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ABSTRACT

Variational data assimilation (VDA) is a process that uses optimization techniques

to determine an initial condition of a dynamical system such that its evolution best fits

the observed data. In this dissertation, we develop and analyze the variational data as-

similation method with finite element discretization for two interface problems, including

the Parabolic Interface equation and the Stokes-Darcy equation with the Beavers-Joseph

interface condition. By using Tikhonov regularization and formulating the VDA into an

optimization problem, we establish the existence, uniqueness and stability of the optimal

solution for each concerned case. Based on weak formulations of the Parabolic Interface

equation and Stokes-Darcy equation, the dual method and Lagrange multiplier rule are uti-

lized to derive the first order optimality system (OptS) for both the continuous and discrete

VDA problems, where the discrete data assimilations are built on certain finite element

discretization in space and the backward Euler scheme in time. By introducing auxiliary

equations, rescaling the optimality system, and employing other subtle analysis skills, we

present the finite element convergence estimation for each case with special attention paid

to recovering the properties missed in between the continuous and discrete OptS. More-

over, to efficiently solve the OptS, we present two classical gradient methods, the steepest

descent method and the conjugate gradient method, to reduce the computational cost for

well-stabilized and ill-stabilized VDA problems, respectively. Furthermore, we propose the

time parallel algorithm and proper orthogonal decomposition method to further optimize

the computing efficiency. Finally, numerical results are provided to validate the proposed

methods.
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1. INTRODUCTION

Data assimilation seeks to incorporate observations into a physics model for attaining

the best possible estimate of the state forecast, subject to initial conditions. This process

results in data driven initial conditions for PDEs, yielding more accurate forecasts. It

can improve models in numerous fields, such as weather forecast [1–3], geoscience [4–

7], ocean flow prediction [8–10], and biology transport [11–13]. Currently there are two

main categories of data assimilation techniques. The first category includes the statistical

methods based on the Bayes’ Theorem and the Kalman filtering approach, which evolve

the state vector along with time according to error statistics [14–20]. The second category

includes the variational methods based on the optimal control theory, which minimizes

a cost functional measuring the discrepancy between the state variable and the observed

data [21–27]. Besides, some other data assimilation techniques are also very popular for

certain problems in last few decades, such as nudging method [28, 29] and continuous data

assimilation method [30–32].

In this dissertation we discuss the variational method to solve the data assimilation

problem for interface problems. The variational methods are first introduced by J L. Lions

in optimal control to estimate relevant model parameters for parabolic equations [33].

Afterwards, a vast amount of literature employing variational methods has been contributed

to investigate the data assimilation problem for different physical models both theoretically

and computationally, see, e.g., [34–37]. However, as far as we are aware, there is not a

thorough consideration of the data assimilation for the interface problems. Therefore, a

primary interest in this dissertation is to investigate the variational data assimilation for the

interface problems, such as the Parabolic Interface equation and Stokes-Darcy equation.

We will focus on identifying a faithful initial condition for the physical model such that the

target state can be better predicted. Our approach to achieve this goal is by incorporating



2

the deterministic or noisy measurement into interface equation through an appropriately

designed cost functional. The optimization theories and techniques play key roles dealing

with the challenges throughout the simulation process.

In Section 2, we introduce fundamental concepts, notations, and theories often used

in the discussion of the variational data assimilation.

In Section 3, we start our data assimilation journey from a PDE constrained op-

timization problem, and introduce basic ingredients for the well-posedness analysis [33].

We recall two powerful approaches to derive the optimal condition, i.e., dual method and

Lagrange multiplier rule. Meanwhile, the finite element methods are proposed to discretize

the optimization problems, along with a mathematic derivation of its optimality system.

To handle the extreme computational cost arising from the variational data assimilation,

we discuss two classical gradient methods, steepest descent method and conjugate gradient

method, to address the large-scale computing difficulties. Secondly, based on a multiple

shooting method, we present the time parallel algorithm to further improve the efficiency

and increase the solving flexibility. Finally, the proper orthogonal decomposition methods

are utilized to overcome the memory challenges and optimize the computational resource

in variational data assimilation.

In Section 4, a VDA method is proposed and analyzed for the Parabolic Interface

equation [38, 39] that models important physical phenomena when two or more distinct ma-

terials or fluids with different conductivities or diffusions are involved. By using Tikhonov

regularization and optimization formulation, the existence, uniqueness, and stability of the

optimal solution are established. The optimality system for both continuous and discrete

VDA are derived, where the discrete VDA is built on a finite element discretization. The

finite element convergence with the optimal error estimate is proved with special attention

paid to the recovery of Galerkin orthogonality. Lastly, we provide the detail of implement-

ing different numerical algorithms and use numerical experiments to validate the proposed

methods.
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In Section 5, due to numerous attention and potential applications received by

the Stokes-Darcy model in recent decades [40–47], we investigate the variational data

assimilation for the Stokes-Darcy equation with Beavers-Joseph interface condition. Based

on a proper mathematical interpretation of the Stokes-Darcy equation, we formulate the

VDA into a constrained optimization problem and present the well-posedness analysis. We

derive the first order optimality system using Lagrange multiplier rule for both the continuous

and discrete VDA problems. Again, the discrete VDA utilizes a finite element method. By

rescaling the optimality system and analyzing its fundamental operator properties, we prove

the optimal finite element convergence rate via introducing relevant axillary equations and

recovering uncertainties missed in the OptS. The numerical algorithms are presented in

detail and numerical experiments are provided at the end.

In Section 6, we draw conclusions and look forward to the future works.

This dissertation consists of material partially from one submitted paper [48] and

another to be submitted paper [49]. Some minor changes to the papers are added in this

dissertation in order to provide more details and increase the readability.
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2. MATHEMATICAL PREMILINARIES

In this section, we are going to provide the necessary mathematics preliminaries

for discussion of partial differential equations, numerical methods, optimization, and data

assimilation.

2.1. BASIC CONCEPTS

Let ∥ · ∥𝑋 denote the norm for a normed vector space 𝑋 , (·, ·) denote the inner

product for Hilbert spaces, ⟨·, ·⟩ represents a general duality paring between a Banach space

and its dual space (see definition 2). Then, we introduce preliminaries for this dissertation

as follows.

Definition 1 Let 𝑋 and 𝑌 be normed vector spaces, a linear operator 𝑇 : 𝑋 → 𝑌 is said to

be continuous if there exists a constant 𝐶 such that

∥𝑇𝑥∥𝑌 ≤ 𝐶∥𝑥∥𝑋 .

We use L (𝑋,𝑌 ) to denote a set of bounded linear operators from 𝑋 to 𝑌 , with which the

operator norm is defined as:

∥𝑇 ∥L (𝑋,𝑌 ) = sup
0≠𝑥∈𝑋

∥𝑇𝑥∥𝑌
∥𝑥∥𝑋

= sup
∥𝑥∥𝑋=1

∥𝑇𝑥∥𝑌 = sup
∥𝑥∥𝑋≤1

∥𝑇𝑥∥𝑌 .

Definition 1 indicates that boundedness and continuity are equivalent for a linear operator.

In addition, the continuity at 𝑥 = 0 ∈ 𝑋 of a linear operator gives the boundedness as well.

Furthermore, one can verify that L (𝑋,𝑌 ) is a Banach space if 𝑌 is a Banach spaces.

For a special set of linear operator 𝑇 ∈ L (𝑋,R), 𝑇 is also called a linear functional

on 𝑋 , which gives the definition of the dual space of 𝑋 .
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Definition 2 Let 𝑋 be a normed vector space, we define 𝑋’1 := L (𝑋,R) as the dual space

of 𝑋 . For 𝑇 ∈ 𝑋′ and 𝑥 ∈ 𝑋 , we also write

𝑇𝑥 = ⟨𝑇, 𝑥⟩.

In Banach space, the dual space usually can be identified by another Banach space. For

example,

𝐿𝑝 (Ω) � 𝐿𝑞 (Ω), for 1 < 𝑝 < ∞, 1
𝑝
+ 1
𝑞
= 1,

note that (𝐿1(Ω))′ = 𝐿∞(Ω), but 𝐿1(Ω) ≠ (𝐿∞(Ω))′. Another example is that the

continuous function space 𝐶 (Ω) can be represented by the bounded variation function

space 𝐵𝑉 (Ω), i.e., 𝐶 (Ω) � 𝐵𝑉 (Ω). Specifically, in Hilbert space, we can observe even

nicer representation.

Theorem 1 (Riesz representation ) [[50]] Let 𝐻 be a Hilbert space and let 𝑓 : 𝐻 → 𝑅

be a bounded linear functional. Then there exists a unique element 𝑦 ∈ 𝐻 such that

⟨ 𝑓 , 𝑥⟩ = (𝑦, 𝑥), ∀𝑥 ∈ 𝐻.

This element 𝑦 ∈ 𝐻 satisfies

∥ 𝑓 ∥𝐻′ = ∥𝑦∥𝐻 = sup
𝑥∈𝐻/{0}

(𝑦, 𝑥)
∥𝑥∥𝐻

.

Thus the map 𝐻 → 𝐻′ : 𝑦 ↦→ (𝑦, ·) is an isometry of normed vector spaces.
1In this dissertation, X′ refers the dual of X if X is a Banach space, X′ also refers to the Gâteaux or Fréchet

derivative operator when X is a mapping.
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Definition 3 Let 𝐴 : 𝑋 → 𝑌 be a bounded linear operator, where 𝑋 and 𝑌 are normed

vector spaces. The adjoint operator of 𝐴 is defined as 𝐴∗ : 𝑌 ′ → 𝑋′:

⟨𝑔, 𝑥⟩ = ⟨𝐴∗𝑇, 𝑥⟩ = ⟨𝑇, 𝐴𝑥⟩, ∀𝑇 ∈ 𝑌 ′.

Definition 4 Let 𝐴 : 𝑋 → 𝑌 be a bounded linear operator, where 𝑋 and 𝑌 are Hilbert

spaces. The adjoint operator of 𝐴 is defined as 𝐴∗
𝐻

: 𝑌 → 𝑋:

(𝐴∗𝐻𝑦, 𝑥) = (𝑦, 𝐴𝑥), ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .

The adjoint operator in Hilbert space is, to some extent, identical with the adjoint definition

in general normed vector space. This can be seen by the isometric relation:

𝐴∗ : 𝑌 ′ � 𝑌 → 𝑋′ � 𝑋.

For this reason, we will not distinguish 𝐴∗
𝐻

and 𝐴∗ from now on, only using 𝐴∗ to denote

the adjoint operator of a bounded linear operator 𝐴 either in Hilbert space or Banach space.

One can further verify some basic properties of the adjoint operator:

• (𝛼𝐴)∗ = 𝛼𝐴∗.

• (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗.

• (𝐴𝐵)∗ = 𝐵∗𝐴∗.

• (𝐴−1)∗ = (𝐴∗)−1.

In the following, we define the convergence and continuity in a weak sense, which

coincide with the strong convergence and continuity in the finite dimension space. However,

they behave differently in the infinite dimension space.



7

Definition 5 Let 𝑋 be a normed vector space and {𝑥𝑛}𝑛∈𝑁+ be a sequence in 𝑋 , 𝑥𝑛 weakly

converges to 𝑥 ∈ 𝑋 if and only if

⟨ 𝑓 , 𝑥𝑛⟩ = lim
𝑛→∞

⟨ 𝑓 , 𝑥⟩, ∀ 𝑓 ∈ 𝑋′.

In Hilbert space 𝐻, the weak convergence 𝑥𝑛 ⇀ 𝑥 is equivalent to

(𝑦, 𝑥𝑛) = (𝑦, 𝑥), ∀𝑦 ∈ 𝐻,

which is a consequence of the Riesz representation, i.e., 𝐻 � 𝐻′.

Similarly, we need weak∗ convergence, this is useful when weakly convergence fails in some

considerations.

Definition 6 Let 𝑋 be a normed vector space and { 𝑓𝑛}𝑛∈𝑁+ be a sequence in 𝑋′. Then 𝑓𝑛

converges to 𝑓 ∈ 𝑋′ in a weak∗ sense if and only if

⟨ 𝑓𝑛, 𝑥⟩ = lim
𝑛→∞

⟨ 𝑓 , 𝑥⟩, ∀𝑥 ∈ 𝑋.

Definition 7 Let𝑈 be a subset of a Banach space. We say that the functional 𝑓 : 𝑈 → R is

(sequentially) weakly/weak∗ lower-semicontinuous on𝑈 if for every sequence {𝑢𝑘 }𝑘∈𝑁+ ⊂ 𝑈

converging weakly/weak∗ to 𝑢 ∈ 𝑈, we have that

𝑓 (𝑢) ≤ lim inf
𝑘→∞

𝑓 (𝑢𝑘 ).

Remark 1 The weakly lower semi-continuouity is more often used in optimization problem.

We recall the following useful results.

• Convex, (lower) continuous functional is weakly lower semi-continuous.

• Norm is convex and continuous.
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It is worth mentioning that the dual space 𝑋′ of a normed vector space is a Banach

space, no matter if 𝑋 is complete or not. It is then helpful to conceive a bidual space of 𝑋

for purpose of investigating the structure of 𝑋 .

Definition 8 Let 𝑋 be a real normed vector space, the bidual space of 𝑋 is the dual space

of 𝑋′ and denoted by

𝑋′′ = (𝑋′)′ = L (𝑋′,R).

There is a natural mapping C : 𝑋 ↦→ 𝑋′′ defined as

⟨C𝑥 , 𝑓 ⟩ = ⟨ 𝑓 , 𝑥⟩,

where C is called the canonical mapping. By the definition of dual space, we may not

be able to expect that there exists a one-to-one onto correspondence between 𝑋 and 𝑋′ in

general. However, this bĳection can be preserved for some normed vector spaces.

Definition 9 A real normed vector space X is called reflexive if the canonical mapping C

is bĳective.

We recall some useful conclusions in reflexive normed vector spaces [50].

Corollary 1 The following statement is true for the reflexive normed vector space:

(i) Reflexive space is complete.

(ii) 𝑋 is reflexive iff 𝑋′ is reflexive.

(iii) Finite dimensional space is reflexive.

(iv) 𝐿𝑝 is reflexive for 1 < 𝑝 < ∞.

(v) Hilbert space 𝐻 is reflexive, i.e., 𝐻 � 𝐻′ � 𝐻′′.

Theorem 2 (Eberlin-Šmulian Theorem) Let 𝑋 be a real Banach space and

𝐵 := {𝑥 ∈ 𝑋 : ∥𝑥∥ ≤ 1}
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be the closed unit ball. Then the following are equivalent [50].

(i) 𝑋 is reflexive.

(ii) 𝐵 is weakly compact.

(iii) 𝐵 is sequentially weakly compact.

(iv) Every bounded sequence in 𝑋 has a weakly convergent subsequence.

Theorem 3 (Banach–Alaoglu Theorem) [50] Let 𝑋 be a separable real normed vector

space. Then every bounded sequence in the dual space 𝑋′ has a weak∗ convergent subse-

quence.

Note that the result in Theorem 3 can be extended to no-separable normed vector space.

At the end of this section, we introduce the bilinear form that will be often used in

the quadratic optimization and partial differential equation.

Definition 10 Let 𝑋 and 𝑌 be normed vector spaces over the field R. A bilinear form is a

function 𝑏 : 𝑋 × 𝑌 → R such that

𝑏(𝛼1𝑥1 + 𝛼2𝑥2, 𝑦) = 𝛼1𝑏(𝑥1, 𝑦) + 𝛼2𝑏(𝑥2, 𝑦),

𝑏(𝑥, 𝛼1𝑦1 + 𝛼2𝑦2) = 𝛼1𝑏(𝑥, 𝑦1) + 𝛼2𝑏(𝑥, 𝑦2),

where 𝛼1, 𝛼2 ∈ R, 𝑥1, 𝑥2 ∈ 𝑋 , and 𝑦1, 𝑦2 ∈ 𝑌 .

The bilinear form 𝑏(·, ·) is bounded if satisfying the following condition:

|𝑏(𝑥, 𝑦) | ≤ 𝐶∥𝑥∥𝑋 ∥𝑦∥𝑌 , ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌,

and its norm is defined as

∥𝑏∥𝑏 = sup
0≠𝑥∈𝑋,0≠𝑦∈𝑌

|𝑏(𝑥, 𝑦) |
∥𝑥∥𝑋 ∥𝑦∥𝑌

= sup
∥𝑥∥𝑋=1,∥𝑦∥𝑌=1

|𝑏(𝑥, 𝑦) |.
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Corollary 2 (Reisz Representation) [50, Chapter 3] Let 𝑋 and 𝑌 be Hilbert spaces and

𝑏 : 𝑋 × 𝑌 → R be a bounded bilinear form. Then there exists a unique 𝑆 ∈ L (𝑋,𝑌 ) such

that

𝑏(𝑥, 𝑦) = (𝑆𝑥, 𝑦) and ∥𝑏∥𝑏 = ∥𝑆∥L (𝑋,𝑌 ) .

2.2. DERIVATIVES IN BANACH SPACES

Let 𝑋 and 𝑌 be Banach spaces and 𝐹 : 𝑋 → 𝑌 be a mapping from 𝑋 to 𝑌 .

Definition 11 For an element 𝑥 ∈ 𝑋 , if the limit

𝛿𝐹 (𝑢, ℎ) = lim
𝑠→0

1
𝑠
(𝐹 (𝑥 + 𝑠ℎ) − 𝐹 (𝑥))

exists for ℎ ∈ 𝑋 . We call 𝛿𝐹 (𝑢, ℎ) a directional derivative of 𝐹 at 𝑥 in direction ℎ. If

this limit exists for all directions ℎ ∈ 𝑋, then we call the mapping ℎ ↦→ 𝛿𝐹 (𝑥, ℎ) the first

variation of 𝐹 at 𝑥.

Definition 12 𝐹 is said to be Gâteaux differentiable at 𝑥 if it is directional differentiable

and

𝛿𝐹 (𝑥, ℎ) = 𝐴ℎ, with 𝐴 ∈ L (𝑋,𝑌 )

exists for all ℎ ∈ 𝑋 . We refer 𝐴 as the Gâteaux derivative of 𝐹 at 𝑥 ∈ 𝑋 .

If 𝑓 : 𝑋 → 𝑅 is a Gâteaux differentiable functional, then the Gâteaux derivative is an

element of the dual space 𝑋′.
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Definition 13 A mapping 𝐹 : 𝑋 → 𝑌 is Fréchet-differentiable if there is an operator

𝐴 ∈ L (𝑋,𝑌 ) and a mapping 𝑟 : 𝑋 × 𝑋 → 𝑌 such that

𝐹 (𝑥 + ℎ) = 𝐹 (𝑥) + 𝐴ℎ + 𝑟 (𝑥, ℎ) and
∥𝑟 (𝑥, ℎ)∥𝑌

∥ℎ∥𝑋
→ 0

for all ℎ ∈ 𝑋 . We refer 𝐴 as the Fréchet derivative of 𝐹 at 𝑥 and write 𝐹′(𝑥) = 𝐴.

Theorem 4 (Chain rule) Let 𝑋,𝑌 and 𝑍 be Banach spaces and let 𝐹 : 𝑋 → 𝑌 and

𝐺 : 𝑌 → 𝑍 be Fréchet-differentiable at 𝑥 ∈ 𝑋 , then the composition

𝐸 (𝑥) := 𝐺 ◦ (𝐹 (𝑥))

is also Fréchet-differentiable at 𝑥 ∈ 𝑋 and

𝐸′(𝑢) = 𝐺′(𝐹 (𝑢)) ◦ 𝐹′(𝑢).

Remark 2 • Gâteaux differentiable can not imply continuity.

• Gâteaux differentiable can not imply Fréchet-differentiable.

• Chain rule is not generally true for Gâteaux derivative.

• If the Fréchet derivative exists, so does the Gâteaux derivative and they coincide.

• If 𝐹 is Fréchet-differentiable at 𝑥 ∈ 𝑋 , then 𝐹 is continuous at 𝑥.

• If 𝐹 is Fréchet-differentiable at 𝑥, then the derivative 𝐹′(𝑥) is unique.

• If 𝐹 is continuously differentiable at 𝑥, the 𝐹 is Fréchet-differentiable at 𝑥.

• If 𝐹′ ∈ L (𝑋,𝑌 ) is also differentiable at 𝑥, then 𝐹′′(𝑥) ∈ L (𝑋,L (𝑋,𝑌 )).

Next, we provide a few examples to concretely show the calculation of derivative

for a mapping in a general Banach space.
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Example 1 The bounded linear operator 𝑇 : 𝑋 → 𝑌 is Fréchet-differentiable with deriva-

tive

𝑇 ′(𝑥)ℎ = 𝑇ℎ.

It is simply true by the linearity 𝑇 (𝑥 + ℎ) = 𝑇 (𝑥) + 𝑇 (ℎ).

Example 2 The functional 1
2 ∥𝑢∥𝐿2 (Ω) is Fréchet-differentiable and its derivative at 𝑢 is∫

Ω
𝑢ℎ𝑑𝑥 and the gradient is 𝑢.

Proof :

We set 𝐽 (𝑢) = 1
2 ∥𝑢∥𝐿2 (Ω) =

1
2 (𝑢, 𝑢) =

∫
Ω
𝑢𝑢𝑑𝑥. Then

𝐽 (𝑢 + ℎ) − 𝐽 (𝑢) = 1
2
(𝑢 + ℎ, 𝑢 + ℎ) − 1

2
(𝑢, 𝑢)

=
1
2
(𝑢, 𝑢) + 1

2
(𝑢, ℎ) + 1

2
(ℎ, 𝑢) + 1

2
(ℎ, ℎ) − 1

2
(𝑢, 𝑢)

= (𝑢, ℎ) + 1
2
(ℎ, ℎ).

Obviously,
1
2 ∥ℎ∥

2

∥ℎ∥ → 0 as ℎ → 0. Therefore, 𝐽′(𝑢)ℎ = (𝑢, ℎ). By Riesz representation, we

obtain 𝐽′(𝑢) = 𝑢.

Example 3 The bilinear and continuous mapping 𝐵(𝑢, 𝑢) : 𝑋 × 𝑋 → 𝑌 is Fréchet-

differentiable with derivative 𝐵(𝑢, ℎ) + 𝐵(ℎ, 𝑢) at 𝑢.

Proof :

We set 𝑓 (𝑢) = 𝐵(𝑢, 𝑢) and do the calculus variation:

𝑓 (𝑢 + ℎ) − 𝑓 (𝑢) = 𝐵(𝑢 + ℎ, 𝑢 + ℎ) − 𝐵(𝑢, 𝑢)

= 𝐵(𝑢, 𝑢) + 𝐵(𝑢, ℎ) + 𝐵(ℎ, 𝑢) + 𝐵(ℎ, ℎ) − 𝐵(𝑢, 𝑢)

= 𝐵(𝑢, ℎ) + 𝐵(ℎ, 𝑢) + 𝐵(ℎ, ℎ).



13

Since 𝐵(𝑢, 𝑢) : 𝑋 × 𝑋 → 𝑌 is continuous, we have ∥𝐵(ℎ,ℎ)∥
∥ℎ∥ → 0 as ℎ → 0. Therefore, the

result holds.

Example 4 The next example is an application of the Chain Rule. Find the Fréchet

derivative of functional 𝐽 (𝑢) =
∫
Ω
(𝑢̂ − 𝑢2)2 : 𝑋 → R, where 𝑢̂ is a known function in 𝑋 .

Solution :

First, it is not difficult to verify that 𝐽 (𝑢) is Fréchet differentiable. We consider 𝐽 (𝑢) =

𝐸 ◦ 𝐺 (𝑢), where 𝐺 (𝑢) = 𝑢2 and 𝐸 (𝑧) =
∫
Ω
(𝑢̂ − 𝑧)2𝑑𝑧. By applying the chain rule, we

obtain

𝑓 ′(𝑢)ℎ = ⟨𝐸′(𝐺 (𝑢)), 𝐺′(𝑢)ℎ⟩ = 4
∫
Ω

(𝑢̂ − 𝑢2)𝑢ℎ𝑑𝑥,

since 𝐺′(𝑢), 𝐸′(𝑧) can be easily calculated as

𝐺′(𝑢)ℎ = 2𝑢ℎ, ⟨𝐸′(𝑧), 𝑣⟩ = 2
∫
Ω

(𝑢̂ − 𝑧)𝑣𝑑𝑧.

Let 𝑈 ∈ 𝑋 be a nonempty subset of a real normed vector space 𝑋 and 𝐽 : 𝑈 → R

be a given functional. Define a minimization problem:

min
𝑥∈𝑈

𝐽 (𝑢). (2.1)

Definition 14 For 𝑥 ∈ 𝑈 ⊂ 𝑋 the direction 𝑦 − 𝑥 ∈ 𝑈 is called admissible if there exists a

sequence {𝑡𝑛}𝑛∈𝑁 with 0 < 𝑡𝑛 → 0 as 𝑛→ ∞, such that 𝑥 + 𝑡𝑛 (𝑦 − 𝑥) ∈ 𝑈 for every 𝑛 ∈ 𝑁 .

Theorem 5 Suppose that 𝑥 ∈ 𝑈 ⊂ 𝑋 is a local minimum of (2.1) and that 𝑦 − 𝑥 is an

admissible direction. If 𝑓 is directionally differentiable at 𝑥, in direction 𝑦 − 𝑥, then

𝛿𝐽 (𝑥) (𝑦 − 𝑥) > 0.

Theorem 5 indicates the following Corollary immediately.
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Corollary 3 If 𝑈 = 𝑋 and 𝐽 (𝑥) is Gâteaux differentiable at 𝑥 where the local optimal

solution is obtained, then

𝐽′(𝑥)ℎ = 0, ∀ℎ ∈ 𝑋.

Theorem 6 (Lagrange Multiplier Rule) [[51]] Let 𝑋 and 𝑌 be real Banach spaces. Let

𝑈 be an open subset of 𝑋 and let 𝐽 : 𝑈 → R be a continuously differentiable function.

Let 𝑔 : 𝑈 → 𝑌 be another continuously differentiable function, the constraint: 𝑔(𝑢) = 0.

Suppose also that the Fréchet derivative 𝑔′(𝑢) : 𝑋 → 𝑌 of 𝑔 at 𝑢 is a surjective linear map.

Then there exists a Lagrange multiplier

𝜆 : 𝑌 → R

such that

𝐽′(𝑢) = 𝜆 ◦ 𝑔′(𝑢).

2.3. MINIMIZATION PROBLEM

We conclude this Section by applying the above definitions and theories to two

prototypical minimization problems.

Let 𝑋 be a Banach space, 𝑈𝑎𝑑 ∈ 𝑋 be a nonempty set of optimal variables, and

𝐽 : 𝑈 → R be a functional, bounded from below. Consider the problem:

min
𝑥∈𝑈

𝐽 (𝑢). (2.2)

A urgent question to be answered is whether problem (2.2) is well-posed, i.e.,

• For all data, does there exist a solution of the problem?
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• For all data, is the solution unique?

• Does the solution depend continuously on the data?

We start from the existence discussion. Since 𝐽 (𝑢) is bounded below, therefore infimum

exists. We can construct a minimizing sequence {𝑢𝑛} ∈ 𝑈𝑎𝑑 such that

𝐽 (𝑢𝑛) → inf
𝑢∈𝑈𝑎𝑑

𝐽 (𝑢).

If 𝐽 (𝑢) is coercive, i.e., 𝐽 (𝑢) → ∞ as ∥𝑢∥ → ∞ or 𝐽 (𝑢) +𝑄 ≥ 𝐶∥𝑢∥,𝑄 is a known quantity.

Then {𝑢𝑛} is a bounded sequence in 𝑈𝑎𝑑 . Based on Theorem 2, there exists a subsequence

still denoted as {𝑢𝑛} converging weakly to 𝑢★ in 𝑋 if 𝑋 is a reflexive Banach space. Assume

further that the functional 𝐽 (𝑢) is weakly lower semi-continuous, we can deduce

𝐽 (𝑢★) ≤ lim inf
𝑘→∞

𝐽 (𝑢𝑛) = inf
𝑢∈𝑈𝑎𝑑

𝐽 (𝑢),

which concludes that 𝑢★ is a minimizer once𝑈𝑎𝑑 is weakly closed, or convex and closed.

Second, in order to show the uniqueness, assume that 𝐽 (𝑢) is strictly convex and 𝑢1 and 𝑢2

are two optimal solutions, we will have

𝐽 (𝑢1 + 𝑢2
2

) < 𝐽 (𝑢1)
2

+ 𝐽 (𝑢2)
2

= inf
𝑢∈𝑈𝑎𝑑

𝐽 (𝑢),

which contradicts the definition of infimum. Therefore, solution is unique.

Aside from concerning the stability, we can summarize a few necessary ingredients

when modeling an optimization problem.

Theorem 7 Let 𝑈𝑎𝑑 be a closed and convex subset of a reflexive Banach space, if a

functional 𝐽 (𝑢) is bounded below, coercive, weakly lower semi-continuous, and strictly

convex, then there exists a unique minimizer for 𝐽 (𝑢) [33].
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Next, we look at an optimization problem with a constraint. Let 𝑍 be a reflexive

Banach space and 𝑋,𝑌 be Banach spaces. We state the problem as

min
𝑢,𝑧∈𝑋×𝑍𝑎𝑑

𝐽 (𝑢, 𝑧) subject to 𝑒(𝑢, 𝑧) = 0. (2.3)

Here, 𝐽 : 𝑋 × 𝑍𝑎𝑑 → R, 𝑒 : 𝑋 × 𝑍𝑎𝑑 → 𝑌 , and 𝑍𝑎𝑑 is convex and closed. Before preceding

the wellposdness discussion, we clarify a few understandings in (2.3). The functional

𝐽 (𝑢, 𝑧) usually consists of two components:

𝐽 (𝑢, 𝑧) = 𝐽1(𝑢) + 𝐽2(𝑧),

where 𝐽1 : 𝑋 → R is the objective and 𝐽2 : 𝑍𝑎𝑑 → R is a penalty or regularization for

optimal variable. For 𝑒(𝑢, 𝑧) = 0, we assume 𝑒 : 𝑋 × 𝑍𝑎𝑑 → 𝑌 is smooth enough and the

condition for implicit function theorem holds, i.e., 𝑒(𝑢, 𝑧) = 0 is differentiable and is able

to define a mapping 𝑢(𝑧) : 𝑍𝑎𝑑 → 𝑋 . Problem (2.3) is then rewritten as:

min
𝑧∈𝑍𝑎𝑑

𝐽 (𝑧) subject to 𝑒(𝑧) = 0.

Theorem 8 The problem (2.3) admits an unique solution if the following conditions hold:

(i) 𝑍𝑎𝑑 is convex and closed.

(ii) The equation 𝑒(𝑢, 𝑧) = 0 : 𝑋 × 𝑍𝑎𝑑 → 𝑌 defines a mapping 𝑢(𝑧) that is continuous with

respect to 𝑧.

(iii) 𝐽 is continuous in term of variables 𝑢 and 𝑧, respectively.

(iv) 𝐽 is strictly convex, coercive, and bounded below.

Proof:

Conditions (ii) and (iii) indicate that 𝐽 is continuous, the convexity further implies the

weakly lower semi-continuity of 𝐽. Then the rest of proof is using Theorem 7.
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Remark 3 • Coercivity is contained in convexity for some contexts, for instance, if 𝐽

is proper, convex, lower semi-continuous in a Hilbert space, then 𝐽 is also coercive.

• The continuity of 𝑢(𝑧) could happen in a weak sense, i.e., 𝑧𝑛 ⇀ 𝑢 as 𝑢(𝑧𝑛) ⇀ 𝑢(𝑧).

For simplicity of the following presentation, we assume 𝑍𝑎𝑑 = 𝑍 . We next committee

to characterize the optimal solution via calculating the first oder variation of the functional

𝐽 (𝑢, 𝑧):

⟨𝐽′(𝑢, 𝑧), ℎ⟩ = ⟨𝐽𝑢 (𝑢, 𝑧), 𝑢′(𝑧)ℎ⟩ + ⟨𝐽𝑧 (𝑢, 𝑧), ℎ⟩

= ⟨(𝑢′(𝑧))∗𝐽𝑢 (𝑢, 𝑧), ℎ⟩ + ⟨𝐽𝑧 (𝑢, 𝑧), ℎ⟩.

