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ABSTRACT

In a connected vehicle environment, the vehicles in a region can form a distributed

network (Vehicular Ad-hoc Network or VANETs) where they can share traffic-related in-

formation such as congestion or no-congestion with other vehicles within its proximity, or

with a centralized entity via. the roadside units (RSUs). However, false or fabricated infor-

mation injected by an attacker (or a malicious vehicle) within the network can disrupt the

decision-making process of surrounding vehicles or any traffic-monitoring system. Since

in VANETs the size of the distributed network constituting the vehicles can be small, it

is not difficult for an attacker to propagate an attack across multiple vehicles within the

network. Under such circumstances, it is difficult for any traffic monitoring organization to

recognize the traffic scenario of the region of interest (ROI). Furthermore, even if we are

able to establish a secured connected vehicle environment, an attacker can leverage the con-

nectivity of individual vehicles to the outside world to detect vulnerabilities, and disrupt the

normal functioning of the in-vehicle networks of individual vehicles formed by the different

sensors and actuators through remote injection attacks (such as Denial of Service (DoS)).

Along this direction, the core contribution of our research is directed towards secured data

dissemination, detection of malicious vehicles as well as false and fabricated information

within the network. as well as securing the in-vehicle networks through improvisation of the

existing arbitration mechanism which otherwise leads to Denial of Service (DoS) attacks

(preventing legitimate components from exchanging messages in a timely manner).
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1. INTRODUCTION

In the modern transportation system, the increase in autonomy among the vehicles

using sophisticated sensors and actuators, such as the LIDAR, camera, and Radar, has fa-

cilitated the vehicles to observe and gather information from their surrounding (or driving

environment). Furthermore, such vehicles can form a distributed network along with the

nearby vehicles, thereby forming a connected vehicle environment that is widely known

as Vehicular Ad-hoc Networks (or VANETs). In the coming years, most vehicles will be

equipped with onboard units (OBUs), GPS (Global Positioning System), EDR (Event Data

Recorder), and sensors (radar and lidar) that are used to sense traffic congestions and status,

and then automatically take appropriate actions in the vehicle and relay this information

through V2V or V2I within the vehicular network [1]. The OBUs also provide computa-

tional and communication capabilities and allows the exchange of Basic Safety Message

(BSM) with the nearby vehicles consisting of information such as latitude, longitude, speed,

elevation, and the distance of the vehicle to a nearby object and so on. The vehicles com-

municate with other vehicles (termed as V2V) and with the roadside infrastructures (termed

as V2I) using Dedicated-Short-Range-Communication (DSRC) devices which are based on

802.11p communication technology operating at 5.9 GHz band with a bandwidth of around

75 MHz and a transmission range of around 300 meters. Many researchers have explored

the feasibility of using 5g, Bluetooth and Wi-Fi as an alternative to DSRC for connected

vehicle communication which is outside the scope of our dissertation. There are several

scenarios where the connectivity among vehicles is leveraged to improve driver comfort

and safety. In the following two sections, we will briefly discuss the application scenarios

followed by the existing challenges of vehicle communication in VANETs.

Furthermore, to make the modern-day vehicles intelligent by themselves for making

autonomous decisions, vehicles are equipped with hundreds of electronic control units

(ECUs) that are responsible for different functions of the vehicles, such as the brakes,
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steering, and throttle. The ECUs within an individual vehicle form a network called the

in-vehicle network (IVN), within which they share different kinds of information, that may

be perceived from the driving environment or injected remotely within the system, that

determines the state of the vehicle or the next action of the vehicle from a current state.

Some of the popular IVNs that are known for in-vehicle communications are control area

networks (CAN), local interconnected networks (LIN), and FlexRay. However, CAN is

widely accepted as a defacto standard for inter-vehicle communication due to its stability

and cost-effectiveness [2]. CAN is a serial communication system where multiple ECUs

connected to it share the same physical communication bus. As a mechanism to prevent

the collision of messages, CAN specification defines an inverse relationship between the

message IDs and the message priorities. In other words, at any given time if more than one

ECU participates in the message arbitration, the ECU with the lowest message ID wins the

arbitration and sends the message through the CAN. Meanwhile, the other ECUs switch to

listening mode and wait for the next arbitration, thus providing a non-destructive way of

message communication. Furthermore, the modern vehicles are connected to various other

entities outside the in-vehicle environment using Bluetooth and 3G/4G networks, such as

through the infotainment system [3]. Such remote communication with the outside world

aims to enhance the driver’s comfort and safety, as well as facilitate keeping the various

software components of the vehicle up-to-date. regular over-the-air (OTA) updates.

1.1. APPLICATIONS

The applications of the connected vehicular network inmodern transportation system

is as follows:

1.1.1. Traffic Information System. The requirement for any emergency vehicle,

such as an ambulance or a fire truck, is to reach its destination with minimum time delay.

Under such circumstances, the vehicle opts for the shortest route to its destination. However,

as the transportation network is dynamic and is not known in advance, the shortest route
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(ROI) may not be the fastest. This is ideal in a situation when the shortest route may be

congested due to accidents and an alternate route choice for the emergency vehicle may be

optimal. Under such circumstances, the information obtained from the vehicles at the ROI

can be obtained to determine the traffic condition of the region in advance to reduce the

delay in reaching the destination.

1.1.2. Platooning. Platooning is a system where a group or a flock of vehicles

drive together in which a vehicle follows a leading vehicle by sharing information (such as

acceleration and steering) through BSM. Platooning increases the capacity of the roads via.

an automated highway system [4], decreased chances of a collision, lesser congestion, and

high energy saving and fuel economy.

1.1.3. Safety Applications. Vehicles can share safety information including colli-

sion warning, emergency braking, lane changing warning, lane merging and road-condition

warning [5] with nearby vehicles to avoid any potential hazards or crashes. This also

provides more reaction time to drivers, thereby minimizing any chance of a collision.

1.1.4. Vehicle Location Estimation. The effect of environmental conditions, such

as heavy fog or rain, can have a huge impact on estimating (or knowing) the location of any

vehicles nearby due to unclear vision of the surrounding. Wireless information exchanged

between the vehicles can allow the drivers to know the presence of a nearby vehicle and

take appropriate decisions, thereby avoiding accidents.

1.1.5. Autonomous Vehicles. Over the years, one of the major objectives of in-

stalling hundreds of ECUs is to introduce autonomy within a vehicle and empower it with

real-time decision-making capabilities with minimum to no human interference. The au-

tonomous vehicles would be able to perceive their environment (such as other vehicles

or obstacles) and initiate appropriate decisions (such as braking, lane changing, accel-

erating/decelerating) under a given condition by ensuring public safety. Furthermore,
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autonomous vehicles along with a connected vehicle environment would enhance the for-

mation of an ecosystem thatwouldminimize crashes/accidents, and congestion, and improve

public comfort and safety.

1.2. CHALLENGES

In the context of a V2X communication model, one of the major area of concern is to

validate the credibility or the authenticity of the information that is exchanged between the

vehicles. As the action of a vehicle is heavily dependent on driving pattern of the surrounding

vehicle, any false information injected within the network can lead to inaccurate decision

making, which in turn can lead towards a potential collision. Such a scenario can severely

impact the decision making of the vehicles in an autonomous ecosystem that involves

minimum to no human intervention. Added to it, if majority of the information obtained

from the vehicles are compromised or falsified, it disrupts the decision making capability of

any traffic monitoring system that considers vehicle information for determining the event

of the region. Furthermore, the information disseminated by the vehicle to nearby vehicles

can also lead to various privacy issues, such as unauthorized tracking of a vehicle by an

attacker or leaking confidential information. The threat model (i.e the security and privacy

issues) that are addressed in our dissertation has been described briefly in the following

subsections:

1.2.1. Data Fabrication/ False Message Injection. In this attack, the attacker can

inject false or fabricated information with the VANET. For example, it may record certain

portion of the road as congested when it is non-congested and vice-versa for personal

interest. As a result, such information can be taken as an input to the traffic monitoring

system by the infrastructure and provide incorrect route as an optimal route. This can

increase the travel time or travelling distance of a vehicle. Additionally, the attacker (or
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malicious vehicle) can also report false GPS location, velocity information and other vehicle

parameters to the authority in order to disrupt the decision making process of the traffic

monitoring system.

1.2.2. Masquerading. The purpose of an attacker is to avoid getting detected after

an attack. Masquerading attack (or impersonation attack) is an active attack where the

attacker tries to impersonate as other vehicle while performing the attack. For example,

the attacker injects false information within the network using a different identity (while

concealing its own identity) in order to avoid getting detected. It is one of the easiest attack

[6] that can have a high impact within the network.

1.2.3. Sybil and Collusion Attack. In a sybil attack, an attacker creates multiple

fake identities of a vehicle and reports manipulated information within the network. Such

an attack can highly impact the decision making process of any nearby vehicle or any

traffic monitoring system. For example, a malicious vehicle performing a sybil attack can

generate a fake identity and report a false location information to the traffic monitoring

system. Also, a leading attacking vehicle within a platoon can broadcast fake location,

acceleration or braking information to the vehicles following it that can lead to abrupt lane

change, emergency braking or abrupt deceleration for the following vehicle, which may

result in an accident.

The attackers can also perform the collusion attack, where multiple malicious ve-

hicles within a region report similar fabricated event, velocity and GPS information to the

traffic monitoring system, persuading it to make inaccurate traffic decisions. As the vehicle

within an ROI forms a small network at a given time, the attack can have a much severe im-

pact if majority of the vehicles within the region collude in providing inaccurate information.

Such a scenario is also possible through attack propagation. For example, the vehicle closer

to an event maliciously report inaccurate information while the vehicles far away receive
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the malicious information and spreads it to the nearby vehicles non-maliciously. Thus, the

inaccurate information propagated within the network can have a significant impact within

the network.

1.2.4. Denial of Service. Denial of Service is an active attack in VANET where

any event that is recorded by a malicious vehicle is not shared with the traffic monitoring

system or with the nearby vehicle. Such lack of information can significantly impact the

decision making process of any traffic monitoring system.

1.2.5. Packet Snooping Attack. Packet snooping attack is a passive attack that

leads to a breach in the privacy of the information across the network. In this attack, the

attacker tries to snoop into the data packets of the nearby vehicles which may lead to leaking

of confidential information of the vehicles as well as lead to unauthorized tracking of the

vehicles.

In the context of in-vehicle network, one of the major area of concern is that CAN

is highly susceptible to remote security attacks, as it does not have any authentication

mechanism in place. Under such circumstances, it is not difficult for an attacker to connect

an external device and snoop into the data packets of the CAN. Furthermore, it can reverse

engineer the information collected [7] (more commonly called as reconnaissance) and inject

information within the CAN. The practicability of remote injection inside CAN has been

demonstrated in [8], in which the authors were able to control the braking and steering

mechanism of a vehicle through remote injection of data packets. Thus it is evident that

a remote attacker can always injecting a message with the lowest ID at every time interval

which in turn can deny any legitimate ECUs from sending important information to other

ECUs. Therefore, an attacker can exploit the strict relationship specification between the

message ID and the priority in CAN and effectively perform a Denial of Service (DoS)

attack within the in-vehicle network, that leads to significant issues concerning the safety

of the passengers and its surrounding.
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1.3. DISSERTATION SUMMARY

This dissertation is composed of three papers presented in the publication format

of the conference wherein they were published addressing the aforementioned objectives in

the previous sections.

Paper I entitled "Secure and Privacy-preserving Traffic Monitoring in VANETs"

presents a centralized secured and privacy-preserved approach to message exchange, event

validation, and malicious vehicle identification from the ROI (even if the majority of the

vehicles are malicious) by leveraging existing PKI algorithms, digital signature algorithms

and information obtained from the vehicles at the ROI.

Paper II entitled "Distributed Incentive-BasedSecuredTrafficMonitoring inVANETs"

presents a distributed game-theoretic incentive-based approach to message exchange, event

validation, and malicious vehicle identification from the ROI (even if a majority of the

vehicles and less than the majority of the RSUs are malicious) by leveraging the concept of

clusters formation among the vehicles and Byzantine Fault-tolerant Paxos algorithm.

Paper III entitled "BLAME:ABlockchain-assistedMisbehaviorDetection andEvent

Validation in VANETS" presents an event validation and malicious vehicle identification

algorithm that leverages the radar information obtained from the vehicles and calculates the

total number of vehicles at the ROI from the information obtained from the vehicles, that

is made transparent at the vehicular level by incorporating the concept of the blockchain

(accommodating less than majority malicious RSUs).

Paper IV entitled "CanSafe: An MTD based approach for providing resiliency

against DoS attack within in-vehicle networks" presents an MTD-based solution to prevent

the DoS attack within the in-vehicle network by reshuffling the relationship between the

message/arbitration ID generated in a separate module, referred to as the Shuffling Module,

and their priorities at every instant of time to confuse the attacker about the message

priorities (as opposed to the specification of the CAN bus).
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1.4. FUTURE WORK

As a future scope, we would like to design an intelligent Intrusion Detection System

(IDS) or anomaly detection system using machine learning algorithms that can be deployed

within the Control Areal Network (CAN) bus of the vehicle. Such an IDS can be leveraged

to detect any falsified data that may have been injected by an attacker or any anomalous

data that it receives in the form of BSM from nearby vehicles through V2V communication,

thereby incorporating many real-time applications that are of extreme importance in an

autonomous vehicle.

Our goal is also to design a strategy that can withstand DoS attacks even under the

influence of multiple injection attacks within in-vehicle networks.
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2. LITERATURE REVIEW

2.1. CONNECTED VEHICLE (V2X) SECURITY

In general, the VANET architecture is subdivided into 3 separate planes: (i) Ve-

hicular Plane: consisting of the vehicles that interact with other vehicles using V2V com-

munication, generates the information from the ROI and interacts with the RSUs using

V2I communication, (ii) RSU plane: consisting of the road side infrastructures or the

RSUs which are deployed within the region, that interacts with the vehicles as well as

with the central authority (if any) and, (iii) Central plane: mainly consisting of the trusted

authorities/central authority, key distribution center etc. The scope of this dissertation is to

highlight the various security and the privacy issues for information dissemination, event

validation, and malicious vehicle identification in VANET. Data emerging from one vehicle

is broadcast to the nearby vehicles for validation and deciding the traffic scenario of the

region. In this section, we briefly elaborate the various commonly used methods which

are adopted to tackle the security and privacy challenges that are listed in the threat model

along with their shortcomings. The methods has been classified into 2 major categories: (i)

Centralized Solutions and (ii) Distributed Solutions.

2.1.1. Centralized Solutions. Li et. al. [9] proposed a reputation based an-

nouncement scheme using a trusted centralized reputation server for VANET, where the

credibility/authenticity of the message generated by a vehicle is determined by its neigh-

boring vehicles. Every vehicle on receiving a message from nearby vehicle determines the

authenticity of the certificate attached in the message that is received from the reputation

server and checks for the time discounted reputation score. If valid the message is consid-

ered reliable. For the authenticity of the message itslef, a receiving vehicle checks if the

message matches with its own event recorded. If it does not it reports a feedback. The

accuracy of the reputation calculated in the proposed approach relies on the assumption
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that the proportion of malicious vehicle with respect to the number of vehicles reporting the

event is small which makes it robust against ballot stuffing or bad mouthing attack. How-

ever, in modern transportation attacks can be propagated from one vehicle to the another.

In a smaller network, there is a high chance of compromising majority vehicles. Also,

the percentage of malicious vehicles surrounding a target vehicle may be high enough to

degrade its reputation.

Similarly, a threshold based event validation approach has been proposed by Taie et.

al. in [10]. In the proposed approach every vehicle is loaded with a on-board unit (OBU)

monitoring camera to collect picture evidence of an event from ROI. Thereafter, it generates

the traffic report consisting of the vehicle information such as the vehicle id, current time,

position„ direction and so on. Furthermore, the monitoring report is transmitted to the

nearby OBU and also the RSU for validation. If the monitoring event is reported by a

threshold number of vehicles, it is considered authentic else it is considered a fake message.

The proposed model is susceptible to ballot stuffing or bad mouthing attack if the malicious

vehicles collude to report the same incorrect event. Furthermore, the malicious vehicles

colluding at the ROI need not be in majority if the threshold is lesser than the majority

count.

A threshold based privacy-preserving road condition monitoring system has also

been proposed in [11] where the vehicles report the reports the road conditions to the

cloud server in an encrypted format. The road condition information sent by the vehicles

should specify the location of the road where the event was reported. Thereafter, the cloud

server is allowed to compare the reported ciphertexts from the vehicles and inform the

RA to take appropriate decisions if the reported number of road conditions exceeeds a pre

defined number of thresholds. However, threshold based system is easier for an attacker to

compromise if the threshold is not appropriate.
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2.1.2. Distributed Solutions. Singh et. al [12] proposed an incentive-based trust

management approach for event detection and validation among the vehicles using sharded

blockchain network deployed within the RSUs, and by using smart contracts. The use of

the sharded blockchain in the proposed approach reduced the propagation delay and the

work-loads from the main maintained blockchain. However, the major shortcoming of the

proposed framework is that, it could effectively validate the event only when the malicious

nodes at the vehicle plane (vehicles) are in minority. The proposed framework is also

vulnerable to collusion attack among the vehicles and the RSUs, the Sybil attack by the

vehicles at the vehicle plane, and also data manipulation attack.

Yang et.al. [13] proposed a decentralized trustmanagement schemeusing blockchain

in VANET. In the proposed scheme, the vehicles generate a reputation score corresponding

to certain messages within the network. The messages of same kind are grouped together.

Not all messages in the group are equally credible. The messages originating from the

vehicles located closer to the event are considered more trustworthy that the vehicles away

from the event. The aggregate credibility score of an event is calculated using the Bayesian

inference. If the aggregate credibility score is higher than a pre-defined threshold, then

the event is regarded as a true event and the ratings of the messages reporting the event is

incremented by a factor of 1 otherwise it is decremented. In the proposed model, the RSU

can receive conflicting ratings about a specfic event, on the event of which the decision is

based on the majority basis. Thereafter, a joint proof-of-work (PoW) and proof-of-stake

miner election method is adopted where the difficult of solving the PoW is dependent on the

stake of the miner node. The major shortcoming of the proposed scheme is that a malicious

vehicle reporting inaccurate event closer to the location will be considered more trustworthy

than a non-malicious vehicle far away from the event. Also, as the transmission range of

the vehicles cannot accommodate every possible vehicle at the ROI, it is possible that the a
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non-malicious vehicle may be surrounded by majority malicious vehicle (even if they form

a minority in the entire network) that can drastically degrade the credibility of the messages

originating from the non-malicious vehicle, thereby performing the bad-mouthing attack.

Lu et.al. [14] proposed a privacy preserving reputation management model in

VANET using blockchain named BARS. In the proposed reputation management, a vehicle

receives the message originating from another vehicle and determines the credibility of

the message. If the receiving vehicle disputes the authenticity of the received message or

discover any misbehavior (which includes detecting any fabricated information within the

network), it can expose the messages to the Law Enforcement Authority (LEA) along with

the evidence to make the arbitration. If the evidence if valid, the vehicle that braodcasts the

forged message will be punished while the vehicle exposing the forged message is rewarded

and vice-versa. However, the proposed model does not elaborate on the evidence itself that

needs to be submitted from the vehicle that wants to expose another vehicle. This is impor-

tant as the information within the evidence can determine the feasibility of the malicious

vehicle submitting fake evidence as a misbehavior to contradict the message reported by

the non-malicious vehicles. Also, the efficacy of the proposed model is dependent on the

assumption that majority of the vehicles are non-malicious.

Huang et.al. [15] proposed a secured and distributed reputation management system

in VANET. In the proposed scheme, the vehicles at the ROI can interact with its one-

hop neighbors and allocates a reputation value to its neighbor. The evaluation of one

vehicle by another vehicle is performed using the subjective logic framework. According

to it, the opinion of one vehicle for another vehicle is represented in the form a tuple

consisting of 4 parameters (belief, disbelief, uncertain, constant base rate) where belief is

the probability that the statement is true, disbelief is the probability that the statement is

false, uncertain is the individual confidence in a vehicle’s knowledge on other vehicles, and

the constant base rate is the existing impression without solid evidences. These metrics

are leveraged to determine the reputation segment from one vehicle about its neighboring
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vehicle. Thereafter, the reputation sengments are sent to the Local Authority (LA) for

reputation update. In the proposed scheme, if the rater vehicle has prior knowledge of the

ratee vehicle, the reputation segment of the ratee is considered highly reliable. However,

the proposed scheme is susceptible to ballot stuffing and bad mouthing attack.

Khelifi et al. [16] proposed a reputation-based blockchain mechanism to secure

information and data forwarding as well as content caching. In the proposed blockchain

framework, a look-up table is maintained to store the reputation of the authentic vehicles

that are used to validate the information. However, the proposed model is vulnerable to an

on-off attack where a malicious vehicle with a higher reputation injects false information

or it purposefully reduces its reputation and thereafter injects correct information which is

neglected using the framework. The proposed mechanism is also vulnerable to an attack

led by the collusion of malicious vehicles.

DrivMan [17] is a trust management framework where the reliability of the data

originating from a registered source is ensured using physical unclonable functions (PUF)

and smart contracts. In the proposed framework, every vehicle registers itself with Drivman

to become the constituent of the network. At the time of registration, the challenge-response

pair (CRP) corresponding to its PUF is recorded by teh operator of the Drivman network.

When amessage from a vehicle is encountered, it verifies if the vehicle belongs to the trusted

list of vehicles. If so, it invokes the PUF challenge response protocol to issue a certificate

to the vehicle. Even though the proposed framework ensures the authenticity of the vehicle

sending the information, it does not verify the content of the message sent. In other words,

DrivMan does not deal with message validation and is not effective if a registered vehicle

reports a false message to the RSUs.

A traffic event validation and trust management framework based on blockchain

has been proposed by Yang et.al. in [18]. In the proposed work, a proof-of-event (PoE)

based consensus mechanism is proposed to obtain a reliable information from the ROI.

The traffic incident from the vehicles near the RSU is leveraged to correctly determine
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the traffic event of the region. Once a reported data meets the required threshold, the PoE

consensus algorithm is started. Each event in the proposed framework is stored as a synopsis

in a hierarchical, geographical and chronological structure to improve the efficiency of the

blockchain. Also the PoEmechanism can identify thmalicious behaviors within the network

and prevent the spread of false traffic warnings. During the PoE strategy, the other nodes of

the blockchain verify the block producer using the evidence of the traffic event description.

A major shortcoming of the proposed framework is that, as it is based on threshold based

validation, choosing an appropriate threshold could be difficult, as a threshold lower that

the majority can lead make it simpler for the malicious vehicles to collude and disrupt the

system.

A decentralizedmulti-agent trust management scheme has been proposed by Guleng

et.al. in [19]. In the proposed scheme, each of the vehicle conducts a direct trust evaluation

about its one-hop neighbors based on it behaviors and other neighbors reports. The neigh-

bors also determine the trust evaluation of its non-one-hop neighbors considering the report

of multiple one-hop neighbors of the analyzed vehicle. For the direct trust calculation a

fuzzy logic based approach is adopted. According to the approach, every vehicle is provided

a cooperative factor, honestness factor and a responsibility factor. The cooperative factor

determines the number of messages forwarded by a given vehicle (cooperative messages),

the honestness factor determines the percentages of true packets that is disseminated by a

vehicle within the network whereas the responsibility factor determines the percentage of

reported messages that is recorded by the trustee node itself. All these factors are combined

to determine the direct trust value of the node. For the indirect trust value, Q-Learning

based approach is adopted where the trust values of all nodes involved in the trust forward-

ing and the number of hops from the trustee nodes are considered in order to achieve an

efficient and accurate trust evaluation. A major drawback of the proposed scheme is that if

the percentage of malicious vehicles within the network is high enough, the accuracy of the

reputation management may degrade due to ballot stuffing and bad mouthing attack.
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2.2. IN-VEHICLE SECURITY

Over the past few years, a significant amount of research has been devoted to the

security of the CAN in general. Most the research is based on designing a prem-emptive

solution.

In Pre-emptive solutions, the main intention is to prevent any attack into the CAN of

a vehicle. Machine/Deep Learning based solutions have been widely explored as potential

pre-emptive solutions by many researchers. For instance, the authors in [20] have analyzed

the detection performance of Pearson correlation, k-means clustering and Hidden Markov

Model in an in-motion vehicle with injected speed and revolutions per minute (RPM)

readings. The authors concluded that the use of fabricated (or simulated) dataset incorrectly

indicates the performance of an intrusion detection technique. The authors in [21][22]

[23][24][25] have proposed different supervised/unsupervised machine learning solutions

for detecting intrusion as a pre-emptive measure within the CAN.

Beside the machine learning models, authors have also analyzed the feasibility of

graph based solutions [26][27] for detection injection attacks. The authors in [26] have

proposed a message sequence based solution to detect an abnormality in pattern between

the messages exchanged between the ECUs and determine the injection attack in vehicle.

However, the proposed solution relies heavily on an assumption that the normal driving

behavior remains constant and any abnormal driving behavior (which may not be injected

but different driving condition) is an attacked state. Furthermore, the solution does not take

into account that the pattern of messages sent within the in-vehicle is a public information,

and can be exploited by a sophisticated attacker. Many researchers [28][29][30] have

leveraged the frequency of arrival of messages in CAN as a potential pre-emptive solution

for message injection or DoS. In the proposed solutions, the authors assume that every

message within the CAN arrive after periodic intervals, that is unknown to the attacker.

Thus, the message injected by an attacker adds to an outlier to the periodic interval, which

helps in detecting an injected message. However, it is to be noted that the behavior of the
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ECUs (or the messages originating from the ECUs) is quite inconsistent with respect to

their arrival time, on the advent of which, the efficacy of the proposed models reduces.

Furthermore, the efficacy of the model reduces if the attacker is able to mimic the original

message frequency. Researchers have also exploited the idea of information theory and

entropy-based mechanism for detecting message injection within the network. Very similar

to the concept of periodicity, the authors [31][32] here assume that the regular CAN

messages have a stable entropy, and a deviation from normal behavior is categorized as an

attack by the authors.

