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ABSTRACT 

Flooding and flash flooding events damage infrastructure elements and pose a 

significant threat to the safety of the people residing in susceptible regions. There are 

some methods that government authorities rely on to assist in predicting these events in 

advance to provide warning, but such methodologies have not kept pace with modern 

machine learning. To leverage these algorithms, new models must be developed to 

efficiently capture the relationships among the variables that influence these events in a 

given region. These models can be used by emergency management personnel to develop 

more robust flood management plans for susceptible areas. The research investigates 

machine learning techniques to analyze the relationships between multiple variables 

influencing flood activities in Missouri. The first research contribution utilizes a deep 

learning algorithm to improve the accuracy and timelessness of flash flood predictions in 

Greene County, Missouri. In addition, a risk analysis study is conducted to advise the 

existing flash flood management strategies for the region. The second contribution 

presents a comparative analysis of different machine learning techniques to develop a 

classification model and predict the likelihood of flash flooding in Missouri. The third 

contribution introduces an ensemble of Long Short-Term Memory (LSTM) deep learning 

models used in conjunction with clustering to create virtual gauges and predict river 

water levels at unmonitored locations. The LSTM models predict river water levels 4 

hours in advance. These outputs empower emergency management decision makers with 

an advanced warning to better implement flood management plans in regions of Missouri 

not served with river gauge monitoring. 
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1. INTRODUCTION 

 

This dissertation presents machine learning-based models that can be used to 

analyze the relationships between the geospatial and precipitation variables to provide 

predictive capabilities to stakeholders to enable better flash flood management plans.  

The three research contributions are: 

Publication 1: A deep learning neural network using historical rainfall information 

and Geographic Information System (GIS) data to develop a classification model that 

predicts flash flood events in locations in Greene County, Missouri. The model outputs 

are applied to a resource calculator to determine the amount of money that would be 

required to restore the damaged road segments in the areas affected by flash floods.  

Publication 2: A comparative analysis of logistic regression, support vector 

machines (SVMs), and deep learning neural network models to determine which model is 

most successful in classifying the occurrence of a flash flooding event in Greene County, 

Missouri. This research found that the deep learning algorithm was more accurate than 

the other models, making it a better choice to prepare advanced flash flood warnings and 

close roadways for public safety in flash flood-prone locations.  

Publication 3: An ensemble of LSTM deep learning models is trained on the daily 

rainfall and river water level values for different clusters of gauges to predict water levels 

at unmonitored river locations associated with catchment areas of Missouri. A total of 30 

different LSTM models are implemented using an ensemble learning approach to capture 

the intricate relationships between the time series-based input features and generate 

accurate multi-step predictions for the unmonitored locations.  
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PAPER 

I. DEEP LEARNING-BASED DISASTER MANAGEMENT PLANNING AND 

RISK ANALYSIS OF FLASH FLOOD-PRONE REGIONS  

 

Bhanu Kanwar1 and Steven Corns1 

1Department of Engineering Management and Systems Engineering, 

Missouri University of Science and Technology, Rolla, MO 65409 

ABSTRACT 

An improved ability to predict flood events reduces risk to life and property. This 

research focuses on the use of deep learning algorithms to increase the accuracy and 

timeliness of flash flood predictions. Historical rainfall and Geographic Information 

System (GIS) data are used as inputs to a set of deep learning models. These models are 

then trained using historic flash flood event data to capture relationships between the 

weather and geographic data. Greene County, Missouri is used for this study as it 

encounters several weather events that have at times led to flash flood events. A risk 

analysis study is performed using this data to advance the current flash flood 

management strategies for the region. The data-driven approach is applied to publicly 

available data sourced from the United States Geological Survey (USGS), National 

Oceanic and Atmospheric Administration (NOAA), and National Weather Service 

(NWS). 

Keywords: Flash Floods, Deep Learning, Neural Networks, Flood Risk, Missouri. 
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1. BACKGROUND INFORMATION 

1.1. INTRODUCTION AND LITERATURE REVIEW 

Flash flooding events have been responsible for significant losses over the last 

few decades. In addition to economic losses, these events have also been responsible for 

damage to infrastructure, traffic disruptions, and several fatalities in the affected areas 

(Ashley & Ashley, 2017). To efficiently deal with the damage caused by flash floods, it is 

vital to locate flood-prone locations and determine the likelihood and consequences of 

these events so that flood risk management protocols can be determined to ensure public 

safety. In addition, locating these locations will assist the city planners and local agencies 

such as the Missouri Department of Transportation (MoDOT) and Missouri State 

Emergency Management Agency (SEMA) in restoring the infrastructure elements 

damaged due to flash flooding, improving post-disaster relief operations for the well-

being of the affected residents. 

Research has been conducted over the last few years to identify the flood-prone 

locations and gauge the economic losses incurred by the local stakeholders due to 

flooding activity. Hydrological models based on LISFLOOD software are used to 

develop a European Flood Forecasting System (EFFS) and predict values of vital flood 

parameters such as water depth and inundation extent (Roo et al, 2010). To improve the 

existing flood warning protocols, hydrologic one-dimensional and two-dimensional flow 

models are proposed which can estimate both flood travel time and inundated areas in a 

risk-prone region (Ghimire et al, 2020). Various researchers are also relying on 

computational intelligence methods to locate flood-prone locations and improve current 
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flood warning and risk assessment protocols. A multilayer perceptron (MLP) is used to 

identify the time at which a swollen river might overflow its banks and cause flooding in 

the surrounding areas (S & S, 2020). Machine learning algorithms such as Alternating 

decision tree (ADT), functional tree (FT), kernel logistic regression (KLR), multilayer 

perceptron (MLP), and quadratic discriminant analysis (QDA) are implemented to 

efficiently map the locations prone to flash flooding events and update corresponding 

watershed management protocols (Janizadeh et al, 2019). Particle swarm optimization 

(PSO) based models are developed to predict flash flood-prone locations and update 

flood susceptibility maps in Northwest Vietnam (Bui et al, 2019). Other research teams 

have taken research endeavors to calculate the economic losses associated with both 

seasonal and untimely floods. Direct economic damages incurred due to flooding are 

assessed by a team of German researchers to find areas of improvement that could 

improve the critical processes of flood risk analysis and management (Merz et al, 2010). 

A separate framework is proposed by a Danish research team to efficiently conduct flood 

hazard and vulnerability assessment tasks and develop risk models for flood events 

impacting the Danish cities of Odense and Aarhus (Olsen et al, 2015). Decision tree-

based flood loss models have been deployed by scientists to perform flood risk 

assessment studies of residential buildings and their contents in Vietnam (Chinh et al, 

2017). A grid-based Geographical Information System (GIS) approach is proposed by 

another set of researchers to study risks posed by different waterlogging scenarios in an 

urban setting for distinct flood return periods (Yin et al, 2011). Information obtained 

from employing this GIS approach is used to calculate the depth and extent of 

waterlogging which might pose a threat to inundated buildings and houses. US Army 
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Corps of Engineers Flood Damage Reduction Analysis (HEC-FDA) software tool also 

provides the ability to perform economic analysis exercises and examine risk 

management plans related to a flood activity in a sensitive area (HEC, 2021). Frequent 

flood risk studies are also conducted by the U.S. Army Corps of Engineers (USACE) 

Silver Jacket Program in conjunction with the State Risk Management Team (SRMT) in 

the areas susceptible to flash floods in the state of Missouri (Silvers Jackets Website, 

2021). These government agencies frequently collaborate with the State Emergency 

Management Agency (SEMA) to check risks posed by all flood events and develop 

relevant mitigation plans (SEMA, 2021; Silvers Jackets Website, 2021). Regular flood 

management exercises are also undertaken by these bodies to safeguard the lives and 

property of the local public from unexpected flooding scenarios. Silver Jackets Program 

also provides technical assistance for different Federal Emergency Management Agency 

(FEMA) Risk MAP products to effectively communicate risks emanating from all 

flooding events to the local public. This plethora of resourceful information can easily be 

obtained from relevant agencies to be used for the benefit of the local stakeholders. Risk 

MAP Products such as flood insurance rate maps, National Flood Hazard Layer (NFHL) 

databases, flood risk maps (FRM), flood risk reports (FRR), flood risk database (FRD), 

etc. are regularly hosted by FEMA on its web portal for use by the interested parties 

(FEMA.gov., 2021). The Missouri Department of Transportation (MoDOT) regularly 

highlights the state’s flooded road segments and locations on the Traveler Information 

Map (Missouri Department of Transportation, 2021). Department of Transportation also 

shares such critical information with the people through social media applications on 

regular basis (Twitter, 2021). 
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This project focuses on the implementation of a deep learning-based artificial 

neural network (ANN) to locate potential flash-flood-prone locations and use a resource 

calculator to estimate the amount of money needed to restore flash flood-hit damaged 

road segments. Research suggestions can then be used to enhance flash flood risk 

management protocols for sensitive areas. The data required for this project is obtained 

from the United States Geological Survey (USGS), National Oceanic and Atmospheric 

Administration (NOAA), and National Weather Service (NWS). 

1.2. CLASSIFICATION MODELS 

The three different types of classification models implemented in this research are 

a deep learning-based artificial neural network model, a logistic regression model, and a 

support vector machine model. Deep learning-based artificial neural networks are built of 

layers containing mathematical functions called neurons which deduce the trends and 

patterns hidden in the input dataset (smartboost, 2020). It contains multiple hidden layers 

which receive input data from the initial layer and apply computations to it before further 

passing the information to the network’s output layer. This output layer then processes 

the received information and produces a Boolean value for the classified data label. A 

binomial logistic regression-based model uses a logit-function to evaluate the relationship 

between all variables and generates probability-based output values to differentiate 

between flooded and non-flooded locations (scikit, 2021). Support Vector Machine 

(SVM) classifier allocates labeled data points on either side of a decision boundary 

known as hyperplane to classify data points belonging to either class label (Bambrick, 

2016). All three classification algorithms assign a probability value to a location data 
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point belonging to either category (i.e., flooded, or non-flooded location). The algorithms 

assign class label 0 to all location data points with a probability value lower than 0.5 

whereas the data points with a probability value of more than 0.5 are labeled with a value 

of 1. 

1.3. SUPPLY CHAIN INFRASTRUCTURE RESTORATION CALCULATOR 

(SCIRC) 

The Supply Chain Infrastructure Restoration Calculator (SCIRC) software tool 

developed by a team of researchers at Missouri S&T, Rolla, and United States Geological 

Survey (USGS) can be used to estimate both direct costs and resources needed to restore 

damaged infrastructure elements (Ojha et al, 2019). This software tool provides an 

approximate value of the monetary resources based on the historic reconstruction costs 

needed to repair damaged infrastructure elements like interstates, arterial roads, etc. The 

SCIRC can be used to calculate the total amount of resources required by the city 

planners and contractors to reconstruct an infrastructure element damaged due to a 

natural disaster such as a flash flood. The different types of resources needed for 

reconstruction purposes are power, fuel, potable water, storage area, man-hours, gray 

water, food, materials, etc. as shown in Figure 1. The SCIRC is populated using a 

bottom-up cost estimation technique and its output can be combined with event 

probability values to perform the approximate comparisons of risk values of different 

infrastructure elements. This information can then be used by the personnel in charge of 

post-disaster relief operations to develop and implement necessary flash flood 

management protocols if needed. 
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Figure 1. User interface of supply chain infrastructure restoration calculator (SCIRC). 