To further understand the structure of (𝑢′(𝑧))∗, we do calculus variation with respect to 𝑧

of the constraint equation 𝑒(𝑢, 𝑧) = 0:

𝑒𝑢 (𝑢, 𝑧)𝑢′(𝑧)ℎ + 𝑒𝑧 (𝑢, 𝑧)ℎ = 0,

which gives

𝑢′(𝑧)ℎ = −(𝑒𝑢 (𝑢, 𝑧))−1𝑒𝑧 (𝑢, 𝑧)ℎ,

and

(𝑢′(𝑧))∗ = − (𝑒𝑧 (𝑢, 𝑧))∗
(
(𝑒𝑢 (𝑢, 𝑧))−1

)∗
= (𝑒𝑧 (𝑢, 𝑧))∗ ((𝑒𝑢 (𝑢, 𝑧))∗)−1

. (2.4)

Substituting (2.4) into the first order variation of the functional 𝐽, we obtain

⟨𝐽′(𝑢, 𝑧), ℎ⟩ = ⟨(𝑢′(𝑧))∗𝐽𝑢 (𝑢, 𝑧), ℎ⟩ + ⟨𝐽𝑧 (𝑢, 𝑧), ℎ⟩

= ⟨− (𝑒𝑧 (𝑢, 𝑧))∗ ((𝑒𝑢 (𝑢, 𝑧))∗)−1
𝐽𝑢 (𝑢, 𝑧), ℎ⟩ + ⟨𝐽𝑧 (𝑢, 𝑧), ℎ⟩.
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It is now natural to introduce the adjoint equation

(𝑒𝑢 (𝑢, 𝑧))∗ 𝑢∗ = 𝐽𝑢 (𝑢, 𝑧)

to simplify the first order variation as:

⟨𝐽′(𝑢, 𝑧), ℎ⟩ = ⟨− (𝑒𝑧 (𝑢, 𝑧))∗ 𝑢∗, ℎ⟩ + ⟨𝐽𝑧 (𝑢, 𝑧), ℎ⟩.

The first order optimal condition is concluded by sufficing

⟨− (𝑒𝑧 (𝑢, 𝑧))∗ 𝑢∗ + 𝐽𝑧 (𝑢, 𝑧), ℎ⟩ = 0.
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3. VARIATIONAL DATA ASSIMILATION AND ALGORITHMS

3.1. FORMULATION OF VARIATIONAL DATA ASSIMILATION

Let 𝑈𝑎𝑑 denote an admissible solutions set that could be either a Hilbert space

𝐻 (Ω) or a closed convex subset of 𝐻 (Ω) ⊂ 𝐿2(Ω), where Ω is an open bounded domain

with regular boundary 𝜕Ω. Given 𝑇 > 0, 𝛾 > 0, and a distributed observation 𝑢̂ ∈

𝐿2(0, 𝑇 ;H(Ω)) ⊂ 𝐿2(0, 𝑇 ;𝑉 ′(Ω)), the data assimilation for a given dynamical system is

considered as [33]:

min
𝑢0∈𝑈𝑎𝑑

𝐽 (𝑢0) =
1
2

∫ 𝑇

0
∥𝑢̂ − 𝑢(𝑢0)∥2

H𝑑𝑡 +
𝛾

2
∥𝑢0∥2

𝐻 , (3.1)

subject to 
𝜕𝑢

𝜕𝑡
+ 𝐴𝑢 = 𝑓 ∈ 𝐿2(0, 𝑇 ;𝑉 ′(Ω)),

𝑢(0) = 𝑢0 ∈ 𝐿2(Ω),
(3.2)

where H(Ω) and 𝑉 (Ω) are appropriate Hilbert spaces, 𝐴 is a linear operator describing

some physical phenomena, and the mapping 𝑢(𝑢0) is defined as the solution of (3.2) with

the initial value 𝑢0. By incorporating the 𝑢̂ with the output of the dynamical system (3.2)

through the cost functional (3.1), our purpose is to identify a reliable initial condition 𝑢0 for

a better state predictions via minimizing the cost functional (3.1).

Since (3.1)-(3.2) can be viewed as an optimization problem, we use the argument

developed in Chapter 2 to investigate whether (3.1)-(3.2) is well-posed.

• 𝑈𝑎𝑑 is a closed and convex, or weakly closed.

• Cost functional (3.1) is non-negative, therefore bounded below .

• Cost functional (3.1) is obviously coercive due to the term 𝛾

2 ∥𝑢0∥2.

• Assuming the wellposdeness of (3.2), the mapping 𝑢(𝑢0) is a continuous mapping.
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• By the continuity of norm, cost functional (3.1) is continuous.

• From the linearity of (3.2) and the strict convexity of norm for Hilbert space, we can

verify the cost functional (3.1) is strictly convex.

Apparently, the data assimilation problem (3.1)-(3.2) satisfies all ingredients as an optimiza-

tion problem for the Theorem 8, hence admits an unique optimal solution. Furthermore, by

calculating the first order derivative of the cost functional (3.1), the optimal solution 𝑢0 can

be characterized by

⟨𝐹′(𝑢0), 𝑣 − 𝑢0⟩ =
∫ 𝑇

0
((𝑢(𝑢0) − 𝑢̂, 𝑢(𝑣) − 𝑢(𝑢0))𝑑𝑡

+ 𝛾(𝑢0, 𝑣 − 𝑢0) ≥ 0, ∀𝑣 ∈ 𝑈𝑎𝑑 . (3.3)

Next, we show that the solution of problem (3.1)-(3.2) is stable with respect to the

perturbation on the distributed observations and the regularization parameter 𝛾.

Theorem 9 The solution of problem (3.1)-(3.2) continuously depends on the observational

data 𝑢̂ and the parameter 𝛾.

Proof: Introducing perturbations 𝜖1 ∈ R on 𝛾 and 𝜖2 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)) on 𝑢̂ respectively,

and letting 𝑢̄0 denote the perturbed optimal solution, we then have∫ 𝑇

0
(𝑢(𝑢̄0) − 𝑢̂ − 𝜖2, 𝑢(𝑣) − 𝑢(𝑢̄0))𝑑𝑡

+ (𝛾 + 𝜖1) (𝑢̄0, 𝑣 − 𝑢̄0) ≥ 0 ∀𝑣 ∈ 𝑈𝑎𝑑 .
(3.4)

Taking 𝑣 = 𝑢0 in (3.4) and 𝑣 = 𝑢̄0 in (3.3) gives us

∫ 𝑇

0
(𝑢(𝑢̄0) − 𝑢̂ − 𝜖2, 𝑢(𝑢0) − 𝑢(𝑢̄0))𝑑𝑡 + (𝛾 + 𝜖1) (𝑢̄0, 𝑢0 − 𝑢̄0) ≥ 0,∫ 𝑇

0
(𝑢(𝑢0) − 𝑢̂, 𝑢(𝑢̄0) − 𝑢(𝑢0))𝑑𝑡 + 𝛾(𝑢0, 𝑢̄0 − 𝑢0) ≥ 0.
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Adding the two inequalities together leads to∫ 𝑇

0
∥𝑢(𝑢0) − 𝑢(𝑢̄0)∥2

H𝑑𝑡 + (𝛾 + 𝜖1)∥(𝑢0 − 𝑢̄0)∥2
𝐻

≤
∫ 𝑇

0
(𝜖2, 𝑢(𝑢̄0) − 𝑢(𝑢0))𝑑𝑡 + 𝜖1(𝑢0, 𝑢0 − 𝑢̄0).

(3.5)

Applying the Cauchy-Schwarz inequality and Young’s inequality for the right hand side

terms in (3.5), we have

∫ 𝑇

0
(𝜖2, 𝑢(𝑢̄0) − 𝑢(𝑢0))𝑑𝑡 ≤

∫ 𝑇

0
∥𝑢(𝑢0) − 𝑢(𝑢̄0)∥2

H𝑑𝑡 +
1
4
∥𝜖2∥2

𝐿2 (0,𝑇 ;H(Ω)) , (3.6)

𝜖1(𝑢0, 𝑢0 − 𝑢̄0) ≤
|𝜖1 |
2

∥𝑢0∥2
𝐻 + |𝜖1 |

2
∥𝑢0 − 𝑢̄0∥2

𝐻 . (3.7)

Combining (3.5)-(3.7) and setting |𝜖1 | ≤ 𝛾

3 , we have the inequality

𝛾

2
∥𝑢0 − 𝑢̄0∥2

𝐻 ≤ 1
4
∥𝜖2∥2

𝐿2 (0,𝑇 ;H(Ω)) +
|𝜖1 |
2

∥𝑢0∥2
𝐻 , (3.8)

which implies that the solution of problem (3.1)-(3.2) continuously depends on the obser-

vational data 𝑢̂ and 𝛾.

Moreover, inequality (3.8) indicates that small 𝛾 will degrade the stability of the

data assimilation problem.

Since the arguments above deeply rely on optimal control theory [33], we refer such

approach as the variational data assimilation method.

The next step is to find out the optimal solution, we will present two main techniques,

dual method and Lagrange multiplier rule, to derive the optimality system.
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3.2. DERIVATION OF THE OPTIMALITY SYSTEM

3.2.1. Dual Method. To begin with, based on equation (3.2), we define the con-

straint operator 𝑀 : 𝐿2(Ω) × 𝐿2(0, 𝑇 ;𝑉 (Ω)) → 𝐿2(Ω) × 𝐿2(0, 𝑇 ;𝑉 ′(Ω)):

𝑀 (𝑢0, 𝑢) =
©­­«
𝜕𝑢
𝜕𝑡

+ 𝐴𝑢 − 𝑓

𝑢(0) − 𝑢0

ª®®¬ ∈ 𝐿2(0, 𝑇 ;𝑉 ′(Ω)) × 𝐿2(Ω).

We then do standard calculus variation for the cost functional 𝐽 (𝑢0, 𝑢) with respect to 𝑢0

⟨𝜕𝐽 (𝑢0, 𝑢)
𝜕𝑢0

, ℎ⟩ = ⟨𝐽𝑢0 (𝑢0, 𝑢), ℎ⟩ + ⟨𝐽𝑢 (𝑢0, 𝑢),
𝜕𝑢

𝜕𝑢0
ℎ⟩, ∀ℎ ∈ 𝑈𝑎𝑑 . (3.9)

A calculus variation of the constraint equation 𝑀 (𝑢0, 𝑢) = 0 with respect to 𝑢0 leads to

𝑀𝑢0ℎ + 𝑀𝑢
𝜕𝑢
𝜕𝑢0
ℎ = 0, (3.10)

where

𝑀𝑢0ℎ =
©­­«

0

−ℎ

ª®®¬ , 𝑀𝑢
𝜕𝑢
𝜕𝑢0
ℎ =

©­­«
( 𝜕
𝜕𝑡
+ 𝐴) 𝜕𝑢

𝜕𝑢0
ℎ

𝜕𝑢(0)
𝜕𝑢0

ℎ

ª®®¬ .
Recall that

𝑀𝑢0 : 𝐿2(Ω) → 𝐿2(0, 𝑇 ;𝑉 (Ω)) × 𝐿2(Ω),

𝑀𝑢 : 𝐿2(0, 𝑇 ;𝑉 (Ω)) → 𝐿2(0, 𝑇 ;𝑉 ′(Ω)) × 𝐿2(Ω),

𝐽𝑢 (𝑢0, 𝑢) : 𝐿2(0, 𝑇 ;𝑉 (Ω)) → R.

In order to connect (3.9) and (3.10), it is natural to introduce the adjoint operator, i.e.,

𝑀∗
𝑢 : 𝐿2(0, 𝑇 ;𝑉 ′′(Ω)) × (𝐿2(Ω))′ → 𝐿2(0, 𝑇 ;𝑉 ′(Ω)),
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then there exists a element 𝑧 ∈ 𝐿2(0, 𝑇 ;𝑉 ′′(Ω)) × (𝐿2(Ω))′ such that

𝑀∗
𝑢 𝑧 = 𝐽𝑢 (𝑢0, 𝑢). (3.11)

Using the equation (3.10), we deduce the following operator calculation

⟨𝑀∗
𝑢 𝑧,

𝜕𝑢
𝜕𝑢0
ℎ⟩ = ⟨𝑧, 𝑀𝑢

𝜕𝑢
𝜕𝑢0
ℎ⟩ = ⟨𝑧,−𝑀𝑢0ℎ⟩ = ⟨𝑧,−

©­­«
0

−ℎ

ª®®¬⟩ = ⟨𝑢∗(0), ℎ⟩, (3.12)

where 𝑧 ∈ 𝐿2(0, 𝑇 ;𝑉 (Ω)) × 𝐿2(Ω) defined as 𝑧 =
©­­«
𝑢∗

𝑢∗(0)

ª®®¬ is the identity of 𝑧 ∈

𝐿2(0, 𝑇 ;𝑉 (Ω)′′) × (𝐿2(Ω))′ by the reflexive property of Hilbert space.

Then we have

⟨𝐽𝑢 (𝑢0, 𝑢),
𝜕𝑢

𝜕𝑢0
ℎ⟩ = ⟨𝑢∗(0), ℎ⟩.

Recall (3.9), we eventually find the optimal condition

⟨ 𝜕𝐽 (𝑢0,𝑢)
𝜕𝑢0

, ℎ⟩ = ⟨𝑢∗(0), ℎ⟩ + ⟨𝐽𝑢0 (𝑢0, 𝑢), ℎ⟩ = 0,

Now the only task left is to solve equation (3.11) for 𝑧,

⟨𝑀∗
𝑢 𝑧,

𝜕𝑢

𝜕𝑢0
ℎ⟩ = ⟨𝑧, 𝑀𝑢

𝜕𝑢

𝜕𝑢0
ℎ⟩ = ⟨

©­­«
( 𝜕
𝜕𝑡
+ 𝐴) 𝜕𝑢

𝜕𝑢0
ℎ

𝜕𝑢(0)
𝜕𝑢0

ℎ

ª®®¬ ,
©­­«
𝑢∗

𝑢∗(0)

ª®®¬⟩
= ⟨( 𝜕

𝜕𝑡
+ 𝐴) 𝜕𝑢

𝜕𝑢0
ℎ, 𝑢∗⟩ + ⟨𝜕𝑢(0)

𝜕𝑢0
ℎ, 𝑢∗(0)⟩

= ⟨(− 𝜕
𝜕𝑡

+ 𝐴∗)𝑢∗, 𝜕𝑢
𝜕𝑢0

ℎ⟩ + ⟨𝜕𝑢(0)
𝜕𝑢0

ℎ, 𝑢∗(0)⟩ + (𝑢∗(𝑇), 𝜕𝑢(𝑇)
𝜕𝑢0

ℎ)

− ( 𝜕𝑢(0)
𝜕𝑢0

ℎ, 𝑢∗(0))
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= ⟨(− 𝜕
𝜕𝑡

+ 𝐴∗)𝑢∗, 𝜕𝑢
𝜕𝑢0

ℎ⟩ + ( 𝜕𝑢(𝑇)
𝜕𝑢0

ℎ, 𝑢∗(𝑇))

= ⟨𝐽𝑢 (𝑢0, 𝑢),
𝜕𝑢

𝜕𝑢0
ℎ)⟩,

where the third line is taking integration by part with respect to 𝑡.

Setting 𝑢∗(𝑇) = 0 we then have

− 𝜕𝑢∗

𝜕𝑡
+ 𝐴∗𝑢∗ = 𝐽𝑢 (𝑢0, 𝑢),

𝑢∗(𝑇) = 0.

This finally concludes the optimality system



𝜕𝑢
𝜕𝑡

+ 𝐴𝑢 = 𝑓 ,

𝑢(0) = 𝑢0,

− 𝜕𝑢∗

𝜕𝑡
+ 𝐴∗𝑢∗ = 𝐽𝑢 (𝑢0, 𝑢),

𝑢∗(𝑇) = 0,

𝑢∗(0) + 𝐽𝑢0 (𝑢0, 𝑢) = 0.

(3.13)

Remark 4 In the above derivation, (3.13) used the assumption 𝐻 (Ω) = 𝐿2(Ω). If

𝐻 (Ω) ≠ 𝐿2(Ω), the optimal condition will be given implicitly by equation (𝑢∗(0), ℎ) +

⟨𝐽𝑢0 (𝑢0, 𝑢), ℎ⟩ = 0. In the following parts of this Section, we will keep this assumption

𝐻 (Ω) = 𝐿2(Ω).

3.2.2. Lagrange Multiplier Rule. Another way, that is usually more convenient

to derive the optimality system, is the Lagrange multiplier rule. Before using such method,

one thing we should verify is the surjective of the derivative of the constraint operator 𝑀 ,
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which is essentially required by the implicit function theorem [51]. However, this is usually

not an issue when operator 𝐴 in (3.2) is linear. In particular, we should be very careful for

problems with nonlinear constraint.

To find the solution of the problem (3.1)-(3.2), we form a Lagrange functional:

L(𝜆, 𝑢, 𝑢0) = 𝐽 (𝑢0, 𝑢) + ⟨𝜆, 𝑀 (𝑢0, 𝑢)⟩, (3.14)

where 𝜆 ∈ 𝐿2(0, 𝑇 ;𝑉 ′′(Ω)) × 𝐿2(Ω)′ is the Lagrange multiplier.

By the isometrics property of Hilbert space, we identify 𝜆 as
©­­«
𝑢∗

𝑢(0)∗
ª®®¬ ∈ 𝐿2(0, 𝑇 ;𝑉 (Ω)) ×

𝐿2(Ω) and rewrite (3.14) as

L(𝑢∗, 𝑢∗(0), 𝑢, 𝑢0) = 𝐽 (𝑢0, 𝑢) + ⟨𝑀 (𝑢, 𝑢0),
©­­«
𝑢∗

𝑢(0)∗
ª®®¬⟩

= 𝐽 (𝑢0, 𝑢) + ⟨𝜕𝑢
𝜕𝑡

+ 𝐴𝑢 − 𝑓 , 𝑢∗⟩ + ⟨𝑢∗(0), 𝑢(0) − 𝑢0⟩.

Doing calculus of variation with respect to 𝑢∗, 𝑢∗(0), we recover the constraint equation

𝜕𝑢

𝜕𝑡
+ 𝐴𝑢 = 𝑓 , 𝑢(0) = 𝑢0. (3.15)

Doing calculus of variation with respect to 𝑢, 𝑢0, we have

⟨𝜕𝑣
𝜕𝑡

+ 𝐴𝑣 − 𝑓 , 𝑢∗⟩ + ⟨𝑢∗(0), 𝑣(0)⟩ + ⟨𝐽𝑢 (𝑢0, 𝑢), 𝑣⟩ = 0, (3.16)

⟨𝑢∗(0),−ℎ⟩ + ⟨𝐽𝑢0 (𝑢0, 𝑢), ℎ⟩ = 0. (3.17)

Taking integration by part with respect to 𝑡 on (3.16), we find out

⟨−𝜕𝑢
∗

𝜕𝑡
+ 𝐴∗𝑢∗, 𝑣⟩ + ⟨𝐽𝑢 (𝑢0, 𝑢), 𝑣⟩ + ⟨𝑢∗(𝑇), 𝑣(𝑇)⟩ = 0. (3.18)
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Setting 𝑢(𝑇) = 0 we have

−𝜕𝑢
∗

𝜕𝑡
+ 𝐴∗𝑢∗ = −𝐽𝑢 (𝑢0, 𝑢), 𝑢∗(𝑇) = 0. (3.19)

Summarizing (3.15)-(3.19), we obtain the optimality system



𝜕𝑢
𝜕𝑡

+ 𝐴𝑢 = 𝑓 ,

𝑢(0) = 𝑢0,

− 𝜕𝑢∗

𝜕𝑡
+ 𝐴∗𝑢∗ = −𝐽𝑢 (𝑢0, 𝑢),

𝑢∗(𝑇) = 0,

𝑢∗(0) − 𝐽𝑢0 (𝑢0, 𝑢) = 0,

(3.20)

which is the same as (3.13) derived in section 3.2.1.

The dual method and the Lagrange multiplier rule are both important techniques

in optimization. However, the Lagrange multiplier rule is preferred in lots of constrained

optimizations because it is more straightforward to be implemented and allows the opti-

mization problems to be solved without explicitly parameterizing the constraints. In next

subsection, we will employ the Lagrange multiplier rule to explore the discrete variational

data assimilation (or discrete PDE-constrained optimization).

3.3. DISCRETE VARIATIONAL DATA ASSIMILATION

Usually, for computational purpose, we have multiple ways to deal with a variational

data assimilation or a PDE-constrained optimization problem. One is to first optimize it

and then discretize it, such as a direct numerical solving of the optimality system (3.20) in

section 3.1. The second is to first discretize it and then optimize it, which is going to be

discussed in this section.
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We use a finite element method as a spatial discretization and the backward Euler

scheme as an example to discretize the time. Let Tℎ denote a family of triangulation of Ωℎ

that is an approximation of Ω. Assume the triangulation Tℎ satisfies the usual sort of quasi-

uniformity condition. Associated with Tℎ is the finite element space 𝑉ℎ =span{𝑢𝑖}𝑖=𝑁𝑏

𝑖=1 ,

where 𝑢𝑖 are piecewise polynomials and 𝑁𝑏 is the number of finite element nodes. The

admissible set of discrete optimal variable is then considered as𝑈ℎ = 𝑉ℎ ∩𝑈𝑎𝑑 .

For the time discretization we uniformly construct a temporal grid 0 = 𝑡0 < 𝑡1 <

𝑡2 < 𝑡3... < 𝑡𝑛... < 𝑡𝑁 = 𝑇 with time step 𝜏 = 𝑇
𝑁

. Let 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛] denote the 𝑛𝑡ℎ

sub-interval. We will use the finite-dimensional space

𝑉𝜏,ℎ = {𝑣 : [0, 𝑇] → 𝑉ℎ : 𝑣 |𝐼𝑛 ∈ 𝑉ℎ is constant in time}.

Let 𝑣𝑛 be the value of 𝑣 ∈ 𝑉𝜏,ℎ at 𝑡𝑛 and 𝑉𝑛
𝜏,ℎ

be the restriction to 𝐼𝑛 of the functions in 𝑉𝜏,ℎ.

Given specific ℎ, 𝜏 and 𝛾 > 0, a fully discretization of the problem (3.1)-(3.2) can

be formulated as:

min
𝑢0,ℎ∈𝑈ℎ

𝐽ℎ (𝑢0,ℎ) (3.21)

subject to 
⟨
𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
, 𝑣ℎ⟩ + ⟨𝐴𝑢𝑛+1

ℎ , 𝑣ℎ⟩ = ⟨ 𝑓𝑛+1, 𝑣ℎ⟩, ∀𝑣ℎ ∈ 𝑉ℎ,

𝑢0
ℎ = 𝑢0,ℎ 𝑢0,ℎ ∈ 𝐿2(Ω),

(3.22)

where

𝐹ℎ (𝑢0,ℎ) =
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ∥
2
H + 𝛾

2
∥𝑢0,ℎ∥2

𝐻 . (3.23)

Using the similar argument in continuous formulation (3.1)-(3.2), it is not difficult

to prove the wellposedness of problem (3.21)-(3.23).
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In order to solve for 𝑢0,ℎ, we use Lagrange multiplier rule and form the discrete

Lagrange functional:

L(𝑢̄ℎ, 𝑢0,ℎ, 𝑢̄
∗
ℎ) =

1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ∥
2
H + 𝛾

2
∥𝑢0,ℎ∥2

𝐻

+ 𝜏
𝑁−1∑︁
𝑛=0

⟨
𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
+ 𝐴𝑢𝑛+1

ℎ − 𝑓𝑛+1, 𝑢
∗𝑛
ℎ ⟩ + (𝑢0

ℎ − 𝑢0,ℎ, 𝑢
∗0
ℎ ),

(3.24)

where 𝑢̄ℎ = (𝑢1
ℎ
, 𝑢2

ℎ
, 𝑢3

ℎ
, ....., 𝑢𝑁

ℎ
) and 𝑢̄∗

ℎ
= (𝑢∗0

ℎ
, 𝑢∗1

ℎ
, 𝑢∗2

ℎ
, 𝑢∗3

ℎ
, ....., 𝑢∗𝑁−1

ℎ
). Based on a

adjoint notation in the sense of ⟨𝐴𝑢, 𝑣⟩ = ⟨𝐴∗𝑣, 𝑢⟩, we rewrite (3.24) as

L(𝑢̄ℎ, 𝑢0,ℎ, 𝑢̄
∗
ℎ) =

1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ∥
2
H + 𝛾

2
∥𝑢0,ℎ∥2

𝐻 + 𝜏
𝑁−1∑︁
𝑛=0

(⟨
𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
, 𝑢∗𝑛ℎ ⟩

+ ⟨𝐴𝑢𝑛+1
ℎ , 𝑢∗𝑛ℎ ⟩ − ⟨ 𝑓𝑛+1, 𝑢

∗𝑛
ℎ ⟩) + (𝑢𝑁ℎ , 𝑢

∗𝑁
ℎ ) − (𝑢𝑁ℎ , 𝑢

∗𝑁
ℎ ) + (𝑢0

ℎ − 𝑢0,ℎ, 𝑢
∗0
ℎ )

=
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ∥
2
H + 𝛾

2
∥𝑢0,ℎ∥2

𝐻 + 𝜏
𝑁∑︁
𝑛=1

⟨
𝑢∗𝑛−1
ℎ

− 𝑢∗𝑛
ℎ

𝜏
, 𝑢𝑛ℎ⟩

+ 𝜏
𝑁∑︁
𝑛=1

⟨𝐴∗𝑢∗𝑛−1
ℎ , 𝑢𝑛ℎ⟩ − 𝜏

𝑁∑︁
𝑛=1

⟨ 𝑓𝑛, 𝑢∗𝑛−1
ℎ ⟩ + (𝑢𝑁ℎ , 𝑢

∗𝑁
ℎ ) − (𝑢0,ℎ, 𝑢

∗0
ℎ ).

(3.25)

By using standard techniques from the calculus of variations, we derive equations that

correspond to rendering (3.25) stationary. Variations in the Lagrange multiplier 𝑢̄∗
ℎ

recover

the constraint equation (3.22). Variations with respect to 𝑢0,ℎ and 𝑢𝑛
ℎ
, for 𝑛 = 1, 2, 3....𝑁 −1

yield

𝜕L(𝑢̄ℎ, 𝑢0,ℎ, 𝑢̄
∗
ℎ
)

𝜕𝑢0,ℎ
𝑣ℎ = (𝛾𝑢0,ℎ, 𝑣ℎ) − (𝑢∗0

ℎ , 𝑣ℎ) = 0, (3.26)

𝜕L(𝑢̄ℎ, 𝑢0,ℎ, 𝑢̄
∗
ℎ
)

𝜕𝑢𝑛
ℎ

𝑤ℎ = 𝜏⟨
𝑢∗𝑛−1
ℎ

− 𝑢∗𝑛
ℎ

𝜏
, 𝑤ℎ⟩ + 𝜏⟨𝐴∗𝑢∗𝑛−1

ℎ , 𝑤ℎ⟩ − 𝜏⟨𝑢̂𝑛 − 𝑢𝑛ℎ, 𝑤ℎ⟩ = 0.

(3.27)
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Imposing 𝑢∗𝑁
ℎ

= 0 when calculating the variation with respect to 𝑢𝑁
ℎ

finally gives the discrete

optimality system, 

𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
+ 𝐴𝑢𝑛+1

ℎ = 𝑓𝑛+1,

𝑢0
ℎ = 𝑢0,ℎ,

−
𝑢∗𝑛+1
ℎ

− 𝑢∗𝑛
ℎ

𝜏
+ 𝐴∗𝑢∗𝑛ℎ = 𝑢̂𝑛+1 − 𝑢𝑛+1

ℎ ,

𝑢∗𝑁ℎ = 0,

𝑢0,ℎ =
1
𝛾
𝑢∗0
ℎ

(3.28)

for 𝑛 = 0, 1, 2, 3.....𝑁 − 1.

Remark 5 One may observe that the discrete optimality system (3.28) is the same as the

direct full discretization of (3.20). This is because of the special symmetric property of

Euler’s scheme, including the explicit Euler scheme. However, such coincidence may not

happen for other temporal discretization schemes, such as the Crank-Nicolson and most of

the Runge-Kutta methods.

A direct solving of the optimality systems (3.20) and (3.28) will couple space

and time together and result in an extreme large linear system, which is challenging to the

computational resource. In next section, we present several iterative algorithms to overcome

this difficulty.

3.4. GRADIENT DESCENT METHOD

When talking about descent method to find optimizer for a smooth cost functional,

there are two basics that matter: the descent direction and the descent step size along

that direction. In this section, we recall two methods with descent directions that rely on

the information from the first order derivative (or the gradient), thereby being named as
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gradient descent method. Based on different descent directions, we further classify them

as the conjugate gradient method and the steepest descent method. We also will discuss

practical techniques to determine a desirable choice of the descent step size.

To begin with, we need to calculate the first order derivative of the cost functional

(3.21) and find out its dual element (or gradient) in the admissible set:

⟨𝐽′ℎ (𝑢0,ℎ), 𝑣ℎ⟩ = 𝜏
𝑁∑︁
𝑛=1

⟨𝑢̂𝑛 − 𝑢𝑛ℎ, (𝑢
𝑛
ℎ)

′𝑣ℎ⟩ + (𝛾𝑢0,ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑈ℎ. (3.29)

Note that (𝑢𝑛
ℎ
)′𝑣ℎ is essentially the solution by solving the following discretized equation


⟨
U𝑛+1
ℎ

−U𝑛
ℎ

𝜏
, 𝑤ℎ⟩ + ⟨𝐴U𝑛+1

ℎ , 𝑤ℎ⟩ = 0,

U0
ℎ = 𝑣ℎ,

(3.30)

for 𝑛 = 0, 1, 2, 3, ·, 𝑁 − 1.

We now introduce a set of adjoint variables {𝑢∗𝑛
ℎ
}𝑁−1
𝑛=0 to replace each𝑤ℎ, for 𝑛 = 0, 1, 2, 3, ·, 𝑁−

1, in (3.30): 
⟨
U𝑛+1
ℎ

−U𝑛
ℎ

𝜏
, 𝑢∗𝑛ℎ ⟩ + ⟨𝐴U𝑛+1

ℎ , 𝑢∗𝑛ℎ ⟩ = 0,

(U0
ℎ − 𝑣ℎ, 𝑢

∗0
ℎ ) = 0.

(3.31)

Multiplying the first equation with 𝜏 in (3.31) and adding all equations together, for 𝑛 =

0, 1, 2, 3, ·, 𝑁 − 1, we do the following manipulations

0 = 𝜏

𝑁−1∑︁
𝑛=0

(⟨
U𝑛+1
ℎ

−U𝑛
ℎ

𝜏
, 𝑢∗𝑛ℎ ⟩ + ⟨𝐴U𝑛+1

ℎ , 𝑢∗𝑛ℎ ⟩) + (U0
ℎ − 𝑣ℎ, 𝑢

∗0
ℎ )

= 𝜏

𝑁−1∑︁
𝑛=0

(⟨
U𝑛+1
ℎ

−U𝑛
ℎ

𝜏
, 𝑢∗𝑛ℎ ⟩ + ⟨𝐴U𝑛+1

ℎ , 𝑢∗𝑛ℎ ⟩)
(3.32)
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+ (U𝑁
ℎ , 𝑢

∗𝑁
ℎ ) − (U𝑁

ℎ , 𝑢
∗𝑁
ℎ ) + (U0

ℎ − 𝑣ℎ, 𝑢
∗0
ℎ )

= 𝜏

𝑁∑︁
𝑛=1

⟨
𝑢∗𝑛−1
ℎ

− 𝑢∗𝑛
ℎ

𝜏
,U𝑛

ℎ ⟩ + 𝜏
𝑁∑︁
𝑛=1

⟨𝐴𝑢∗𝑛−1
ℎ ,U𝑛

ℎ ⟩

+ (U𝑁
ℎ , 𝑢

∗𝑁
ℎ ) − (𝑣ℎ, 𝑢∗0

ℎ ).