An IP-shuffling based MTD defense mechanism has been introduced by the authors

in [33] where the authors dynamically changes the default IP address of the ECUs to

introduce uncertainty or nullify any reconnaissance of an attacker. However, it is to be

noted that the proposed approach serves the purpose of preserving the confidentiality of

the ECU from the attacker but does not stop the attacker from performing a DoS (noted

by authors also). The authors in [34] has proposed CIST to leverage the use of a fixed

priority ID and a dynamic ID to nullify the reconnaissance of an attacker, and provide

resiliency against replay and impersonation attack. However, the proposed mechanism does

not consider DoS attack as part of their threat model, which breaks the efficacy of the

system if the attacker knows the fixed priority ID and replays it at different communication

cycles. The authors in [35] have constructed a deterministic finite automation (DFA) for

the bit-by-bit arbitration process where a firewall deployed within the system rejects any

fake ID injected by an attacker if it is not contained within the whitelist of the ECU IDs

maintained inside the firewall. However, the efficacy of the proposed DFA fails if an attacker

gathers information through CAN sniffing to reverse engineer and gather some ECU IDs

from the whitelist as the IDs remain fixed. Such a captured ID when replayed in separate

communication cycle, will be considered as an authentic state by the proposed DFA.
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To summarize, it can be observed that most of the preemption mechanism can be

used effectively to deny message injection within the network. However, many solutions

proposed are more content-based, meaning that it relies on the content of the message to

detect if the message is an injected message or not. Such solutions are considered reactive

mechanism, which may serve the purpose of detecting an injection attack. However, such

solutions does not guarantee resiliency against DoS attack. This is because for injecting

a message, as per the CAN specification, the attacker has to win the arbitration among

the contending ECUs in a communication cycle. Thus, if the attacker is able to inject the

payload, it means that it has successfullywon the arbitration and prevented other authenticate

ECUs from sending information during that communication cycle.
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ABSTRACT

Vehicular Ad hocNetworks (VANETs) facilitate vehicles towirelessly communicate

with neighboring vehicles as well as with roadside units (RSUs). However, an attacker can

inject inaccurate information within the network that can cause various security and privacy

threats, and also disrupt the normal functioning of any traffic monitoring system. Thus,

we propose an edge cloud-based privacy-preserving secured decision making model that

employs a heuristic based on vehicular data such asGPS location and velocity to authenticate

traffic-related information from the ROI under different traffic scenarios. The effectiveness

of the proposedmodel has been validated usingVENTOS, SUMO, andOmnet++ simulators,

and also, by using a simulated cloud environment. We compare our proposed model to the

existing state-of-the-art models under different attack scenarios. We show that our model is

effective and capable of filtering data from malicious vehicles, and provide accurate traffic

information under the influence of at least one non-malicious vehicle.
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1. INTRODUCTION

Vehicular Ad hoc Networks (VANETs) allowwireless communication from vehicle-

to-vehicle (V2V), and vehicle-to-infrastructure (V2I) such as with road side units (RSU)

for better traffic management. Using the dedicated short range communication (DSRC)

protocol, every vehicle broadcasts information about traffic events such as accidents, traffic

congestion, and traffic violations to nearby vehicles as well as road side infrastructures.

However, the presence of malicious vehicles at the region of interest (ROI) can negatively

influence the traffic monitoring of the region. Bluetooth-based traffic monitoring systems

such as Clearview Intelligence’s M830 leverage the unique MAC address of Bluetooth

devices inside the car and their entry, exit times form the zones to determine the traffic

flow. However, the malicious vehicles can perform Denial of Service attack by switching

off their devices, on the event of which the device records fewer vehicles within the region.

Also, a naive way of thinking to solve the problem is to collect location and velocity

information from vehicles and discard inconsistent information with the RSU’s location

and speed. However, such a solution will not be effective where the malicious vehicles send

incorrect velocity information to the RSU using V2I communication. A comprehensive

review of the solutions to preserve the privacy, authenticity and security of the messages

disseminated in VANET has been provided in [1]. Existing strategies such as the peer

authentication model [2], threshold based or majority voting [3], and the reputation-based

system [4] provide traffic monitoring by assuming the concept of adversarial parsimony

[5] but it becomes challenging to validate the vehicular responses when there are majority

of malicious vehicles. The majority of the vehicles can be compromised when a group

of malicious vehicles forming the road network performs a collusion attack. Also, in the

case of a small network, an attack can be propagated among the majority of vehicles when

a compromised vehicle communicates using V2V communication to its nearby vehicles,

thus, compromising them.
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The remote hacking of a Jeep Cherokee in 2015 [6] highlights the feasibility of such

remote attacks in vehicles. Additionally, the breach in the privacy of individual vehicle

information can lead to unauthorized tracking of officials as well as vehicles identity theft.

The purpose of an attacker is to profile a driver’s habits based on GPS location, velocity,

acceleration, and the unique ID of the vehicle. Therefore, it is necessary to ensure the

anonymity of the vehicles and unlinkability of the shared information to their originating

vehicles. Anonymity ensures that every vehicle remains anonymous while exchanging

information whereas, unlinkability ensures the inability to trace the identity of a vehicle

based on the information exchanged. Furthermore, such a system should ensure conditional

privacy, meaning that the identity of the attacker can be revealed in case of a conflict.

The United States Department of Transport (USDOT) introduced Security Creden-

tial Management System (SCMS) [7] that leverages V2V and V2I communication among

vehicles, and public key infrastructure (PKI) to ensure message integrity, authenticity, pri-

vacy, and interoperability. Due to the lack of misbehavior detection algorithm, if authentic

vehicles misbehave and provide inaccurate traffic-related information from the ROI, there

is no algorithm in place to validate the information and filter the malicious vehicles and

their responses from the network, and thus, it can obtain inaccurate traffic information. This

problem is elevated even more if the malicious vehicles at the ROI form the majority and

try to disrupt the traffic monitoring system. To address these shortcomings, we design a

global misbehavior detection algorithm and propose a secure and privacy-preserving deci-

sion making model by leveraging the PKI and an edge cloud-based infrastructure to validate

traffic-related information from the ROI and filter malicious vehicles, even if they are in

majority (like under collaborative or DDoS attack), within the ROI. Each edge server is

associated with a different region and is connected to a centralized server. By leveraging the

concept of the edge server, the decision making model is brought closer to the concerned

ROI, which reduces the latency in the decision and reduces the bottleneck on the centralized

server. The main contributions of the proposed work:
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• Develop a privacy-preserving and secure heuristic based solution that overcomes the

shortcomings of the current state-of-the-art models and validates the traffic-related

information from the ROI using the recorded GPS location of each vehicle, the

vehicles’ velocity and encrypted neighboring vehicles’ IDs under the influence of at

least one non-malicious vehicle within the ROI. It is unlike the assumption of the

majority of non-malicious vehicles considered in other state-of-the-art models. We

also consider an event recorded by an individual vehicle because the velocity of the

vehicle may not always reflect the event at that ROI (such as when a vehicle is moving

with a low velocity along the service lane in a non-congested road).

• Design a dynamic data structure called the Decision Similarity Graph based on the

vehicle location, and leverage the Point of Conflict concept to filter malicious vehicles

within the ROI using the conflicting event recorded by any two neighboring vehicles.

• We show that the model effectively validates the traffic-related information and filters

the malicious vehicles and their responses from the network. The effectiveness of

the model is compared against other existing state-of-the-art models under different

scenarios using the simulators VENTOS, SUMO, and Omnet++.

2. RELATED WORK

2.1. MAJORITY VOTING MODEL OR THRESHOLD BASED MODEL

In a weighted majority voting [8] model, the majority of the vehicles are considered

reliable and the message generated by a vehicle closer to the event has a higher weight than

the vehicle at a distance. However, this may result in an inaccurate data reporting if the

vehicle closer to the event is malicious or majority of the vehicles are malicious. [9][3]

have proposed threshold based data authentication schemes in which a vehicle considers

a message as credible if it has been authenticated by a threshold number of vehicles.

However, they are highly vulnerable to ballot stuffing, bad mouthing, collusion, sybil attack
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and in situation when the number of malicious or compromised vehicles authenticating an

incorrect message is greater than or equal to the threshold. In privacy-preserving traffic

monitoring system [10], the vehicles share their speed information perturbed with noise

with the nearby vehicles, and the security of the information is ensured using homomorphic

cryptosystem. The traffic scenario of the region is decided by computing the average of the

speed information shared by all the vehicles in the region. However, the model inherently

assumes that the vehicle does not tamper its speed information to disrupt the traffic scenario

of the region.

2.2. REPUTATION BASED MODEL

[4] has proposed a reputation based announcement scheme in which the credibility

of the message generated by a vehicle depends on the reputation score of the vehicle which

is obtained by the reliability of its broadcast messages in the past. However, the model is

susceptible to on-off attack, where a vehicle with a high prior reputation score performs

maliciously or is compromised by an attacker.

2.3. PEER AUTHENTICATION MODEL

A blockchain-based reputation system [2] uses the credibility of the messages gen-

erated by a vehicle in determining the prior reputation of the vehicle, and by ratings from

the nearby vehicles which has also been used in [11]. [12] proposed a peer authentication

based trust management model which uses trust scores. However, it is highly vulnerable

to ballot stuffing and bad-mouthing attack, in which the ratings of an individual vehicle

can be influenced by nearby vehicles. The proposed model also provides incorrect traffic

information when the majority of the vehicles are malicious or are compromised by an

attacker.
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Our proposed model differs from the above mentioned models/schemes in the fol-

lowing aspects: 1) involves no peer authentication, majority voting, or threshold concept,

2) can provide accurate information even when majority of the vehicles are malicious or

compromised.

3. PRELIMINARIES, THREAT MODEL AND ASSUMPTIONS

3.1. PRELIMINARIES

• Edge Server: A trusted entity associated with a small region, such as a down-town in

a city, which monitors accurately traffic events like accident or congestion based on

the proposed heuristic, and filters malicious data and vehicles. It scales the proposed

model for large VANETs using the distributed cloud concept.

• Centralized Server: Since traffic congestion in a region has a cascading effect on

other surrounding regions, the decisions from different edge servers deployed in

small regions are analyzed by the trusted centralized server (of a city, county or a

state) to generate an overview of a traffic scenario for a large region.

• Decision SimilarityGraph (DSG): TheDecision SimilarityGraph (DSG), represented

in Figure 1, is utilized by the edge server to filter malicious vehicles within the ROI,

which is explained in section IV(c). DSG is an ordered pair of the form:

𝐷𝑆𝐺 =< 𝑉, 𝐸 >

where V=<V1, V2, V3,..., Vn> represent the n vehicles from which the responses

are received and E=<E1, E2, E3,..., En> are undirected edges that represent the

neighborhood between any two vehicles.
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Figure 1. Decision Similarity Graph

• AES encryption algorithm [13]: Every vehicle, Vid, at the ROI uses the AES 128

bit symmetric encryption algorithm to generate a unique key, Keyi, which is used to

encrypt the vehicular data such as ID, GPS location, and velocity before sending the

data to the edge server via the RSU. Since the AES 128 bit algorithm is faster than

the AES 192/256 bit key algorithms [14], and still provide enough desired security,

the proposed model reduces the latency due to encryption.

• Schmidt-Samoa cryptosystem [15]: Every edge server using the Schmidt-Samoa

cryptosystem generates a public key, Gpublic, and its associated private key, Gprivate,

which is utilized by the vehicles within the ROI for a secure key,Keyi, exchange as well

as for the privacy preserved Vid broadcast to its neighboring vehicles. Edge servers

associatedwith different regions generate their ownGpublic andGprivate keys. We prefer

[15] over RSA [16] because of its simplistic trapdoor one-way permutation. Also,

unlike Rabin [17], this algorithm does not produce any ambiguity in the decryption

at the cost of the encryption speed. The Schmidt-Samoa cryptosystem is preferred

over the elliptic-curve cryptosystem [18],[19].
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• Elgamal Digital Signature Scheme (EGDSS) [20]: Every vehicle, Vid, before entering

into a VANET communication, is registered with the trusted centralized server using

a private key, veh_privatei, and its associated public key, veh_publici, which are

generated using the EGDSS algorithm. The veh_privatei is loaded onto the on-board-

unit(OBU) of Vid which is used to authenticate its identity to the edge server. Instead

of EGDSS, the digital signature algorithm (DSA) [21] could also be used without

affecting the model’s effectiveness.

3.2. THREAT MODEL

Malicious vehicles (1) can manipulate any recorded event (including velocity and

recorded GPS location) to disrupt the decision making process, (2) may try to impersonate

some other vehicle by reporting some other Vid, and can also send manipulated traffic-

related information under different registered Vids, (3) may intercept a data packet of any

non-malicious vehicle, modify the information, and send it to the RSU for decision making,

(4) may not send its vehicular data to the RSU to degrade the traffic monitoring system.

3.3. ASSUMPTIONS

We assume that the non-malicious vehicles always send requested information to

the edge server via the trusted RSU. Every challenge and response packet is sent and

received by the RSU as well as by the vehicles. If a packet originating from a vehicle is

dropped due to a network problem or channel congestion, it is neglected by the proposed

model. However, for the effectiveness of the proposed model, the edge server must obtain

at least one non-malicious response or one conflicting neighbor of any malicious vehicle to

validate the traffic-related information from the ROI if it exists. Every vehicle has a unique

ID (allocated by the department of motor vehicles) of uniform length known by the edge

servers. The recorded event is either congested or non-congested, defined based on the

velocity of the vehicles within the ROI in the proposed model (section IV c). The proposed
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Figure 2. Proposed Model

model is not appropriate for real-time decision making such as turning the steering wheel

or increasing the acceleration. It is suitable in scenarios where the requesting vehicles want

to enter the ROI within approximately say 5-10 minutes from the time of the request. In the

proposed model, the RSUs are assumed to be trusted and densely populated within the ROI

(such as in an urban region). The malicious vehicles can only collude with other vehicles

within its transmission range.

4. OUR PROPOSED MODEL

Figure 3 represents an overview of the proposed model shown in Figure 2. It uses

a privacy-preserving heuristic that leverages the GPS location and velocity of the reporting

vehicle as well as encrypted neighboring Vid of the reporting vehicle, i.e., vehicles that

are within its transmission range to validate traffic-related information at the ROI under
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Figure 3. Overview of the proposed model

the presence of at least one non-malicious vehicle. A vehicle requesting traffic-related

information from an ROI sends a request to the centralized server, which is relayed to the

associated edge server via a wireless communication. From one edge server, the requesting

vehicle can request the traffic condition at another ROI under a different edge server. The

centralized server is directly associated with all edge servers.

4.1. KEY GENERATION AND REQUEST DISSIPATION

The edge server associated with a ROI generates Gpublic and its associated Gprivate

using equations 1 and 2, respectively, as defined by the Schmidt-Samoa cryptosystem.

𝐺public = 𝑝
2 ∗ 𝑞 (1)

𝐺private = 𝐺public
−1 mod (𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1)) (2)

where p and q are 2 large prime numbers chosen by the edge server. Furthermore, the edge

server broadcasts Gpublic within the ROI via the RSUs.
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4.2. ENCRYPTED ID BROADCAST AND RESPONSE ACQUISITION

In the proposed heuristic, every vehicle needs to know the encrypted Vids of its

neighboring vehicles only when generating the data_packet. This requirement has been

justified later in this section. To preserve the privacy in the proposed model, after receiving

the Gpublic, the vehicle encrypts its Vid using Gpublic and generates enc_id, which is defined

as the encrypted Vid as discussed in Algorithm 1 (lines 6-9), and broadcasts it to its nearby

vehicles.

Algorithm 1 Generate enc_id and 𝜏 for a vehicle
1: 𝑘𝑒𝑦[0 − 9, 𝐴 − 𝑍, 𝑎 − 𝑧] = [00 − 09, 10 − 35, 46 − 71]
2: Keyi← Key of a vehicle generated using AES 128
3: 𝐾𝑒𝑦_𝑚← Stores integer of Keyi using key[] of step 1
4: count← length_of(Vid) - 1
5: Key_length← length_of(Keyi) - 1
6: for i in range of 0 − 𝑙𝑒𝑛𝑔𝑡ℎ_𝑜 𝑓 (𝑉 id) − 1 do
7: 𝑚𝑠𝑔 = 𝑚𝑠𝑔 + (100count∗ascii_of(Vid.charAt(i))
8: count- -
9: enc_id← msgGpublic mod (Gpublic)
10: for i in range of 0 − 𝑙𝑒𝑛𝑔𝑡ℎ_𝑜 𝑓 (𝐾𝑒𝑦i) do
11: 𝐾𝑒𝑦𝑚 = 𝐾𝑒𝑦𝑚 + (100Key_length∗key[Keyi.charAt(i)]
12: Key_length- -
13: 𝜏← KeymGpublic mod (Gpublic)
14: return enc_id, 𝜏

Avehicle having received threshold number, 𝜂, of enc_ids fromneighboring vehicles

generates data_packet that consists of the vehicle’s information. The significance of 𝜂 in

the proposed model is to model the size of the data_packet in such a way that it consumes

lesser bandwidth to send the vehicular information by the RSU.

𝑑𝑎𝑡𝑎_𝑝𝑎𝑐𝑘𝑒𝑡 =< 𝑉 id, 𝑑𝑠(𝑉 id), 𝑒𝑣𝑒𝑛𝑡, 𝑣𝑒𝑙 id, 𝐺𝑃𝑆id, 𝑒𝑛𝑐_𝑖𝑑𝑠, 𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 >
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where ds(Vid) is defined as Vid digitally signed with veh_privatei for authenticating itself,

enc_ids refers to the encrypted ids of the neighboring 𝜂 vehicles, velid and GPSid are

the velocity and GPS location of the vehicle respectively at the time of generating the

data_packet, while the event field indicates the event recorded by the Vid. We do not

preexamine the recorded GPS location of the vehicles and the proposed model does not deal

with the precision of the GPS location of a Vid, as the GPS location recorded is utilized to

filter malicious vehicles in the heuristic described later. The trajectory field describes the

trajectory of the vehicle to its destination that is leveraged in section D.Thereafter, every

Vid at the ROI generates its Keyi and generates encrypted_data_packet consisting of every

information that needs to be sent to the edge server in the encrypted form.

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎_𝑝𝑎𝑐𝑘𝑒𝑡 =< 𝜏, 𝑑𝑎𝑡𝑎_𝑝𝑎𝑐𝑘𝑒𝑡‘ >

where 𝜏 is obtained by encrypting Keyi of a Vid with Gpublic (Algorithm 1 lines 10-13) and

data_packet‘ is obtained by encrypting data_packetwithKeyi. The purpose of this step is to

preserve the privacy and integrity of Keyi and the data_packet. This step also facilitates the

secure key exchange algorithm. Every Vid broadcasts the encrypted_data_packet received

by the nearby RSU. The RSU waits for 𝜎 seconds or 𝜂 number of encrypted_data_packets

before sending them to the edge server. The waiting time, 𝜎, ensures that the RSU

constrains the time of the proposed model in case the 𝜂 packets take more time, especially

in situations where the traffic flow is low. On the other hand, if the traffic flow is high,

within 𝜎 time, the RSU can receive a large number of encrypted_data_packets which

can significantly increase the length of the aggregated packet under which it appends 𝜂

encrypted_data_packets obtained before 𝜎 seconds. Thus, using this trade-off, the RSU

generates the aggregate_packet and sends it to the edge server.

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑝𝑎𝑐𝑘𝑒𝑡 =< 𝑟𝑠𝑢_𝑖𝑑, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎_𝑝𝑎𝑐𝑘𝑒𝑡𝑠 >



30

where rsu_id and location are respectively the unique id and location of the RSU sending

the packets to the edge.

4.3. POINT OF CONFLICT DETECTION

The edge server, on receiving the aggregate_packets from the RSUs, extracts the

rsu_id and the location of the RSU. Thereafter, it extracts the encrypted_data_packet

from the aggregate_packets received. Furthermore, from the encrypted_data_packet, the

symmetric key, Keyi, for every vehicle is obtained by decrypting 𝜏 with Gprivate using

Algorithm 2 (lines 4-5). Finally, the obtained Keyi of a vehicle is further used to obtain

data_packet from data_packet’ (Algorithm2 line 6). Thus, the response of a vehicle remains

private from the RSU as well as from the nearby vehicles as Gprivate is only possessed by

the edge server. From every data_packet, the Vid is authenticated by the edge server by

comparing ds(Vid) with the Vid and its associated veh_publici, which it receives from the

centralized server. The purpose of this step is to filter malicious vehicles that are performing

any masquerading attack or identity theft.

At first, the GPS location of a Vid is compared with the location of the RSU. If

the GPS location is out of the transmission range of the RSU that records its data, this

implies that the vehicle is manipulating its GPS location and it is filtered out as malicious.

If not, the neighbors of a Vid are obtained by the edge server using Algorithm 2 (lines

8-9). Based on the neighbors extracted, the edge server constructs a DSG where every

Vid forms a vertex of the DSG, and it has an undirected edge to its neighboring Vids. The

undirected DSG is used to obtain the Point of Conflict (POC), defined as a situation where

two neighboring vehicles, say Vi and Vj, report a conflicting event like congestion and

no-congestion, respectively within the same ROI (Algorithm 2 lines 15-17) and under the

same RSU. The initial detection for POC is searched within the neighbors using Algorithm
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2 (lines 12-14). If no POC is detected after the initial detection, a POC can still exist

among the vehicles within the same RSU (Algorithm 2 (lines 15-18)) if a malicious Vid

intentionally chooses only malicious neighboring Vids as analyzed in Property 1.

Consider Veh_listm = {𝑉m1, 𝑉m2, 𝑉m3, ...𝑉mk} to be a finite set of malicious Vid,

denoted by Vmi, whereas Veh_listnm = {𝑉nm1, 𝑉nm2, 𝑉nm3, ...𝑉nmp} is a finite set of non-

malicious Vid, denoted by Vnmi. The cardinality of a set S is denoted by |𝑆 |. Γ(𝑉mi) be a

set of Vmjs present in the neighbor list of a Vmi and Veh_listm ∩ Veh_listnm = ∅, i.e, a Vid

cannot be malicious and non-malicious at the same time.

Property 1. Given a Vm
i, it can have only Vm

js in its neighbor list if 𝜂 < |𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m |.

Proof. For 𝜂 < |𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m |, consider the value of 𝜂 to be |𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m |-1 , i.e, the maximum

allowable 𝜂 under the constraint.

For a given Vmi, Vmi ∪ Γ(𝑉mi) = 𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m,

when the value of 𝜂 = |𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m | − 1, meaning that the neighbor list of a Vmi can include

all other Vmj to avoid the detection of POC.

Vmi ∪ Γ(𝑉mi) ⊂ 𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m,

when the value of 𝜂 < |𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m | − 1, meaning that the neighbor list of a Vmi can include

some Vmj to avoid the detection of POC.

For 𝜂 > |𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m |, consider the value of 𝜂 to be |𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m |+1 , i.e, the minimum

allowable 𝜂 under the constraint.

∴ , 𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m ⊂ 𝑉mi ∪ Γ(𝑉mi)

This means a Vmi will have a Vnmi in its neighbor list, under which the condition given

below holds.

𝑉m
i ∪ Γ(𝑉mi) ⊂ 𝑉𝑒ℎ_𝑙𝑖𝑠𝑡m ∪𝑉𝑒ℎ_𝑙𝑖𝑠𝑡nm �

Thereafter, if no POC is detected at all, it considers the similar event recorded by all

the vehicles to be the event of the ROI. However, if a POC is detected, the edge performs

initial scrutiny based on the information obtained from the vehicles in conflict as described
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Algorithm 2 Obtaining data_packet and Detecting POC
1: 𝑘𝑒𝑦[0 − 9, 𝐴 − 𝑍, 𝑎 − 𝑧] = [00 − 09, 10 − 35, 46 − 71]
2: 𝑑𝑒𝑐_𝑖𝑑← decrypted enc_id, POC_detected← false
3: neighbor_of_Vi← neighboring vehicle of a Vid
4: for every 𝜏 received do
5: Key1i← key[𝜏Gprivate mod (p*q)]
6: data_packet← decrypt 𝑑𝑎𝑡𝑎_𝑝𝑎𝑐𝑘𝑒𝑡‘ with Key1i
7: for every enc_id in data_packet do
8: 𝑑𝑒𝑐_𝑖𝑑 ← enc_idGprivate𝑚𝑜𝑑 (𝑝 ∗ 𝑞)
9: neighbor_of_Vi← ascii_characters_of(dec_id)
10: for every data_packet obtained from Vi do
11: for every Vj in neighbor_of_Vi do
12: if Vi.event ≠ Vj.event then
13: POC_detected = true, CV1← Vi, CV2← Vj
14: go to Line 19
15: for any 2 vehicles, Vk and Vm under same rsuid do
16: if Vk.event ≠ Vm.event then
17: POC_detected = true, CV1← Vk, CV2← Vm
18: go to Line 19
19: return POC_detected, CV1, CV2

below. During the initial scrutiny, the approximate velocity of a vehicle in a congested

road is considered velcongested, while the velocity in a non-congested road is considered

veln-congested, with an allowable difference of 𝜖 mph to accommodate any minor variations.

1. If event recorded by a vehicle, say V1, is congested, and its corresponding vel1 is

greater than velcongested+𝜖 , then V1 is considered malicious, and the Vid in conflict

with V1 is considered non-malicious.

2. If event recorded by a vehicle, say V1, is non-congested, and its corresponding vel1

is less than veln-congested−𝜖 , then V1 is considered malicious, while the Vid in conflict

with V1 is considered non-malicious.

Subsequently, the malicious vehicles are filtered from the network using Algorithm 4

(lines 10-12), and the decision is made based on the non-malicious vehicles. However,

if no decision is made after initial scrutiny, the server generates a challenge_pkt obtained
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using Algorithm 3 (line 17), consisting of Vids in conflict, and the RSUs under which the

conflicting Vids are expected to appear after timeid is calculated based on the velids, the

trajectory of the vehicle and the GPSids of the Vids. The purpose of the challenge_pkt is to

authenticate the velid and GPSid recorded by the vehicle and to allow the Vids to prove its

event recorded as it is assumed to travel with almost the same velid.

𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒_𝑝𝑘𝑡 =< 𝐶𝑉1, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑢1, 𝑡𝑖𝑚𝑒1, 𝐶𝑉2, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑢2, 𝑡𝑖𝑚𝑒2 >

Algorithm 3 Generating the 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒_𝑝𝑎𝑐𝑘𝑒𝑡
1: Initialize time 𝑡, RSUList← list of every rsu_id
2: for every CVi do
3: calculated_distance← 𝑡 ∗ 𝑣𝑒𝑙id
4: expected_locationi← calculated_distance + GPSid
5: for every 𝑟𝑠𝑢i ∈ 𝑅𝑆𝑈𝐿𝑖𝑠𝑡 in 𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 do
6: if expected_locationi is within rsui.location then
7: if CVi.event = "congested" then
8: 𝑡𝑖𝑚𝑒i = 𝑡, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑢i = 𝑟𝑠𝑢i
9: go to Line 17
10: else
11: 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑢i = 𝑟𝑠𝑢i
12: for every rsuj beyond rsui do
13: 𝑡𝑖𝑚𝑒i = 𝑡, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑢i = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑟𝑠𝑢i + 𝑟𝑠𝑢j
14: go to Line 17
15: else
16: 𝑡 + +
17: challenge_packet = CVi+timei+expected_rsui/s
18: return challenge_packet

Based on the contents of the challenge_pkts, the expected_rsu1 should obtain a

response from CV1, i.e. the ID of one of the vehicles in conflict, after time, time1, while

the expected_rsu2 should obtain a response from CV2, i.e. the ID of the other vehicle in

conflict, after time, time2. To handle the case of overspeeding by a CVi recording "non-

congested", every RSU along the direction of CVi, obtained from its velocity, dissipates
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the challenge_pkt (Algorithm 3 lines 12-14). This ensures that even if a CVi passed by

expected_rsui before timei, it still gets the challenge packet, as over speeding is only possible

in a non-congested road.

4.4. CHALLENGE PACKET DISSEMINATION AND RESPONSE

On receiving a challenge_pkt from the edge, an RSU generates a crypto_challenge

packet and broadcasts it after timei. The crypto_challenge is generated based on the CVi

assigned to it, and its purpose is to verify the presence of a vehicle within a specific region

after timei seconds. This is leveraged in the proposed heuristic to filter themalicious vehicles

within the network. Every vehicle at the ROI sends a crypto_response, defined as the unique

response sent by Vid in response to the crypto_challenge packet. The crypto_challenge

packet is obtained by using bitwise manipulation (left shift operation) over the XOR cipher

technique. TheXOR cipher technique is computationally inexpensive and easy to implement.

Furthermore, since every RSU dissipates the crypto_challenge packet exactly once in the

proposed model, it is less susceptible to frequency analysis attacks and also man-in-the-

middle attacks. The bitwise manipulation is to enhance the security of the crypto_challenge

after the XOR operation.

𝑐𝑟𝑦𝑝𝑡𝑜_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 = 𝐶𝑉 i ⊕ (𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑤𝑜𝑟𝑑 << 𝑙𝑒 𝑓 𝑡num)

𝑙𝑒 𝑓 𝑡num ∈ [1, length of testing_word -1]

where testing_word is any arbitrary word chosen by a RSU having the same length as its

assigned CVi and 𝑙𝑒 𝑓 𝑡num refers to the number of left shift operations performed, which is

chosen arbitrarily by the RSU.
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Thereafter, upon receiving the crypto_challenge packet from the nearby RSU, ev-

ery vehicle generates the crypto_response packet and broadcasts it. The purpose of the

crypto_response packet is to validate the presence of CVi at a specific location.

𝑐𝑟𝑦𝑝𝑡𝑜_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑉 id ⊕ 𝑐𝑟𝑦𝑝𝑡𝑜_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒

The expected_rsuis waits for additional 𝜎 seconds to receive the crypto_response

packets from the Vids. This is done to make reparation for a minor change in velCVi that may

occur due to any trivial circumstance that does not affect the event at the ROI. However,

it is assumed that velCVi changes by a factor of atmost 𝜖 that still adheres to the decision

recorded by CVi. Thereafter, the RSU compares the crypto_response received from every

Vids with the testing_word. The testing_word only matches with a specific CVi. The

associative and commutative nature of the XOR operation facilitates the effective analysis

of the crypto_responses obtained.

Finally, the expected_rsuis generates the vehicle_search packet, which is sent to

the edge server. The vehicle_search packets report whether a CVi was present within the

transmission range of expected_rsui within 𝑡𝑖𝑚𝑒i + 𝜎.

𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑒𝑎𝑟𝑐ℎ =< 𝑟𝑠𝑢id, 𝐶𝑉 i, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 >

where response can be received indicating that a CVi is present within the range of

expected_rsui within 𝑡𝑖𝑚𝑒i +𝜎, or not received which indicates that the vehicle was absent.

4.5. DECISION MAKING BY EDGE SERVER

The edge server, on receiving the vehicle_search packets from expected_rsuis, makes

a decision about traffic conditions and filters malicious vehicles based on the heuristic

depicted in Figure 4. According to the proposed heuristic:
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• If crypto_response has been received from one CVi and is not received from the

conflicting CVi, then the CVi from which the crypto_response has been received is

considered non-malicious and the conflicting CVi is considered malicious. Conse-

quently, all the malicious vehicles with similar events recorded as the malicious CVi

are filtered using Algorithm 4 (lines 10-12). The decision is made based on the

decision of the non-malicious CVi.

• If crypto_response has been received by both CVis, then the edge server assumes that

the CVi providing crypto_response with low veli intentionally reduced its velocity

to prove itself non-malicious. Under such a scenario, the decision made is "non-

congested". Thereafter, every malicious vehicle is filtered using Algorithm 4 (lines

10-12).

Algorithm 4 Filtering using DSG
1: CVi← malicious vehicle detected, stack.push(CVi)
2: mal_list← malicious Vid list, mal_list.append(CVi)
3: nonmal_list← non malicious Vid list
4: filter[Vids] = false, filter[CVi] = true
5: while stack not empty do
6: CVi=stack.pop()
7: for every Vid in DSG do
8: if hasEdge( Vid , CVi) and filter[Vid]==false then
9: stack.push(Vid)
10: if CVi.event==Vid.event then
11: if CVi== malicious then
12: mal_list.append(Vid)
13: else
14: nonmal_list.append(Vid)
15: else
16: nonmal_list.append(Vid)
17: return mal_list, nonmal_list
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Figure 4. Decision Tree for analysis

5. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments were conducted under both congested and non-congested road con-

ditions. The road network was simulated using SUMO [22], while the communication

network was simulated using Omnet++ and VENTOS simulators. The centralized server

(cloud) and the edge server were simulated in separate workstations. In our simulation, we

assumed roads that have a speed limit between 70 mph and 40 mph. In other words, the

roads where vehicles travel below 35 mph are assumed to be congested whereas the roads

where vehicles travel within the speed limit are non-congested. Based on the experiments

performed under the parameters in Table 1, it was observed that with the value of𝜎 that were

less than 10 seconds, the proposed model obtained the packets as desired. The responses of

any of the CVi did not reach the nearby RSU within time with any values of 𝜎 lesser than

10 seconds. This is because on many occasions the channel remained busy transferring

packets and because of this, the crypto_response had to wait in the pipeline as the simulator

prevents any packet collision in the channel. The value of 𝜖 in the proposed model can
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be decided based on where it is deployed and can be adjusted without any change in the

performance of the model. However, for the experimentation, we considered the value to

be 5 mph.

Table 1. Simulation Environment and Parameters

Consecutive RSU distance 1000 ∼ 2500 meters
RSU interference distance 510.5 meters(default simulator value)

Vehicles at 𝑅𝑂𝐼 100
Value of 𝜎 10

Value of threshold 3 vehicle data
Transmission Power 20mW (default simulator value)

Vehicle transmission range 510.5 meters (default simulator value)
Communication Protocol IEEE 802.11p (default simulator value)
Communication channel Dedicated Short Range Communication (default simulator value)

The proposed model has been compared against various other models using Detec-

tion_Accuracy as represented in Figure 5. Detection_Accuracy is a metric that is used to

detect accurate road conditions under a varied percentage of malicious vehicles.

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑟𝑜𝑎𝑑_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

%_𝑜 𝑓 _𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

where Detection_Accuracy ∈ {1,0,0.5}

A value of 1 indicates that the accurate road condition and the malicious vehicles

are detected while 0 indicates neither the road condition nor the malicious vehicles could

be detected. A value of 0.5 indicates that the decision making is conditional, and it is either

dependent on the prior reputation of vehicles (in the case of a reputation based system), the

distribution of malicious vehicles (in the case of a peer authentication system) or has an

equal percentage of malicious as well as non-malicious vehicles (in the case of a majority

voting approach).

From Figure 5, it can be seen that the majority voting model and the peer authen-

tication model have higher Detection_Accuracy when the majority of the vehicles within

the ROI are non-malicious (greater than 50%). Under such cases, the decision of the non-
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malicious vehicles that are in the majority dominates the decision of the malicious vehicles.

However, it becomes conditional when the number of malicious and non-malicious vehicles

within the ROI are equal, as the non-malicious vehicles do not form amajority, and hence no

proper decision could be made. Thereafter, as the number of malicious vehicles increases

beyond 50%, it is seen that the Detection_Accuracy decreases as the malicious vehicles

form the majority under such scenarios. This influences the decision making process within

the ROI. The Detection_Accuracy of the Reputation_Based model is always 0.5. This is

because the decision is highly based on the reputation of the vehicles within the ROI. It

is possible to have less malicious vehicles with a higher prior reputation (for instance, 5

malicious vehicles out of 100 vehicles with high rating) to dominate the majority of non-

malicious vehicles with no prior reputation (for instance, 95 non-malicious vehicles out of

100 vehicles with no reputation). Thus, under such a system, the decision making model

remains conditional.
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Figure 5. Comparison of Detection Accuracy of various models

It is also to be noted that the number of broadcasts required in the proposed model

by the vehicles is comparatively less compared to the peer authentication model, as shown

in Figure 6. Furthermore, we see that the peer authentication model has an equal number of

broadcasts per vehicle compared to the Proposed Model Lower, especiallyduring the initial

scrutiny phase when the threshold ≤ 2. However, the number of broadcasts required for
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decision making in the peer authentication model becomes equal to the Proposed Model

Upper if the challenge_response packet is generated with 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 3, and it exceeds

the Proposed Model Upper when the threshold becomes > 3. This is because every

vehicle has to authenticate threshold number of vehicles in the peer authentication model,

which increases with the increase in threshold and with the number of vehicles at the

ROI. The value of threshold represents the number of neighboring vehicles that needs to be

authenticated by a vehicle as well as the number of vehicular response sent by the RSU to the

edge in one time period. Since the proposed model involves no peer authentication, every

vehicle within the ROI has to broadcast twice during the initial scrutiny phase, and thrice

if challenge_response is generated. However, the proposed model has more broadcast

messages per vehicle compared to the majority voting and the reputation-based model.

This is because the majority voting model and the reputation-based model involve no V2V

communication, and every vehicle has to broadcast its decision only once. Furthermore,

we formulate the total broadcast required for the various models shown in Table 2, where n

represents the number of vehicles within the ROI and nrsu represents the number of RSUs

deployed within the ROI.

In the case of majority voting and reputation-based models, every vehicle within

the ROI sends their response to the RSU that has a total of n transmissions. Thereafter, the

RSU sends threshold number of vehicular responses to the edge server at one time. Hence,

all the packets are sent after 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

times. Therefore, the total number of transmissions

required is n+ 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

.

In the peer authentication model, every vehicle at the ROI authenticates thresh-

old number of vehicles. Therefore, the number of authentication transmissions are 𝑛 ∗

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Thereafter, the RSU sends all the packets to the edge server after 𝑛∗𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

times, i.e., n times. Thus, the total number of transmissions required in the peer authenti-

cation model is (𝑛 ∗ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) + 𝑛, which is equivalent to 𝑛 ∗ (1 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑).
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Figure 6. Broadcast comparison for 100 vehicles with varying threshold

In our proposed model, every vehicle sends its enc_id to its neighbor and there-

after, it sends the encrypted_packet to the RSU. Therefore, for every vehicle, it involves 2

transmissions. For n vehicles, the total transmissions are 2 ∗ 𝑛. The transmissions required

by RSUs to send n packets to the edge server is 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

. Thereafter, the initial scrutiny

is performed. If the decision is made after initial scrutiny using the proposed model, we

obtain the lower bound, Proposed Lower, on the transmissions, which is (2 ∗ 𝑛) + 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

.

However, when the challenge_response phase is executed, the challenge packet is sent to the

nrsu RSUs by the edge server in one transmission, which is dissipated within the ROI. nrsu

RSUs broadcast the crypto_challenge packet and receive the crypto_response packets from

n vehicles. Therefore, the total transmissions are 𝑛 + 𝑛rsu + 1. Finally, nrsu RSUs send their

response to the edge server in nrsu transmissions. Under the challenge_response phase, we

obtain the upper bound on the transmissions of the proposed model, Proposed Upper, which

is 2 ∗ 𝑛 + 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

+ 2 ∗ 𝑛rsu + 𝑛 + 1. Based on the formulation, we find from Figure 7 that

the total energy required for the transmission by the majority voting and reputation-based

models are the least compared to the proposed model and the peer authentication model.

This is because they involve no V2V communication. Therefore, with fewer number of

broadcast, the transmission energy used is also less. However, our proposed model has

fewer number of broadcast in both initial scrutiny (Proposed Lower) and when the chal-
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Table 2. Total number of broadcasts

Majority Voting (n+ 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

)

Reputation Based (n+ 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

)

Peer Authentication (n*(1+threshold))

Proposed Lower (2*n+ 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

)

Proposed Upper (2*n+ 𝑛
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

+2*nrsu+n+1)

lenge_response is generated (Proposed Upper) than the peer authentication model because

every vehicle has a fewer broadcast requirement, i.e., two broadcasts in Proposed Lower and

three broadcasts in Proposed Upper. Hence, it requires less transmission energy compared

to the peer authentication model, where every vehicle has to authenticate threshold number

of neighboring vehicles.

The time taken by our proposed model is highly dependant on the POC detection.

It is noted from Figure 8 (plotted based on Table 3) that the detection time for our model

increases with the POC distance (the point where two vehicles conflict in event reporting

as detected by the edge). This is because only when the POC is detected, the edge server

begins the various steps in our proposed model for detecting the road condition, and filtering

out malicious vehicles. When the POC is detected early, i.e., within less POC distance, the

edge proceeds with the initial scrutiny and thereafter, the challenge_response packet may

be generated. However, with the increase in the POC distance, the edge server has to wait

longer before executing the initial scrutiny phase. It can also be seen from Table 3 that

the time taken is less dependant on the consecutive RSU distances compared to the POC

distances during Proposed Lower. This is because even if the RSUs are close to each other,

the edge server still has to detect a POC before the initial scrutiny phase is executed. The
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Figure 7. Comparison based on energy consumption per transmission

Proposed Upper with a consecutive RSU distance of 2500 and a POC distance of 10 in

Table 3 takes less time (79 seconds) compared to the Proposed Lower with a consecutive

RSU distance of 1000 and a POC distance of 20 (82.5 seconds). This is because in the

latter scenario, the initial POC takes time to be detected by the edge. Therefore, a scenario

having RSUs close to each other with a higher POC distance may take more time than a

scenario with relatively distant consecutive RSUs but with less POC distance. Also, in the

initial scrutiny phase, the time taken does not depend on the RSU distances (all the Lower

values from Table 3 take the same time for detection for a given POC distance). This is

because the vehicle responses is leveraged to make the decision after they are sent to the

edge server. The RSU distance is impactful only when the challenge_response packet is

generated (all the Upper values from Table 3 take different times for detection for a given

POC distance).

Through experiments, it was observed that the proposedmodel performs faster when

the vehicles remain under some RSU throughout their travel. This is because if the vehicles

are out of the transmission range of the RSU, it has to wait to arrive near the next RSU before

sending their corresponding packets, which increases the latency. In the experiments, every

vehicle remained under the transmission range of the RSU throughout their travel when they

were placed 1000 metres apart, and it was observed that 1000 Upper as shown in Table 3
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has the fastest performance when compared to 2500 Upper, 2000 Upper, and 1500 Upper,

i.e., when the consecutive RSU distances were 2500 metres, 2000 metres, and 1500 metres

apart, respectively. In Figure 9, Upper represents the total time taken for decision making

when the challenge_response packet is generated, while Lower represents the time taken

for decision making during the initial scrutiny phase.

Table 3. Time taken (in seconds) to detect traffic conditions with varying RSU and POC
distances
hhhhhhhhhhhhhhhhhhRSU Distance

POC Distance 10 15 20 25 30 35 40

2500 Lower 21 53 84 104.0 190.3 256 326.8
2500 Upper 79 111 141 162.0 248.3 313 384.3
2000 Lower 23 54 84.33 102 193.67 254 327
2000 Upper 69 101 130.33 147 239.67 301 375
1500 Lower 22 55 82 101.7 192.5 257 327
1500 Upper 59 92 120 138.7 230.5 294.85 366
1000 Lower 24 55 82.5 103.2 194.2 257 326
1000 Upper 53 83 111.5 132.2 222.2 286 354

10 15 20 25 30 35 40
50
100
150
200
250
300
350
400

POC distance

Ti
m
e
in
se
co
nd
s

2500 meters Upper
2500 meters Lower
2000 meters Upper
2000 meters Lower
1500 meters Upper
1500 meters Lower
1000 meters Upper
1000 meters Upper

Figure 8. Broadcast comparison of 100 vehicles with varying thresholds

Table 3 also reveals the limitation of the proposed model. It can be seen that the

time taken to detect the traffic condition is not in real time. This is because the amount

of time lapsed in sending the data_packets and detecting the traffic condition is not real
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time. Thus, this restricts the application of the model in scenarios that do not require real

time decisions. This is justified by the fact that the ROI is usually very large, and the

main purpose of the proposed model is mainly to allow the vehicles in one ROI to know

the traffic scenario of another ROI that it wants to enter. However, the proposed model

cannot be applied in autonomous vehicles that require decisions in negligible time, such

as turning the steering wheel or braking on the road. Based on the values in Table 3, the

detection_probability (defined as the ratio of the number of observations where the road

condition is detected within a time limit to the total number of observations) is shown in

Figure 9. It is to be noted that as the time increases, detection_probability increases. This is

because with more time, conflicting vehicles at a higher POC distance are also considered

that increase the accuracy of the model. Hence, the probability of finding a POC and

detecting more scenarios increases as more POC distances are covered, and eventually, it

leads to an increase in the detection_probability at the cost of time. For example, in Table

3, the number of observations with the time limit below 50 seconds is 4 (21,23,22,24). This

means that 4 out of 56 observations (50% of the observations with POC distance 10) is

detected within 50 seconds, thereby covering approximately 7% of the total observations

that detect the road condition with a detection_probability of 0.07. However in Table 3, the

number of observations detected below 100 seconds is 16, which covers every observation

with the POC distance of 10, 80% of the observations with the POC distance of 15, and

about 50% of the observations with the POC distance of 20. This covers almost 28.6% of

the total observations in Table 3 (detection_probability is 0.28) as compared to 7%, when

the time limit was below 50 seconds.

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑡𝑜𝑡𝑎𝑙_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠_𝑢𝑛𝑑𝑒𝑟_𝑐𝑒𝑟𝑡𝑎𝑖𝑛_𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
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Figure 9. Detection probability with respect to time

6. SECURITY AND PRIVACY ANALYSIS OF OUR MODEL

6.1. SECURITY ANALYSIS

6.1.1. Message and GPS Information Spoofing Attack. In our proposed model,

every vehicle records an event and generates a data_packet. In order to disrupt the decision

making process, it can report an inaccurate event, i.e., report a congestion when the road

is non-congested. For the attack to be successful, every vehicle at the ROI must spoof the

event, whichwould incapacitate the edge server to detect anyPOC. However, this contradicts

our assumption that at least one vehicle must be non-malicious. Furthermore, an attacker

may spoof the GPS information, i.e., sent manipulated velid and GPSid to the edge server.

However, in the proposed heuristic, the edge server leverages velid and GPSid to generate

the challenge_packet to filter malicious vehicles within the ROI. Thus, our proposed model

is secure against message and GPS information spoofing attack.

6.1.2. Masquerading, Collusion and Sybil Attack. In the proposed model, every

vehicle digitally signs its Vid using veh_privatei generated using EGDSS to produce ds(Vid).

An attacker can forge the signature if it can compute veh_privatei of the attacked Vid or

by performing hash collision attack. However, SHA-3 [23] is secured against a collision

attack, preimage [24] and second preimage attack[25] with the security strength varying
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from 112-256 bits for collision and 224-512 bits for preimage and second preimage attack.

An attacker may also perform collusion or a sybil attack to disrupt the decision making

process. However, for the attack to be successful, every Vids within the ROI must be

malicious. This contradicts our assumption of having one non-malicious vehicle within

the ROI. Thus, the proposed model is secured against masquerading, collusion and sybil

attacks.

6.1.3. Message Integrity Attack. In the proposed model, every vehicle sends

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎_𝑝𝑎𝑐𝑘𝑒𝑡 =< 𝜏, 𝑑𝑎𝑡𝑎_𝑝𝑎𝑐𝑘𝑒𝑡‘ > to an edge server. If an attacker wants

to violate the integrity of a data_packet generated by a Vid, he/she must acquire Gprivate

stored only at the edge server, i.e. an attacker has to compute p and q used by the edger

server to generate Gprivate. However, this violates the discrete logarithm problem [26]. An

attacker may try to computeKeyi generated using AES 128 to obtain data_packet. However,

supercomputer will take around 1 billion years to brute-force the key [27] while the biclique

attack [28] requires a computational complexity of 2126.1, which is highly unlikely to break

in real-time. Thus, our proposed model is resilient against message integrity attack.

6.1.4. DoS Attack. Let us assume that the number of vehicles within the ROI is

Vnum.The various combinations of malicious vehicles not sending the packet to the edge

server, defined as C(DoS), is given by:

𝐶 (𝐷𝑜𝑆) =
𝑉num∑︁
𝑖=1

(
𝑉num
𝑖

)
C(DoS) represents the different number, ranging from 0 to Vnum, of vehicles that can refrain

from sending the information to the edge server via the RSU. However, DoS is possible

only when every vehicle within the ROI drops their data_packets. Thus, the probability of

the DoS attack being successful, defined as P(DoS), contradicts our assumption that every
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non-malicious vehicle sends their packets, at least one packet will be received by the edge

server, and also that one non-malicious vehicle should be present within the ROI. Thus, the

proposed model prevents DoS attacks.

𝑃(𝐷𝑜𝑆) = 1
𝐶 (𝐷𝑜𝑆)

6.2. PRIVACY ANALYSIS

6.2.1. Conditional Privacy Preservation. In our proposed model, every vehicle

generates enc_id by encrypting its Vid with Gpublic. If an attacker attempts to track the Vid

of a vehicle, it has to compute Gprivate using the associated value of prime numbers, p and

q, possessed only by the edge server. In order to breach the privacy of the data_packet of

a vehicle, it has to obtain the Keyi, generated using AES 128, used by a Vid to encrypt the

data_packet. Even under such a scenario, the attacker has to compute Gprivate as Keyi is

encrypted using Gpublic. Thus, the proposed model guarantees anonymity and unlinkability

of a vehicle. However, the edge server filters malicious vehicles using the DSG. Thereafter,

it is stored in the centralized server for future reference. Thus, the proposed model also

guarantees conditional privacy, and only reveals the identity of the malicious vehicles when

it detects a conflict.

7. CONCLUSION

Here proposed a privacy-preserving secure edge cloud-assisted traffic monitoring

system for VANETs that provides accurate traffic-related information. The model is re-

silient against privacy attacks and unauthorized tracking, and is secured against collusion,

masquerading, ballot stuffing, and bad mouthing attacks. We used DSG and the challenge-

response strategy to filter malicious responses, and to determine accurate traffic-related

information with fewer number of broadcasts per vehicle compared to the peer authentica-
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tion model. Even though the number of broadcasts per vehicle required for the proposed

model is higher than the majority voting model and the reputation based model, our model

has a higher detection_accuracy when the number of malicious vehicles forms the majority

within the ROI. This means that unlike others, our model filters malicious vehicles and

accurately detects the traffic condition under the influence of at least one non-malicious

vehicle. In future, we plan to extend our work using untrusted RSUs distributed sparsely

throughout the ROI, such as in semi-urban and rural areas. We will also design an intrusion

detection system (IDS) for the in-vehicle network to detect fabricated information injected

within a vehicle without any V2X communications.
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ABSTRACT

Vehicular Ad-hoc Networks (VANETs) allow vehicles to share traffic-related events

such as congestion to improve the driver’s safety and comfort. However, due to the untrusted

vehicular network environment, determining the credibility of broadcast messages becomes

crucial and challenging. In this paper, we propose an incentive-based distributed trust

management system with a secure event detection model employing the Byzantine fault-

tolerant Paxos algorithm and game theory. The novelty of the proposed model lies in its

ability to validate the accuracy of the broadcast information when the malicious vehicles

form the majority compared to non-malicious vehicles within the ROI, unlike the state-of-

the-art models. The proposed system’s feasibility and effectiveness have been validated

using the VENTOS, SUMO, and Omnet++ simulators by comprehensively addressing all

possible use-case scenarios, and under the influence of at least one non-malicious vehicle

at each RSU.

1. INTRODUCTION

Vehicular Ad-hoc Networks (VANETs) facilitate vehicles to share traffic-related

information, such as accidents or congestion, with neighboring vehicles (termed as V2V)

and with the roadside infrastructure (termed as V2I). The presence of malicious neighboring
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vehicles within a region of interest (ROI) can negatively influence another vehicle’s accurate

decision-making capabilities. In a disaster scenario, the evacuation process can be adversely

affected if malicious vehicles broadcast a non-congested road as congested. Furthermore,

the remote hacking of a JeepCherokee [1] shows that an attacker can remotely gain control of

the majority of vehicles and report an inaccurate traffic event to disrupt a traffic monitoring

system.

A centralized system [2] has been proposed to authenticate, store, and process the

trust scores of vehicles based on their responses from the ROI. However, being a single point

of attack, the system may be adversely affected if an attacker manipulates the centralized

data reported by the vehicles. Also, the non-uniform connectivity of a wireless network in

many locations, higher mobility of the vehicles and faster change in the network topology

add to time and computational overhead.

In a distributed system, the traffic information of a region from the information

shared by the vehicles is often subjected to majority voting [3], vehicle prior reputation

score [2], or peer authentication [4]. However, the efficacy of such a decision-making

system can be disrupted under the presence of a majority of malicious vehicles within the

ROI.