 

The resource calculator constitutes five different components which are 

mentioned below. 

1. Facilities Affected: The tab for the ‘Facilities Affected’ component consists of a 

list of 30 different infrastructure elements which can be selected by the user on a 

case-by-case basis for restoration-related calculations. 

2. Factors: This component tab constitutes information related to the amount of each 

resource (power, water, fuel, man-hours, etc.) required to restore per unit of a 

chosen infrastructure element. The user can modify and update the values in this 

tab as per its requirements.  
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3. Costs: The per-unit costs information of each resource is pre-filled in the 

designated fields of this component tab. 

4. Totals: The amount of each resource needed for the restoration of an 

infrastructure element is categorized under this component tab. The sum amount 

of all costs of resources needed for restoration is also displayed under this feature 

tab. 

5. Overall Resources: This component tab includes data related to all the resources 

needed to restore all the infrastructure elements selected by the user. 

The software tool can be used to calculate the amount of resources and costs 

involved while restoring a set of thirty different infrastructure elements selected from a 

variety of sectors such as transportation, education, healthcare, emergency services, city 

utilities, communications, traffic control, etc. Each infrastructure element requires 

different amounts of resources for its post-disaster restoration operations. The 

construction steps and processes for different infrastructure elements are reviewed to 

develop estimates for the resources required for their restoration. The data values for 

resources such as potable water, gray water, food, power, etc. are established from the 

number of man-hours needed for restoring respective infrastructure elements. RSMeans, 

a square foot estimator tool, is also used to estimate the cost of materials plus man-hours 

required to re-construct hospitals, schools, fire stations, police stations, and warehouses 

in disaster-struck areas (RSMeans, 2021). The cost of materials required to restore the 

remaining infrastructure elements is obtained after evaluating their respective 

reconstruction procedures. The cost of resources such as fuel, electricity, etc. is gathered 

from reviewing the similar literature work published by several government agencies and 
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university researchers (Environmental Protection Agency, 2021; Jiang, 2011; Michigan 

Water Environment Association, 2021; Ohio Environmental Protection Agency, 2021; 

Slate, 2021; U.S. Energy Information Administration (EIA), 2021). This cost information 

is only applicable to the restoration tasks for the infrastructure elements located in the 

Midwestern United States. The costs related information varies from region to region and 

will have to be updated by the user while using this tool in the other parts of the country.  

A set of different linear equations are developed to calculate the total amount of 

resources and costs involved in reconstructing a damaged infrastructure element (Ojha et 

al, 2020). The total amount of resources needed to restore certain units of damaged 

infrastructure element is calculated by the product of ‘x’ units of the element with the 

amount of resources needed to restore per unit of the infrastructure element as shown in 

Equation (1) below. 

Tij = 𝑥 ∗ Rij                                                             (1) 

where ‘Tij’ is the total amount of a resource ‘j’ needed to restore ‘x’ units of a selected 

infrastructure element ‘i’ and ‘Rij’ represents the amount of a resource ‘j’ needed to 

restore a unit of infrastructure element ‘i’. 

The total cost of restoring ‘x’ units of a selected infrastructure element ‘i’ is 

denoted by ‘TCi’ and is calculated from Equation (2) shown below. 

TCi = ∑ (10
𝑗=1 𝑇𝑖𝑗 ∗ 𝐶j )                      (2) 

where ‘Cj’ represents the cost of a unit of resource ‘j’. 

Equation (3) is also developed to calculate the overall amount of resources 

required to restore multiple damaged infrastructure elements as shown below. 

               ORj = ∑ 𝑇𝑖𝑗 30
𝑖=1 ∀𝑗 = 1, 2, 3,…,10                                  (3) 
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where ‘ORj’ is the total amount of resource ‘j’ required to restore multiple damaged 

infrastructure elements. 

The calculator is easy to use, and the user must enter the units of the selected 

infrastructure element(s) mentioned in the ‘Facilities Affected’ component tab to find the 

number of resources and the total amount of money needed for its restoration. 

 

2. METHODOLOGY 

2.1. STUDY AREA 

A goal of this research project was to identify potential flash flood-prone 

locations in and around the city of Springfield located in Greene County, Missouri. The 

geospatial and weather data for this area is studied as this region of Missouri often 

encounters various inclement weather events over a whole year (Clayton News, 2021). 

According to the data collected by the local Springfield National Weather Service Office 

(NWSO), frequent episodes of heavy rainfall accompanied with unusual tornado 

activities often results in flash flood episodes in the surrounding area (US Department of 

Commerce, N.O.A.A., 2015). The geospatial and weather data for this area is collected 

and investigated to develop a deep learning-based artificial neural network (ANN) 

classifier that can assist in accurately locating the flash flood-prone locations. Once such 

locations have been studied, the regional authorities in charge of flood management 

responses can further use this information to perform suitable risk values-related studies 

and improve its disaster handling protocols. 
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2.2. DATA 

To identify flash flood-prone locations in the Springfield area of Greene County, 

Missouri a deep learning-based artificial neural network (ANN) classifier is developed 

using the publicly available datasets. To begin with, National Oceanic and Atmospheric 

Administration’s (NOAA) Storms Events Database is explored to prepare a custom flash 

flood database containing information related to flash flood events at susceptible 

locations. The information acquired from this database is utilized to highlight the areas of 

interest in the selected watershed for subsequent analysis. Light Detection and Ranging 

(LIDAR) based geospatial data files gathered from the United States Geological Survey 

(USGS) are processed using ArcGIS Pro, a geospatial analysis software, to extract raster 

elevation, slope, aspect, and curvature layers for the test area. Precipitation data collected 

from the National Weather Service (NWS) is also processed using ArcGIS Pro to collect 

rainfall information from January 2005 till December 2019. Eventually, the collective 

location data information embedded in these geospatial and rainfall layers is stored in a 

tabular comma-separated value (CSV) data format for further application in suitable 

machine learning operations. 

Different machine learning models such as the logistic regression model and 

support vector machine (SVM) model, and another deep learning-based artificial neural 

network (ANN) model are implemented to select a suitable classification model for 

accurately classifying the flash flood-prone locations in the study area. The complete 

labeled location data set required for these classification models consists of 350 different 

data points. The target variable embedded in this dataset is assigned two distinct class 

label values of 0 and 1 to distinguish between both non-flash flood and flash flood 



 

 

13 

locations, respectively. So, location data points assigned with class label values of 0 and 

1 signify non-flash flood and flash flood-prone locations, respectively. Out of these 350 

data points, 185 points fall under the category of non-flash flood-prone locations (i.e., 

with class label 0) whereas the remaining 165 points signify flash flood-prone locations 

(i.e., with class label 1) as shown in Figure 2. 

 

 

Figure 2. Distribution of location data points. 

 

The dataset constitutes values for nine different independent variables or features 

such as ‘Rainfall day of Inches’, ‘Rainfall 1 day before’, ‘Rainfall 2 days before’, 

‘Rainfall 3 days before’, ‘Summation of antecedent rainfall’, ‘Curvature’, ‘Aspect’, 

‘Slope’ and ‘Elevation’. The dependent variable is titled ‘Class label’ and comprises 

binary values, 0 and 1 to signify both non-flash flood and flash flood locations. Figure 3 

displays the architecture of the models implemented to classify the flash flood-prone 

locations. The whole dataset is divided into two sets for the tasks of training and testing 

the models. 262 data points (75% of the whole dataset) are allotted to the training dataset 
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and the remaining 88 points (25% of the whole dataset) are allocated to the testing 

dataset. 

 

 

Figure 3. Location classification model architecture. 

 

2.3. DEEP LEARNING-BASED CLASSIFICATION MODEL 

The deep learning neural network uses 9 different variables as input parameters, 

an ‘Adam’ learning rate optimizer, and a ‘sigmoid’ activation function for the 

classification task. A dropout value of 0.2 is applied within the layers of the neural 

network to prevent overfitting (IBM, 2021). Both hyperparameters, ‘epochs’ and ‘batch 

size’ are assigned the values of 1000 and 10 respectively. The output ‘Dense’ layer of the 

network utilizes a sigmoid function to assign a value ranging from 0 to 1 to the single 

location point. 

2.4. SUPPLY CHAIN INFRASTRUCTURE RESTORATION CALCULATOR 

(SCIRC) AND RISK VALUE 

The classifier’s output indicates flash flooding probability values in areas of 

Greene County, MO. A risk value associated with damaged infrastructure can then be 

calculated by multiplying the respective probability values with the infrastructure’s 
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restoration cost. This restoration cost corresponds to the amount (in $) needed to re-

construct the infrastructure elements damaged due to a flash flood. The calculator’s 

functionality along with the event probability value of a susceptible location can be used 

to get higher-level estimates of the risk value associated with different infrastructure 

elements threatened by flash floods. 

The risk value i.e., the estimated cost associated with this road section in case of a 

flash flood event can be calculated using Equation (4) shown below.  

                               Risk Value = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡 𝑉𝑎𝑙𝑢𝑒                          (4) 

where ‘Probability Value’ is the likelihood of occurrence of an event and ‘Impact Value’ 

is the amount of money required in a risk event. 

 

3. RESULTS AND DISCUSSION 

3.1. DEEP LEARNING-BASED CLASSIFICATION MODEL 

Out of all three classification models, the deep learning-based artificial neural 

network classifier achieves the highest classification accuracy of 85.23% when applied 

on the 88 data points-based testing feature dataset. The deep learning model described 

correctly classifies 75 out of 88 locations with an error rate of 14.77%. 40 locations out of 

a total of 75 locations are correctly classified as belonging to class label 0 and the 

remaining 35 locations are correctly labeled with a class value of 1. Both logistic 

regression and support vector machine (SVM) based classifiers deliver an accuracy score 

of 75% and 62.5% respectively. The parameters of the support vector machine (SVM) are 
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further tuned to improve its accuracy score to 80.68% which is still lower than the neural 

network’s score as shown in Figure 4. 

The neural network predicts areas with a 50% or greater probability of 

experiencing flash flooding using a 0.5 threshold function. By varying the threshold value 

from 0.5 to 0.9 (in increments of 0.1) a better evaluation of the probability of flash 

flooding can be found, corresponding to a 50% to 90% probability. This technique was 

applied to the locations previously identified in Greene County, Missouri with random 

rainfall amounts. This created a novel dataset for 220 values to be used as inputs to the 

classifier. When used to bin values in this dataset, the model identified 78 events with 

greater than a 50% probability of flash flooding. The total for each probability were 22 

meeting only the 50% threshold, 17 meeting the 60% threshold, 14 meeting the 70% 

threshold, 13 meeting the 80% threshold, and 12 with 90% or greater probability. 

 

 

Figure 4. Comparison of accuracy scores. 
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3.2. RISK ANALYSIS 

The deep learning-based neural network model identifies the section of West 

Farm Road 146 running parallel to the Wilsons Creek as one of the 12 flash flood-prone 

locations in the Springfield area which have a more than 90% probability value of 

encountering any flash flood event. The model assigns a very high flash flood probability 

value of 99.87% to this location which makes it a highly vulnerable spot for flash floods. 