(3.33)

We can connect (3.29) and (3.33) by setting the following equations:

⟨
𝑢∗𝑛−1
ℎ

− 𝑢∗𝑛
ℎ

𝜏
,U𝑛

ℎ ⟩ + ⟨𝐴𝑢∗𝑛−1
ℎ ,U𝑛

ℎ ⟩ = ⟨𝑢̂ − 𝑢,U𝑛
ℎ ⟩,

𝑢∗𝑁ℎ = 0,
(3.34)

which leads to

⟨𝐽′ℎ (𝑢0,ℎ), 𝑣ℎ⟩ = 𝜏
𝑁∑︁
𝑛=1

⟨𝑢̂𝑛 − 𝑢𝑛ℎ, (𝑢
𝑛
ℎ)

′𝑣ℎ⟩ + (𝛾𝑢0,ℎ, 𝑣ℎ)

= −(𝑣ℎ, 𝑢∗0
ℎ ) + (𝛾𝑢0,ℎ, 𝑣ℎ)

= (𝛾𝑢0,ℎ − 𝑢∗0
ℎ , 𝑣ℎ).

(3.35)

Finally, 𝛾𝑢0,ℎ − 𝑢∗0
ℎ

gives the gradient of (3.21) at current initial condition 𝑢0,ℎ. Basically,

the above is a similar argument compared with (3.24) − (3.25), and 𝛾𝑢0,ℎ − 𝑢∗0
ℎ

is the

representation of the linear functional 𝐽′
ℎ
(𝑢0,ℎ) in the admissible set𝑈ℎ.

3.4.1. Steepest Descent Method. With the result in (3.35), we can discuss the

steepest descent method [52, 53] to solve the discrete optimization problem (3.21): given

®𝑢(0)0,ℎ and a tolerance 𝜖 , solve the following equations sequentially until the stop criteria

∥ ®𝑢(𝑖+1)
0,ℎ − ®𝑢(𝑖)0,ℎ∥𝐻 ≤ 𝜖 (or ∥𝛾𝑢(𝑖+1)

0,ℎ − 𝑢∗0(𝑖+1)
ℎ

∥𝐻 ≤ 𝜖) is satisfied:


𝑢
𝑛+1(𝑖)
ℎ

− 𝑢𝑛(𝑖)
ℎ

𝜏
+ 𝐴𝑢𝑛+1(𝑖)

ℎ
= 𝑓 𝑛+1,

𝑢
0(𝑖)
ℎ

= 𝑢
(𝑖)
0,ℎ,

(3.36)
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
−
𝑢
∗𝑛+1(𝑖)
ℎ

− 𝑢∗𝑛(𝑖)
ℎ

𝜏
+ 𝐴∗𝑢∗𝑛(𝑖)

ℎ
= 𝑢̂𝑛+1 − 𝑢𝑛+1(𝑖) ,

𝑢
∗𝑁 (𝑖)
ℎ

= 0,
(3.37)

𝑢
(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ + 𝜂

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ), (3.38)

where 𝑛 = 0, 1, 2, 3....𝑁 is time evolution step, 𝑖 = 0, 1, 2, 3.... represents the iteration step,

𝜂𝑖+1 is called the learning rate at each iteration, and 𝑢(𝑖)0,ℎ, 𝑢
𝑛(𝑖)
ℎ

, 𝑢∗𝑛(𝑖)
ℎ

are iterative sequences.

Since gradient is a local information for a given functional, a choice of 𝜂𝑖+1 usually happens

between (0, 1].

We illustrate the steepest descent algorithm as follows:

Algorithm 1 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess initial func-

tion ®𝑢(0)0,ℎ, and start the iteration step 𝑖 = 1.

Step 1 (Forward phase): Use 𝑢(𝑖)0,ℎ as initial condition to solve equation (3.36) for

𝑢
(𝑖)
ℎ

.

Step 2 (Backward phase): Pass 𝑢(𝑖)
ℎ

to equation (3.37) and solve equation (3.37)

backward for 𝑢∗0(𝑖)
ℎ

.

Step 3 (Update phase): Use 𝜂𝑖+1 from (0, 1) and then update

𝑢
(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ + 𝜂

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ).

Step 4 (Criteria for stopping the iteration): Compute ∥𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ∥, if ∥𝑢∗0(𝑖)
ℎ

−

𝛾𝑢
(𝑖)
0,ℎ∥ ≤ 𝜖 then stop; otherwise, increase 𝑖 by 1 and go back to Step 1.

3.4.2. Inexact Line Search Steepest Descent Method. To reduce the iterations

and improve computational efficiency in the steepest descent method, we can optimize the

choice of the learning rate 𝜂𝑖+1 instead of randomly picking 𝜂𝑖+1 between (0, 1] at each
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iteration. This is equivalent to deal with another minimization problem:

min
𝜂𝑖+1∈R

𝑢(𝜂𝑖+1) = 𝐽ℎ (𝑢(𝑖)0,ℎ + 𝜂
𝑖+1(𝑢∗0(𝑖)

ℎ
− 𝛾𝑢(𝑖)0,ℎ)). (3.39)

Normally, solving problem (3.39) is also computationally expensive and tractable, which is

what we do not want to handle. An alternative way is to determine a relatively optimal 𝜂𝑖+1

by Armĳo backtracking rule. The idea is given as follows: we start a guess of relatively

large 𝜂𝑖+1, such as a real number 1 or 2, then shrink 𝜂𝑖+1 proportional to a constant 𝜌 between

(0, 1) if 𝑢(𝑖)0,ℎ + 𝜂
𝑖+1(𝑢∗0(𝑖)

ℎ
− 𝛾𝑢(𝑖)0,ℎ) does not provide a noticeable value decreasing for the

cost functional (3.21).

Such idea is also called the inexact line search method, which is mathematically

described as: find 𝜂𝑖+1 via repeatedly solving (3.36) with initial value

𝑢
(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ + 𝜂

𝑖+1( ®𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ) by updating 𝜂𝑖+1 = 𝜌𝜂𝑖+1, (3.40)

until the following inequality is satisfied

𝐽ℎ (𝑢(𝑖+1)
0,ℎ ) ≤ 𝐽ℎ (𝑢(𝑖)0,ℎ) + 𝛿𝜂

𝑖+1⟨𝐽′ℎ (𝑢
(𝑖)
0,ℎ), 𝑢

∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ⟩, (3.41)

where 𝜂𝑖+1 is typically initialized as a constant equal to or greater than 1, and 𝛿 and 𝜌 are

chosen between (0, 1).

The straight line

𝑦(𝜂𝑖+1) = 𝐽ℎ (𝑢(𝑖)0,ℎ) + 𝛿𝜂
𝑖+1⟨𝐽′ℎ (𝑢

(𝑖)
0,ℎ), 𝑢

∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ⟩ (3.42)
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is a search line, which measures the value decreasing of the cost functional (3.21). If

𝐽ℎ (𝑢(𝑖)0,ℎ + 𝜂
𝑖+1(𝑢∗0(𝑖)

ℎ
− 𝛾𝑢(𝑖)0,ℎ)) is underneath the line (3.42), 𝜂𝑖+1 is a good candidate of

descent step size, otherwise, we need to go through step (3.40) again until the inequality

(3.41) is satisfied.

After the modification of the choice on 𝜂𝑖+1, we summarize the algorithm as follows:

Algorithm 2 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess initial func-

tion ®𝑢(0)0,ℎ, and start the iteration step 𝑖 = 1.

Step 1 (Forward phase): Use 𝑢(𝑖)0,ℎ as initial condition to solve equation (3.36) for

𝑢
(𝑖)
ℎ

.

Step 2 (Backward phase): Pass 𝑢(𝑖)
ℎ

to equation (3.37) and solve equation (3.37)

backward for 𝑢∗0(𝑖)
ℎ

.

Step 3 (Inexact line search for 𝜂𝑖+1):

(1) Initialize a constant 𝜂𝑖+1 ≥ 1, set 0 < 𝜌 < 1 and 0 < 𝛿 < 1;

(2) use 𝑢(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ + 𝜂

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ) as initial value to solve equation (3.36)

forward to obtain 𝑢𝑛
ℎ

for computing 𝐽ℎ ( ®𝑢(𝑖+1)
0,ℎ );

(3) Update 𝜂𝑖+1 = 𝜌𝜂𝑖+1 until inequality (3.41) is attained.

(4) Output 𝜂𝑖+1.

Step 4 (Update phase): Use 𝜂𝑖+1 from step 3 and then update

𝑢
(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜂

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ).

Step 5 (Criteria for stopping the iteration): Compute ∥𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ∥, if ∥𝑢∗0(𝑖)
ℎ

−

𝛾𝑢
(𝑖)
0,ℎ∥ ≤ 𝜖 then stop; otherwise, increase 𝑖 by 1 and go back to Step 1.
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Remark 6 The steepest descent algorithm or descent with inexact line search is very stable

and easy to be implemented by only calculating the first order derivative. However, we know

the information contained in the first order derivative is a consequence of locally linear

approximation of the cost functional. Therefore, slow convergence behavior, such as linear

or sublinear rate, is often observed.

3.4.3. Conjugate Gradient Method. To possess a faster convergence speed, be-

sides using the gradient information, we also can try to incorporate the information from

previous steps, that is interpreted as a momentum or inertial term, to accelerate the al-

gorithm. Mathematically, this change essentially allows us to vary the steepest descent

direction such that the new one could be A-conjugate orthogonal to all previous descent

directions, where A is connected to the property of the cost functional. This is then called

the conjugate gradient method.

For detail, the conjugate gradient method is illustrated as: given 𝑢(0)0,ℎ, 𝑢
(1)
0,ℎ and

a tolerance 𝜖 , solve the following equations sequentially until the stop criteria ∥ ®𝑢(𝑖+1)
0,ℎ −

®𝑢(𝑖)0,ℎ∥𝐻 ≤ 𝜖 (or ∥𝛾𝑢(𝑖+1)
0,ℎ − 𝑢∗0(𝑖+1)

ℎ
∥𝐻 ≤ 𝜖) is satisfied:


𝑢
𝑛+1(𝑖)
ℎ

− 𝑢𝑛(𝑖)
ℎ

𝜏
+ 𝐴𝑢𝑛+1(𝑖)

ℎ
= 𝑓 𝑛+1,

𝑢
0(𝑖)
ℎ

= 𝑢
(𝑖)
0,ℎ,

(3.43)


−
𝑢
∗𝑛+1(𝑖)
ℎ

− 𝑢∗𝑛(𝑖)
ℎ

𝜏
+ 𝐴∗𝑢∗𝑛(𝑖)

ℎ
= 𝑢̂𝑛+1 − 𝑢𝑛+1(𝑖) ,

𝑢
∗𝑁 (𝑖)
ℎ

= 0,
(3.44)

𝑢
(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ + 𝜁

𝑖+1𝐵𝑖 (𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ) + 𝜂
𝑖+1𝐶𝑖 (𝑢(𝑖)0,ℎ − 𝑢

(𝑖−1)
0,ℎ ), (3.45)

where 𝑛 = 0, 1, 2, 3, ..., 𝑁 is the time evolution step, 𝑖 = 0, 1, 2, 3, ... represents the iteration

step, 𝜁 𝑖+1 and 𝜂𝑖+1 are iterative parameters, 𝑢(𝑖)0,ℎ, 𝑢
𝑛(𝑖)
ℎ

, and 𝑢∗𝑛(𝑖)
ℎ

are iterative sequences, and

𝐵𝑖 and 𝐶𝑖 are two symmetric positive definite matrices.
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Following the ideas in [54, 55] we adopt 𝐵𝑖 and 𝐶𝑖 as identity matrices, 𝜁 𝑖+1 and

𝜂𝑖+1 are updated using

𝜁 𝑖+1 =
1
𝑞𝑖+1 , 𝜂𝑖+1 =

𝑒𝑖

𝑞𝑖+1 , (3.46)

where

𝑒𝑖 =


0 𝑖 = 0,

𝑞𝑖
∥𝜆𝑖 ∥2

𝐻

∥𝜆𝑖−1∥2
𝐻

𝑖 > 0,

𝑞𝑖+1 =
∥𝜆𝑖∥2

𝐿

∥𝜆𝑖∥2
𝐻

− 𝑒𝑖, 𝑖 = 0, 1, 2, 3, ....

Here 𝜆𝑖 = 𝛾𝑢(𝑖)0,ℎ − 𝑢
∗0(𝑖)
ℎ

and ∥𝜆𝑖∥𝐿 = (𝐿𝜆𝑖, 𝜆𝑖) 1
2 . The operator 𝐿 acting on 𝜆𝑖 is defined as

follows 
®𝜗𝑛+1
ℎ

− 𝜗𝑛
ℎ

𝜏
+ 𝐴𝜗𝑛+1

ℎ = 0,

𝜗0
ℎ = 𝜆

𝑖,

(3.47)


−

®𝜗∗𝑛+1
ℎ

− 𝜗∗𝑛
ℎ

𝜏
+ 𝐴∗𝜗∗𝑛ℎ = −𝜗ℎ𝑛+1,

𝜗∗𝑁ℎ = ®0,
(3.48)

𝐿𝜆𝑖 = 𝛾𝜆𝑖 − 𝜗∗0
ℎ . (3.49)

Now the conjugate gradient algorithm can be summarized as follows:

Algorithm 3 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess two initial

functions 𝑢(0)0,ℎ and 𝑢(1)0,ℎ, and then start the iteration at step 𝑖 = 1.

Step 1 (Forward phase): Use 𝑢(𝑖)0,ℎ as the initial condition to solve (3.43) for 𝑢(𝑖)
ℎ

.

Step 2 (Backward phase): Pass 𝑢(𝑖)
ℎ

to (3.44) and solve (3.44) backwards for 𝑢∗0(𝑖)
ℎ

.
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Step 3 (Computing for operator 𝐿):

(1) Set 𝜆𝑖 = 𝛾𝑢
(𝑖)
0,ℎ − 𝑢

∗0(𝑖)
ℎ

and use it as initial value to solve equation (3.47)

forward to obtain 𝜗ℎ;

(2) Pass 𝜗ℎ to (3.48) and solve equation (3.48) backward for attaining 𝜗∗0
ℎ

;

(3) Compute 𝐿𝜆𝑖 = 𝛾𝜆𝑖 − 𝜗∗0
ℎ

.

Step 4 (Update phase): Calculate 𝜁 𝑖+1, 𝜂𝑖+1 by using (3.46) and then update

𝑢
(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜁

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ) + 𝜂
𝑖+1(𝑢(𝑖)0,ℎ − 𝑢(𝑖−1)

0,ℎ).

Step 5 (Criteria for stopping the iteration): Compute ∥𝑢(𝑖+1)
0,ℎ − 𝑢(𝑖)0,ℎ∥𝐻 . If ∥𝑢(𝑖+1)

0,ℎ −

𝑢
(𝑖)
0,ℎ∥𝐻 ≤ 𝜖 then stop. Otherwise increase 𝑖 by 1 and go back to Step 1.

Remark 7 The conjugate gradient method serves a linear or super linear convergence rate,

and solves the discrete optimality system (3.28) effectively in most of cases. However, it

is relatively less stable and hence causes the algorithm itself to diverge for some of the

data assimilation scenarios that have low stability, e.g., small regularization parameter 𝛾

in the cost functional (3.21). To tackle this numerical problem, we usually turn back to the

steepest descent method which gains more stability at the cost of a lower convergence rate.

3.5. PROPER ORTHOGONAL DECOMPOSITION IN OPTIMIZATION

Proper orthogonal decomposition (POD) is a data approximation method that aims

at obtaining a low-dimensional representation of the high-dimensional processes. It does so

by creating an optimal lower order basis, called POD modes, to minimize the information

loss as less as possible. POD has numerous applications in fluid dynamics, image process,

signal analysis, and data compression.
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In this section, we employ an incremental POD method [56, 57] to optimize the

computational resource in the variational data assimilation or PDE constrained optimization

problem. Recall in section 3.4 the steepest descent method:


𝑢
𝑛+1(𝑖)
ℎ

− 𝑢𝑛(𝑖)
ℎ

𝜏
+ 𝐴𝑢𝑛+1(𝑖)

ℎ
= 𝑓 𝑛+1,

𝑢
0(𝑖)
ℎ

= 𝑢
(𝑖)
0,ℎ,

(3.50)


−
𝑢
∗𝑛+1(𝑖)
ℎ

− 𝑢∗𝑛(𝑖)
ℎ

𝜏
+ 𝐴∗𝑢∗𝑛(𝑖)

ℎ
= 𝑢̂𝑛+1 − 𝑢𝑛+1(𝑖) ,

𝑢
∗𝑁 (𝑖)
ℎ

= 0,
(3.51)

𝑢
(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ + 𝜂

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ). (3.52)

To find the gradient at current point 𝑢(𝑖)0,ℎ, we need to solve equation (3.50) for obtaining

{𝑢𝑛
ℎ
}𝑁
𝑛=1, then plug {𝑢𝑛

ℎ
}𝑁
𝑛=1 into the right side of equation (3.51) for a backward solving

to find 𝑢
∗0(𝑖)
ℎ

. During this procedure, if the space dimension is considerable and the

time evolution 𝑇 is long as well, we may run into trouble storing the data {𝑢𝑛
ℎ
}𝑁
𝑛=1 when

solving (3.50). To address this issue, an incremental POD method is introduced as a data

compression technique such that the storage of {𝑢𝑛
ℎ
}𝑁
𝑛=1 is not challenging to the computer

memory anymore.

3.5.1. Proper Orthogonal Decomposition/Singular Value Decomposition. We

first review the basic ideas of the data compression using proper orthogonal decomposition.

Given a set of data {𝛾𝑘 }𝑚𝑘=1 ∈ 𝑋 , find a set of proper orthonormal basis {𝛾𝑘 }𝑟𝑘=1, 𝑟 << 𝑛 and

the corresponding coefficients such that the following objective functional is minimized:

min
𝛾𝑖∈𝑋,𝑖=1,2...𝑟

𝐽𝑟 =

𝑚∑︁
𝑘=1

∥𝛾𝑘 − 𝛾𝑟𝑘 ∥
2
𝑋 , (3.53)
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where ∥ · ∥𝑋 is a norm measuring distance we are interested in, and 𝛾𝑟
𝑘
=
∑𝑟
𝑗=1 𝛽 𝑗 𝑘𝛾 𝑗 . To

solve this minimization problem, we use the best operator approximation theory. To begin

with, we define the Hilbert-Schmidt (HS) norm for a bounded linear operator.

Definition 15 Let 𝑋 and 𝑌 be Hilbert spaces, an operator 𝑇 ∈ L (𝑋,𝑌 ) is Hilbert-

Schmidt if
∑
𝑛≥1 ∥𝑇𝑥𝑛∥2 < ∞ for some total orthonormal sequence {𝑥𝑛}𝑛≥1 ∈ 𝑋 . The

Hilbert-Schmidt norm of 𝑇 is defined as

∥𝑇 ∥𝐻𝑆 = (
∑︁
𝑛≥1

∥𝑇𝑥𝑛∥2) 1
2 . (3.54)

Define a linear bounded operator 𝐿 : K𝑚 → 𝑋 by 𝐿𝑎 =
∑𝑚
𝑘=1 𝑎𝑘𝛾𝑘 , 𝑎 = {𝑎𝑘 }𝑚𝑘=1 ∈ K𝑚 .

Lemma 1 𝐿 is Hilbert-Schmidt (HS) and ∥𝐿∥2
𝐻𝑆

=
∑𝑚
𝑘=1 ∥𝛾𝑘 ∥2

𝑋
.

Lemma 2 If 𝑇 ∈ L (𝑋,𝑌 ) is HS, then the best r-rank HS operator approximation of T is

given as:

min
𝐾𝑟∈𝐵(𝑋,𝑌 )

∥𝑇 − 𝐾𝑟 ∥𝐻𝑆 = (
∑︁
𝑗≥𝑟+1

𝜎2
𝑗 )

1
2 , (3.55)

in which the minimum is achieved by the 𝑟 𝑡ℎ truncated singular value decomposition (SVD)

𝑇𝑟 of 𝑇 , and 𝜎𝑗 represents the 𝑗 𝑡ℎ singular value of 𝑇 .

Based on the definition of operator 𝐿, Lemma 1, and Lemma 2, we have

min
𝛾𝑖∈𝑋,𝑖=1,2...𝑟

𝐽𝑟 =

𝑚∑︁
𝑘=1

∥𝛾𝑘 − 𝛾𝑟𝑘 ∥
2
𝑋 = min

𝐾𝑟∈𝐵(K𝑚,𝑋)
∥𝐿 − 𝐾𝑟 ∥2

𝐻𝑆, (3.56)

which gives the following Theorem:
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Theorem 10 Let {𝛾𝑘 }𝑛𝑘=1 ∈ 𝑋 and 𝐿 ∈ L (K𝑚, 𝑋) as defined above, if the SVD of L is

given as

𝐿𝑎 =

𝑚∑︁
𝑘=1

𝜎𝑘 (𝑎, 𝜓𝑘 )K𝑚𝜃𝑘 , (3.57)

where 𝜎𝑘 are ordered singular values, 𝜓𝑘 , 𝜃𝑘 are the corresponding singular vectors of 𝑇∗𝑇

and 𝑇𝑇∗. Then 𝛾𝑟
𝑘
=
∑𝑟
𝑗=1(𝛾𝑘 , 𝜃 𝑗 )𝑋𝜃 𝑗 solves the minimization problem

min
𝛾𝑖∈𝑋,𝑖=1,2...𝑟

𝐽𝑟 =

𝑛∑︁
𝑘=1

∥𝛾𝑘 − 𝛾𝑟𝑘 ∥
2
𝑋 . (3.58)

3.5.2. Incremental SVD in Standard and Weighted Euclidean Space. In stan-

dard Euclidean space, a given linear operator 𝐿 : R𝑚 → R𝑛 has a matrix representation,

saying𝑈𝑚×𝑛. The SVD of 𝐿 is equivalent to find a matrix decomposition of𝑈𝑚×𝑛 such that

𝑈𝑚×𝑛 = 𝑉Σ𝑊
𝑇 (3.59)

where 𝑉,𝑊 are left and right singular vector matrix that are orthonormal with respect to

standard Euclidean inner product, and Σ is an ordered diagonal matrix. In the following, we

use ∥ · ∥ to stand for the norm of standard Euclidean space. If we add one more column 𝑐 onto

𝑈, i.e.,
[
𝑈 𝑐

]
, which becomes a matrix representation of a new operator 𝐿𝑎 : R𝑚+1 → R𝑛.

To find out the SVD of 𝐿𝑎 or
[
𝑈 𝑐

]
, we first use a projection and normalization or QR

decomposition to produce a left orthonormal matrix:

𝑉𝑉𝑇𝑐 =⇒ 𝑐 −𝑉𝑉𝑇𝑐 =⇒ 𝑐 −𝑉𝑉𝑇𝑐
∥𝑐 −𝑉𝑉𝑇𝑐∥

=⇒
[
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

]
=⇒ QR decomposition of

[
𝑈 𝑐

]
=⇒

[
𝑉Σ𝑊𝑇 𝑐

]
=

[
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

] 
Σ𝑊𝑇 𝑉𝑇𝑐

0 ∥𝑐 −𝑉𝑉𝑇𝑐∥


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We also ask for a right orthonormal matrix, hence a nature candidate of matrix decomposi-

tion for
[
𝑈 𝑐

]
is, [57]

[
𝑈 𝑐

]
=

[
𝑉Σ𝑊𝑇 𝑐

]
=

[
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

] 
Σ𝑊𝑇 𝑉𝑇𝑐

0 ∥𝑐 −𝑉𝑉𝑇𝑐∥


=

[
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

] 
Σ 𝑉𝑇𝑐

0 ∥𝑐 −𝑉𝑉𝑇𝑐∥



𝑊𝑇 0

0 1

 .

Let 𝑄 =


Σ 𝑉𝑇𝑐

0 ∥𝑐 −𝑉𝑉𝑇𝑐∥

 and its standard SVD as 𝑄 = 𝑉𝑄Σ𝑄𝑊
𝑇
𝑄

, this leads to

[
𝑈 𝑐

]
=

[
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

]
𝑉𝑄Σ𝑄𝑊

𝑇
𝑄


𝑊𝑇 0

0 1


=

( [
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

]
𝑉𝑄

)
Σ𝑄

©­­«

𝑊 0

0 1

𝑊𝑄

ª®®¬
𝑇

.

We can easily verify that the matrix
[
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

]
𝑉𝑄 and


𝑊 0

0 1

𝑊𝑄 are still orthonormal

matrix based on a simple geometric fact, and Σ𝑄 is an ordered diagonal matrix automatically

since it is the diagonal matrix from the SVD of 𝑄. So far, using the above matrix decom-

position, we are very close to state an iterative process to find the SVD for a large-scale

data matrix incrementally. Considering the singularity and instability in this scheme, we

also need to truncate the negligible singular values and their corresponding information in

singular vector matrix, and give additional study to the following cases as well.



42

If ∥𝑐 − 𝑉𝑉𝑇𝑐∥ is small enough, the column vectors of the matrix 𝑉 and 𝑐 can be

viewed as being linear dependent, i.e., 𝑐 − 𝑉𝑉𝑇𝑐 = 0. In this point, we have the matrix 𝑄

as


Σ 𝑉𝑇𝑐

0 0

 and do the following matrix decomposition:

[
𝑈 𝑐

]
=

[
𝑉Σ𝑊𝑇 𝑐

]
=

[
𝑉 0

] 
Σ𝑊𝑇 𝑉𝑇𝑐

0 0


=

[
𝑉 0

] 
Σ 𝑉𝑇𝑐

0 0



𝑊𝑇 0

0 1


=

[
𝑉 0

]
𝑉𝑄Σ𝑄𝑊

𝑇
𝑄


𝑊𝑇 0

0 1


=

[
𝑉 0

]
𝑉𝑄


Σ𝑄(1:𝑘,1:𝑘) 0

0 0

𝑊
𝑇
𝑄


𝑊𝑇 0

0 1


= 𝑉𝑉𝑄(1:𝑘;1:𝑘)Σ𝑄(1:𝑘;1:𝑘) (𝑊𝑄(:,1:𝑘))𝑇


𝑊𝑇 0

0 1


== 𝑉𝑉𝑄(1:𝑘;1:𝑘)Σ𝑄(1:𝑘;1:𝑘)

©­­«

𝑊 0

0 1

𝑊𝑄(:,1:𝑘)
ª®®¬
𝑇

.

We can observe that 𝑉𝑄(1:𝑘;1:𝑘)Σ𝑄(1:𝑘;1:𝑘) (𝑊𝑄(:,1:𝑘))𝑇 is exactly the standard SVD of the

matrix 𝑅 =

[
Σ 𝑉𝑇𝑐

]
.

We now summarize the above incremental process as follows:

Algorithm 4 Step 0: Specified tolerances 𝜖1, 𝜖2, and 𝜖3, initialize the SVD for the first data

vector.

Step 1: Given 𝑈 = 𝑉Σ𝑊𝑇 and new data vector 𝑐, compute 𝑐−𝑉𝑉𝑇𝑐
∥𝑐−𝑉𝑉𝑇𝑐∥ and assemble

𝑄 =


Σ 𝑉𝑇𝑐

0 ∥𝑐 −𝑉𝑉𝑇𝑐∥

 .
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Step 2:

(1) If ∥𝑐 − 𝑉𝑉𝑇𝑐∥ ≤ 𝜖3, compute the SVD of 𝑅 =

[
Σ 𝑉𝑇𝑐

]
as 𝑅 = 𝑉𝑅Σ𝑅𝑊

𝑇
𝑅
,

then update 𝑉 = 𝑉𝑉𝑅, Σ = Σ𝑅, and𝑊𝑇 = (𝑊𝑊𝑅)𝑇 .

(2) If ∥𝑐 − 𝑉𝑉𝑇𝑐∥ ≥ 𝜖3, compute the SVD of 𝑄 =


Σ 𝑉𝑇𝑐

0 ∥𝑐 −𝑉𝑉𝑇𝑐∥

 as 𝑄 =

𝑉𝑄Σ𝑄𝑊
𝑇
𝑄

, then update 𝑉 =

[
𝑉

(𝑐−𝑉𝑉𝑇𝑐)
∥𝑐−𝑉𝑉𝑇𝑐∥

]
𝑉𝑄 , Σ = Σ𝑄 and𝑊𝑇 =

©­­«

𝑊 0

0 1

𝑊𝑄

ª®®¬
𝑇

.

Step 3: If (𝑉 (:, 𝑒𝑛𝑑), 𝑉 (:, 1)) > 𝜖2, do the Gram-Schmidt orthogonalization.

Step 4: Do the truncation for 𝑉, Σ and 𝑊 if the singular value is less than the

specified tolerance 𝜖1.

Step 5: Do Step 1-5 until the last data vector is introduced.

Remark 8 Step3 is important to be checked to eliminate the non-orthogonality of left

singular vectors caused by roundoff error.

Besides the incremental POD for a standard Euclidean space, we are also interested

in the best data approximation quantified by other different metrics. In the following, we

will show the incremental POD in a general finite dimension Hilbert space or, equivalently,

a 𝑀 weighted Euclidean space.

Assume 𝑀 is a positive definite matrix, define the Hilbert space R𝑚
𝑀

induced by the

weighted inner product:

(𝑥, 𝑦)𝑀 = 𝑦′𝑀𝑥 ∀𝑥, 𝑦 ∈ R𝑛𝑀 . (3.60)

We now consider a slightly different minimization problem:

min
𝛾𝑖∈R𝑛

𝑀
,𝑖=1,2...𝑟

𝐽𝑟 =

𝑚∑︁
𝑘=1

∥𝛾𝑘 − 𝛾𝑟𝑘 ∥
2
R𝑛
𝑀
, (3.61)
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where {𝛾𝑘 }𝑚𝑘=1 is a set of data vectors and 𝛾𝑟
𝑘
=

∑𝑟
𝑗=1 𝛽 𝑗 𝑘𝛾 𝑗 . Denote the data matrix

𝑍 = {𝛾1, 𝛾2, 𝛾3.....𝛾𝑚} and define the operator 𝐿 : R𝑚 → R𝑛
𝑀

:

𝐿𝑎 =

𝑚∑︁
𝑘=1

𝑎𝑘𝛾𝑘 = 𝑍𝑎 ∀𝑎 = {𝑎𝑖}𝑚𝑖=1 ∈ R𝑚 . (3.62)

We can find out the adjoint operator of 𝐿 by

(𝐿𝑥, 𝑦)R𝑛
𝑀
= 𝑦′𝑀𝑍𝑥 = (𝑥, 𝐿∗𝑦)R𝑚 = (𝐿∗𝑦)′𝑥 𝑥 ∈ R𝑚, 𝑦 ∈ R𝑛𝑀 , (3.63)

which leads to 𝐿∗𝑦 = 𝑍′𝑀𝑦.

Based on the Theorem 10, we know the problem (3.61) eventually boils down to a

SVD of the compact operator 𝐿. Before looking into the incremental decomposition of 𝐿,

we clarify the following notations for understanding:

• (𝑥, 𝑦)𝑋 = 𝑥𝑇𝑀𝑦, 𝑋 is 𝑀-weighted R𝑛 space.

• 𝑍∗ = 𝑍𝑇𝑀 .

• 𝐿 : R𝑚 → 𝑋, 𝐿∗ : 𝑋 → R𝑚.

• 𝐿∗𝐿 : 𝑋 → 𝑋 , 𝐿𝐿∗ : R𝑚 → R𝑚.

If we have a SVD of 𝐿: 𝑍 = (𝛾1, 𝛾2, ...𝛾𝑛) = 𝑉𝑀Σ𝑀𝑊𝑇
𝑀

, 𝑍 is the matrix representation of

𝐿, then the above clarification implies that 𝑉𝑀 should be a 𝑀-orthonormal matrix and𝑊𝑀

is a orthonormal matrix in standard sense.