To address these challenges, we propose a distributed model that overcomes the

limitations of majority voting, prior reputation score, or peer authentication and provides

better accuracy in determining the traffic scenario under the influence of a majority of mali-

cious vehicles. Our model disregards prior vehicle reputation score or peer authentication,

and employs an incentive-based game theoretic approaches to filter malicious information

within the network.

Road Side Units (RSUs) within the ROI can be compromised by an attacker that

can violate the confidentiality and integrity of the generated information. In the likelihood

of such scenarios, our proposed trust model will preserve data confidentiality and integrity

by adopting the Byzantine fault tolerance as defined in [5] along with the Paxos Algorithm.
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Byzantine Paxos tolerates unauthorized fabrication or collusion of malicious processes. It

requires a minimum of 𝑛process2 + 1 uncompromised processes to deliver accurate results

where nprocess is the total number of processes in the distributed system. In our model, we

consider each of the RSUs deployed at the ROI to be processes of the distributed network

formed among themselves. As it is difficult to compromise the majority of the RSUs in real

time by an attacker [4], the use of Byzantine fault-tolerant Paxos algorithmworks effectively

in the proposed model to filter out malicious vehicles.

The novelty of the proposed trust model is to accurately detect malicious vehicles

and the traffic scenario from the ROI based on at least one non-malicious vehicle under an

RSU.

Our contributions in this work are as follows:

• Incorporated an incentive-based game theoretic approach where the vehicles, orga-

nized into clusters [6], acting as players of the game and are permitted to change the

cluster, which is leveraged to filter malicious vehicles.

• Employed Byzantine fault-tolerant distributed Paxos algorithm to effectively filter

compromised RSUs from the network and determine the traffic scenario of the ROI

by achieving distributed consensus among the RSUs.

• Validated the effectiveness of the proposed model by simulations, with the results

highlighting the accuracy and scalability of the proposed model and showing that the

time taken to detect the traffic-related information from the ROI is unaffected by the

presence of majority of malicious packets in the network.

2. RELATED WORK

Existing solutions mostly rely on majority voting [3], peer-based authentication

[4][7] or reputation-based [2] model to monitor the traffic conditions of a region. These

solutions are either centralized or distributed.
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2.1. CENTRALIZED SYSTEM

In [2], the reliability of messages is determined by the centralized server based on

events reported by the vehicles with high reputation scores. The model is vulnerable to

ballot stuffing and bad-mouthing attacks and fails to perform when the malicious vehicles

form a majority at the ROI. In [8], a micro-payment based incentive model efficiently

handles packet dropping attack, and the malicious node is evicted from the network. The

centralized systems suffer from bottleneck, high latency, and a single point of failure.

2.2. DISTRIBUTED SYSTEM

The decentralized schemes overcome the shortcomings of the centralized archi-

tecture using the threshold mechanism to provide authentic data from the ROI [9][10].

However, in such a system, the threshold cannot be too high or low, which otherwise

drastically degrades the performance of the system. Such systems are vulnerable to ballot

stuffing, bad-mouthing, sybil, and collusion attacks.

The authors in [7] have proposed a peer authentication based trust management

model where the trust score is calculated either directly or indirectly. However, these peer

authentication models are highly vulnerable to ballot stuffing and bad mouthing attack,

in which the ratings of an individual vehicle can be influenced by nearby vehicles. The

proposed model also provides incorrect traffic information in scenarios where majority of

the vehicles are either malicious or compromised.

In [11], a trust model has been proposed where the vehicles generate ratings for their

peers and send them to the RSUs that can be accessed by other vehicles. In [4], a weighted

aggregation model utilizing the blockchain is proposed where the RSUs act as the miner

nodes of the blockchain. Every vehicle calculates the credibility of a message based on the
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location of a vehicle and sends it to the RSU, which enters it into the blockchain. The model

also assumes that the majority of the vehicles are non-malicious and is also vulnerable to

ballot stuffing, bad-mouthing, and collusion attacks.

3. SYSTEM MODEL AND ASSUMPTIONS

3.1. SYSTEM MODEL REQUIREMENTS

• Trusted Authority (TA): The TA is responsible for relaying the request from a vehicle,

via the RSUs, within the ROI for gathering traffic-related information, and to aid the

RSU to authenticate a registered vehicle’s Vid.

• VT_score: The VehicleTrust score represents trustworthiness of a vehicle based on

prior participation under the proposed system. A vehicle not participating in the

decision-making process have a null VT_score. However, the VT_score of a vehicle

can be +1, 0, or -1 after comparing their response with the event decided by the

RSUs. A value of +1 conveys high trust value, -1 conveys low trust value, and 0

represents neutral trust value for a vehicle. Furthermore, the VT_score of a vehicle

can be changed based on future participation.

• Υ to 50 Bait strategy: We proposed a new strategy to identify the malicious intent of

a vehicle. According to the proposed strategy, 50% of the vehicles from each cluster

receive Υ% of the predefined total incentive for each cluster, incentive, such that

Υ

100 − Υ > 1

In this paper, the group receiving Υ% of the incentive, is referred to as the Prestige

group, while the group receiving (100 − Υ)% of the incentive is referred to as the

Premium group. The need for such a constraint while distributing the incentive to the

cluster members has been justified from section IV(E) onwards of this paper.



57

• Schmidt-Samoa cryptosystem [12]: The cluster heads use this cryptosystem to gen-

erate the public and private key pair. While the private keys are kept by the cluster

head, the public keys are disseminated along with the respective event packets for

other vehicles to encrypt their symmetric key. We prefer Schmidt-Samoa cryptosys-

tem over RSA [13] because of its simplistic trapdoor one-way permutation. Also,

unlike Rabin [14], this algorithm does not produce ambiguity in the decryption at the

cost of encryption speed.

• ElGamal Digital Signature Scheme (EGDSS) [15]: The vehicles at ROI adopts the

EGDSS to generate a public key, reg_public_key, associated with a private key,

reg_private_key, that is stored with the TA, to authenticate itself to its cluster head.

The RSU, with the aid of the TA, validates the digitally signed Vid to determine the

authenticity of a Vid. Another variant of EGDSS, namely digital signature algorithm

(DSA) [16], can also be used without any change in the proposed model.

• Advanced Encryption Standard (AES) [17]: Every vehicle generates its symmetric

key using AES algorithm for secure key and data exchange with its cluster head.

The symmetric key is encrypted using the public key generated by its cluster head as

defined in [12] and is appended to its response. We prefer AES 128 bits over 192 and

256 bits because of its lower execution time [18].

3.2. THREAT MODEL

The malicious vehicles can exhibit the following behaviors:

• Message spoofing attack: A malicious vehicle can broadcast inaccurate traffic-related

information.
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• Denial of Service (DoS): Attackers can intentionally refrain from sending the re-

quested information to the RSU, called a "blackhole attack", to reduce the efficacy of

the proposed system. Furthermore, it can selectively drop information of some of the

vehicles, called a "gray hole attack", to increase the incentive received by every other

vehicle in the cluster.

• On-Off attack: A malicious vehicle can purposefully switch clusters to increase its

incentive.

• Message Integrity, Masquerading, and Sybil: An attacker can impersonate another

vehicle by gaining unauthorized access to the symmetric key of any nearby vehicle

through data interception, perform a hash collision attack. It can perform a sybil

attack and modify the data content of any broadcast packet. Message integrity

attack is handled by generating keys as defined by [17] and [12], whereas Sybil and

Masquerading attack are handled by implementing algorithm as defined by [15].

3.3. ASSUMPTIONS

Every malicious vehicle prioritizes its own payoff over decisions and uses greedy

approach to be at the Prestige group of its cluster, whereas non-malicious vehicles prioritize

correct decisions over incentive. Neighboring vehicles travel approximately within the

same velocity range. The information broadcast by the cluster head is received by every

vehicle within the transmission range. The vehicles are assumed to be registered with a

reg_public_key and reg_private_key respectively, with the TAduring the vehicle registration

phase. However, not all registered vehicles are non-malicious. An event is categorized as

congested or non-congested. The proposedmodel cannot be applied in scenarios that require

real-time decision-making, such as changing lanes. It is applicable in situations when a

vehicle, is approximately 4-6 minutes away from the ROI.
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Figure 1. Proposed Model

4. PROPOSED MODEL

Themain objective is to detect the accurate traffic information andfilter outmalicious

vehicles by organizing the vehicles into clusters, leveraging the V2X communication and

deploying a distributed network among the RSUs at the ROI as depicted in Figure 1. The

traffic detection request is disseminated by the RSUs at the ROI. Thereafter, the various

stages of the proposed model are performed as shown in Figure 2.

Figure 2. Stages in the proposed model
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4.1. CLUSTER HEAD ELECTION

In the proposed model, every vehicle recording similar events is organised in a

single cluster. To form the cluster, every vehicle generates the leader_pkt after receiving the

traffic-related event detection request from the RSU to nominate itself as the cluster head.

The purpose of the leader_pkt is to put a Vid in contention for becoming the cluster head of

a cluster.

𝑙𝑒𝑎𝑑𝑒𝑟_𝑝𝑘𝑡 =< 𝑉 id, 𝑡𝑠_𝑣𝑎𝑙, 𝑔𝑟 𝑝_𝑖𝑑 >

where ts_val is the timestamp value when the leader_pkt is generated and grp_id is the

identifier of a cluster recording an event, which is utilized later after the cluster head is

elected. A vehicle receiving a leader_pkt from other vehicles does not generate or drops its

own leader_pkt if its ts_val is greater than the received packet. However, if it has a lower

ts_val, it discards the received leader_pkt and broadcasts its own generated leader_pkt.

After every possible leader_pkt from the vehicles is broadcast within a time interval of 𝛿,

the vehicle with the lowest ts_val is considered as the cluster head of the cluster with a

unique identifier, grp_id. Consequently, the cluster head, named as Vlead, discards all other

leader_pkts.

4.2. EVENT PACKET DISSEMINATION BY CLUSTER HEAD

TheVlead generates a public key (grp_public) and its associated private-key (grp_private)

using Equations 1 and 2 as defined by Schmidt-Samoa cryptosystem, and dissipates

event_pkt consisting of cluster information to the vehicles within its transmission range.

The purpose of the event_pkt is to to dissipate the event recorded by Vlead and to allow other

neighboring vehicles to provide consent to the event recorded:

𝑔𝑟 𝑝_𝑝𝑢𝑏𝑙𝑖𝑐 = 𝑝2 ∗ 𝑞 (1)



61

𝑔𝑟 𝑝_𝑝𝑟𝑖𝑣𝑎𝑡𝑒 = 𝑔𝑟 𝑝_𝑝𝑢𝑏𝑙𝑖𝑐-1 mod 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1) (2)

𝑒𝑣𝑒𝑛𝑡_𝑝𝑘𝑡 =< 𝑔𝑟 𝑝_𝑖𝑑, 𝑒𝑣𝑒𝑛𝑡, 𝑔𝑟 𝑝_𝑝𝑢𝑏𝑙𝑖𝑐 >

where p, q are two random prime numbers chosen by Vlead.

The Vlead broadcasts event_pkt and waits for 𝛿 seconds to receive consent to the

event recorded by it.

4.3. CLUSTER/ANTI-CLUSTER FORMATION

Every vehicle within the transmission range of Vlead on receiving the event_pkt

compares its own event sensed at the ROI with the event field of the event_pkt received. If it

agrees to the event sensed by Vlead, it generates the consent packet, consent_pkt, to support

the event sensed by Vlead.

𝑐𝑜𝑛𝑠𝑒𝑛𝑡_𝑝𝑘𝑡 =< 𝑉 id, 𝑑𝑠(𝑉 id), 𝑔𝑟 𝑝_𝑖𝑑 >

Every vehicle digitally signs its Vid, defined as ds(Vid), with the reg_private_key and

appends it to the consent_pkt. This ensures that every vehicle sends responses under its own

registered Vid, which resists a sybil attack or masquerading attack. Thereafter, Vid generates

key1, a symmetric key, using an AES 128 bit algorithm to encrypt consent_pkt. Finally,

data_pkt is generated using Algorithm 5 (lines 2-11) and broadcast by Vid. The purpose of

the data_pkt is to send consent to the Vlead from a Vid in an encrypted form to preserve the

confidentiality and integrity of the data:

𝑑𝑎𝑡𝑎_𝑝𝑘𝑡 =< 𝑉 ′lead, 𝜏, 𝑐𝑜𝑛𝑠𝑒𝑛𝑡_𝑝𝑘𝑡′ >
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where V′lead is the encrypted Vlead with grp_public, 𝜏 is the encrypted key1with grp_public

and consent_pkt′ is the encrypted consent_pkt with key1. Decrypting V’lead only with

grp_private facilitates Vlead to identify the consent_pkt.

In case of mismatch in the event sensed by a Vid to that of Vlead, Vid does not generate

the consent_pkt and searches for a cluster with a cluster head recording event, contradictory

to grp_id and similar to its own event sensed. If no such cluster exists, the Vid generates

a conflict_pkt and broadcasts it. The purpose of the conflict_pkt is to form a cluster with

a different traffic event contradicting grp_id. Eventually, Vid broadcasting the conflict_pkt,

termed as VantiLead, becomes the cluster head of the cluster, with the unique identifier as

conflict_id:

𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑝𝑘𝑡 =< 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑖𝑑, 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑒𝑣𝑒𝑛𝑡, 𝑎𝑛𝑡𝑖_𝑔𝑟 𝑝_𝑝𝑢𝑏𝑙𝑖𝑐 >

Algorithm 5 Generation of data_pkt
1: 𝑘𝑒𝑦1 = Key by Vid, 𝑑𝑎𝑡𝑎_𝑝𝑘𝑡 ← ””, 𝑐𝑜𝑢𝑛𝑡 ← 0,
2: 𝐺public ← grp_public for grp_id, anti_grp_public for conflict_id
3: 𝜏 = encrypted key1 with Gpublic
4: if grp_id then
5: 𝑐𝑜𝑛𝑠𝑒𝑛𝑡_𝑝𝑘𝑡′ = encrypted consent_pkt with key1
6: 𝑉 ′cluster head= encrypted Vlead with Gpublic
7: 𝑑𝑎𝑡𝑎_𝑝𝑘𝑡 = {V′cluster head,𝜏,consent_pkt′}
8: else
9: 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑐𝑜𝑛𝑠𝑒𝑛𝑡_𝑝𝑘𝑡′ = encrypted conflict_consent_pkt with key1
10: 𝑉 ′cluster head= encrypted VantiLead with Gpublic
11: 𝑑𝑎𝑡𝑎_𝑝𝑘𝑡 = {V′cluster head,𝜏,conflict_consent_pkt′}
12: return 𝑑𝑎𝑡𝑎_𝑝𝑘𝑡

A separate public key(anti_grp_public) and its private key(anti_grp_private), are

generated using Equations 1 and 2, respectively, with different values of p and q by VantiLead.

However, in case of an existing VantiLead, Vid generates conflict_consent_pkt instead of

consent_pkt and data_pkt using its own key1 and conflict_consent_pkt’ by encrypting
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conflict_consent_pkt with its key1, following Algorithm 5 (lines 2-11) to support the event

sensed by VantiLead:

𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑐𝑜𝑛𝑠𝑒𝑛𝑡_𝑝𝑘𝑡 =< 𝑉 id, 𝑑𝑠(𝑉 id), 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑖𝑑 >

It is to be noted that either Vlead or VantiLead can be malicious. A non-malicious Vid generates

conflict_consent_pkt or consent_pkt based on the event sensed. On the other hand, a

malicious Vid may sense the accurate traffic event. However, to disrupt the decision-making

system, themaliciousVidwillmanipulate the event sensed and generate conflict_consent_pkt

or consent_pkt, contradicting the actual traffic event.

4.4. INCENTIVE ID GENERATION

TheVlead andVantiLead, on receiving the encrypted consent_pkt and anti_consent_pkt,

respectively, retrieve the responses of the Vids using Algorithm 6 (lines 3-9) and enter the

associated Vid and their corresponding ds(Vid) to its list of cluster members obtained using

Algorithm 6 (line 10). Thereafter, Vlead and VantiLead employ Υ to 50 Bait strategy after

which they randomly select 50% of the cluster members for receiving Υ% of incentive and

form the Prestige group. Any vehicle that does not fall under the Υ% group is put into

Premium group. A packet containing the Vids of the Prestige group, defined as Prestige

packet, is broadcast by Vlead and VantiLead, and thereafter, they wait for 𝛿 seconds for any

vehicle to leave or send a join request to its cluster.

4.5. INCENTIVE CALCULATION AND CLUSTER SWITCH

AmaliciousVid on receiving thePrestige group packet from its cluster head examines

whether its Vid is included in the packet or not. If not, to determine the chance of receiving

a higher incentive by switching the cluster, it calculates the riskFactor(rF) using Equation

3. Since the priority of a malicious vehicle is to receive a higher incentive, it always wants
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Algorithm 6 data_pkt retrieval
1: 𝑉cluster head = Vlead for grp_id, VantiLead for conflict_id
2: 𝐺private ← grp_private for grp_id, anti_grp_private for conflict_id
3: 𝑉obtained = decrypt V’cluster head with 𝐺private
4: if 𝑉obtained == 𝑉cluster head then
5: Decrypt key1 from 𝜏 using Gprivate
6: if 𝑉cluster head == 𝑉 lead then
7: Decrypt consent_pkt’ using key1
8: else
9: Decrypt conflict_consent_pkt’ using key1
10: return Vid, ds(Vid), consent_pkt’/conflict_consent_pkt’

to be considered for the Prestige group of a cluster that receives Υ% of the entire incentive,

rather than the Premium group that receives (100 − Υ)% , where Υ > (100 − Υ).

𝑟𝐹 = (𝐻1 − 𝐿1
𝐿1 ∼ 𝐿2 ), rF ∈ [−∞, +∞], (3)

𝑟𝐹 =


Send Join request if 𝑟𝐹 ≥ 1

Do not send join request if 𝑟𝐹 < 1

Based on Equation 3, a malicious vehicle calculates the incentive that is received by an

individual vehicle in Prestige group of the other cluster,H1, when all requesting Vids switch,

its own existing incentive, L1, and the incentive received in the Premium group of the other

cluster, L2, after switching every requesting Vids. rF value determines the involved risk

of getting low incentive on switching cluster. In Equation 3, (𝐻1 − 𝐿1) determines the

increase in payoff for a vehicle when moving from the Premium group of its existing cluster

to the Prestige group of the other cluster, while (𝐿1 ∼ 𝐿2) determines the change in payoff

(increase or decrease) while moving from the Premium group of its existing cluster to the

Premium group of the other cluster. The threshold of the rF value for the switching group

is assumed to be 1 for every malicious vehicle. An rF value greater than 1 indicates that

there is an increase of payoff, while a value equal to 1 indicates that both clusters have the
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same members. However, an rF value less than 1 indicates the presence of more vehicles in

the other cluster than in the malicious Vids existing cluster, which eventually leads to lesser

payoff.

In contrast, a non-malicious vehicle does not switch cluster even if its Vid is not in

the Prestige group packet broadcast by its cluster head. When switching from a cluster, a

malicious Vid broadcasts a leave_join packet where the first field of the packet indicates its

existing cluster ID whereas the second field indicates the requesting cluster ID. Figure. 3

depicts a malicious Vid, V001, desires to switch from grp_id to conflict_id, and accordingly

it broadcasts a as shown by leave_join(V001).

𝑙𝑒𝑎𝑣𝑒_ 𝑗𝑜𝑖𝑛(𝑉001) =< 𝑔𝑟 𝑝_𝑖𝑑, 𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑖𝑑 >

.

Figure 3. Switch cluster request
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4.6. CONSENSUS FOR ACCEPTING NEW MEMBERS

Using game theory, the incentive is used as bait for identifying a malicious vehicle.

The proposed model provides incentive to vehicles even when proved malicious. However,

the VT_score of the vehicle decreases. This allows the model to judge whether a vehicle

prioritizes its recorded event with majority support from other vehicles or its individual

incentive.

The Vlead and VantiLead on receiving the leave_join packet remove the Vids from its

cluster and enter them into its leave_list if its corresponding cluster ID is the first field of

the leave_join packet. However, it generates the join_req packet with the requesting Vids if

its cluster ID is the second field of leave_join packet and broadcasts it to its existing cluster

members. The purpose of the join_req packet is to notify the cluster members about the

requesting Vids and receive consensus in regard to their acceptance into the cluster, which

is a requirement of the proposed model. This determines whether the cluster members

prioritize incentive over decision, that is leveraged for the decision-making by the RSUs:

𝑗𝑜𝑖𝑛_𝑟𝑒𝑞 =< 𝑣1, 𝑣2, 𝑣3, ... >

A non-malicious Vid sends an accept message encrypted with its own key1 to its cluster

head on receiving join_req packet in order to substantiate the correct decision with majority

vehicles. However, a malicious Vid calculates its probability of being in the regenerated

Prestige group if all requesting Vids are accepted or rejected, represented by P(ifAccept)

and P(ifReject), respectively, using Equations 4 and 5. The malicious Vids compromises

VT_score over incentive since the VT_score value may be increased in future participation:

𝑃(𝑖 𝑓 𝐴𝑐𝑐𝑒𝑝𝑡) = 2
𝑥 + 𝑝 ∀ 𝑥, 𝑝 > 0 (4)

𝑃(𝑖 𝑓 𝑅𝑒 𝑗𝑒𝑐𝑡) = 2
𝑥
∀ 𝑥 > 0 (5)
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where x represents the number of existing Vids in the cluster and p defines the number of

Vids requesting to join.

Also, there is a possibility for the existing Prestige group Vids of a cluster to be in

the Premium group in the next random Vid regeneration for the Prestige group. Therefore,

a malicious Vid calculates the incentive that would be received by an individual vehicle in

the Prestige group and Premium group of the cluster if the join request is accepted, given

by H_incentive_A and L_incentive_A, respectively, and if rejected, given by H_incentive_R

and L_incentive_R, respectively:

𝐻_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝑅 =
Υ ∗ 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
50 ∗ 𝑥

𝐿_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝑅 =
(100 − Υ) ∗ 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

50 ∗ 𝑥

𝐻_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝐴 =
Υ ∗ 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒
50 ∗ (𝑥 + 𝑝)

𝐿_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝐴 =
(100 − Υ) ∗ 𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

50 ∗ (𝑥 + 𝑝)

∀x, incentive, p>0, where incentive is the total incentive amount. The malicious Vids further

calculates metric1, metric2, and metric3 followed by the relevancyValue:

𝑚𝑒𝑡𝑟𝑖𝑐1 =


1 if 𝑃(𝑖 𝑓 𝐴𝑐𝑐𝑒𝑝𝑡) ≥ 𝑃(𝑖 𝑓 𝑅𝑒 𝑗𝑒𝑐𝑡)

0 if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑚𝑒𝑡𝑟𝑖𝑐2 =


1 if 𝐻_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝐴 ≥ 𝐻_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝑅

0 if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑚𝑒𝑡𝑟𝑖𝑐3 =


1 if 𝐿_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝐴 ≥ 𝐿_𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝑅

0 if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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∴, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦𝑉𝑎𝑙𝑢𝑒 =
𝑚𝑒𝑡𝑟𝑖𝑐1 + 𝑚𝑒𝑡𝑟𝑖𝑐2 + 𝑚𝑒𝑡𝑟𝑖𝑐3

3

where 0 ≤ relevancyValue ≤ 1

The metric1 determines the favourability of a malicious vehicle to be in the Prestige

group if the cluster head accepts requesting Vids, metric2 compares the individual incentive

received by vehicles in the Prestige group by accepting requesting Vids against rejecting

them, and metric3 compares the individual incentive received by vehicles in the Premium

group by accepting new vehicles against rejecting them. The relevancyValue determines

the reduction in incentive by accepting requesting Vids and a value greater than 0.5 indicates

no cutback in existing incentive for the malicious Vid. Only under such circumstances, it

sends agree; otherwise, it sends disagree to its cluster head encrypted with its own key1. If

malicious Vids did not receive incentive even if proved malicious, then under every scenario,

they would provide agree and it would have become challenging to filter out the malicious

vehicles forming the malicious cluster. Thus, this justifies providing incentive as bait to the

malicious vehicle.

A malicious Vid is restricted from providing agree to a selected requesting Vid

because it can only send agree or disagree to the entire joining list. Even if the malicious

cluster head drops packets of requesting Vids from its join_list, it is reflected on comparing

with the leave_list of the non-malicious cluster head during the decision making by the

RSU. The use of relevancyValue also actuates the malicious vehicle to join the malicious

cluster during the cluster formation in the beginning. This is because as the total number

of vehicles changes and cannot be predicted earlier, a vehicle maliciously joining a non-

malicious cluster with more members may not switch to a malicious cluster with less

members. This will lead to a loss in the incentive of the malicious vehicle. Since the reverse

situation is possible, it justifies the action of a malicious vehicle to join a malicious cluster

at the beginning.



69

The cluster heads on receiving agree or disagree regenerate the Prestige group

packet with its cluster members and thereby generates the decision_pkt.

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑝𝑘𝑡 = < 𝑔𝑟 𝑝_𝑖𝑑/𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡_𝑖𝑑, 𝐻𝐼_𝑚𝑒𝑚𝑏𝑒𝑟𝑠, 𝐿𝐼_𝑚𝑒𝑚𝑏𝑒𝑟𝑠,

𝑑𝑠(𝑉 id)_𝑙𝑖𝑠𝑡, 𝑗𝑜𝑖𝑛_𝑙𝑖𝑠𝑡, 𝑙𝑒𝑎𝑣𝑒_𝑙𝑖𝑠𝑡 >

where HI_members and LI_members are the vehicles in the Prestige group and Premium

group of a cluster respectively. ds(Vid)_list is the digital signature of the Vids in a cluster.

The cluster can be switched at most once for every vehicle before reaching an

equilibrium which has been proved in section V. The Vlead and VantiLead, further generates

their own symmetric key, key2, using an AES 128 bit algorithm and encrypts it with the

reg_private_key. Thereafter, it generates the final_pkt and sends it to the RSU:

𝑓 𝑖𝑛𝑎𝑙_𝑝𝑘𝑡 =< 𝑉 lead/𝑉antiLead, 𝜂, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑝𝑘𝑡′ >

where 𝜂 is defined as key2 encryptedwith reg_private_key, and decision_pkt′ is decision_pkt

encrypted with key2. The purpose of keeping Vlead/VantiLead unencrypted is so that during

authorization, the RSU can obtain reg_public_key corresponding to reg_private_key that is

stored only by the TA.

