 ) sin(𝜃)
2𝑚

+ ¥𝑍𝑐 + 𝐾1
(
− ¤𝑍𝐸 + ¤𝑍𝑐

)
(37)

¤𝜎 =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(𝐶𝑇 ) sin(𝜃)

2𝑚
+ 𝜑 (38)

where

𝜑 = 𝜂 + ¥𝑍𝑐 + 𝐾1
(
− ¤𝑍𝐸 + ¤𝑍𝑐

)
(39)

where 𝜑 is defined as unknown vector. A high order sliding mode is used to estimate 𝜑.

¤𝜎 = 𝜑 + 𝑢̃ (40)

where

𝑢̃ =
𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(𝐶𝑇 ) sin(𝜃)

2𝑚
(41)

𝐶𝑇 =
2𝑚𝑢̃

𝜌0𝑒𝑥𝑝(−ℎ/𝐻) (𝑈2 +𝑊2)𝑆(sin(𝜃))
(42)
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3.2. SECOND-ORDER SLIDING MODE FRAMEWORK AND HIGH-ORDER SLID-
ING MODE DIFFERENTIATOR

An SOSM is used in this study for designing the controller an HOSM differentiator

is designed to estimate the unknown parameters/expressions in the proposed method. In

this section, the SOSM and HOSM equations are derived. The objective here is to design a

sliding surface to drive to altitude zero.

3.2.1. Second-Order Sliding Mode Framework. The general form of derivative

of 𝜎 dynamics is given in following statements

¤𝜎 = 𝜑 + 𝑢̃ (43)

where 𝜑 is unknown terms and 𝑢̃ is control input. The compansated 𝜎 dynamics is chosen

similar to [15], [20]

¤𝜎 = −𝛼1 |𝜎 |𝜈1𝑠𝑖𝑔𝑛(𝜎) + 𝜔 (44)

¤𝜔 = −𝛼2 |𝜎 |𝜈2𝑠𝑖𝑔𝑛(𝜎) (45)

where 𝜔 represents an integral term related to 𝜎, and 𝛼1, 𝛼2 > 0 and 1 > 𝜈1 > 𝜈2 > 0.

To calculate the control input, the following expression is used

𝑢̃ = −𝜑 − 𝛼1 |𝜎 |𝜈1𝑠𝑖𝑔𝑛(𝜎) + 𝜔 (46)

¤𝜔 = −𝛼2 |𝜎 |𝜈2𝑠𝑖𝑔𝑛(𝜎) (47)

3.2.2. High-Order Sliding Mode Differentiator. In this study, the HOSM is used

for estimating the unknown model dynamics [23],[24]. The unknown terms are grouped

and defined as 𝜑. It is assumed differentiable and bounded with a Lipschitz constant𝐶 > 0.

The general form of the sliding mode differentiator is described by the following set of

equations:

¤𝑧0 = 𝑢̃ + 𝜈0 (48)



46

𝜈0 = −𝜆ℎ,𝑟ℎ𝐿
1/𝑟ℎ
ℎ

|𝑧0 − 𝜎 | (𝑟ℎ−1)/𝑟ℎ 𝑠𝑖𝑔𝑛(𝑧0 − 𝜎) + 𝑧1 (49)

¤𝑧𝑘 = 𝜈𝑘 (50)

𝜈𝑘 = −𝜆ℎ,𝑟ℎ−𝑘𝐿
1/𝑟ℎ
ℎ

|𝑧𝑘−𝜈𝑘−1 | (𝑟ℎ−𝑘−1)/(𝑟ℎ−𝑘)𝑠𝑖𝑔𝑛(𝑧𝑘−𝜈𝑘−1)+𝑧𝑘+1 (𝑘 = 1, . . . 𝑟ℎ−2) (51)

¤𝑧𝑟ℎ−1 = −𝜆ℎ,1𝐿ℎ𝑠𝑖𝑔𝑛(𝑧𝑟ℎ−1 − 𝜈𝑟ℎ−2) (52)

where 𝐿ℎ and 𝜆ℎ,𝑖 (𝑖 = 1, 2, ...𝑟ℎ) are parameters of differentiator as given in [23],[24]. In

this case, the value of 𝑟ℎ is 7 which gives good estimation results. In this case, our system

is impaired with a stuck elevator so thrust is the only form of control. Consequently, the

coefficient of thrust 𝐶𝑇 term is used as control. The output of 𝑧1 is the estimate of 𝜑. To

calculate 𝑢̃, 𝑧1 is used instead of 𝜑 as shown in the following equation

𝑢̃ = −𝑧1 − 𝜅1 |𝜎 |𝜈1𝑠𝑖𝑔𝑛(𝜎) + 𝜔 (53)

¤𝜔 = −𝜅2 |𝜎 |𝜈2𝑠𝑖𝑔𝑛(𝜎) (54)

When equations (53) and (54) are compared with equations (46) and (47) and if 𝑧1 converges

to 𝜑, the 𝜎 dynamics meet the end conditions.

4. NUMERICAL STUDIES

In order to analyze performance of proposed controller the parameters of Cessna-

182 airplane are used. The aircraft motion is limited to vertical plane only. The scenario

considered is that the aircraft is impaired with elevator deflection stuck at some angle. The

integrated path planning and control equations are used to produce the thrust histories to

land the aircraft with a low sink rate at landing. For simulating the proposed controller

on the aircraft landing path planning problem, the following values have been selected

from Cessna 182 airplane values 𝐶𝐿𝛼
= 4.41, 𝐶𝐿0 = 0.307, 𝐶𝐿 𝛿

= 0.43, 𝐶𝐷0 = 0.0270,

𝐶𝐷𝛼
= 0.121 , 𝑆/𝑚 = 2.1126 𝑓 𝑡2/𝑠𝑙𝑢𝑔, 𝐶𝑚0 = 0.04. [25], [26].
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4.1. SIMULATION RESULTS

In this section, several simulation results were shown. We focus on various cases

with different initial conditions of altitude and the elevator deflection stuck at some angle.

The initial conditions for the simulation are selected with initial velocities of𝑈 and

𝑊 at 220.1 𝑓 𝑡/𝑠𝑒𝑐 and 0 𝑓 𝑡/𝑠𝑒𝑐, in the directions of 𝑥𝑏 and 𝑧𝑏. While initial 𝑄 , 𝜃 and 𝑋𝐸

were set at zero. The design parameter 𝐾1 is selected as 0.001.

4.1.1. Case1: 𝛿e = 2o (stuck) with Different Altitudes and Final Downrange

= 50000 ft. The control term limit is 𝐶𝑇 ∈ [0, 0.04] degree and 𝛿𝑒 = 2𝑑𝑒𝑔. The upper

limit on 𝐶𝑇 is so selected to ensure that the actual thrust values do not exceed the airplane

capability. The initial altitudes (−𝑍𝐸 ) for the simulation are selected as 4000 ft, 4500 ft,

5000 ft.

Figure 2 contains the histories of altitude with the downrange and Figure 3 contains

the altitude variation with time for different initial altitudes. In each of these figures, the

designed variations and the actual variations are presented. It can be seen from these figures

that when the initial altitude is low, equal to 4000 ft., it is easier to meet the desired final

downrange but with only thrust as the control variable, it is difficult to bring down the

aircraft to the desired final range when the initial altitudes are higher, that is 4500 𝑓 𝑡. and

5000 𝑓 𝑡. From Figures 4 and 5, it can be observed that all state variable histories are in the

acceptable range but the sink rate is higher than desired at about 18 ft/sec. Figure 6 shows

the thrust histories and the sliding surface values with time. Not much control effort is used

since all cases are descending flight. Though the sliding variable does not reach zero, it is

a small value considering that the pitch angle is not zero at landing and the component of

the horizontal velocity of about 190 𝑓 𝑡/𝑠𝑒𝑐 impacts the final value of the sliding variable.

It can also be noted that the uncertainty estimation in all cases are good as seen from Figure

7.
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Figure 2. Histories of actual and desired altitudes with respect to downrange

Figure 3. Histories of actual and desired altitudes with respect to time
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Figure 4. States histories for various initial altitudes

Figure 5. Histories of horizontal and vertical velocities for various initial altitudes
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Figure 6. Histories of controller, thrust and sliding surface for various initial altitudes

Figure 7. Histories of actual and estimated uncertainties for various initial altitudes
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4.1.2. Case2: 𝛿e = −2o (stuck) with Different Altitudes and Final Downrange

= 100000 ft. The control term limit assumed here is 𝐶𝑇 ∈ [0, 0.005] degree and 𝛿𝑒 =

−2𝑑𝑒𝑔. The upper limit on 𝐶𝑇 is kept at this number to prevent high frequency oscillations

in the state variable. Note that only a small amount of thrust is needed since the desired

final downrange is relatively large, that is, 100000 𝑓 𝑡. As in Case 1, the initial altitudes (𝑍𝐸 )

for the simulation are selected as 4000 ft, 4500 ft, 5000 ft here too.

Figure 8 contains the histories of altitude with the downrange and Figure 9 contains

the altitude variation with time for different initial altitudes. In each of these figures, the

designed variations and the actual variations are presented. It can be seen from these figures

that when the initial altitude is low, equal to 4000 𝑓 𝑡, it is easier to meet the desired final

downrange but with only thrust as the control variable, it is difficult to bring down the

aircraft to the desired final range when the initial altitudes are higher, that is 4500 𝑓 𝑡 and

5000 𝑓 𝑡. It can also be observed that there are oscillations initially in the altitude history,

much more than in Case 1. This is due to the fact that the elevator is stuck at a negative

angle here, producing a positive moment. From Figures 10, it can further be observed that

the (𝜃) histories show a higher magnitude of oscillations due to the fact that the negatively

frozen elevator leads to a destabilizing moment. From 11, it can be seen that the velocity

is much lower as compared to Case 1 because the aircraft dissipates more energy in going

through a larger range. Therefore, the sink rate is lower at landing, at about 6.8 𝑓 𝑡/𝑠𝑒𝑐.

Figure 12 shows the thrust histories and the sliding surface values with time. Relative to

Case 1, much less control is used since it is a long and downward flight. For the same

reason, the terminal sliding variable value is close to zero. It can also be noted that similar

to Case 1, the uncertainty estimation in all cases are good as seen from 13.
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Figure 8. Histories of actual and desired altitudes with respect to downrange

Figure 9. Histories of actual and desired altitudes with respect to time
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Figure 10. States histories for various initial altitudes

Figure 11. Histories of horizontal and vertical velocities for various initial altitudes
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Figure 12. Histories of controller, thrust and sliding surface for various initial altitudes

Figure 13. Histories of actual and estimated uncertainties for various initial altitudes
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5. CONCLUSIONS

An integrated path planning and control method was presented in this work. A

second order sliding mode control was used to design the controller that would land an

impaired aircraft safely back to the ground from given initial altitudes. Furthermore, a

high order sliding mode differentiator was used to estimate the unknown terms that arise

in the formulation. Sample results were from numerical simulations of an aircraft using

the numerical values of Cessna 182.Though more impairments and scenarios should be

considered, preliminary results from this study indicate that the developed technique has

good potential to be used in this class of problems.
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ABSTRACT

Although rigorous framework exists for handling state variable inequality con-

straints under optimal control formulations, it is quite involved and difficult to incorporate

for online use. In this study, an alternative approach is proposed by combining a state-

dependent Riccati equation (SDRE) based inverse optimal control formulation with a set-

theoretic barrier Lyapunov function (STBLF). Necessary derivations are presented. Both

regulator and tracking type problems are considered. The performance of the proposed

method is evaluated using numerical examples.

1. INTRODUCTION

In an optimal control method, the objective is to minimize the cost function. In

the case of inverse optimal control, rather than computing an optimal solution for a given

cost function, the parameters of the cost function that substantiate the demonstrated optimal

behavior is computed. The controller is designed using the Lyapunov stability theory yet at

the same time the associated equations satisfy the Hamilton Jacobi Bellman (HJB) equation

arising in optimal control formulations.

Interest in the problem of inverse optimal control has increased with applications

to several areas in the last few decades. In an earlier paper, Moylan and Anderson some

theoretical work on inverse optimal nonlinear regulator. [1]. The stability analysis and
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optimal control of nonlinear systems were studied by Bernstein [2]. Krstic worked on

inverse optimal stabilization of a rigid spacecraft by using an integrator backstepping

controller [3]. In the work by Luo et. al., an inverse optimal adaptive control was applied

to attitude tracking of spacecraft [4].

The SDRE technique is a well-known method in the controls area. Cloutier stud-

ied the problem of infinite horizon optimal control for nonlinear systems by using the

SDRE method [5]. Heydari and Balakrishnan developed a new method for finite horizon

suboptimal control of nonlinear systems by using the SDRE approach [6].

As for handling the state variable constraints, adaptive control offers a good tech-

nique with STBLF. The STBLF has been used successfully by Ehsan et. al. where they

have presented a new model reference adaptive controller [7]. Tee, Ge, and Tay studied bar-

rier Lyapunov functions for the control of output constrained nonlinear systems [8]. Muse

developed an adaptive control method that imposes the system state to stay in a chosen

region[9].

Optimal controller formulation with state variable inequality constraints is a very

difficult and involved problem to solve [10], [11], [12], [13]. Han and Balakrishnan [14]

have developed an adaptive critic based neural networks controller scheme for linear and

nonlinear systems and presented their results with an agile missile application where the

missile flight mach number was constrained to be above certain prescribed value.

This paper proposes quite a different approach to the state constrained optimal

control problems. This study uses an inverse optimal control method coupled with an

STBLF.

The rest of the paper is organized as follows: Inverse optimal control development

with an STBLF for the regulator problem is given in Section 2. In Section 3, inverse optimal

control with an STBLF for a tracking problem is described. Simulation results are presented

in Section 4. Conclusions are given in Section 5.
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2. INVERSE OPTIMAL CONTROL BASED ON AN STBLF FOR REGULATOR
PROBLEMS

In the following subsection, the inverse optimal control is designed with an STBLF;

related stability analysis is also given.

2.1. INVERSE OPTIMAL CONTROL DESIGN

The system dynamics is given by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (1)

where 𝑥(𝑡) ∈ R𝑛, 𝑡 ≥ 0, is the state vector, 𝑢(𝑡) ∈ R𝑚, 𝑡 ≥ 0, denotes the control

input, 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 denote a known system matrix and a known input matrix,

respectively.

The performance variable 𝐿 (𝑥, 𝑢) to be minimized is assumed to be of the form [15]

𝐿 (𝑥, 𝑢) = 𝐿1(𝑥) + 𝐿2(𝑥)𝑢 + 𝑢𝑇𝑅2(𝑥)𝑢 (2)

where 𝐿1: R𝑛 → R and 𝐿2: R𝑛 → R1×𝑚 and 𝑅2∈ R𝑚×𝑚+ .

Then a cost function can be defined using (2) as

𝐽 (𝑥, 𝑢) =
∫ ∞

0
(𝐿1(𝑥) + 𝐿2(𝑥)𝑢 + 𝑢𝑇𝑅2(𝑥)𝑢)𝑑𝑡. (3)

The Hamiltonian function can then be written as

𝐻 = 𝐿1(𝑥) + 𝐿2(𝑥)𝑢 + 𝑢𝑇𝑅2(𝑥)𝑢 +
𝜕𝑉

𝜕𝑥

𝑇

(𝐴𝑥 + 𝐵𝑢) (4)
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where V is assumed to be the solution to the optimal return function in the Hamilton-Jacobi-

Bellman (HJB) equation. Taking the partial derivative of the Hamiltonian, H with respect

to controller and equating it to zero, we can get an expression for control as

𝑢 = −1
2
𝑅−1

2 [𝐿𝑇2 + 𝐵𝑇 𝜕𝑉
𝜕𝑥

] . (5)

By using (5) in (4), the following expression for H can be obtained

𝐻 = 𝐿1(𝑥) +
𝜕𝑉

𝜕𝑥

𝑇

𝐴𝑥 − 1
4
𝐿2𝑅

−1
2 𝐿𝑇2 − 1

4
𝐿2𝑅

−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥

− 1
4
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐿𝑇2 − 1

4
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥
= 0

(6)

where equation (6) implies

−𝐿1(𝑥) =
𝜕𝑉

𝜕𝑥

𝑇

𝐴𝑥 − 1
4
𝐿2𝑅

−1
2 𝐿𝑇2 − 1

4
𝐿2𝑅

−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥

− 1
4
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐿𝑇2 − 1

4
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥
.

(7)

In the next section, an STBLF is defined. The controller will be designed by using the

STBLF and 𝐿1(𝑥) that appears in the Hamiltonian.

2.2. SET-THEORETIC BARRIER LYAPUNOV FUNCTION

Definition 2.1. The weighted Euclidean norm is expressed as ∥𝑚∥𝑃 =

√︃
1
4𝑚

𝑇𝑃𝑚 where

𝑚 ∈ R𝑃 is a column vector and 𝑃 ∈ R𝑝×𝑝+ . A restricted potential function 𝜙(∥𝑚∥P),

𝜙 : R→ R can be defined on the set given by

D𝜖 ≜ {𝑚 : ∥𝑚∥P ∈ [0, 𝜖)} (8)

where 𝜖 ∈ R+ is a user-defined constant, when following conditions are satisfied [7]:

i) If ∥𝑚∥P = 0, then 𝜙(∥𝑚∥P) = 0.



63

ii) If 𝑚 ∈ D𝜖 and ∥𝑚∥P ≠ 0, then 𝜙(∥𝑚∥P) > 0.

iii) If ∥𝑚∥P → 𝜖 , then 𝜙(∥𝑚∥P) → ∞.

iv) 𝜙(∥𝑚∥P) is continuously differentiable on D𝜖 .

v) If 𝑚 ∈ D𝜖 , then 𝐷𝜙 (∥𝑚∥P) > 0, where 𝐷𝜙 (∥𝑚∥P) ≜ d𝜙(∥𝑚∥P)
d∥𝑚∥2

P
.

vi) If 𝑚 ∈ D𝜖 , then 2𝐷𝜙 (∥𝑚∥P)∥𝑚∥2
P − 𝜙(∥𝑚∥P) > 0.