Wilsons Creek is located in southwest Greene County and it frequently overflows its 

banks after heavy rainfall resulting in the inundation of the West Farm Road 146 (KY3, 

2019). As a result, this arterial road is often closed for use by daily commuters to ensure 

their safety and wellbeing. In case this road is damaged due to flash floods, the local 

government authorities in charge of post-disaster restoration tasks will have to calculate 

both amounts of resources and money needed for its repair and restoration.  

Using the SCIRC, the total cost to repair this road can be calculated and is equal 

to $8.05 per sq. ft. The cost incurred to repair per sq. ft. of this damaged road can also be 

called ‘Impact’ which is the amount of money spent whenever an identifiable risk event 

occurs (Spacey, 2017). Using Equation (4), the risk value for the West Farm Road 146 is 

calculated to be $8.04 per sq. ft. The deep learning-based model also identifies another 

section of West Sunset Street located parallel to Sunset South Creek as the location with 

a very high probability value of experiencing flash flood events. The model assigns a 

very high flash flood probability value of 99.30% to this new location. After a flash flood 

event, the cost to repair the damaged section of this road can also be acquired from 

SCIRC which is equal to $14.43 per sq. ft. Similarly, Equation (4) can be used again to 

calculate its risk value which is equal to $14.33 per sq. ft. 
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The risk value numbers can be used by the responsible personnel to prepare 

estimates for the budget needed to restore the damaged road sections in case of a flash 

flood event. The authorities can compare the risk values for different roads to prioritize 

spending money on the repair work as per their budget and other requirements. It can be 

observed that the risk value for the West Sunset Street i.e., $14.33 per sq. ft. is more than 

the similar value for West Farm Road 146 i.e., $8.04 per sq. ft. Since, West Sunset Street 

experiences more traffic volume than West Farm Road 146, the restoration crew can 

prioritize its re-construction over the West Farm Road 146 for the benefit of the 

commuters (Traffic Volume Maps, 2021). Also, a large number of heavy vehicles such as 

single-unit trucks and tractor-trailer combination trucks, etc. ply on West Sunset Street as 

compared to the West Farm Road 146 which makes its post-flood repair and restoration a 

priority for the responsible parties (Traffic Volume Maps, 2021). Any delays to its 

restoration tasks can increase the transportation costs of the goods and items transported 

by these heavy vehicles from one place to another. Moreover, the presence of many 

residential buildings constructed along the banks of Sunset South Creek on West Sunset 

Street makes the task of reconstructing its damaged sections more urgent to ensure the 

well-being of the area’s residents (Google, 2021). 

A similar comparison of risk values and traffic volume data for a different set of 

roads can assist in identifying locations in need of urgent attention after a natural hazard 

such as a flash flood. Prior knowledge of these estimates will help local government 

agencies to calculate the suitable amount of resources needed to counter the risks posed 

by the flash floods to the vulnerable sections of important roads. The personnel at the 

Missouri Department of Transportation (MoDOT) can also use this information to 
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develop more robust risk management plans for the safety of the commuters relying on 

these roads for their travels. Once such plans have been developed, adequate responses 

can also be taken by the Missouri State Emergency Management Agency (SEMA) to 

mitigate the risks posed by roads damaged because of a flash flood event. The 

capabilities of both deep learning-based neural network classification model and SCIRC 

can be used to identify the flash flood risk-prone locations and prepare adequate 

contingency reserves needed to repair the damaged road sections in these locations. 

 

4. CONCLUSION AND FUTURE WORK 

 

Different machine learning algorithms can be executed to scrutinize vast amounts 

of weather data generated continuously and locate areas that can witness abrupt flash 

flood activities. The proposed deep learning-based neural network classifier with an 

accuracy score of 85.23% can be adopted to identify such locations in a selected 

watershed basin. This classifier relies on high-quality publicly available data to 

efficiently diagnose and group data points into two distinct categories i.e., non-flash 

flood-prone and flash flood-prone locations. The architecture of the deep learning-based 

neural network classifier can be updated to conveniently incorporate different sets of 

geospatial and weather features as inputs to the model. Also, the performance of a deep 

learning-based classifier is not affected when implemented on a huge volume of data 

points which makes it suitable for application in a variety of real-world scenarios. The 

classifier consumes less time to analyze the data features as compared to the traditional 
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machine learning models which is advantageous in the time-sensitive task of identifying 

dangerous flash flood-prone locations. 

After identifying flash flood hotspots, the probability values assigned to a 

susceptible road can be combined with its total restoration costs obtained from SCIRC to 

find an overall risk value for that location. After analyzing the risk values for different 

roads threatened by flash floods, the city planners can set aside sufficient resources 

needed for the post-disaster restoration tasks. The policymakers can also use these values 

to estimate the monetary impact of flash floods-induced risks on the post-disaster relief 

management plans. The availability of advanced risk values-related information will also 

assist these authorities in making apt decisions related to post-disaster resource allocation 

tasks. 

The deep learning-based classification model can be implemented on datasets 

containing information related to other features such as normalized difference vegetation 

index (NDVI), etc. to identify flash flood-prone locations in different areas. Additional 

information such as building data, population, etc. can also be incorporated in the flash 

flood-related economic and risk studies in future work. 
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ABSTRACT 

Compared to normal flood events, flash flooding events are challenging to predict 

due to their localization and the speed at which they occur. To assess flash flood risks this 

research compares three machine learning techniques used to predict the likelihood of 

flooding in Greene County, Missouri: logistic regression, support vector machines, and a 

deep learning neural network. Publicly available geospatial information and precipitation 

data associated with the area are used as inputs to these algorithms to classify the 

likelihood that a flash flooding event had occurred. These predictions are validated 

against historic flash flood occurrences documented by the National Oceanic and 

Atmospheric Administration. When compared to a logistic regression model and a 

support vector machine, the deep learning neural network model had a higher 

classification accuracy of 85.23%. Adjusted into risk levels, this provides advance 

warning of high-risk flash flood events to allow emergency managers the ability to issue 

warnings and close susceptible roadways. These higher quality predictions can reduce 

danger to the public and assist key stakeholders in developing robust flood management 

responses. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Natural disasters like flash floods are known to cause both economic and personal 

damages to the inhabitants of the areas located in both urban and rural watersheds. Flash 

floods have also been culpable for widespread fatalities across the country (Ashley et al, 

2008). Most of these fatalities happen when commuters are stuck inside their stalled 

vehicles on a submerged road segment (SEMA, 2021). Missouri lost 11 people on a 

single unfortunate night due to sudden heavy downpour and flash flood (SEMA, 2021). 

In 2016, 7 people lost their lives due to a flash flooding activity caused by sudden rains in 

Pulaski County, Missouri (St. Louis Post Dispatch, 2016). In recent decades, climate 

change has led to a surge in precipitation events which has worsened the situation in the 

country (Davenport et al, 2021). The ever-increasing cost of floods has motivated 

researchers to develop and test various methods which can assist in the urgent task of 

accurately predicting the areas threatened by flash flooding. 

Research activities have been conducted in both public and private sectors to 

predict flood events in susceptible regions. Simulation software like the River Analysis 

System (HEC-RAS) developed by the US Army Corps of Engineers has been used by 

flood disaster management teams to predict flooding events (US Army Corps of 

Engineers, 2021). In addition to HEC-RAS, hydrodynamic models like LISFLOOD-FP 

and TELEMAC-2D have also been applied to calculate the extent of inundation in a 

floodplain using parameters like channel friction, etc. and predict river flooding in a 
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potentially vulnerable location (Horritt et al, 2002). LISFLOOD based hydrological 

models have also been used by researchers to develop a European Flood Forecasting 

System (EFFS) which can predict feature values such as water depth and inundation 

extent (Roo et al, 2010). Hydrologic one-dimensional (1D) and two-dimensional (2D) 

flow computations are applied to estimate the flood travel time and its inundation area 

and improve the respective flood warning systems in the risk zones (Ghimire et al, 2020). 

Various mathematical models have also been developed to identify key 

parameters which aid in forecasting the flood hazard efficiently. Bayesian methods such 

as ensemble Bayesian forecasting system, Bayesian multi-model combination, and others 

have been shown to be effective in predicting the water level stages of a swollen river 

after incorporating river parameters such as discharge and runoff in the flood prediction 

models (Han et al, 2017). Both geomorphological and climatological features have been 

studied to develop a flood severity model and conduct a seasonality-based analysis to 

identify risk-prone areas (Saharia et al, 2017). A multilayer perceptron (MLP) model was 

developed to determine the time at which a river might overflow its banks at certain 

locations during a flood activity (Baalaji et al, 2020). Machine learning techniques such 

as alternating decision trees (ADT), functional trees (FT), kernel logistic regression 

(KLR), multilayer perceptrons, and quadratic discriminant analysis (QDA) algorithms 

have been implemented on historical databases to develop a model for efficient flash 

flood susceptibility mapping needed to enhance area’s watershed management approach 

(Janizadeh et al, 2019). Computational intelligence methods like particle swarm 

optimization (PSO) have also been used to predict the flash flood locales and develop 

respective flash flood susceptibility maps of Northwest Vietnam (Bui et al, 2019). Dual-
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polarization S-band doppler weather radar (SPOL) based precipitation data was used as 

an input to a model to relay timely flash flood emergency warnings for risk-prone 

watersheds in Sao Paulo, Brazil (López et al, 2020). A linear regression model-based 

flash flood warning system was implemented to send short message service (SMS) 

messages and alert inhabitants of a flood-prone area before the onset of flash flooding in 

the Philippines (Castro et al, 2013). Taiwanese researchers have relied on large volumes 

of satellite-derived datasets and rain gauge data points to develop a neural network-based 

model which can analyze precipitation events resulting in flash floods (Chiang et al, 

2007). 

Most flash flood-related research focuses on the task of predicting such events in 

a selected vulnerable region. However, such studies have rarely addressed the need to 

accurately identify locations that may be affected by flash floods. Failure to identify flash 

flood-prone traffic areas such as roads can lead to personal losses incurred by the 

commuters who use them for their commutes. The availability of a large quantity of data 

accompanied by capable computer hardware has made it possible to implement machine 

learning techniques and identify patterns to develop better flood identification models for 

such locations. Since a flash flood activity is both immediate and dangerous, it is 

imperative to develop models that can correctly identify potential flash flood locations in 

a susceptible region. The implementation of an efficient machine learning-based 

classification model will provide the ability for the stakeholders to analyze the complex 

datasets and prepare suitable flood management responses. This project combines 

geospatially analyzed flash flood data with a deep learning-based neural network model 

to address the dynamic nature of volatile flash flooding events and locate potential flood-
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prone locations in the region of Greene County, Missouri. The model relies on a data-

driven approach to accurately classify and identify different flash flood-prone road 

segments in this region. 