A simple geometric fact is that the multiplication of a matrix with a standard

orthonormal matrix is only a rotation without changing its shape, hence a 𝑀-orthonormal

matrix are still 𝑀-orthonormal after transformed by a standard orthonormal matrix. This

hints us only to modify the incremental SVD in the standard inner product space a little to

obtain the incremental SVD algorithm in a weighted inner product space.
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Given a matrix 𝑈 and its M-weighted SVD 𝑈 = 𝑉𝑀Σ𝑀𝑊
∗
𝑀

, if we add one more

column 𝑐 onto𝑈, i.e.,
[
𝑈 𝑐

]
. We have the following matrix decomposition:

[𝑈 𝑐] =
[
𝑉𝑀Σ𝑀𝑊

∗
𝑀

𝑐

]
=

[
𝑉𝑀

𝑐−𝑉𝑀𝑉∗
𝑀
𝑐

∥𝑐−𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀

] 
Σ𝑀 𝑉∗

𝑀
𝑐

0 ∥𝑐 −𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀



𝑊𝑀 0

0 1


𝑇

.

Let 𝑄 =


Σ𝑀 𝑉∗

𝑀
𝑐

0 ∥𝑐 −𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀

 and its standard SVD 𝑄 = 𝑉𝑄Σ𝑄𝑊
𝑇
𝑄

, then we have

[
𝑈 𝑐

]
=

[
𝑉𝑀

𝑐−𝑉𝑀𝑉∗
𝑀
𝑐

∥𝑐−𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀

]
𝑉𝑄Σ𝑄𝑊

𝑇
𝑄


𝑊𝑀 0

0 1


𝑇

(3.64)

=

( [
𝑉𝑀

𝑐−𝑉𝑀𝑉∗
𝑀
𝑐

∥𝑐−𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀

]
𝑉𝑄

)
Σ𝑄

©­­«

𝑊𝑀 0

0 1

𝑊𝑄

ª®®¬
𝑇

. (3.65)

We can formally verify that
[
𝑉𝑀

𝑐−𝑉𝑀𝑉∗
𝑀
𝑐

∥𝑐−𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀

]
𝑉𝑄 is a M-orthonormal matrix and

𝑊𝑀 0

0 1

𝑊𝑄 is orthonormal with respect to standard inner product. Therefore, (3.65) is

a M-weighted SVD of
[
𝑈 𝑐

]
. Again, if ∥𝑐 − 𝑉𝑀𝑉∗

𝑀
𝑐∥𝑀 is small enough, we do the

decomposition similar to what we have done in section 3.5.2.

We then summarize the incremental M-weighted SVD algorithm [56] as follows:

Algorithm 5 Step 0: Specified a tolerance 𝜖1, 𝜖2 and initialize the M-weighted SVD for the

first data vector.

Step 1: Given 𝑈 = 𝑉𝑀Σ𝑀𝑊𝑀 and new data vector 𝑐, compute 𝑐−𝑉𝑀𝑉∗
𝑀
𝑐

∥𝑐−𝑉𝑀𝑉∗
𝑀
𝑐∥ and

assemble 𝑄 =


Σ𝑀 𝑉∗

𝑀
𝑐

0 ∥𝑐 −𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀

 .
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Step 2:

(1) If ∥𝑐−𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀 ≤ 𝜖3, compute the SVD of 𝑅 =

[
Σ 𝑉∗

𝑀
𝑐

]
as 𝑅 = 𝑉𝑅Σ𝑅𝑊

𝑇
𝑅
,

then update 𝑉 = 𝑉𝑉𝑅, Σ = Σ𝑅, and𝑊𝑇
𝑀
= (𝑊𝑀𝑊𝑅)𝑇 .

(2) If ∥𝑐 − 𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀 ≥ 𝜖3, compute the SVD of 𝑄 =


Σ 𝑉∗

𝑀
𝑐

0 ∥𝑐 −𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀


as 𝑄 = 𝑉𝑄Σ𝑄𝑊

𝑇
𝑄

, then update 𝑉𝑀 =

[
𝑉𝑀

𝑐−𝑉𝑀𝑉∗
𝑀
𝑐

∥𝑐−𝑉𝑀𝑉∗
𝑀
𝑐∥𝑀

]
𝑉𝑄 , Σ𝑀 = Σ𝑄 and 𝑊𝑇

𝑀
=

©­­«

𝑊𝑀 0

0 1

𝑊𝑄

ª®®¬
𝑇

.

Step 3: If 𝑉𝑀 (:, 𝑒𝑛𝑑)′𝑀𝑉𝑀 (:, 1) > 𝜖2, do the Gram-Schmidt orthogonalization.

Step 4: Do the truncation for 𝑉𝑀 , Σ𝑀 and𝑊𝑀 if the singular value is less than the

specified tolerance 𝜖1.

Step 5: Do Step 1-5 until the last data vector is introduced.

3.5.3. Error Analysis. For the proposed incremental algorithm, we are also inter-

ested in the information loss during such process . In [58], authors there developed a prior

error estimate of information loss in sense of an infinity matrix norm, which can be improved

by Hilbert-Schmidt norm since the data information is measured by the Hilbert-Schmidt

norm (see Lemma 1). In this section, an more accurate error estimation will be presented

to quantify the information loss. For this purpose, we first recall some properties of the

Hilbert-Schmidt norm in finite dimension space. Note that the matrix representation of the

POD operator is exactly the data matrix, in this sense, we abuse the Hilbert-Schmidt norm

of the data matrix for presentation.

Property 1: The Hilbert-Schmidt norm is independent of the choice on the total

orthonormal sequence, and 𝑇 is Hilbert-Schmidt iff 𝑇∗ is Hilbert-Schmidt.

Property 2: If 𝑇 is compact and
∑
𝑛≥1 𝜎

2
𝑛 < ∞, then 𝑇 is Hilbert-Schmidt and

∥𝑇 ∥2
𝐻𝑆

=
∑
𝑛≥1 𝜎

2
𝑛 .
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Denote𝐶 𝑗 as a data matrix with 𝑗 column vectors, 𝑐 𝑗+1 as a new data column vector.

In finite dimension space, we verify the following facts about Hilbert-Schmidt norm.

Fact 1: ∥𝐶𝑘+1∥𝐻𝑆 = ∥𝐶𝑘 ∥𝐻𝑆 + ∥𝑐𝑘+1∥R𝑛
𝑀

, where 𝐶𝑘+1 = [𝐶𝑘 𝑐𝑘+1].

Proof: We choose 𝑒1, 𝑒2, 𝑒3, ..., 𝑒𝑚, ∈ R𝑚 and 𝑒1, 𝑒2, 𝑒3, ..., 𝑒𝑚, 𝑒𝑚+1 ∈ R𝑚+1 as two

sets orthonormal sequences, then based on the definition of 𝐻𝑆 norm, we calculate

∥𝐶𝑘+1∥2
𝐻𝑆 =

𝑚+1∑︁
𝑖=1

∥𝐶𝑘+1𝑒𝑖∥2
R𝑛
𝑀

=

𝑚∑︁
𝑖=1

∥𝐶𝑘𝑒𝑖∥2
R𝑛
𝑀
+ ∥𝐶𝑘+1𝑒𝑖∥2

R𝑛
𝑀

= ∥𝐶𝑘 ∥2
𝐻𝑆 + ∥𝑐𝑘+1∥2

R𝑛
𝑀
.

or

∥𝐶𝑘+1∥2
𝐻𝑆 =

𝑘+1∑︁
𝑖=1

∥𝑐𝑖∥2
R𝑛
𝑀
=

𝑘∑︁
𝑖=1

∥𝑐𝑖∥2
R𝑛
𝑀
+ ∥𝑐𝑘+1∥2

R𝑛
𝑀

= ∥𝐶𝑘 ∥2
𝐻𝑆 + ∥𝑐𝑘+1∥2

R𝑛
𝑀
.

Fact 2: If the 𝑝 truncation is only applied in the algorithm, we have ∥𝐶𝑘+1 −

𝐶̂𝑘+1∥𝐻𝑆 = ∥𝑐𝑘+1 −𝑉𝑉∗𝑐∥R𝑛
𝑀

.

Proof:

∥𝐶𝑘+1 − 𝐶𝑘+1∥2
𝐻𝑆 = ∥ [𝐶𝑘 𝑐𝑘+1] − [𝐶𝑘 𝑉𝑉∗𝑐𝑘+1] ∥2

𝐻𝑆

= ∥ [0 𝑐𝑘+1 −𝑉𝑉∗𝑐𝑘+1] ∥2
𝐻𝑆

= ∥𝑐𝑘+1 −𝑉𝑉∗𝑐𝑘+1∥2
R𝑛
𝑀
,

where the last equality is a consequence of Fact 1.
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Fact 3: If we only apply SVD truncation on 𝐶𝑘+1, we have ∥𝐶𝑘+1 − 𝐶̄𝑘+1∥2
𝐻𝑆

=∑
𝑖>𝑙 𝜎

2
𝑖
, 𝑙 is where the singular value truncation starts. This fact is a consequence of

Property 2.

We denote 𝑈𝑘 , 𝑈𝑘 , and 𝑈̄𝑘 as the full data matrix, data matrix with 𝑝 truncation,

and the final data matrix at the 𝑘 incremental step. Using all three facts above, we quantify

the information loss in the incremental POD algorithm:

∥𝑈𝑘+1 − 𝑈̄𝑘+1∥𝐻𝑆 = ∥𝑈𝑘+1 − [𝑈̄𝑘 𝑐𝑘+1] + [𝑈̄𝑘 𝑐𝑘+1] −𝑈𝑘+1 +𝑈𝑘+1 − 𝑈̄𝑘+1∥𝐻𝑆

≤ ∥𝑈𝑘+1 − [𝑈̄𝑘 𝑐𝑘+1] ∥𝐻𝑆 + ∥[𝑈̄𝑘 𝑐𝑘+1] −𝑈𝑘+1∥𝐻𝑆 + ∥𝑈𝑘+1 − 𝑈̄𝑘+1∥𝐻𝑆

≤ ∥[𝑈𝑘 − 𝑈̄𝑘 0] ∥𝐻𝑆 + ∥[0 𝑐𝑘+1 −𝑉 𝑘𝑉 𝑘∗𝑐𝑘+1] ∥𝐻𝑆 + ∥𝑈𝑘+1 − 𝑈̄𝑘+1∥𝐻𝑆

≤ ∥𝑈𝑘 − 𝑈̄𝑘 ∥𝐻𝑆 + ∥𝑐𝑘+1 −𝑉 𝑘𝑉 𝑘∗𝑐𝑘+1∥R𝑛
𝑀
+ (

∑︁
𝑖>𝑙

(𝜎𝑘+1
𝑖 )) 1

2 ,

where 𝑉 𝑘 is the left singular vector matrix of 𝑈̄𝑘 and 𝜎𝑘+1
𝑖

is the 𝑖th singular value of𝑈𝑘+1.

We then estimate the error accumulation along the incremental process as follows:

𝑒𝑘+1 ≤



𝑒𝑘 if no truncation is applied,

𝑒𝑘 + ∥𝑐𝑘+1 −𝑉 𝑘𝑉 𝑘∗𝑐𝑘+1∥R𝑛
𝑀

if only p truncation is applied,

𝑒𝑘 + (∑𝑖>𝑙 (𝜎𝑘+1
𝑖

)2) 1
2 if only singular value truncation

is applied,

𝑒𝑘 + ∥𝑐𝑘+1 −𝑉 𝑘𝑉 𝑘∗𝑐𝑘+1∥R𝑛
𝑀
+ (∑𝑖>𝑙 (𝜎𝑘+1

𝑖
)2) 1

2 if all truncations are applied.

This error estimation provides guideline to set up the truncation thresholds for the

incremental POD algorithm.
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In addition, if one wants to monitor the ratio between the captured information and

the full information along the incremental algorithm, we have the following estimation:

(𝑟 𝑘+1)2 =
∥𝑈̄𝑘+1∥2

𝐻𝑆

∥𝑈𝑘+1∥2
𝐻𝑆

=
∥𝑈̄𝑘+1∥2

𝐻𝑆∑𝑘+1
𝑖=1 ∥𝑐𝑘 ∥2

R𝑛
𝑀

=

∑𝑙
𝑖=1(𝜎𝑘+1

𝑖
)2∑𝑘+1

𝑖=1 ∥𝑐𝑘 ∥2
R𝑛
𝑀

.

For this consideration, we need to compute the 𝑀 weighted norm of the new introduced data

𝑐𝑖 at each step and add it to the next step for calculating the full information
∑𝑘+1
𝑖=1 ∥𝑐𝑘 ∥2

R𝑛
𝑀

.

3.5.4. Data Compression in PDE Simulation. Consider a time dependent partial

differential equation:

𝜕𝑢

𝜕𝑡
− 𝐴𝑢 = 𝑓 in Ω × (0, 𝑇],

𝑢(·, 0) = 𝑢0 in Ω,

(3.66)

where 𝐴 is a generic linear (or nonlinear) operator. In discrete level, we can discretize

(3.66) as

𝑢𝑛+1 − 𝑢𝑛
𝜏𝑛

− 𝐴𝑢𝑛+1 = 𝑓𝑛+1 in Ω × (0, 𝑇],

𝑢0 = 𝑢0 in Ω,

(3.67)

where 𝜏 is the temporal step size.

We intend to compress data 𝑍 = {𝑢𝑖}𝑚𝑖=1 ∈ 𝑋 into a smaller size, this problem can

be formulated as:

min
𝛾𝑖∈𝑋,𝑖=1,2...𝑟

𝐽𝑟 =

𝑚∑︁
𝑘=1

𝜏𝑖∥𝑢𝑘 − 𝑢𝑟𝑘 ∥
2
𝑋 . (3.68)

In physics, it means that we are trying to find a optimal 𝑟 dimension basis to capture certain

energy defined by ∥ · ∥𝑋 along time as much as possible. Or (3.68) can be interpreted as the

discrete Riemann sum of a spatial and temporary integral mathematically.
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If we consider 𝑋 is a finite dimension Hilbert space in domain Ω, we observe

∥𝑥∥𝑋 = (
𝑛∑︁
𝑖=1

𝑥𝑖𝜓𝑖,

𝑛∑︁
𝑖=1

𝑥𝑖𝜓𝑖)𝑋 = 𝑥′𝑀𝑥 = (𝑥, 𝑥)𝑀 , (3.69)

where 𝜓𝑖 could be finite element basis or other basis, and 𝑀 = [
∫
Ω
𝜓𝑖𝜓 𝑗𝑑𝑥] is a positive

definite matrix. Based on the previous arguments, problem (3.68) is essentially a 𝑀-

weighted SVD of the operator 𝐿 : R𝑚 → R𝑛
𝑀

:

𝐿𝑔 =

𝑚∑︁
𝑘=1

𝑔𝑘𝜏
1
2
𝑖
𝑢𝑘 = 𝑍Δ

1
2𝑔 ∀𝑔 = {𝑔𝑖}𝑚𝑖=1 ∈ R𝑚, (3.70)

where Δ = 𝑑𝑖𝑎𝑔[𝜏1 𝜏2 𝜏3 ...... 𝜏𝑚].

We can easily prove that the SVD of the operator: 𝑍Δ 1
2 : R𝑚 → R𝑛

𝑀
is equivalent

to the SVD of the operator: 𝑍Δ : R𝑚
Δ
→ R𝑛

𝑀
, [59]. This is mainly because that problem

(3.68) is also equivalent to find the best HS operator approximation of the discrete linear

operator 𝐾 , which is defined by

𝐾𝑔 =

𝑚∑︁
𝑖=1

𝜏𝑖𝑢𝑖𝑔𝑖 . (3.71)

Operator 𝐿 is essentially an approximation of the continuous 𝑃𝑂𝐷 operator:

𝐾𝑐𝑔 =

∫
𝑇

𝑢(𝑥, 𝑡)𝑔(𝑡)𝑑𝑡. (3.72)

In discrete level, we assume that 𝑢(𝑥, 𝑡) and 𝑔(𝑡) are piecewise constant function in term of

time, i.e.,

𝑢(𝑥, 𝑡) =
𝑚∑︁
𝑖=1

𝑢𝑖𝜒𝑖 (𝑡), 𝑔(𝑡) =
𝑚∑︁
𝑖=1

𝑔𝑖𝜒𝑖 (𝑡), (3.73)

where 𝜒𝑖 (𝑡) are characteristic functions defined for time interval (𝑡𝑖, 𝑡𝑖+1].
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From this point view, operator 𝐾 : 𝐿2(0, 𝑇) → 𝑋 has the matrix representation

𝑍Δ, i.e., 𝑍Δ : R𝑚
Δ

→ R𝑛
𝑀

in finite dimension Hilbert spaces. This is a more general

perspective to have insight of POD operators, which also gives us an alternative to do the

matrix decomposition: let𝑈Δ𝑖 := 𝑉Σ𝑊∗ be the SVD of𝑈Δ : R𝑚
Δ
→ R𝑛

𝑀
, then we have

[
𝑈 𝑐

]
Δ =

[
𝑉Σ𝑊𝑇Δ𝑖 𝜏𝑖+1𝑐

]
=

[
𝑉 𝑐−𝑉𝑉∗𝑐

∥𝑐−𝑉𝑉∗𝑐∥𝑀

] 
Σ𝑊𝑇Δ𝑖 𝜏𝑖+1𝑉

∗𝑐

0 𝜏𝑖+1∥𝑐 −𝑉𝑉∗𝑐∥𝑀


=

[
𝑉 𝑐−𝑉𝑉∗𝑐

∥𝑐−𝑉𝑉∗𝑐∥𝑀

] 
Σ 𝜏

1
2
𝑖+1𝑉

∗𝑐

0 𝜏
1
2
𝑖+1∥𝑐 −𝑉𝑉

∗𝑐∥𝑀



𝑊 0

0 𝜏
− 1

2
𝑖+1


𝑇

Δ.

Let 𝑄 =


Σ 𝜏

1
2
𝑖+1𝑉

∗𝑐

0 𝜏
1
2
𝑖+1∥𝑐 −𝑉𝑉

∗𝑐∥𝑀

 and 𝑄 = 𝑉𝑄Σ𝑄𝑊
𝑇
𝑄

, then

[
𝑈 𝑐

]
Δ =

( [
𝑉 𝑐−𝑉𝑉∗𝑐

∥𝑐−𝑉𝑉∗𝑐∥𝑀

]
𝑉𝑄

)
Σ𝑄

©­­«

𝑊 0

0 𝜏
− 1

2
𝑖+1

𝑊𝑄

ª®®¬
𝑇

Δ.

It is not hard to verify that
[
𝑉 𝑐−𝑉𝑉∗𝑐

∥𝑐−𝑉𝑉∗𝑐∥𝑀

]
𝑉𝑄 is M-orthonormal and


𝑊 0

0 𝜏
− 1

2
𝑖+1

𝑊𝑄 is

Δ-orthonormal.

Based on the above decomposition argument, we provide the following algorithm

[59]:

Algorithm 6 Step 0: Specified tolerance 𝜖1, 𝜖2 and initialize𝑈, Δ and𝑈Δ = 𝑉Σ𝑊∗.

Step 1: Solve the PDE one more step and use the output as new vector data 𝑐, generate

new left orthonormal matrix
[
𝑉 𝑐−𝑉𝑉∗𝑐

∥𝑐−𝑉𝑉∗𝑐∥𝑀

]
and matrix 𝑄 as


Σ 𝜏

1
2
𝑖+1𝑉

∗𝑐

0 𝜏
1
2
𝑖+1∥𝑐 −𝑉𝑉

∗𝑐∥𝑀

 .
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Step 2:

(1) If ∥𝑐 − 𝑉𝑉∗𝑐∥𝑀 ≤ 𝜖3, compute the SVD of 𝑅 =

[
Σ 𝑉∗𝑐

]
as 𝑅 = 𝑉𝑅Σ𝑅𝑊

𝑇
𝑅
,

then update 𝑉 = 𝑉𝑉𝑅, Σ = Σ𝑅, and𝑊𝑇 = (𝑊𝑊𝑅)𝑇 .

(2) If ∥𝑐 − 𝑉𝑉∗𝑐∥𝑀 ≥ 𝜖3, compute the SVD of 𝑄 =


Σ 𝜏

1
2
𝑖+1𝑉

∗𝑐

0 𝜏
1
2
𝑖+1∥𝑐 −𝑉𝑉

∗𝑐∥𝑀

 as

𝑄 = 𝑉𝑄Σ𝑄𝑊
𝑇
𝑄

, then update 𝑉𝑀 =

[
𝑉𝑀

𝑐−𝑉𝑉∗𝑐
∥𝑐−𝑉𝑉∗𝑐∥𝑀

]
𝑉𝑄 , Σ = Σ𝑄 , 𝑊𝑇 =

©­­«

𝑊 0

0 𝜏
− 1

2
𝑖+1

𝑊𝑄

ª®®¬
𝑇

.

and Δ = 𝑑𝑖𝑎𝑔

[
Δ 𝜏𝑖+1

]
.

Step 3: If (𝑉 (:, 𝑒𝑛𝑑), 𝑉 (:, 1))𝑀 > 𝜖2, do the Gram-Schmidt orthogonalization.

Step 4: Do the truncation for 𝑉, Σ and𝑊 if the singular value is less than tolerance

𝜖1.

Step 6: Do Step 1-4 until the PDE runs out of the final time moment.

Remark 9 Note that in the algorithm 6, we do not need to store the original data after

using them, hence computer memory would be saved when truncations are applied.

3.5.5. Data Compression in Variational Data Assimilation. Consider the varia-

tional data assimilation problem that identifies an initial condition for a dynamics system:

min
𝑢0∈𝑈𝑎𝑑

𝐽 (𝑢0) =
1
2

∫ 𝑇

0
∥𝑢̂ − 𝑢(𝑢0)∥2

H𝑑𝑡 +
𝛾

2
∥𝑢0∥2

𝐻 , (3.74)

subject to

𝜕𝑢

𝜕𝑡
− 𝐴𝑢 = 𝑓 in Ω × (0, 𝑇],

𝑢(·, 0) = 𝑢0 in Ω.

(3.75)

In discrete level, this optimization problem can be stated as

min
𝑢0,ℎ∈𝑈ℎ

𝐽ℎ (𝑢0,ℎ) =
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ∥
2
H + 𝛾

2
∥𝑢0,ℎ∥2

𝐻 . (3.76)
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subject to 
𝑢𝑛+1 − 𝑢𝑛

𝜏
− 𝐴𝑢𝑛+1 = 𝑓𝑛+1 in Ω × (0, 𝑇],

𝑢0 = 𝑢0 in Ω.

(3.77)

A standard calculus variation of the cost functional (3.76) gives the following opti-

mality system:



𝑢𝑛+1 − 𝑢𝑛
𝜏

− 𝐴𝑢𝑛+1 = 𝑓𝑛+1 in Ω × (0, 𝑇],

𝑢0 = 𝑢0 in Ω,

− 𝑢𝑛+1 − 𝑢𝑛
𝜏

− 𝐴∗𝑢𝑛+1 = 𝑢̂𝑛+1 − 𝑢𝑛+1
ℎ in Ω × (0, 𝑇],

𝑢𝑁 = 0 in Ω,

𝑢0,ℎ =
1
𝛾
𝑢∗0
ℎ

(3.78)

for 𝑛 = 0, 1, 2, 3.....𝑁 − 1.

As mentioned at the beginning of section 3.5, the use of gradient method to solve

(3.78) will encounter storage difficulties for {𝑢𝑛}𝑁
𝑛=1. To overcome this difficulty, we apply

the incremental POD algorithm developed in above sections to the gradient descent methods.

Algorithm 7 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess initial func-

tion 𝑢0,ℎ, and start the iteration step 𝑖 = 1.

Step 1 (Forward phase): Use 𝑢0,ℎ as initial condition to solve first equation in (3.78)

forward to obtain 𝑢𝑛, at the same time implement Algorithm 6 to compress data matrix

{𝑢𝑛}𝑁
𝑛=1 as 𝑉𝑀Σ𝑀𝑊∗

𝑀
or 𝑉𝑀Σ𝑀𝑊𝑇Δ .

Step 2 (Backward phase): At each time moment 𝑡𝑛, reconstruct the data 𝑢𝑛 =

𝑉𝑀Σ𝑀𝑊
𝑇 (:, 𝑛) from the compressed data in Step 1 and plug the reconstructed data to

the second equation of (3.78) to solve backward for 𝑢∗0. Note that the the time related

information is indicated in matrix𝑊 .
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Step 3 (Inexact line search for 𝜂𝑖+1):

(1) Initialize a constant 𝜂𝑖+1 ≥ 1, set 0 < 𝜌 < 1 and 0 < 𝛿 < 1;

(2) Use 𝑢(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ +𝜂

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ) as initial value to solve equation (3.78)

forward to obtain 𝑢𝑛
ℎ

for computing 𝐽ℎ (𝑢(𝑖+1)
0,ℎ );

(3) Update 𝜂𝑖+1 = 𝜌𝜂𝑖+1 until inequality 𝐽ℎ ( ®𝑢(𝑖+1)
0,ℎ ) ≤ 𝐽ℎ ( ®𝑢(𝑖)0,ℎ)+𝛿𝜂

𝑖+1⟨𝐽′
ℎ
( ®𝑢(𝑖)0,ℎ), ®𝑢

∗0(𝑖)
ℎ

−

𝛾 ®𝑢(𝑖)0,ℎ⟩𝑈∗
ℎ
×𝑈ℎ

is attained.

(4) Output 𝜂𝑖+1.

Step 4 (Update phase): Use a proper learning rate 𝜂𝑖+1 from step 3 and then update

𝑢
(𝑖+1)
0,ℎ = 𝑢

(𝑖)
0,ℎ + 𝜂

𝑖+1(𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ).

Step 5 (Criteria for stopping the iteration): Compute ∥𝑢∗0(𝑖)
ℎ

− 𝛾𝑢(𝑖)0,ℎ∥𝐻 , if ∥𝑢∗0(𝑖)
ℎ

−

𝛾𝑢
(𝑖)
0,ℎ∥𝐻 ≤ 𝜖 then stop; otherwise, increase 𝑖 by 1 and go back to Step 1.

3.6. PARALLEL ALGORITHM

In this section, we start from a new perspective to optimize the computational

resource for the variational data assimilation problem, i.e., parallelization. Recall solving

the variational data assimilation problem (3.1)-(3.2) ends up with dealing with the optimality

system: 

𝜕𝑢
𝜕𝑡

+ 𝐴𝑢 = 𝑓 ,

𝑢(0) = 𝑢0,

− 𝜕𝑢∗

𝜕𝑡
+ 𝐴∗𝑢∗ = 𝑢̂ − 𝑢,

𝑢∗(𝑇) = 0,

𝑢∗(0) − 𝛾𝑢(0) = 0.

(3.79)
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One main challenge to solve (3.79) is induced by its coupled temporal and space nature.

We hereby propose a time parallel algorithm to decouple the system along time and mitigate

the computational burden.

The time parallel algorithm was first developed by Lions, Maday and Turinici for ad-

dressing the computational cost in ODE and PDE [60, 61], it is then widely extended to solve

problems with extreme computational cost, such as optimal control [62–64]. Motivated by

their philosophy, we parallelize the variational data assimilation problem to improve the

computation efficiency. We first partition the time domain of the VDA optimality system

into smaller sub-intervals, and do computation in a parallel manner for each sub-interval.

The communication among each sub-interval is carried on by a multiple shooting method.

By such design, the original problem (3.79) is finally transformed to solving a nonlinear

equation, which can be handled using a root-finding method, such as Newton’s method.

For notation convenience, we change the adjoint variable 𝑢∗ in (3.79) to 𝑝 for the

presentation only in Section 3.6. The parallel algorithm starts by guessing the solution

of 𝑢 and 𝑝 in (3.79) at time 𝑡𝑘 , 𝑘 = 0, 1, 2, 3....𝑁 , where 𝑡𝑘 is the grid point partitioned

from interval (0, 𝑇]. Denote these guesses with 𝑈𝑘 and 𝑃𝑘 , let 𝑢(𝑡𝑘+1; 𝑃𝑘+1,𝑈
𝑘 ) and

𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈
𝑘 ) be solutions of the following two-point boundary problem:



𝑢𝑡 + 𝐴𝑢 = 𝑓 , in Ω × (𝑡𝑘 , 𝑡𝑘+1],

𝑢(·, 𝑡𝑘 ) = 𝑈𝑘 , in Ω,

− 𝑝𝑡 + 𝐴∗𝑝 = 𝑢̂ − 𝑢, in Ω × [𝑡𝑘+1, 𝑡𝑘 ),

𝑝(·, 𝑡𝑘+1) = 𝑃𝑘+1, in Ω.

(3.80)
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where 𝑈𝑘 and 𝑃𝑘 are also called shooting variables. If (𝑈𝑘 , 𝑃𝑘 ) and (𝑢(𝑡𝑘 ; 𝑃𝑘 ,𝑈𝑘−1),

𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈
𝑘 )) are all solutions of (3.79) at time {𝑡𝑘 }𝑁𝑘=1, they should satisfy the following

matching conditions: 

𝑈0 − 1
𝛾
𝑃0 = 0,

𝑈1 − 𝑢(𝑡1;𝑈0, 𝑃1) = 0,

𝑈2 − 𝑢(𝑡2;𝑈1, 𝑃2) = 0,

𝑈3 − 𝑢(𝑡3;𝑈2, 𝑃3) = 0,

..........

𝑈𝑁 − 𝑢(𝑡𝑁 ;𝑈𝑁−1, 𝑃𝑁 ) = 0,

𝑃1 − 𝑢(𝑡1;𝑈1, 𝑃2) = 0,

𝑃2 − 𝑢(𝑡2;𝑈2, 𝑃3) = 0,

𝑃3 − 𝑢(𝑡3;𝑈3, 𝑃4) = 0,

..........

𝑃𝑁−1 − 𝑝(𝑡𝑁−1;𝑈𝑁−1, 𝑃𝑁 ) = 0,

𝑃𝑁 = 0.

(3.81)

For convenience, we abuse notations for a while, that abbreviates 𝑢(𝑡𝑘 ; 𝑃𝑘 ,𝑈𝑘−1) and

𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈
𝑘 ) as 𝑢(𝑡𝑘 ) and 𝑝(𝑡𝑘 ), respectively. They will be equivalent notation in the

following presentation. We use (3.81) to define a nonlinear equation 𝐹 ( ®𝑋) = 0, where

®𝑋 = (𝑈0,𝑈1,𝑈2, ...,𝑈𝑁−1,𝑈𝑁 , 𝑃0, 𝑃1, 𝑃2, 𝑃3, ..., 𝑃𝑁−1, 𝑃𝑁 )𝑇 . To solve for ®𝑋 , we use the

Newton’s method, i.e.,

®𝑋𝑘+1 = ®𝑋𝑘 − 𝐽−1( ®𝑋𝑘 )𝐹 ( ®𝑋𝑘 ), 𝐽−1 is the inverse of Jacobian matrix,

which is also equivalent to

𝐽 ( ®𝑋𝑘 ) ( ®𝑋𝑘+1 − ®𝑋𝑘 ) = −𝐹 ( ®𝑋𝑘 ). (3.82)
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The next step is to calculate the Jacobian matrix:

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

1 0 · · · 0 − 1
𝛾

0 0 · · · 0 0

− 𝜕𝑢(𝑡1)
𝜕𝑈0 1 · · · 0 0 𝜕𝑢(𝑡1)

𝜕𝑃1 0 · · · 0 0

0 − 𝜕𝑢(𝑡2)
𝜕𝑈1 · · · 0 0 0 − 𝜕𝑢(𝑡2)

𝜕𝑃2 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 0 0 − 𝜕𝑢(𝑡𝑁 )
𝜕𝑃𝑁

− 𝜕𝑝(𝑡0)
𝜕𝑈0 0 · · · 0 1 − 𝜕𝑝(𝑡0)

𝜕𝑃1 0 · · · 0 0

0 − 𝜕𝑝(𝑡1)
𝜕𝑈1 · · · 0 0 1 − 𝜕𝑝(𝑡1)

𝜕𝑃2 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · − 𝜕𝑝(𝑡𝑁−1)
𝜕𝑈𝑁−1 0 1 0 · · · 1 − 𝜕𝑝(𝑡𝑁−1)

𝜕𝑃𝑁

0 0 · · · 0 0 1 0 · · · 0 1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

.