𝜙(∥𝑚∥P) =
∥𝑚∥2

P
𝜖 − ∥𝑚∥P

, ∥𝑚∥P ∈ D𝜖 (9)

with the partial derivative

𝐷𝜙 (∥𝑚∥P) =
𝜖 − 1

2 ∥𝑚∥P

(𝜖 − ∥𝑚∥P)2 > 0, ∥𝑚∥P ∈ D𝜖 (10)

with respect to ∥𝑚∥2
P and

2𝐷𝜙 (∥𝑚∥P)∥𝑚∥2
P − 𝜙(∥𝑚∥P) =

𝜖 ∥𝑚∥2
P

(𝜖 − ∥𝑚∥P)2 > 0 ∥𝑚∥P ∈ D𝜖 . (11)

Next let the STBLF be,

𝑉 (𝑥) = 𝜙(∥𝑥∥P). (12)

The time derivative of (12) is given by

¤𝑉 (𝑥) = 1
2
𝐷𝜙 (∥𝑥(𝑡)∥𝑃)𝑥𝑇 (𝑡)𝑃 ¤𝑥(𝑡). (13)

The above equation can be expanded as

¤𝑉 (𝑥) = d𝜙(∥𝑥(𝑡)∥𝑃)
d∥𝑥(𝑡)∥2

𝑃︸          ︷︷          ︸
𝐷𝜙

d∥𝑥(𝑡)∥2
𝑃

d𝑥︸     ︷︷     ︸
𝐷𝑥︸                         ︷︷                         ︸

𝐷𝑇
𝑉

d𝑥
d𝑡
. (14)
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By using the state dynamics in (1), (14) becomes

¤𝑉 (𝑥) = 𝐷𝑇𝑉 ¤𝑥 = 𝐷𝑇𝑉 (𝐴𝑥 + 𝐵𝑢) =
𝜕𝑉

𝜕𝑥

𝑇

(𝐴𝑥 + 𝐵𝑢), (15)

where 𝐷𝑉 is written as 𝜕𝑉
𝜕𝑥

. By using (5) in (15), we get,

¤𝑉 (𝑥) = 𝜕𝑉

𝜕𝑥

𝑇

𝐴𝑥 − 1
2
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐿𝑇2 − 1

2
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥
. (16)

2.3. COMBINING INVERSE OPTIMAL CONTROL AND STBLF

Comparing (7) with (16), we get,

¤𝑉 (𝑥) = −𝐿1(𝑥)

𝜕𝑉

𝜕𝑥

𝑇

𝐴𝑥 − 1
2
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐿𝑇2 − 1

2
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥

=
𝜕𝑉

𝜕𝑥

𝑇

𝐴𝑥 − 1
4
𝐿2𝑅

−1
2 𝐿𝑇2 − 1

4
𝐿2𝑅

−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥

− 1
4
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐿𝑇2 − 1

4
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥
.

(17)

In (17), if 𝐿𝑇2 is chosen as 𝐵𝑇 𝜕𝑉
𝜕𝑥

, (17) can be simplified as ¤𝑉 (𝑥) = −𝐿1(𝑥). Then the

controller (5) becomes

𝑢 = −𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥
. (18)

2.4. STABILITY ANALYSIS

By using 𝐿𝑇2 = 𝐵𝑇 𝜕𝑉
𝜕𝑥

in (16), we get

¤𝑉 (𝑥) = 𝜕𝑉

𝜕𝑥

𝑇

𝐴𝑥 − 𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑥
. (19)
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By using 𝜕𝑉
𝜕𝑥

= 𝐷𝜙𝐷𝑥 in (19), we get,

¤𝑉 (𝑥) = 𝐷𝑇𝑥𝐷𝜙𝐴𝑥 − 𝐷𝑇𝑥𝐷𝜙𝐵𝑅
−1
2 𝐵𝑇𝐷𝜙𝐷𝑥 . (20)

From 𝐷𝑥 =
d∥𝑥(𝑡)∥2

𝑃

d𝑥 expression, 𝐷𝑥 is calculated as 𝐷𝑥 =
1
2𝑃𝑥 can be substituted in (20) to

get the following expression,

¤𝑉 (𝑥) = 1
4
𝑥𝑇 [𝑃𝐷𝜙𝐴 + 𝐴𝑇𝑃𝐷𝜙 − 𝑃𝐷𝜙𝐵𝑅

−1
2 𝐵𝑇𝐷𝜙𝑃]𝑥 (21)

where ¤𝑉 = −𝐿1 and if we choose 𝐿1 = 1
4𝑥
𝑇𝑄𝑥 , 𝑄 ∈ R𝑛×𝑛+ , then equating the right hand

side (RHS) we get 𝑃𝐷𝜙𝐴 + 𝐴𝑇𝑃𝐷𝜙 − 𝑃𝐷𝜙𝐵𝑅
−1
2 𝐵𝑇𝐷𝜙𝑃 = −𝑄 . This expression can be

simplified by defining 𝐴̄ = 𝐷𝜙𝐴 and 𝐵̄ = 𝐷𝜙𝐵 to get, 𝑃𝐴̄ + 𝐴̄𝑇𝑃 − 𝑃𝐵̄𝑅−1
2 𝐵̄𝑇𝑃 = −𝑄. This

state dependent Riccati equation can then be solved to get P [16],[17].

Theorem 2.1. Consider the system dynamics in (1) with the optimal control effort defined

in (18). If the initial weighted Euclidean norm is less then user-defined constant, then

the closed-loop systems are bounded, where the system weighted Euclidean norm strictly

satisfies user-defined constant given by

∥𝑚∥P < 𝜖, 𝑡 ≥ 0. (22)

Proof. Boundedness of the closed loop system is proven using the Lyapunov function. The

STBLF is used in this paper that is given in (12). The time derivative of (12) is given in

(13). By using (1) in (13), we get

¤𝑉 (𝑥) = 1
2
𝐷𝜙 (∥𝑥(𝑡)∥𝑃)𝑥𝑇 (𝑡)𝑃(𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)). (23)
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By using (18) in (23), we get

¤𝑉 (𝑥) = 1
2
𝐷𝜙 (∥𝑥(𝑡)∥𝑃)𝑥𝑇 (𝑡)𝑃[𝐴 − 1

2
𝐵𝑅−1

2 𝐵𝑇𝐷𝜙𝑃]𝑥(𝑡) (24)

with letting 𝐴𝐻 ≜ 𝐴 − 1
2𝐵𝑅

−1
2 𝐵𝑇𝐷𝜙𝑃 and P is chosen such that 𝐴𝐻 is point-wise Hurwitz.

Then

¤𝑉 (𝑥) = 1
4
𝑥𝑇 (𝑡)𝐷𝜙 [𝑃𝐴𝐻 + 𝐴𝑇𝐻𝑃]𝑥(𝑡) (25)

where 𝑃𝐴𝐻 + 𝐴𝑇
𝐻
𝑃 = −𝑄 and

¤𝑉 (𝑥) ≤ −1
4
𝐷𝜙𝜆𝑚𝑖𝑛 (𝑄)𝑥𝑇𝑥. (26)

By adding and subtracting 1
8𝜆𝑚𝑖𝑛 (𝑄)𝜙(∥𝑥∥P),

¤𝑉 (𝑥) ≤ −1
8
𝜆𝑚𝑖𝑛 (𝑄)𝜙(∥𝑥∥P) − 𝜆𝑚𝑖𝑛 (𝑄) [

1
4
𝐷𝜙𝑥

𝑇𝑥

− 1
8
𝜙(∥𝑥∥P)] .

(27)

By using the property given in (11), [ 1
4𝐷𝜙𝑥

𝑇𝑥 − 1
8𝜙(∥𝑥∥P)] > 0. Therefore, it is proved that

¤𝑉 (𝑥) ≤ −1
8
𝜆𝑚𝑖𝑛 (𝑄)𝜙(∥𝑥∥P). (28)

□

3. INVERSE OPTIMAL CONTROL BASED ON STBLF FOR TRACKING
PROBLEMS

3.1. INVERSE OPTIMAL CONTROL DESIGN

For a system dynamics defined in Section 2.1.
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The reference model can be defined as

¤𝑥𝑚 (𝑡) = 𝐴𝑚𝑥𝑚 (𝑡) + 𝐵𝑚𝑟 (𝑡) (29)

where 𝑥𝑚 (𝑡) ∈ R𝑛, 𝑡 ≥ 0 is the reference state vector. 𝐴𝑚 ≜ 𝐴 − 𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃, 𝐴𝑚 ∈

R𝑛×𝑛 denotes a pointwise Hurwitz matrix, 𝐵𝑚 ≜ 𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃𝐶

𝑇 , 𝐵𝑚 ∈ R𝑛×𝑛𝑟 denotes

a reference input matrix and 𝐶 ∈ R𝑛𝑟×𝑛 denotes an output matrix. 𝑟 (𝑡) ∈ R𝑛𝑟 is a given

bounded piecewise continuous command. The system error is defined as 𝑒(𝑡) ≜ 𝑥𝑚 (𝑡) −

𝑥(𝑡), 𝑡 ≥ 0. By using (1) and (29), the error dynamics is given by

¤𝑒(𝑡) = 𝐴𝑒 − 𝐵𝑢 − 𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃(𝑥𝑚 − 𝐶𝑇𝑟). (30)

The controller equation becomes,

𝑢 = 𝑅−1
2 𝐵𝑇

𝜕𝑉

𝜕𝑒
. (31)

Theorem 3.1. Consider the system dynamics in (30) with the optimal control effort defined

in (31). If the initial weighted Euclidean norm is less then user-defined constant, then

the closed-loop systems are bounded, where the system weighted Euclidean norm strictly

satisfies user-defined constant given by

∥𝑚∥P < 𝜖, 𝑡 ≥ 0. (32)

Proof. Boundedness of the closed loop system is proven using the Lyapunov function given

by

𝑉 (𝑒) = 𝜙(∥𝑒∥P) (33)
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Taking the time derivative of equation (33) we get,

¤𝑉 (𝑒) = d𝜙(∥𝑒(𝑡)∥𝑃)
d𝑡

=
d𝜙(∥𝑒(𝑡)∥𝑃)

d∥𝑒(𝑡)∥2
𝑃

d∥𝑒(𝑡)∥2
𝑃

d𝑡
=

d𝜙(∥𝑒(𝑡)∥𝑃)
d∥𝑒(𝑡)∥2

𝑃

d∥𝑒(𝑡)∥2
𝑃

d𝑒
d𝑒
d𝑡

=
1
2
𝐷𝜙 (∥𝑒(𝑡)∥𝑃)𝑒𝑇 (𝑡)𝑃 ¤𝑒(𝑡).

(34)

By steps similar to the ones used in Section 2, it can be proven that

¤𝑉 (𝑒) ≤ −1
8
𝜆𝑚𝑖𝑛 (𝑄)𝜙(∥𝑒∥P). (35)

□

4. NUMERICAL RESULTS

In this section, two different problems (regulator and tracking) are considered. The

simulation results for two different examples are shown for each problem. The objective is

to keep the weighted Euclidean norm under apriori defined bound. The proposed SDRE

based inverse optimal control with STBLF is used for this purpose.

For all the examples given below, initial P value is strategically selected such that

the weighted Euclidean norm is close to the designed bound in order to test the effectiveness

of the proposed method. If P value is selected which is far from the bound, the required

control effort is found to be less. To calculate 𝐷𝜙, the initial 𝑃 needs to be selected. Initial

𝑃 has to be symmetric and positive definite. Therefore, 𝑃 is selected for each case as

𝑃 =


2 1

1 2

 .
In the two subsequent subsections, the efficacy of the proposed method will be shown for

both the regulator and the tracking problems.
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In the following problems the state vector is of the form

𝑥 = [𝑥1 𝑥2]𝑇 , (36)

where 𝑥1 represents the position and 𝑥2 represents the velocity of system.

4.1. REGULATOR PROBLEM

In this problem, two different examples are shown. One is for constant dynamics

and the other is for time varying dynamics. For the below regulator problems, the weight

matrices that are used in cost function are selected as

𝑄 = 𝛼


1 0

0 1

 , 𝑅 = 1,

where 𝛼 = 1. One can modulate the transient response of the system by picking different

values of 𝛼. The effect of 𝛼 on the system response was tested with different values of 𝛼.

When 𝛼 is in the range (0,1), the system transient response took longer to settle. Larger

values of the parameter 𝛼 resulted in larger values of control which then lead to shorter

transient responses.

4.1.1. Case 1. The system dynamics is as follows

𝐴 =


0 1

0 0

 , 𝐵 =


0

1

 .
In this example the threshold 𝜖 is set to be 14. Initial condition of states are chosen as

11 𝑑𝑒𝑔 and 11 𝑑𝑒𝑔/𝑠, respectively.



70

Figure 1. Histories of states and controller for regulator problem case 1

Figure 2. Histories of norm of states and bound for regulator problem case 1

Figure 1 shows the histories of states and controller. It is clearly seen that, the

states settling time is around 5𝑠. In this case, the system has a quick transient response and

the controller effort is high, thereby reducing the settling time to 5𝑠. As we can see from

Figure 2, even if the initial states are set close to the threshold, the weighted Euclidean norm

remains within the bound.
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4.1.2. Case 2. Dynamics of the damped Mathieu equation is given by [18]

𝐴 =


0 1

−(2 + 𝑠𝑖𝑛(𝑡)) −1

 , 𝐵 =


0

1


In this example, the threshold 𝜖 is set to be 3. The initial condition of states are 𝑥1 = 4 𝑑𝑒𝑔

, 𝑥2 = −4 𝑑𝑒𝑔/𝑠.

Figure 3. Histories of states and controller for regulator problem case 2

Figure 4. Histories of norm of states and bound for regulator problem case 2
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Figure 3 shows the histories of states and controller for time varying dynamics.

Even if dynamics are time varying, the states settling time is still around 5𝑠. Also, we can

see from Figure 4, the weighted Euclidean norm remains within the bound, even when the

initial states are set close to the threshold.

4.2. TRACKING PROBLEMS

The A and B matrices of the system for the following problems are given below:

𝐴 =


0 1

0 0

 , 𝐵 =


0

1

 .
In the following examples, the weight matrices are selected as

𝑄 =


10 0

0 10

 , 𝑅 = 0.01.

The initial condition for states are 0 𝑑𝑒𝑔 and 0 𝑑𝑒𝑔/𝑠, respectively. In this problem, two

different trajectories are used.

4.2.1. Case 1. In this case, the threshold 𝜖 is set to 5𝑥10−3. The system is expected

to track a square wave.

Figure 5 presents the histories of the system states and the square wave to be tracked

and also the variation of control with time. It can be seen that the control makes the system

track the reference square wave quite well. The result shown in Figure 6 confirms that the

proposed controller keeps the error under the bound.
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Figure 5. Histories of the states and the references states and controller for tracking problem
case 1

Figure 6. Histories of norm of error and bounds for tracking problem case 1

4.2.2. Case 2. The threshold 𝜖 is set to 5𝑥10−4, in this example. The reference

model is designed to be a function of time, 𝑟 (𝑡) = 0.1𝑠𝑖𝑛(0.1𝑡).
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Figure 7. Histories of the states and the references states and controller for tracking problem
case 2

Figure 8. Histories of norm of error and bounds for tracking problem case 2

Figure 7 depicts the actual states and the reference models and the designed con-

troller. In this figure, the actual states are following the model reference trajectories

successfully like in Case 1. Similar to the previous cases, the proposed controller keeps

error under the bound in this example also as can be seen in Figure 8.
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5. CONCLUSION

The state constraint inequality is a challenging task to include in a traditional optimal

controller design. An inverse optimal controller design with an STBLF that simplifies the

controller design was presented in this work. Representative simulation results were shown

for both the regulator and the tracking problems. These results seem to indicate that the

developed inverse optimal controller has good potential for applications.
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ABSTRACT

In this paper, we study the adaptive control of uncertain dynamical systems. Specif-

ically, we use the Θ-D method to establish an optimal nonlinear reference model based on

the known system dynamics. We then design the adaptive control algorithm for suppressing

the unknown system dynamics, where it drives the trajectories of the uncertain dynami-

cal system to that of the optimal nonlinear reference model. Two illustrative numerical

examples are also given to complement our theoretical contribution.

1. INTRODUCTION

There is an ever-increasing interest in optimal control of nonlinear dynamical sys-

tems. Yet, due to the presence of unavoidable real-world exogenous disturbances and system

uncertainties, achieving optimality is a challenge. Motivated by this standpoint, the authors

of [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] study various feedback control algorithms with an

approximate optimality (that is, suboptimality) guarantee. Building on the results in [12]

and [13], the authors of [14] also propose a concurrent learning-based approximate optimal

regulation. The authors of [15] and [16] then generalize the results of [14] to multiagent
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systems and approximate optimal tracking problem, respectively. Finally, the authors of [17]

utilize a max-min Hamiltonian Jabobi Bellman equation for uncertain nonlinear dynamical

systems.

For uncertain nonlinear dynamical systems, the other approach toward optimality is

the actor-critic-identifier (ACI) method. In particular, this method approximates the Hamil-

ton–Jacobi–Bellman equation using three neural network (NN) layers. An advantage of

using the ACI architecture is that learning by the actor, critic, and identifier is simultaneous

without requiring knowledge of system dynamics. The online actor-critic algorithm is de-

veloped with policy iteration for infinite horizon optimal control problem [18]. The authors

of [19] establish an online adaptive optimal control method for continuous time uncertain

nonlinear dynamical systems. This method is based on the identifier-critic approximation

dynamic programming with two NN layers (that is, there is no need for actor NN with

this method). The authors of [20] propose an optimal control approach predicated on the

adaptive-critic NNs for the aircraft systems. The key aspect of this method is that the NN

does not need any priori knowledge of the controller. The optimal control based on a single

network adaptive critic is also developed for nonlinear dynamical systems in [21], where

this method has an advantage on computational complexity.

In the current literature, a method called as the Θ-D method [22] achieves effective

suboptimal solutions for nonlinear dynamical systems. The advantage of this method is

that it involves reduced nonlinear computations and control signals with initially small

magnitudes. Yet, the authors of [22] does not focus on the presence of uncertainties.

Motivated by this standpoint, this paper uses the Θ-D method to establish an optimal

nonlinear reference model based on the known system dynamics. Building on the key ideas

on nonlinear reference model based adaptive control architectures [23], we then design the

adaptive control algorithm for suppressing the unknown system dynamics. Specifically, we

show that the trajectories of the uncertain dynamical system converges to the trajectories of

the optimal nonlinear reference model.
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The rest of the paper is organized as follows. For completeness, an overview of

the Θ-D method is presented in Section 2. Our theoretical contribution is then given in

Section 3. Section 4 then shows the two illustrative numerical examples to complement our

theoretical contribution. In Section 5, the conclusion is provided.