 

2. MODEL OVERVIEW 

 

The goal of this research is to classify the likelihood of flash flooding at locations 

that are historically susceptible to flash flooding events. This study is focused on 

locations in Greene County, Missouri, USA. Three different machine learning models 

were used to predict flash flood events: deep learning-based artificial neural networks 

(DL-ANN), logistic regression, and support vector machine (SVM). These algorithms use 

supervised learning, where input data is used to train the algorithms to give a tagged 

response associated with that input data. Since the target variable values are already 

embedded in the labeled dataset used as input to the model, the developed classification 

model can be conveniently tuned to improve its performance. 

With the advent of modern technology, the process of collecting weather, 

geospatial and meteorological data has become relatively streamlined. The accelerated 

advancement in the field of machine learning in conjunction with the availability of 

efficient computer hardware has led to an increase in the application of machine learning 

techniques in various research sectors. This research project also depends on such 

techniques to address the real-world challenge of determining the likelihood of a flash 

flood at the locations considered in this study. 
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2.1. DEEP LEARNING ARTIFICIAL NEURAL NETWORK 

Deep learning artificial neural networks (DL-ANNs) are an elaboration on 

artificial neural networks (ANNs); mathematical models intended to replicate the 

architecture of the human brain. They can be used to detect trends and patterns present 

within the input data by approximating the complex functions representing these patterns. 

Each ANN consists of an input layer, an output layer, and hidden layers populated with 

mathematical functions referred to as neurons. These neurons mirror biological neurons 

and gather the information presented by the data to produce output results to be used by 

another set of neurons in the next connected layer. Once the necessary information is 

shared between the input and the hidden layers, the neurons apply a specified activation 

function to the received input before further feeding the resultant to the final output layer 

to produce model output. A deep learning artificial neural network is an artificial neural 

network with several hidden layers (usually three or more). 

For the binary classification tasks, the output layer of the DL-ANN consists of a 

sigmoid activation function which generates an output value in the range [0,1] as shown 

in Equation (1). 

𝑆(𝑥) =
1

1+ⅇ−𝑥
                                                           (1) 

Sigmoid function-based classification models use a default probability threshold 

value of 50% or 0.5 to distinguish between different probability values and identify if an 

event has occurred. For this research, if the probability values are lower than the 

threshold value of 50% then flash flooding is not predicted to happen. If the value is 

equal to or greater than the 50% threshold value, then a flash flooding event is predicted 

to happen. 
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2.2. LOGISTIC REGRESSION 

Logistic regression is a conventional statistical approach to create a model for 

binary classification problems. The logistic regression model evaluates the relationship 

between dependent and independent variables in a dataset and uses a sigmoid function to 

generate a probability-based output value between 0 and 1 to allocate binary class labels 

to different location data points (Kambria, 2019). As with the DL-ANN, returned values 

of less than 0.5 indicate no flash flooding is predicted at the location under evaluation and 

values of 0.5 or greater indicate a flash flood will occur at that location. 

2.3. SUPPORT VECTOR MACHINE 

The third machine learning method examined is a support vector machine (SVM). 

SVMs have two major components: the kernel and a hyperplane. The kernel is a 

mathematical function that uses the input data and transforms it into the required output 

format for specified applications (scikit, 2021). Some examples of kernels are the linear 

kernel, nonlinear kernel, sigmoid kernel, and polynomial kernel, etc. The hyperplane 

represents a decision boundary that divides the differently labeled data points (yes or no 

as to whether a flash flood is predicted), with the points bordering the decision boundary 

are known as support vectors. Support vector machine classifiers identify the best 

decision boundary, or hyperplane, to correctly distinguish between labeled points in a 

dataset. The distance between the nearest data point and the hyperplane is called margin 

(MathWorks, 2021). The model identifies the hyperplane such that the margin value of a 

data point belonging to a particular class is as high as possible. To deliver high 
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classification accuracy, all data points associated with a given class should also be 

situated on the correct side of this hyperplane. 

To further improve a SVM’s classification performance, the Grid Search 

approach is implemented to tune the settings of the algorithm, called hyperparameters. 

These hyperparameters include misclassification cost, gamma, and the kernel used. 

Misclassification cost represents an acceptable amount of misclassification error for the 

classification task and the gamma value highlights the influence of the data points located 

on either side of the hyperplane. In the Grid Search approach, the model tested different 

combinations of hyperparameter values chosen through trial and error to identify a set of 

values that can improve its classification accuracy score. The dataset is then re-fitted on 

the updated model for training purposes. Once the model is re-trained, it is run on the 

testing dataset to classify data points between the two classes. 

2.4. DATA SOURCES 

The data used to determine flash flooding in susceptible areas of Greene County, 

Missouri is publicly available, open-source data acquired from the United States 

Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), 

and National Weather Service (NWS). Information related to previous flash flood events 

in the county are gathered from the ‘Storm Events Database’ to prepare a database of the 

flash flood-prone locations in the region. This database is maintained by NOAA and 

contains information on the time and location of severe weather events across the country 

(NOAA, 2021). The ‘Storm Events Database’ contains exhaustive information related to 

flash floods that have occurred in the area of interest dating back to 1950. NOAA’s 
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National Weather Service (NWS) maintains and develops this database using 

comprehensive inputs from trained storm spotters and emergency response personnel to 

collect the flash flood event details at an affected location. It is the responsibility of the 

spotter to gather information on the areas and road segments affected by a flash flood and 

store the necessary details of the event in the database. The details of the flash flood 

events in the test region are collected from this database to identify the affected roads 

between 2005 and 2019. Elevation data, rainfall data, and soil moisture are used as inputs 

for all the models. Elevation data is available from the USGS’s National Map to develop 

the raster elevation layer of the area of interest (USGS, 2021). Rainfall data is collected 

from the NWS for the period matching the ‘Storm Events Database’ (NOAA, 2021). Soil 

moisture is accounted for by using rainfall amounts for the three days preceding the time 

frame being evaluated using data from NWS. To develop a machine learning model 

capable of predicting these events, the data must be divided into a training set that the 

algorithms will use to determine relationships and a testing set that will be used to 

validate the accuracy of the model. 

2.5. MODEL EVALUATION METRICS 

The classification accuracy of the models is validated using three performance 

metrics (Accuracy, Precision, and Area Under the Receiver Operating Characteristic 

Curve) and displayed in a confusion matrix and receiver operating characteristic (ROC) 

curve graph. Different sets of confusion matrices are generated to represent the number of 

actual and predicted flash flood locations in the test region. The four main components of 

a confusion matrix are True Positive (TP), True Negative (TN), False Positive (FP), and 
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False Negative (FN). True positive represents a predicted true value that is actually true 

and false positive is a predicted true value that is actually false. True negative is the 

predicted false value that is actually false and false negative is the predicted false value 

that is actually true. The accuracy score of a model is calculated as the sum of both True 

Positive and True Negative data values divided by the total number of values used as 

input to the model as shown in Equation (2). The accuracy scores of all the models are 

compared against each other to choose the most accurate flash flood classification model. 

                      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑟𝑢ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ+𝑇𝑟𝑢ⅇ 𝑁ⅇ𝑔𝑎𝑡𝑖𝑣ⅇ)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢ⅇ𝑠 𝑜𝑟 𝑜𝑏𝑠ⅇ𝑟𝑣𝑎𝑟𝑖𝑜𝑛𝑠)
∗ 100          (2) 

Positive Prediction Value (PPV), or Precision, is a measure of how well the model 

predicted positive results. It is calculated as the number of true positive data values 

divided by the sum of true positive and false positive values as shown in Equation (3). 

          𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 =  
𝑇𝑟𝑢ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ

𝑇𝑟𝑢ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ + 𝐹𝑎𝑙𝑠ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ
        (3) 

True Positive Rate (TPR), or Recall, determines how well the model correctly 

identifies true positives. It is defined as the number of true positive values divided by the 

sum of true positive and false negative data values as shown in Equation (4). 

                       𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑇𝑟𝑢ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ

𝑇𝑟𝑢ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ + 𝐹𝑎𝑙𝑠ⅇ 𝑁ⅇ𝑔𝑎𝑡𝑖𝑣ⅇ
                  (4) 

False Positive Rate (FPR) determines the ratio of negative cases that are 

incorrectly labeled as positive by the classification model. It is defined as the number of 

false positive values divided by the sum of false positive and true negative data values as 

shown in Equation (5). 

           𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ

𝐹𝑎𝑙𝑠ⅇ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣ⅇ + 𝑇𝑟𝑢ⅇ 𝑁ⅇ𝑔𝑎𝑡𝑖𝑣ⅇ
                 (5) 
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The receiver operating characteristic (ROC) curve and the area under the ROC 

(AUROC) values are calculated to analyze the classification performances of the machine 

learning models (Google, 2021). The ROC curve is a plot between the TPR and the FPR 

that visualizes a model’s performance for different classification threshold values. 

AUROC is the area below the ROC curve of a classifier with values in the range from 0 

to 1. An AUROC value of 0.5 means that the model is not able to distinguish between 

different classes, whereas a score between the values of 0.7 and 0.8 signifies a model 

with an acceptable classification performance. The AUROC values lying between the 

ranges of 0.8 to 0.9 and 0.9 to 1.0 denote that the models have excellent and outstanding 

classification capabilities, respectively (Mandrekar, 2015). 

 

3. METHODOLOGY 

3.1. STUDY AREA 

The area of interest for the classification models developed in this study is Greene 

County, Missouri, and in particular the locations with commonly used roads. Greene 

County is in the southwestern part of Missouri and is one of the most populous counties 

in Missouri, containing the Springfield metropolitan area (US Census Bureau, 2021). 

Greene county also experiences inclement weather conditions throughout the year 

(Clayton News, 2021). As per the local Springfield National Weather Service Office 

(NWSO), the county experiences an average of 39 heavy rain events each year that can 

lead to flash flood events, especially in and around the areas of Springfield (NOAA, 

2015). The Springfield metropolitan area consists of busy highways such as Interstate 44, 
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U.S. Route 60, U.S. Route 65, and U.S. Route 165, etc. which pass through the county 

(MoDOT, 2021). The area’s creeks and ravines can experience flash flooding, with 

damage to road segments resulting in both economic and personal losses to its residents 

(Louzader, 2020). Local law enforcement authorities must sometimes conduct rescue 

operations for the commuters stuck in their vehicles on flash flood-hit roads (KY3, 2021). 

Hence, it is crucial to investigate both geospatial and rainfall information of the region to 

develop a dependable model which can identify roads segments susceptible to flash 

flooding activities to anticipate and minimize the impact of these events. Identifying 

these locations in the region will assist the city planners and government agencies such as 

the Missouri Department of Transportation (MoDOT) and the Missouri State Emergency 

Management Agency (SEMA) in taking necessary precautionary measures in advance. 

3.2. DATA COLLECTION 

To prepare the dataset for machine learning models, information on historic flash 

flood events is collected from NOAA’s database. The events can be located by searching 

the database to determine when they occurred, but all information related to location is 

entered as text that must be analyzed to determine where the event took place. All the 

events used for training the machine learning algorithms had to be manually analyzed to 

determine these locations. Once the time and location of these events are known, 

information on the geographical features of the area that can affect whether a flash flood 

occurs is determined. Both the time and geographical location data are used to gather 

rainfall data during and three days prior to the possible flash flood event to account for 
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soil saturation and the amount of rainfall for the event. This information is used as the 

input to the models for identifying the flash flood-prone locations. 