4.7. DECISION-MAKING BY RSU

On receiving the final_pkt from Vlead and VantiLead, the RSU, with the help of the

TA, obtains key2 by decrypting 𝜂 with its respective reg_public_key, thus verifying the

authenticity of the cluster heads. An RSU authenticates every Vids from the decision_pkt,

obtained by decrypting decision_pkt’ with key2, by comparing the Vid and their associated

reg_public_key with ds(Vid)_list to avoid sybil and masquerading attacks. On analyzing

the join_list and leave_list appended by Vlead and VantiLead, the decision is based on the

cluster with maximum Vids if the lists are empty for both grp_id and conflict_id. For other
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cases, the RSU adopts the strategy as represented in Figure. 4. According to Figure. 4,

an RSU filters out Vids, Vlead, and VantiLead as malicious if they do not respond using their

registered reg_private_keys. Thereafter, an RSU checks whether any vehicle/s (Vks) has

changed its cluster (Cluster1) by examining the leave_list of Cluster1. If so, it sees whether

the Vks is included in the join_list of the other cluster (Cluster2). If it is present, Cluster2

is considered non-malicious and Cluster1 is considered malicious. Otherwise, Cluster2 is

considered malicious and Cluster1 is considered non-malicious.

Figure 4. Decision-Making by RSU

Once a decision has beenmade by the individual RSU at the ROI, the traffic-scenario

of the entire ROI is decided by using Byzantine fault-tolerant Paxos. As depicted in Figure.

5, any one of the RSU, say proposer, sends a Prepare message with a unique sequence

number, n1, to the other RSUs within the ROI. The other RSUs send a Promise message

indicating that it accepts the request for consensus building. However, the RSUs could
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have ignored the Prepare message if they had already achieved consensus from some other

proposer with a higher value of n1. Upon receiving the Promise message, the proposer

sends an Accept message consisting of n1 and the event decided by it. The purpose of the

Accept message is to inform the other RSUs about the traffic event it observed and achieve

consensus with it. At this stage, the other RSUs verify the event among themselves. A

consensus among the RSUs can be reached only if it attains the quorum, i.e. the event is

agreed upon by the majority of the RSUs.

𝑞𝑢𝑜𝑟𝑢𝑚 = 𝑒𝑣𝑒𝑛𝑡 (𝑛rsu
2
+ 1)

where nrsu is the total number of RSUs deployed within the ROI. As depicted in Figure.

5(a), if the quorum is achieved, then the RSUs send an Accepted message consisting of

n1 and its corresponding RSU ID to the proposer, which means that the RSU conform to

the event recorded by the proposer. However, if the quorum is not achieved as depicted in

Figure. 5(b), the RSU does not send the Acceptedmessage to the proposer. Instead, another

RSU, say proposer1, becomes the new proposer and sends Preparewith a sequence number

of n1+1. Thereafter, it sends the Accept message with a contradicting event for achieving

consensus. This process ensures that the entire consensus protocol remains distributed,

as well as maintains one proposer at a time as guaranteed by a unique sequence number.

Furthermore, it also filters out compromised RSUs within the ROI based on the RSU ids

included in the Accepted message (an RSU ID not included in the Accepted message is

considered malicious). Once the malicious and non-malicious cluster is identified every

vehicle of the malicious cluster is regarded as malicious and that of the non-malicious

cluster as non-malicious. Finally, the event recorded by the non-malicious cluster head is

considered as the event of the ROI. Thereafter, every RSU allocates the VT_score to every

vehicle as shown below. The VT_score generated for every vehicle is sent by the initiator

to the TA that is stored for future reference. A vehicle with a negative VT_score is given
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(a) (b)

Figure 5. Paxos algorithm with (a) uncompromised initiator and (b) compromised initiator

less priority for future participation. If for any vehicle, there are three instances where the

VT_score of a vehicle is -1, then its corresponding Vid is barred from future participation

and incentive.

𝑉𝑇_𝑆𝑐𝑜𝑟𝑒 =



1 if 𝑛𝑜𝑛_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑙𝑢𝑠𝑡𝑒𝑟

-1 if 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑙𝑢𝑠𝑡𝑒𝑟

0 if 𝑠𝑤𝑖𝑡𝑐ℎ_𝑡𝑜_𝑛𝑜𝑛_𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑐𝑙𝑢𝑠𝑡𝑒𝑟

5. NASH EQUILIBRIUM ANALYSIS

In this section, we analyze the Nash equilibrium of the proposed game. The payoff

matrix represented in Table 1, which is applicable only for a malicious Vid when switching

a cluster, is calculated based on the rF value presented in Equation 3, H_incentive_A,

L_incentive_A, H_incentive_R and L_incentive_R. In Table 1, (Leave, Leave) can result in

lower incentive for an individual Vid as the rF value can fall below 1.0 (depicted in Figure.

9) if a higher percentage of vehicles switches cluster. However, the rF value can be greater

than or equal to 1 for the entry (Leave, Not Leave) if a lesser percentage of vehicles switches
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Table 1. Payoff table

Leave Not Leave
Leave H_incentive_A or L_incentive_A H_incentive_A or L_incentive_A with p=1
Not Leave Υ∗𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

50∗(𝑥−𝑝) or
(100−Υ)∗𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒

50∗(𝑥−𝑝) H_incentive_R or L_incentive_R

cluster. The entry for (Not Leave, Leave) can result in a higher individual incentive for a

malicious Vid as the number of members in the existing cluster decreases. The entry for

(Not Leave, Not Leave) will not cause any change in the individual incentive for a Vid in

a cluster. However when otherwise switched, the malicious Vids in the malicious cluster

calculates the relevancyValue (which is less than 0.5) and does not allow the any Vid to

switch the cluster. Thus, the malicious Vid can switch the cluster at most once (i.e from a

malicious cluster to a non-malicious cluster).

6. SIMULATION AND EXPERIMENTAL RESULTS

The proposedmodel is evaluated using the VENTOS simulator [19], the ROI and the

communication network are simulated in SUMO [20] and Omnet++ 5.3. Every experiment

was performed in aWindows 7 Enterprise 64 bit, Intel(R) Xeon(R) CPUE5-1620 v2@ 3.70

GHz workstation. We validated the proposed model under congested and non-congested

road scenarios using the simulation parameters listed in Table 2.

For every scenario, we tested our model with both malicious Vlead as well as non-

malicious Vlead against different attacks given the threat model, and compared with the

different strategies adopted by the existing solutions, whose results are highlighted in Table

3. In Table 3, Detected indicates that the model is able to identify the correct event and the

malicious vehicles, while Not Detected means it cannot identify the correct event under the

influence of malicious vehicles. However, some of the existing models have Conditional

detection, which means that the decision is based on other parameters. For example, in a
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reputation-based model or peer authentication model, the decision depends on the previous

ratings of the malicious vehicles or the number of malicious vehicles surrounding a vehicle,

respectively and hence, the decision is always Conditional.

We measure the time taken to send the final_pkt to the RSU by the cluster heads and

the number of broadcasts required in the proposed model, as shown in Figure. 6, assuming

the value of 𝛿 to be 10 and consecutive RSUs’ distance to be 2000 meters. From Figure.

6(a), it is to be noted that the time taken by the proposed model to send the final_pkt to the

RSU is less dependent on the number of malicious vehicles in the network. This is because

the proposed model is bounded by the time after each broadcast to keep the solution in real

time. Therefore, any malicious vehicle purposefully trying to delay the proposed system

will not be taken into consideration for decision-making. The proposed model works almost

in constant time for different number of vehicles in the network, proving that the proposed

system is highly scalable for a large system. For Figure. 6(b), the number of non-malicious

vehicles is 20% of the total number of vehicles under one RSU, and it shows that the number

of broadcasts is dependent not only on the number of vehicles but also on the percentage of

malicious vehicles switching the cluster. This is because a higher percentage of malicious

vehicles switches the cluster, more leave_join packets are broadcasted into the network.

The communication cost is proportional to the number of packets which are broadcasted

within the network across the various stages.

Table 2. Simulation Parameters

RSU Distance 800 ∼ 2000 meters
RSU Interference Distance 510.5 meters (default simulator value)
Number of Vehicles at 𝑅𝑂𝐼 30 ∼ 100
Vehicle and RSU Id Length 5

𝛿 5 ∼ 25 seconds
incentive value 1000 units

Communication Protocol Dedicated Short Range Communication (DSRC)
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Table 3. Event Detection

Malicious Percentage Majority Voting Reputation-based Proposed Model Peer-based Authentication
30% Detected Conditional Detected Detected
40% Detected Conditional Detected Conditional
50% Not Detected Conditional Detected Conditional
60% Not Detected Conditional Detected Conditional
70% Not Detected Conditional Detected Conditional
80% Not Detected Conditional Detected Not Detected
90% Not Detected Conditional Detected Not Detected

In Figure. 7, the value of Υ is varied to plot the incentive received by an individual

Vid in the Prestige and Premium group of a cluster. We consider each group to consist of

five vehicles. Though the value of Υ can be any value greater than 50, we kept the value of

Υ to 60 because at this value, the difference in individual incentive in the Prestige and the

Premium group of a cluster is half of the incentive received by a vehicle in the Premium

group.

With the value ofΥ as 60, in Figure 8, we plot the incentive received by an individual

vehicle under the Prestige and the Premium group in the malicious and the non-malicious

cluster. As the percentage of malicious vehicles in the network increases, the number of

malicious packets also increases. Thus, all the malicious vehicles under such circumstances

are grouped under a single cluster. For a given number of vehicles at the ROI, a growing

number of malicious vehicles decreases the individual incentive at the Prestige and the

Premium group of the malicious cluster, and in turn, increases the incentive at the non-

malicious clusters (as seen in Figure. 8 a,b,c,d). However, in order to increase the payoff

every vehicle at the ROI calculates the possibility of increasing its payoff, using the rF

value and the payoff matrix as shown in Table 1. Thereafter, it decides whether to send a

leave_join packet. Figure. 9 shows that as the percentage of malicious vehicles switching to

a non-malicious cluster rises above 15%, the rF value begins to fall below 1, which means

that the malicious vehicle may incur higher loss at the Premium group of the switching

cluster compared to the gain in the Prestige group. Thus, based on the rF value, 15% of
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Figure 6. (a) Time to send final_pkt to RSUwith varying malicious packets and (b) Number
of broadcasts required with varying malicious packets

malicious vehicles switching the cluster can result in an increase in broadcast by 3+n1,

where n1 is the number of Vids in the switching cluster. It is to be noted from Figure. 10

that the proposed model performs faster when the distance between consecutive RSUs at

the ROI is lesser. This is because the vehicles need to wait for less time to send their data

packets to the nearby RSU on account of high mobility. Based on the optimal distance of

800 meters determined from Figure. 10, we obtain the optimal value of 𝛿 in Figure. 11.

It is seen that as the value of 𝛿 increases, the latency required in the proposed model also

increases. This is because with an increasing value of 𝛿, we incorporate more waiting time

into the proposed model. This enables us to consider more responses from the vehicles.

However, an attacker may purposefully exploit this opportunity to delay the decisionmaking

from a region. Owing to the higher mobility in vehicles, with higher values of 𝛿, the traffic

scenario at the ROI can differ drastically from the time the decision is made. For this reason,

we keep the value of 𝛿 at 10 seconds. We plot Figure. 10 and 11 with 100 vehicles and

90% malicious packets.
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7. DISCUSSIONS ON DIFFERENT SECURITY ATTACKS

7.1. MESSAGE SPOOFING ATTACK

Assume the number of vehicles under a RSU is Nnum. The malicious combinations,

f( Nnum) is calculated by,

𝑓 (𝑁num) =
𝑁num∑︁
𝑖=1

(
𝑁num
𝑖

)
The probability of the message spoof attack to be successful, P(Attack), is given by:

𝑃(𝐴𝑡𝑡𝑎𝑐𝑘) = 1/ 𝑓 (𝑁num)

i.e., when all the vehicles are malicious. However, this contradicts the assumption of

having at least one non-malicious vehicle. Hence, it is proven by contradiction that message

spoofing attack is unlikely under the presence of atleast one non-malicious vehicle. A

possible scenario is described below.
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Figure 8. Incentives in different clusters and groups

Let us assume the vehicle count under one RSU is 20. Vlead is malicious and

combines with 18 malicious Vids to form a cluster, I001. VantiLead is non-malicious and is

the only vehicle of the cluster I002 . By applying Υ to 50 Bait strategy, when the Prestige

group packet is broadcast, a Vid in the Premium group of I001 calculates the rF value as

stated in Equation 3.

For an incentive, n, the rF value calculated as 1.56 > 1.

Based on rF value, even if one Vid sends join_req, it is accepted by VantiLead. An

RSU on receiving final_pkt uses the strategy in Figure. 4 and considers I001 as malicious.

Consequently, every vehicle in I001 is considered malicious and the event of I002 is

considered as the traffic event under the RSU.
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7.2. DENIAL OF SERVICE (DOS)

The number of clusters in the proposed model, nclusters ≤ 2. Possible sample space

of data reporting = 2nclusters . Probability of DoS to be successful, P(DoS) is given by:

𝑃(𝐷𝑜𝑆) = 1
2
,

where favourable events include both malicious and non-malicious cluster head not sending

final_pkt to RSU. Even though P(DoS) is high, the favourable events for P(DoS) contradict

the non-malicious nature of a non-malicious vehicle. Hence, it is proved by contradiction

that DoS is highly unlikely in the proposed model. The DoS attack can be performed by an

attacker under the following two cases:

• Case 1: The cluster head is a malicious vehicle and does not send the final_pkt to the

RSU.

• Case 2: The cluster head performs the gray hole attack by selectively dropping the

packet of some vehicles.

Assume Vlead to be malicious and VantiLead to be non-malicious.
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For case 1, Vlead does not send its final_pkt to the RSU, while VantiLead sends its

final_pkt to RSU. Under such condition, the RSU considers the road condition based on the

event of the final_pkt from VantiLead only. Hence, the decision remains non-malicious and

the model prevents blackhole attack.

For case 2, assume Vlead accepts {V1,V2,V3,V4,V5} for the cluster, I001, and discards

the packets of {V6,V7,V8}. Furthermore, Vlead does not broadcast the Prestige group packet.

Upon not receiving the Prestige group packet from the Vlead, {V6,V7,V8} broadcasts a

join_req to join the non-malicious cluster, I002, under VantiLead. The RSU considers Vlead

to drop packets if the following condition holds: if {V6,V7,V8} ∈ join_list of I002 and ∉

leave_list of I001.

Consequently, the RSU considers Vlead and I001 to be malicious and evaluates the

decision and VT_score accordingly.
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7.3. ON-OFF ATTACK

Let us consider two cases of on-off attacks that are possible:

• Case 1: Possible switch from non-malicious cluster (say I002) to malicious cluster

(say I001).

• Case 2: Possible switch from I001 to I002.

For case 1, we analyze three possible scenarios based on the number of vehicles in

a non-malicious cluster, non_malnum, and in malicious cluster, malnum:

• non_malnum < malnum : In such cases, the malicious vehicle in I002 calculates the rF

value which is always less than 1. Thus, it does not leave the cluster.

• non_malnum > malnum: In such cases, the malicious vehicles in I001 calculate the

relevanceValue, which while accepting vehicles, is always less than 0.5. Hence, the

vehicles in I001 do not provide consent to the requesting vehicles to switch cluster.

The RSU detects the malicious group using the leave_list and join_list of the 2

clusters.
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• non_malnum = malnum : In such cases, a vehicle calculates the rF value proposed in

the model as shown in Figure. 9 to send requests to I001. However, vehicles at I001

calculate relevancyValue and provide consensus accordingly.

For case 2, the vehicles at I002 being non-malicious accept every requesting Vid. The RSU

examines the join_list of I002 and makes the decision. Thus, the proposed model performs

effectively against on-off attacks.

7.4. MESSAGE INTEGRITY, MASQUERADING AND SYBIL ATTACK

To forge vehicular data, one has to deduce key1 or key2. The number of possible

combinations in AES 128 bit is 2128. A fastest supercomputer, performing around 1000

checks per second approximately takes around 1 billion years to brute-force the keywhile the

biclique attack [21] requires a computational complexity of 2126.1, which is highly unlikely

to break in real-time. Thus, using AES 128 bit, vehicular data is less likely to suffer from

message integrity attack. The keys, key1 and key2, are also encrypted using a [12] whose

difficulty is based on discrete logarithm problem [22].

An attacker can forge the signature only if it knows reg_private_key of an attacked

Vid or through hash collision attacks. However, SHA-3 [23] is resilient Thus, the proposed

model resists masquerading, sybil, and message integrity attacks.

8. CONCLUSION

We propose an incentive based data authentication and trust management system to

prevent attacks such as sybil, false data injection, message spoofing, on-off, bad-mouthing,

ballot stuffing, and masquerading in VANETs. The proposed model effectively validates

traffic related information under the influence of malicious vehicles, in the presence of

at least one non-malicious vehicle. We also propose a trust score metric, referred to as
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VT_score to determine the trustworthiness of a vehicle and introduce a filtering strategy,

known as Υ to 50 bait strategy, that has been leveraged to filter malicious vehicles and their

responses.
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ABSTRACT

Vehicular Ad-hoc Networks (VANETs) allow vehicles to share traffic-related events

such as congestion to improve the driver’s safety and comfort. However, due to the untrusted

vehicular network environment, determining the credibility of broadcast messages becomes

crucial and challenging. In this paper, we propose an incentive-based distributed trust

management system with a secure event detection model employing the Byzantine fault-

tolerant Paxos algorithm and game theory. The novelty of the proposed model lies in its

ability to validate the accuracy of the broadcast information when the malicious vehicles

form the majority compared to non-malicious vehicles within the ROI, unlike the state-of-

the-art models. The proposed system’s feasibility and effectiveness have been validated

using the VENTOS, SUMO, and Omnet++ simulators by comprehensively addressing all

possible use-case scenarios, and under the influence of at least one non-malicious vehicle

at each RSU.

1. INTRODUCTION

Vehicular ad-hoc network (VANET) facilitates the dissemination of safety informa-

tion to nearby vehicles through vehicle-to-everything (V2X) communications. The motiva-

tion for information exchange within the VANET is to ensure driver comfort and safety, as
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well as to assist other vehicles, such as emergency vehicles, into taking the shortest route to

its destination based on the traffic event in a region. However, malicious vehicles can inject

false or fabricated information within the network to disrupt the traffic scenario or a region.

Owing to the connectivity of the vehicles within the network through V2X communication,

an attacker can compromise a vehicle remotely such as the remote hacking of jeep Cherokee

[1] and utilize it to propagate or infect other vehicles within the network. A comprehensive

analysis to preserve the privacy, authenticity, and security of the messages disseminated in

VANET has been given in [2]. It becomes challenging to detect the malicious vehicles and

traffic conditions when the attack propagation within the network compromises the majority

of the vehicles deployed within the region of interest (ROI). This situation can also occur

when a malicious vehicle tries to form a majority by providing incentives to other vehicles

to report.

Centralized solutions involving the use of a trusted centralized entity (TA) have

been proposed [3] to thwart the impact of malicious vehicles within the network. Such a

solution is widely effective in regions of continuous connectivity with the TA. However,

the efficacy of these solutions degrades in a rural transportation system due to limitations

in the connectivity of the vehicles to the TA at every time. Additionally, in a centralized

architecture, communication with the TA may add to latency in decision making due to

network congestion, and reduce the reliability of the system with the prospect of a single

point of failure.

In such a case, a distributed solution adapts to the demands of secure message

dissemination, and identification of malicious vehicles without a trusted centralized entity.

With the popularity of the blockchain in recent years, researchers have extensively ana-

lyzed the application of blockchain for secure message dissemination within VANETs. A

blockchain integrated VANET architecture consists of 3 major layers: a vehicle layer (or

vehicular plane), a roadside unit (RSU) layer (or RSU plane), and a blockchain hosted by

the infrastructure [4, 5, 6, 7, 8, 9] responsible for computing the trustworthiness of the
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vehicle and the validity of an event recorded. However, a traditional blockchain-assisted

VANET cannot provide valid information from the ROI if the majority of the vehicles are

compromised through attack propagation.

To address these challenges, in this paper, we have proposed a BLockchain Assisted

Misbehavior detection and Event (BLAME) validation framework that is capable of vali-

dating event information from the ROI, even when the majority of the vehicles within the

network are malicious, and if a malicious vehicle appears as a ghost vehicle. In BLAME,

we have involved all the 3 major components as considered in traditional architecture. The

RSUs are responsible for hosting and adding the blocks into the blockchain whereas the

vehicles send encrypted neighbor information to the RSUs for efficient detection of an event

by the RSUs. The main contribution of BLAME are as follows:

• First, we propose a secure and privacy-preserving misbehavior detection and event

validation scheme in VANET. In our scheme, we leverage the pseudo-identity, pub-

lic key infrastructure, and timestamp information to resist various attacks on the

disseminated information within the network.

• Second, we propose a new algorithm called Aggregated Vehicle Density (AVD) and

neighbor aggregation (NeA). The AVD is used to determine the event of an ROI and

identify malicious vehicles within the network by analyzing the encrypted neighbor

and event information received from the vehicles. The NeA is used to determine the

aggregated neighbors of 2 vehicles with conflicting reported events.

• Third, we propose a new consensus mechanism based on the authenticity of the vehi-

cle, the timestamp information, and the complaint information by any vehicle against

any RSU to identify any compromised or malicious RSUs within the blockchain

network.
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• Fourth, we validate the efficacy of BLAME through extensive simulations by con-

sidering possible use case scenarios in the VENTOS [10] simulator and a simulated

blockchain environment.

2. RELATED WORK

Singh et. al [4] proposed an incentive-based trust management scheme for event

detection and validation among the vehicles using sharded blockchain network deployed

within the RSUs, and by using smart contracts. The purpose of the sharded blockchain is

to reduce the propagation delay and to reduce the work-loads from the main maintained

blockchain. However, the proposed framework is effective for event validation only when

the malicious nodes at the vehicle plane (vehicles) are in minority. The proposed framework

is also vulnerable to collusion attack among the vehicles and the RSUs, the Sybil attack by

the vehicles at the vehicle plane, and also data manipulation attack.

A voting blockchain-based message dissemination involving the reputation of vehi-

cles [6] and a multihop incentive-based solution is proposed in [11] where several vehicles

vote for a particular message. If the vote is above a threshold, it is considered authentic.

However, the proposed model is vulnerable to ballot stuffing or bad-mouthing attacks where

a group of malicious vehicles colluding can purposefully elevate the reputation of another

malicious vehicle or lower the reputation of a legitimate vehicle. Also, a malicious vehicle

can perform a blackhole attack and drop an endorsed packet without forwarding it.

Lu et al. [12][13] proposed a blockchain-based trust management framework

(BARS) where the reputation of the vehicle was determined based on previous interac-

tions. However, the proposed model is vulnerable in a situation where a vehicle performs

an on-off attack, i.e., a vehicle with a higher reputation injects false information within the

network. DrivMan [14] is a trust management framework where the reliability of the data

originating from a registered source is ensured using physical unclonable functions (PUF).

However, DrivMan does not deal with message validation and is not effective if a registered
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vehicle reports a false message to the RSUs. Nisha et al. proposed a blockchain framework

[5] for identity authentication and revocation in VANETs but fails to validate information

generated by the vehicles. They also proposed a secure message exchange framework in

blockchain [9] where the credibility of the vehicle is determined by comparing the packet de-

livery rate, received signal strength indicator as well as a partnership for renewable against a

threshold value. However, it cannot validate the information originating from the malicious

vehicles which have the values of the mentioned parameters above the threshold. Mostafa

[7] proposed a general framework for detecting malicious vehicles within VANET. In the

proposed framework, the blockchain network is maintained by the vehicles at a region, and

the information is validated by matching the length of the data sent by the vehicle trying to

join the network. However, the proposed model is vulnerable if the existing vehicle within

the network is malicious and purposefully does not allow a legitimate vehicle from joining

the network.

Khelifi et al. [8] proposed a reputation-based blockchain mechanism to secure

information and data forwarding as well as content caching. In the proposed blockchain

framework, a look-up table is maintained to store the reputation of the authentic vehicles

that are used to validate the information. However, the proposed model is vulnerable to an

on-off attack where a malicious vehicle with a higher reputation injects false information

or it purposefully reduces its reputation and thereafter injects correct information which is

neglected using the framework. The proposed model is also vulnerable to an attack led by

the collusion of malicious vehicles.

In BLAME, we overcome the limitations of the state-of-the-art models and ensure

the security of information as well as validation of the information both at the vehicle plane

(i.e., the information obtained from the ROI) as well as at the RSU plane that maintains the

blockchain. Furthermore, BLAME can handle situations when the majority of vehicles at

the vehicle plane are malicious or compromised.
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Figure 1. Architecture of BLAME

3. SYSTEM, ASSUMPTIONS, AND THREAT MODEL

3.1. SYSTEM ARCHITECTURE

A detailed description of the components of Figure 1 is as follows:

• Blockchain: In BLAME, we use the consortium blockchain that is hosted by the

RSUs deployed within the ROI. The vehicles can download the updated blockchain to

validate the entry of information. However, the RSUs are the only miner nodes in our

proposed model. For reaching the consensus under the influence of malicious RSUs

within the blockchain network, we analyze the complaint information submitted by

any vehicle against any RSUs as well as the legitimacy of the vehicle submitting the

information. Each block consists of the sender id, the hash of the previous block, the

timestamp of the block generation, the hash of the information generated using the

hash function sent by the sender, and an index to the storage pool.

• Storage pool: The storage pool maintains detailed information of the vehicle sending

the information. It stores the index pointed by the blockchain, the hash of the sender,

the sender id, the event reported by the sender, and the neighbor information sent by

the vehicle.
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• Registration Authority (RA): To ensure the legitimacy of the entities, every vehicle

as well as the RSUs are registered with unique public and private key pair with the

RA before entering into the VANET communication.

• Elgamal Digital Signature Scheme (EGDSS) [15]: The public and private key param-

eters for every vehicle that are registered with the RA is generated using the EGDSS

as explained in section IV.A.

• Elgamal Encryption System [15]: The RSUs within the ROI generate a cyclic group,

G of order q with a generator, G . An RSU within the ROI chooses a secret integer,

G private ∈ {1, ..., 𝑞 − 1}, shares it with all other RSUs within the ROI, and calculates,

G public = (𝐺,G , 𝑞, 𝑟), where 𝑟 = G G private .