2. AN OVERVIEW ON Θ − 𝐷 SUBOPTIMAL CONTROL METHOD

An overview of the Θ − 𝐷 method [22] is now presented. Specifically, consider the

nonlinear dynamical system given by

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡)) + 𝐵𝑢(𝑡), 𝑥(0) = 𝑥0, (1)

along with the cost function

𝐽 (𝑥(𝑡), 𝑢(𝑡)) = 1
2

∫ ∞

0
(𝑥𝑇 (𝑡)𝑄𝑥(𝑡) + 𝑢𝑇 (𝑡)𝑅𝑢(𝑡))d𝑡. (2)

Here, 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control input, and 𝑓 (𝑥(𝑡)) ∈ R𝑛 and

𝐵 ∈ R𝑛×𝑚 are known function and input matrix, respectively. In addition, 𝑅 ∈ R𝑚×𝑚+ and

𝑄 ∈ R𝑛×𝑛+ in (2) are positive definite matrices. The optimal control is then given by

𝑢∗(𝑡) = −𝑅−1𝐵𝑇
𝜕𝑉

𝜕𝑥
(3)

The optimal solution of the above infinite-horizon nonlinear regulator problem can be

obtained by solving the Hamiltonian-Jacobi-Bellman (HJB) given by

𝜕𝑉

𝜕𝑥

𝑇

𝑓 (𝑥(𝑡)) − 1
2
𝜕𝑉

𝜕𝑥

𝑇

𝐵𝑅−1𝐵𝑇
𝜕𝑉

𝜕𝑥
+ 1

2
𝑥𝑇𝑄𝑥 = 0. (4)
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Specifically, let

¤𝑥(𝑡) = 𝐴0𝑥(𝑡) + Θ

( 𝐴(𝑥(𝑡))
Θ

)
𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 𝑥0, (5)

and

𝐽 (𝑥(𝑡), 𝑢(𝑡)) = 1
2

∫ ∞

0
[𝑥𝑇 (𝑡) (𝑄 +

∞∑︁
𝑖=0

𝐷𝑖Θ
𝑖)𝑥(𝑡) + 𝑢𝑇 (𝑡)𝑅𝑢(𝑡)]d𝑡 (6)

be the rewritten versions of (1) and (2), respectively [22].

In addition, define the co-state 𝜆 as

𝜆 =
𝜕𝑉

𝜕𝑥
, (7)

and assume a power series expansion of 𝜆 in terms of Θ as

𝜆(𝑡) =
∞∑︁
𝑖=0
𝑇𝑖Θ

𝑖𝑥(𝑡). (8)

Now, choosing the costate as

𝜆(𝑡) =
[
𝑇0Θ

0 + 𝑇1Θ
1 + 𝑇2Θ

2
]
𝑥(𝑡), (9)

one can rewrite the HJB equation in (4) as

𝑥𝑇 (𝑡)
(
[𝑇0 + 𝑇1Θ + 𝑇2Θ

2]
) (
𝐴0𝑥(𝑡) + Θ

( 𝐴(𝑥(𝑡))
Θ

)
𝑥(𝑡)

)
− 1

2
𝑥𝑇 (𝑡)

(
[𝑇0 + 𝑇1Θ + 𝑇2Θ

2]
)
𝐵𝑅−1𝐵𝑇

(
[𝑇0 + 𝑇1Θ + 𝑇2Θ

2]
)
𝑥(𝑡)

+ 1
2
𝑥𝑇 (𝑡) (𝑄 +

∞∑︁
𝑖=0

𝐷𝑖Θ
𝑖)𝑥(𝑡) = 0.

(10)

Finally, equating the coefficient of powers of Θ in (10) to zero yields to the following series

of equation

𝑇0𝐴0 + 𝐴𝑇0𝑇0 − 𝑇0𝐵𝑅
−1𝐵𝑇𝑇0 +𝑄 = 0, (11)
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𝑇1(𝐴0 − 𝐵𝑅−1𝐵𝑇𝑇0) + 𝑇1(𝐴𝑇0 − 𝑇0𝐵𝑅
−1𝐵𝑇 ) = −𝑇0𝐴(𝑥)

Θ
− 𝑇0𝐴(𝑥)

Θ
− 𝐷1, (12)

𝑇2(𝐴0 − 𝐵𝑅−1𝐵𝑇𝑇0) + 𝑇2(𝐴𝑇0 − 𝑇0𝐵𝑅
−1𝐵𝑇 ) = −𝑇1𝐴(𝑥)

Θ
− 𝑇1𝐴(𝑥)

Θ
+ 𝑇1𝐵𝑅

−1𝐵𝑇𝑇1

− 𝐷2.

(13)

The overview of the Θ − 𝐷 method is now completed, where solving (11), (12), and (13)

gives the feedback control signal (4) for the known nonlinear dynamical system in (1).

3. ADAPTIVE CONTROL WITH THE Θ − 𝐷 NONLINEAR REFERENCE
MODEL

In this section, we focus on uncertain nonlinear dynamical systems, where we use the

Θ−𝐷 method to establish our nominal control signal based on the known system dynamics.

In turn, it results in an optimal nonlinear reference model structure. Mathematically

speaking, consider the uncertain nonlinear dynamical system given by

¤𝑥(𝑡) = 𝐴0𝑥(𝑡) + 𝐴(𝑥(𝑡))𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑑 (𝑥(𝑡)), 𝑥(0) = 𝑥0, (14)

where 𝑑 (𝑥(𝑡)) is the uncertainty. The control algorithm is then separated into nominal and

adaptive parts as

𝑢(𝑡) = 𝑢n(𝑡) + 𝑢ad(𝑡). (15)

Using the Θ − 𝐷 method overviewed in the previous section, the nominal controller is

chosen as

𝑢n(𝑡) = −𝑅−1𝐵𝑇
[
𝑇0Θ

0 + 𝑇1Θ
1 + 𝑇2Θ

2
]
𝑥(𝑡). (16)

Substituting control algorithm (15) into (14) and choosing Θ = 1, we have

¤𝑥(𝑡) = 𝐴0𝑥(𝑡) + 𝐴(𝑥(𝑡))𝑥(𝑡) + 𝐵(𝑢n(𝑡) + 𝑢ad(𝑡)) + 𝐵𝑑 (𝑥(𝑡)), 𝑥(0) = 𝑥0. (17)
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In addition, substituting (16) into (17), we get

¤𝑥(𝑡)= 𝐴0𝑥(𝑡) + 𝐴(𝑥(𝑡))𝑥(𝑡) − 𝐵𝑅−1𝐵𝑇 [𝑇0 + 𝑇1 + 𝑇2]𝑥(𝑡) + 𝐵𝑢𝑎𝑑 (𝑡) + 𝐵𝑑 (𝑥(𝑡))

=

(
𝐴0 − 𝐵𝑅−1𝐵𝑇𝑇0

)
𝑥(𝑡) +

(
𝐴(𝑥(𝑡)) − 𝐵𝑅−1𝐵𝑇 [𝑇1 + 𝑇2]

)
𝑥(𝑡) + 𝐵𝑢ad(𝑡) + 𝐵𝑑 (𝑥(𝑡))

(18)

The optimal nonlinear reference model is now given as

¤𝑥m(𝑡) =
(
𝐴0 − 𝐵𝑅−1𝐵𝑇𝑇0

)
𝑥m(𝑡) +

(
𝐴(𝑥m(𝑡)) − 𝐵𝑅−1𝐵𝑇 [𝑇1 + 𝑇2]

)
𝑥m(𝑡)

= 𝐴m1𝑥m(𝑡) + ℎ(𝑥m(𝑡)) − 𝐵𝐾 (𝑥m(𝑡)), 𝑥m(0) = 𝑥m0 ,

(19)

where 𝐴m1 ≜ 𝐴0 − 𝐵𝑅−1𝐵𝑇𝑇0, ℎ(𝑥m(𝑡)) ≜ 𝐴(𝑥m(𝑡))𝑥m(𝑡), and 𝐾 (𝑥m(𝑡)) ≜ 𝑅−1𝐵𝑇 [𝑇1 +

𝑇2]𝑥m(𝑡) (asymptotic stability of this reference model is considered based on the results

overviewed in the previous section). Defining

ℎm(𝑥m(𝑡)) ≜ ℎ(𝑥m(𝑡)) − 𝐵𝐾 (𝑥m(𝑡)), (20)

(19) can be rewritten as

¤𝑥m(𝑡) = 𝐴m1𝑥m(𝑡) + ℎm(𝑥m(𝑡)), 𝑥m(0) = 𝑥𝑚0 . (21)

We can now write

¤𝑥(𝑡) = 𝐴m1𝑥(𝑡) + ℎm(𝑥(𝑡)) + 𝐵𝑢ad(𝑡) + 𝐵𝑊𝑇
2 𝜙2(𝑥(𝑡)), (22)

where 𝑑 (𝑥(𝑡)) = 𝑊𝑇
2 𝜙2(𝑥(𝑡)) represents the matched system uncertainty. Next, let

𝑒(𝑡) ≜ 𝑥(𝑡) − 𝑥m(𝑡), 𝑒(0) = 𝑒0 ≜ 𝑥0 − 𝑥m0 (23)
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be the system error subject to

¤𝑒(𝑡) = 𝐴m1𝑥(𝑡) + ℎm(𝑥(𝑡)) + 𝐵𝑢ad(𝑡) + 𝐵𝑊𝑇
2 𝜙2(𝑥(𝑡)) − 𝐴m1𝑥m(𝑡) − ℎm(𝑥m(𝑡)),

= 𝐴m1𝑒(𝑡) + ℎm(𝑥(𝑡)) − ℎm(𝑥m(𝑡)) + 𝐵𝑢ad(𝑡) + 𝐵𝑊𝑇
2 𝜙2(𝑥(𝑡))

(24)

From [23], the following assumption is needed for the main results of this paper.

Assumption 3.1. There exists two vector fields 𝜇 : R𝑛 → R𝑛 and 𝑣 : R𝑛 × R𝑛 × R𝑚 → R𝑚

such that 𝜇(0) = 0 and

𝜇(𝑒(𝑡)) = 𝐴m1𝑒(𝑡) + ℎm(𝑥(𝑡)) − ℎm(𝑥m(𝑡)) + 𝐵𝑣(𝑒(𝑡), 𝑥(𝑡), 𝑥m(𝑡)), (25)

holds. Furthermore, for the dynamical system ¤𝑒(𝑡) = 𝜇(𝑒(𝑡)) there exists a continuously

differentiable function Φ : R𝑛 → R and a continuous vector field 𝑙 : R𝑛 → R𝑝 such that

Φ(.) is positive definite, radially unbounded, Φ(0) = 0, 𝑙 (0) = 0, and

0 = Φ′(𝑒(𝑡))𝜇(𝑒(𝑡)) + 𝑙𝑇 (𝑒(𝑡))𝑙 (𝑒(𝑡)), (26)

holds for all 𝑒 ∈ R, where Φ′(𝑒) = 𝜕Φ
𝜕𝑒

(we refer to [23] for additional details).

Finally, we use (25) into (24) and it is written as

¤𝑒(𝑡) = 𝜇(𝑒(𝑡)) − 𝐵𝑣(𝑒(𝑡), 𝑥(𝑡), 𝑥m(𝑡)) + 𝐵𝑢ad(𝑡) + 𝐵𝑊𝑇
2 𝜙2(𝑥(𝑡))

= 𝜇(𝑒(𝑡)) + 𝐵[𝑢ad(𝑡) +𝑊𝑇
1 𝜙1(𝑥(𝑡))]

(27)

where the weight (𝑊1) and basis (𝜙1) functions satisfy

𝑊1 ≜ [𝑊𝑇
2 − I]𝑇 ,

𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡)) ≜ [𝜙𝑇2 (𝑥(𝑡)) 𝑣
𝑇 (𝑒(𝑡), 𝑥(𝑡), 𝑥m(𝑡))]𝑇 .

(28)
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The adaptive control is then chosen as

𝑢ad(𝑡) = −𝑊̂𝑇
1 (𝑡)𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡)). (29)

By substituting (29) into (27), we get

¤𝑒(𝑡) = 𝜇(𝑒(𝑡)) + 𝐵[−𝑊̂𝑇
1 (𝑡)𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡)) +𝑊𝑇

1 𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡))], (30)

or equivalently

¤𝑒(𝑡) = 𝜇(𝑒(𝑡)) + 𝐵[𝑊̃𝑇
1 (𝑒(𝑡))𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡))], 𝑒(0) = 𝑒0, (31)

where 𝑊̃1(𝑡) ≜ 𝑊1 − 𝑊̂1(𝑡). The weight update rule now satisfies

¤̂𝑊1(𝑡) = 𝛾1𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡))Φ′(𝑒(𝑡))𝐵, 𝑊̂1(0) = 𝑊̂10, (32)

where 𝛾1 ∈ R+ is the learning rate. Finally, the weight error dynamics satisfies

¤̃𝑊1(𝑡) = 𝛾1𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡))Φ′(𝑒(𝑡))𝐵, 𝑊̃1(0) = 𝑊̃10. (33)

We are now ready to present the main result of this paper.

Theorem 3.1. Consider the closed-loop error dynamics given by (31) and (33). In addition,

consider that Assumption 1 holds. Then, the pair (𝑒(𝑡), 𝑊̃1(𝑡)) is Lyapunov stable for all

initial conditions and lim𝑡→∞ 𝑒(𝑡) = 0.

Proof. Consider the Lyapunov function given by

𝑉 (𝑒(𝑡), 𝑊̃1(𝑡)) = Φ(𝑒(𝑡)) + 𝛾−1
1 𝑡𝑟 (𝑊̃𝑇

1 (𝑡)𝑊̃1(𝑡)). (34)
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Note that𝑉 (𝑒(𝑡), 𝑊̃1(𝑡)) is positive definite for all (𝑒(𝑡), 𝑊̃1(𝑡)) excluding (𝑒0, 𝑊̃10), radially

unbounded, and 𝑉 (0, 0) = 0. The time derivative of (34) can be calculated as

¤𝑉 (𝑒(𝑡), 𝑊̃1(𝑡)) = Φ′(𝑒(𝑡)) ¤𝑒(𝑡) − 2𝛾−1
1 𝑡𝑟 (𝑊̃𝑇

1 (𝑡)
¤̂𝑊1(𝑡))

= Φ′(𝑒(𝑡)) [𝜇(𝑒(𝑡)) + 𝐵[𝑊̃𝑇
1 (𝑡)𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡))]

− 2𝑡𝑟 (𝑊̃𝑇
1 (𝑡)𝜙1(𝑥(𝑡), 𝑥m(𝑡), 𝑒(𝑡))Φ′(𝑒(𝑡))𝐵)

= Φ′(𝑒(𝑡))𝜇(𝑒(𝑡))

= −𝑙𝑇 (𝑒(𝑡))𝑙 (𝑒(𝑡))

≤ 0.

(35)

From (35) it is clear that the pair (𝑒(𝑡), 𝑊̃1(𝑡)) is Lyapunov stable for all initial conditions.

Now, note that 𝑙𝑇 (𝑒(𝑡))𝑙 (𝑒(𝑡)) is positive when 𝑒(𝑡) ≠ 0. Therefore, lim𝑡→∞ 𝑒(𝑡) = 0 is

immediate from [23, 24]. The proof is now complete. ■

4. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, two illustrative numerical examples are given to show the efficacy of

the proposed method.

4.1. FIRST EXAMPLE

As our first example, consider the scalar dynamical system given by

¤𝑥(𝑡) = −𝑥3(𝑡) + 𝑥(𝑡) + 𝑢(𝑡) + 𝑑, (36)

where 𝑑 is selected as 0.1 and the value of the learning rate (𝛾1) given in (32) is chosen as

250. The 𝑄 and 𝑅 given in cost function (2) are chosen as 15 and 20, respectively. The

initial state and the reference state of system are chosen as 𝑥(0) = 1.5 and 𝑥m(0) = 1. In

addition, the 𝜇(𝑒(𝑡)) in (25) is set as 𝐴r𝑒(𝑡), which is selected as 𝐴r = −3. With these
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selections, we have

𝑣(𝑡) = (−3 +
√

2)𝑒(𝑡) − 1
√

2
(𝑥3(𝑡) − 𝑥3

m(𝑡)) +
1

4
√

2
(𝑥5(𝑡) − 𝑥5

m(𝑡)) (37)

Figure 1. Histories of the actual and reference states without adaptive control

Figure 2. History of controller without adaptive control
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Figure 3. Histories of the actual and reference states with adaptive control

Figures 1 and 2 present the results for proposed method without the adaptive control

input. Then, the adaptive control is added, where the system performance gets improved

and shown in Figures 3 and 4.

4.2. SECOND EXAMPLE

The dynamics given in [25] is used in our second example to demonstrate the

efficacy of the proposed adaptive control algorithm predicted on the optimal nonlinear

reference model. Specifically, consider

¤𝑥1(𝑡) = 𝑥1(𝑡) − 𝑥3
1 (𝑡) + 𝑥2(𝑡) + 𝑢1(𝑡) + 𝑑1(𝑥1(𝑡), 𝑥2(𝑡)) (38)

¤𝑥2(𝑡) = 𝑥1(𝑡) − 𝑥2
1 (𝑡)𝑥2(𝑡) − 𝑥2(𝑡) + 𝑢2(𝑡) + 𝑑2(𝑥1(𝑡), 𝑥2(𝑡)), (39)

where 𝑑1(𝑥1(𝑡), 𝑥2(𝑡)) is selected as 𝑥1(𝑡) + 2𝑥2(𝑡), and 𝑑2(𝑥1(𝑡), 𝑥2(𝑡)) is selected as

𝑥1(𝑡) + 2𝑥2(𝑡). In addition, the initial states and the reference states of the dynamic system

are chosen as 𝑥(0) = [1, 2]T and 𝑥m(0) = [0.75, 2.25]T. The learning rate (𝛾1) given in
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Figure 4. History of controller with adaptive control

(32) is set to 5. The 𝑄 and 𝑅 from cost function are chosen as

𝑄 =


1 0

0 10

 , 𝑅 =


20 0

0 20

 .
To find 𝑣(𝑡) given in (25), we select the 𝜇(𝑒(𝑡)) as 𝐴r𝑒(𝑡), where

𝐴r =


0 1

−1 −1.5

 .
Based on the above discussion, 𝑣(𝑡) takes the form given by

𝑣(𝑡) =

𝑣1(𝑡)

𝑣2(𝑡)

 ,
where 𝑣1(𝑡) = 1.5811𝑒1(𝑡)+𝑒2(𝑡)−0.6325𝑥3

1 (𝑡)+0.1898𝑥5
1 (𝑡)+0.6325𝑥3

m1 (𝑡)−0.1898𝑥5
m1 (𝑡)

and 𝑣2(𝑡) = −𝑒1(𝑡)+0.0811𝑒2(𝑡)−0.6325𝑥2
1 (𝑡)𝑥2(𝑡)+0.1898𝑥4

1 (𝑡)𝑥2(𝑡)+0.6325𝑥2
m1 (𝑡)𝑥m2 (𝑡)−

0.1898𝑥4
m1 (𝑡)𝑥m2 (𝑡).
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Figure 5. Histories of the actual and model reference state one without adaptive control

Figure 6. Histories of the actual and model reference state two without adaptive control



90

Figure 7. Histories of controller without adaptive control

Figure 8. Histories of the actual and model reference state one with adaptive control
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Figure 9. Histories of the actual and model reference state two with adaptive control

Figure 10. Histories of controller with adaptive control

Figures 5 to 7 show the results of the uncertain system without the adaptive controller.