Pre-processing is performed on the data to gather and convert it into a suitable 

format to be used as inputs for the different classification models. A database containing 

historic flash flood events information is built to create explanatory data layers based on 

four different geospatial variables: elevation, slope, aspect, and curvature. The entries in 

this database also contain the latitude and longitude information of the locations of 

interest to accurately visualize them in ArcGIS Pro. The location information from this 

database is combined with the road network obtained from the National Transportation 

Dataset (NTD) to highlight road segments that may be affected by flash floods (USGS, 

2021). 

A labeled location data set of 350 data points is built from the historic flood event 

database depicting a set of locations in Greene County using a point sampling operation 

in ArcGIS Pro. These location points are labeled as either locations where flash flooding 

has occurred or locations where it has not occurred. Out of a total of 350 data points, 165 

data points correspond to recorded flash flood events and 185 are categorized as non-

flash flood events as shown in Figure 1. The flash flood locations are represented with 

red dots in Figure 2 and the non-flash flood locations are represented with green dots in 

Figure 3. The elevation data for the test region are gathered by the USGS and stored in 

Light Detection and Ranging (LIDAR) format. The lidar-based elevation data for this 

region is analyzed using ArcGIS Pro (esri, 2021) to generate the raster elevation layer of 

the selected area using ArcGIS Pro’s in-built raster tool and clipping procedures as 

displayed in Figure 4. 
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Figure 1. Datapoints distribution in dataset. 

 

 

Figure 2. Flash flood locations. 

 

 

          Figure 3. Non-flash flood locations. 

 

 



 

 

39 

 

Figure 4. Elevation profile. 

 

ArcGIS Pro’s slope, aspect, and curvature tools are also used to obtain the 

remaining slope as shown in Figure 5, aspect as shown in Figure 6, and curvature as 

shown in Figure 7 layers for the region. 

 

 

Figure 5. Slope profile. 
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Figure 6. Aspect profile. 

 

 

     Figure 7. Curvature profile. 

 

Rainfall data from NOAA does not map directly to the locations in the 

geographically data set. To compensate for this, a nearest neighbor algorithm is used in 

ArcGIS Pro to associate the historical rainfall information to the location data so that the 

input information can be properly aligned (esri, 2021). This was done for all data 

gathered from January 2005 to June 2019 and associated with the explanatory layers. 

The collected dataset is subjected to data cleaning, exploratory analysis, and data 

normalization to put it into a common format for analysis. This also assists in getting a 

basic understanding of the multi-variate dataset under examination. The nine different 

independent variables in the dataset are ‘Rainfall day of Inches’, ‘Rainfall 1 day before’, 



 

 

41 

‘Rainfall 2 days before’, ‘Rainfall 3 days before’, ‘Summation of antecedent rainfall’, 

‘Curvature’, ‘Aspect’, ‘Slope’ and ‘Elevation’ as illustrated in Figure 8. The dataset’s 

dependent variable is a binary titled ‘Class label’ indicating whether a flash flood event 

occurred. The values for all locations are compiled and saved in a tabular comma-

separated value (CSV) file format. 

 

 

Figure 8. Classification model architecture. 

 

The whole database is divided into two sets of training and testing datasets for 

further analysis. The training set consists of 75% of the total dataset whereas the 

remaining 25% is assigned to the testing set. Specifically, the training set is made of 262 

data points or observations whereas the testing set comprises 88 points. Apart from the 

labeled variables information, the testing set is also tagged with the respective truth 

values (class label) required to investigate the accuracy of the classification models. 

3.3. CLASSIFICATION MODELS 

The data consists of nine different geospatial and precipitation variables which are 

used as inputs to all the models. The deep learning neural network model’s architecture 



 

 

42 

consists of a ‘Sequential’ class that utilizes Keras’ sequential application program 

interface (API) to incrementally add four different hidden layers to it (Keras, 2021). The 

‘Dense’ fully connected input layer uses a one-dimensional array of nine input elements 

to the model with a default rectified linear unit or ‘ReLU’ activation function. The 

‘ReLU’ activation function applies a non-linear transformation to the input data to make 

it linearly separable for the binary classification task of classifying locations (Keras, 

2021). The fully connected hidden layers consist of the ‘Sigmoid’ activation function 

applied to its input values. The final output ‘Dense’ layer of the model uses the sigmoid 

function to assign a value ranging from 0 to 1 to the single location data point. 

A dropout value of 0.2 is also applied between the hidden layers of the neural 

network. Using a dropout value of 0.2, 20% of a layer’s output neurons are randomly 

dropped to prevent overfitting of the model during its training phase. An overfitted model 

performs well on the training data but can produce a high-test error when evaluating an 

unseen testing dataset (IBM, 2021). ‘Binary Cross-entropy’ loss function and ‘Adam’ 

learning rate optimizer are used for compiling the deep learning model after defining its 

architecture. The purpose of using the binary cross-entropy loss function is to find the 

error in the model’s binary classification learning process (TensorFlow, 2021). The 

model is trained on the training dataset using the ‘epochs’ and ‘batch size’ values of 1000 

and 10, respectively. After training the model, the testing dataset is fitted to it to obtain 

the class labels and the probability values of each test data point. These output class label 

values assist in distinguishing between different location test data points belonging to 

either the flash flood or non-flash flood category. 
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All models are initially trained on the same training dataset to capture the 

relationships between its different variables. Once trained, the models are then used to 

evaluate the testing dataset to evaluate the overall accuracy of the methods. In the dataset, 

a one denotes a flash flood occurred and a zero denotes a flash flood did not occur. For 

the predicted values, a one denotes a predicted flash flood and a zero denotes a flash 

flood was not predicted. When the testing data set was generated, 46 of the data points 

represented locations where there was flash flooding and 42 of the data points 

represented locations where there was no flash flooding. 

 

4. RESULTS 

4.1. DEEP LEARNING ARTIFICIAL NEURAL NETWORK 

The classification performance of the deep learning neural network model can be 

visualized using a confusion matrix. The parameters of the matrix are used to calculate 

performance metrics such as accuracy and precision. The deep learning neural network 

model achieves a classification accuracy of 85.23% and a precision of 94.59% when 

tested on the testing set with feature information for 88 locations. It correctly classifies a 

total of 75 out of 88 locations with an error rate of 14.77%. The model also correctly 

identifies 35 potential hazardous locations with class label 1 and 40 locations are 

correctly depicted by class label 0 as shown in Figure 9. As per the model, 13 locations 

are incorrectly predicted with 11 false negatives and 2 false positives. 
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Figure 9. Deep learning artificial neural network confusion matrix. 

 

4.2. LOGISTIC REGRESSION 

The logistic regression classifier did not perform as well as the DL-ANN 

classification model and produced an accuracy score of 75% and a precision of 90%. The 

regression classifier only correctly classified 27 locations where flash flooding occurred, 

and 39 locations are classified as non-flash flood locations as shown in Figure 10. As per 

the model, 22 locations are incorrectly predicted with 19 false negatives and 3 false 

positives. 

 

                           

      Figure 10. Logistic regression confusion matrix. 
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4.3. SUPPORT VECTOR MACHINE 

Initially, the support vector machine model performed worse than the other 

classifiers, achieving an accuracy score of 59.09% and a precision of 65.62%. When Grid 

Search was implemented to tune the hyperparameters the results improved, with an 

accuracy score of 80.68% and a precision of 85.30%. The model correctly classified 35 

locations where flash flooding occurred, and 36 locations classified as non-flash flood as 

shown in Figure 11. The error rate also dropped to 19.32%, which is less than the error 

rate of the logistic regression model but more than the DL-ANN’s error rate. 

 

 

Figure 11. Support vector machine with grid search confusion matrix. 

 

5. DISCUSSION 

 

The accuracy, precision and AUROC values of all models are compared to 

identify the best performing model. When considering accuracy as shown in Figure 12, 

the support vector machine classifier without any hyperparameters tuning is the worst-
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performing model, followed by the regression model. When Grid Search was added to 

the SVM model it performed better than the regression model, but still not as well as the 

DL-ANN. 

 

 

Figure 12. Classification accuracy scores comparison. 

 

Precision is a measure of the classification model’s ability to predict positive 

results. Figure 13 shows that the deep learning-based model achieves the highest 

precision score of 94.59% out of all classification models. It means that as compared to 

other models, when the DL-ANN predicts flash floods, it is correct 94.59% of the time. 

As a result, the DL-ANN model is more reliable than the other models when classifying a 

given event as a flash flood event.  

The deep learning-based model achieves the highest accuracy score of 85.23%. It 

also had the highest AUROC value of 0.8727. Figure 14 illustrates the AUROC for the 

deep learning model which is the area under the yellow-colored ROC curve. 
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Figure 13. Precision scores comparison. 

 

           

                      Figure 14. Deep learning artificial neural network ROC curve. 
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The logistic regression classification model performed worse than the DL-ANN, 

with an AUROC score of 0.7893 as shown in Figure 15. This means that as compared to 

the logistic regression model, the deep learning-based classifier produces a greater 

number of true positive values and a lower number of false positives. For reference, a 

dashed line indicating an AUROC value of 0.5 has been included. An AUROC value of 

0.5 means that a classifier is not able to distinguish between the data values belonging to 

either a positive or negative class. 

 

             

Figure 15. Logistic regression ROC curve. 

 

The support vector machine achieved the lowest AUROC value (0.5973), but this 

improved to 0.8090 after the implementation of Grid Search as shown in Figure 16. Both 

the SVM with Grid Search and the DL-ANN models had eleven false negative 
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predictions, leading to a lower true positive rate. The DL-ANN model generates only 2 

false positive values while the SVM with Grid Search reported 6 false positives as shown 

in Figures 9 and Figures 11, respectively. DL-ANN model’s lower number of false 

positives means that the stakeholders will have to deal with a fewer number of false flood 

alarms. Instead, they can focus on the real scenarios when there are actual floods in the 

region. Figure 17 shows that the DL-ANN model has the highest AUROC value as 

compared to the other models which makes it a more reliable model for the task of 

identifying locations with flash flood. 

 

                  

          Figure 16. Support vector machine with grid search ROC curve. 
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                                        Figure 17. ROC curves comparison. 

 

Based on a comparison of the results for accuracy, precision and AUROC values, 

the DL-ANN model emerged as a best model of those considered for classifying flash 

flood locations, with accuracy, precision and AUROC values of 85.23%, 94.59% and 

0.8727, respectively as shown in Table 1. While there were more false positives in the 

SVM with Grid Search model than in the DL-ANN, the number of false negatives was 

the same (11), meriting some consideration for further analysis. The deep learning-based 

classifier accurately identified 75 locations out of a total of 88 locations at risk of 

experiencing flash floods in the Springfield region of Greene County. 
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Table 1. Comparison of performance metrics of classification models. 