• AggregatedVehicleDensity (AVD):We proposed a new algorithm,AVD, to determine

the traffic event of the ROI and also to determine the malicious vehicles within the

network. To determine AVD, we define a parameter called neighbor aggregation

(NeA), which is calculated between a pair of vehicles reporting conflicting events or

present within the same location, as follows:

Let Vmi be the neighbor list reported by a vehicle Vi. For every vehicle Vj in Vmi

reporting conflicting events, the NeA is calculated as:

𝑁𝑒𝐴(𝑉 i, 𝑉 j) = 𝑡𝑟𝑢𝑒

From NeA, the AVD is calculated as follows:

𝐴𝑉𝐷k =



𝐴𝑉𝐷k-1
⋃(𝑉 i⋃𝑉 j), 𝑉 i, 𝑉 j ∉ 𝐴𝑉𝐷k-1

𝐴𝑉𝐷k-1
⋃
𝑉m
i, 𝑉 i ∉ 𝐴𝑉𝐷k-1,

𝐴𝑉𝐷k-1
⋃
𝑉m
j, 𝑉 j ∉ 𝐴𝑉𝐷k-1,

𝐴𝑉𝐷k-1, 𝑉 i, 𝑉 j ∈ 𝐴𝑉𝐷k-1
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where AVD consists of the vehicle ids which are considered for calculating the vehicle

density of the ROI. The AVD is calculated using incremental approach, i.e., AVD at

kth comparison is calculated using the AVD at (k-1)th comparison.

3.2. ASSUMPTIONS

The assumptions in BLAME are as follows: 1) Majority of the RSUs are trusted

entities. 2) The information is shared by the vehicles and the RSUs with the RA through

a secured channel. 3) The proposed model cannot be used for real-time decision-making

such as lane changing. 4) The packets from the non-malicious vehicles (even if they

form the minority) must reach the ROI for accurate event detection and malicious vehicle

identification. 5) The traffic event considered in our work can either be congested or non-

congested. 6) The velocity log cannot be modified by the vehicles. 7) The safety distance

is uniform and is generally fixed by the department of transportation. 8) The transmission

range of the vehicles within the ROI is uniform.

3.3. THREAT MODEL

The malicious vehicles within the ROI can do the following: 1) inject false infor-

mation within the network by manipulating the event recorded by it. 2) drop the packet of

the nearby non-malicious vehicles. 3) replay the encrypted neighbor packet of one vehicle

to other vehicles. 4) collude with other malicious vehicles (to form a majority) within the

ROI to disrupt the traffic monitoring of the ROI.

The malicious RSUs within the ROI can do the following: 1) drop the information

sent by the non-malicious vehicle 2) modify the content of the information reported by

the malicious vehicle. 3) add false information about the non-malicious vehicles into the

storage pool.
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Figure 2. Overview of BLAME

4. PROPOSED BLAME MODEL

In BLAME, we deploy a distributed blockchain network among the RSUs to identify

the traffic event from the ROI under the influence of malicious vehicles and RSUs by

following the steps shown in Figure 2.

4.1. REGISTRATION WITH RA

Every Vid must be registered with the RA for VANET communication. The regis-

tration takes the following steps:

• A Vid chooses a large prime,P , a hash function,H and a primitive root, 𝛼, modulo

P such that:

𝛼k ≡ A (𝑚𝑜𝑑 P) (1)

where A is relatively prime toP with value between 1 − (P − 1), i.e., 𝛼 ∈ Z*P ,

and k ∈ Z.

• The Vid chooses a secret key,X , and calculates :

𝛽 ≡ 𝛼X (𝑚𝑜𝑑 P) (2)



94

Figure 3. Phase 1 communication flow

• The Vid shares (P , 𝛼, 𝛽,H ) with the RA, while keepingX private.

This phase of the proposed framework ensures that no malicious vehicle can perform any

masquerading attack while sending the information.

4.2. PHASE 1: ENTITY AUTHENTICATION

The event information request is dissipated via the RSUs within the RO. The RSUs

dissipate G public, its digital signature, rsuSign, generated using its registered private key,

PrikrsuID and the rsuID within the ROI.

A vehicle, Vid, that wants to share its information with rsuID communicates with

the RA using a secured communication channel to determine the authenticity of rsuID using

its rsuSign. If it is found authentic, the vehicles sends the vehicle_info packet to the rsuID

by encrypting it with G public as shown in Algorithm 7.

𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑖𝑛 𝑓 𝑜 = G public(𝑉 id, 𝑉 idsign)
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where, Vidsign is the digital signature of Vid generated as shown below.

R = 𝛼k(𝑚𝑜𝑑 P) (3)

𝑠 = 𝑘 -1(H (𝑉 id | |𝑡gen) −X .R) (𝑚𝑜𝑑 P − 1) (4)

𝑉 id
sign = (H (𝑉 id | |𝑡gen),R, 𝑠, 𝑡gen)

where k is a secret random integer relatively prime to P − 1 and tgen is the timestamp

when the Vidsign is generated. The purpose of the tgen is to prevent any malicious RSU from

performing replay attack using the Vidsign of a non-malicious vehicle later. This has been

analyzed in section VI.a. The vehicle_info sent by the Vids is stored for future reference.

Algorithm 7 Encryption using G public

1: Input: M(vehicle_info/ tokenPkt/ eventPkt), (𝐺,G , 𝑞, 𝑟)
2: Output: Cipher text, (cipher1,cipher2)
3: Msg: Mapping M→ 𝑚 ∈𝐺, y∈ {1...𝑞 − 1}
4: 𝑠 = 𝑟y, 𝑐𝑖𝑝ℎ𝑒𝑟1 = G y, 𝑐𝑖𝑝ℎ𝑒𝑟2 = 𝑀𝑠𝑔 · 𝑠
5: return (cipher1,cipher2)

The rsuID after receiving the vehicle_info, decrypts it using G private as shown in

Algorithm 8, authenticates the Vid by sending Vid and Vidsign to the RA. The RA checks

if 𝛽R .Rs(𝑚𝑜𝑑 P) ?≡ (𝛼H (Vid | | tgen)(𝑚𝑜𝑑 P)) (𝑚𝑜𝑑 P). If it matches, Vid is declared

authentic else it is declared malicious. It is to be noted that the rsuID does not know

the (P , 𝛼, 𝛽,H ) corresponding to Vid. If the Vid is authentic, the rsuID stores the Vid,

time of the request and the location of the vehicle as a record for future reference. The

communication flow of Phase 1 is shown in Figure 3.
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Algorithm 8 Decryption using G private

1: Input: (cipher1,cipher2), (𝐺,G , 𝑞, 𝑟), G private
2: Output: M(vehicle_info/ tokenPkt/ eventPkt)
3: Msg: Mapping M→ 𝑚 ∈𝐺, y∈ {1...𝑞 − 1}
4: 𝑠 = 𝑐𝑖𝑝ℎ𝑒𝑟1G private
5: Compute 𝑠-1 using Extended Euclid’s Algorithm [16]
6: Msg= 𝑐𝑖𝑝ℎ𝑒𝑟2 · 𝑠-1
7: M: Map back every 𝑚 ∈𝐺 in Msg.
8: return M

4.3. PHASE 2: VEHICLES COLLECTING NEIGHBOR PACKETS AND SENDING
INFORMATION TO RSU

In this phase, a vehicle generates tokenPkt, and dissipates it to the vehicles within

its transmission range. Thereafter, the vehicles wait for 𝛿 amount of time to receive

the tokenPkt/s transmitted by the nearby vehicles, which is abbreviated as tokenPkt’/s.

Subsequently, it generates the eventPkt encrypted with G public consisting of the information

mentioned below and sends it to the RSU. The Vid also sends a hash function, hf, to

the RSUs which is leveraged in Phase 4, along with the location of the vehicle, Loc.

The event,Vid
sign,timestamp together is referred to as the information part (infoid) which is

leveraged in Phase 4.1. The timestamp is the time when eventPkt is generated.

𝑖𝑛 𝑓 𝑜id = 〈𝑒𝑣𝑒𝑛𝑡,𝑉 id, 𝑉 idsign, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝〉

𝑡𝑜𝑘𝑒𝑛𝑃𝑘𝑡 = G public(𝑖𝑛 𝑓 𝑜id)

𝑒𝑣𝑒𝑛𝑡𝑃𝑘𝑡 = G public(𝑖𝑛 𝑓 𝑜id, 𝐿id, 𝑡𝑜𝑘𝑒𝑛𝑃𝑘𝑡′/𝑠, 𝐿𝑜𝑐, 𝜌, ℎ 𝑓 , 𝑟𝑎𝑑)

𝜌 =
(𝑛vehicles ∗ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒_𝑅𝑂𝐼_𝑙𝑒𝑛𝑔𝑡ℎ)

𝑣𝑒ℎ𝑖𝑐𝑙𝑒_𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑟𝑎𝑛𝑔𝑒

where 𝜌 is the vehicle density calculated by the vehicle, nvehicles is the number of vehicles

observed by a vehicle within its sensing range, 𝐿id is the lane id of the ROI (1 being the

farthest left and n being the farthest right in a n-lane ROI) approximate_ROI_length is the ap-
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proximate length of the ROI for which the traffic is being monitored, vehicle_sensing_range

is the length till which the OBU of the vehicles can sense other vehicles, and event is the

traffic event (whether congested/non-congested) that is observed by the vehicle. rad is the

untamperable radar distance (in front of the vehicle) calculated by a Vid.

This may happen that a vehicle may perceive more number of vehicles within its

transmission range than received tokenPkts. This scenario has been analyzed later in this

paper in the AVD algorithm analysis under Section VI.(E). Under such a scenario, rad is

leveraged to identify the number of vehicles within the region.

4.4. PHASE 3: DECISION MAKING BY RSU USING AVD ALGORITHM

The RSUs after receiving the eventPkts from the Vids, decrypts it using Algorithm

8, and check whether the Vid is in the revoked vehicle list. If it is present, the RSU discards

the information else it accepts it. In BLAME, there is a predefined value, Vthreshold, that

determines the event of the ROI after receiving the information from the vehicles. In other

words, if the total number of vehicles at the ROI detected is greater than Vthreshold, then the

ROI is congested else it is non-congested. For determining the number of vehicles at the

ROI, we use the eventPkt information sent by the vehicles along with the proposed AVD

algorithm to determine the number of vehicles at the ROI.

The RSUs extracts the event and neighbor information from the eventPkt of the

Vids using G private (Algorithm 8). Thereafter, it forms the DSG as defined in [3]. In the

DSG, any Vid, V1, that has received the tokenPkt of another Vid, V2, has an undirected edge

between, which shows that they are within the transmission range of each other (neighboring

vehicle). For any pair of vehicles, Vi and Vj, with conflicting event recorded, congested and

non-congested respectively, in the DSG, we set the NeA(Vi,Vj) to true (Algorithm 9, lines

4-5) and the AVD of the ROI is calculated using Algorithm 9 (lines 6-11). If the number of

Vids returned in Algorithm 9(line 15) is greater than V_threshold, then the traffic condition

of the ROI is determined as congested else it is non-congested.
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Algorithm 9 NeA and AVD Algorithm
1: Input: eventPkt of all vehicles
2: Output: NeA if exists, number of Vids at ROI
3: 𝐴𝑉𝐷0 = ∅, 𝑘 = 1, 𝑉ml = neighbors of Vl
4: for number of eventPkt received do
5: if Vj ∃ Vmi then
6: if Vi and Vj report conflicting events then
7: 𝑁𝑒𝐴(𝑉 i, 𝑉 j) = 𝑡𝑟𝑢𝑒
8: if 𝑉 i, 𝑉 j ∉ 𝐴𝑉𝐷k-1 then
9: 𝐴𝑉𝐷k = 𝐴𝑉𝐷k-1

⋃(𝑉 i⋃𝑉 j)
10: else if 𝑉 i ∉ 𝐴𝑉𝐷k-1 & 𝑉 j ∈ 𝐴𝑉𝐷k-1 then
11: 𝐴𝑉𝐷k = 𝐴𝑉𝐷k-1

⋃
𝑉m
i

12: else if 𝑉 j ∉ 𝐴𝑉𝐷k-1 & 𝑉 i ∈ 𝐴𝑉𝐷k-1 then
13: 𝐴𝑉𝐷k = 𝐴𝑉𝐷k-1

⋃
𝑉m
j

14: 𝐾 + +
15: return number of Vids at ROI

In BLAME, we use Algorithm 10 to identify the malicious vehicles within the ROI.

According to the algorithm, if a vehicle, Vi is in the neighbor list of another vehicle, Vj, then

both the vehicles are within the transmission range of each other and recorded conflicting

events. Therefore, Vj must also be present in the neighbor list of Vi (Algorithm 10, lines

5-8). If not, Vi is identified as malicious. Algorithm 10 ensures that BLAME is resilient to

packet drop attack.

Additionally, this may happen that the malicious Vids may collude and some of

the Vids may appear as ghost vehicle, where a ghost vehicle is defined as a vehicle that is

not authenticated with the RSU before entering the ROI and does not broadcast tokenPkt

within the network. As a result, even if they contribute to a congestion at a particular

lane within the ROI, they cannot be traced. Under such a circumstance, a non-malicious

Vid, Vi, reports higher value of 𝜌 with lesser number of tokenPkt/s and report a region as

congested. To handle this issue where NeA(Vi,Vj) is set to true for a malicious Vj, the RSU

will calculate the average distance between the Vids in a particular lane, 𝑎𝑣𝑔𝑅𝑎𝑑i, using the

rad information of the Vids as shown in equation 5 and compare it with the safety standards
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defined in [17], which we term as safetyDist. Thus, if the 𝑎𝑣𝑔𝑅𝑎𝑑 of a lane is greater than

safetyDist then the road is non-congested, else it is congested even if the number of Vids

using AVD is determined to be less than Vthreshold, and the Vids reporting contradictory

event is entered into revoked_vehicle_list. The avgRad information alone may be sufficient

to determine the event of the ROI, but insufficient to identify the malicious Vids from the

ROI without the AVD algorithm.

𝑎𝑣𝑔𝑅𝑎𝑑 =

𝑛∑︁
𝑖=1

𝑛𝑢𝑚∑︁
𝑗=1

𝑟𝑎𝑑j

𝑛𝑢𝑚
(5)

where 𝑛𝑢𝑚 is the number of tokenPkt/s or rad information received and 𝑛 is the number of

lanes in the ROI. In equation 5, we find the distance between the vehicle for each lane.

Algorithm 10 Identifying Malicious Vehicles.
1: Input: NeA of any 2 vehicles, Vi and Vj
2: Output: revoked_vehicle_list
3: 𝑉ml = neighbors of Vl, revoked vehicle list= ∅
4: for 2 vehicles, Vi and Vj, if NeA(Vi,Vj) do
5: if Vi∈ Vmj & Vj∉ Vmi then
6: revoked vehicle list.add (Vi)
7: else if Vj∈ Vmi & Vi∉ Vmj then
8: revoked vehicle list.add (Vj)
9: return revoked vehicle list

This phase in BLAME ensures that the RSUs are able to determine the traffic

condition of the ROI using the neighbor information under the influence of malicious

vehicles (even under majority presence) or if some malicious vehicles appear as ghost

vehicles. Also, this phase ensures that BLAME is resilient to packet drop attack, false

information injection attack, and masquerading attack.
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4.5. PHASE 4: BLOCKCHAIN NETWORK: CONSENSUS MECHANISM, BLOCK
GENERATION AND ADDITION, IDENTIFYING MALICIOUS RSUS

In this phase, the RSUs add the block consisting of the Vids that sends the eventPkt,

the hash of the infoid corresponding to the Vid, an index to the storage pool, hash of the pre-

vious block, and timestamp of when it receives the eventPkt from the Vid into the blockchain

as shown in Figure 4. For adding a block into the blockchain, every RSUs within the ROI

needs to have a consensus about the event, and the malicious vehicles detected. Since the

RSUs are connected in the blockchain, the eventPkt of the vehicles has to be distributed to

all the RSUs so that every RSU can identify the malicious vehicles and determine the traffic

scenario of the region independently using Algorithm 9 and 10.

Phase 4.1: POW by the multiple RSUs

Ifmore than oneRSUwants to add the same block of information into the blockchain,

the RSUs solve a proof-of-work (POW). In our framework, for a POW, the RSUs have to

generate a hash of the block to be mined based on the mining difficulty value and a nonce

value. A mining difficulty value is defined as the hash value generated by the blockchain

nodes (RSU) which are preceded by a certain number of 0s. For example, a mining diffi-

culty value of 4 indicates that the RSUs need to generate a hash of the data block which

is preceded by 4 0s. A nonce value is used while generating the hash and is also used

for verification during the consensus algorithm. The RSU that solves the POW first, say

RSUpMiner, becomes eligible to become the miner node, and sends the solution of POW to

all other RSUs in the blockchain network for consensus.

Phase 4.2: Consensus algorithm among the RSUs

As the RSUs are connected within the blockchain, the information from all the

eventPkts along with the RSU that received it is shared among every other RSUs. For

providing the consensus, every individual RSU verifies the following:
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Figure 4. Phase 4 workflow

• If a complainPkt (explained in Phase 4.3) has been received against RSUpMiner and

it is found to be malicious (the possibility of which has been described in the next

subsection, Phase 4.3).

• If the POW solution is valid or not, i.e., it has correctly generated the hash using the

nonce value.

• If the Vidsign contained in the infoid field and tokenPkt/s of every eventPkt correspond-

ing to a Vid
?
= valid, through the aid of the RA.

• For every eventPkt corresponding to a Vid, if hf(infoid), event reported by the Vid and

timestamp information matches with the information available to the RSU verifying

the block.

• If the event detected within the ROI and the revoked vehicle list is consistent among

all the RSUs.
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If all the above criteria satisfy, a consensus from at least the majority of the RSUs within the

network is received by RSUpMiner, which adds the data block into the blockchain consisting

of the information shown in Figure 4. A corresponding entry with the information of all

the Vids is made into the storage pool as shown in Figure 4.

Phase 4.3: Identifying Malicious RSUs

In this phase, a Vid downloads the updated blockchain to see whether its information

from the eventPkt has been registered or not. If it finds that the information has not been

registered into the blockchain, it resends the eventPkt to the nearby RSU within the ROI.

Under such circumstance, the RSUs re-analyze the received eventPkts of the Vids using

AVD algorithm to determine the event of the region. If the re-analyzed event is different

from the recorded event in the blockchain, Phase 4.2 and Phase 4.3 are repeated and a new

entry is made into the blockchain.

If it is registered, it checks whether the hashid in the block recorded by RSUminer for

the Vid matches with its own hash of infoid. If it matches, then the Vid uses the index field

of the block to access the storage pool and check whether the event matches with the event

sent by the Vid. If the event at the corresponding index in the storage pool is the same as

recorded by the Vid, it takes no further action.

However, if the hash in the block or the event in the storage pool does not match,

it sends the complaintPkt to the nearby RSU consisting of the contents of the eventPkt and

the rsuID to which it had to send the eventPkt in Phase 2. The Vid will keep updating the

latest blockchain and sending the eventPkt( or the complaintPkt if there is a mismatch) until

it is correctly registered into the blockchain.

𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑃𝑘𝑡 = (〈𝑒𝑣𝑒𝑛𝑡𝑃𝑘𝑡〉, 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛_𝑟𝑠𝑢𝐼𝐷)

where complain_rsuID is the rsuID to which it had send the eventPkt in Phase 2.
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On receiving the complaintPkt from the Vid, the RSUs re-analyze the eventPkts

of the Vids along with the complaintPkt to determine the event of the region. If the

event remains the same as before, it checks whether the information (hashid) entered into

the blockchain and the event recorded at the corresponding index in the storage pool is

consistent or not. If it is consistent, the RSUs ignores the complainPkt of the Vid and adds

Vid into the revoked vehicle list. This may happen if the Vid is malicious and maliciously

sends complainPkt against a rsuID. However, if the information is not consistent, the RSU

with the rsuID mentioned in the complaintPkt is marked as compromised and is removed

from the blockchain network. Thereafter, Phase 4.1, 4.2, and 4.3 are repeated, where a new

RSUpMiner is selected that updates the blockchain with the new information.

The use of blockchain in BLAME brings transparency to the vehicular plane where

the decision-making information is available to the Vids unlike the state-of-the-art frame-

works, where a vehicle has to solely rely on the decision made by the centralized entity or

the RSUs. Furthermore, the timestamped information in the blockchain brings transparency

among the RSUs, provides resiliency against repudiation attack (where a malicious RSU

may deny adding some incorrect information), and also bring immutability to the eventpkt

of the Vids. This phase also ensures that the malicious RSUs within the network is not able

to perform packet drop attack against any non-malicious Vid, and also makes the framework

resilient to any false AVD calculation attack that any malicious rsuID may perform while

determining the event of the ROI.

5. EVALUATIONS AND EXPERIMENTAL RESULTS

The effectiveness of the proposed framework has been validated through extensive

simulations using Ventos [10] where the road network was simulated using SUMO [18]

and the networking was simulated using Omnet++. The blockchain among the RSUs was

emulated as shown in [19]. Three machines with the configurations as mentioned in Table

1 was emulated as the RSUs of the network. The efficiency of our proposed framework in
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identifying the malicious vehicles and determining the traffic condition of the region was

tested against different percentages of malicious vehicles within the network using different

simulation parameters.

Table 1. Simulation Parameters

Beacon Interval 4 seconds

Number of vehicles 10-50

Communication Dedicated Short Range Communication (DSRC)

Interference distance of vehicles and RSUs 510.5 metres (default simulator value)

Blockchain node 1(RSU 1) configuration Intel Core I5-9300H (2.4GHz), 8gb RAM

Blockchain node 2(RSU 2) configuration Intel Core i3-4005U (1.7GHz), 8gb RAM.

Blockchain node 3(RSU 3) configuration Intel Xeon E5-1620 (3.7 GHz), 16gb RAM

Bitrate 3 Mbps

Table 2. Security Comparison

Security attacks [4] [11] [7] [13] BLAME
MITM X 7 7 X X
Collusion 7 X 7 7 X

False data dissemination — — — — X
Non-Repudiation X X X X X

Majority Malicious Vehicle 7 7 7 7 X
On-Off X 7 X X X

Ballot Stuffing 7 7 7 7 X
Bad Mouthing 7 7 7 X X
Masquerading X X X X X
Packet Drop X X 7 X X
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Figure 5. Essential Packet needed for identifying malicious Vid

In Table 2, we compare the security features of BLAME against some of the event

validation state-of-the-art models [4][11][7][13]. As we can see from Table 2, the state-of-

the-art models handle some of the attacks listed but not all the attacks at the same time. It

is also important to notice that none of the models can provide accurate event information

from the ROI if the malicious vehicles form amajority within the network. As a result for all

of the proposed models, if the malicious vehicles perform false information dissemination

attack within the network, the detection efficacy is highly conditional (represented using

—), as they can detect the event only if the majority of the vehicles are non-malicious.

During the simulations, it was seen that the proposed AVD algorithm can identify

the malicious vehicles and the event from the ROI if the RSUs can receive the Essential

Packets. Essential Packets is defined as the packets that are sent from the malicious vehicles

to the non-malicious vehicles and vice versa. To identify the malicious vehicles and the

event from the ROI, the number of packets required is determined using equations 6 and 7.

𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠_𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 = (𝑥% 𝑜 𝑓 𝑁) ∗ (𝑦% 𝑜 𝑓 𝑁) ∗ 2 (6)
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Figure 6. Essential Packet percentage compared to total number of packets under varying
malicious vehicles

𝐸𝑣𝑒𝑛𝑡 = (𝑥% 𝑜 𝑓 𝑁) ∗ (𝑦% 𝑜 𝑓 𝑁) (7)

In equations 6 and 7, x is the percentage of malicious vehicles while y is the per-

centage of non-malicious vehicles out of a total number of N vehicles. In other words,

to detect the event from the ROI we will need to obtain the packets only broadcast by the

non-malicious vehicles. This may result in incorrect identification of malicious vehicles.

Thus for accurate identification of the malicious vehicles, we need to obtain all the Essen-

tial Packets. It can be seen from Figure 5 that the requirement of Essential Packets for

correct identification of the malicious vehicles within the network increases as the number

of vehicles increases. This is because there is more number of packets exchanged between

the malicious and the non-malicious vehicles. It can also be seen that with the increase

in the number of vehicles, as the difference between the percentages of malicious and

non-malicious vehicles in the network decreases, it results in a bell-shaped curve. This
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is because the lesser difference in percentages signifies approximately an equal number

of malicious and non-malicious vehicles within the network. As per the definition of the

Essential Packet, this results in a higher generation of essential packets within the network,

which is required to identify the malicious vehicles. However, it can also be seen from

Figure 6 that the scalability of the proposed framework concerning the size of the network

remains uniform. It can be seen from Figure 6 that even if the number of vehicles within

the network increases, the identification of the malicious vehicles and the event within the

network requires almost the same percentage of packets (Essential Packets) compared to

the total number of packets within the network. Thus, the proposed model is suitable for

urban to the rural transportation system. The number of Essential Packets required to detect

the event is half than that is required to identify the malicious Vids. Hence, if the malicious

Vids are identified, the event from the ROI is detected accurately.

Table 3. Vehicle Detection Accuracy

Attack Type Mean Accuracy (in %)
Type-I 100
Type-II 78.5
Type-III 49.7

Table 4. Essential Packet Receiving Rate

Parameters Essential Packet Received Parameters Essential Packet Received
〈5,5,10〉 Yes (100%) 〈15,5,20〉 No (65.7%)
〈10,5,10〉 No (77.8%) 〈15,10,20〉 No (78.6%)
〈10,10,10〉 No (93.3%) 〈15,15,20〉 No (88.1%)
〈10,15,10〉 Yes (100%) 〈15,20,20〉 No (94.8%)
〈15,5,10〉 No (65.24%) 〈15,25,20〉 COR
〈15,10,10〉 No (73.3%) 〈15,20,30〉 No (94.8%)
〈15,15,10〉 COR 〈15,25,30〉 Yes (100 %)
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The performance of our AVD algorithm in detecting the number of vehicles at the

ROI was also tested using the NGSIM dataset (U.S. Department of Transportation Federal

Highway Administration 2016) available in [20]. Since, it is not an attacked dataset, we

simulated every odd numbered Vid as an attacker and calculated the number of vehicles at

the ROI using AVD by leveraging theGlobal Time information available under the influence

of the malicious Vids. The type of attacks simulated are described below:

• Type I attack: In this attack, all the malicious Vids at every Global Time are modified

to drop the tokenPkt of the Preceding and Following Vid within the dataset, where

the tokenPkt comprises of the Vid contained in the Preceding and Following field.