Figures 8 to 10 show the performance of the proposed method with the adaptive control

input. Comparing these figures with and without adaptive control, it is clear that adding

adaptive control input significantly improves the performance.
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5. CONCLUSION

For adaptive control of uncertain dynamical systems, Θ-D method was used first to

establish an optimal reference model in nonlinear form. Then, adaptive control input was

designed to suppress the effect of system uncertainties. Two examples were demonstrated

the efficacy of the proposed approach.
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ABSTRACT

Many engineering systems are forced to operate in bounded state-space domains

and therefore techniques to incorporate state constraints play an essential role for feedback

controller designs. Yet, especially in the presence of system uncertainties, incorporating

these constraints becomes a challenge. Motivated by this standpoint, a set-theoretic model

reference adaptive control approach is proposed in this paper for uncertain nonlinear systems

to keep the state values within the desired bounds. This paper also presents experimental

results of set-theoretic barrier Lyapunov function (STBLF) to handle state constraints and

uncertainties on a Quanser 3 DOF Hover system. Specifically, three different restricted

potential functions are explored to demonstrate that much attention should be shown in the

selection of the restricted potential functions in order to result in effective constrained control

and also obtain a desirable closed-loop system performance. Illustrative numerical and

experimental examples are also provided to demonstrate the efficacy of our contributions.
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1. INTRODUCTION

Many engineering systems have bounds on the states of the system, otherwise

possibly resulting in system failures. Consequently, designing a controller for uncertain

systems with state constraints is a critical problem. The main functions of a controller are:

1) to ensure that the states of a system do not violate the state limits, 2) to guarantee stability,

and 3) to account for uncertainties in the system in the case that they exist.

In the current literature, there exist notable methods to handle the state variable

constraints. Muse developed an adaptive control method that forced the state of the system

to stay in a given region [1]. The reason for the chosen region is to show stability analysis

for nonlinear systems. The bounding functions are used to limit the states of a system.

These bounding functions keep the states under the limit when the growth rate of the

bounding functions is sufficiently large. Arabi et al. develop set-theoretic barrier Lyapunov

function (STBLF) approach to constrain the tracking error between the actual uncertain

system state and reference model state [2]. They illustrate the efficacy of the proposed

method on different linear and nonlinear reference models. A barrier Lyapunov function

for the control of output constrained nonlinear systems is proposed by Tee et al. [3]. The

intended barrier Lyapunov function shows asymptotic tracking without violation of the

constraint. In addition, the same authors relax the initial conditions using an asymmetric

barrier Lyapunov function. Lavretsky and Gadient design a baseline dynamic inversion

based controller to prevent the system trajectory from leaving an acceptable subset [4].

The short period dynamics of fixed-wing aircraft is used to show the performance of the

proposed method. An STBLF is developed with inverse optimal control to handle state

constraints [5]. This method helps to design the optimal controller when the states have

some constraints. Optimal control formulations also have been used in problems with state

(inequality) constraints in [6, 7, 8, 9, 10]. Typically, it is challenging to incorporate the state

constraints with an optimal control formulation because the corresponding mathematics is

highly involved.
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In this paper, the objectives are to keep the state under a prescribed limit, to guarantee

stability, and to suppress the effect of uncertainty. To handle these problems, a new

adaptive controller with the (STBLF) approach is designed. The method in [1] uses

bounding functions for constraint enforcement, which only handle the soft constraint. Yet,

the proposed method is designed for the hard constraint. Specifically, three different

restricted potential functions are used to handle the state constraints and their performance

is evaluated through illustrative numerical examples.

Throughout this paper, R denotes set of real numbers, R𝑛 denotes the set of real col-

umn vectors, and R𝑛×𝑚 denotes the set of real matrices. Also, we use R+,R𝑛×𝑛+ respectively

for the sets of positive real numbers, positive-definite matrices. We use ≜ for the equality

by definition. In addition, (.)𝑇 , (.)−1, 𝑡𝑟 (.), ∥.∥2 denote transpose operator, inverse operator,

trace operator, Euclidean norm, respectively. ∥.∥𝑃 =
√
𝑥𝑇𝑃𝑥 is written for the weighted

Euclidean norm of 𝑥(𝑡) ∈ R𝑛 with the matrix 𝑃 ∈ R𝑛×𝑛+ . The minimum eigenvalue of the

matrix 𝑃 ∈ R𝑛×𝑛 is used as 𝜆𝑚𝑖𝑛 (𝑃) and the maximum eigenvalue of the matrix 𝑃 ∈ R𝑛×𝑛

is used as 𝜆𝑚𝑎𝑥 (𝑃). Finally, the projection operator definition is introduced. Let Ω ∈ R𝑛

be a convex hypercube defined as Ω =
{
𝜃 ∈ R𝑛 : (𝜃min

𝑖
≤ 𝜃𝑖 ≤ 𝜃max

𝑖
)𝑖=1,2,...,𝑛

}
with 𝜃min

𝑖
and

𝜃max
𝑖

respectively denoting the minimum and maximum bounds for the 𝑖th component of

the parameter vector 𝜃 ∈ R𝑛. In addition, with a sufficiently small constant 𝜖0 ∈ R+, let

Ω𝜖0 =
{
𝜃 ∈ R𝑛 : (𝜃min

𝑖
+ 𝜖0 ≤ 𝜃𝑖 ≤ 𝜃max

𝑖
− 𝜖0)𝑖=1,2,...,𝑛

}
be an another convex hypercube (i.e.,

Ω𝜖0 ⊂ Ω). Then the component-wise projection operator is defined Proj : R𝑛 ×R𝑛 → R𝑛 as

Proj(𝜃, 𝑦) = (𝜃max
𝑖

− 𝜃𝑖)𝑦𝑖/𝜖0 when 𝜃𝑖 > 𝜃max
𝑖

− 𝜖0 and 𝑦𝑖 > 0, Proj(𝜃, 𝑦) = (𝜃𝑖 − 𝜃min
𝑖

)𝑦𝑖/𝜖0

when 𝜃𝑖 < 𝜃min
𝑖

+ 𝜖0 and 𝑦𝑖 < 0, and Proj(𝜃, 𝑦) = 𝑦𝑖 otherwise, where 𝑦 ∈ R𝑛. Then,

from previous definition, we have (𝜃 − 𝜃∗)T(Proj(𝜃, 𝑦) − 𝑦) ≤ 0, where 𝜃∗ ∈ Ω𝜖0 (e.g.,

see [11, 12]). Also, one can generalize the projection operator definition to matri-

ces using Projm(Θ, 𝑌 ) = (Proj(col1(Θ), col1(𝑌 )), . . . , Proj(col𝑚 (Θ), col𝑚 (𝑌 )) that gives

tr [(Θ−Θ∗)T(Projm(Θ, 𝑌 )−𝑌 )] =
∑𝑚
𝑖=1 [col𝑖 (Θ−Θ∗)T(Proj(col𝑖 (Θ), col𝑖 (𝑌 ))−col𝑖 (𝑌 ))] ≤

0 with 𝑛 × 𝑚 dimensional matrices 𝑌 , Θ, and Θ∗.
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2. SET-THEORETIC BARRIER LYAPUNOV FUNCTION WITH STATE
CONSTRAINTS

In this study, we focus on uncertain nonlinear systems with the form given by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵Λ𝑢(𝑡) + 𝐵 𝑓 (𝑥(𝑡)), 𝑥(0) = 𝑥0, (1)

where 𝑥(𝑡) ∈ R𝑛, 𝑡 ≥ 0, is the state vector, 𝑢(𝑡) ∈ R𝑚, 𝑡 ≥ 0, is the control input, 𝐴 ∈ R𝑛×𝑛

and 𝐵 ∈ R𝑛×𝑚 is a known system matrix and a known input matrix, respectively, Λ ∈ R𝑚×𝑚

is a constant unknown positive definite matrix, and 𝑓 (𝑥(𝑡)) : R𝑛 → R𝑚 is an unknown

function. In this case, Λ is assumed to be of the form

Λ = 𝐼 + 𝜆, (2)

where 𝜆 < 𝐼.

Assumption 2.1. The unknown function 𝑓 (𝑥) given in (1) satisfies

𝑓 (𝑥(𝑡)) = 𝑊𝑇 𝛽(𝑥(𝑡)), (3)

where 𝛽 : R𝑛 → R𝑙 is a basis function and𝑊 ∈ R𝑙×𝑚 is a set of constant unknown weights

with an upper bound ∥𝑊 ∥2 ≤ 𝑤 .

Let the nominal controller be defined as

𝑢n(𝑡) = −𝐾n𝑥(𝑡) + 𝐾r𝑟 (𝑡), (4)

where 𝐾n ∈ R𝑚×𝑛 is the nominal feedback gain matrix, 𝐾r ∈ R𝑚×𝑛𝑟 is the nominal feed-

forward gain matrix and 𝑟 (𝑡) ∈ R𝑛𝑟 is a given bounded piecewise continuous command.

Assuming Λ = 𝐼 and 𝑓 (𝑥(𝑡)) = 0, this nominal controller yields to the reference model
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given by

¤𝑥m(𝑡) = 𝐴m𝑥m(𝑡) + 𝐵m𝑟 (𝑡), (5)

where 𝐴m ≜ 𝐴 − 𝐵𝐾n is a Hurwitz matrix, and 𝐵m ≜ 𝐵𝐾r.

The controller is then designed as

𝑢(𝑡) = 𝑢n(𝑡) − 𝑢ad(𝑡) − 𝑢c(𝑡), (6)

where 𝑢n(𝑡) is the nominal controller which yields the desired performance for the un-

constrained nominal system without uncertainties, 𝑢ad(𝑡) represents the adaptive controller

which accounts for the uncertainty in the system, and 𝑢c(𝑡) is the controller that enforces

the state constraints.

The definition of the barrier Lyapunov function is given next to handle the state

constraints.

Definition 2.1. A restricted potential function 𝜙(∥𝑎∥P), 𝜙 : R → R can be defined on the

set given by

D𝜖 ≜ {𝑎 : ∥𝑎∥P ∈ [0, 𝜖)}, (7)

where 𝜖 ∈ R+ is a user-defined constant, when following conditions are satisfied [2]:

i) If ∥𝑎∥P = 0, then 𝜙(∥𝑎∥P) = 0.

ii) If 𝑎 ∈ D𝜖 and ∥𝑎∥P ≠ 0, then 𝜙(∥𝑎∥P) > 0.

iii) If ∥𝑎∥P → 𝜖 , then 𝜙(∥𝑎∥P) → ∞.

iv) 𝜙(∥𝑎∥P) is continuously differentiable on D𝜖 .

v) If 𝑎 ∈ D𝜖 , then 𝐷𝜙 (∥𝑎∥P) > 0, where 𝐷𝜙 (∥𝑎∥P) ≜ d𝜙(∥𝑎∥P)
d∥𝑎∥2

P
.

vi) If 𝑎 ∈ D𝜖 , then 𝐷𝜙 (∥𝑎∥P)∥𝑎∥2
P − 𝜙(∥𝑎∥P) > 0.
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We now present three different generalized restricted potential function candidates

(𝜙(∥𝑎∥P)) that satisfy the above definition.

2.1. CASE 1

The first generalized restricted potential function is given by

𝜙(∥𝑎∥P) =
∥𝑎∥2

P
𝜖 − ∥𝑎∥P

, ∥𝑎∥P ∈ D𝜖 . (8)

By taking the partial derivative of (8) with respect to ∥𝑎∥2
P, we get

𝐷𝜙 (∥𝑎∥P) =
𝜖 − 1

2 ∥𝑎∥P

(𝜖 − ∥𝑎∥P)2 > 0, ∥𝑎∥P ∈ D𝜖 . (9)

2.2. CASE 2

The second generalized restricted potential function is defined as

𝜙(∥𝑎∥P) =
𝜖2∥𝑎∥2

P

𝜖2 − ∥𝑎∥2
P
, ∥𝑎∥P ∈ D𝜖 , (10)

and the partial derivative of (10) with respect to ∥𝑎∥2
P is given by

𝐷𝜙 (∥𝑎∥P) =
𝜖4

(𝜖2 − ∥𝑎∥2
P)2

> 0, ∥𝑎∥P ∈ D𝜖 . (11)

2.3. CASE 3

The last generalized restricted potential function is given as

𝜙(∥𝑎∥P) =
𝜖4∥𝑎∥2

P

𝜖2 − ∥𝑎∥2
P
, ∥𝑎∥P ∈ D𝜖 , (12)
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and the partial derivative of (12) with respect to ∥𝑎∥2
P is

𝐷𝜙 (∥𝑎∥P) =
𝜖6

(𝜖2 − ∥𝑎∥2
P)2

> 0, ∥𝑎∥P ∈ D𝜖 . (13)

The adaptive control law (𝑢ad(𝑡)) used in this study is given by

𝑢ad(𝑡) = (𝐼 + 𝜆̂(𝑡))−1 [𝑊̂𝑇 (𝑡)𝛽(𝑥(𝑡)) + 𝜆̂(𝑡) (𝑢n(𝑡) − 𝑢c(𝑡))], (14)

where 𝜆̂(𝑡) is the estimate of the unknown coefficients in the control effectiveness matrix

and 𝑊̂ (𝑡) is the estimate of the weight matrix and the control law for constraint (𝑢c(𝑡)) is

given as

𝑢c(𝑡) =
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝐾r𝑟 (𝑡). (15)

The update laws of 𝑊̂ (𝑡) and 𝜆̂(𝑡) are given as

¤̂𝑊 (𝑡) = −𝛾1𝑃𝑟𝑜 𝑗 (𝑊̂ (𝑡), 𝛽(𝑒𝑇 (𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡))𝑃𝐵), (16)

¤̂𝜆(𝑡) = −𝛾2𝑃𝑟𝑜 𝑗 (𝜆̂(𝑡), 𝐵𝑇𝑃(𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥(𝑡))𝑢(𝑡)). (17)

Note that since we use the projection operator in (16) and (17), it follows that ∥𝑊̂ ∥2 ≤ 𝑤̄,

∥𝜆̂∥2 ≤ 𝜆̄max . In addition, 𝛾1 ∈ R+ and 𝛾2 ∈ R+ are the learning rates, and 𝑃 ∈ R𝑛×𝑛 and

𝑃 = 𝑃𝑇 > 0 is the solution of the Lyapunov equation given by

𝐴𝑇m𝑃 + 𝑃𝐴m +𝑄 = 0, (18)

where 𝑄 ∈ R𝑛×𝑛 is a positive definite matrix. Using (2) and (3) in (1), we get

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝐼 + 𝜆)𝑢(𝑡) + 𝐵𝑊𝑇 𝛽(𝑥(𝑡)), 𝑥(0) = 𝑥0, (19)
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and substituting (6) into (19), one can write

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵[𝑢n(𝑡) − 𝑢ad(𝑡) − 𝑢c(𝑡)] + 𝐵𝜆𝑢(𝑡) + 𝐵𝑊𝑇 𝛽(𝑥(𝑡)). (20)

Now, using (4) into (20), the system dynamics becomes

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵[−𝐾n𝑥(𝑡) + 𝐾r𝑟 (𝑡)] − 𝐵[𝑢ad(𝑡) + 𝑢c(𝑡)] + 𝐵𝜆𝑢(𝑡) + 𝐵𝑊𝑇 𝛽(𝑥(𝑡))

= 𝐴m𝑥(𝑡) + 𝐵m𝑟 (𝑡) − 𝐵[𝑢ad(𝑡) + 𝑢c(𝑡)] + 𝐵𝜆𝑢(𝑡) + 𝐵𝑊𝑇 𝛽(𝑥(𝑡)).
(21)

Next, arranging (14) and substituting into (21) yield

¤𝑥(𝑡) = 𝐴m𝑥(𝑡) + 𝐵m𝑟 (𝑡) − 𝐵𝜆̂(𝑡)𝑢(𝑡) − 𝐵𝑊̂𝑇 (𝑡)𝛽(𝑥(𝑡)) − 𝐵𝑢c(𝑡) + 𝐵𝜆𝑢(𝑡) + 𝐵𝑊𝑇 𝛽(𝑥(𝑡))

= 𝐴m𝑥(𝑡) + 𝐵m𝑟 (𝑡) − 𝐵[𝜆̂(𝑡) − 𝜆]𝑢(𝑡) − 𝐵[𝑊̂𝑇 (𝑡) −𝑊𝑇 ]𝛽(𝑥(𝑡)) − 𝐵𝑢c(𝑡)

= 𝐴m𝑥(𝑡) + 𝐵m𝑟 (𝑡) − 𝐵𝜆̃(𝑡)𝑢(𝑡) − 𝐵𝑊̃𝑇 (𝑡)𝛽(𝑥(𝑡)) − 𝐵𝑢c(𝑡),
(22)

where 𝜆̃ = 𝜆̂ − 𝜆 is the control effectiveness estimation error and 𝑊̃ = 𝑊̂ −𝑊 is the weight

estimation error. Finally, defining the reference model tracking error as 𝑒 ≜ 𝑥m − 𝑥, the

error dynamics can be expressed as

¤𝑒(𝑡) = 𝐴m𝑒(𝑡) + 𝐵𝜆̃(𝑡)𝑢(𝑡) + 𝐵𝑊̃ (𝑡)𝛽(𝑥(𝑡)) + 𝐵𝑢c(𝑡). (23)

Assumption 2.2. The command 𝑟 (𝑡) ∈ R𝑛𝑟 exponentially converges to a steady state value,

i.e., ∃𝑟ss ∈ R𝑛𝑟 , 𝛼∗, 𝛽∗ ∈ R+ such that

∥𝑟 (𝑡) − 𝑟ss∥ ≤ 𝛼∗𝑒−𝛽∗𝑡 , 𝑡 ∈ [0,∞) (24)

holds. In addition, we let 𝑥mss ∈ R𝑛 be the steady state value of the reference system state

given by 𝑥mss = −𝐴−1
m 𝐵m𝑟ss.
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Theorem 2.1. Under the control input defined in (6) with nominal control (4), adaptive

control (14) and control law for constraint (15) with update laws given in (16) and (17), the

closed-loop systems dynamics is stable. If the initial weighted Euclidean norm is less than

the user-defined constant, then the closed-loop systems states are bounded and the system

weighted Euclidean norm strictly satisfies the user-defined constant given by

∥𝑥(𝑡)∥P < 𝜖, 𝑡 ≥ 0. (25)

Proof. Let the Lyapunov function candidate be

𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) = 𝑒𝑇 (𝑡)𝑃𝑒(𝑡) + 𝜙(∥𝑥(𝑡)∥P) + 𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡))

+ 𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡)).