Classification 

Models 

Deep 

Learning 

Artificial 

Neural 

Network  

Logistic 

Regression 

Support 

Vector 

Machine 

Support 

Vector 

Machine with 

Grid Search 

Accuracy Score 85.23% 75% 59.09% 80.68% 

Precision Score 94.59% 90% 65.62% 85.30% 

AUROC Value 0.8727 0.7893 0.5973 0.8090 

 

As an example, the deep learning-based classification model identifies Chestnut 

Expressway as one of the locations affected by flash floods. Chestnut Expressway often 

gets flooded after periods of heavy rainfall, resulting in stalled vehicles in floodwaters 

(KY3, 2020). After a heavy downpour of rain, the low-lying segments of this road must 

be regularly closed for traffic activity due to the occurrence of flash floods in the area 

(Randall, 2021; Strohl, 2019). In 2019, a section of Chestnut Expressway was closed for 

traffic as it was inundated with 4 feet of floodwater (Simmons, 2019). This location was 

correctly predicted by the deep learning-based artificial neural network model. Also 

correctly identified by the deep learning-based classification model, the section of West 

Farm Road 146 running parallel to Wilsons Creek, which is also prone to flash flood 

activity. This road segment was overtopped when the adjoining Wilsons Creek 

overflowed its banks after a period of rainfall in the region (KY3, 2019). The floodwaters 

effecting Wilsons Creek have also impacted the region’s various other roads in the past 

(Simmons, 2019). 
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6. CONCLUSIONS 

 

Three different models are implemented on the database generated from the 

publicly available geospatial and rainfall information to determine which best predicts 

flash flooding events. The deep learning neural network model had the best performance 

identifying locations such as road segments that were affected due to flash floods. The 

deep learning-based classification model had the highest accuracy, precision and 

AUROC values. The deep learning model also takes less time to analyze large datasets as 

compared to logistic regression and SVM models, making it suitable for the time-

sensitive task of forecasting flash flood events in susceptible regions. Its architecture can 

also be updated to incorporate more complex datasets with a variety of weather and 

geospatial variables if additional data becomes available. Using the model’s output, the 

region’s different infrastructure elements such as roads can be monitored by the 

authorities to warn commuters of any anticipated flash flood activity in the area. The 

timely issuance of road closure warnings in such locations will also help the commuters 

to prepare for any traffic delays and detours well in advance of their commute. The 

output of the model can also assist in preparing advanced flash flood-related information 

needed to safeguard the lives and property of the people living in these flood-prone areas. 

The DL-ANN classifier captures the intricate relationships between data variables to 

demonstrate an efficient approach that can be used by personnel in charge of disaster 

management to capably deal with the problems posed by flash flooding. Those in charge 

of taking key decisions in such scenarios can use the model output to augment their flood 

warning responses and prevent loss of both life and property. 
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7. FUTURE WORK 

 

The DL-ANN model proposed in this research can be deployed by people 

overseeing the flash flood prediction and management responses in flood-sensitive 

locales. Notwithstanding the neural network’s effectiveness, it can be tested on datasets 

containing miscellaneous features like normalized difference vegetation index (NDVI), 

etc. in future research undertakings. The scalability of this model can further be examined 

by employing it in different flash flood-prone drainage basins. An economic study can 

also be conducted to understand the direct and indirect economic losses endured by 

people and areas affected by flash flood accidents. 

Rather than a set yes/no result, probabilities could be reported as output from 

some of these algorithms to determine the likelihood of flash flooding. While the exact 

values would not be overly useful, binning the probabilities and using this as part of a 

risk analysis could draw attention to some of the events that would otherwise be 

misclassified. In addition, many deep learning methods exist, so a more thorough analysis 

of the different algorithms could produce improved results. Given the time sensitive 

nature of the data used to capture soil moisture and rainfall data, time series analysis 

methods may prove beneficial. This could include algorithms incorporating memory 

structures such as Long Short-Term Memory machines or deep learning neural networks 

used to drive a finite state machine. Any reduction in error realized by these methods 

would be a benefit to public safety. 
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ABSTRACT 

Flooding is a common occurrence in Missouri and poses a serious threat in 

susceptible areas of the state. To anticipate flooding, gauges have been installed along 

rivers to monitor the water level, but there are many catchment areas in Missouri that are 

not serviced by these gauges, leaving a large portion of the state that is susceptible to 

flooding unmonitored. This research presents an ensemble of Long Short-Term Memory 

based deep learning models coupled with a clustering algorithm to predict river water 

levels at these unmonitored locations. The implementation of ensemble learning with 

deep learning models improves the forecasting performance of the models compared to a 

standalone deep learning prediction model. The proposed models predict the river water 

levels 4 hours ahead in the future with locations having a correlation greater than 0.9. 

This provides emergency management personnel with a manifold increase in flood 

information, allowing greater accuracy in flood alerts so that safety measures can be 

implemented efficiently and effectively to improve public safety. 

Keywords: Flooding, LSTM, Ensemble Learning, Deep Learning. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

This research presents algorithms and a methodology to predict water levels in 

rivers using virtual gauges to provide gauge information at unmonitored locations. This 

addresses a lack of reliable river water level information at such locations to determine 

the timing and extent of flood events in these areas. 

Several research studies have been conducted in the field of forecasting flood 

events at susceptible locations. Many of these studies focus on the task of predicting river 

water levels at locations where gauges have been installed to monitor any variation in the 

water levels. A review of the literature related to research areas such as river water level 

monitoring, flood predictions, and machine learning-based prediction modeling is given 

here. It should be noted that there is a lack of available methodologies in the reviewed 

literature that utilizes deep learning models to predict river water levels and forecast 

flooding events at unmonitored locations. 

Computational intelligence models such as neural networks and genetic 

algorithms have been implemented by researchers to study the susceptibility of floods in 

different flood-prone areas. An artificial neural network (ANN) based model was 

developed to create a flood water level prediction model for the River Nile in Sudan 

(Elsafi, 2014). A hybrid autoencoder-multiplayer perceptron model was implemented on 

a multivariate dataset to perform flood susceptibility mapping in the regions of Iran and 

India (Ahmadlou et al., 2020). A Long Short-Term Memory (LSTM) based neural 

network has been used to generate hourly runoff water level values and forecast floods in 

the Russian river basin, California, USA (Han et al., 2021). Convolutional neural 
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networks (CNN) have also been used in tandem with recurrent neural networks (RNN) to 

develop flood susceptibility maps based on historical flood and geospatial features 

information of Northern Iran (Panahi et al., 2021). Genetic algorithms have been used to 

optimize the deep belief networks and forecast flash floods in the flood-sensitive regions 

of Iran (Shahabi et al., 2021). One-dimensional (1D) and two-dimensional (2D) 

hydrologic flow computational models were implemented by a team of researchers to 

estimate the flood travel time and affected areas in Ohio, USA (Ghimire et al., 2020). 

Neural networks-based regression models have also been tested on multivariate datasets 

with features such as groundwater levels, depth, average wind speed, tides, etc. to 

forecast flood activities in the Mohawk River, New York (Tsakiri et al., 2018). A 

Geographic Information Systems (GIS) simulator was also developed to predict both 

rainfall-runoff values and seasonal flooding activity (Chiari et al., 2000). Other tools are 

available through government agencies, such as River Analysis System (HEC-RAS) to 

develop inundation maps of areas in the United States vulnerable to floods (US Army 

Corps of Engineers, 2021). 

Research has been conducted to develop flood forecasting models for areas that 

lack adequate gauge networks to monitor water levels of rivers and streams. Machine 

learning cross-validation techniques such as k-fold cross-validation has been used to 

improve a neural network model that accurately captures the rainfall-runoff patterns at 

catchment levels in California which was then compared to the Sacramento Soil Moisture 

Accounting (SAC-SMA) model used for a similar task (Kratzert et al., 2019). GIS 

software tools such as QGIS have been used to study the Hydrological Response Unit 

(HRU) images of the Western Black Sea Region of Turkey and identify similarities 
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between 33 different catchments in the area (Aytaç, 2020). In Iran, hydrologic similarities 

between different watershed basins were analyzed to develop a rainfall-runoff model that 

forecasts streamflow values for the ungauged Karkheh River Basin (Choubin et al, 2019). 

Fuzzy C-Means and k-Nearest Neighbor-based machine learning classification models 

were used to classify the drainage basins and estimate the future streamflow values in the 

ungauged basins (Papageorgaki & Nalbantis, 2016). 

River water level prediction relies on sequential data as well as spatial data 

values. LSTMs are suitable for capturing interdependencies between the sequential input 

time series-based dataset (Laddad, 2019). Also, the ensemble learning approach assists in 

minimizing the variance of the combined model outputs to generate better results as 

compared to a standalone LSTM-based model (Brownlee, 2019). An analysis of several 

research publications shows that most of the flood forecasting-related research work has 

been conducted for the areas where gauges have been installed to collect river water level 

height values. However, researchers have also started to take an interest in developing 

flood forecasting models for areas with inadequate gauge networks. To develop an 

accurate model a large amount of data must be gathered and analyzed. 

 

2. METHODOLOGY 

 

There are several factors leading to changes in water level at unmonitored 

locations that must be considered. These include rainfall, soil moisture, and the 

upstream/downstream gauge height levels. The effect of upstream and downstream 

gauges may vary depending on distance from the prediction site and must be considered 
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when creating predictive models. These data form a multivariate dataset that is then used 

as an input to an ensemble of LSTM deep learning models to predict river water levels as 

shown in Figure 1.  

 

       

Figure 1. Model framework. 

 

A total of 20 different locations are selected to analyze its data variables and 

develop the prediction model for this project. Each location consists of a gauge group that 

includes the virtual gauge or gauge of interest for that location, an existing gauge 

upstream of the location, and an existing gauge downstream of the location. These gauge 

groups are assigned to different clusters to train four specialized models that can predict 

virtual gauge heights for distinct clustering scenarios. 

2.1. MODEL WORKFLOW 

Figure 2 displays the four steps that make up the workflow of the model 

developed for this project. The first step gathers available data describing the catchment 

under consideration. The second establishes the distance between the virtual gauge and 

the upstream/downstream gauges. The third step is to gather the gauge and rainfall data, 
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and the fourth step uses the provided data to cluster the gauge groups and analyze the 

data to create the predictive model. 

 

 

Figure 2. Model workflow. 

 

2.1.1. Develop Catchment Database. The USGS National Map’s data download 

application is used to download the 1-meter Digital Elevation Model (DEM) files that 

contain the topographic and geographic information for different parts of Missouri (The 

National Map, 2022, USGS National Map, 2022). The downloaded 1-meter DEM files 

are generated from the geospatial information collected using the light detection and 

ranging (Lidar) data source and provide high-resolution geographic information for a 

selected area. Unfortunately, the 1-meter DEM coverage is not currently available for all 

areas of Missouri as shown in Figure 3. 

In addition to the 1-meter DEM data, candidate areas must also have gauge 

information available upstream and downstream of the desired virtual gauge. The gauge 

information from the USGS National Water Dashboard’s database is analyzed to 

determine the location of gauges installed to collect river water levels information 

(USGS, 2022). Catchment areas with 1-meter DEM coverage and where the gauges have 

been installed for data collection purposes are selected for further study. The 1-meter 

DEM files for the selected catchment areas are uploaded on the ArcGIS Pro software for 

visualization purposes. 
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Figure 3. 1-meter DEM coverage for Missouri.  