Based on the Jacobian matrix, we can explicitly write (3.82) as:



𝑈0
𝑖+1 −𝑈

0
𝑖 −

1
𝛾
(𝑃0

𝑖+1 − 𝑃
0
𝑖 ) =

1
𝛾
𝑃0
𝑖 −𝑈0

𝑖

− 𝜕𝑢(𝑡1)
𝜕𝑈0

𝑖

(𝑈0
𝑖+1 −𝑈

0
𝑖 ) +𝑈1

𝑖+1 −𝑈𝑖
1 − 𝑢(𝑡1)

𝜕𝑃1
𝑖

(𝑃1
𝑖+1 − 𝑃

1
𝑖 ) = 𝑢(𝑡1) −𝑈1

𝑖 ,

· · · · · · · · · · · ·

− 𝜕𝑢(𝑡𝑁 )
𝜕𝑈𝑁−1

𝑖

(𝑈𝑁−1
𝑖+1 −𝑈𝑁−1

𝑖 ) +𝑈𝑁
𝑖+1 −𝑈𝑖

𝑁 − 𝑢(𝑡𝑁 )
𝜕𝑃𝑁

𝑖

(𝑃𝑁𝑖+1 − 𝑃
𝑁
𝑖 ) = 𝑢(𝑡𝑁 ) −𝑈𝑁

𝑖 ,

− 𝜕𝑝(𝑡0)
𝜕𝑈0

𝑖

(𝑈0
𝑖+1 −𝑈

0
𝑖 ) + 𝑃0

𝑖+1 − 𝑃
0
𝑖 −

𝑝(𝑡0)
𝜕𝑃1

𝑖

(𝑃1
𝑖+1 − 𝑃

1
𝑖 ) = 𝑝(𝑡0) − 𝑃0

𝑖 ,

· · · · · · · · · · · · · · ·

− 𝜕𝑝(𝑡𝑁−1)
𝜕𝑈𝑁−1

𝑖

(𝑈𝑁−1
𝑖+1 −𝑈𝑁−1

𝑖 ) + 𝑃𝑁−1
𝑖+1 − 𝑃𝑖𝑁−1 − 𝑝(𝑡𝑁−1)

𝜕𝑃𝑁
𝑖

(𝑃𝑁𝑖+1 − 𝑃
𝑁
𝑖 )

= 𝑝(𝑡𝑁−1) − 𝑃𝑁−1
𝑖 ,

𝑃𝑁𝑖+1 − 𝑃
𝑁
𝑖 = −𝑃𝑁𝑖 .

(3.83)
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Rearranging (3.83) gives us the iterative update of ®𝑋:

𝑈0
𝑖+1 −𝑈

0
𝑖 −

1
𝛾
(𝑃0

𝑖+1 − 𝑃
0
𝑖 ) =

1
𝛾
𝑃0
𝑖 −𝑈0

𝑖 (3.84)

𝑈1
𝑖+1 = 𝑢(𝑡1) +

𝑢(𝑡1)
𝜕𝑃1

𝑖

(𝑃1
𝑖+1 − 𝑃

1
𝑖 ) +

𝜕𝑢(𝑡1)
𝜕𝑈0

𝑖

(𝑈0
𝑖+1 −𝑈

0
𝑖 ), (3.85)

𝑈2
𝑖+1 = 𝑢(𝑡2) +

𝑢(𝑡2)
𝜕𝑃2

𝑖

(𝑃2
𝑖+1 − 𝑃

2
𝑖 ) +

𝜕𝑢(𝑡2)
𝜕𝑈1

𝑖

(𝑈1
𝑖+1 −𝑈

1
𝑖 ), (3.86)

· · · · · · · · · · · · (3.87)

𝑈𝑁−1
𝑖+1 = 𝑢(𝑡𝑁−1) +

𝜕𝑢(𝑡𝑁−1)
𝜕𝑈𝑁−2

𝑖

(𝑈𝑁−2
𝑖+1 −𝑈𝑁−2

𝑖 ) + 𝑢(𝑡𝑁−1)
𝜕𝑃𝑁−1

𝑖

(𝑃𝑁−1
𝑖+1 − 𝑃𝑁−1

𝑖 ), (3.88)

𝑈𝑁
𝑖+1 = 𝑢(𝑡𝑁 ) +

𝜕𝑢(𝑡𝑁 )
𝜕𝑈𝑁−1

𝑖

(𝑈𝑁−1
𝑖+1 −𝑈𝑁−1

𝑖 ) + 𝑢(𝑡𝑁 )
𝜕𝑃𝑁

𝑖

(𝑃𝑁𝑖+1 − 𝑃
𝑁
𝑖 ), (3.89)

𝑃0
𝑖+1 = 𝑝(𝑡0) +

𝜕𝑝(𝑡0)
𝜕𝑈0

𝑖

(𝑈0
𝑖+1 −𝑈

0
𝑖 ) +

𝑝(𝑡0)
𝜕𝑃1

𝑖

(𝑃1
𝑖+1 − 𝑃

1
𝑖 ), (3.90)

𝑃1
𝑖+1 = 𝑝(𝑡1) +

𝜕𝑝(𝑡1)
𝜕𝑈1

𝑖

(𝑈1
𝑖+1 −𝑈

1
𝑖 ) +

𝑝(𝑡1)
𝜕𝑃2

𝑖

(𝑃2
𝑖+1 − 𝑃

1
𝑖 ), (3.91)

· · · · · · · · · · · · · · · (3.92)

𝑃𝑁−1
𝑖+1 = 𝑝(𝑡𝑁−1) +

𝜕𝑝(𝑡𝑁−1)
𝜕𝑈𝑁−1

𝑖

(𝑈𝑁−1
𝑖+1 −𝑈𝑁−1

𝑖 ) + 𝑝(𝑡𝑁−1)
𝜕𝑃𝑁

𝑖

(𝑃𝑁𝑖+1 − 𝑃
𝑁
𝑖 ), (3.93)

𝑃𝑁𝑖+1 = 0. (3.94)

Define 𝛿𝑝 = 𝜕𝑝(𝑡𝑘)
𝜕𝑈𝑘

𝑖

(𝑈𝑘
𝑖+1−𝑈

𝑘
𝑖
) + 𝑝(𝑡𝑘)

𝜕𝑃𝑘+1
𝑖

(𝑃𝑘+1
𝑖+1 −𝑃𝑘+1

𝑖
), 𝛿𝑢 = 𝜕𝑢(𝑡𝑘+1)

𝜕𝑈𝑘
𝑖

(𝑈𝑘
𝑖+1−𝑈

𝑘
𝑖
) + 𝑢(𝑡𝑘+1)

𝜕𝑃𝑘+1
𝑖

(𝑃𝑘+1
𝑖+1 −

𝑃𝑘+1
𝑖

). We observe that 𝛿𝑝 and 𝛿𝑢 are the total variation of 𝑢, 𝑝 in (3.80) with respect to

variables 𝑈𝑘 and 𝑃𝑘+1 at interval (𝑡𝑘 , 𝑡𝑘+1]. Therefore, the variation can be obtained by

solving the following equation, for 𝑘 = 0, 1, 2, ·, 𝑁 − 1,:



𝛿𝑢𝑡 + 𝐴𝛿𝑢 = 0,

𝛿𝑢 (𝑡𝑘 ) = 𝑈𝑘
𝑖+1 −𝑈

𝑘
𝑖 ,

− 𝛿𝑝𝑡 + 𝐴∗𝛿𝑝 = −𝛿𝑢,

𝛿𝑝 (𝑡𝑘+1) = 𝑃𝑘+1
𝑖+1 − 𝑃𝑘+1

𝑖 .

(3.95)
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Note that

𝛿𝑢 (𝑡𝑘 ) = 𝑈𝑘
𝑖+1 −𝑈

𝑘
𝑖 = 𝑈𝑘

𝑖+1 − 𝑢(𝑡𝑘 ) + 𝑢(𝑡𝑘 ) −𝑈
𝑘
𝑖 = 𝜎𝑘𝑢 + 𝑆𝑢𝑘 , (3.96)

𝛿𝑝 (𝑡𝑘+1) = 𝑃𝑘+1
𝑖+1 − 𝑃𝑘+1

𝑖 = 𝑃𝑘+1
𝑖+1 − 𝑝(𝑡𝑘 ) + 𝑝(𝑡𝑘 ) − 𝑃𝑘+1

𝑖 = 𝜎𝑘+1
𝑝 + 𝑆𝑝

𝑘+1, (3.97)

where 𝑆𝑢
𝑘
= 𝑢(𝑡𝑘 ) −𝑈𝑘

𝑖
and 𝑆𝑝

𝑘+1 = 𝑝(𝑡𝑘 ) − 𝑃𝑘+1
𝑖

. Recall (3.84) that 𝜎𝑘𝑢 = 𝑈𝑘
𝑖+1 − 𝑢(𝑡𝑘 ) and

𝜎𝑘+1
𝑝 = 𝑃𝑘+1

𝑖+1 − 𝑝(𝑡𝑘 ). Using a backward finite difference scheme to discretize (3.95), for

𝑘 = 0, 2, 3, ..., 𝑁 − 1, we have



𝛿𝑘+1
𝑢 − 𝛿𝑢 (𝑡𝑘 )

𝜏
+ 𝐴𝛿𝑘+1

𝑢 = 0,

𝛿𝑢 (𝑡𝑘 ) = 𝑈𝑘
𝑖+1 −𝑈

𝑘
𝑖 ,

𝛿𝑘𝑝 − 𝛿𝑝 (𝑡𝑘+1)
𝜏

+ 𝐴∗𝛿𝑘𝑝 = −𝛿𝑘+1
𝑢 ,

𝛿𝑝 (𝑡𝑘+1) = 𝑃𝑘+1
𝑖+1 − 𝑃𝑘+1

𝑖 .

(3.98)

By a simply algebraic work on (3.98) with (3.96) - (3.97), the locally solving (3.95) is then

approximately equivalent to solving the following equation globally:



𝜎𝑘+1
𝑢 − 𝜎𝑘𝑢
𝜏

+ 𝐴𝜎𝑘+1
𝑢 =

𝑆𝑘𝑢

𝜏
,

𝜎𝑢 (·, 0) =
1
𝛾
𝜎0
𝑝 ,

𝜎𝑘𝑝 − 𝜎𝑘+1
𝑝

𝜏
+ 𝐴∗𝜎𝑘𝑝 = −𝜎𝑘+1

𝑢 +
𝑆𝑘+1
𝑝

𝜏
,

𝜎𝑝 (·, 𝑇) = 0.

(3.99)

We finally have an explicit and simplified update of ®𝑋:

𝑈0
𝑖+1 =

1
𝛾
𝑃0
𝑖+1, 𝑈

1
𝑖+1 = 𝑢(𝑡1) + 𝜎1

𝑢 , 𝑈
2
𝑖+1 = 𝑢(𝑡2) + 𝜎2

𝑢 , · · · 𝑈𝑁
𝑖+1 = 𝑢(𝑡𝑁 ) + 𝜎𝑁𝑢 ,

𝑃0
𝑖+1 = 𝑝(𝑡0) + 𝜎0

𝑝 , 𝑃
1
𝑖+1 = 𝑝(𝑡1) + 𝜎1

𝑝 , · · · 𝑃𝑁−1
𝑖+1 = 𝑝(𝑡𝑁−1) + 𝜎𝑁−1

𝑝 , 𝑃𝑁𝑖+1 = 0.
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Now we can summarize the parallel algorithm as:

Algorithm 8 Step 0 (Initialization):Solving



𝑢𝑡 + 𝐴𝑢 = 𝑓 , in Ω × (0, 𝑇],

𝑢(·, 0) = 𝑢0, in Ω,

− 𝑝𝑡 + 𝐴∗𝑝 = 𝑢̂ − 𝑢, in Ω × [0, 𝑇),

𝑝(·, 𝑇) = 0, in Ω,

𝑢0 =
1
𝛾
𝑝(0).

(3.100)

in a coarse time grid discretization as an initial guesses of𝑈𝑘 and 𝑃𝑘 , which is cheap.

Step 1 (Parallel running): Solving



𝑢𝑡 + 𝐴𝑢 = 𝑓 , in Ω × (𝑡𝑘 , 𝑡𝑘+1],

𝑢(·, 𝑡𝑘 ) = 𝑈𝑘 , in Ω,

− 𝑝𝑡 + 𝐴∗𝑝 = 𝑢̂ − 𝑢, in Ω × [𝑡𝑘+1, 𝑡𝑘 ),

𝑝(·, 𝑡𝑘+1) = 𝑃𝑘+1, in Ω.

(3.101)

independently with a refined discretization at each sub-interval in an parallel manner when

𝑘 ≥ 1. For 𝑘 = 0, we need to solve the following equation:



𝑢𝑡 + 𝐴𝑢 = 𝑓 , in Ω × (𝑡0, 𝑡1],

𝑢(·, 0) = 1
𝛾
𝑝(0), in Ω,

− 𝑝𝑡 + 𝐴∗𝑝 = 𝑢̂ − 𝑢, in Ω × [𝑡0, 𝑡1),

𝑝(·, 𝑇) = 𝑃1, in Ω.

(3.102)

All purposes here are to obtain 𝑢(𝑡𝑘 ; 𝑃𝑘 ,𝑈𝑘−1) and 𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈𝑘 ).
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Step 2 (Correction): Computing the defections 𝑆𝑘𝑢 = 𝑢(𝑡𝑘 ; 𝑃𝑘 ,𝑈𝑘−1) − 𝑈𝑘 and

𝑆𝑘𝑝 = 𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈𝑘 ) − 𝑃𝑘 , then using them to find the correction terms. This can be

obtained by solving the equation:



𝜎𝑢𝑡 + 𝐴𝜎𝑢 = 0, in Ω × (𝑡𝑘 , 𝑡𝑘+1],

𝜎𝑢 (·, 𝑡𝑘 ) = 𝑈𝑘
𝑖+1 −𝑈

𝑘
𝑖 , in Ω,

− 𝜎𝑝𝑡 + 𝐴∗𝜎𝑝 = −𝜎𝑢, in Ω × [𝑡𝑘 , 𝑡𝑘+1),

𝜎𝑝 (·, 𝑡𝑘+1) = 𝑃𝑘+1
𝑖+1 − 𝑃𝑘+1

𝑖 , in Ω,

(3.103)

where 𝑖 is the number of iteration from Newton’s method. Note, this step is a local problem in

continuous level. However, after discretization, (3.103) can be replaced by solving equation

(3.99) globally.

Step 3 (Update):

𝑈𝑘 = 𝜎𝑘𝑢 + 𝑢(𝑡𝑘 ; 𝑃𝑘 ,𝑈𝑘−1),

𝑃𝑘 = 𝜎𝑘𝑝 + 𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈𝑘 ).

Step 4 (Stop criteria): Running Step 1 and Step 3 until a pre-defined stop tolerance

𝜖 is greater than the quantity 𝑚𝑎𝑥{∥𝜎𝑘𝑢 ∥H , ∥𝜎𝑘𝑝 ∥H } .

Due to the decoupling of time in the optimality system, the linear system from the

discretization of each subproblem in the parallel scheme is not formidable anymore, so it is

possible to discretize and solve them directly. An alternative to deal with the subproblems

is using optimization technique, such as gradient descent methods, which is necessary to

be mentioned to handle the optimality system with even larger spatial and temporal scale.

Then an equivalent discrete illustration of Algorithm 8 is presented as follows:
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Algorithm 9 Step 0 (Initialization): Solving



𝑢𝑘+1 − 𝑢𝑘
𝜏

+ 𝐴𝑢𝑘+1 = 𝑓𝑘+1,

𝑢0 =
1
𝛾
𝑝0,

𝑝𝑘 − 𝑝𝑘+1

𝜏
+ 𝐴∗𝑝𝑘 = 𝑢̂𝑘+1 − 𝑢𝑘+1,

𝑝𝑁 = 0,

(3.104)

in a coarse grid discretization as an initial guesses of𝑈𝑘 and 𝑃𝑘 . This is equivalent to solve

the minimization problem:

𝐹 (𝑢0) =
1
2
𝜏

𝑁∑︁
𝑘=1

∥𝑢̂𝑘 − 𝑢𝑘 ∥2
H + 𝛾

2
∥𝑢0∥2

𝐻 (3.105)

subject to 
𝑢𝑘+1 − 𝑢𝑘

𝜏
+ 𝐴𝑢𝑘+1 = 𝑓𝑘+1,

𝑢0 = 𝑢0.

(3.106)

Step 1 (Parallel running): Solving



𝑢𝑛+1 − 𝑢𝑛
𝜏

+ 𝐴𝑢𝑛+1 = 𝑓𝑛+1,

𝑢(𝑡𝑘 ) = 𝑈𝑘 ,

𝑝𝑛 − 𝑝𝑛+1

𝜏
+ 𝐴∗𝑝𝑛 = 𝑢̂𝑛+1 − 𝑢𝑛+1,

𝑝(𝑡𝑘+1) = 𝑃𝑘+1,

(3.107)

independently with a refined discretization at each subinterval in a parallel manner when

𝑘 ≥ 1. Note that, in our presentation in this section, 𝑘 is a global time step index, 𝑛 is a

local time step index. An important advantage in this step is the computation in (3.107)

can be finished in one step without any iterations, i.e., no optimization is involved.
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For 𝑘 = 0, we are supposed to solve



𝑢𝑛+1 − 𝑢𝑛
𝜏

+ 𝐴𝑢𝑛+1 = 𝑓𝑛+1,

𝑢(0) = 𝑈0,

𝑝𝑛 − 𝑝𝑛+1

𝜏
+ 𝐴∗𝑝𝑛 = 𝑢̂𝑛+1 − 𝑢𝑛+1,

𝑝(𝑡1) = 𝑃1,

𝑈0 =
1
𝛾
𝑃0.

(3.108)

For this purpose, we firstly solve an auxiliary equation


𝑤𝑛 − 𝑤𝑛+1

𝜏
+ 𝐴∗𝑤𝑛 = 0,

𝑤(𝑡1) = 𝑃1,

(3.109)

to attain 𝑤(0). Then 𝑢(0), 𝑝(0; 𝑃1,𝑈0) and 𝑢(𝑡1; 𝑃1,𝑈0) are given by solving the following

minimizing problem:

𝐹 (𝑢0) =
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛∥2
H + 𝛾

2
∥𝑢0 −

1
𝛾
𝑤(0)∥2

𝐻 (3.110)

subject to 
𝑢𝑛+1 − 𝑢𝑛

𝜏
+ 𝐴𝑢𝑛+1 = 𝑓𝑛+1,

𝑢0 = 𝑢0.

(3.111)

It is not difficult to see the solving of the (3.108) is equivalent to the solving of (3.109)-

(3.111), then 𝑝(0; 𝑃1,𝑈0) is given by 𝑝(0; 𝑃1,𝑈0) = 𝛾𝑢(0).

Step 2 (Correction): Computing the defections 𝑆𝑘𝑢 = 𝑢(𝑡𝑘 ; 𝑃𝑘 ,𝑈𝑘−1) − 𝑈𝑘 and

𝑆𝑘𝑝 = 𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈𝑘 ) − 𝑃𝑘 , then using them to obtain the correction terms, which can be
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provided by solving 

𝜎𝑘+1
𝑢 − 𝜎𝑘𝑢
𝜏

+ 𝐴𝜎𝑢𝑘+1 =
𝑆𝑘𝑢

𝜏
,

𝜎𝑢 (·, 0) =
1
𝛾
𝜎0
𝑝 ,

𝜎𝑘𝑝 − 𝜎𝑘+1
𝑝

𝜏
+ 𝐴∗𝜎𝑘𝑝 = −𝜎𝑘+1

𝑢 +
𝑆𝑘+1
𝑝

𝜏
,

𝜎𝑝 (·, 𝑇) = 0.

(3.112)

Similarly, to solve (3.112), we do the following manipulations: solving an auxiliary equation


𝑧𝑛 − 𝑧𝑛+1

𝜏
+ 𝐴∗𝑧𝑛 =

𝑆𝑛+1
𝑝

𝜏
,

𝑧(𝑇) = 0,
(3.113)

to first find out 𝑧(0), then we solve the minimization problem

𝐹 (𝑢0) =
1
2
𝜏

𝑁∑︁
𝑘=1

∥𝜎𝑘𝑢 ∥2
H + 𝛾

2
∥𝜎𝑢,0 −

1
𝛾
𝑧(0)∥2

𝐻 (3.114)

subject to 
𝜎𝑘+1
𝑢 − 𝜎𝑘𝑢
𝜏

+ 𝐴𝜎𝑘+1
𝑢 =

𝑆𝑘𝑢

𝜏
,

𝜎𝑢 (0) = 𝜎0
𝑢 .

(3.115)

Again, problem (3.113)-(3.115) is equivalent to (3.112).

Step 3 (Update):

𝑈𝑘 = 𝜎𝑘𝑢 + 𝑢(𝑡𝑘 ; 𝑃𝑘 ,𝑈𝑘−1),

𝑃𝑘 = 𝜎𝑘𝑝 + 𝑝(𝑡𝑘 ; 𝑃𝑘+1,𝑈𝑘 ).

Step 4 (Stop Criteria): Running Step 1 and Step 3 until a pre-defined stop tolerance

𝜖 is greater than the quantity 𝑚𝑎𝑥{∥𝜎𝑘𝑢 ∥H , ∥𝜎𝑘𝑝 ∥H } .
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4. DATA ASSIMILATION FOR PARABOLIC INTERFACE EQUATION

4.1. BACKGROUND FOR SECOND ORDER PARABOLIC INTERFACE EQUA-
TION

Parabolic interface equations model physical or engineering problems when two or

more distinct materials or fluids with different conductivities or diffusions are involved.

Unlike a normal parabolic equation, many important features, such as the lower global

regularity, interface jump conditions, and discontinuous coefficients, need to be addressed

with more considerations both theoretically and numerically, see, e.g., [38, 39, 65–67].

Over the past few decades, a vast amount of literature employing variational methods

has been contributed to investigate the data assimilation problem for parabolic equations.

In [33], J. L. Lions provided an elementary introduction of the adjoint method and dual

method to recover parameters for parabolic partial differential equations. Motivated by

this approach, researchers afterwards employed similar thoughts on the initial recovery of

parabolic types of dynamics systems. In [34], efficient numerical methods were developed

to attain the optimal initial condition of the heat equation. In [37], a forward approach

to reconstruct the initial state was presented for the convection-diffusion equation and a

practical algorithm is established. Moreover, the nonlinear parabolic equations, such as

in water movement and in radiative heat transfer problems, were studied in [35, 36] by

reducing nonlinearity. However, to our current knowledge, few studies have investigated

data assimilation for parabolic interface equations. The main interests of this section is to

investigate the VDA problem for the parabolic interface equation.

We consider the following second order parabolic interface equation:


𝑢𝑡 − ∇ · 𝛽(𝑥, 𝑦)∇𝑢 = 𝑓 , in Ω × (0, 𝑇],

𝑢(·, 0) = 𝑢0, in Ω,

𝑢 = 0, on 𝜕Ω × (0, 𝑇],

(4.1)
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together with the jump interface condition,

[𝑢] |Γ = 0, [𝛽(𝑥, 𝑦) 𝜕𝑢
𝜕®𝑛 ] |Γ = 0. (4.2)

Here Ω ⊂ IR2 is an open bounded domain, the curve Γ is a smooth interface that separates

Ω into two subdomains Ω+ and Ω− such that Ω = Ω+ ∪ Ω− ∪ Γ, [𝑢] |Γ = 𝑢+ |Γ − 𝑢− |Γ is

the jump of function 𝑢 across the interface Γ, where 𝑢+ = 𝑢 |Ω+ and 𝑢− = 𝑢 |Ω− , ®𝑛 is the

unit normal vector along interface Γ pointing to Ω−, 𝜕𝑢
𝜕®𝑛 is the normal derivative of 𝑢, and

𝛽(𝑥, 𝑦) is assumed to be a positive piecewise constant function

𝛽(𝑥, 𝑦) =


𝛽+ if (𝑥, 𝑦) ∈ Ω+,

𝛽− if (𝑥, 𝑦) ∈ Ω−,

and the source term 𝑓 is given discontinuously as

𝑓 (𝑥, 𝑦, 𝑡) =


𝑓 + if (𝑥, 𝑦) ∈ Ω+,

𝑓 − if (𝑥, 𝑦) ∈ Ω−.

We now introduce necessary preliminaries for the discussion of the data assimilation

problem concerning equations (4.1)-(4.2). Let ∥ · ∥0 denote the 𝐿2-norm with the usual 𝐿2

inner product (·, ·), ∥ · ∥∞ denote the 𝐿∞-norm, and ∥ · ∥𝑚 denote the standard norm in the

Sobolev space𝑊𝑚,2(Ω), which is also written as 𝐻𝑚 (Ω). For the temporal-spatial function

spaces over (0, 𝑇) ×Ω, we define, for 1 ≤ 𝑝 < ∞,

𝑊𝑚,𝑝 (0, 𝑇 ;B) =
{
𝑢(𝑡) ∈ B for a.e 𝑡 ∈ (0, 𝑇) and

𝑚∑︁
𝑗=0

∫ 𝑇

0
∥𝑢( 𝑗) (𝑡)∥𝑝B𝑑𝑡 < ∞

}
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and for 𝑝 = ∞

𝑊𝑚,∞(0, 𝑇 ;B) =
{
𝑢(𝑡) ∈ B for a.e 𝑡 ∈ (0, 𝑇) and max

0≤ 𝑗≤𝑚
(𝑒𝑠𝑠 sup

0≤𝑡≤𝑇
∥𝑢( 𝑗) (𝑡)∥B) < ∞

}
which are equipped with corresponding norms

∥𝑢∥𝑊𝑚,𝑝 (0,𝑇 ;B) =
( 𝑚∑︁
𝑗=0

∫ 𝑇

0
∥𝑢( 𝑗) (𝑡)∥𝑝B𝑑𝑡

) 1
𝑝

,

∥𝑢∥𝑊𝑚,∞ (0,𝑇 ;B) = max
0≤ 𝑗≤𝑚

(𝑒𝑠𝑠 sup
0≤𝑡≤𝑇

∥𝑢( 𝑗) (𝑡)∥B),

where B is a general Banach space. As usual, we let 𝐿𝑝 (0, 𝑇 ;B) = 𝑊0,𝑝 (0, 𝑇 ;B) and

𝐻𝑚 (0, 𝑇 ;B) = 𝑊𝑚,2(0, 𝑇 ;B).

We shall also need the following spaces:

𝑋 = 𝐻1(Ω) ∩ 𝐻2(Ω+) ∩ 𝐻2(Ω−),

𝑌 = 𝐿2(Ω) ∩ 𝐻1(Ω+) ∩ 𝐻1(Ω−),

equipped with norms

∥𝑢∥𝑋 = ∥𝑢∥𝐻1 (Ω) + ∥𝑢∥𝐻2 (Ω+) + ∥𝑢∥𝐻2 (Ω−) ,

∥𝑢∥𝑌 = ∥𝑢∥𝐿2 (Ω) + ∥𝑢∥𝐻1 (Ω+) + ∥𝑢∥𝐻1 (Ω−) .

We write 𝑌 (0, 𝑇) = 𝐿2(0, 𝑇 ; 𝑋) ∩ 𝐻1(0, 𝑇 ;𝑌 ).
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To introduce a weak form of the interface problem (4.1)-(4.2), we define the

continuous bilinear form 𝑎(·, ·): 𝐻1
0 (Ω) × 𝐻

1
0 (Ω) → R and the associated operator 𝐴 :

𝐻1
0 (Ω) → 𝐻−1(Ω) as follows:

𝑎(𝑢, 𝑣) =
∫
Ω

𝛽(𝑥, 𝑦)∇𝑢 · ∇𝑣𝑑𝑥𝑑𝑦

=

∫
Ω+
𝛽+∇𝑢 · ∇𝑣𝑑𝑥𝑑𝑦 +

∫
Ω−
𝛽−∇𝑢 · ∇𝑣𝑑𝑥𝑑𝑦,

𝑎(𝑢, 𝑣) = ⟨𝐴𝑢, 𝑣⟩,

where ⟨·, ·⟩ again defines the duality pairing between 𝐻−1(Ω) and 𝐻1
0 (Ω).

Setting 𝑊 (0, 𝑇) = 𝐿2(0, 𝑇 ;𝐻1
0 (Ω)) ∩ 𝐻1(0, 𝑇 ;𝐻−1(Ω)), the weak formulation is

derived as follows:

Given 𝑓 ∈ 𝐿2(0, 𝑇 ;𝐻−1(Ω)), find 𝑢 ∈ 𝑊 (0, 𝑇) satisfying

⟨𝜕𝑢
𝜕𝑡
, 𝑣⟩ + 𝑎(𝑢, 𝑣) = ⟨ 𝑓 , 𝑣⟩, ∀𝑣 ∈ 𝐻1

0 (Ω), (4.3)

𝑢(·, 0) = 𝑢0 at 𝑡 = 0.

Note that (4.3) can be expressed in the form:

𝜕𝑢

𝜕𝑡
+ 𝐴𝑢 − 𝑓 = 0.

Throughout this Section, 𝐶 is a generic positive constant that is independent of the

mesh parameter ℎ and the time step 𝜏 and is not necessarily the same at each occurrence.

4.2. MODELING THE VARIATIONAL DATA ASSIMILATION

4.2.1. Mathematics Formulation and Well-posedness. Let 𝑈𝑎𝑑 denote the ad-

missible solutions set that could be either 𝐿2(Ω) or a closed convex subset of 𝐿2(Ω). Given

𝑇 > 0, 𝛾 > 0, and a distributed observation 𝑢̂, the variational data assimilation for the
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second order parabolic interface equation is given by

min
𝑢0∈𝑈𝑎𝑑

𝐽 (𝑢0) =
1
2

∫ 𝑇

0
∥𝑢̂ − 𝑢(𝑢0)∥2

0𝑑𝑡 +
𝛾

2
∥𝑢0∥2

0, (4.4)

subject to 

𝑢𝑡 − ∇ · 𝛽(𝑥, 𝑦)∇𝑢 = 𝑓 , in Ω × (0, 𝑇],

𝑢(·, 0) = 𝑢0, in Ω,

𝑢 = 0, on 𝜕Ω × [0, 𝑇],

[𝑢] |Γ = 0, on Γ × (0, 𝑇],

[𝛽(𝑥, 𝑦) 𝜕𝑢
𝜕®𝑛 ] |Γ = 0, on Γ × (0, 𝑇],

(4.5)

where the mapping 𝑢(𝑢0) : 𝐿2(Ω) → 𝑊 (0, 𝑇) is defined as the solution of (4.5) with the

initial value 𝑢0. The mapping 𝑢(𝑢0) is continuous and uniquely defined [39].

The minimization of
∫ 𝑇

0
1
2 ∥𝑢̂ − 𝑢(𝑢0)∥2

0𝑑𝑡 is the primary goal, which is to drive the

state variable 𝑢(𝑢0) close to the distributed observations 𝑢̂ over (0, 𝑇) × Ω via adjusting

the initial condition 𝑢0. The second term 𝛾

2 ∥𝑢0∥2
0 is a Tikhonov regularization and plays a

key role in guaranteeing the existence of the minimizer as well as the stability of the data

assimilation problem. In particular, 𝛾 is a significantly characterized parameter. According

to the reliability of observations, it can be used to measure the cost acted on the initial

condition and balance the minimizing distribution in the cost functional.

For the minimization problem (4.4)-(4.5), provided that 𝜕Ω and Γ are smooth

enough and 𝑓 , 𝑢̂ ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)), we have the following existence and uniqueness result.