(26)

Note that 𝑉 (0, 0, 0, 0) = 0, and 𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) > 0 for all

(𝑒(𝑡), ∥𝑥(𝑡)∥P, 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≠ (0, 0, 0, 0). Boundedness of the closed-loop system states is

proven using the Lyapunov candidate defined in (26). The time derivative of (26) is given

as

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) = 2𝑒𝑇 (𝑡)𝑃 ¤𝑒(𝑡) + d𝜙(∥𝑥(𝑡)∥P)
d𝑡

+ 2 𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1

¤̂𝑊 (𝑡))

+ 2 𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2

¤̂𝜆𝑇 (𝑡)),
(27)

where d𝜙(∥𝑥(𝑡)∥P)
d𝑡 is given by

d𝜙(∥𝑥(𝑡)∥P)
d𝑡

=
d𝜙(∥𝑥(𝑡)∥P)

d∥𝑥(𝑡)∥2
P

d∥𝑥(𝑡)∥2
P

d𝑥(𝑡)
d𝑥(𝑡)

d𝑡
= 2𝐷𝜙 (∥𝑥∥P)𝑥𝑇 (𝑡)𝑃 ¤𝑥(𝑡). (28)

By substituting (28) into (27), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) = 2𝑒𝑇 (𝑡)𝑃 ¤𝑒(𝑡) + 2𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃 ¤𝑥(𝑡)

+ 2 𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1

¤̂𝑊 (𝑡)) + 2 𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2

¤̂𝜆𝑇 (𝑡)).
(29)
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By substituting (22) and (23) into (29), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡))= 2𝑒𝑇 (𝑡)𝑃[𝐴m𝑒(𝑡) + 𝐵𝑢c(𝑡)]

+ 2𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃[𝐴m𝑥(𝑡) + 𝐵m𝑟 (𝑡) − 𝐵𝑢c(𝑡)]

+ 2 𝑡𝑟 [𝑊̃𝑇 (𝑡) (𝛾−1
1

¤̂𝑊 (𝑡) + 𝛽(𝑒𝑇 (𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡))𝑃𝐵)]

+ 2 𝑡𝑟 [𝜆̃(𝑡) (𝛾−1
2

¤̂𝜆𝑇 (𝑡) + 𝑢(𝑡) (𝑒𝑇 (𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡))𝑃𝐵)] .
(30)

By using (16) and (17) into (30), and also using projection operator properties, we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ 2𝑒𝑇 (𝑡)𝑃[𝐴m𝑒(𝑡) + 𝐵𝑢c(𝑡)]

+ 2𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃[𝐴m𝑥(𝑡) + 𝐵m𝑟 (𝑡) − 𝐵𝑢c(𝑡)] .
(31)

By using (18) and (15) into (31), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) + 2𝑒𝑇 (𝑡)𝑃𝐵𝑢c(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+ 2𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃[𝐵m𝑟 (𝑡) − 𝐵𝑢c(𝑡)] .
(32)

By using (15) into (32), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑒𝑇 (𝑡)𝑃𝐵𝐾r𝑟 (𝑡)

+ 2𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃[𝐵𝐾r𝑟 (𝑡) − 𝐵
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝐾r𝑟 (𝑡)]

≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑒𝑇 (𝑡)𝑃𝐵𝐾r𝑟 (𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑥𝑇 (𝑡)𝑃𝐵𝐾r𝑟 (𝑡).

(33)
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Then, we use 𝑒 = 𝑥m − 𝑥, we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑥𝑇 (𝑡)𝑃𝐵𝐾r𝑟 (𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
(𝑥m(𝑡) − 𝑥(𝑡))𝑇𝑃𝐵𝐾r𝑟 (𝑡)

≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡).

(34)

By adding and subtracting 2 𝐷𝜙

1+𝐷𝜙
𝑥𝑇mss𝑃𝐵m𝑟ss, we will have

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
[𝑥𝑇mss𝑃𝐵m𝑟ss − 𝑥𝑇mss𝑃𝐵m𝑟ss] .

(35)

By rearranging (35), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑥𝑇mss𝑃𝐵m𝑟ss

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
[𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡) − 𝑥𝑇mss𝑃𝐵m𝑟ss],

(36)

where 𝑥mss = −𝐴−1
m 𝐵m𝑟ss. Since, 𝐵m𝑟ss = −𝐴m𝑥mss , this can be expressed as

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

− 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑥𝑇mss𝑃𝐴m𝑥mss

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
[𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡) − 𝑥𝑇mss𝑃𝐵m𝑟ss] .

(37)
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By using 𝐴𝑇m𝑃 + 𝑃𝐴m +𝑄 = 0, we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡)

+
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
𝑥𝑇mss𝑄𝑥mss

+ 2
𝐷𝜙 (∥𝑥(𝑡)∥P)

1 + 𝐷𝜙 (∥𝑥(𝑡)∥P)
[𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡) − 𝑥𝑇mss𝑃𝐵m𝑟ss] .

(38)

Since 𝐷𝜙 > 0, it implies 𝐷𝜙

1+𝐷𝜙
< 𝐷𝜙, we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P) [𝑥𝑇 (𝑡)𝑄𝑥(𝑡) − 𝑥𝑇mss𝑄𝑥mss]

+ 2∥(𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡) − 𝑥𝑇mss𝑃𝐵m𝑟ss)∥.
(39)

Since ∃𝛼∗, 𝛽∗ ∈ R+ such that

∥𝑟 (𝑡) − 𝑟ss∥ ≤ 𝛼∗𝑒−𝛽∗𝑡 , 𝑡 ∈ [0,∞), (40)

and the reference dynamics in (5) are exponentially stable, it is straight forward to show that

there exist positive constants 𝛼0 and 𝛽0 such that

∥(𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡) − 𝑥𝑇mss𝑃𝐵m𝑟ss)∥ ≤ 𝛼0𝑒
−𝛽0𝑡 , 𝑡 ∈ [0,∞). (41)

Then, (39) becomes

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P) [𝑥𝑇 (𝑡)𝑄𝑥(𝑡) − 𝑥𝑇mss𝑄𝑥mss]

+ 2𝛼0𝑒
−𝛽0𝑡 .

(42)

There are three conditions for proof. These are
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i) If 𝑥𝑇𝑄𝑥 > 𝑥𝑇mss𝑄𝑥mss ,

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡) + 2𝛼0𝑒
−𝛽0𝑡

≤ −𝜆min(𝑄)∥𝑒(𝑡)∥2 − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝜆min(𝑄)∥𝑥(𝑡)∥2

+ 2𝛼0𝑒
−𝛽0𝑡 .

(43)

By adding and subtracting 𝜌𝜙(∥𝑥(𝑡)∥P), 𝜌𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡)), and 𝜌𝑡𝑟 (𝜆̃(𝑡)𝛾−1

2 𝜆̃𝑇 (𝑡))

to the right hand side of (43), which we define 𝜌 ≜ 𝜆min (𝑄)
𝜆max (𝑃) , and we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝜆min(𝑄)∥𝑒(𝑡)∥2 − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝜆min(𝑄)∥𝑥(𝑡)∥2 + 2𝛼0𝑒
−𝛽0𝑡

+ 𝜌𝜙(∥𝑥(𝑡)∥P) − 𝜌𝜙(∥𝑥(𝑡)∥P) + 𝜌𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡))

− 𝜌𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡)) + 𝜌𝑡𝑟 (𝜆̃(𝑡)𝛾−1

2 𝜆̃𝑇 (𝑡))

− 𝜌𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡)).

(44)

By arranging (44), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤−𝜌[𝑒𝑇 (𝑡)𝑃𝑒(𝑡) + 𝜙(∥𝑥(𝑡)∥P) + 𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡))]

− 𝜌[𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡))]

− 𝜌[𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃𝑥(𝑡) − 𝜙(∥𝑥(𝑡)∥P)]

+ 𝜌𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡)) + 𝜌𝑡𝑟 (𝜆̃(𝑡)𝛾−1

2 𝜆̃𝑇 (𝑡)) + 2𝛼0𝑒
−𝛽0𝑡 .

(45)

Since 𝑊̃ = 𝑊̂ − 𝑊 , the upper bound of ∥𝑊̃ ∥ is 𝑤̃ = 𝑤 + 𝑤̄, and 𝜆̃ = 𝜆 − 𝜆̂, the

upper bound of ∥𝜆̃∥ is 𝜆̃max = 𝜆max + 𝜆̄max. Therefore, the upper bounds of ∥𝑊̃ ∥

and ∥𝜆̃∥ are utilized 𝑤̃ and 𝜆̃max, respectively. Also, 2𝛼0𝑒
−𝛽0𝑡 ≤ 2𝛼0. By defining
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𝑑 = 𝜌𝛾−1
1 𝑤̃2 + 𝜌𝛾−1

2 𝜆̃2
max + 2𝛼0, (45) reduces to

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝜌[𝑒𝑇 (𝑡)𝑃𝑒(𝑡) + 𝜙(∥𝑥(𝑡)∥P) + 𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡))]

− 𝜌[𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡))]

− 𝜌[𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃𝑥(𝑡) − 𝜙(∥𝑥(𝑡)∥P)] + 𝑑.
(46)

By using 𝑣𝑖 from the Definition 1, (46) can be rewritten as

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝜌𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) + 𝑑. (47)

ii) If 𝑥𝑇𝑄𝑥 = 𝑥𝑇mss𝑄𝑥mss ,

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) + 2𝛼0𝑒
−𝛽0𝑡 (48)

The detail of proof is given in [1].

iii) If 𝑥𝑇𝑄𝑥 < 𝑥𝑇mss𝑄𝑥mss , let use (38), and since 𝐷𝜙

1+𝐷𝜙
< 1, it implies 𝐷𝜙

1+𝐷𝜙
< 𝐷𝜙, we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡) + ∥𝑥𝑇mss𝑄𝑥mss ∥

+ 2∥(𝑥𝑇m(𝑡)𝑃𝐵𝐾r𝑟 (𝑡) − 𝑥𝑇mss𝑃𝐵m𝑟ss)∥
(49)

By rearranging (49), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝑒𝑇 (𝑡)𝑄𝑒(𝑡) − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑄𝑥(𝑡) + 2𝛼0𝑒
−𝛽0𝑡

+ 𝜆max(𝑄)∥𝑥mss ∥2

≤ −𝜆min(𝑄)∥𝑒(𝑡)∥2 − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝜆min(𝑄)∥𝑥(𝑡)∥2 + 2𝛼0𝑒
−𝛽0𝑡

+ 𝜆max(𝑄)∥𝑥mss ∥2

(50)
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By adding and subtracting 𝜌𝜙(∥𝑥(𝑡)∥P), 𝜌𝑡𝑟 (𝑊̃𝑇𝛾−1
1 𝑊̃), and 𝜌𝑡𝑟 (𝜆̃𝛾−1

2 𝜆̃𝑇 ) to the right

hand side of (50), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝜆min(𝑄)∥𝑒(𝑡)∥2 − 𝐷𝜙 (∥𝑥(𝑡)∥P)𝜆min(𝑄)∥𝑥(𝑡)∥2 + 2𝛼0𝑒
−𝛽0𝑡

+ 𝜆max(𝑄)∥𝑥mss ∥2 + 𝜌𝜙(∥𝑥(𝑡)∥P) − 𝜌𝜙(∥𝑥(𝑡)∥P)

+ 𝜌𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡)) − 𝜌𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1

1 𝑊̃ (𝑡))

+ 𝜌𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡)) − 𝜌𝑡𝑟 (𝜆̃(𝑡)𝛾−1

2 𝜆̃𝑇 (𝑡)).
(51)

By arranging (51), we get

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝜌[𝑒𝑇 (𝑡)𝑃𝑒(𝑡) + 𝜙(∥𝑥(𝑡)∥P) + 𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡))]

− 𝜌[𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡))]

− 𝜌[𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃𝑥(𝑡) − 𝜙(∥𝑥(𝑡)∥P)]

+ 𝜌𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡))

+ 𝜌𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡)) + 2𝛼0𝑒

−𝛽0𝑡 + 𝜆max(𝑄)∥𝑥mss ∥2.

(52)

By defining 𝑑 = 𝜌𝛾−1
1 𝑤̃2 + 𝜌𝛾−1

2 𝜆̃2
max + 2𝛼0 + 𝜆max(𝑄)∥𝑥mss ∥2, (52) reduces to

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝜌[𝑒𝑇 (𝑡)𝑃𝑒(𝑡) + 𝜙(∥𝑥(𝑡)∥P) + 𝑡𝑟 (𝑊̃𝑇 (𝑡)𝛾−1
1 𝑊̃ (𝑡))]

− 𝜌[𝑡𝑟 (𝜆̃(𝑡)𝛾−1
2 𝜆̃𝑇 (𝑡))]

− 𝜌[𝐷𝜙 (∥𝑥(𝑡)∥P)𝑥𝑇 (𝑡)𝑃𝑥(𝑡) − 𝜙(∥𝑥(𝑡)∥P)] + 𝑑.
(53)

By using [𝐷𝜙𝑥
𝑇𝑃𝑥 − 𝜙(∥𝑥∥P)] > 0 from the properties, (53) can be rewritten as

¤𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) ≤ −𝜌𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) + 𝑑. (54)
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Equations (47), (48) and (54) show that 𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) given by (26) is bounded.

Since 𝜙(∥𝑥(𝑡)∥P) is contained inside𝑉 (𝑒(𝑡), 𝑥(𝑡), 𝑊̃ (𝑡), 𝜆̃(𝑡)) then this implies that 𝜙(∥𝑥(𝑡)∥P)

is also bounded for all 𝑡 ∈ [0,∞). Hence, if (∥𝑥(0)∥P) < 𝜖 , then (∥𝑥(𝑡)∥P) < 𝜖 for all time

is immediate. ■

3. ILLUSTRATIVE NUMERICAL AND EXPERIMENTAL EXAMPLES

The Quanser 3 DOF Hover shown in Figure 1 is used to demonstrate the practical

and theoretical capabilities of the proposed set-theoretic barrier Lyapunov function for

handling state constraints and uncertainties. The Quanser 3 DOF Hover is a laboratory

setup resembling a simplified helicopter model with four propellers driven by DC motors.

The Quanser 3 DOF Hover has four DC motors: front and back motors and right and left

motors. The front and back motors mainly control the system about the pitch axis while the

left and right motors primarily move it about the roll axis. Also, the total torque generated

by the propeller motors causes the body to move about the yaw axis The Quanser 3 DOF

Figure 1. Quanser 3 DOF Hover
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Hover dynamics [13] is as follows:

𝐽𝑝 ¥𝜃𝑝 (𝑡) = 𝐾 𝑓 (𝑉 𝑓 −𝑉𝑏) (55)

𝐽𝑟 ¥𝜃𝑟 (𝑡) = 𝐾 𝑓 (𝑉𝑟 −𝑉𝑙) (56)

𝐽𝑦 ¥𝜃𝑦 (𝑡) = 𝐾𝑡 (𝑉𝑟 +𝑉𝑙) − 𝐾𝑡 (𝑉 𝑓 +𝑉𝑏), (57)

where 𝜃𝑝 is the pitch angle, 𝜃𝑟 is the roll angle and 𝜃𝑦 is the yaw angle. 𝐾 𝑓 is the thrust-force

constant, 𝑉 𝑓 is the front motor voltage, 𝑉𝑏 is the back motor voltage. 𝑉𝑟 is the right motor

voltage, 𝑉𝑙 is the left motor voltage. 𝐾𝑡 is the thrust-torque constant. The equivalent of (55)

to (57) is written as a state space model in the form

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (58)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (59)

with

𝐴 =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, 𝐵 =



0 0 0 0

0 0 0 0

0 0 0 0

−𝐾𝑡

𝐽𝑦
−𝐾𝑡

𝐽𝑦

𝐾𝑡

𝐽𝑦

𝐾𝑡

𝐽𝑦

𝐿𝐾 𝑓

𝐽𝑝
− 𝐿𝐾 𝑓

𝐽𝑝
0 0

0 0 𝐿𝐾 𝑓

𝐽𝑟
− 𝐿𝐾 𝑓

𝐽𝑟



.

𝐶 =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


, 𝐷 =


0 0 0 0

0 0 0 0

0 0 0 0


.
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In the following problems, the state vector is of the form

𝑥(𝑡) = [𝜃𝑦 (𝑡) 𝜃𝑝 (𝑡) 𝜃𝑟 (𝑡) ¤𝜃𝑦 (𝑡) ¤𝜃𝑝 (𝑡) ¤𝜃𝑟 (𝑡)]𝑇 , (60)

the output vector form is given as

𝑦(𝑡) = [𝜃𝑦 (𝑡) 𝜃𝑝 (𝑡) 𝜃𝑟 (𝑡)]𝑇 , (61)

also, the control vector form is given by

𝑢(𝑡) = [𝑉 𝑓 (𝑡) 𝑉𝑏 (𝑡) 𝑉𝑟 (𝑡) 𝑉𝑙 (𝑡)]𝑇 . (62)

Note that (58) and (59) are derived based on the ideal system conditions. However, in

practical application scenarios where system uncertainties are present, one can alternatively

consider the uncertain system dynamics in the form given by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵Λ𝑢(𝑡) + 𝐵 𝑓 (𝑥(𝑡))

𝑦(𝑡) = 𝐶𝑥(𝑡)
(63)

Linear quadratic regulator theory is used to design the nominal controller gain matrix with

the weighting matrices as 𝑄 = 0.001𝑑𝑖𝑎𝑔( [500, 350, 350, 0, 20, 20]) and

𝑅 = 0.00001𝑑𝑖𝑎𝑔( [1, 1, 1, 1]). The feedback control gain defined in (4) are selected as

𝐾𝑛 =



−111.8034 132.2876 0.0000 −41.4128 36.2268 0.0000

−111.8034 −132.2876 0.0000 −41.4128 −36.2268 −0.0000

111.8034 0.0000 132.2876 41.4128 0.0000 36.2268

111.8034 0.0000 −132.2876 41.4128 0.0000 −36.2268


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The parameter Λ is the unknown control effectiveness gain and set at 0.1. In this example,

the threshold 𝜖 is set to be 10 for all cases. Initial conditions of the states are chosen as

0 𝑑𝑒𝑔, 0 𝑑𝑒𝑔, 0 𝑑𝑒𝑔 and 0 𝑑𝑒𝑔/𝑠, 0 𝑑𝑒𝑔/𝑠, 0 𝑑𝑒𝑔/𝑠, respectively. The value of the learning

rate (𝛾2) given in (17) is chosen as 0.001. To command a desired yaw step of ±5 degrees at

0.04 Hz, pitch step of ±4 degrees at 0.1 Hz frequency, and a roll angle step of ±4 degrees

at 0.08 Hz. The three generalized restricted potential functions are used.