 

ArcGIS Pro is used to process the DEM files and extract the information related 

to the gauged catchment’s geospatial variables such as elevation, slope, area, perimeter, 

etc. The locations of the gauged catchments are represented by purple-colored polygons 

as shown in Figure 4. After reviewing the gauge height and rainfall data for the 50 

catchments with 1-meter DEM data, 21 catchments are selected for analysis as the gauge 

height and rainfall data are not available for the other 29 catchments. Another location 

was rejected due to limited availability of data on an upstream gauge located on the St. 

Francis River. 

 

                    

Figure 4. Gauged catchments in Missouri. 
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2.1.2. Calculate Flowline Distances. The flowline distances between the actively 

monitored upstream and downstream gauges located in the selected catchments are drawn 

in the ArcGIS Pro software to calculate the polyline distances between the gauges. A 

total of 40 flow lines are considered to calculate the polyline distances from the virtual 

gauge to the upstream and downstream gauges in the selected catchments. ArcGIS Pro is 

also used to calculate and compile the geodesic distances between the gauges in a tabular 

format as shown in Table 1. The geodesic distances between the gauges are calculated in 

the kilometer units format using ArcGIS Pro’s ‘Calculate Geometry’ tool. The purpose of 

using the geodesic distances is to capture the curvature along the surface of the earth.  

 

Table 1. Distances between virtual gauge and the upstream/downstream gauges.  

ID Catchment Upstream 

Distance (km) 

Downstream 

Distance (km) 

1 BagnellDam 155.28 21.95 

2 BayCreek_JacksFork 39.79 10.54 

3 BrushCreek_FoxRiver 101.98 91.38 

4 CraneCreek_PommedeTerreRiver 48.27 13.66 

5 DemocratRidge_BigPiney 20.51 48.58 

6 DuncanCreek_GasconadeRiver 126.75 87.49 

7 GumCreek_OsageRiver 22.58 50.85 

8 HamiltonCreek_MeramecRiver 24.86 20.97 

9 JacksCreek_NianguaRiver 21.50 101.45 

10 MillCreek_PommedeTerreRiver 13.89 75.68 
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Table 1. Distances between virtual gauge and the upstream/downstream gauges. 

(Continued) 

11 OutletEastFork_BlackRiver 8.77 25.66 

12 OutletJacksFork 10.52 23.91 

13 PruettCreek_MeramecRiver 63.69 53.97 

14 RockyCreek_CurrentRiver 69.99 43.86 

15 SmithBranch_Roubidoux 47.09 66.95 

16 SouthFabiusRiver_OutletFabiusRiver 85.42 36.92 

17 SweetHollowCreek_NianguaRiver 63.46 21.23 

18 TarkioRiver 94.56 36.91 

19 TurkeyCreek_SaltRiver 29.49 162.86 

20 ValleyPark 21.56 9.79 

 

2.1.3. Download Gauge and Rainfall Data. The river water level values for the 

upstream and downstream gauges are gathered from the USGS National Water 

Information System’s database (USGS National Water Information System, 2022). The 

data values for the upstream and downstream gauges are downloaded from September 1, 

2016 till December 30, 2021. The data is in time-series format and is resampled at 30-

minute time intervals. The daily rainfall data values for the catchments were downloaded 

from the National Weather Service (NWS) data archives for the period from September 

1, 2016 to December 30, 2021. The rainfall data from September 1, 2016 - June 27, 2017 

is available in point format while the data from June 28, 2017 - December 30, 2021 is 

available in the raster format (NWS, 2022). The rainfall data values are processed using 
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the ‘Clip’ tool in ArcGIS Pro to put them into a common format and resampled at 30-

minute intervals. These data are then combined to generate a single multivariate dataset 

that is used as input to the deep learning-based models. 

The data values are subjected to data processing techniques such as data cleaning, 

exploratory data analysis, data normalization, etc., to prepare the correctly formatted 

input values for the models. The dataset is divided into two sets for training and testing 

the models. 65% of the dataset is used for training the models, 15% is used for validation, 

and the remaining 20% is used for testing purposes. During the model testing phase, the 

testing dataset is used to evaluate the performance of the model. The predictions 

generated by the deep learning models are compared against the actual water level values 

at the virtual gauge to evaluate their accuracy. 

2.1.4. Implement Deep Learning Models. The deep learning models are trained 

on the input dataset of Section 2.1.3, which consists of 118,021 observations. To increase 

the accuracy of the deep learning models, preprocessing of the virtual gauges by 

proximity to the upstream and downstream gauges was performed by clustering the gauge 

groups (Section 2.2). This resulted in four clusters, each consisting of 5 different gauge 

groups. Of the five gauge groups, four are used to train the ensemble deep learning 

models and make predictions about the group cluster. The fifth gauge group is reserved to 

test the generalizability of the model when applied to an unseen dataset. 

An ensemble of 30 LSTM-based models takes in the input dataset to predict river 

levels at unmonitored central gauges of interest. A set of 30 LSTM models are trained for 

each cluster to generate average prediction values and prediction intervals for these 

values. The prediction interval for the ensemble’s average prediction can be derived from 
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the variance between the predicted values of the models within the ensemble. The 

developed models can be applied to a new dataset to predict gauge height values for 

novel gauge groups. Thus, the models from each cluster can better predict results for a 

scenario that would fit in a particular cluster. 

2.2. GAUGE GROUP CLUSTERS 

The 20-gauge groups selected earlier are clustered into four different groups 

based on the distance between the individual gauges lying within each gauge group. A 

gauge group consists of three different types of gauges such as an upstream gauge, a 

downstream gauge, and a virtual gauge or gauge of interest. Two different types of 

distances are determined for each gauge group, the distance between the virtual gauge 

and the upstream gauge and the distance between the virtual gauge and the downstream 

gauge. The median value for these distances is determined for all 20-gauge groups. The 

distance values for each gauge group are compared against the median values to allocate 

a tag specifying the general proximity of the individual gauges in a group. A ‘Close’ tag 

is assigned to a gauge group where the distance between the virtual gauge and the 

upstream gauge is less than the median value and a ‘Far’ tag is assigned if the distance is 

greater than the median value. This comparison is repeated for the distance between the 

virtual gauge and the downstream gauge to generate four clusters of gauge groups: 

‘Close-Close’ (CC), ‘Close-Far’ (CF), ‘Far-Close’ (FC), and ‘Far-Far’ (FF) tags to each 

of the 20-gauge groups. The four different types of tags assigned to all gauge groups are 

shown in the graph in Figure 5. The feature values for gauge groups within each of the 
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four clusters are used to develop models that can predict the water levels at virtual gauges 

that lie in the same cluster. 

 

 

Figure 5. Gauge groups and LSTM deep learning models. 

 

2.3. LSTM DEEP LEARNING MODEL ARCHITECTURE 

The time series-based input dataset consists of values that are resampled at 30-

minute time intervals. The data values from the previous 30 timesteps (or 15 hours) are 

used as inputs to the LSTM-based models to predict gauge height values that are 8 

timesteps (or 4 hours) in the future. The architecture of the LSTM models consists of 8 

different sequentially arranged layers. The input data values from the dataset are passed 

into the initial 50-unit layer of the network. The units of the input layer specify the 

dimension of outputs and the number of parameters in the LSTM layer (Tung, 2022). A 

dropout layer is also added to the architecture to randomly drop 20% of a layer’s output 

neurons and prevent overfitting. An overfitted model produces high testing errors when 

implemented on the test dataset (Ampadu, 2021; IBM, 2021). Finally, a 1-unit ‘Dense’ 

layer is used to receive information from the preceding layers and predict a single-value 
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gauge height for the virtual gauge. When applied to novel scenarios, the outputs of the 

LSTM deep learning model predict the value for a virtual gauge lying between an 

upstream and downstream gauge. 

 

3. RESULTS AND DISCUSSION 

 

The ensemble of LSTM deep learning models is implemented to predict gauge 

height values using virtual gauges for unmonitored locations. The model outputs are 

compared against the actual readings for the gauge group clusters to calculate the 

performance metrics. The relationship between the predicted and true gauge height values 

for the CC gauge group is shown in Figure 6.  

 

 

       Figure 6. Comparison of predicted and true gauge height values for CC gauge group. 
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The predicted (virtual) gauge height values are in blue and the actual gauge height 

values are in orange as seen in Figure 6. The 95% prediction interval for the outputs of the 

trained CC ensemble is displayed in a light-blue colored shaded area. The trained CC 

ensemble model is applied to validation gauge group data for the CC cluster classification 

scenario. The performance metrics of the model are displayed in Table 2. The mean 

absolute deviation and median absolute deviation values for the true and predicted gauge 

height values are 8.683 and 5.119 inches, respectively. Both mean absolute deviation and 

median absolute deviation values exhibit a 1.56% and 0.92% deviation from the true 

values, respectively, when compared to the virtual gauge range. The ensemble model 

resulted in a correlation coefficient between the predicted values and the true values of 

0.9948. The correlation coefficient value between the gauge height values obtained from 

the virtual gauge and upstream and downstream gauges is 0.8794. The implementation of 

the ensemble learning approach improves the correlation coefficient value by 0.1155 while 

increasing prediction accuracy. This signifies an improvement of 13.133% in the 

correlation coefficient values beyond the information available from upstream and 

downstream gauges directly. 

 

Table 2. CC ensemble summary statistics. 

Close-Close Gauge Grouping 

Gauge of Interest Spectrum 556.44 inches 

Performance Metric Inches Percent of Spectrum 

Mean Absolute Deviation 8.683 1.56% 

Median Absolute Deviation 5.119 0.92% 
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Table 2. CC ensemble summary statistics. (Continued) 

Average 95% Prediction Interval Width 55.579 9.99% 

Model Prediction to True Gauge Height 

Correlation Coefficient 

0.9948 

Upstream-Downstream Gauge Height to 

True Gauge Height Correlation Coefficient 

0.8794 

Correlation Coefficient Improvement 

Attributable to Model 

0.1155 

Percent Correlation Coefficient Improvement 

Attributable to Model 

13.133% 

 

Figure 7 displays the relationship between the predicted and true gauge height 

values for the CF gauge group. The blue-colored curve for the predicted values traces the 

orange-colored curve for the true values and manages to capture the underlying patterns 

of the water level readings at the virtual gauge. The CF ensemble does not demonstrate as 

much variability as the CC ensemble approach but can still display a high level of 

accuracy. The mean absolute deviation and median absolute deviation values for the 

predicted and true values for the CF ensemble are 4.624 and 3.679 inches, respectively as 

shown in Table 3. These values demonstrate a 1.49% and 1.19% deviation from the true 

gauge height values with respect to the virtual gauge range of 309.36 inches for the CF 

ensemble. The predictive performance of this ensemble is lower than the CC cluster in 

terms of absolute deviation values, the percentage of the virtual gauge’s range covered by 

the deviation metrics is similar. 
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  Figure 7. Comparison of predicted and true gauge height values for CF gauge group. 

 

The width of the average 95% prediction interval is 6.704 which represents the 

2.17% width of the virtual gauge range value of 309.36 inches as shown in Table 3. In 

this case, the implementation of the ensemble learning approach improves the correlation 

coefficient value between the predicted and true gauge height values by 7.694%. 

 

Table 3. CF ensemble summary statistics. 