Theorem 11 There exists a unique solution 𝑢0 ∈ 𝑈𝑎𝑑 for the data assimilation problem

(4.4)-(4.5). Furthermore, the solution 𝑢0 can be characterized by

⟨𝐽′(𝑢0), 𝑣 − 𝑢0⟩ =
∫ 𝑇

0

∫
Ω

(𝑢(𝑢0) − 𝑢̂) (𝑢(𝑣) − 𝑢(𝑢0))𝑑𝑥𝑑𝑦𝑑𝑡

+ 𝛾
∫
Ω

𝑢0(𝑣 − 𝑢0)𝑑𝑥𝑑𝑦 ≥ 0 ∀𝑣 ∈ 𝑈𝑎𝑑 .
(4.6)
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Theorem 12 The solution of problem (4.4)-(4.5) continuously depends on the observational

data 𝑢̂ and the parameter 𝛾.

Moreover, small 𝛾 will degrade the stability of the data assimilation problem.

Remark 10 Theorem 11 and Theorem 12 can be verified immediately by using Theorem 8

in the Section 2 and Theorem 9 in the Section 3, since the problem (4.4)-(4.5) is a special

case of the optimization problem considered there.

4.2.2. Derivation of the Optimality System. Based on the wellposedness results,

we can now determine the optimal initial condition. Using the gradient information from the

Gâteaux derivative and the adjoint method, we derive the optimality system characterized

by the first order necessary condition.

Computing the first order Gâteaux derivative of the cost functional (4.4) at any given

direction ℎ ∈ 𝐿2(Ω) gives us

𝐷𝐽 (𝑢0)
𝐷𝑢0

· ℎ = −
∫ 𝑇

0

∫
Ω

(𝑢̂ − 𝑢) (𝐷𝑢(𝑢0)
𝐷𝑢0

ℎ)𝑑𝑥𝑑𝑦𝑑𝑡 +
∫
Ω

𝛾𝑢0ℎ𝑑𝑥𝑑𝑦. (4.7)

Equation (4.7) should vanish if 𝑢0 is the minimizer in 𝑈𝑎𝑑 = 𝐿2(Ω), thereby allowing us

to solve for 𝑢0. However,
∫ 𝑇

0

∫
Ω
(𝑢̂ − 𝑢(𝑢0)) ( 𝐷𝑢(𝑢0)

𝐷𝑢0
ℎ)𝑑𝑥𝑑𝑦𝑑𝑡 is an intractable term to be

evaluated. Hence, expressing 𝑢0 explicitly is difficult. To address this difficulty, the adjoint

method is used.

Lemma 3 The mapping 𝑢(𝑢0) : 𝐿2(Ω) → 𝑊 (0, 𝑇) defined as the solution of (4.5) with ini-

tial condition 𝑢0 has a Gâteaux derivative 𝐷𝑢(𝑢0)
𝐷𝑢0

ℎ in every direction ℎ ∈ 𝐿2(Ω). Moreover,
𝐷𝑢(𝑢0)
𝐷𝑢0

ℎ solves the second order parabolic interface equation with zero force and initial

condition ℎ.

Remark 11 Lemma 3 holds because of the linearity of the constraint equation.
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Oriented by the Gâteaux derivative, Lemma 3 gives us the insight to represent

∫ 𝑇

0

∫
Ω

(𝑢̂ − 𝑢(𝑢0)) (
𝐷𝑢(𝑢0)
𝐷𝑢0

ℎ)𝑑𝑥𝑑𝑦𝑑𝑡

based on the adjoint method, which can be seen in the following theorem.

Theorem 13 Given an observational function 𝑢̂ ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)) and if 𝑢0 ∈ 𝐿2(Ω) is

the optimal solution for (4.4)-(4.5), then 𝑢0 is obtained as

𝑢0 =
1
𝛾
𝑢∗(·, 0) (4.8)

where 𝑢∗ is the solution to the associated adjoint equation,



− 𝑢∗𝑡 − ∇ · 𝛽(𝑥, 𝑦)∇𝑢∗ = 𝑢̂ − 𝑢, in Ω × [0, 𝑇),

𝑢∗(·, 𝑇) = 0, in Ω,

𝑢∗ = 0, on 𝜕Ω × [0, 𝑇),

[𝑢∗] |Γ = 0, on Γ × [0, 𝑇),

[𝛽(𝑥, 𝑦) 𝜕𝑢
∗

𝜕®𝑛 ] |Γ = 0, on Γ × [0, 𝑇).

(4.9)

Proof: Considering the formula (4.7), the main purpose of this proof is to find an easily

evaluated adjoint representation for

∫ 𝑇

0

∫
Ω

(𝑢̂ − 𝑢) (𝐷𝑢(𝑢0)
𝐷𝑢0

ℎ)𝑑𝑥𝑑𝑦𝑑𝑡. (4.10)
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Lemma 3 reminds us to make use of the equation,



𝑢𝑡 − ∇ · 𝛽(𝑥, 𝑦)∇𝑢 = 0, in Ω × (0, 𝑇],

𝑢(·, 0) = ℎ, in Ω,

𝑢 = 0, on 𝜕Ω × (0, 𝑇],

[𝑢] |Γ = 0, on Γ × (0, 𝑇],

[𝛽(𝑥, 𝑦) 𝜕𝑢
𝜕®𝑛 ] |Γ = 0, on Γ × (0, 𝑇] .

(4.11)

By taking the 𝐿2(0, 𝑇 ; 𝐿2(Ω)) inner product on the first equation in (4.11) with 𝑢∗ ∈

𝑊 (0, 𝑇), we obtain

∫ 𝑇

0

∫
Ω

𝜕𝑢

𝜕𝑡
𝑢∗𝑑𝑥𝑑𝑦𝑑𝑡 +

∫ 𝑇

0

∫
Ω+

𝛽+∇𝑢∇𝑢∗𝑑𝑥𝑑𝑦𝑑𝑡 +
∫ 𝑇

0

∫
Ω−
𝛽−∇𝑢∇𝑢∗𝑑𝑥𝑑𝑦𝑑𝑡 = 0.

Integrating by parts in time for the first term leads to∫
Ω

𝑢𝑢∗ |𝑇0 𝑑𝑥𝑑𝑦 −
∫ 𝑇

0

∫
Ω

𝜕𝑢∗

𝜕𝑡
𝑢𝑑𝑥𝑑𝑦𝑑𝑡 +

∫ 𝑇

0

∫
Ω+

𝛽+∇𝑢∇𝑢∗𝑑𝑥𝑑𝑦𝑑𝑡

+
∫ 𝑇

0

∫
Ω−
𝛽−∇𝑢∇𝑢∗𝑑𝑥𝑑𝑦𝑑𝑡 = 0.

(4.12)

By imposing

−
∫ 𝑇

0

∫
Ω

𝜕𝑢∗

𝜕𝑡
𝑢𝑑𝑥𝑑𝑦𝑑𝑡 +

∫ 𝑇

0

∫
Ω+

𝛽+∇𝑢∇𝑢∗𝑑𝑥𝑑𝑦𝑑𝑡

+
∫ 𝑇

0

∫
Ω−
𝛽−∇𝑢∇𝑢∗𝑑𝑥𝑑𝑦𝑑𝑡 =

∫ 𝑇

0

∫
Ω

(𝑢̂ − 𝑢)𝑢𝑑𝑥𝑑𝑦𝑑𝑡,

𝑢∗(·, 𝑇) = 0,

(4.13)

(4.12) can be simplified as

−
∫
Ω

𝑢𝑢∗(·, 0)𝑑𝑥𝑑𝑦 =
∫ 𝑇

0

∫
Ω

(𝑢̂ − 𝑢)𝑢𝑑𝑥𝑑𝑦𝑑𝑡. (4.14)
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Taking integration by parts in space Ω = Ω+∪Ω− on (4.13) gives the adjoint equation (4.9),

together with 𝑢∗(·, 𝑇) = 0. We also know that 𝑢 =
𝐷𝑢(𝑢0)
𝐷𝑢0

ℎ and 𝑢(·, 0) = ℎ. The proof is

completed by substituting (4.14) into (4.7) and letting 𝐷𝐽 (𝑢0)
𝐷𝑢0

· ℎ vanish, i.e.,

𝐷𝐽 (𝑢0)
𝐷𝑢0

· ℎ = −
∫
Ω

𝑢∗(·, 0)ℎ𝑑𝑥𝑑𝑦 +
∫
Ω

𝛾𝑢0ℎ𝑑𝑥𝑑𝑦 = 0,∫
Ω

(𝛾𝑢0 − 𝑢∗(·, 0))ℎ𝑑𝑥𝑑𝑦 = 0 ∀ℎ ∈ 𝐿2(Ω).

By the completeness of the 𝐿2(Ω) space, we have 𝑢0 = 1
𝛾
𝑢∗(·, 0).

Since the minimization problem (4.4)-(4.5) is strictly convex, the first order neces-

sary condition in Theorem 3.4 is also sufficient. In order to attain the optimal solution, we

need to solve the following equation systems (the optimality system):

the forward state equation



𝑢𝑡 − ∇ · 𝛽(𝑥, 𝑦)∇𝑢 = 𝑓 , in Ω × (0, 𝑇],

𝑢(·, 0) = 𝑢0, in Ω,

𝑢 = 0, on 𝜕Ω × (0, 𝑇],

[𝑢] |Γ = 0, on Γ × (0, 𝑇],

[𝛽(𝑥, 𝑦) 𝜕𝑢
𝜕®𝑛 ] |Γ = 0, on Γ × (0, 𝑇],

(4.15)

the backward adjoint equation



− 𝑢∗𝑡 − ∇ · 𝛽(𝑥, 𝑦)∇𝑢∗ = 𝑢̂ − 𝑢, in Ω × [0, 𝑇),

𝑢∗(·, 𝑇) = 0, in Ω,

𝑢∗ = 0, on 𝜕Ω × [0, 𝑇),

[𝑢∗] |Γ = 0, on Γ × [0, 𝑇),

[𝛽(𝑥, 𝑦) 𝜕𝑢
∗

𝜕®𝑛 ] |Γ = 0, on Γ × [0, 𝑇),

(4.16)
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and

𝑢0 =
1
𝛾
𝑢∗(·, 0), (4.17)

where 𝑢0 ∈ 𝐿2(Ω), 𝑢 ∈ 𝑊 (0, 𝑇), 𝑢∗ ∈ 𝑊 (0, 𝑇), 𝑢̂ ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)), 𝑓 ∈ 𝐿2(0, 𝑇 ; 𝐿2(Ω)).

Remark 12 If the admissible set is considered as 𝑈𝑎𝑑 = {𝑢0 ∈ 𝐿2(Ω) : 𝑎 ≤ 𝑢0 ≤ 𝑏},

then the optimal solution is an orthogonal projection of 1
𝛾
𝑢∗(·, 0) onto 𝑈𝑎𝑑 , i.e., 𝑢0 =

max{𝑎,min{𝑏, 1
𝛾
𝑢∗(·, 0)}}.

4.3. A FINITE ELEMENT APPROXIMATION AND CONVERGENCE
ANALYSIS

4.3.1. Numerical Approximation. To numerically compute the solution discussed

in section 4.2, in this section we present a fully discrete approximation to the data assimila-

tion problem (4.4)-(4.5) that uses a piecewise linear finite element method in space and the

backward Euler scheme in time.

For the spatial discretization, we first approximate the smooth interface Γ and

boundary 𝜕Ω with line segments, the union of such line segments forms an approximate

interface Γℎ and boundary 𝜕Ωℎ. The domain circumscribed by 𝜕Ωℎ is denoted with Ωℎ,

which is an approximation of Ω. Γℎ divides Ωℎ into two subdomains Ω+
ℎ

and Ω−
ℎ
, which

form an approximation of Ω+ and Ω− respectively.

LetT +
ℎ

denote a family of triangulation ofΩ+
ℎ

andT −
ℎ

denote a family of triangulation

of Ω−
ℎ

such that

Tℎ = T +
ℎ ∪ T −

ℎ .

We need the vertices on 𝜕Ωℎ or Γℎ of a triangle 𝜏ℎ ∈ Tℎ to be vertices of 𝜕Ωℎ or Γℎ

respectively. We also assume the triangulation Tℎ satisfies the usual sort of quasi-uniformity

condition.



75

Associated with Tℎ is the finite element space 𝑉ℎ =span{𝜙𝑖}𝑖=𝑁𝑏

𝑖=1 , where 𝜙𝑖 is piece-

wise linear polynomials and 𝑁𝑏 is the number of finite element nodes. The admissable set

of discrete solutions is denoted by𝑈ℎ = 𝑉ℎ ∩𝑈𝑎𝑑 .

For the time discretization we uniformly construct a time grid 0 = 𝑡0 < 𝑡1 < 𝑡2 <

𝑡3... < 𝑡𝑛... < 𝑡𝑁 = 𝑇 with time step 𝜏 = 𝑇
𝑁

. Let 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛] denote the 𝑛th sub-interval.

We use the finite-dimensional space

𝑉𝜏,ℎ = {𝑣 : [0, 𝑇] → 𝑉ℎ : 𝑣 |𝐼𝑛 ∈ 𝑉ℎ is constant in time}.

Let 𝑣𝑛 be the value of 𝑣 ∈ 𝑉𝜏,ℎ at 𝑡𝑛 and 𝑉𝑛
𝜏,ℎ

be the restriction to 𝐼𝑛 of the functions in 𝑉𝜏,ℎ.

Given specific ℎ, 𝜏 and 𝛾 > 0, the fully discrete approximation of problem (4.4)-

(4.5) is stated as

min
𝑢0,ℎ∈𝑈ℎ

𝐽ℎ (𝑢0,ℎ) (4.18)

subject to 
(
𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
, 𝑣ℎ) + 𝑎(𝑢𝑛+1

ℎ , 𝑣ℎ) = ( 𝑓𝑛+1, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ,

𝑢0
ℎ = 𝑢0,ℎ,

(4.19)

where

𝐽ℎ (𝑢0,ℎ) =
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ∥
2
0 +

𝛾

2
∥𝑢0,ℎ∥2

0. (4.20)

Similar to the proof for the wellposedness of the continuous data assimilation prob-

lem, one can prove the wellposedness of the fully discrete data assimilation problem (4.18)-

(4.20).

Theorem 14 Given 𝜏 = 𝑇
𝑁

and mesh size ℎ, for each fixed regularization parameter 𝛾, there

exists a unique optimal solution 𝑢0,ℎ ∈ 𝑈ℎ such that the cost functional (4.20) is minimized.
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Theorem 15 The solution of problem (4.18)-(4.20) continuously depends on the observa-

tional data 𝑢̂ and the parameter 𝛾.

Note that small 𝛾 will also reduce the stability of the discrete data assimilation

problem.

In order to derive the discrete optimality system and solve for 𝑢0,ℎ, we apply an

approach different from that of the continuous problem, i.e., a Lagrange multiplier rule. We

form the Lagrange functional as

L(𝑢̄ℎ, 𝑢0,ℎ, 𝑢̄
∗
ℎ) =

1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ∥
2
0 +

𝛾

2
∥𝑢0,ℎ∥2

0

+ 𝜏
𝑁−1∑︁
𝑛=0

⟨
𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
+ 𝐴𝑢𝑛+1

ℎ − 𝑓𝑛+1, 𝑢
∗𝑛
ℎ ⟩ + (𝑢0

ℎ − 𝑢0,ℎ, 𝑢
∗0
ℎ ),

(4.21)

where 𝑢̄ℎ = (𝑢1
ℎ
, 𝑢2

ℎ
, 𝑢3

ℎ
, ....., 𝑢𝑁

ℎ
) and 𝑢̄∗

ℎ
= (𝑢∗0

ℎ
, 𝑢∗1

ℎ
, 𝑢∗2

ℎ
, 𝑢∗3

ℎ
, ....., 𝑢∗𝑁−1

ℎ
). Going through

the almost identical steps (3.24)-(3.28) in section 3.3 and using the self-adjointness of

the operator 𝐴 in sense of ⟨𝐴𝑢, 𝑣⟩𝐻−1×𝐻1
0
= ⟨𝐴𝑣, 𝑢⟩𝐻−1×𝐻1

0
, we end up with the discrete

optimality system, 

𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
+ 𝐴𝑢𝑛+1

ℎ = 𝑓𝑛+1,

𝑢0
ℎ = 𝑢0,ℎ,

−
𝑢∗𝑛+1
ℎ

− 𝑢∗𝑛
ℎ

𝜏
+ 𝐴𝑢∗𝑛ℎ = 𝑢̂𝑛+1 − 𝑢𝑛+1

ℎ ,

𝑢∗𝑁ℎ = 0,

𝑢0,ℎ =
1
𝛾
𝑢∗0
ℎ

(4.22)

for 𝑛 = 0, 1, 2, 3.....𝑁 − 1.

4.3.2. Finite Element Convergence Analysis. We shall expect the discrete solu-

tion in (4.22) to converge to the solution of (4.15)-(4.17). That is, given fixed 𝛾, 𝑢0,ℎ → 𝑢0,

𝑢ℎ → 𝑢 and 𝑢∗
ℎ
→ 𝑢∗ should be attained while the time step 𝜏 and finite element mesh size

ℎ diminish.
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Theorem 16 For each fixed regularization parameter 𝛾, let {𝑢0,ℎ}ℎ>0 be the correspond-

ing sequence of minimizer of the discrete data assimilation problem (4.18)-(4.20). Then

{𝑢0,ℎ}ℎ>0 converges to the optimal solution 𝑢0 of the continuous problem (4.4)-(4.5).

Proof: It is not difficult to see 𝐽ℎ (𝑢0,ℎ) ≤ 𝐶 for some constant 𝐶 independent of ℎ and 𝜏.

Then the coercevity of 𝐽ℎ (𝑢0,ℎ) implies the boundedness of {𝑢0,ℎ} in 𝐿2(Ω). Hence we

can extract a subsequence {𝑢0,ℎ′} from {𝑢0,ℎ} such that {𝑢0,ℎ′} weakly converges to 𝜇∗ in

𝐿2(Ω). We conclude furthermore

lim
ℎ′,𝜏→0

1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ (𝑢0,ℎ′)∥2
0 → 1

2

∫ 𝑇

0
∥𝑢̂ − 𝑢(𝜇∗)∥2

0𝑑𝑡.

Thus, for ∀𝑣 ∈ 𝑈𝑎𝑑 , by the weakly lower semicontinuity we deduce

𝐽 (𝜇∗) ≤ lim inf
ℎ′,𝜏→0

1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑢̂𝑛 − 𝑢𝑛ℎ′ (𝑢0,ℎ′)∥2
0 +

𝛾

2
lim inf
ℎ′,𝜏→0

∥𝑢0,ℎ′ ∥2
0

≤ lim inf
ℎ′,𝜏→0

𝐽ℎ′ (𝑢0,ℎ′) ≤ lim inf
ℎ′,𝜏→0

𝐽ℎ′ (𝜋ℎ′ (𝑣))

=
1
2

∫ 𝑇

0
∥𝑢̂ − 𝑢(𝑣)∥2

0𝑑𝑡 +
𝛾

2
∥𝑣∥2

0

= 𝐽 (𝑣)

(4.23)

where 𝜋ℎ is the 𝐿2 projection operator from𝑈𝑎𝑑 to𝑈ℎ.

Then (4.23) and the uniqueness result in Theorem 18 imply 𝜇∗ is the optimal solution

of the problem (4.4)-(4.5) and thus the theorem is proved.

Besides a general convergence result in Theorem 21, under appropriate assumptions,

we can obtain the optimal finite element convergence rate for 𝑢0 − 𝑢0,ℎ, 𝑢 − 𝑢ℎ, 𝑢∗ − 𝑢∗ℎ.

Compared with the classical FEM approximation analysis, the difficulties in our case

lie in the undetermined initial condition from the forward state equation and the Gelarkin

orthogonality we miss on the backward adjoint equations, both of which would lead to the

invalidity of the classical analysis framework. In order to overcome these difficulties, we

introduce the following auxiliary equations to bridge the analysis in the data assimilation
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problem and the classical FEM approximation results:



𝜕𝑢(𝑢0,ℎ)
𝜕𝑡

− ∇ · (𝛽(𝑥, 𝑦)∇𝑢) = 𝑓 , in Ω × (0, 𝑇],

𝑢(𝑢0,ℎ) (·, 0) = 𝑢0,ℎ, in Ω,

𝑢(𝑢0,ℎ) = 0, on 𝜕Ω × (0, 𝑇],

[𝑢(𝑢0,ℎ)] |Γ = 0, on Γ × (0, 𝑇],

[𝛽(𝑥, 𝑦) 𝜕𝑢(𝑢0,ℎ)
𝜕®𝑛 ] |Γ = 0, on Γ × (0, 𝑇],

(4.24)



− 𝜕𝑢∗(𝑢ℎ)
𝜕𝑡

− ∇ · (𝛽(𝑥, 𝑦)∇𝑢∗(𝑢ℎ)) = 𝑢̂ − 𝑢ℎ, in Ω × [0, 𝑇),

𝑢∗(𝑢ℎ) (·, 𝑇) = 0, in Ω,

𝑢∗(𝑢ℎ) = 0, on 𝜕Ω × [0, 𝑇)

[𝑢∗(𝑢ℎ)] |Γ = 0, on Γ × [0, 𝑇),

[𝛽(𝑥, 𝑦) 𝜕𝑢
∗(𝑢ℎ)
𝜕®𝑛 ] |Γ = 0, on Γ × [0, 𝑇).

(4.25)



− 𝜕𝑢∗(𝑢0,ℎ)
𝜕𝑡

− ∇ · (𝛽(𝑥, 𝑦)∇𝑢∗(𝑢0,ℎ)) = 𝑢̂ − 𝑢(𝑢0,ℎ), in Ω × [0, 𝑇),

𝑢∗(𝑢0,ℎ) (·, 𝑇) = 0, in Ω,

𝑢∗(𝑢0,ℎ) = 0, on 𝜕Ω × [0, 𝑇),

[𝑢∗(𝑢0,ℎ)] |Γ = 0, on Γ × [0, 𝑇),

[𝛽(𝑥, 𝑦) 𝜕𝑢
∗(𝑢0,ℎ)
𝜕®𝑛 ] |Γ = 0, on Γ × [0, 𝑇),

(4.26)

The motivation of the constructions for (4.24) and (4.25) is to remove the uncertain-

ties on the initial condition and source term. We then convert the target error estimate into an

intermediate error that can be bounded finally by using (4.26) and the additional equalities

𝑢0 = 1
𝛾
𝑢∗(·, 0) and 𝑢0,ℎ =

1
𝛾
𝑢∗0
ℎ

in the optimality systems. The details are demonstrated in

the following theorem and lemmas.
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Theorem 17 Let (𝑢, 𝑢∗, 𝑢0) ∈ 𝑊 (0, 𝑇) ×𝑊 (0, 𝑇) ×𝑈𝑎𝑑 and (𝑢ℎ, 𝑢∗ℎ, 𝑢0,ℎ) ∈ 𝑉𝜏,ℎ×𝑉𝜏,ℎ×𝑈ℎ

be solutions of the continuous optimality system (4.15) − (4.17) and discrete optimality

system (4.22) respectively. Assuming the solutions are smooth enough, then the following

error estimate holds

∥𝑢0 − 𝑢0,ℎ∥0 + ∥𝑢 − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) + ∥𝑢∗ − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

≤ 𝐶 (𝛾) (ℎ2 | log ℎ | + 𝜏). (4.27)

This is the major theorem we are going to show in this section. To prove it, some

useful inequalities need to be derived from the auxiliary equations first.

Lemma 4 Let (𝑢(𝑢0,ℎ), 𝑢∗(𝑢0,ℎ), 𝑢∗(𝑢ℎ)) ∈ 𝑊 (0, 𝑇) ×𝑊 (0, 𝑇) ×𝑊 (0, 𝑇) be solutions for

equations (4.24), (4.26), and (4.25) respectively. Let (𝑢, 𝑢∗, 𝑢0) ∈ 𝑊 (0, 𝑇) ×𝑊 (0, 𝑇) ×𝑈𝑎𝑑

be the solution of (4.15)-(4.17) and let (𝑢ℎ, 𝑢∗ℎ, 𝑢0,ℎ) ∈ 𝑉𝜏,ℎ × 𝑉𝜏,ℎ ×𝑈ℎ be the solution of

(4.22). Then we have the following inequalities

∥𝑢 − 𝑢(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶∥𝑢0 − 𝑢0,ℎ∥0, (4.28)

∥𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) , (4.29)

sup
0≤𝑡≤𝑇

∥𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ)∥ ≤ 𝐶∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) , (4.30)

∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶∥𝑢0 − 𝑢0,ℎ∥0. (4.31)
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Proof: By subtractions between the equations (4.15) and (4.24), (4.16) and (4.26), and

(4.25) and (4.26), respectively, we obtain the following equations



𝜕 (𝑢 − 𝑢(𝑢0,ℎ))
𝜕𝑡

− ∇ · (𝛽(𝑥, 𝑦)∇(𝑢 − 𝑢(𝑢0,ℎ))) = 0, in Ω × (0, 𝑇],

(𝑢 − 𝑢(𝑢0,ℎ)) (·, 0) = 𝑢0 − 𝑢0,ℎ, in Ω,

𝑢 − 𝑢(𝑢0,ℎ) = 0, on 𝜕Ω × (0, 𝑇],

[𝑢 − 𝑢(𝑢0,ℎ)] |Γ = 0, on Γ × (0, 𝑇],

[𝛽(𝑥, 𝑦) 𝜕 (𝑢 − 𝑢(𝑢0,ℎ))
𝜕®𝑛 ] |Γ = 0, on Γ × (0, 𝑇],

(4.32)



− 𝜕 (𝑢∗ − 𝑢∗(𝑢0,ℎ))
𝜕𝑡

− ∇ · (𝛽(𝑥, 𝑦)∇(𝑢∗ − 𝑢∗(𝑢0,ℎ))) =

𝑢(𝑢0,ℎ) − 𝑢, in Ω × [0, 𝑇),

(𝑢∗ − 𝑢∗(𝑢0,ℎ)) (·, 𝑇) = 0, in Ω,

(𝑢∗ − 𝑢∗(𝑢0,ℎ)) = 0, on 𝜕Ω × [0, 𝑇),

[(𝑢∗ − 𝑢∗(𝑢0,ℎ))] |Γ = 0, on Γ × [0, 𝑇),

[𝛽(𝑥, 𝑦) 𝜕 (𝑢
∗ − 𝑢∗(𝑢0,ℎ))
𝜕®𝑛 ] |Γ = 0, on Γ × [0, 𝑇),

(4.33)



− 𝜕 (𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ))
𝜕𝑡

− ∇ · (𝛽(𝑥, 𝑦)∇(𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ))) =

𝑢(𝑢0,ℎ) − 𝑢ℎ, in Ω × [0, 𝑇),

(𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ)) (·, 𝑇) = 0, in Ω,

(𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ)) = 0, on 𝜕Ω × [0, 𝑇),

[(𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ))] |Γ = 0, on Γ × [0, 𝑇),

[𝛽(𝑥, 𝑦) 𝜕 (𝑢
∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ))

𝜕®𝑛 ] |Γ = 0, on Γ × [0, 𝑇).

(4.34)
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By taking the 𝐿2(0, 𝑡; 𝐿2(Ω)) inner product with 𝑢 − 𝑢(𝑢0,ℎ) for the first equation in (4.32),

we obtain

∫ 𝑡

0

1
2
𝑑∥𝑢 − 𝑢(𝑢0,ℎ)∥2

0
𝑑𝑠

𝑑𝑠 +
∫ 𝑡

0
(𝛽(𝑥, 𝑦)∇(𝑢 − 𝑢(𝑢0,ℎ)),∇(𝑢 − 𝑢(𝑢0,ℎ)))𝑑𝑠 = 0. (4.35)

Equation (4.35) infers

∥(𝑢 − 𝑢(𝑢0,ℎ)) (·, 𝑡)∥2
0 + 2

∫ 𝑡

0
(𝛽(𝑥, 𝑦)∇(𝑢 − 𝑢(𝑢0,ℎ)),∇(𝑢 − 𝑢(𝑢0,ℎ)))𝑑𝑠

= ∥𝑢0 − 𝑢0,ℎ∥2
0.

Thus, we have the inequality

∥(𝑢 − 𝑢(𝑢0,ℎ)) (·, 𝑡)∥0 ≤ ∥𝑢0 − 𝑢0,ℎ∥0 for 0 ≤ 𝑡 ≤ 𝑇. (4.36)

Integrating with respect to 𝑡 on both sides from 0 to 𝑇 for (4.36) gives us

∥𝑢 − 𝑢(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶∥𝑢0 − 𝑢0,ℎ∥. (4.37)

Taking the suprenum with respect to 𝑡 on (4.36), we obtain

sup
0≤𝑡≤𝑇

∥𝑢 − 𝑢(𝑢0,ℎ)∥ ≤ ∥𝑢0 − 𝑢0,ℎ∥0. (4.38)

Taking the 𝐿2(Ω) inner product on the first equation of (4.33) with 𝑢∗ − 𝑢∗(𝑢0,ℎ), we have

− 1
2
𝑑∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥2

0
𝑑𝑡

+ (𝛽(𝑥, 𝑦)∇(𝑢∗ − 𝑢∗(𝑢0,ℎ)),∇(𝑢∗ − 𝑢∗(𝑢0,ℎ)))

= (𝑢(𝑢0,ℎ) − 𝑢, 𝑢∗ − 𝑢∗(𝑢0,ℎ)).
(4.39)
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Applying the Cauchy-Schwarz inequality and Young’s inequality on the right hand side of

(4.39), we have

− 1
2
𝑑∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥2

0
𝑑𝑡

+ (𝛽(𝑥, 𝑦)∇(𝑢∗ − 𝑢∗(𝑢0,ℎ)),∇(𝑢∗ − 𝑢∗(𝑢0,ℎ)))

≤ 1
2
∥𝑢(𝑢0,ℎ) − 𝑢∥2

0 +
1
2
∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥2

0.

(4.40)

Using the Grönwall inequality on (4.40) leads to

∥(𝑢∗ − 𝑢∗(𝑢0,ℎ)) (·, 𝑡)∥2
0 + 𝐶

∫ 𝑇

𝑡

∥∇(𝑢∗ − 𝑢∗(𝑢0,ℎ))∥2
0𝑑𝑠

≤ 𝐶
∫ 𝑇

𝑡

1
2
∥𝑢(𝑢0,ℎ) − 𝑢∥2

0𝑑𝑠 + ∥(𝑢∗ − 𝑢∗(𝑢0,ℎ)) (·, 𝑇)∥2
0

= 𝐶

∫ 𝑇

𝑡

1
2
∥𝑢(𝑢0,ℎ) − 𝑢∥2

0𝑑𝑠.

(4.41)

Thus, we have

∥(𝑢∗ − 𝑢∗(𝑢0,ℎ)) (·, 𝑡)∥2
0 ≤ 𝐶

∫ 𝑇

0

1
2
∥𝑢(𝑢0,ℎ) − 𝑢∥2

0𝑑𝑠,

which implies another two inequalities:

∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶∥𝑢(𝑢0,ℎ) − 𝑢∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) , (4.42)

sup
0≤𝑡≤𝑇

∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥0 ≤ 𝐶∥𝑢(𝑢0,ℎ) − 𝑢∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) . (4.43)

In addition, taking the 𝐿2(Ω) inner product on the first equation of (4.34) with 𝑢∗(𝑢ℎ) −

𝑢∗(𝑢0,ℎ) and similarly applying the Cauchy-Schwarz inequality, Young’s inequality, and the

Grönwall inequality step by step, we have the following inequalities:

∥𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) , (4.44)

sup
0≤𝑡≤𝑇

∥𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ)∥0 ≤ 𝐶∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) . (4.45)
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Finally, combining (4.42) and (4.37) leads to

∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶∥𝑢0 − 𝑢0,ℎ∥0. (4.46)

Now we are in position to build up connections between the inequalities derived

above and classical FEM convergence results. By using the triangle inequality and (4.28)

we can bound ∥𝑢 − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) as follows:

∥𝑢 − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ ∥𝑢 − 𝑢(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) + ∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

≤ 𝐶∥𝑢0 − 𝑢0,ℎ∥0 + ∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) .
(4.47)

From inequalities (4.29) and (4.31), ∥𝑢∗ − 𝑢∗
ℎ
∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) can be bounded similarly as

∥𝑢∗ − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

≤ ∥𝑢∗ − 𝑢∗(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) + ∥𝑢∗(𝑢0,ℎ) − 𝑢∗(𝑢ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

+ ∥𝑢∗(𝑢ℎ) − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

≤ 𝐶∥𝑢0 − 𝑢0,ℎ∥0 + 𝐶∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

+ ∥𝑢∗(𝑢ℎ) − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) .