3.1. ILLUSTRATIVE NUMERICAL RESULTS

In this section, the numerical simulation is considered on the Quanser 3 DOF

hover system. The proposed method has three different restricted potential functions. The

objective is to motivate the need for careful selection of an appropriate STBLF to result in

proper system tracking while conforming to the state constraints.

3.1.1. Case 1. The generalized restricted potential function given in 2.1 in Defini-

tion 1 is used for this case. Figure 2 presents the histories of states. The actual state does

Figure 2. Histories of the actual and model reference states
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Figure 3. Histories of the norm of the states and the bound

not follow the reference trajectory properly because the controller law for constraint (𝑢𝑐) is

high and forces the state to be well under the bound. As we can be seen from Figure 3, the

norm of the states is under the bound.

3.1.2. Case 2. In this case, the generalized restricted potential function defined in

2.2 in Definition 1 is used. Comparing Figure 4 with Figure 2, the tracking performance is

better in Figure 4. The reason is that the restricted potential function given in (8) produces

more control output to keep the norm of the states under the bound. Although the restricted

potential function defined in (10) has even less control output, the proposed method still

keeps the norm of the states under the user-defined constraint as shown in Figure 5.

3.1.3. Case 3. The generalized restricted potential function shown in 2.3 in Defi-

nition 1 is used for this case. Figure 6 presents the histories of the states. The results in

Figure 6 have better tracking performance than the results shown in Figure 4 because the

constraint controller magnitude is less than the nominal controller magnitude. It is seen

that the tracking performance is improved with the restricted potential function defined in
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Figure 4. Histories of the actual and model reference states

Figure 5. Histories of the norm of the states and the bound

(12) compared with the restricted potential function defined in (10). While improving the

tracking performance, the proposed restricted potential function keeps the norm of the states

under the user-defined constraint as shown in Figure 7.
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Figure 6. Histories of the actual and model reference states

Figure 7. Histories of the norm of the states and the bound

3.2. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, also same restricted potential functions are used as in numerical

results.. The objective is to illustrate the efficiency of the proposed method with both theory

and practical studies. The cases below were also used in the simulation results.
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3.2.1. Case 1. The generalized restricted potential function given in 2.1 in Defini-

tion 1 is used for this case.

Figure 8. Histories of the actual and model reference states

Figure 9. Histories of the norm of the states and the bound
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Figures 8 and 9 show the performance of the Case 1 results. Note that the norm of

the states are under the bound but not tracking the reference signal properly. Therefore, the

design of the controller law for constraint (𝑢𝑐) has important role for improving the tracking

performance as well as the keep the norm of the states within a bound.

3.2.2. Case 2. In this case, the generalized restricted potential function defined in

2.2 in Definition 1 is used. The another design of the controller law for constraint is

Figure 10. Histories of the actual and model reference states

designed for Case 2 which is given in 2.2 in Definition 1. Figures 10 and 11 keep the norm

of the states under the user defined constraint and show improvement of tracking reference

signal as comparing with Figure 8. However, it is still not enough to track the reference

trajectory properly.

3.2.3. Case 3. The generalized restricted potential function shown in 2.3 in Defini-

tion 1 is used for this case. The last design of controller law for constraint in Case 3 given

in 2.3 shows better tracking performance than the results shown in Figures 8 and 10. While

improving the tracking performance, the proposed restricted potential function keeps the

norm of the states under the user-defined constraint as shown in Figure 13.
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Figure 11. Histories of the norm of the states and the bound

Figure 12. Histories of the actual and model reference states

4. CONCLUSION

This paper proposed three different STBLFs to handle state constraints in model

reference adaptive control. Many STBLFs exist in the literature and this work shows that

the choice of STBLF significantly affects the system performance. With a suitable STBLF,
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Figure 13. Histories of the norm of the states and the bound

not only is the state constraint satisfied but also desirable closed-loop system tracking

performance can be achieved. Finally, the theoretical study was supported with numerical

and experimental studies. These results appear to demonstrate that the developed STBLF

has good potential for applications.

ACKNOWLEDGEMENTS

The first author would like to thank the Republic of Turkey for the supporting her

Ph.D. studies.

REFERENCES

[1] Muse, J., ‘A method for enforcing state constraints in adaptive control,’ in ‘AIAA
Guidance, Navigation, and Control Conference,’ 2011 p. 6205.

[2] Arabi, E., Gruenwald, B. C., Yucelen, T., and Nguyen, N. T., ‘A set-theoretic model
reference adaptive control architecture for disturbance rejection and uncertainty sup-
pression with strict performance guarantees,’ International Journal of Control, 2018,
91(5), pp. 1195–1208.



121

[3] Tee, K. P., Ge, S. S., and Tay, E. H., ‘Barrier lyapunov functions for the control of
output-constrained nonlinear systems,’ Automatica, 2009, 45(4), pp. 918–927.

[4] Lavretsky, E. and Gadient, R., ‘Robust adaptive design for aerial vehicles with state-
limiting constraints,’ Journal of guidance, control, and dynamics, 2010, 33(6), pp.
1743–1752.

[5] Deniz, M., Devi, P., and Balakrishnan, S., ‘Inverse optimal control with set-theoretic
barrier lyapunov function for handling state constraints,’ in ‘2020 American Control
Conference (ACC),’ IEEE, 2020 pp. 981–986.

[6] Han, D. and Balakrishnan, S., ‘State-constrained agile missile control with adaptive-
critic-based neural networks,’ IEEE Transactions on Control Systems Technology,
2002, 10(4), pp. 481–489.

[7] Bryson, A. E., Denham, W. F., and Dreyfus, S. E., ‘Optimal programming problems
with inequality constraints,’ AIAA journal, 1963, 1(11), pp. 2544–2550.

[8] McIntyre, J. and Paiewonsky, B., ‘On optimal control with bounded state variables,’
in ‘Advances in Control Systems,’ volume 5, pp. 389–419, Elsevier, 1967.

[9] Kreindler, E., ‘Additional necessary conditions for optimal control with state-variable
inequality constraints,’ Journal of Optimization theory and applications, 1982, 38(2),
pp. 241–250.

[10] Jacobson, D. H., Lele, M. M., and Speyer, J. L., ‘New necessary conditions of
optimality for control problems with state-variable inequality constraints,’ Journal of
mathematical analysis and applications, 1971, 35(2), pp. 255–284.

[11] Lavretsky, E. and Wise, K. A., ‘Robust adaptive control,’ in ‘Robust and adaptive
control,’ pp. 317–353, Springer, 2013.

[12] Pomet, J.-B. and Praly, L., ‘Adaptive nonlinear regulation: estimation from the lya-
punov equation,’ IEEE Transactions on Automatic Control, 1992, 37(6), pp. 729–740,
doi:10.1109/9.256328.

[13] Apkarian, J. and Lévis, M., ‘Quanser 3 dof hover user manual,’ in ‘Quanser Laboratory
Guide,’ available at https://www.quanser.com/products/3-dof-hover/, 2013.



122

VI. A FINITE-TIME ARCHITECTURE FOR DISTRIBUTED ADAPTIVE
CONTROL OF UNCERTAIN MULTIAGENT SYSTEMS

Meryem Deniz1, K. Merve Dogan2, Tansel Yucelen3
1Department of Mechanical & Aerospace Engineering

Missouri University of Science and Technology
Rolla, Missouri 65409–0050,United States of America

2Department of Aerospace Engineering
Embry-Riddle Aeronautical University

Daytona Beach, Florida 32114, United States of America
3Department of Mechanical Engineering

University of South Florida
Tampa, Florida 33620, United States of America

ABSTRACT

In this paper, we present a distributed adaptive control approach that achieves

finite-time stability of uncertain multiagent systems. Specifically, the proposed approach

is predicated on agent-wise nonlinear reference models that capture the ideal finite-time

behavior of the overall multiagent system. Utilizing the error signals between the states of

agent dynamics and the states of these reference models, adaptive control signals are then

developed in order to drive these error signals to zero in finite-time when agent dynamics are

affected by system uncertainties. Therefore, each agent to achieve its ideal performance is

guaranteed in finite-time. In addition to the presented rigorous system-theoretical analysis,

we give an illustrative numerical example to demonstrate the efficacy of the proposed

finite-time architecture.
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1. INTRODUCTION

Teams of agents (e.g., unmanned aerial, ground, water, and underwater vehicles)

operated through a network are called multiagent systems, where they will play a key role in

a wide array of civilian and military applications such as surveillance and reconnaissance,

ground and air traffic management, payload and passenger transportation, and emergency

response; to name but a few examples. Whether civilian or military, however, there are

important multiagent systems applications that require operations to be completed in a

finite-time duration such as cooperative engagement, sequential execution of time-critical

network operations (i.e., multiagent automation), and rendezvous. To this end, the authors

of, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9] focus on finite-time distributed control approaches for

multiagent systems. Yet, the common denominator of these approaches is that they neither

focus on disturbances nor system uncertainties that are unavoidable anomalies affecting

agent dynamics.

As it is well-known, disturbances such as ground frictions and wind, and system

uncertainties resulting from simplifying approximations, unknown agent parameters, and

structural damages can significantly degrade the stability and performance of multiagent

systems. Motivated by this standpoint, the authors of, for example, [10, 11, 12, 13] focus on

how to address disturbances, while for example, [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27] focus on how to address system uncertainties in the finite time control of multiagent

systems. In particular, the authors of [14, 15, 16, 17, 18] adopt distributed adaptive control

methods, the authors of [19, 20] and [21, 22] also respectively consider input constraints and

state constraints, the authors of [23, 24, 25] deal with unknown control inputs and control

directions, and the authors of [26] and [27] respectively focus on nonlinear uncertainties

and unmodeled dynamics.

Considering the aforementioned contributions addressing anomalies, note that none

of these results utilize a reference model toward finite-time distributed control. Only the

authors of [28] utilize a reference model for finite-time distributed control. However, their
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reference model exchanges measurements that are affected by anomalies. From a safety

standpoint, this implies that when a subset of agents does not satisfy the assumptions pre-

sented in [28], then this can result in an unstable reference model behavior, and therefore, an

unstable closed-loop multiagent performance. While the focus is not finite-time distributed

control, the authors of [29] present a new reference model architecture that allows exchange

of measurements that are not affected by anomalies. In contrast to the one in [28], this

new reference model ensures safety in the sense that agents always rely on stable reference

model states in their adaptive control signals for suppressing the negative effect of system

anomalies.

In this paper, we present a distributed adaptive control approach that achieves

finite-time stability of uncertain multiagent systems. Specifically, the proposed approach

is predicated on agent-wise nonlinear reference models, where they generalize their linear

counterparts in [29] in order to capture the ideal finite-time behavior of the overall multi-

agent system while ensuring safety. Utilizing the error signals between the states of agent

dynamics and the states of these reference models, adaptive control signals are then devel-

oped in order to drive these error signals to zero in finite-time when agent dynamics are

affected by system uncertainties. Therefore, each agent to achieve its ideal performance is

guaranteed in finite-time. In addition to the presented rigorous system-theoretical analysis

of the proposed agent-wise nonlinear reference models as well as the closed-loop multia-

gent system, we give an illustrative numerical example to demonstrate the efficacy of the

proposed finite-time architecture.

2. MATHEMATICAL PRELIMINARIES

The notation given below is used throughout this paper. In particular, R denotes the

set of real numbers, R𝑛 denotes the set of 𝑛× 1 real column vectors, R𝑛×𝑚 denotes the set of

𝑛 × 𝑚 real matrices. R+ and R𝑛×𝑛+ respectively denote the sets of positive real numbers and

positive-definite matrices, Z denotes the set of integers, Z+ and Z+ respectively denote the
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sets of positive integers and nonnegative integers, 0𝑛 denotes the 𝑛×1 vector of all zeros, 1𝑛

denotes the 𝑛 × 1 vector of all ones, 0𝑛×𝑛 denotes the 𝑛 × 𝑛 zero matrix, and I𝑛 denotes the

𝑛×𝑛 identity matrix. We also write “≜” for the equality by definition, (·)T for the transpose,

(·)−1 for the inverse, sgn(𝑥) = [sgn(𝑥1), sgn(𝑥2), ..., sgn(𝑥𝑛)] for a vector containing signum

functions of scalars 𝑥𝑖, 𝑖 = 1 . . . , 𝑛, and tanh(𝑥) = [tanh(𝑥1), tanh(𝑥2), ..., tanh(𝑥𝑛)] for a

vector containing tangent hyperbolic functions of scalars 𝑥𝑖, 𝑖 = 1 . . . , 𝑛. Finally, the

minimum eigenvalue of the matrix 𝐴 ∈ R𝑛×𝑛 is represented by 𝜆𝑚𝑖𝑛 (𝐴), the maximum

eigenvalue of the matrix 𝐴 ∈ R𝑛×𝑛 is represented by 𝜆𝑚𝑎𝑥 (𝐴), and the diagonal matrix with

the vector 𝑎 on its diagonal is represented by diag(𝑎).

The basic definitions from graph theory are now given, where we refer to excellent

books [30] and [31]. Specifically, an undirected graph G is defined by a set of nodes

VG = {1, . . . , 𝑁} and a set of edges EG ⊂ VG × VG . When (𝑖, 𝑗) ∈ EG , the nodes 𝑖

and 𝑗 are said to be neighbors, where 𝑖 ∼ 𝑗 represents the neighboring relation. A path

𝑖0, 𝑖1 . . . , 𝑖𝐿 is a finite sequence of nodes such that 𝑖𝑘−1 ∼ 𝑖𝑘 , 𝑘 = 1, . . . , 𝐿 and a graph

G is connected when there is a path between any pair of distinct nodes. The degree of a

node 𝑑𝑖 is given by the number of its neighbors, where the degree matrix of a graph G,

D(G) ∈ R𝑁×𝑁 , is represented by D(G) ≜ diag(𝑑) with 𝑑 = [𝑑1, . . . , 𝑑𝑁 ]T. In addition,

A(G) ∈ R𝑁×𝑁 represents the adjacency matrix of a graph G and is defined by [A(G)]𝑖 𝑗 = 1

when (𝑖, 𝑗) ∈ EG and [A(G)]𝑖 𝑗 = 0 otherwise. Finally, L(G) ≜ D(G) − A(G) denotes

the Laplacian matrix of a graph. For the results contained in this paper, we consider a

connected and undirected graph G and utilize the following lemma from [32].

Lemma 2.1. For a connected and undirected graph G, F (G) ≜ L(G) +K ∈ R𝑁×𝑁+ holds,

where K = diag(𝑘), 𝑘 = [𝑘1, 𝑘2, . . . , 𝑘𝑁 ]T, 𝑘𝑖 ∈ Z+, 𝑖 = 1, . . . , 𝑁 , with at least one 𝑘𝑖

being nonzero.
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3. PROBLEM FORMULATION

Consider an uncertain multiagent system consisting of 𝑁 agents subject to an undi-

rected and connected graph G, where the dynamics of an agent is given by

¤𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑡) + 𝑤T
𝑖 (𝑡)𝛿𝑖 (𝑥𝑖 (𝑡)), 𝑖 = 1, . . . , 𝑁. (1)

In (1), 𝑥𝑖 (𝑡) ∈ R is the state vector, 𝑢𝑖 (𝑡) ∈ R is the feedback control input, 𝑤𝑖 (𝑡) ∈ R𝑠

is the unknown weight, and 𝛿𝑖 (.) ∈ R → R𝑠 is the known basis function with the form

𝛿𝑖 (.) = [𝛿𝑖1(𝑥), 𝛿𝑖2(𝑥), . . . , 𝛿𝑖𝑠 (𝑥)] of agent 𝑖. Consider also agent-wide nonlinear reference

models in the form given by

¤𝑥r𝑖 (𝑡) = −
∑︁
𝑖∼ 𝑗

(𝑥r𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) − 𝑘𝑖 (𝑥r𝑖 (𝑡) − 𝑐(𝑡))

− 𝜎sgn
(∑︁
𝑖∼ 𝑗

(𝑥r𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) − 𝑘𝑖 (𝑥r𝑖 (𝑡) − 𝑐(𝑡))
)
.

(2)

In (2), 𝑥r𝑖 (𝑡) ∈ R is the reference state vector, 𝑘𝑖 ∈ {0, 1} for all 𝑖 = 1, . . . , 𝑁 with at least

one 𝑘𝑖 being one, 𝑐(𝑡) ∈ R is the command that is available to leader agent(s) (i.e., the

one(s) with 𝑘𝑖 = 1), and 𝜎 ∈ R+ is a design variable.

Our first objective is a) to show that the reference state vector of an agent converges

to the command in finite-time, where (2) then captures the ideal finite-time behavior of the

overall multiagent system. In addition, our second objective is b) to drive the state vectors

of agents to the state vectors of their reference models in finite-time. Motivated by this

standpoint, consider the distributed control signal given by

𝑢𝑖 (𝑡)=−
∑︁
𝑖∼ 𝑗

(𝑥𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) − 𝑘𝑖 (𝑥𝑖 (𝑡) − 𝑐(𝑡))

− 𝜎sgn
(∑︁
𝑖∼ 𝑗

(𝑥𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) − 𝑘𝑖 (𝑥𝑖 (𝑡) − 𝑐(𝑡))
)

− 𝑢a𝑖 (𝑡) − 𝑢f𝑖 (𝑡).

(3)
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In (3), 𝑢a𝑖 (𝑡) ∈ R is the adaptive component and 𝑢f𝑖 (𝑡) ∈ R is the component to achieve

finite-time convergence of this distributed control signal (details in Section 4).