However, they send the eventPkt to the RSU.

• Type II attack: In this attack, all the malicious Vid at every Global Time does not

send the eventPkt to the RSU. However, they send the tokenPkt to the neighboring

Vid. This is simulated by dropping the odd-numbered Vid from the dataset.

• Type III attack: In this attack, the malicious Vid does not send the tokenPkt as well as

eventPkt to the RSU, and they appear as ghost vehicle. Thus, the Essential Packets

are dropped within the network. This is simulated by dropping the odd-numbered

Vid from the dataset as well as removing the odd-numbered Vid from the Preceding

and Following field of any other Vid.

As we can see from Table 3, the accuracy of identifying the malicious vehicles from

the ROI decreases from Type I attack to Type III attack. In Type, I attack, even if the

malicious Vids drop the Preceding and Following Vids, they send the information to the

RSU. As a result, using the AVD algorithm, the RSUs are capable of detecting the total

number of vehicles at eachGlobal Time using the Preceding and FollowingVid information

reported by the non-malicious Vids, and the number of Vids that sent the information to the

RSU. Thus, the accuracy of identifying the malicious Vids is the highest (100%). In case

of a Type II attack, the malicious Vids does not send the eventPkt to the RSU. Assuming
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that they did not authenticate with the RSU as described in Phase 1, they appear as ghost

vehicles. However, as they share the Essential Packets with the non-malicious Vids, they

are detected using the AVD algorithm. There are some malicious Vid that appears only

as the Preceding and Following Vid of another malicious Vid. As a result, those vehicles

become ghost vehicles and are not identified using the AVD algorithm, thus, decreasing the

accuracy (78.5%) of identifying the malicious vehicles within the ROI. In Type III attack,

the Essential Packets from the malicious Vid to the non-malicious Vid is not received. As a

result, only the non-malicious Vids are identified within the ROI using the AVD algorithm.

As a result, the accuracy of identifying the malicious vehicle is the least (49.7%) in Type III

attack. Nonetheless, the accuracies in Table 3 represent the worst-case accuracy for each

attack type. This means that in Type II and Type III attack, if some of the Essential Packets

and eventPkts are detected by the non-malicious Vid and the RSUs respectively, that will

increase the accuracy of identifying the malicious Vids within the ROI.

In Table 4, we analyzed the percentage of Essential Packets received under different

parameters represented as 〈𝑉𝐶𝑜𝑢𝑛𝑡, 𝐵𝑐𝑜𝑢𝑛𝑡, 𝑡𝐸𝑙𝑎𝑝𝑠𝑒𝑑〉 where VCount is the total number

of vehicles at the ROI, BCount is the number of times tokenPkt is broadcast by every Vid

and tElapsed is the time that a Vid waits before sending the eventPkt to the RSU. Essential

Packet received refers to the percentage of Essential Packets obtained by the Vids. It can

be seen that when VCount is 5, the Essential Packet received percentage is high (100%)

with lesser values of Bcount and tElapsed. This is because given the transmission range of

a Vid, it does not take much time for a Vid to receive the tokenPkt of another Vid. However,

as the number of Vids increase, the value of BCount and tElapsed needs to be increased to

achieve 100% Essential Packet received rate. We prioritize higher BCount over tElapsed

to keep the solution within real-time. However, as the network size increases (i.e., VCount

increases), more packets are lost due to network congestion (Packet drop). With an increase

in packet drop, in many scenarios, the eventPkt does not reach the RSU for decision making

(represented by COR in Table 4), and hence, the accuracy of malicious vehicle identification
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Figure 7. CPU time consumption for mining a block of data

drops or some vehicles non-maliciously become ghost vehicles. Thus, from Table 4, it can

be inferred that to keep the solution in real-time, if the network size increases BCount needs

to be increased, which will lead to higher packet drop due to network congestion. However,

if the BCount is lesser, the tElapsed needs to be increased so that a Vid can broadcast

tokenPkt with a higher delay which can lead to lesser packet collision ( i.e., lesser packet

drop). This limitation can be handled by dividing the ROI with a large network into several

micro ROIs, then applying the proposed solution to find the event at each of the micro ROI

and combining each result to determine the event of the entire ROI. Alternatively, instead

of DSRC, can use 5GLTE with a wider range and bandwidth.

We also analyzed the time taken to mine the block into the simulated blockchain

network after solving the POW using the mining difficulty value. We determined the time

taken with different mining difficulty values in 3 different simulated nodes. It can be seen

from Figure 7, that the time taken for mining increases as the mining difficulty value is

increased beyond 4. So, to keep the mining, hence the overall working of the framework

close to real-time, we kept the mining difficulty to 4 for the simulations.
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6. BLAME ANALYSIS

6.1. FALSE INFORMATION INJECTION ATTACK

Let the correct event from the ROI be correctEvent. For the malicious vehicle to

perform the false information injection attack, it has tomanipulate the event field, falseEvent,

of the infoid, contradicting correctEvent to make it appear legitimate. It can either: 1) Add

tokenPkt/s into the eventPkt it generates, or 2) Discard some legitimate tokenPkt/s within

the network from including into the eventPkt it generates.

6.1.1. Add tokenPkt/s into the eventPkt. In this scenario, the attacker wants to

show that the ROI is congested when it is non-congested. For this attack, it has to generate

more random tokenPkt/s, token_random.

Let us assume the attacker generates random tokenPkt with Vidsign, say Vrandomsign,

corresponding to some legitimate Vid, say Vrandom. When RSU receives the eventPkt

from the attacker, it sends the Vrandomsign and Vrandom to the RA. The RA finds that

𝛽R .Rs(𝑚𝑜𝑑 P) . (𝛼H (Vid | | tgen)(𝑚𝑜𝑑 P)) (𝑚𝑜𝑑 P) still holds as P , 𝛽, H and 𝛼

remains unknown to the attacker. In case of a naive attack approach, even if Vrandom is not

legtimate/ randomly generated by the attacker, the RA finds that Vrandom is not registered

and discards the packet.

Thus the proposed framework can detect an attack where the attacker (vehicles or

RSU) adds random tokenPkt/s to manipulate the event of the ROI.

6.1.2. Discard Legitimate tokenPkt/s from Non-Malicious Vehicles. In this sce-

nario, the attacker wants to show that the ROI is non-congested when it is congested.

Let us assume the number ofmalicious vehicles bemCountwhile the number of non-

malicious vehicle be nmCount. The malicious vehicles reports mCount tokenPkt/s within

its eventPkt where mmCount is less than threshold that is used to determine congestion.

The Vi of the tokenPkt/s recorded by the malicious vehicle, Vmal is added into AVD list if

it does not exist and Vi is valid. For any non-malicious vehicle, VnonMal that does not drop
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any tokenPkt, if ∃ Vk ∈ tokenPkt of VnonMal where Vk=valid, then we set NeA(Vk,VnonMal)

to be true, as they report conflicting event and add them into AVD list. Furthermore, as Vk

drops all non malicious tokenPkt/s, ∃ VnonMal ∉ tokenPkt of Vk even though VnonMal=valid.

Thus, Vk is identified as malicious.

Hence, the proposed framework can detect the number of vehicles asAVDeventually

consists of all the Vids that create a token packet and identify the malicious vehicles.

6.2. MASQUERADING ATTACK

For a malicious vehicle to perform masquerading attack on a target vehicle, it has

to regenerate or acquire P , H and 𝛼 that was shared by the target vehicle with the RA

during the registration phase using a secured channel, as well asX and 𝑘 that is kept secret

by the target vehicle. As we can see from eqn 2, the difficulty of finding X from 𝛽 is

based a discrete logarithm problem for a large prime numberP , for which there exists no

efficient solution. Furthermore, in Phase 1, if the attacker sends an arbitrary value ofR and

𝑠 inside Vidsign, 𝛽R .Rs(𝑚𝑜𝑑 P) . (𝛼H (Vid | | tgen)(𝑚𝑜𝑑 P)) (𝑚𝑜𝑑 P) still holds asP ,

𝛽,H and 𝛼 remains unknown to the attacker. Thus the proposed framework is resilient to

masquerading attack.

6.3. MAN-IN-THE-MIDDLE (MITM) ATTACK

By performing the MITM attack, an attacker (or a malicious vehicle) tries to breach

the confidentiality and integrity of the vehicle_info, tokenPkt, and eventPkt that is broad-

casted by other nearby vehicles. Given the value of r in G public which is available as the

public key, to reveal the content of the packets mentioned above, the attacker has to obtain

G private, which is stored only among the RSUs, the difficulty of which is based on discrete

logarithm problem.

Thus, the proposed framework is resilient to MITM attacks and also prevents any

breach of integrity and confidentiality of a vehicle’s data from the nearby vehicles.
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6.4. REPLAY, PACKET DROP, OR FALSE INFORMATION BLOCK ATTACK

To perform replay attack, the malicious RSU has to store the Vidsign of any legitimate

Vid for validation by theRA.However, if themalicious RSU storesVidsign for a legitimateVid

at 𝑡gen = 𝑡1, the RA can still find 𝛽R .Rs(𝑚𝑜𝑑 P) . (𝛼H (Vid | | tgen)(𝑚𝑜𝑑 P)) (𝑚𝑜𝑑 P)

as P , 𝛽, H and 𝛼 remains unknown to the malicious RSU. As H is a function of Vid

and 𝑡gen, the malicious RSU cannot generate a valid H (𝑉 id | |𝑡gen) when 𝑡gen = 𝑡2 without

knowingH , known only by the RA and the legitimate Vid.

To add false information within the blockchain, the RSU can either drop an eventPkt

corresponding to a non-malicious Vid, add incorrect event corresponding to a legitimate

Vid within the storage pool, add incorrect hf(infoid) corresponding to a legitimate Vid. In

our proposed framework, Phase 4.2, a Vid downloads the updated blockchain to verify if

its information from eventPkt has been recorded. If not, it resends the eventPkt to the

nearby RSU. As the majority of the RSUs within the ROI is non-malicious, the moving Vid

eventually sends eventPkt to a non-malicious RSU which is updated into the blockchain.

If the malicious RSU alters some information of the infoid field, hf(infoid) generated by

the non-malicious Vid ≠ hf(infoid) generated by the malicious RSU for non-malicious Vid.

Under such circumstance, the non-malicious Vid generates a complainPkt and sends to the

nearby RSU where the non-malicious RSUs recalculate the hashid of the Vid along with the

event using AVD and remove the malicious RSUs from the network. Even if the malicious

RSU does not alter hashid of the non-malicious Vid but changes the event recorded by Vid

in the storage pool, the Vid can detect it using the index field in the updated blockchain and

referring to the corresponding index in the storage pool. This situation is likely in scenarios

where the distribution of RSUs are not uniform (or sparse, such as in rural or semi-urban

transportation system) and no non-malicious RSU falls within the range of transmission of

a non-malicious vehicle. Thus, the proposed framework can detect replay attacks, packet

drop attacks, and false information added to the blockchain by the malicious RSU.
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6.5. COLLUSION ATTACK

To perform the collusion attack, the attacker may do the following: Case-1) Drop

the tokenPkt of all the non-malicious vehicles. Case-2) a Selective number of malicious

Vids may appear as ghost vehicle, i.e., do not authenticate with any RSUs at the ROI in

Phase 1.

For Case-1, we have analyzed in section VI a. that even if the malicious Vids drop

the tokenPkt/s of the non-malicious Vids, the proposed AVD algorithm is effective.

For Case-2, the remaining malicious Vids may send the event as ’non-congested’

when the actual event is ’congested’ or vice-versa. However, the RSU calculates the distance

between the vehicles using the rad information of all the Vids in a lane and compares it with

the 𝑎𝑣𝑔𝑅𝑎𝑑 (equation 5) to determine the event of the region. Even if the ghost Vids do

not send the tokenPkt/s, the rad information of the vehicle provides evidence of an object

in-front of it, even if there is no record of a expected vehicle in the Loc. Thus, the proposed

framework handles collusion attacks and detects the event of the region under the influence

of ghost vehicles.

7. CONCLUSION

We have proposed a distributed event validation framework named BLAME, that

is capable of identifying the true traffic event at the ROI under the influence of malicious

vehicles (even if they form a majority or appear as a ghost vehicle). In BLAME, we have

proposed AVD algorithm that is capable of finding the total number of vehicles at the

ROI even if some of the malicious vehicles do not send their information to the RSUs or

other nearby vehicles, and also leverage the radar information recorded by the vehicles to

determine the event at each lane of the ROI. To bring transparency to the vehicular plane,

we deployed blockchain among the RSUs (the majority of which are non-malicious) where

information of the vehicles are added as a block by the miner node (RSU) after receiving
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consensus from the other nodes (RSUs). The updated blockchain information is accessible

to a vehicle and consequently, a malicious RSU is removed from the network during the

consensus algorithm if it exists. The proposed model can handle packet drop attacks,

collusion attacks, MITM attacks, and masquerading attacks.
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ABSTRACT

Trending towards autonomous transportation systems,modern vehicles are equipped

with hundreds of sensors and actuators that increase the intelligence of the vehicles with

a higher level of autonomy, as well as facilitate increased communication with entities

outside the in-vehicle network (for example other vehicles or passengers), such as through

an infotainment system. However, increase in a contact point with the outside world has

exposed the controller area network (CAN) of a vehicle to remote security vulnerabilities.

In particular, an attacker can inject fake high priority messages within the CAN through the

contact points, while preventing legitimate messages from controlling the CAN (Denial-of-

Service (DoS) attack). In this paper, we propose a Moving Target Defense (MTD) based

mechanism to provide resiliency against DoS attack, where we shuffle the message priorities

at different communication cycles, opposed to the state-of-the-art message priority setup,

to nullify the attacker’s knowledge of message priorities for a given time. The performance

and efficacy of the proposed shuffling algorithm has been analyzed through implementation

under different configuration, and compared against the stat-of-the-art solutions. It is ob-

served that the proposed mechanism is successful in denying DoS attack when the attacker

is able to bypass preemptive strategies and inject messages within the in-vehicle network.
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Figure 1. General Structure of CAN message.

1. INTRODUCTION

Modern-day vehicles are equipped with hundreds of electronic control units (ECUs)

that manage different functionality of the vehicles, such as the brakes, steering, and throttle.

The ECUs within a vehicle form a network called the in-vehicle network (IVN), where

they share different kinds of information that determines the state of the vehicle or the next

action of the vehicle for a given state. Multiple IVNs are known for in-vehicle commu-

nications, such as control area networks (CAN), such as controller area network (CAN),

local interconnected network (LIN), and FlexRay. However, CAN is widely accepted as a

defacto standard for inter-vehicle communication due to its stability and cost-effectiveness

[1]. CAN is a serial communication system where multiple ECUs connected to it share the

same physical communication bus. As a result, to avoid message collision, CAN specify an

inverse relationship between the message IDs (a CAN message structure is shown in Figure

1) and the message priorities. Thus, at any given time if more than one ECU participates

in the message arbitration, the ECU with the lowest message ID wins the arbitration and

sends the message through the CAN (as illustrated in Figure 2). Meanwhile, the other ECUs

switch to listening mode and wait for the next arbitration, thus providing a non-destructive

way of message communication. Furthermore, the modern vehicles are connected to vari-

ous other entities outside the in-vehicle environment using Bluetooth and 3G/4G networks,

such as through the infotainment system [2]. Such remote communication with the outside

world aims to enhance the driver’s comfort and safety, as well as facilitates in keeping the

various software components of the vehicle up-to-date. regular over-the-air (OTA) updates.
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Figure 2. Message Arbitration mechanism between message IDs 40,20 and 30. Red box
indicates that the ECU goes to listening mode as it has a higher ID than the other messages
in the arbitration.

However, CAN is highly vulnerable to remote security attacks, as it does not have

any authentication mechanism in place. As a result, it is not difficult for an attacker to

connect an external device and snoop into the data packets of the CAN. Furthermore, it can

reverse engineer the information collected [3] (more commonly called reconnaissance) and

inject information within the CAN. The practicability of remote injection inside CAN has

been demonstrated in [4], in which the authors were able to control the braking and steering

mechanism of a vehicle through remote injection of data packets. A remote attacker can

exploit the strict relationship specification between the message ID and the priority in CAN

and effectively perform a DoS attack by always injecting a message with the lowest ID

at every time interval, thereby gaining control of the CAN at every time. This can deny

legitimate ECUs from sending important information to other ECUs, thus, posing threat to

the safety of the passengers and its surrounding.

Moving Target Defense (MTD) is a potential security solution tomany static systems

[5], in which the system (or attack surface) parameters are constantly changed to nullify the

information gathered during the reconnaissance phase of an attacker. The primary steps for

MTD based techniques involve: What to dynamically change in the system configurations,

When to make the change into the new state from the current state, and How to change the

moving attributes to increase the unpredictability of the attack surface. MTD-based security
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techniques involve using an existing mechanism that is triggered either during certain time

intervals (time-based) or when certain events occur (event-based). Many prominent MTD-

based techniques involve game theory, network topology (or IP address) shuffling, and

machine learning-based based solutions [6].

In this paper, we propose an MTD-based solution to prevent the DoS attack within

the in-vehicle network. We reshuffle the relationship between the message/arbitration ID

generated in a separate module, referred to as the Shuffling Module, and their priorities at

every instant of time to confuse the attacker about the message priorities (as opposed to the

specification of the CAN bus). As the specifications of the CAN bus are static, a separate

security module/hardware (refer to as SMOD throughout the paper) is needed to handles the

message arbitration phase when one or more ECUs wants to send information through the

CAN. The detailed specification of SMOD is outside the scope of this paper. However, once

completed, the message is sent from the SMOD to the CAN bus. The primary contribution

of the paper is as follows:

• We propose a new technique that does not necessarily follow a strict relationship

between the arbitration ID and their priorities as described in the CAN specifications.

The proposed shuffling algorithm is executed at the Shuffling Module that generates

a new arbitration ID for every requesting ECU at a given communication cycle while

keeping the relationship between the priorities of the ECUs intact as the original CAN

specification.

• We provide a detailed analysis of the proposed shuffling algorithm under different

threat models from an attacker. Furthermore, we also compare the various scenarios

of the proposed mechanism under different arrangement of the parameters (such as

how often to perform the shuffling operation) to determine the impact of the shuffling

on the overall in-vehicle network.
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2. RELATED WORK

Over the past few years, a significant amount of research has been devoted to the

security of the CAN in general. Most the research is based on designing a prem-emptive

solution.

In Pre-emptive solutions, the main intention is to prevent any attack into the CAN

of a vehicle. Machine/Deep Learning based solutions have been widely explored as po-

tential pre-emptive solutions by many researchers. For instance, the authors in [7] have

analyzed the detection performance of Pearson correlation, k-means clustering and Hidden

Markov Model in an in-motion vehicle with injected speed and revolutions per minute

(RPM) readings. The authors concluded that the use of fabricated (or simulated) dataset

incorrectly indicates the performance of an intrusion detection technique. The authors

in [8][9] [10][11][12] have proposed different supervised/unsupervised machine learning

solutions for detecting intrusion as a pre-emptive measure within the CAN.

Beside the machine learning models, authors have also analyzed the feasibility of

graph based solutions [13][14] for detection injection attacks. The authors in [13] have

proposed a message sequence based solution to detect an abnormality in pattern between

the messages exchanged between the ECUs and determine the injection attack in vehicle.

However, the proposed solution relies heavily on an assumption that the normal driving

behavior remains constant and any abnormal driving behavior (which may not be injected

but different driving condition) is an attacked state. Furthermore, the solution does not take

into account that the pattern of messages sent within the in-vehicle is a public information,

and can be exploited by a sophisticated attacker. Many researchers [15][16][17] have

leveraged the frequency of arrival of messages in CAN as a potential pre-emptive solution

for message injection or DoS. In the proposed solutions, the authors assume that every

message within the CAN arrive after periodic intervals, that is unknown to the attacker.

Thus, the message injected by an attacker adds to an outlier to the periodic interval, which

helps in detecting an injected message. However, it is to be noted that the behavior of the
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ECUs (or the messages originating from the ECUs) is quite inconsistent with respect to

their arrival time, on the advent of which, the efficacy of the proposed models reduces.

Furthermore, the efficacy of the model reduces if the attacker is able to mimic the original

message frequency. Researchers have also exploited the idea of information theory and

entropy-based mechanism for detecting message injection within the network. Very similar

to the concept of periodicity, the authors [18][19] here assume that the regular CAN

messages have a stable entropy, and a deviation from normal behavior is categorized as an

attack by the authors.

An IP-shuffling based MTD defense mechanism has been introduced by the authors

in [20] where the authors dynamically changes the default IP address of the ECUs to

introduce uncertainty or nullify any reconnaissance of an attacker. However, it is to be

noted that the proposed approach serves the purpose of preserving the confidentiality of

the ECU from the attacker but does not stop the attacker from performing a DoS (noted

by authors also). The authors in [21] has proposed CIST to leverage the use of a fixed

priority ID and a dynamic ID to nullify the reconnaissance of an attacker, and provide

resiliency against replay and impersonation attack. However, the proposed mechanism does

not consider DoS attack as part of their threat model, which breaks the efficacy of the

system if the attacker knows the fixed priority ID and replays it at different communication

cycles. The authors in [22] have constructed a deterministic finite automation (DFA) for

the bit-by-bit arbitration process where a firewall deployed within the system rejects any

fake ID injected by an attacker if it is not contained within the whitelist of the ECU IDs

maintained inside the firewall. However, the efficacy of the proposed DFA fails if an attacker

gathers information through CAN sniffing to reverse engineer and gather some ECU IDs

from the whitelist as the IDs remain fixed. Such a captured ID when replayed in separate

communication cycle, will be considered as an authentic state by the proposed DFA.
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To summarize, it can be observed thatmost of the preemptionmechanism can be used

effectively to denymessage injectionwithin the network. However, many solutions proposed

are more content-based, meaning that it relies on the content of the message to detect if the

message is an injected message or not. Such solutions are considered reactive mechanism,

which may serve the purpose of detecting an injection attack. However, such solutions does

not guarantee resiliency against DoS attack. This is because for injecting a message, as

per the CAN specification, the attacker has to win the arbitration among the contending

ECUs in a communication cycle. Thus, if the attacker is able to inject the payload, it

means that it has successfully won the arbitration and prevented other authenticate ECUs

from sending information during that communication cycle. Different from the existing

mechanism, we propose a preemptive MTD based solution for the arbitration mechanism

where the attacker will not be able to win the arbitration during a communication based on

information gathered in previous communication cycles or brute-force approaches.

3. PRELIMINARIES, THREAT MODEL AND ASSUMPTIONS

3.1. PRELIMINARIES

• Shuffling Module : The purpose of the Shuffling Module in the proposed mecha-

nism is to randomly generate the IDs corresponding to different ECUs at different

communication cycle. The shuffling algorithm leverages the network parameters

(elaborated in section IV.A) which are loaded onto it during the bootstrapping phase.

The Shuffling Module works independently of any other module. This means that

the Priority List generated by the Shuffling Module need not be synchronized with

any other module within the vehicle. The Shuffling Module can be implemented as

separate hardware module that can be installed in vehicles, the details of which is

outside the scope of this paper.
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• SMOD : SMOD is a separate module that performs the arbitration mechanism instead

of the CAN. The SMOD is connected to the Shuffling Module, from which it receives

the updated priority list during every communication cycle. The priority list received

is leveraged to perform the arbitration process of the different ECUs in contention.

Furthermore, the SMOD is connected to the CAN, where it relays the dominant

bits obtained from the ECUs, which is further broadcast into the entire in-vehicle

network. In other words, SMOD acts as an interface between the ECUs and the CAN

for sending the bits.

3.2. ASSUMPTIONS

In this paper, we have the following assumptions:

• No insider attack: This means that none of the ECUs within the vehicle is compro-

mised/manipulated.

• Safe Network Shuffling Parameters: The network shuffling parameters used for shuf-

fling the mssage priorities is not disclosed to the attacker through any ECUs within

the vehicle or the car manufacturing company.

• Untampered Security Module: The proposed security module introduced/installed

within the in-vehicle network cannot be tampered. Furthermore, the shuffling tech-

nique is used as a black box within the ECU and the SMOD that is used to generate

the new IDs of the ECUs while preserving the relationship between the message

priorities originating from the different ECUs.

• No remote connection: Only ECUs and SMOD can connect to the Shuffling Module.

Attacker remotely cannot access the Shuffling Module.
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• Single Injection Attack: We assume that at any given communication cycle, only

one bit can be remotely injected for different arbitration ID bit positions during the

arbitration mechanism. In other words, any one message ID can be injected in the

CAN for the arbitration mechanism in a given communication cycle.

3.3. THREAT MODEL

In this paper, we assume that the attacker has the following capability:

• Denial of Service: The intention of an attacker is to generate the highest priority

message at any given communication cycle to take control of the CAN and deny other

legitimate ECUs from sending vital information. The attacker wants to disrupt the

normal functioning of the vehicles by forcing the ECU to transit to listening mode by

injecting high priority message at every communication cycle.

• Message Snooping: The attacker can snoop into the dominant bits from the CAN at

every communication cycle. This is leveraged for the reconnaissance phase, where

the attacker gathers the highest arbitration ID at each communication cycle and

perform reverse engineering to determine the highest priority arbitration ID at the

next communication cycle. The attacker can also perform replay attack by injecting

the highest arbitration ID gathered at one communication cycle in a different cycle.

The attacker can also snoop into the message payload sent by an ECU. However, such

an attack is beyond the scope of this paper.