(4.48)

Note that 𝑢ℎ and 𝑢∗
ℎ

are the classical FEM approximations of 𝑢(𝑢0,ℎ) and 𝑢∗(𝑢ℎ),

respectively. Convergence and error estimates between them are obtained directly while

traditional regularities are satisfied. From inequalities (4.47) and (4.48), we see that the

convergence analysis now points to the only undetermined term ∥𝑢0 − 𝑢0,ℎ∥0. Another two

conditions 𝑢0 = 1
𝛾
𝑢∗(·, 0) and 𝑢0,ℎ =

1
𝛾
𝑢∗0
ℎ

will be used to bound ∥𝑢0 − 𝑢0,ℎ∥0.
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Lemma 5 Under the same conditions for𝑢, 𝑢∗, 𝑢0, 𝑢0,ℎ, 𝑢
∗(𝑢0,ℎ), and𝑢(𝑢0,ℎ) as in Lemma 4,

we have the following error estimate:

∥𝑢0 − 𝑢0,ℎ∥0 ≤ 1
𝛾
∥𝑢∗(𝑢0,ℎ) (·, 0) − 𝑢∗0

ℎ ∥0. (4.49)

Proof: Taking the 𝐿2(Ω) norm of 𝑢0 − 𝑢0,ℎ and applying equalities 𝑢0 = 1
𝛾
𝑢∗(·, 0) and

𝑢0,ℎ =
1
𝛾
𝑢∗0
ℎ

, we have

∥𝑢0 − 𝑢0,ℎ∥2 = (𝑢0 − 𝑢0,ℎ, 𝑢0 − 𝑢0,ℎ)

=
1
𝛾
(𝑢∗(·, 0) − 𝑢∗0

ℎ , 𝑢0 − 𝑢0,ℎ)

=
1
𝛾
(𝑢∗(·, 0) − 𝑢∗(𝑢0,ℎ) (·, 0), 𝑢0 − 𝑢0,ℎ) +

1
𝛾
(𝑢∗(𝑢0,ℎ) (·, 0) − 𝑢∗0

ℎ , 𝑢0 − 𝑢0,ℎ).

(4.50)

We now use (4.32) and (4.33) from the proof in Lemma 4 and take the 𝐿2(0, 𝑇 ; 𝐿2(Ω))

inner product with 𝑢∗ − 𝑢∗(𝑢0,ℎ) on the first equation of (5.77). This leads to∫ 𝑇

0
( 𝜕 (𝑢 − 𝑢(𝑢0,ℎ))

𝜕𝑡
, 𝑢∗ − 𝑢∗(𝑢0,ℎ))𝑑𝑡

+
∫ 𝑇

0
(𝛽(𝑥, 𝑦)∇(𝑢 − 𝑢(𝑢0,ℎ)),∇(𝑢∗ − 𝑢∗(𝑢0,ℎ)))𝑑𝑡 = 0.

(4.51)

Taking integration by parts with respect to 𝑡 on the first term of (4.51) gives us

((𝑢 − 𝑢(𝑢0,ℎ)) (·, 𝑇), (𝑢∗ − 𝑢∗(𝑢0,ℎ)) (·, 𝑇)) − ((𝑢 − 𝑢(𝑢0,ℎ)) (·, 0), (𝑢∗ − 𝑢∗(𝑢0,ℎ)) (·, 0))

−
∫ 𝑇

0
( 𝜕 (𝑢

∗ − 𝑢∗(𝑢0,ℎ))
𝜕𝑡

, 𝑢 − 𝑢(𝑢0,ℎ))𝑑𝑡

+
∫ 𝑇

0
(𝛽(𝑥, 𝑦)∇(𝑢∗ − 𝑢∗(𝑢0,ℎ)),∇(𝑢 − 𝑢(𝑢0,ℎ)))𝑑𝑡 = 0.

Using (4.33) we simplify the previous equality:

((𝑢 − 𝑢(𝑢0,ℎ)) (·, 0), (𝑢∗ − 𝑢∗(𝑢0,ℎ)) (·, 0)) = −
∫ 𝑇

0
(𝑢 − 𝑢(𝑢0,ℎ), 𝑢 − 𝑢(𝑢0,ℎ))𝑑𝑡.
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Since
∫ 𝑇

0 (𝑢 − 𝑢(𝑢0,ℎ), 𝑢 − 𝑢(𝑢0,ℎ))𝑑𝑡 is nonnegative, we have

(𝑢∗(·, 0) − 𝑢∗(𝑢0,ℎ) (·, 0), 𝑢0 − 𝑢0,ℎ) ≤ 0. (4.52)

Combining (4.52) with equality (4.50) leads to

∥𝑢0 − 𝑢0,ℎ∥2
0 ≤ 1

𝛾
(𝑢∗(𝑢0,ℎ) (·, 0) − 𝑢∗0

ℎ , 𝑢0 − 𝑢0,ℎ)

≤ 1
𝛾
∥𝑢∗(𝑢0,ℎ) (·, 0) − 𝑢∗0

ℎ ∥0∥𝑢0 − 𝑢0,ℎ∥0.

Hence,

∥𝑢0 − 𝑢0,ℎ∥0 ≤ 1
𝛾
∥𝑢∗(𝑢0,ℎ) (·, 0) − 𝑢∗0

ℎ ∥0.

By using the triangle inequality and (4.30), the last step necessary for Theorem 17

is provided by

∥𝑢∗0
ℎ − 𝑢∗(𝑢0,ℎ) (·, 0)∥0 ≤ ∥𝑢∗0

ℎ − 𝑢∗(𝑢ℎ) (·, 0)∥0 + ∥𝑢∗(𝑢ℎ) (·, 0) − 𝑢∗(𝑢0,ℎ) (·, 0)∥0

≤ max
0≤𝑖≤𝑁−1

∥𝑢∗𝑖ℎ − 𝑢∗(𝑢ℎ) (·, 𝑡𝑖)∥0 + sup
0≤𝑡<𝑇

∥𝑢∗(𝑢ℎ) − 𝑢∗(𝑢0,ℎ)∥0

≤ max
0≤𝑖≤𝑁−1

∥𝑢∗𝑖ℎ − 𝑢∗(𝑢ℎ) (·, 𝑡𝑖)∥0 + 𝐶∥𝑢ℎ − 𝑢(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) .

(4.53)

Rearranging inequalities (4.47), (4.48), (4.49), and (4.53), we conclude

∥𝑢0 − 𝑢0,ℎ∥0 + ∥𝑢 − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) + ∥𝑢∗ − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

≤ 𝐶

𝛾
max

0≤𝑖≤𝑁−1
∥𝑢∗𝑖ℎ − 𝑢∗(𝑢ℎ) (·, 𝑡𝑖)∥0 +

𝐶

𝛾
∥𝑢ℎ − 𝑢(𝑢0,ℎ)∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

+ ∥𝑢∗(𝑢ℎ) − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))
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Using results in [39], the following classical error bounds holds:

max
0≤𝑖≤𝑁−1

∥𝑢∗𝑖ℎ − 𝑢∗(𝑢ℎ) (·, 𝑡𝑖)∥0 ≤ 𝐶 (ℎ2 |0 log ℎ | + 𝜏),

∥𝑢∗(𝑢ℎ) − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶 (ℎ2 | log ℎ | + 𝜏),

∥𝑢(𝑢0,ℎ) − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) ≤ 𝐶 (ℎ2 | log ℎ | + 𝜏).

Finally, we have the convergence result,

∥𝑢0 − 𝑢0,ℎ∥0 + ∥𝑢 − 𝑢ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω)) + ∥𝑢∗ − 𝑢∗ℎ∥𝐿2 (0,𝑇 ;𝐿2 (Ω))

≤ 𝐶 (𝛾) (ℎ2 | log ℎ | + 𝜏),

which completes the proof of Theorem 17.

Also, the dependence of the constant𝐶 on 𝛾 implies small regularization parameters

may cause the numerical accuracy to degenerate. Hence, in practice one needs to use more

refined mesh size ℎ and time step 𝜏 to reduce the finite element approximation error caused

by small 𝛾.

4.4. ITERATIVE METHODS SOLVING THE DISCRETE OPTIMALITY SYSTEM

Due to the forward in time nature in the state equation and backward in time nature

of the adjoint equation, solving the discrete optimality system directly would generate a

massive linear system and encounters computational difficulty. Considering the stability

in data assimilation problem, in this section we develop two iterative algorithms, based on

the conjugate gradient method and the steepest descent method, to decouple the discrete

optimality system, which improve the computation efficiency significantly.

4.4.1. Matrix Formulation. We first derive the matrix formulation of the fully

discrete optimality system (4.22). By definition of the operator 𝐴, the discrete optimality

system (4.22) can be written as
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

(
𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
, 𝑣ℎ) + 𝑎(𝑢𝑛+1

ℎ , 𝑣ℎ) = ( 𝑓𝑛+1, 𝑣ℎ),

𝑢0
ℎ = 𝑢0,ℎ,

− (
𝑢∗𝑛+1
ℎ

− 𝑢∗𝑛
ℎ

𝜏
, 𝑣ℎ) + 𝑎(𝑢∗𝑛ℎ , 𝑣ℎ) = (𝑢̂𝑛+1 − 𝑢𝑛+1

ℎ , 𝑣ℎ),

𝑢∗𝑁ℎ = 0,

𝑢0,ℎ =
1
𝛾
𝑢∗0
ℎ

(4.54)

for 𝑛 = 0, 1, 2, 3, ...., 𝑁 − 1.

Considering the integral formula of the first equation in (4.54), we have

∫
Ω

𝑢𝑛+1
ℎ

− 𝑢𝑛
ℎ

𝜏
𝑣ℎ𝑑𝑥𝑑𝑦 +

∫
Ω+
𝛽+∇𝑢𝑛+1

ℎ ∇𝑣ℎ𝑑𝑥𝑑𝑦

+
∫
Ω−
𝛽−∇𝑢𝑛+1

ℎ ∇𝑣ℎ𝑑𝑥𝑑𝑦 =
∫
Ω+
𝑓 +𝑛+1𝑣ℎ𝑑𝑥𝑑𝑦 +

∫
Ω−

𝑓 −𝑛+1𝑣ℎ𝑑𝑥𝑑𝑦.

(4.55)

For each time moment 𝑛, 𝑢𝑛
ℎ
=
∑𝑁𝑏

𝑗=1 𝑢
𝑛
𝑗
𝜙 𝑗 , plugging 𝑢𝑛

ℎ
into (4.55) and using 𝑣ℎ = {𝜙𝑖}𝑁𝑏

𝑖=1

to test (4.55) respectively, we obtain

∫
Ω

∑𝑁𝑏

𝑗=1(𝑢
𝑛+1
𝑗

− 𝑢𝑛
𝑗
)

𝜏
𝜙 𝑗𝜙𝑖𝑑𝑥𝑑𝑦 +

∫
Ω+

𝑁𝑏∑︁
𝑗=1
𝑢𝑛+1
𝑗 𝛽+

𝜕𝜙 𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
𝑑𝑥𝑑𝑦

+
∫
Ω+

𝑁𝑏∑︁
𝑗=1
𝑢𝑛+1
𝑗 𝛽+

𝜕𝜙 𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
𝑑𝑥𝑑𝑦 +

∫
Ω−

𝑁𝑏∑︁
𝑗=1
𝑢𝑛+1
𝑗 𝛽−

𝜕𝜙 𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
𝑑𝑥𝑑𝑦

+
∫
Ω−

𝑁𝑏∑︁
𝑗=1
𝑢𝑛+1
𝑗 𝛽−

𝜕𝜙 𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
𝑑𝑥𝑑𝑦 =

∫
Ω+

𝑁𝑏∑︁
𝑗=1

𝑓 +𝑛+1𝜙𝑖𝑑𝑥𝑑𝑦

+
∫
Ω−

𝑁𝑏∑︁
𝑗=1

𝑓 −𝑛+1𝜙𝑖𝑑𝑥𝑑𝑦.

Then the matrix formulation of the fully discrete forward state equation can be written as


𝑀

®𝑢𝑛+1
ℎ

− ®𝑢𝑛
ℎ

𝜏
+𝑄 ®𝑢𝑛+1

ℎ = ®𝑏𝑛+1,

®𝑢0
ℎ = ®𝑢0,ℎ,

(4.56)
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where

𝑀 =

[∫
Ω

𝜙 𝑗𝜙𝑖𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖, 𝑗=1
,

𝑄 =

[∫
Ω+
𝛽+
𝜕𝜙 𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖, 𝑗=1
+
[∫

Ω+
𝛽+
𝜕𝜙 𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖, 𝑗=1

+
[∫

Ω−
𝛽−
𝜕𝜙 𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖, 𝑗=1
+
[∫

Ω−
𝛽−
𝜕𝜙 𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖, 𝑗=1
,

®𝑏𝑛+1 =

[∫
Ω+
𝑓 +𝑛+1𝜙𝑖𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖=1
+
[∫

Ω−
𝑓 −𝑛+1𝜙𝑖𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖=1
.

Similarly, the matrix formulation of the fully discrete backward adjoint equation can be

written as 
− 𝑀

®𝑢∗𝑛+1
ℎ

− ®𝑢∗𝑛
ℎ

𝜏
+𝑄 ®𝑢∗𝑛ℎ = ®𝑏∗𝑛+1,

®𝑢∗𝑁ℎ = ®0,
(4.57)

where

®𝑏∗𝑛+1 = ®𝑏∗𝑛+1
𝑜𝑏𝑠 − ®𝑏𝑛+1

𝑢ℎ
=

[∫
Ω

(𝑢̂𝑛+1 − 𝑢𝑛+1
ℎ )𝜙𝑖𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖=1
,

®𝑏∗𝑛+1
𝑜𝑏𝑠 =

[∫
Ω

𝑢̂𝑛+1𝜙𝑖𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖=1
,

®𝑏𝑛+1
𝑢ℎ

=

[∫
Ω

𝑢𝑛+1
ℎ 𝜙𝑖𝑑𝑥𝑑𝑦

]𝑁𝑏

𝑖=1
.

Finally, the matrix formulation of the fully discrete optimality system is given by



𝑀
®𝑢𝑛+1
ℎ

− ®𝑢𝑛
ℎ

𝜏
+𝑄 ®𝑢𝑛+1

ℎ = ®𝑏𝑛+1,

®𝑢0 = ®𝑢0,ℎ,

− 𝑀
®𝑢∗𝑛+1
ℎ

− ®𝑢∗𝑛
ℎ

𝜏
+𝑄 ®𝑢∗𝑛ℎ = ®𝑏∗𝑛+1,

®𝑢∗𝑁ℎ = ®0,

®𝑢0,ℎ =
1
𝛾
®𝑢∗0
ℎ .

(4.58)
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4.4.2. The Conjugate Gradient Method. Based on the conjugate gradient method

and ideas in [54, 68], to efficiently solve (4.58) we propose the following iterative method to

decouple the equation system (4.58): given ®𝑢(0)0,ℎ, ®𝑢
(1)
0,ℎ and 𝜖 , solve the following equations

sequentially until the stop criteria ∥ ®𝑢(𝑖+1)
0,ℎ − ®𝑢(𝑖)0,ℎ∥0 ≤ 𝜖 (or ∥𝛾 ®𝑢(𝑖+1)

0,ℎ − ®𝑢∗0(𝑖+1)
ℎ

∥0 ≤ 𝜖) is

satisfied: 
𝑀

®𝑢𝑛+1(𝑖)
ℎ

− ®𝑢𝑛(𝑖)
ℎ

𝜏
+𝑄 ®𝑢𝑛+1(𝑖)

ℎ
= ®𝑏𝑛+1,

®𝑢0(𝑖)
ℎ

= ®𝑢(𝑖)0,ℎ,

(4.59)


− 𝑀

®𝑢∗𝑛+1(𝑖)
ℎ

− ®𝑢∗𝑛(𝑖)
ℎ

𝜏
+𝑄 ®𝑢∗𝑛(𝑖)

ℎ
= ®𝑏∗𝑛+1(𝑖) ,

®𝑢∗𝑁 (𝑖)
ℎ

= ®0,
(4.60)

®𝑢(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜁

𝑖+1𝐵𝑖 ( ®𝑢∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ) + 𝜂
𝑖+1𝐶𝑖 ( ®𝑢(𝑖)0,ℎ − ®𝑢(𝑖−1)

0,ℎ ), (4.61)

where 𝑛 = 0, 1, 2, 3, ..., 𝑁 is the time evolution step, 𝑖 = 0, 1, 2, 3, ... represents the iteration

step, 𝜁 𝑖+1 and 𝜂𝑖+1 are iterative parameters, ®𝑢(𝑖)0,ℎ, ®𝑢
𝑛(𝑖)
ℎ

, and ®𝑢∗𝑛(𝑖)
ℎ

are iterative sequences, and

𝐵𝑖 and 𝐶𝑖 are two symmetric positive definite matrices.

Following the ideas in [54, 55] we adopt 𝐵𝑖 and 𝐶𝑖 as identity matrices. Then 𝜁 𝑖+1

and 𝜂𝑖+1 are updated using

𝜁 𝑖+1 =
1
𝑞𝑖+1 , 𝜂𝑖+1 =

𝑒𝑖

𝑞𝑖+1 , (4.62)

where

𝑒𝑖 =


0 𝑖 = 0,

𝑞𝑖
∥ ®𝜆𝑖 ∥2

0
∥ ®𝜆𝑖−1∥2

0
𝑖 > 0,

𝑞𝑖+1 =
∥ ®𝜆𝑖∥2

𝐿

∥ ®𝜆𝑖∥2
0

− 𝑒𝑖, 𝑖 = 0, 1, 2, 3, ....
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Here ®𝜆𝑖 = 𝛾 ®𝑢(𝑖)0,ℎ − ®𝑢∗0(𝑖)
ℎ

and ∥ ®𝜆𝑖∥𝐿 = (𝐿 ®𝜆𝑖, ®𝜆𝑖) 1
2 . The operator 𝐿 acting on ®𝜆𝑖 is defined as

follows 
𝑀

®𝜙𝑛+1
ℎ

− ®𝜙𝑛
ℎ

𝜏
+𝑄 ®𝜙𝑛+1

ℎ = ®0,

®𝜙0
ℎ =

®𝜆𝑖,
(4.63)


− 𝑀

®𝜙∗𝑛+1
ℎ

− ®𝜙∗𝑛
ℎ

𝜏
+𝑄 ®𝜙∗𝑛ℎ = −®𝑏∗𝑛+1

𝜙ℎ
,

®𝜙∗𝑁ℎ = ®0,
(4.64)

𝐿 ®𝜆𝑖 = 𝛾 ®𝜆𝑖 − ®𝜙∗0
ℎ . (4.65)

The above iterative scheme is carried out concisely using the following algorithm:

Algorithm 10 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess two initial

functions ®𝑢(0)0,ℎ and ®𝑢(1)0,ℎ, and then start the iteration at step 𝑖 = 1.

Step 1 (Forward phase): Use ®𝑢(𝑖)0,ℎ as the initial condition to solve (4.59) for ®𝑢(𝑖)
ℎ

.

Step 2 (Backward phase): Pass ®𝑢(𝑖)
ℎ

to (4.60) and solve (4.60) backwards for ®𝑢∗0(𝑖)
ℎ

.

Step 3 (Computing for operator 𝐿):

(1) Set ®𝜆𝑖 = 𝛾 ®𝑢(𝑖)0,ℎ − ®𝑢∗0(𝑖)
ℎ

and use it as initial value to solve equation (4.63)

forward to obtain ®𝜙ℎ;

(2) Pass ®𝜙ℎ to (5.89) and solve equation (4.64) backward for attaining ®𝜙∗0
ℎ

;

(3) Compute 𝐿 ®𝜆𝑖 = 𝛾 ®𝜆𝑖 − ®𝜙∗0
ℎ

.

Step 4 (Update phase): Calculate 𝜁 𝑖+1, 𝜂𝑖+1 by using (4.62) and then update

®𝑢(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜁

𝑖+1( ®𝑢∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ) + 𝜂
𝑖+1( ®𝑢(𝑖)0,ℎ − ®𝑢(𝑖−1)

0,ℎ ).

Step 5 (Criteria for stopping the iteration): Compute ∥ ®𝑢(𝑖+1)
0,ℎ − ®𝑢(𝑖)0,ℎ∥. If ∥ ®𝑢(𝑖+1)

0,ℎ −

®𝑢(𝑖)0,ℎ∥ ≤ 𝜖 then stop. Otherwise increase 𝑖 by 1 and go back to Step 1.
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4.4.3. The Steepest Descent Method. The conjugate gradient method serves an

high convergence rate and solves the discrete optimality system (4.58) effectively for most

of cases. However, it is relatively less stable and hence causes the algorithm to diverge for

some of the data assimilation scenarios that have low stability, e.g., small regularization

parameter 𝛾 in the cost functional (4.18).

To tackle this numerical problem, we adopt the steepest descent method in [52,

53]which gains more stability at the cost of a lower convergence rate. For the purpose we

need to calculate the gradient of the cost functional (4.4) and find out its representation in

the admissable set.

𝐽′ℎ (𝑢0,ℎ)𝑣ℎ = 𝜏
𝑁∑︁
𝑛=1

(𝑢̂𝑛 − 𝑢𝑛ℎ, (𝑢
𝑛
ℎ)

′𝑣ℎ) + (𝛾𝑢0,ℎ, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑈ℎ. (4.66)

By using the similar techniques as (3.24)-(3.28) in section 3.3, the gradient of the cost

functional (4.4) is obtained as

𝐽′ℎ (𝑢0,ℎ)𝑣 = (𝛾𝑢0,ℎ, 𝑣ℎ) − (𝑢∗0
ℎ , 𝑣ℎ), (4.67)

And 𝛾𝑢0,ℎ − 𝑢∗0
ℎ

is the representation of the linear functionals 𝐹′
ℎ
(𝑢0,ℎ) in the admissable

set𝑈ℎ.

With the result in (4.67), we now present the steepest descent method to solve

the discrete data assimilation problem: given ®𝑢(0)0,ℎ and 𝜖 , solve the following equations

sequentially until the stop criteria ∥ ®𝑢(𝑖+1)
0,ℎ − ®𝑢(𝑖)0,ℎ∥0 ≤ 𝜖 (or ∥𝛾 ®𝑢(𝑖+1)

0,ℎ − ®𝑢∗0(𝑖+1)
ℎ

∥0 ≤ 𝜖) is

satisfied: 
𝑀

®𝑢𝑛+1(𝑖)
ℎ

− ®𝑢𝑛(𝑖)
ℎ

𝜏
+𝑄 ®𝑢𝑛+1(𝑖)

ℎ
= ®𝑏𝑛+1,

®𝑢0(𝑖)
ℎ

= ®𝑢(𝑖)0,ℎ,

(4.68)
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
− 𝑀

®𝑢∗𝑛+1(𝑖)
ℎ

− ®𝑢∗𝑛(𝑖)
ℎ

𝜏
+𝑄 ®𝑢∗𝑛(𝑖)

ℎ
= ®𝑏∗𝑛+1(𝑖) ,

®𝑢∗𝑁 (𝑖)
ℎ

= ®0,
(4.69)

®𝑢(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜂

𝑖+1( ®𝑢∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ), (4.70)

where 𝑛 = 0, 1, 2, 3....𝑁 is time evolution step, 𝑖 = 0, 1, 2, 3.... represents the iteration step,

𝜂𝑖+1 is called the learning rate at each iteration, ®𝑢(𝑖)0,ℎ, ®𝑢
𝑛(𝑖)
ℎ

, ®𝑢∗𝑛(𝑖)
ℎ

are iterative sequences.

To reduce the iterations and improve computational efficiency, the learning rate 𝜂𝑖+1

is determined by applying the inexact line search algorithm: find 𝜂𝑖+1 via repeatedly solving

(4.68) with initial value

®𝑢(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜂

𝑖+1( ®𝑢∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ) by updating 𝜂𝑖+1 = 𝜌𝜂𝑖+1,

until the following inequality is satisfied

𝐽ℎ ( ®𝑢(𝑖+1)
0,ℎ ) ≤ 𝐽ℎ ( ®𝑢(𝑖)0,ℎ) + 𝛿𝜂

𝑖+1⟨𝐽′ℎ ( ®𝑢
(𝑖)
0,ℎ), ®𝑢

∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ⟩𝑈∗
ℎ
×𝑈ℎ

, (4.71)

where 𝜂𝑖+1 is typically initialized as a constant equal to or greater than 1, and 𝛿 and 𝜌 are

chosen between (0, 1).

The above steepest descent method is implemented concisely using the following

algorithm:

Algorithm 11 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess initial

function ®𝑢(0)0,ℎ, and start the iteration step 𝑖 = 1.

Step 1 (Forward phase): Use ®𝑢(𝑖)0,ℎ as initial condition to solve equation (4.68) for

®𝑢(𝑖)
ℎ

.

Step 2 (Backward phase): Pass ®𝑢(𝑖)
ℎ

to equation (4.69) and solve equation (4.69)

backward for ®𝑢∗0(𝑖)
ℎ

.
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Step 3 (Inexact line search for 𝜂𝑖+1):

(1) Initialize a constant 𝜂𝑖+1 ≥ 1, set 0 < 𝜌 < 1 and 0 < 𝛿 < 1;

(2) use ®𝑢(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜂

𝑖+1( ®𝑢∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ) as initial value to solve equation (4.68)

forward to obtain ®𝑢𝑛
ℎ

for computing 𝐹ℎ ( ®𝑢(𝑖+1)
0,ℎ );

(3) Update 𝜂𝑖+1 = 𝜌𝜂𝑖+1 until inequality (4.71) is attained.

(4) Output 𝜂𝑖+1.

Step 4 (Update phase): Use 𝜂𝑖+1 from step 3 and then update

®𝑢(𝑖+1)
0,ℎ = ®𝑢(𝑖)0,ℎ + 𝜂

𝑖+1( ®𝑢∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ).

Step 5 (Criteria for stopping the iteration): Compute ∥ ®𝑢∗0(𝑖)
ℎ

− 𝛾 ®𝑢(𝑖)0,ℎ∥, if ∥ ®𝑢∗0(𝑖)
ℎ

−

𝛾 ®𝑢(𝑖)0,ℎ∥ ≤ 𝜖 then stop; otherwise, increase 𝑖 by 1 and go back to Step 1.

Remark 13 (Incremental POD for gradient methods) As mentioned in the Section 3.5.1,

we may run into memory difficulties to store data {𝑢𝑖
ℎ
}𝑁
𝑖=1 in the Forward phase for both

conjugate gradient method and steepest descent method. It is then time to use the incremental

POD data compression technique. Define the needed thresholds for truncations and re-

orthogonalization, recall the weighted matrix, i.e., mass matrix 𝑀 , and time step size 𝜏

have already been provided in above, we implement the algorithm 6 on the step of Forward

phase to compress {𝑢𝑖
ℎ
}𝑁
𝑖=1 into a smaller size matrix, then reconstruct {𝑢𝑖

ℎ
} at each time

step when used for the Backward phase solving. By doing so, storing large-scale data is

avoided.

4.5. NUMERICAL EXPERIMENTS

Based on the iterative methods developed in previous section, this section will

present numerical results to demonstrate the performance of the reconstructed initial con-

dition. The finite element space is chosen on continuous piecewise linear polynomial with

mesh size ℎ, and backward Euler scheme is used with time step 𝜏 = ℎ2 correspondingly.



94

𝐿∞, 𝐿2 error norm will be considered respectively. We especially focus on the 𝐿2 error

norm, since the way we measure the distance between observations and state variable in the

cost functional is in an 𝐿2 norm sense.

4.5.1. Verification of the Finite Element Convergence Rate. Before showing the

data assimilation performance, we provide an example to verify the conclusions in Theorem

17. Given a set of smooth observations and for each fixed regularization parameter 𝛾, we

expect to observe that the finite element approximation converges in a second order regarding

to 𝐿2 norm. Mesh sizes of 1/4, 1/8, 1/16, 1/32 and time step sizes of 1/16, 1/64, 1/256,

1/1024 are used, respectively. For each fixed 𝛾, the discrete solution with ℎ = 1/64 and

𝜏 = 1/4096 will be used to represent the analytical solution.

The distributed observations are given by

𝑢+ = sin(𝜋 · 𝑥) sin(𝜋 · 𝑦) sin(𝑡 + 1), 𝑢− = 2 sin(𝜋 · 𝑥) sin(𝜋 · 𝑦) sin(𝑡 + 1).

Other relevant parameters are set as: 𝛽+ = 1, 𝛽− = 1
2 , Ω+ = (0, 1) × (0, 1), Ω− =

(1, 2) × (0, 1), Γ : 𝑥 = 1, and 𝑇 = 1. The boundary condition and jump interface condition

satisfy 𝑢 = 0 on 𝜕Ω, [𝑢] |Γ = 0 on Γ, and [𝛽(𝑥, 𝑦) 𝜕𝑢
𝜕®𝑛 ] |Γ = 0. Both 𝑓 + and 𝑓 − can be

computed by using 𝑢+, 𝑢−, 𝛽+, and 𝛽−.

Numerical results are displayed in Table 4.1, where the 𝐿2 norm errors appear to

satisfy the optimal convergence rate. In additional, at each column, the error between the

analytical solution and numerical solution is tending to be larger when 𝛾 decreases, which

indicates the coefficient 𝐶 (𝛾) in inequality (4.27) is proportional to 1
𝛾
. And this negative

behavior is reduced effectively while smaller mesh size ℎ and time step 𝜏 are used.

4.5.2. Data Assimilation Performance without Observation Noise. We now in-

vestigate the numerical performance for the data assimilation problem utilizing the iterative

methods in section 4.4. In this example, we assume there is no noise in the distributed
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Table 4.1. The finite element convergence rate for the recovered initial condition 𝑢0 of the
Second order Parabolic Interface equation. Here 𝑢0 ≈ 𝑢0, 1

64
.

Finite Element Convergence Rate
𝛾 | |𝑢0 − 𝑢0, 18

| | | |𝑢0 − 𝑢0, 1
16
| | rate | |𝑢0 − 𝑢0, 1

32
| | rate #

1 1.0 × 10−3 2.8 × 10−4 1.85 5.7 × 10−5 2.30
1
10 3.9 × 10−3 1.1 × 10−3 1.84 2.7 × 10−4 2.03
1
50 1.1 × 10−2 2.7 × 10−3 2.03 5.1 × 10−4 2.40
1

200 2.7 × 10−2 6.2 × 10−3 2.12 1.5 × 10−3 2.05
1

500 3.6 × 10−2 7.2 × 10−3 2.32 1.4 × 10−3 2.36
1

1000 4.0 × 10−2 7.9 × 10−3 2.33 1.6 × 10−3 2.31

observations. Hence, the sample is given by the exact solution. We test the expected nu-

merical performance by adjusting the regularization parameter 𝛾. The spatial and temporal

step sizes are set to 1/50 and 1/200, respectively.

Distributed observations are generated by the exact solution

𝑢+ = sin(𝜋 · 𝑥) sin(𝜋 · 𝑦) sin(𝑡 + 1), 𝑢− = 2 sin(𝜋 · 𝑥) sin(𝜋 · 𝑦) sin(𝑡 + 1).

Other relevant parameters are set as: 𝛽+ = 1, 𝛽− = 1
2 , Ω+ = (0, 1) × (0, 1), Ω− =

(1, 2) × (0, 1), Γ : 𝑥 = 1, 𝑇 = 1. The boundary condition and jump interface condition

satisfy: 𝑢 = 0 on 𝜕Ω, [𝑢] |Γ = 0 on Γ, and [𝛽(𝑥, 𝑦) 𝜕𝑢
𝜕®𝑛 ] |Γ = 0 on Γ. Both 𝑓 + and 𝑓 − can be

computed by using 𝑢+, 𝑢−, 𝛽+, 𝛽−.