Now, substituting (3) into (1), one can rewrite the agent dynamics as

¤𝑥𝑖 (𝑡)=−
∑︁
𝑖∼ 𝑗

(𝑥𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) − 𝑘𝑖 (𝑥𝑖 (𝑡) − 𝑐(𝑡))

− 𝜎sgn
(∑︁
𝑖∼ 𝑗

(𝑥𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) − 𝑘𝑖 (𝑥𝑖 (𝑡) − 𝑐(𝑡))
)

− 𝑢a𝑖 (𝑡) − 𝑢f𝑖 (𝑡) + 𝑤T
𝑖 (𝑡)𝛿𝑖 (𝑥𝑖 (𝑡)).

(4)

This completes our problem formulation. The next section presents system-theoretical

analyses to achieve the objectives a) and b) mentioned above.

4. SYSTEM-THEORETICAL ANALYSES

4.1. ANALYSIS FOR OBJECTIVE A)

Before presenting the first main result of this paper for achieving objective a), we

make the following assumption.

Assumption 4.1. An upper bound of the time rate of change of the command is known and

given by ¤𝑐(𝑡) ≤ 𝑐★.

For the following first main result of this paper, we define 𝜌1 ≜ 2𝜆min(F (G)),

𝜌2 ≜ 𝛼
√︁

2𝜆min(F (G)), 𝛼 ≜ 𝜎 − 𝑐 ∈ R+, and 𝑉 (𝑡0) = 1
2𝑥

T
r (𝑡0)F (G)𝑥r(𝑡0). Here, 𝑐 ∈ R+

satisfies ∥1𝑁 ¤𝑐(𝑡)∥2 ≤ 𝑐, where existence of 𝑐 follows from the above assumption. We are

now ready to present the following result.
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Theorem 4.1. Consider the reference model dynamics of each agent given by (2) and

Assumption 4.1. If 𝜎 > 𝑐, then the states of the reference model approaches to 𝑐(𝑡) in

finite-time 𝑇 subject to the upper bound given by

𝑇 ≤ 2
𝜌1

ln
( 𝜌1

√︁
𝑉 (𝑡0) + 𝜌2

𝜌2

)
. (5)

Proof. Let 𝑥r𝑖 (𝑡) ≜ 𝑥r𝑖 (𝑡) − 𝑐(𝑡) be the tracking error between the reference model

of an agent and the given command. Let also 𝑥r(𝑡) ≜ [𝑥r1 (𝑡), 𝑥r2 (𝑡), . . . , 𝑥r𝑁 (𝑡)]T ∈ R𝑁 and

𝑥r(𝑡) = [𝑥r1 (𝑡), 𝑥r2 (𝑡) . . . , 𝑥r𝑁 (𝑡)]T ∈ R𝑁 . One can now compactly write

¤𝑥r(𝑡) = −F (G)𝑥r(𝑡) − 𝜎sgn
(
F (G)𝑥r(𝑡)

)
+ K1𝑁𝑐(𝑡) + 𝜎sgn

(
1𝑁𝑐(𝑡)

)
, (6)

¤̃𝑥r(𝑡) = −F (G)𝑥r(𝑡) − 𝜎sgn
(
F (G)𝑥r(𝑡)

)
− 1𝑁 ¤𝑐(𝑡). (7)

To show the convergence of the reference model to tracking command, consider the

Lyapunov function candidate given by

𝑉 (𝑥r) =
1
2
𝑥T

r F (G)𝑥r. (8)

Since F (G) ∈ R𝑁×𝑁+ by Lemma 2.1, 𝑉 (0) = 0 and 𝑉 (𝑥r) > 0 for all 𝑥r ≠ 0, and 𝑉 (𝑥r) is

radially unbounded. Now, the time derivative of (8) yields

¤𝑉 (𝑥r(𝑡)) = −𝑥T
r (𝑡)F (G)F (G)𝑥r(𝑡)

− 𝜎𝑥T
r (𝑡)F (G)sgn(F (G)𝑥r(𝑡))

− 𝑥T
r (𝑡)F (G)1𝑁 ¤𝑐(𝑡)

≤ −∥F (G)𝑥r(𝑡)∥2
2 − 𝜎∥F (G)𝑥r(𝑡)∥1

+ ∥F (G)𝑥r(𝑡)∥2𝑐

≤ −∥F (G)𝑥r(𝑡)∥2
2 − (𝜎 − 𝑐)∥F (G)𝑥r(𝑡)∥2.

(9)
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From the statement of the theorem, (9) yields

¤𝑉 (𝑥r(𝑡)) ≤ −∥F (G)𝑥r(𝑡)∥2
2 − 𝛼∥F (G)𝑥r(𝑡)∥2

= −𝑥T
r (𝑡)F (G)F (G)𝑥r(𝑡)

− 𝛼
√︃
𝑥T

r (𝑡)F (G)F (G)𝑥r(𝑡)

≤ −𝜆min(F (G))𝑥T
r (𝑡)F (G)𝑥r(𝑡)

− 𝛼
√︁
𝜆min(F (G))

√︃
𝑥T

r (𝑡)F (G)𝑥r(𝑡)

≤ −2𝜆min(F (G))𝑉 − 𝛼
√︁

2𝜆min(F (G))
√
𝑉

= −𝜌1𝑉 − 𝜌2
√
𝑉.

(10)

Next, using (10), we show that (5) holds. To this end, one can write

−(𝜌1𝑉 + 𝜌2
√
𝑉) ≥ d𝑉

dt

−dt ≥ d𝑉
(𝜌1𝑉 + 𝜌2

√
𝑉)
.

(11)

Note that one can define
√
𝑉 = 𝜈 such that 𝑉 becomes 𝑉 = 𝜈2. Taking the derivative of 𝑉

now yields d𝑉 = 2𝜈d𝜈. Rearranging now (11) results in

−dt ≥ 2𝜈d𝜈
(𝜌1𝜈2 + 𝜌2𝜈)

. (12)

By taking the integral of both sides of the above inequality, one can get

−
∫ 𝑇

𝑡0

dt ≥
∫ 𝑇

𝑡0

2𝜈d𝜈
(𝜌1𝜈2 + 𝜌2𝜈)

=
2ln(𝜌1𝜈 + 𝜌2)

𝜌1
|𝑇𝑡0 .

(13)
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Then, using the variable of change
√
𝑉 = 𝜈 over the time interval [𝑡0, 𝑇], (13) becomes

−
∫ 𝑇

𝑡0

dt ≥ 2ln(𝜌1
√
𝑉 + 𝜌2)
𝜌1

|𝑇𝑡0 .

=
2ln(𝜌1

√︁
𝑉 (𝑇) + 𝜌2)
𝜌1

−
2ln(𝜌1

√︁
𝑉 (𝑡0) + 𝜌2)
𝜌1

.

(14)

Finally, when 𝑉 (𝑇) = 0 and 𝑡0 = 0, with the quotient rule for natural logarithms (i.e.,

ln(𝑎/𝑏) = ln𝑎 − ln𝑏, where 𝑎 ∈ R+ and 𝑏 ∈ R+), the finite-time can be calculated as in (5).

The proof is now complete. ■

4.2. ANALYSIS FOR OBJECTIVE B)

We next present the second main result of this paper for achieving objective b). To

this end, let 𝑥𝑖 (𝑡) ≜ 𝑥𝑖 (𝑡) − 𝑥r𝑖 (𝑡) be the tracking error of agent 𝑖, 𝑖 = 1, . . . , 𝑁 , that satisfies

the dynamics given by

¤̃𝑥𝑖 (𝑡) = ¤𝑥𝑖 (𝑡) − ¤𝑥r𝑖 (𝑡)

= −(𝑑𝑖 + 𝑘𝑖)𝑥𝑖 − 𝜎
(
sgn(𝑧1𝑖 (𝑡)) − sgn(𝑧2𝑖 (𝑡))

)
−
(
𝑢a𝑖 (𝑡) − 𝑤T

𝑖 𝛿𝑖 (𝑥𝑖 (𝑡))
)
−𝑢f𝑖 (𝑡),

(15)

where 𝑧1𝑖 (𝑡) ≜
∑
𝑖∼ 𝑗 (𝑥𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) − 𝑘𝑖 (𝑥𝑖 (𝑡) − 𝑐(𝑡)) and 𝑧2𝑖 (𝑡) ≜

∑
𝑖∼ 𝑗 (𝑥r𝑖 (𝑡) − 𝑥r 𝑗 (𝑡)) −

𝑘𝑖 (𝑥r𝑖 (𝑡) − 𝑐(𝑡)). Since (15) contains the nonlinear term “sgn(𝑧1𝑖 (𝑡)) − sgn(𝑧2𝑖 (𝑡))” that

do not produce a term depending on 𝑥𝑖 (𝑡), we now utilize adaptive control theory with

nonlinear reference models [gruenwald2020adaptive]. Specifically, consider 𝜇𝑖 (𝑥𝑖 (𝑡)) ≜ 𝑥𝑖

and a locally Lipschitz function 𝛽𝑖 (·) ∈ R such that

𝜇𝑖 (𝑥𝑖 (𝑡)) = sgn(𝑧1𝑖 (𝑡)) − sgn(𝑧2𝑖 (𝑡)) + 𝛽𝑖 (·) (16)
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holds (𝛽𝑖 (·) can be readily calculated; see, for example, (32), (33), and (34) in Section 5).

One can now rewrite (15) as

¤̃𝑥𝑖 (𝑡) = −(𝑑𝑖 + 𝑘𝑖)𝑥𝑖 (𝑡) − 𝜎(𝑥𝑖 (𝑡) − 𝛽𝑖)

−
(
𝑢a𝑖 (𝑡) − 𝑤T

𝑖 𝛿𝑖 (𝑥𝑖 (𝑡))
)
−𝑢f𝑖 (𝑡)

= −(𝑑𝑖 + 𝑘𝑖 + 𝜎)𝑥𝑖 (𝑡)

− 𝑢a𝑖 (𝑡) + 𝑤T
a𝑖 (·)𝛿a𝑖 (·) − 𝑢f𝑖 (𝑡)

(17)

with 𝑤a𝑖 (·) ≜ [𝑤T
𝑖
, 𝜎]T ∈ R𝑠+1 and 𝛿a𝑖 (·) ≜ [𝛿T

𝑖
(𝑥𝑖), 𝛽𝑖]T ∈ R𝑠+1.

Next, let the adaptive component of the distributed controller given by (3) be

𝑢a𝑖 (𝑡) = −𝑤̂T
a𝑖 (𝑡)𝛿a𝑖 (·) (18)

with the weight update rule

¤̂𝑤a𝑖 (𝑡) = 𝛾−1
𝑖 𝛿a𝑖 (·)𝑥𝑖 (𝑡), (19)

where 𝛾𝑖 ∈ R+ is the learning rate. Now, substituting (18) into the (17), we have

¤̃𝑥𝑖 (𝑡) = −(𝑑𝑖 + 𝑘𝑖 + 𝜎)𝑥𝑖 (𝑡) − 𝑤̃T
a𝑖 (𝑡)𝛿a𝑖 (·) − 𝑢f𝑖 (𝑡), (20)

where 𝑤̃a𝑖 (𝑡) ≜ 𝑤̂a𝑖 (𝑡)−𝑤a𝑖 ∈ R𝑠+1 is the weight estimation error that satisfies the dynamics

given by

¤̃𝑤a𝑖 (𝑡) = 𝛾−1
𝑖 𝛿a𝑖 (·)𝑥𝑖 (𝑡). (21)

Finally, let the finite-time component of the distributed controller given by (3) be

𝑢f𝑖 (𝑡) = 𝑏𝑖sgn(𝑥𝑖 (𝑡)), (22)
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where 𝑏𝑖 ∈ R+ is a design parameter. From (20), we arrive

¤̃𝑥𝑖 (𝑡) = −(𝑑𝑖 + 𝑘𝑖 + 𝜎)𝑥𝑖 (𝑡) − 𝑤̃T
a𝑖𝛿a𝑖 − 𝑏𝑖sgn(𝑥𝑖 (𝑡)). (23)

We are now ready to present the second main result of this paper for achieving objective b),

where 𝑎𝑖 ≜ 𝑑𝑖 + 𝑘𝑖 + 𝜎 and 𝑝𝑖 (𝑡0) ≜ 𝑥2
𝑖
(𝑡0) in the next theorem.

Theorem 4.2. Consider the uncertain multiagent system consisting of 𝑁 agents given by (1),

the reference model given by (2) subject to Assumption 4.1 and 𝜎 > 𝑐, and the distributed

control signal given by (3) with adaptive and finite-time components respectively given by

(18) and (19), and (22). Then the pair (𝑥𝑖 (𝑡), 𝑤̃a𝑖 ) is bounded for all 𝑖 = 1, . . . , 𝑁 , and the

tracking error 𝑥𝑖 (𝑡) vanishes in finite-time 𝑇𝑖 for all 𝑖 = 1, . . . , 𝑁 subject to the upper bound

given by

𝑇𝑖 ≤
1
𝑎𝑖

ln
(𝑎𝑖√︁𝑝𝑖 (𝑡0) + 𝑏𝑖

𝑏𝑖

)
. (24)

Proof. Consider the Lyapunov candidate be given by

𝑉𝑖 (𝑥𝑖, 𝑤̃a𝑖 ) =
1
2
𝑥2
𝑖 +

1
2
𝛾𝑖𝑤̃

2
a𝑖 . (25)

Here, 𝑉𝑖 (0, 0) = 0 and 𝑉𝑖 (𝑥𝑖, 𝑤̃a𝑖 ) > 0 for all (𝑥𝑖, 𝑤̃a𝑖 ) ≠ 0, and 𝑉𝑖 (𝑥𝑖, 𝑤̃a𝑖 ) is radially

unbounded. Now, the time derivative of (25) yields

¤𝑉𝑖 (·) = 𝑥𝑖 (𝑡) ¤̃𝑥𝑖 (𝑡) + 𝛾𝑖𝑤̃a𝑖 (𝑡) ¤̃𝑤a𝑖 (𝑡)

= −(𝑑𝑖 + 𝑘𝑖 + 𝜎)𝑥2
𝑖 (𝑡) − 𝑥𝑖 (𝑡)𝑤̃T

a𝑖𝛿a𝑖

− 𝑥𝑖 (𝑡)𝑏𝑖sgn(𝑥𝑖 (𝑡)) + 𝛾𝑖𝑤̃a𝑖𝛾
−1
𝑖 𝛿a𝑖𝑥𝑖 (𝑡)

≤ −(𝑑𝑖 + 𝑘𝑖 + 𝜎)𝑥2
𝑖 (𝑡) − 𝑥𝑖 (𝑡)𝑏𝑖sgn(𝑥𝑖 (𝑡))

≤ −𝑎𝑖𝑥2
𝑖 (𝑡) − 𝑏𝑖 |𝑥𝑖 (𝑡) | .

(26)

This implies that the pair (𝑥𝑖 (𝑡), 𝑤̃a𝑖 (𝑡)) is bounded for all 𝑖 = 1, . . . , 𝑁 .
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To show finite-time convergence of the tracking error 𝑥𝑖 (𝑡), one can write

𝑉𝑖 (·) ≤ −
∫

(𝑎𝑖𝑥2
𝑖 (𝑡) + 𝑏𝑖 |𝑥𝑖 (𝑡) |) +𝑉0 (27)

by integrating (26). Using the inequality 1
2𝑥

2
𝑖
(𝑡) ≤ 𝑉𝑖 (·) that follows from (25), (27) can

now be rewritten as
1
2
𝑥2
𝑖 (𝑡) ≤ −

∫
(𝑎𝑖𝑥2

𝑖 (𝑡) + 𝑏𝑖 |𝑥𝑖 (𝑡) |) +𝑉0. (28)

Next, let 𝑝𝑖 (𝑡) ≜ 𝑥2
𝑖
(𝑡) > 0. Thus, we arrive

1
2
𝑝𝑖 (𝑡) ≤ −

∫
(𝑎𝑖𝑝𝑖 (𝑡) + 𝑏𝑖

√︁
𝑝𝑖 (𝑡)) +𝑉0. (29)

Finally, taking the time derivative of (29) yields

¤𝑝𝑖 (𝑡) ≤ −(2𝑎𝑖𝑝𝑖 (𝑡) + 2𝑏𝑖
√︁
𝑝𝑖 (𝑡)). (30)

Since 𝑎𝑖 and 𝑏𝑖 are positive, the finite-time convergence for all agents follows similar to the

proof of Theorem 4.1. The calculation of 𝑇𝑖 also follows similar to the proof of the same

theorem. The proof is now complete. ■

Remark 4.1. As it is well-known, sgn(·) can cause chattering in the control inputs of each

agent. In this case, it is of practice to approximate this function with sgn(𝑥) ≈ tanh(𝑘𝑥) for

a large value of 𝑘 ∈ R+.

We refer to the next section for details.

5. ILLUSTRATIVE NUMERICAL EXAMPLE

To illustrate the proposed distributed adaptive control approach in Theorem 4.2,

which is predicated on the agent-wise nonlinear reference model in Theorem 4.1, consider

the group of three agents on the connected and undirected graph G shown in Figure 1 with



134

the first agent being the leader. For this graph, the resulting L(G) and K matrices become

L(G) =


2 −1 −1

−1 1 0

−1 0 1


, K =


1 0 0

0 0 0

0 0 0


. (31)

For the dynamics of each agent, we use 𝛿𝑖 (𝑥𝑖 (𝑡)) = 𝑥𝑖 (𝑡) and 𝑤𝑖 = 5 respectively for the

basis functions and the unknown weights. In addition, the initial states and the reference

states of agents are randomly chosen over the interval [−5, 5] respectively as 𝑥(0) =

[0.90,−1.15,−3.80]T and 𝑥r(0) = [−0.80,−2.80,−0.10]T. To satisfy (16), 𝛽𝑖 (·) values are

also calculated as

𝛽1(·) = −(𝑥1(𝑡) − 𝑥r1 (𝑡)) − sgn
(
(𝑥1(𝑡) − 𝑥r2 (𝑡))

+ (𝑥1(𝑡) − 𝑥r3 (𝑡)) + (𝑥1(𝑡) − 𝑐(𝑡))
)

+ sgn
(
(𝑥r1 (𝑡) − 𝑥r2 (𝑡)) + (𝑥r1 (𝑡) − 𝑥r3 (𝑡))

+ (𝑥r1 (𝑡) − 𝑐(𝑡))
)
,

(32)

𝛽2(·) = −(𝑥2(𝑡) − 𝑥r2 (𝑡)) − sgn
(
(𝑥2(𝑡) − 𝑥r1 (𝑡)

)
+ sgn

(
(𝑥r2 (𝑡) − 𝑥r1 (𝑡)

)
,

(33)

Figure 1. Three agents on the connected and undirected graph G with the first agent being
the leader (i.e., 𝑘1 = 1) and the second and the third agents being followers (i.e., 𝑘2 = 0 and
𝑘3 = 0).
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Figure 2. Performance of the states and the references states of each agent (the command
available to the first agent is shown in all figures).