• Replay Attack: The attacker can replay the information gathered by snooping the

CAN (i.e. the winning arbitration ID) from one communication cycle in other subse-

quent communication cycles. The replay attack in our threat model does not involve

replaying the payload captured from an ECU by an attacker.
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Figure 3. Workflow: 1) ECU requests for new ID at timestamp, 𝑡, 2) Shuffling Module
generates the new IDs of all the ECUs using the shuffling algorithm , 3) Shuffling Module
sends the new ID corresponding to the requested ECU ID, 4) ECU sends the arbitration
ID (new ID obtained in Step 3) to SMOD, 5) SMOD requests for the current priority List
stored in Shuffling Module, 6) Shuffling Module sends the priority list to SMOD, 7) SMOD
sends the arbitration ID in the CAN (1-bit at a time), 8) ECU hears the current dominant
arbitration bit to decide whether to change in listening mode, 9) ECU that wins arbitration
at timestamp, 𝑡 sends payload to SMOD, 10) SMOD forwards payload to CAN that is
broadcast within the in-vehicle network

4. PROPOSED MECHANISM

Figure 3 provides an overview of the proposed mechanism where arbitration of

the messages originating from the ECUs is delegated to SMOD rather than the CAN. The

SMOD is responsible for deciding the ECU that wins the arbitration at a communication

cycle, and forwards the payload to the CAN, which is further broadcast within the in-vehicle

network. The steps of the proposed mechanism has been detailed below.

4.1. NETWORK PARAMETER GENERATION

During this phase, the Shuffling Module of every vehicle is loaded with the net-

work parameters that is responsible for generating the arbitration ID of the ECU at every

communication cycle, 𝑇 . As network parameters, 2 prime numbers, 𝑝 and 𝑞, are chosen
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at random along with an evolving factor, 𝛼. The purpose of 𝛼 is to arbitrarily change or

evolve the prime numbers that are leveraged for generating the seed value, that brings more

randomness to the generation of the arbitration ID at a given communication cycle.

Algorithm 11 Arbtration ID shuffling algorithm
1: Input: 𝛼, 𝑝T-1, 𝑞T-1, ECUT-1 (optional)
2: Output: Priority List or ECUT
3: Priority List: IDs in decreasing order of priority
4: 𝑝T, 𝑞T, 𝑡𝑜𝑡𝑎𝑙𝐵 = 𝛼(𝑝T-1), 𝛼(𝑞T), 11 or 29
5: bitS = random number between 1 and 𝑡𝑜𝑡𝑎𝑙𝐵
6: 𝜆(𝑛) = 𝑙𝑐𝑚(𝑝T − 1, 𝑞T − 1)
7: 𝑠𝑒𝑒𝑑 = 𝑇 ∗ 𝜆(𝑛)
8: priority bits = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑠𝑒𝑒𝑑, 𝑏𝑖𝑡𝑆, 𝑡𝑜𝑡𝑎𝑙𝐵)
9: ECUcount = total number of unique ECU IDs in vehicle
10: highest priority = Set 1 in priority bits, rest 0
11: Priority List.append(highest priority)
12: for i in range(1,ECUcount) do
13: Priority List.append(highest priority ⊕ i)
14: Map ECUT-1→ECUT from Priority List
15: return Priority List or ECUT

During the bootstrapping phase (during the initial setup of Shuffling Module), 2

large distinct prime numbers, p(init) and q(init) along with an evolving factor 𝛼 is set as

communication parameters that is kept private to the Shuffling Module that performs the

Shuffling algorithm. At a given communication cycle, the priority list of the message

IDs is generated using a seed value, seed, generated using equation 2 that leverage the

Carmichael’s totient function (𝜆(𝑛)) calculated using equation 1.

𝜆(𝑛) = 𝑙𝑐𝑚(𝑝T − 1, 𝑞T − 1) (1)

𝑠𝑒𝑒𝑑 = 𝑇 ∗ 𝜆(𝑛) (2)

where 𝑝T and 𝑞T is the prime number generated at timestamp, T using 𝛼.
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Thereafter, the seed value is used to determine message ID with the highest priority

by setting particular bits (b0,b1,...,b28) to high/low, assuming we use 29 bit CAN 2.0B with

extended identifiers. The algorithm to generate the priority list is shown in Algorithm 11.

4.2. ECU ID GENERATION AND SENDING ARBITRATION ID

When certain actions are performed on the vehicle, such as when the brake is

applied, the associated ECU sends a ECUIDGeneration request packet to the Shuffling

Module consisting of the following:

𝐸𝐶𝑈𝐼𝐷𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =< 𝐸𝐶𝑈T-1 >

whereECUT-1 is the current ID of the ECU.On receiving the request, the Shuffling algorithm

generates the new Priority List and maps the IDs (ECUT-1) with the IDs of the new Priority

List (ECUT) as follows: ECUT-1 in Priority ListT-1→ ECUT in Priority ListT

where Priority ListT-1 and Priority ListT+1 is the Priority List generated at commu-

nication cycle 𝑇 − 1 (in the previous iteration) and 𝑇 (at the current iteration) respectively.

The Shuffling Algorithm module returns the ECUT to the requesting ECU. Furthermore,

the Shufflng module stores the current Priority List generated at communication cycle, T,

for sending to the SMOD that indicates the initiation of an arbitration mechanism. This is to

be noted that the Priority List is only generated when an ECU sends the ECUIDGeneration

to the Shuffling Module, which indicates the start of a new communication cycle.

In order to generate the new IDs of the ECUs for the Priority List, the 𝑠𝑒𝑒𝑑 is

generated using 𝜆(𝑛) as shown in equation 1 and 2 (Algorithm 11 lines 4-7). Thereafter

it is leveraged to rearrange the priorities of the message IDs at a communication cycle 𝑇

as shown in Algorithm 11 (lines 9-13). Furthermore, it is important to note that we do

not change the priorities of the messages originating from the ECUs. In other words, as

commonly agreed by the SAE, if a message originating from ECUi has higher priority than
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(a)
(b)

Figure 4. Arbitration Mechanism: (a) Traditional mechanism and (b) Proposed Mechanism

that originating from ECUj, it remains so at every communication cycle in our proposed

mechanism. However, the arbitration ID and the message priority does not follow a strict

relationship (lower message ID means higher priority) unlike the state-of-the-art solutions.

Furthermore, it is also to be noted that the Shuffling Module is the sole module in

the proposed mechanism that is leveraged to generate the ECU IDs at every communication

cycle. Therefore, 𝛼 can be designed in any suitable way which is not the main focus of the

paper. As there is no synchronization involved between the Shuffling Module and any other

module, it does not impact the efficacy of our proposed mechanism.

4.3. ARBITRATION PHASE

We follow the same arbitration process as the state-of-the art standards. The SMOD

receives the current Priority List from Shuffling Module, when it receives a bit of the

arbitration ID from one or more ECUs that are in the arbitration in a communication cycle.

If the SMOD receives bits from only one ECUs it directly gets to use the CAN. This is

because there is no other ECUs in contention. As a result the bits from the only requested

ECU is broadcast into the CAN, which eventually wins the arbitration and sends the payload.

However, if the SMOD receives arbitration bits from multiple ECUs, the arbitration process
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is based on the IDs in the Priority List. Therefore, if n number of ECUs want to send

messages into the CAN, the dominant bit during the arbitration phase is decided as shown

in equation 3.

𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 = 𝑚𝑎𝑥(𝐸𝐶𝑈1, 𝐸𝐶𝑈2, ..., 𝐸𝐶𝑈n) (3)

where ECUi is the bit received from the arbitration ID sent by the ith ECU in contention

and dominant stores the bit value (0/1) that has the highest priority out of bits obtained

from the ECUs. The highest priority is decided based on the Priority List obtained from

the Shuffling Module

An ECU sends the next arbitration bits only if its previous arbitration bit resembles

the value observed in the CAN (i.e dominant value). However, if it does not match, the

ECU goes into the listening mode and waits for the next arbitration cycle for sending the

message. The difference in arbitration between the proposed mechanism and the traditional

(state-of-the-art) mechanism has been highlighted in Figure 4. In Figure 4(b). it is to be

noted that the Priority List generated for the communication cycle has high values (1) as

dominant bits in positions 0 − 4, 6 − 8, 11 and low values (0) as dominant bits in positions

5, 10. Therefore, ECU1 goes into listening mode as it is not the dominant bit out of the

contending ECUs at the bit position 5. Furthermore, unlike the traditional mechanism (

Figure 4(a)), ECU3 transitions into listening mode because it does not have the dominant

bit out of the contending ECUs in bit position 4. Thus, ECU2 wins the arbitration even if

ECU ID of ECU2 is greater than ECU3. It is also to be noted that ECU1 has a higher ID

that ECU2 but loses the arbitration. This shows that we do not have any strict relationship

unlike the traditional mechanism, where ECU3 would have won the arbitration (as shown

in Figure 4(a)) as it has the lowest arbitration ID.
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4.4. MESSAGE SENDING

If the last bit send by an ECU is reflected as a dominant value in the CAN, that

ECU wins the arbitration (meaning all other contending ECU has transitioned into listening

mode). Under such circumstance, the winning ECU completes the message transfer during

the communication cycle by sending the remainder of the message (including the payload)

to the SMOD, which is eventually reflected/broadcasted into the CAN. On the other hand,

the other contending ECUs that lost the arbitration during the communication cycle , 𝑇 ,

waits for receiving the EOF bit from the sending ECU. Once received, it reconnects with

the Shuffling Module to generate the arbitration ID for the next communication cycle. The

Shuffling Module repeats the same process as described previously in section IV(b) and

replace the Priority List generated in the previous communication cycle with the current

Priority List. Thereafter the same steps are followed for the arbitration mechanism.

5. EVALUATIONS AND EXPERIMENTAL RESULTS

The performance and efficacy of the proposed mechanism has been tested in an Intel

core i5-9300H CPU 2.40 GHz workstation, and coded in Python 3.0. We determine the

performance of the Shuffling Module with both 11 (CAN 2.0A) and 29 (CAN 2.0B) bit

setup while assuming varying number of ECUs in the vehicles, to determine the scalability

of the shuffling algorithm.

As seen from Figure 5, it was observed that as the number of message in the

contention as well as the priority of those messages decrease, the success rate of the attack

increase. For example, if m1 is the only message in contention during a communication

cycle and has the least priority (the last element of the Priority List in Algorithm 11) among

all the ECUs, the attacker has to simply complement one of the bit out of 11/29 bits. This is

because the bits of all other arbitration IDs have a higher priority that m1. Therefore, if the

attacker is able to inject one bit complement to m1, the ECU corresponding to m1 will go
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Figure 5. Risk of an attack: Red: High risk, Yellow: Moderate Risk, Green: Low risk

into listening mode. However, if the number of messages in the contention increases, then

the other messages have a priority higher than that of m1. In order to successfully attack

the system, the attacker has to generate the highest priority among all the messages in the

contention, the difficulty of which increases as the number of messages in the contention

increases.

We experimented the time taken for Algorithm 11 to generate the Priority list at

a give communication cycle, the results of which are shown in Figure 6 . The Shuffling

algorithm (Algorithm 11) was tested for both 11 and 29 bit arbitration IDs, and with varying

number of ECUs (from 50-200, as the modern day vehicle consists of upto 100 ECUs [23]).

It was observed that the time taken for generating the Priority list increased by a small

amount even if the number of ECUs in the vehicles increased, suggesting that the proposed

mechanism is fairly scalable even if the number of ECUs in the future vehicles increases.

We also determined the frequency of the Shuffling algorithm for the effective work-

ing of the proposed mechanism. As shown in Table 1, it can be seen that the success rate

of an attack is high when the same Priority List is used at different communication cycle.

Under such circumstance, the attacker has to gather the highest arbitration ID at a given
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Figure 6. Average time (out of 20 for each configuration) taken for the Priority list generation
using Algorithm 11

communication channel and replay it in the next communication. However, it is to be noted

that at a given communication channel, the attacker is able to gather the highest priority

among the arbitration IDs in contention, which may or may not be the highest priority ID

among all the ECUs. Nevertheless, the attacker can continue gathering information for a

larger time, and eventually get the highest priority ID as the same Priority List is generated at

every communication cycle. It was also observed that the success rate of an attack increases

if the Priority List is generated at regular intervals (and not every communication cycle). To

illustrate such scenario, let us assume that a Priority List is generated at time interval, T1,

and is changed every 𝛿t seconds. Under such circumstance, the attacker can snoop into the

arbitration IDs every 𝛿t seconds to reverse engineer the priority of the IDs. Thus the attack

success can be High if the attacker finds the highest arbitration ID at a time << 𝑇1+ 𝛿t sec-

onds. However, as stated earlier, since the attacker can only know the highest arbitration ID

among the IDs in contention in a given communication cycle, the attack success is Moderate

if shuffled at regular intervals. Nevertheless, if the Priority List is generated at every commu-
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nication cycle (i.e., when any ECUwant to sent data into the CAN), it adds randomness into

the time of generation of Priority List, which decreases the attack success within the system.

Table 1. Attack success under different Shuffling strategy

Shuffling Strategy Attack Success
Using Same Priority List High

Generating priority List at regular time intervals Moderate - High
Generating Priority List every communication cycle Low

We also analyzed the performance against DoS during the arbitration phase with

some of the existing researches as shown in Table 2. A major drawback of the proposed

approach in [24] and [25] is that it assumes that the attacker either is unaware of the

sequence of the message within the CAN (as in [24]), or the attacker infinitely injects the

lowest priority within the CAN (as in [25]). However, if the attacker gathers information

of the message/arbitration IDs active in the CAN by snooping into the dominant bits in

CAN, it can reverse engineer to gather the sequence of the message IDs, and inject it

within the CAN to successfully execute a DoS. Also, instead of continuously injecting the

high priority message in the CAN, if the attacker knows the high priority message and

injects it at an acceptable frequency delay, it can still win the arbitration, as the messages

originating from the ECUs may not follow a regular frequency. Under such a scenario, the

attacker can perform DoS in a given communication cycle if it has the highest ID among the

contending ECUs during the communication cycle. Furthermore, an important assumption

of the existing models assumes that the entire arbitration ID is available during the detection

phase, whereas in reality only a single bit at a time is available in the CAN. Therefore, the

model has to wait for the entire arbitration bits to be sent to the CAN, which increases the

active time of the ECUs (as the ECUs can transit to listening mode after seeing the dominant

bit).



135

Table 2. Performance Comparison against DoS

Katragadda et al. [24] 7

Lee et al. [25] 7

Humayed et al. [22] 3

CanSafe 3

On the other hand, the authors in [22] proposed a deterministic finite automation

(DFA) based mechanism that is resilient to DoS attack during the arbitration phase. How-

ever, the proposed mechanism assumes that the attacker does not know the list of legitimate

ECU IDs in the vehicle. Considering such an assumption, the efficacy of the mechanism can

still degrade if the attacker sniffs into the CAN data for a long time (as reconnaissance) to

reverse engineer one or more legitimate ECU IDs. As a result, such information/ID gathered

can be replayed at a different communication cycle to disrupt the arbitration mechanism.

This is because the list containing the IDs of the ECUs remains the same, and the attacker is

able to inject a valid ECU ID that belongs to the whitelist. We compared the probability of

an attacker successfully winning the arbitration under different scenarios between CanSafe

and [22]. In Table 3, Scenario 1 is the condition where the attacker has the ECU IDs in

the white list that is maintained by the authors in [22]. Under such circumstances, the

attacker can always win the arbitration by injecting the lowest ID from the white list at every

communication cycle. However, the probability decreases to a maximum 0.5 if the attacker

does not have the white list (i.e. the attacker injects the last arbitration bit which has a 50%

chance of winning). However, it is to be noted that under such circumstances, the attacker

can easily perform reconnaissance, and reverse engineer the entire white list by collecting
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Table 3. Arbitration Attack Success

Humayed et al. [22] – Scenario-1 1
Humayed et al. [22] – Scenario-2 ≤ 0.5

CanSafe ≤ 0.5

the winning arbitration IDs during a communication cycle. From the ECU IDs gathered

from multiple communication cycles, the entire white list( which remains the same at all

communication cycles) can be generated. In CanSafe the probability is also a maximum

of 0.5, when the attacker has a 50% chance of injecting the last arbitration bit correctly.

However, since in our mechanism, the ECU IDs and the priority list is changed randomly at

each communication cycle, the attacker cannot attack the CAN arbitration mechanism with

a probability of 1.

6. CANSAFE ANALYSIS

In this subsection, we analyze the performance of the proposed mechanism against

the different threats posed by an attacker.

6.1. BRUTE-FORCE ATTACK

In this attack, the attacker constantly injects the lowest message ID (highest priority

as per the state-of-the-art specification) #0000 to performDoSwithin the in-vehicle network.

As the proposed mecanism reshuffles the priority of the messages at every iteration, the

probability of the brute-force attack to be successful is very low (represented below as

P(success) in equation 4).

𝑃(𝑠𝑢𝑐𝑐𝑒𝑠𝑠) <= 1
2n

(4)
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where n is the number of bits used to represent the arbitration ID (11 bits for CAN 2.0A

and 29 bits for CAN 2.0B).

However, it is to be noted that even if #0000 is the highest priority message at a time,

it may happen that the ECU with the actual #0000 sends a message. In the event of such

a scenario, the arbitration mechanism fails due to collision. In the next arbitration cycle,

#0000 is mapped to some other ID which is known by the authentic ECU in the contention

but not by the attacker. Hence, the attack fails under such circumstance. Thus, it can be

concluded that the intention of the attacker to inject the lowest priority message within the

network is successful only if random shuffling yields #0000 as the highest priority message

and the authentic ECU associated with the ID does not send any message (i.e. no message

collision).

6.2. ATTACKER RECONNAISSANCE AND REPLAY ATTACK

In this attack, the attacker gathers the information at one cycle and leverage it for

injecting message into the next cycle. The information that can be gathered by the attacker

includes the arbitration ID that won the contention in the previous cycle, and the message

sent by the ECU. At this stage the attacker may perform 2 kinds of attack : 1) Naive Attack

2) Reverse Engineering.

In the Naive attack, the attacker performs replay attack by injecting the highest

arbitration ID gathered in the previous cycle. Under such circumstance the attack can be

successful if one of the condition holds:

• Case 1: The arbitration ID gathered (which may not have been the highest priority ID

at the previous cycle but was the highest among the IDs in contention) is the highest

priority ID among all the ECU IDs in the vehicle or among the IDs in contention

(which means that the random shuffling generates the same Priority List, which is

highly unlikely) at the next cycle.
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• Case 2: The attacker’s injected message is the only message in contention.

For Case 1, the chances that the arbitration ID that won in the previous cycle

becoming the highest priority among all the ECUs in the next cycle can be represented

by equation 4, i.e., all the bits has to be exactly the same. Nevertheless, it is to be noted

that such the attacks in Case 1 can be handled by simple check conditions that does not

allow a ID that won the arbitration in a cycle to become the highest priority ID in the next

cycle or no same priority list at consecutive communication cycles. As the priority list is

generated only by the Shuffling Module, such a check condition does not affect the overall

communication flow of the mechanism.

For Case 2, this is not a DoS attack but is more of a message injection attack, which

is outside the scope of this paper.

In case of a Reverse Engineering attack, the attacker gathers the information of

different cycle and tries to find out the random bits (Algorithm 11, line 8) that determines

the priority list. However, it is to be noted that at any given cycle, the attacker has to try out

2048 (for 11 bits) and≈ 500million (for 29 bits) to figure out the random factor. As Shuffling

Module is the only module that is generating the priority list (with no synchronization with

other modules), this proposed mechanism can exploit any relationship between the random

factor used in different communication cycles that need not be a linear relationship. Such

a independence of the Shuffling Module obfuscates the random factor from an attacker at

different communication cycle.

6.3. BIT INFERRING BY AN ATTACKER

The connection between the ECU and the Shuffling Module is secure, meaning it

cannot be intercepted by an attacker. Further, the attacker cannot connect to the Shuffling

Module. As a result of these constraints, the attacker cannot determine the ECU ID of an

ECU at different communication cycle. As a single bit is sent by every ECU to the SMOD,
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that is reflected at the CAN, the attacker has no way to determine the bits sent by the ECUs

in contention, in advance. As a result, the attacker cannot infer the dominant bit at a given

time, without listening to it from the CAN during a communication cycle.

However, as it is mentioned in section 5(Figure 5), the attack success of an attacker

increases if the number of messages in the contention is less and the priority of the message

is also less. It may happen that the attacker does not inject any bit until the last bit of the

arbitration ID. Under such circumstance the probability of an attack is maximum (=0.5).

This is because the last bit of the arbitration ID can be 0 or 1. This means that the dominant

bit can be either 0 or 1. So the attacker has to sent either 0 or 1 into the CAN. If the attacker

sends 0, a contending ECU sends 1 and the dominant bit is 1, then the attacker loses the

arbitration. However, if the attacker sends 1 and the contending ECU sends 0, then the

attacker wins the arbitration and the the ECUs go into sleep mode. Thus, the attack success

of an attacker is the maximum when only the last bit of the arbitration ID is injected into

the CAN.

6.4. DYNAMIC ECU ID PREVENTS TRACKING

As the ECUs use different dynamic arbitration ID which is allocated to it by the

Shuffling Module, any attacker that wants to compromise an ECU, or masquerade to be

some other legitimate ECU should be able to generate the arbitration ID of the ECU in

a given communication cycle. As the number of ECUs, is around 100 in a modern day

vehicle, the unique arbitration IDs in a given communication cycle is a subset of the number

of possible arbitration IDs at every communication cycle (211 for CAN 2.0A and 229 in our

proposed mechanism). Thus, it is difficult for an attacker to target a specific ECU as it has

to correctly determine the ECU ID in the given communication cycle. Furthermore, as the

proposedmechanism is also resilient to replay attack, it shows that the attacker cannot replay

a captured ECU ID from an ECU at one communication cycle and use it to inject message

in a different communication cycle. Thus, the proposed mechanism prevents masquerading
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attack against any ECU. Furthermore, as the ECU IDs are dynamic, it is also difficult for

an attacker to associate a payload with any ECU, as it may happen that an arbitration/ECU

ID belonging to one ECU in a communication cycle may be allocated to some other ECU

in a different communication cycle. A naive solution to detect any aberration in a data

is to design a simple anomaly detection system which will determine if any ECU gives

anomalous data in different communication cycle (differing by a certain threshold), which

is outside the scope of this paper.

6.5. MULTIPLE INJECTION BY ATTACKER/S

Our proposed mechanism is able to withstand DoS attack as long as there is a single

injection inside the CAN bus, i.e. single message ID is injected at every communication

cycle. However, it is to be noted, that the attacker can perform a more sophisticated attack

by injecting 2 bits in a communication cycle. This may happen if a single attacker is able

to perform 2 injection attacks within the CAN bus, or more than one attacker colludes to

inject 0 and 1 simultaneously for each bit position. On the advent of such a scenario, the

attacker can effectively effectively deny all legitimate ECUs by winning the arbitration if the

2 injected bits are 0 and 1 in the last bit position during the arbitration of a communication

cycle. Under such circumstance, the attacker will either win the arbitration or result in a

collision. Such an attack is not addressed in our proposed mechanism.

7. CONCLUSION

In this paper, we have proposed a new shuffling algorithm for dynamically gener-

ating the priority IDs of the ECUs within in-vehicle networks. The proposed mechanism

outperforms the traditional mechanism (lowest arbitration ID- highest priority in CAN)

used for the arbitration process. We leverage the MTD based shuffling technique that nul-

lifies the reconnaissance phase of an attacker and provides resiliency against DoS, as the

attacker cannot leverage the information gathered in one communication cycle and generate



141

the highest priority message in the next communication cycle. We also showed that the

proposed shuffling algorithm has a fairly constant time requirement for both 11 and 29 bits

CAN architecture. We also performed a detailed analysis of the proposed mechanism and

showed the possibilities of various conditions under which an attacker can to bypass/break

the shuffling mechanism. Thus, the proposed mechanism enhances the security of the

existing CAN specification and preserve the priority of the messages originating from the

ECUs even if their arbitration IDs do not follow a strict relationship. For the future, we

would like to analyze and enhance our proposed mechanism to handle multiple injection

attacks by remote attackers.
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SECTION

3. CONCLUSION AND FUTURE WORK

In our research, we have been able to develop algorithms for detecting the malicious

vehicles, and accurately determining the traffic scenario from the ROI even under the

influence of the majority of malicious vehicles within the network. We worked on traffic

event detection and validation as well as malicious vehicle identification under secured

message dissemination in a V2X communication in VANET. The model proposed in Paper

I leverage the centralized architecture integrated with PKI schemes for validating the traffic

scenario of a region, as well as detecting the malicious vehicles. An improved version of

Section 3 has been proposed in Paper II, that leverages a distributed concept for detecting

the malicious vehicles and the traffic scenario of a region without any need for a centralized

entity. In Paper III, a blockchain-assisted distributed solution is proposed that improves the

solution proposed in Paper II with a better degree of transparency at the vehicular plane.

Furthermore, a resilient algorithm for securing the arbitration mechanism against DoS

attacks within the in-vehicle network is proposed in Paper IV that significantly improves the

security of the state-of-the-art arbitration mechanism as defined in the CAN specification.

However, there exist challenges with the proposed solutions in accommodating real-time

decision-making scenarios for the vehicles such as changing lanes or steering the wheel.

Hereafter, we plan to focus on designing an intelligent IDS that would be deployed within

the CAN bus of the vehicle and would be effective in identifying any outlier or fabricated

information that is received through aV2X communication under the influence ofminimum-

to-no infrastructure.
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For the intelligent IDS within the CAN bus, our goal is to analyze the BSM infor-

mation that is received from the nearby vehicles nearby together with the current state of

the sensors and the actuators to determine the feasibility of the information that is present

in the CAN of the vehicle. To determine any intrusion, we plan to analyze the information

obtained from the ECUs of the vehicle. For any information sent from one ECU to the other

ECU with the in-vehicle network, we will perform a feasibility study of the sender ECU

information based on the timestamp of the information when the message was generated,

the timestamp of the last message sent from the sender ECU to the target ECU, the content

of the message, the corresponding impact of the target ECU to the last sent message from the

sender ECU, and many other factors. However, due to the limitations in the computational

capability of the CAN bus, and the time constraint for the decision making, a traditional

authentication algorithm cannot be incorporated within the CAN bus to authenticate one

ECU to the other ECU as that would add a significant amount of delay to the solution, and

the CAN may not have the computational capability to perform heavyweight computations.

Thus, our goal is to design lightweight authentication algorithms that adhere to the above

challenges.

Also, for the in-vehicle networks arbitration mechanism, our proposed solution can

handle DoS attacks under the influence of a single injection. However, the efficacy of the

proposed mechanism reduces under the influence of multiple injection attacks. Thus, in

the future, our goal is to design a strategy that can withstand DoS attacks even under the

influence of multiple injection attacks.
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