Close-Far Gauge Grouping 

Gauge of Interest Spectrum 309.36 inches 

Performance Metric Inches Percent of Spectrum 

Mean Absolute Deviation 4.624 1.49% 

Median Absolute Deviation 3.679 1.19% 

Average 95% Prediction Interval Width 6.704 2.17% 
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Table 3. CF ensemble summary statistics. (Continued) 

Model Prediction to True Gauge Height 

Correlation Coefficient 

0.9441 

Upstream-Downstream Gauge Height to 

True Gauge Height Correlation Coefficient 

0.8766 

Correlation Coefficient Improvement 

Attributable to Model 

0.0674 

Percent Correlation Coefficient Improvement 

Attributable to Model 

7.694% 

 

The relationship between the predicted and the true gauge height values for the 

FC gauge group used to test the generalizability of the trained FC ensemble is shown in 

Figure 8. The FC ensemble predicted values largely trace the true values and succeed in 

capturing the behavior of the virtual gauge for the ensemble as seen in Figure 8. The 

summary statistics values of different performance metrics of the FC ensemble are shown 

in Table 4. The metrics are generated after the implementation of the trained FC 

ensemble to the gauge group scenario that fits the FC cluster classification. Both mean 

and median absolute deviation values represent the 1.74% and 1.35% deviation from the 

true gauge height values respectively when compared against the virtual gauge spectrum 

value of 130.92 inches. The average 95% prediction interval width is 3.804 inches which 

is 2.91% of the virtual gauge spectrum. The ensemble modeling approach also improves 

the correlation between the model predictions and the true gauge height values by 

3.605%. 
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     Figure 8. Comparison of predicted and true gauge height values for FC gauge group. 

 

Table 4. FC ensemble summary statistics. 

Far-Close Gauge Grouping 

Gauge of Interest Spectrum 130.92 inches 

Performance Metric Inches Percent of Spectrum 

Mean Absolute Deviation 2.278 1.74% 

Median Absolute Deviation 1.766 1.35% 

Average 95% Prediction Interval Width 3.804 2.91% 

Model Prediction to True Gauge Height 

Correlation Coefficient 

0.9208 

Upstream-Downstream Gauge Height to 

True Gauge Height Correlation Coefficient 

0.8888 

Correlation Coefficient Improvement 

Attributable to Model 

0.0320 
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Table 4. FC ensemble summary statistics. (Continued) 

Percent Correlation Coefficient Improvement 

Attributable to Model 

3.605% 

 

Figure 9 shows the relationship between the predicted gauge height values and the 

true values for the FF gauge group. The FF ensemble predictions also trace the true gauge 

height values, highlighting the ability of the ensemble to efficiently generalize to an FF 

gauge group scenario. 

 

 

       Figure 9. Comparison of predicted and true gauge height values for FF gauge group. 

 

The. virtual gauge range for the FF group is 260.88 inches as seen in Table 5. The 

6.337 inches wide average 95% prediction interval covers 2.43% of the total virtual 

gauge range. Both mean and median absolute deviation values for the gauge group are 



 

 

78 

3.994 and 2.738 respectively. The use of the ensemble learning approach for the gauge 

group improves the correlation between the predicted values and true gauge height values 

by 8.661% which is a statistically significant improvement from the upstream and 

downstream gauges directly. 

 

Table 5. FF ensemble summary statistics. 

Far-Far Gauge Grouping 

Gauge of Interest Spectrum 260.88 inches 

Performance Metric Inches Percent of Spectrum 

Mean Absolute Deviation 3.944 1.51% 

Median Absolute Deviation 2.738 1.05% 

Average 95% Prediction Interval Width 6.337 2.43% 

Model Prediction to True Gauge Height 

Correlation Coefficient 

0.8351 

Upstream-Downstream Gauge Height to 

True Gauge Height Correlation Coefficient 

0.7685 

Correlation Coefficient Improvement 

Attributable to Model 

0.0666 

Percent Correlation Coefficient Improvement 

Attributable to Model 

8.661% 

 

The four different ensemble models in this research are used to train the 

associated gauge groups clusters. The ensemble model has a mean absolute deviation of 
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4.882 inches across the four different clustering scenarios and generates accurate gauge 

height predictions for virtual gauges for the different clusters. The median absolute 

deviation of the gauge groups is 3.326 inches. The mean absolute deviation value for all 

four gauge groups is greater than the median absolute deviation. The ensemble models 

also achieve higher correlation coefficients between the predicted and true gauge height 

values. The correlation coefficient values for the unmonitored sites in the four clusters are 

0.9948, 0.9441, 0.9208, and 0.8351 for CC, CF, FC, and FF respectively. The models 

produce more accurate prediction results beyond what is available through a simple 

correlation modeling approach. The models developed in this research predict correlation 

while making predictions at future timestep values. The ensemble learning-based models 

predict gauge height values that are 8 timesteps (or 4 hours) into the future while 

achieving better correlation coefficient values than traditional deep learning approaches. 

 

4. CONCLUSIONS 

 

Clustering and ensemble deep learning-based models are implemented in this 

project to create virtual gauges and predict water levels at unmonitored locations in 

Missouri. Using publicly available data, a total of 20 different virtual gauge locations 

were analyzed to predict water levels. The use of an ensemble of LSTM models gives a 

higher accuracy than using individual LSTM models. The dataset is efficiently processed 

by the LSTM-based neural networks in the ensemble to capture relationships between the 

features and produce generalized prediction models. Dividing the gauge groups into four 
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clusters characterized by the flowline distances allows the algorithms to take advantage 

of similarities between gauge groups to improve the predictions even more. 

The accuracy of the prediction at most of the virtual gauge sites is about 5%, 

which is comparable to the physical gauges used to monitor the water level. The 

exception is the FF gauge group, but the small error associated with it makes the 

information from the virtual gauges very valuable for emergency management personnel 

to better understand flooding situations and plan responses. The FF gauge group has the 

lowest accuracy, but with an improved correlation coefficient of 8.661% attributable to 

the implemented methodology, it still provides enough information to determine if there 

is a probability of a road being overtopped or flood risk. As more gauges are installed 

these virtual gauges will only increase in accuracy. The data provided by these gauges 

allows state and federal emergency management personnel to send observers or 

inspection teams to determine the danger to the traveling public. By providing 

information in 30-minute intervals with predictions four hours in advance emergency 

management personnel will have more options on how to address flooding. Teams can be 

sent out to investigate before a flood event occurs, and roads can be closed before 

sections are overtopped, removing the temptation of drivers to proceed across a flooded 

road. Advance flood warnings can also be issued by the local government authorities to 

ensure the safety of the people. The local authorities can rely on the multistep prediction 

values to take necessary precautions to avert any dangers posed by flood events in a 

susceptible region. 
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5. FUTURE WORK 

 

The developed models can be used in scenarios when the upstream and 

downstream gauge data and rainfall data are available for the catchment area where the 

virtual gauge is planned for implementation. The models will have to be modified 

accordingly if different subsets of inputs are to be used for its development. Additional 

gauge groups and data variables can be incorporated into inputs to implement models that 

can capture a wide range of scenarios and deliver high-quality results. If possible, 

granular rainfall data can be used instead of the resampled daily rainfall values to test a 

new deep learning algorithm and compare its performance with the model proposed in 

this research project. 
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SECTION 

2. CONCLUSIONS AND RECOMMENDATIONS 

 

This dissertation examines the use of machine learning models to assist first 

responders and emergency management personnel in preparing robust flood and flash 

flood management plans before these events occur. The models developed use time 

series-based datasets that contain feature values for distinct sets of geospatial and 

precipitation variables. The deep learning models capture the temporal dependencies 

between the sequential feature values to make predictions for future timesteps. The 

LSTM models in paper 3 utilize the temporal input feature values to accurately predict 

the river water levels at unmonitored locations in flood-prone catchment areas. Similarly, 

the deep learning models developed for papers 1 and 2 can assist stakeholders in 

classifying locations in Missouri where flash flooding is likely to occur. 

The first research contribution proposed a deep learning-based neural network to 

predict flash flood locations, demonstrating it has a classification accuracy of 85.23. The 

model accurately distinguishes between two sets of flash flood and non-flash flood events 

in Greene County, Missouri. The output values of the model represent the flash flood 

probability values for a road segment which, when combined with its restoration costs 

signifies a risk value for the location. City planners can use these values to prioritize the 

allocation of resources needed to restore roads damaged by flash flood activities. The risk 

information can also be used to determine the required contingency reserves to restore 

damaged critical infrastructure elements. 
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A deep learning-based neural network is compared to other machine learning 

methods in the second research contribution to identify which is best for predicting flash 

flooding events in Missouri. The deep learning neural network not only has a high 

classification accuracy, but also a higher precision and AUROC score, highlighting its 

superior performance in identifying flash flood events. The model’s architecture consists 

of dropout layers to prevent overfitting and, as a result, it can generalize well to the 

unseen binary test dataset. The information gathered from implementing the model for a 

flash flood-prone area can aid stakeholders in developing better flood management 

protocols for the safety of the area’s residents. Because it is generalizable it can be 

implemented in many areas with sufficient retraining. 

The prediction of flood events at unmonitored locations is addressed in the third 

research contribution to this dissertation. Publicly available datasets are used as inputs to 

an ensemble of LSTM models to ultimately predict river water levels at unmonitored 

locations that may experience flooding. The highly accurate multistep future values are 

obtained by applying clustering as a preprocessor of the data and then using ensemble 

learning to determine gauge height. Emergency managers can use the results to take 

precautionary steps needed in the event of flooding without installing physical gauges for 

monitoring water levels at unmonitored locations. This approach also provides necessary 

data with negligible resources to inform decision making that ensures the safety of the 

people residing in these locations. 

Future research work can include the task of further testing the performances of 

the developed models by incorporating more varied features such as normalized 

difference vegetation index (NDVI), granular rainfall data, etc. into the input datasets. 
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The efficacy of the models can also be tested by implementing them in diverse sets of 

locations all over the country. However, such research exercises might require modifying 

the model architecture to match the new scenarios. Researchers can also develop 

programming tools such as widgets and scripts that can simplify the time-intensive task 

of collecting crucial input datasets required for developing the models. Since floods and 

flash floods typically cause economic losses, the key stakeholders can also sponsor 

research studies that investigate both direct and indirect costs associated with these 

events.
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Figure A. Comparison of predicted and true gauge height values for CC gauge group. 

 



 

 

 

APPENDIX B. 

COMPARISON OF PREDICTED AND TRUE GAUGE HEIGHT VALUES FOR 

CF GAUGE GROUP
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Figure B. Comparison of predicted and true gauge height values for CF gauge group. 

 

 

 



 

 

APPENDIX C. 

COMPARISON OF PREDICTED AND TRUE GAUGE HEIGHT VALUES FOR 

FC GAUGE GROUP



 

 

 

 

Figure C. Comparison of predicted and true gauge height values for FC gauge group. 
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APPENDIX D. 

COMPARISON OF PREDICTED AND TRUE GAUGE HEIGHT VALUES FOR 

FF GAUGE GROUP



 

 

 

Figure D. Comparison of predicted and true gauge height values for FF gauge group. 
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