𝛽3(·) = −(𝑥3(𝑡) − 𝑥r3 (𝑡)) − sgn
(
(𝑥3(𝑡) − 𝑥r1 (𝑡)

)
+ sgn

(
(𝑥r3 (𝑡) − 𝑥r1 (𝑡)

)
.

(34)

Finally, we use a sinusoidal wave command 𝑐(𝑡) with an amplitude of 0.5 and a frequency

of 0.08 Hz, and we choose 𝑏𝑖 = 2.5, 𝛾𝑖 = 100, and 𝜎 = 0.5, where 𝜎 > 𝑐 holds in this case

(i.e., ∥1𝑁 ¤𝑐(𝑡)∥2 ≤ 𝑐 is calculated with 𝑐 = 0.35 such that 𝜎 = 0.5 > 0.35 holds).

Figures 2 and 3 show the performance of the proposed distributed control approach

predicated on the agent-wise nonlinear reference models. Note that the reference state

of each agent approach to the time-varying command in finite-time, which numerically

validates the theory presented in Theorem 4.1, and the state of each agent also approach

to their corresponding reference state in finite-time, which further numerically validates

the theory presented in Theorem 4.2. Following the discussion in Remark 4.1, however,

chattering happens in the control signals of each agent. To provide a remedy to this problem

by following the discussion in the same remark, “sgn(·)” is replaced with “tanh(1000(·))”
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Figure 3. History of the control signals of each agent.
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Figure 4. Performance of the states and the references states of each agent when “sgn(·)”
is replaced with “tanh(1000(·))” by following the discussion in Remark 4.1 (the command
available to the first agent is shown in all figures).

in Figures 4 and 5. Compared to the performance in Figure 2, in particular, a similar

closed-loop multiagent system performance is achieved in Figure 4, where no chattering

happens in this case in the control signals of each agent, as clearly seen from Figure 5.
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Figure 5. History of the control signals of each agent when “sgn(·)” is replaced with
“tanh(1000(·))” by following the discussion in Remark 4.1.

6. CONCLUSION

A finite-time distributed adaptive control approach was presented for uncertain

multiagent systems, where it was predicated on agent-wise nonlinear reference models.

Specifically, these reference models generalized their linear counterparts in [29] for captur-

ing the ideal finite-time behavior of the overall multiagent system while ensuring safety in

the sense that agents always rely on stable reference model states in their adaptive control

signals for suppressing the negative effect of system anomalies. Utilizing the error signals

between the states of agent dynamics and the states of these reference models, we showed

that adaptation allows us to drive these error signals of each agent subject to uncertainties

to zero in finite-time; that is, each agent achieved its ideal performance in finite-time. Fi-

nally, an illustrative numerical example demonstrated the efficacy of the proposed control

approach. Future research can involve extending the results of this paper presented in The-

orems 4.1 and 4.2 to high-order uncertain agent dynamics as well as to agents over directed

and switching graph topologies.
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SECTION

2. SUMMARY AND CONCLUSIONS

The purpose of this dissertation was to develop new optimal and adaptive control

methods for uncertain dynamical systems. Overall, the proposed methods improve the

system stability, performance of trajectory tracking, handle state constraints, and suppress

the uncertainties.

Specifically, integrated path planning and control architecture for impaired aircraft

was used in Paper I. This paper considered engine failure (T=0) and landing. The integrated

path planning and control equations are used in conjunction with the SDRE method to

successfully produce the elevator deflection histories to land the aircraft. Also, an adaptive

controller-based modified state observer was used to estimate uncertainties.

In Paper II, path planning and control were used for impaired aircraft but with sliding

mode control. The second-order sliding mode control was used to control the aircraft, and

the higher-order sliding mode was used to estimate the system uncertainties. This paper

also considered the impaired aircraft with elevator deflection stuck at some angle.

After using optimal control with uncertainties, the state constraint problem was

introduced. The state constraint inequality is not an easy task with the optimal solution.

The inverse optimal control with the set-theoretic barrier Lyapunov function was considered

in Paper III. Highly mathematics involved in the optimal solution of state constraints.

Therefore, the inverse optimal based set-theoretic barrier Lyapunov function was developed

to overcome the highly involved mathematical solutions.

Paper IV introduced the adaptive control of uncertain dynamical systems with an

optimal nonlinear reference model. After focusing on the importance of optimal control

and nonlinear reference model of the dynamical system, the Θ-D based optimal nonlinear
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reference model was developed with adaptive control for uncertain dynamical systems. As

a result, the state of the uncertain dynamical system converged to the state of the optimal

nonlinear reference model.

When the state constraint with optimal control was studied, the uncertainties were

not considered. Paper V introduced the set-theoretic model reference adaptive control

method for an uncertain dynamical system with state constraints. In this method, the norm

of the states did not violate the state limits, and desirable closed-loop system tracking

performance was achieved. The efficacy of the proposed method was demonstrated with

simulation and experimental studies.

Finally, the finite-time method for distributed adaptive control was presented for

uncertain multiagent systems in Paper VI. Specifically, the agent-wise nonlinear reference

model was considered. The nonlinear reference model ensured the safety of agents. Also,

the adaptive control method was introduced to converge error signals to zero in finite time.

The simulation results demonstrated the efficacy of the proposed approach.
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1. PROOF OF THE THEOREM OF THE PAPER I

The proof of the Theorem 1 of the Paper I is utilized with Lyapunov stability analysis.

The Lyapunov candidate is chosen as

𝑉 (𝑒𝑎, 𝑊̃) = 𝑒𝑇𝑎𝑃𝑒𝑎 + 𝑡𝑟 (𝑊̃Γ−1𝑊̃). (1)

Note that 𝑣(0, 0) = 0 and 𝑉 (𝑒𝑎, 𝑊̃) > 0 for all (𝑒𝑎, 𝑊̃) ≠ (0, 0). Taking the derivate of (1)

yields

¤𝑉 = ¤𝑒𝑇𝑎𝑃𝑒𝑎 + 𝑒𝑇𝑎𝑃 ¤𝑒𝑎 + 𝑡𝑟 ( ¤̃𝑊𝑇Γ−1𝑊̃) + 𝑡𝑟 (𝑊̃𝑇Γ−1 ¤̃𝑊). (2)

By substituting (8) into (2), we arrive

¤𝑉 = 𝑒𝑇𝑎 (−𝐾𝑇2 𝑃 − 𝑃𝐾2)𝑒𝑎 + 2𝑒𝑇𝑎𝑃(𝑊̃𝑇𝜙(𝑥) + 𝜀) + 2𝑡𝑟 (𝑊̃𝑇Γ−1 ¤̃𝑊). (3)

Then, we use the error between the actual weight and the estimated weight of the neural

network in (3) as

¤𝑉 = 𝑒𝑇𝑎 (−𝐾𝑇2 𝑃 − 𝑃𝐾2)𝑒𝑎 + 2𝑒𝑇𝑎𝑃(𝑊̃𝑇𝜙(𝑥) + 𝜀) − 2𝑡𝑟 (𝑊̃𝑇Γ−1 ¤̂𝑊). (4)

Using (9) into (4), we now get

¤𝑉 = 𝑒𝑇𝑎 (−𝐾𝑇2 𝑃 − 𝑃𝐾2)𝑒𝑎 + 2𝑒𝑇𝑎𝑃𝜀 + 2𝑡𝑟 (𝜎𝑊̃𝑇𝑊̂). (5)

From the solution of the Lyapunov equation −𝐾𝑇2 𝑃 − 𝑃𝐾2 = −𝑄, the (5) becomes

¤𝑉 = −𝑒𝑇𝑎𝑄𝑒𝑎 + 2𝑒𝑇𝑎𝑃𝜀 + 2𝑡𝑟 (𝜎𝑊̃𝑇𝑊̂). (6)
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When we take the norms on the right hand side of the equality, (6) can be upper bounded as

¤𝑉 ≤ −𝜆min(𝑄) ∥𝑒𝑎∥2 + 2 ∥𝑒𝑎∥ 𝜆max(𝑃) ∥𝜀∥ + 2𝜎


𝑊̃

 

𝑊̂

 . (7)

The neural network approximation error 𝜀 is assumed to be bounded such that ∥𝜀∥ ≤ 𝜀𝑚.

The norm of the error between the actual weight and the estimated weight of the neural

network is defined as


𝑊̃

 = 

𝑊 − 𝑊̂



. Now (7) becomes

¤𝑉 ≤ −𝜆min(𝑄) ∥𝑒𝑎∥2 + 2 ∥𝑒𝑎∥ 𝜆max(𝑃)𝜀𝑚 + 2𝜎


𝑊 − 𝑊̂



 

𝑊̂


≤ −𝜆min(𝑄) ∥𝑒𝑎∥2 + 2 ∥𝑒𝑎∥ 𝜆max(𝑃)𝜀𝑚 + 2𝜎(∥𝑊 ∥



𝑊̂

 − 

𝑊̂

 

𝑊̂

).
The upper bound of the norm of the actual weight is𝑊𝑚𝑎𝑥 . Substituting𝑊𝑚𝑎𝑥 into (8), we

get

¤𝑉 ≤ −𝜆min(𝑄) ∥𝑒𝑎∥2 + 2 ∥𝑒𝑎∥ 𝜆max(𝑃)𝜀𝑚 + 2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

 − 

𝑊̂

 

𝑊̂

). (8)

1.1. UPPER BOUND ON ESTIMATION ERROR

To find the upper bound on the estimation error, (8) can be rearranged as

¤𝑉 ≤ −𝜆min(𝑄) ∥𝑒𝑎∥2 + 2 ∥𝑒𝑎∥ 𝜆max(𝑃)𝜀𝑚 − 2𝜎
( 

𝑊̂

 − 𝑊𝑚𝑎𝑥

2

)2
+ 2𝜎

(𝑊𝑚𝑎𝑥

2

)2
. (9)

We assume that the estimation error has an upper bound 𝛽 satisfying

𝛽 =

𝜆max(𝑃)𝜀𝑚 +
√︂((

𝜆max(𝑃)𝜀𝑚
)2

+ 𝜎𝜆min(𝑄)𝑊𝑚𝑎𝑥

2

)2

𝜆min(𝑄)
(10)
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1.2. UPPER BOUND OF THE NEURAL NETWORK WEIGHTS

To find the upper bound on the


𝑊̂

, the following derivations need to be solved.

¤𝑉 ≤ −𝜆min(𝑄) ∥𝑒𝑎∥2 + 2 ∥𝑒𝑎∥ 𝜆max(𝑃)𝜀𝑚 + 2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

 − 

𝑊̂

 

𝑊̂

). (11)

¤𝑉 ≤ −𝜆min(𝑄)
(
∥𝑒𝑎∥2 + 2 ∥𝑒𝑎∥ 𝜆max(𝑃)𝜀𝑚

𝜆min(𝑄)

)
+ 2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

 − 

𝑊̂

2). (12)

Using the first part of the right side of the equation, we can write

¤𝑉 ≤ −𝜆min(𝑄)
[(

∥𝑒𝑎∥ −
𝜆max(𝑃)𝜀𝑚
𝜆min(𝑄)

)2
−
(𝜆max(𝑃)𝜀𝑚
𝜆min(𝑄)

)2]
+ 2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

 − 

𝑊̂

2) (13)

Then, the terms are considered separately as given by 𝑎1 = −𝜆min(𝑄)
[(

∥𝑒𝑎∥− 𝜆max (𝑃)𝜀𝑚
𝜆min (𝑄)

)2]
,

𝑎2 = 𝜆min(𝑄)
(
𝜆max (𝑃)𝜀𝑚
𝜆min (𝑄)

)2
, 𝑎3 = 2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

) and 𝑎4 = −2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

2). From the

above definitions, 𝑎1 is negative definite and the other equations are considered as

−𝜆min(𝑄)
(𝜆max(𝑃)𝜀𝑚
𝜆min(𝑄)

)2
− 2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

) + 2𝜎(𝑊𝑚𝑎𝑥



𝑊̂

2) ≥ 0, (14)

where this inequality yields to the bound using a quadratic equation. Therefore, the bound

is satisfies as 

𝑊̂

 ≥ 2𝜎𝑊𝑚𝑎𝑥 +
√︂

4𝜎2𝑊2
𝑚𝑎𝑥 + 8𝜎

(
𝜆max (𝑃)2𝜀2

𝑚

𝜆min (𝑄)

)
4𝜎

, (15)

where


𝑊̂

 ≥ L. We now get

L =

𝑊𝑚𝑎𝑥 +
√︂
𝑊2
𝑚𝑎𝑥 + 2

(
𝜆max (𝑃)2𝜀2

𝑚

𝜎𝜆min (𝑄)

)
2

. (16)

The conclusion is that both estimation error and neural network weights are uniformly

bounded.
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1. PROOF OF THE THEOREM OF THE PAPER III

The proof of the Theorem 3.1 of the Paper III is utilized with Lyapunov stability

analysis. The Lyapunov candidate is chosen as

𝑉 (𝑒) = 𝜙(∥𝑒∥P) (1)

Taking the time derivative of (1) we get,

¤𝑉 (𝑒) = d𝜙(∥𝑒(𝑡)∥𝑃)
d𝑡

=
d𝜙(∥𝑒(𝑡)∥𝑃)

d ∥𝑒(𝑡)∥2
𝑃

d ∥𝑒(𝑡)∥2
𝑃

d𝑡
=

d𝜙(∥𝑒(𝑡)∥𝑃)
d ∥𝑒(𝑡)∥2

𝑃

d ∥𝑒(𝑡)∥2
𝑃

d𝑒
d𝑒
d𝑡

=
1
2
𝐷𝜙 (∥𝑒(𝑡)∥𝑃)𝑒𝑇 (𝑡)𝑃 ¤𝑒(𝑡).

(2)

where

¤𝑉 (𝑒) = 1
2
𝐷𝜙 (∥𝑒(𝑡)∥𝑃)𝑒𝑇 (𝑡)𝑃 ¤𝑒(𝑡)

=
1
2
𝐷𝜙 (∥𝑒(𝑡)∥𝑃)𝑒𝑇 (𝑡)𝑃(𝐴𝑒 − 𝐵𝑢 − 𝐵𝑅−1

2 𝐵𝑇𝐷𝜙 (∥𝑒(𝑡)∥𝑃)𝑃(𝑥𝑚 − 𝐶𝑇𝑟))
(3)

where we can use 𝐷𝜙 (∥𝑒(𝑡)∥𝑃) as 𝐷𝜙. By using the equation (31) in equation (3), the above

equation becomes,

¤𝑉 (𝑒) = 1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃(𝐴𝑒(𝑡) − 1
2
𝐵𝑅−1

2 𝐵𝑇𝐷𝜙𝑃𝑒(𝑡) − 𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃(𝑥𝑚 (𝑡) − 𝐶𝑟 (𝑡)))

=
1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃𝐴𝑒(𝑡) − 1
4
𝐷𝜙𝑒

𝑇 (𝑡)𝑃𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃𝑒(𝑡)

− 1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃(𝑥𝑚 (𝑡) − 𝐶𝑟 (𝑡))

=
1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃[𝐴 − 1
2
𝐵𝑅−1

2 𝐵𝑇𝐷𝜙𝑃]𝑒(𝑡) −
1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃(𝑥𝑚 (𝑡) − 𝐶𝑟 (𝑡))

(4)

where 𝐴𝐻 = 𝐴 − 1
2𝐵𝑅

−1
2 𝐵𝑇𝐷𝜙𝑃 where P is chosen such that 𝐴𝐻 is point-wise stable. Then

¤𝑉 (𝑒) = 1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃𝐴𝐻𝑒(𝑡) + −1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃(𝑥𝑚 (𝑡) − 𝐶𝑟 (𝑡))

=
1
4
𝑒𝑇 (𝑡)𝐷𝜙 [𝑃𝐴𝐻 + 𝐴𝑇𝐻𝑃]𝑒(𝑡) −

1
2
𝐷𝜙𝑒

𝑇 (𝑡)𝑃𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃(𝑥𝑚 (𝑡) − 𝐶𝑟 (𝑡))

(5)
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where 𝑃𝐴𝐻 + 𝐴𝑇
𝐻
𝑃 = −𝑄.

¤𝑉 (𝑒) = −1
4
𝐷𝜙𝑒

𝑇 (𝑡)𝑄𝑒(𝑡) − 1
2
𝐷2
𝜙𝑒
𝑇 (𝑡)𝑃𝐵𝑅−1

2 𝐵𝑇𝐷𝜙𝑃(𝑥𝑚 (𝑡) − 𝐶𝑟 (𝑡))

≤ −1
4
𝐷𝜙𝜆𝑚𝑖𝑛 (𝑄) ∥𝑒(𝑡)∥2 − 1

2
𝐷2
𝜙 ∥𝑒(𝑡)∥2 

𝑃𝐵𝑅−1

2 𝐵𝑇𝐷𝜙𝑃




− 1
2
𝐷2
𝜙



𝑃𝐵𝑅−1
2 𝐵𝑇𝐷𝜙𝑃



 ∥(𝑥𝑚 (𝑡) − 𝐶𝑟 (𝑡))∥2

(6)

By adding and subtracting 1
8𝜆𝑚𝑖𝑛 (𝑄)𝜙(∥𝑒∥P),

¤𝑉 (𝑒) ≤ −1
8
𝜆𝑚𝑖𝑛 (𝑄)𝜙(∥𝑒∥P) − 𝜆𝑚𝑖𝑛 (𝑄) [

1
4
𝐷𝜙𝑒

𝑇𝑃𝑒

− 1
8
𝜙(∥𝑒∥P)] .

(7)

By using the property given in (11) in paper III, [ 1
4𝐷𝜙𝑒

𝑇𝑃𝑒 − 1
8𝜙(∥𝑒∥P)] > 0. Therefore,

it is proved that

¤𝑉 (𝑒) ≤ −1
8
𝜆𝑚𝑖𝑛 (𝑄)𝜙(∥𝑒∥P). (8)
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