In Table 4.2 and 4.3, the error between the numerical results and the observations

(or the exact solution) becomes smaller as 𝛾 decreases from 1 to 1
10000 . The numerical

results for the recovered initial condition becomes more accurate correspondingly. These

observations match our practical expectation.

Furthermore, the convergence comparison of the two iterative methods indicates

that, in practice, the conjugate gradient method is preferred for the moderate 𝛾 because of

its higher convergence rate, and the steepest gradient is a prior option for the small 𝛾 due to

its capability for maintaining the stability.
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Table 4.2. Conjugate Gradient Method: data assimilation result without noise for the
Second order Parabolic Interface equation. 𝑢 and 𝑢ℎ are the exact solution and the numerical
simulation performance, | |𝑢 − 𝑢ℎ | |𝐿2 =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥0, and | |𝑢 − 𝑢ℎ | |𝐿∞ =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 −

𝑢𝑛
ℎ
∥𝐿∞ (Ω) .

𝐿2, 𝐿∞ Norm of 𝑢 − 𝑢ℎ: Conjugate Gradient Method
𝛾 | |𝑢 − 𝑢ℎ | |𝐿2 | |𝑢 − 𝑢ℎ | |𝐿∞ Iteration #
1 9.26 × 10−2 1.70 × 10−1 3
1

10 6.32 × 10−2 1.18 × 10−1 12
1

200 8.50 × 10−3 1.87 × 10−2 14
1

2000 2.42 × 10−3 6.20 × 10−3 21
1

10000 \ \ ∞

Table 4.3. Steepest Descent Method: data assimilation result without noise for the Second
order Parabolic Interface equation. 𝑢 and 𝑢ℎ are the exact solution and the numerical
simulation performance, | |𝑢 − 𝑢ℎ | |𝐿2 =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥0, and | |𝑢 − 𝑢ℎ | |𝐿∞ =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 −

𝑢𝑛
ℎ
∥𝐿∞ (Ω) .

𝐿2, 𝐿∞ Norm of 𝑢 − 𝑢ℎ: Steepest Descent Method
𝛾 | |𝑢 − 𝑢ℎ | |𝐿2 | |𝑢 − 𝑢ℎ | |𝐿∞ Iteration#
1 9.26 × 10−2 1.70 × 10−1 4
1

10 6.35 × 10−2 1.19 × 10−1 14
1

200 1.08 × 10−2 1.90 × 10−2 50
1

2000 3.42 × 10−3 5.83 × 10−3 59
1

10000 2.08 × 10−3 4.82 × 10−3 60

4.5.3. Data Assimilation Performance Test with Observation Noise. We now

consider a more realistic case, which introduces noise with a normal distribution𝑁 (0, 1/100)

into the observation sample. For the finite element approximation we still use a mesh size

of 1/50 and a time step of 1/200. The numerical data assimilation performance is shown

by altering 𝛾.

The exact solution is given by

𝑢+ = sin(𝜋 · 𝑥) sin(𝜋 · 𝑦) sin(𝑡 + 1), 𝑢− = 2 sin(𝜋 · 𝑥) sin(𝜋 · 𝑦) sin(𝑡 + 1).
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Other relevant parameters are set as 𝛽+ = 1, 𝛽− = 1
2 ,Ω+ = (0, 1)×(0, 1),Ω− = (1, 2)×(0, 1),

Γ : 𝑥 = 1, and 𝑇 = 1. The boundary condition and jump interface condition satisfy

𝑢 = 0 on 𝜕Ω, [𝑢] |Γ = 0 on Γ, and [𝛽(𝑥, 𝑦) 𝜕𝑢
𝜕®𝑛 ] |Γ = 0 on Γ. Both 𝑓 + and 𝑓 − are computed

by using 𝑢+, 𝑢−, 𝛽+, and 𝛽−.

Based on this setup, the distributed observations are provided by adding noise from

the normal distribution 𝑁 (0, 1/100) into the exact solution. In this experiment, due to the

differences between the exact solution and the observations, we investigate the distance

from the numerical results to both the exact solution and the observations.

Table 4.4. Conjugate Gradient Method: data assimilation result with noise for the Second
order Parabolic Interface equation. 𝑢 and 𝑢ℎ are the exact solution and the numerical
simulation performance, | |𝑢 − 𝑢ℎ | |𝐿2 =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥0, and | |𝑢 − 𝑢ℎ | |𝐿∞ =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 −

𝑢𝑛
ℎ
∥𝐿∞ (Ω) .

𝐿2, 𝐿∞ Norm of 𝑢 − 𝑢ℎ: Conjugate Gradient Method
𝛾 | |𝑢 − 𝑢ℎ | |𝐿2 | |𝑢 − 𝑢ℎ | |𝐿∞ Iteration #
1 9.03 × 10−2 1.70 × 10−1 3
1

10 6.32 × 10−2 1.18 × 10−1 16
1

200 1.01 × 10−2 1.83 × 10−2 15
1

2000 \ \ ∞
1

10000 \ \ ∞

Table 4.5. Steepest Descent Method: data assimilation result with noise for the Second order
Parabolic Interface equation. 𝑢 and 𝑢ℎ are the exact solution and the numerical simulation
performance, | |𝑢 − 𝑢ℎ | |𝐿2 =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥0, and | |𝑢 − 𝑢ℎ | |𝐿∞ =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥𝐿∞ (Ω) .

𝐿2, 𝐿∞ Norm of 𝑢 − 𝑢ℎ: Steepest Descent Method
𝛾 | |𝑢 − 𝑢ℎ | |𝐿2 | |𝑢 − 𝑢ℎ | |𝐿∞ Iteration #
1 9.02 × 10−2 1.70 × 10−1 4
1

10 6.35 × 10−2 1.19 × 10−1 14
1

200 1.09 × 10−2 1.92 × 10−2 50
1

2000 3.21 × 10−3 6.01 × 10−3 59
1

10000 2.50 × 10−3 4.90 × 10−3 60
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Table 4.6. Steepest Descent Method: data assimilation result with noise for the Second order
Parabolic Interface equation. 𝑢̂ and 𝑢ℎ are the exact solution and the numerical simulation
performance, | |𝑢̂ − 𝑢ℎ | |𝐿2 =

∑𝑁
𝑛=1 𝜏∥𝑢̂𝑛 − 𝑢𝑛ℎ∥0, and | |𝑢̂ − 𝑢ℎ | |𝐿∞ =

∑𝑁
𝑛=1 𝜏∥𝑢̂𝑛 − 𝑢𝑛ℎ∥𝐿∞ (Ω) .

𝐿2, 𝐿∞ Norm of 𝑢̂ − 𝑢ℎ: Steepest Descent Method
𝛾 | |𝑢̂ − 𝑢ℎ | |𝐿2 | |𝑢̂ − 𝑢ℎ | |𝐿∞ Iteration #
1 9.38 × 10−2 1.94 × 10−1 4
1

10 6.75 × 10−2 1.43 × 10−1 14
1

200 1.70 × 10−2 4.77 × 10−2 50
1

2000 1.07 × 10−2 3.71 × 10−2 59
1

10000 1.03 × 10−2 3.58 × 10−2 60

In Table 4.4 and 4.5, the convergence comparison again confirms the advantages

of a higher convergence rate from the conjugate gradient method and reliable stability of

the steepest descent method. In Table 4.6, the distance measured with the 𝐿2 and 𝐿∞

norms between the observations and the numerical results always becomes smaller as 𝛾

decreases. In Table 4.4, a desired accuracy of the recovered initial condition, based on the

noisy observations, can be attained by adjusting the characterization parameter 𝛾, which

validates the proposed methods to solve the data assimilation problem for the second order

parabolic interface equation.

4.5.4. Data Assimilation Results using Incremental POD. In this section, we

present the numerical results using incremental POD data compression. The observed data

and parabolic interface model have the same set-up in Section 4.5.2. For the numerical

discretization, we use 𝜏 = 1/100 and ℎ = 1/32.

In Table 4.7, we show that the use of incremental POD saves storage at least

%70 − %80, which effectively solves the memory issues for gradient descent method in the

data assimilation problems. The promising part from incremental POD is that we might not

compromise any accuracy with the approximated data if the POD truncation is less than the

gradient tolerance, which are displayed in Table 4.8. This is probably due to the correction
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of the iterative gradient method. It also might be the total information loss in our example

is very minimal. These are interesting behaviors deserving more investigation for the POD

data compression in optimization problem.

Table 4.7. Memory saved from the incremental POD for the data assimilation of the Second
order Parabolic Interface equation. 1024 × 100 is the data matrix size we need to save in
gradient methods, 1024 × 9 or 1024 × 15 is the data matrix size after POD compression.
The POD truncation thresholds are all 10−10.

Memory Saved During Iterations
𝛾 Original Data size Compressed Data size Storage Saved
1 1024 × 100 1024 × 9 82%
1

10 1024 × 100 1024 × 15 70%
1

50 1024 × 100 1024 × 15 70%

Table 4.8. Data assimilation comparison between the use and no use of the incremental
POD of the Second order Parabolic Interface equation. 𝑢 is the exact solution, 𝑢ℎ is
the numerical result without compression, 𝑢𝐶

ℎ
is the results applied data compression,

| |𝑢 − 𝑢ℎ | |𝐿2 =
∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥0 and | |𝑢 − 𝑢𝐶

ℎ
| |𝐿2 =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛𝐶ℎ ∥0.

Error comparison between compressed and no-compressed data
𝛾 | |𝑢 − 𝑢ℎ | |𝐿2 | |𝑢 − 𝑢𝐶

ℎ
| |𝐿2

1 4.69 × 10−2 4.69 × 10−2

1
10 6.51 × 10−3 6.51 × 10−3

1
50 3.05 × 10−3 3.05 × 10−3

4.5.5. Data Assimilation Results using Parallel Algorithm. This section presents

the numerical results using the parallel algorithm developed in Section 3.6. We still use

the same model parameter as Section 4.5.2 to generate observations and test numerical

performance.

Table 4.9 shows that the computational cost is reduced when we simulate the VDA

problem in a parallel manner. In Table 4.10, the numerical results show that the parallel

algorithm does not affect the data assimilation accuracy. One disadvantage observed from
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our numerical experiments is that some of the decoupled problems are not well-conditioned.

It means the preconditioning is necessary for the parallel algorithm, and it will be an

interesting near future work.

Table 4.9. Computational cost saved from a sequential test of the Parallel algorithm

Sequential test of Parallel algorithm 𝛾 = 1 no noise
# of partition # of iteration Time saved

8 6 ≈ 25%
16 8 ≈ 50%
32 8 ≈ 75%

Table 4.10. Data assimilation performance comparison between the parallel algorithm
and the steepest gradient descent. | |𝑢 − 𝑢ℎ | |𝑝𝐿2 =

∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥

𝑝

0 and | |𝑢 − 𝑢ℎ | |𝐿2 =∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥0 are numerical results with and without parallel algorithm, | |𝑢 − 𝑢ℎ | |𝑝𝐿∞ =∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥

𝑝

𝐿∞ and | |𝑢 − 𝑢ℎ | |𝐿∞ =
∑𝑁
𝑛=1 𝜏∥𝑢𝑛 − 𝑢𝑛ℎ∥𝐿∞ are defined same.

Accuracy comparison 𝛾 = 1 no noise
# partition | |𝑢 − 𝑢ℎ | |𝑝𝐿2 | |𝑢 − 𝑢ℎ | |𝑝𝐿∞ | |𝑢 − 𝑢ℎ | |𝐿2 | |𝑢 − 𝑢ℎ | |𝐿∞

8 9.46 × 10−2 1.80 × 10−1 9.46 × 10−2 1.80 × 10−2

16 9.46 × 10−2 1.80 × 10−1 9.46 × 10−2 1, 80 × 10−1

32 9.46 × 10−2 1.80 × 10−1 9.46 × 10−2 1.80 × 10−1
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5. DATA ASSIMILATION FOR STOKES-DARCY EQUATION

5.1. BACKGROUND FOR THE STOKES-DARCY MODEL

The Stokes-Darcy model is receiving more attentions nowadays due to its potential

applications to a variety of flow phenomena, for instance, the hydrological system where

surface water percolates through rock and sand [69–71], petroleum extraction [72–80], and

industrial filtration [81, 82]. In recent decades, a significant effort has been on studying this

sophisticated interface system both theoretically and numerically [41, 42, 83–98]. However,

these existing works were dedicated to the idealized model, i.e., the relevant input data, such

as initial condition, boundary condition, sink/source term, and diffusion coefficients, are

entirely provided for the model prediction. In real implementations, some of these input

data literally remain unknown or in uncertainty [99–101]. Therefore, one of the challenging

problems is to identify a set of faithful needed data such that the forecast of the target flow

can be performed reliably. This is where the data assimilation comes in [102].

We consider a free flow in a bounded domain Ω 𝑓 and a porous media flow in another

bounded domain Ω𝑝. These two flows are coupled together in the domain Ω through the

interface Γ = Ω̄𝑝 ∩ Ω̄ 𝑓 such that Ω̄ = Ω̄𝑝 ∪ Ω̄ 𝑓 . We also let Γ𝑝 = 𝜕Ω𝑝 \Γ and Γ 𝑓 = 𝜕Ω 𝑓 \Γ.

A Stokes-Darcy model can be used to describe this coupled fluid phenomena. Then the

porous media flow is governed by the Darcy equation:

𝜕𝜙

𝜕𝑡
− ∇ · (K∇𝜙) = 𝑓𝑝 in Ω𝑝 × (0, 𝑇],

𝜙(·, 0) = 𝜙0 in Ω𝑝,

𝜙 = 0 on Γ𝑝,

(5.1)
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where 𝜙 denotes the hydraulic head, K is the hydraulic conductivity tensor assumed to be

homogeneous isotropic in this paper, i.e., K = 𝐾Iwith a constant 𝐾 , and 𝑓𝑝 is a sink /source

term. On the other hand, the free flow is governed by the Stokes equation:

𝜕𝒖

𝜕𝑡
− ∇ · T(𝒖, 𝑝) = 𝒇 𝑓 in Ω 𝑓 × (0, 𝑇],

∇ · 𝒖 = 0 in Ω 𝑓 × (0, 𝑇],

𝒖(·, 0) = 𝒖0 in Ω 𝑓 ,

𝒖 = 0 on Γ 𝑓 ,

(5.2)

where 𝒖 denotes the fluid velocity, T(𝒖, 𝑝) = 2𝜈D(𝒖) − 𝑝I is the stress tensor, D(𝒖) =

1
2 (∇𝒖 + ∇𝑇𝒖) is the deformation tensor, 𝜈 is the kinematic viscosity of the fluid, 𝑝 is the

kinematic pressure, and 𝒇 𝑓 is a general external forcing term that includes gravitational

acceleration. Systems (5.1) and (5.2) interact on Γ through the Beavers-Joseph interface

conditions, see [103–112]:

𝒖 · 𝒏 𝑓 = K∇𝜙 · 𝒏𝑝,

− 𝝉 · (T(𝒖, 𝑝) · 𝒏 𝑓 ) = 𝛼𝝉 · (𝒖 + K∇𝜙),

− 𝒏 𝑓 · (T(𝒖, 𝑝) · 𝒏 𝑓 ) = 𝑔(𝜙 − 𝑧),

(5.3)

where 𝒏 𝑓 and 𝒏𝑝 denote the outer normal vectors to the fluid and the porous media regions

on the interface Γ, respectively, 𝝉 denotes the unit tangential vector to the interface Γ, 𝛼 is a

constant depending on 𝜈 and K, 𝑔 is the gravitational acceleration, 𝑧 is a constant assumed

to be 0 from now on.
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For the purpose of discussing the data assimilation problem, it is necessary to

appropriately understand the Stokes-Darcy model. We first define the Hilbert spaces

𝑋𝑝 := {𝜓 ∈ 𝐻1 (Ω𝑝

)
: 𝜓 = 0 on 𝜕Ω𝑝 \ Γ},

𝑿 𝑓 := {𝒗 ∈ 𝑯1 (Ω 𝑓

)
: 𝒗 = (𝑣1, 𝑣2)𝑇 = 0 on 𝜕Ω 𝑓 \ Γ},

𝑿 := 𝑋𝑝 × 𝑿 𝑓 , 𝑿
𝑓

div := {𝒗 ∈ 𝑿 𝑓 : ∇ · 𝒗 = 0}, 𝑿div := 𝑋𝑝 × 𝑿 𝑓

div,

𝑄 := 𝐿2 (Ω 𝑓

)
, 𝑳2(Ω) := 𝐿2 (Ω𝑝

)
× 𝑳2 (Ω 𝑓

)
and the corresponding norms

∥𝜓∥𝑋𝑝
:= ∥𝜓∥𝐻1 (Ω𝑝) , ∥𝒗∥𝑿 𝑓

:= ∥𝒗∥𝑯1 (Ω 𝑓 ) =
(
∥𝑣1∥2

𝐻1 (Ω 𝑓 ) + ∥𝑣2∥2
𝐻1 (Ω 𝑓 )

) 1
2
,

∥𝑽∥𝑿 :=
(
∥𝒗∥2

𝑿 𝑓
+ ∥𝜓∥2

𝑋𝑝

) 1
2
, ∥𝒗∥

𝑿
𝑓

div
:= ∥𝒗∥𝑯1 (Ω 𝑓 ) ,

∥𝑽∥𝑿div :=
(
∥𝒗∥2

𝑿 𝑓
+ ∥𝜓∥2

𝑋𝑝

) 1
2
, ∥𝑽∥𝑳2 (Ω) :=

(
∥𝜓∥2

𝐿2 (Ω𝑝) + ∥𝒗∥2
𝑳2 (Ω 𝑓 )

) 1
2
.

For a domain 𝐷, (·, ·)𝐷 denotes the 𝐿2 inner product on 𝐷, (·, ·)𝐻 denotes the inner product

for other Hilbert spaces 𝐻 (𝐷). Depending on the context, ⟨·, ·⟩ can represent the inner

product on the interface Γ, or a general duality between a Banach space and its dual space.

For simplicity, let ∥ · ∥0 denote all the 𝐿2 norms, 𝐻𝑚 (𝐷) denote the Sobolev space𝑊𝑚,2(𝐷).

Besides, considering the temporal-spatial function spaces, let 𝐿𝑝 (0, 𝑇 ;B) = 𝑊0,𝑝 (0, 𝑇 ;B)

and 𝐻𝑚 (0, 𝑇 ;B) = 𝑊𝑚,2(0, 𝑇 ;B), where B is a generic Banach space. We use these
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notations to define the following bilinear forms and linear functionals:

𝑎𝑝 (𝜙, 𝜓) = (𝐾∇𝜙,∇𝜓)Ω𝑝
, ∀𝜙, 𝜓 ∈ 𝑋𝑝,

𝑎 𝑓 (𝒖, 𝒗) = 2𝜈 (D (𝒖) ,D (𝒗))Ω 𝑓
∀𝒖, 𝒗 ∈ 𝑿 𝑓 ,

𝑎 (𝑼,𝑽) = 𝑎 𝑓 (𝒖, 𝒗) + 𝑎𝑝 (𝜙, 𝜓) + ⟨𝑔𝜙, 𝒗 · 𝒏 𝑓 ⟩ − ⟨𝒖 · 𝒏 𝑓 , 𝜓⟩

+ 𝛼⟨𝑃𝜏 (𝒖 + K∇𝜙) , 𝑃𝜏𝒗⟩ ∀𝑼 = (𝜙, 𝒖)𝑇 ∈ 𝑿, ∀𝑽 = (𝜓, 𝒗)𝑇 ∈ 𝑿,

𝑏 𝑓 (𝒗, 𝑝) = − (∇ · 𝒗, 𝑝)Ω 𝑓
, ∀𝒗 ∈ 𝑿 𝑓 , ∀𝑝 ∈ 𝑄,

𝑏 (𝑽, 𝑝) = 𝑏 𝑓 (𝒗, 𝑝) , ∀𝑽 ∈ 𝑿, ∀𝑝 ∈ 𝑄,

⟨𝑭,𝑽⟩ = ( 𝑓𝑝, 𝜓)Ω𝑝
+ ( 𝒇 𝑓 , 𝒗)Ω 𝑓

∀𝑭 = ( 𝑓𝑝, 𝒇 𝑓 )𝑇 ∈ 𝑿′, ∀𝑽 ∈ 𝑿,

⟨𝜕𝑼
𝜕𝑡
,𝑽⟩ = ⟨𝜕𝜙

𝜕𝑡
, 𝜓⟩ + ⟨𝜕𝒖

𝜕𝑡
, 𝒗⟩ ∀𝑼 ∈ 𝑯1(0, 𝑇 ; 𝑿′), ∀𝑽 ∈ 𝑿,

(5.4)

where 𝑃𝜏 denotes the projection onto the tangent space on Γ, i.e., 𝑃𝜏𝒖 = (𝒖 · 𝝉)𝝉. For

⟨𝑃𝜏 (K∇𝜙) , 𝑃𝜏𝒗⟩ in (5.4), we need the trace space defined as H1/2
00 (Γ):=𝑿 𝑓 |Γ, which

is a non-closed subspace of H1/2
0 (Γ) and has continuous zero extension to H1/2

0 (𝜕Ω 𝑓 ),

⟨𝑃𝜏 (K∇𝜙) , 𝑃𝜏𝒗⟩ is then interpreted as a duality between (H1/2
00 (Γ))′ and H1/2

00 (Γ). See

[106] and references cited therein for more details.

We use bilinear forms 𝑎(·, ·) and 𝑏(·, ·) to define linear operators 𝐴, 𝐴∗, 𝐵, and 𝐵∗:

𝑎(𝑼,𝑽) = ⟨𝐴𝑼,𝑽⟩ = ⟨𝑼, 𝐴∗𝑽⟩, 𝑏(𝑽, 𝑝) = ⟨𝐵𝑽, 𝑝⟩ = ⟨𝑽, 𝐵∗𝑝⟩, (5.5)

where 𝐴 ∈ L (𝑿, 𝑿′), 𝐵 ∈ L (𝑿, 𝑄′), 𝐴∗ ∈ L (𝑿, 𝑿′) and 𝐵∗ ∈ L (𝑄, 𝑿′) are the adjoint

operator of 𝐴 and 𝐵, and L is the set of linear and continuous operators for the relevant

spaces.
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Testing systems (5.1) and (5.2) with (𝜓, 𝒗, 𝑞)𝑇 ∈ 𝑿 ×𝑄 and incorporating the three

interface conditions in (5.3), we obtain the weak formulation of the Stokes-Darcy model:



⟨𝜕𝜙
𝜕𝑡
, 𝜓⟩ + 𝑎𝑝 (𝜙, 𝜓) − ⟨𝒖 · 𝒏 𝑓 , 𝜓⟩ = ⟨ 𝑓𝑝, 𝜓⟩ ∀𝜓 ∈ 𝑋𝑝,

⟨𝜕𝒖
𝜕𝑡
, 𝒗⟩ + 𝑎 𝑓 (𝒖, 𝒗) + 𝑏 𝑓 (𝒗, 𝑝) + ⟨𝑔𝜙, 𝒗 · 𝒏 𝑓 ⟩ + 𝛼⟨𝑃𝜏 (𝒖 + K∇𝜙) , 𝑃𝜏𝒗⟩

= ⟨ 𝒇 𝑓 , 𝒗⟩ ∀𝒗 ∈ 𝑿 𝑓 ,

𝑏 𝑓 (𝒖, 𝑞) = 0 ∀𝑞 ∈ 𝑄,

𝜙(·, 0) = 𝜙0 in 𝐿2(Ω𝑝), 𝒖(·, 0) = 𝒖0 in 𝑳2(Ω 𝑓 ).

(5.6)

By definitions in (5.4)-(5.5) and denoting𝑼0 = (𝜙0, 𝒖0)𝑇 , (5.6) is equivalent to the following

expression: 
⟨𝜕𝑼
𝜕𝑡
,𝑽⟩ + 𝑎 (𝑼,𝑽) + 𝑏 (𝑽, 𝑝) = ⟨𝑭,𝑽⟩ ∀𝑽 ∈ 𝑿,

𝑏 (𝑼, 𝑞) = 0 ∀𝑞 ∈ 𝑄,

𝑼(·, 0) = 𝑼0 in 𝑳2(Ω).

(5.7)

An operator form of (5.7) can be written as:



𝜕𝑼

𝜕𝑡
+ 𝐴𝑼 + 𝐵∗𝑝 = 𝑭 in 𝑿′,

𝐵𝑼 = 0 in 𝑄′,

𝑼(·, 0) = 𝑼0 in 𝑳2(Ω).

(5.8)

If we consider 𝐵𝑼 = 0 ∈ 𝑄′ above as a constraint and restrict the discussion in space 𝑿𝑑𝑖𝑣,

a more concise form of (5.8) is


𝜕𝑼

𝜕𝑡
+ 𝐴𝑼 = 𝑭 in 𝑿′

div,

𝑼(·, 0) = 𝑼0 in 𝑳2(Ω).
(5.9)
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Recall that (5.6), (5.7), (5.8), and (5.9) sit in an equivalent class, the well-posedness of each

is further guaranteed by the continuous inf-sup condition [106]:

inf
0≠𝑞∈𝑄

sup
0≠V∈X

𝑏 (𝑽, 𝑞)
∥𝑞∥𝑄 ∥𝑽∥𝑿

≥ 𝛽, 𝛽 is a positive constant. (5.10)

For each 𝑼0 ∈ 𝑳2(Ω) and 𝑭 ∈ 𝑳2(0, 𝑇 ; 𝑿′), the coupled Stokes-Darcy system (5.8) admits

a unique solution (𝑼, 𝑝) ∈ 𝑳2(0, 𝑇 ; 𝑿) ∩ 𝑯1(0, 𝑇 ; 𝑿′) × 𝐿2(0, 𝑇 ;𝑄) (cf. [113]). Thus,

we can use formulation (5.8) to define the operator 𝑀 : 𝑳2(0, 𝑇 ; 𝑿) ∩ 𝑯1(0, 𝑇 ; 𝑿′) ×

𝐿2(0, 𝑇 ;𝑄) × 𝑳2(Ω) → 𝑳2(0, 𝑇 ; 𝑿′) × 𝐿2(0, 𝑇 ;𝑄′) × 𝑳2(Ω)

𝑀

©­­­­­«
𝑼

𝑝

𝑼0

ª®®®®®¬
=

©­­­­­«
𝜕𝑼
𝜕𝑡

+ 𝐴𝑼 + 𝐵∗𝑝 − 𝑭

𝐵𝑼

𝑼(·, 0) −𝑼0

ª®®®®®¬
.

With a simple calculus of variation, one can see that the Fréchet derivative operator 𝑀′ is a

bĳective mapping, the surjective of𝑀′ is thereafter self-contained. These basic formulations

and properties will allow us to use Lagrange multiplier rule later to find the optimal solution

for cost functionals constrained by the Stokes-Darcy equation. In addition, throughout this

Section, 𝐶, 𝐶𝑖, 𝐶 𝑗

𝑖
and 𝐶𝑖, 𝑗 ,𝑘 are generic positive constants that are independent of the mesh

parameter ℎ and the time step 𝜏, and are not necessarily the same at each occurrence.

5.2. MODELING THE DATA ASSIMILATION PROBLEM

5.2.1. Mathematical Formulation and Wellposedness Analysis. Let 𝒀𝑎𝑑 be an

admissible set for the initial value that could be either 𝑳2(Ω) or a closed convex subset

of 𝑳2(Ω) in which we look for a solution to our data assimilation problem stated as:

given 𝑇 > 0, 𝛾 > 0, and the distributed observation ̂𝑼 = (𝜙, 𝒖̂)𝑇 ∈ 𝐿2(0, 𝑇 ; 𝑳2(Ω)), the
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variational data assimilation of the Stokes-Darcy model is:

min
𝑼0∈𝒀𝑎𝑑

𝐽 (𝑼0) =
1
2

∫ 𝑇

0
∥𝑼 −𝑼(𝑼0)∥2

0𝑑𝑡 +
𝛾

2
∥𝑼0∥2

0 subject to (5.8) (5.11)

where the mapping𝑼(𝑼0) : 𝑳2(Ω) → 𝑳2(0, 𝑇 ; 𝑿) ∩𝑯1(0, 𝑇 ; 𝑿′) is defined as the solution

of (5.8) with initial condition𝑼0. The minimization of 1
2

∫ 𝑇
0 ∥̂𝑼−𝑼(𝑼0)∥2

0𝑑𝑡 in (5.11) is the

primary goal, which drives the state variable 𝑼(𝑼0) close to the distributed observation 𝑼

via adjusting the initial data 𝑼0. The second term 𝛾

2 ∥𝑼0∥2
0 is a 𝑳2-Tikhonov regularization.

The parameter 𝛾 measures the relative importance of the minimization between terms∫ 𝑇
0 ∥̂𝑼 −𝑼(𝑼0)∥2

0𝑑𝑡 and ∥𝑼0∥2
0.

Remark 14 Problem (5.11) can also be written as:

min
𝑼0∈𝒀𝒂𝒅

𝐽 (𝑼0) =
1
2

∫ 𝑇

0
∥𝑼̂ −𝑼(𝑼0)∥2

0𝑑𝑡 +
𝛾

2
∥𝑼0∥2

0 (5.12)

subject to 
𝜕𝑼

𝜕𝑡
+ 𝐴𝑼 = 𝑭 in 𝑿′

div,

𝑼(·, 0) = 𝑼0 in 𝑳2(Ω).
(5.13)

Provided that 𝑭, 𝑼 ∈ 𝐿2(0, 𝑇 ; 𝑳2(Ω)) and 𝜕Ω, Γ are regular enough, we have the

following wellposedeness results.

Theorem 18 There exists a unique solution 𝑼★0 ∈ 𝒀𝑎𝑑 for the data assimilation problem

(5.11). Furthermore, the solution 𝑼★0 can be characterized by

𝐽′(𝑼★0 ) (𝒁0 −𝑼★0 ) =
∫ 𝑇

0

∫
Ω

(𝑼(𝑼★0 ) −𝑼) (𝑼(𝒁0) −𝑼(𝑼★0 ))𝑑𝑥𝑑𝑦𝑑𝑡

+ 𝛾
∫
Ω

𝑼★0 (𝒁0 −𝑼★0 )𝑑𝑥𝑑𝑦 ≥ 0 ∀𝒁0 ∈ 𝒀𝑎𝑑 .

(5.14)



108

Proof:

Since 𝐽 (𝑼0) is nonnegative and thus bounded from below, the infimum exists. Let {𝑼𝑛
0} ∈

𝒀𝑎𝑑 be a minimizing sequence such that

𝐽 (𝑼𝑛
0) → inf

𝑼0∈𝒀𝑎𝑑

𝐽 (𝑼0).

The coercivity of 𝐽 (𝑼0) granted by term 𝛾

2 ∥𝑼0∥2 leads to the 𝑳2 boundedness of the

sequence {𝑼𝑛
0}. By the well-posedness results the Stokes-Darcy equation, {𝑼(𝑼𝑛

0)} is

bounded in 𝑾 (0, 𝑇) = 𝑳2(0, 𝑇 ; 𝑿div) ∩ 𝑯1(0, 𝑇 ; (𝑿div)′). Since the closed convex set

in 𝑳2(Ω) is weakly closed and Hilbert spaces are weakly compact, the Eberlin-Šmulian

theorem implies there exists a pair of subsequence ({𝑼𝑛𝑘

0 }, {𝑼(𝑼𝑛𝑘

0 )}) such that

𝑼𝑛𝑘

0 → 𝑼★0 ∈ 𝒀𝑎𝑑 weakly,

𝑼(𝑼𝑛𝑘

0 ) → 𝑼★ ∈ 𝑳2(0, 𝑇 ; 𝑿div) weakly,

𝑼(𝑼𝑛𝑘

0 ) → 𝑼★ ∈ 𝑯1(0, 𝑇 ; (𝑿div)′) weakly.

(5.15)

The next step is to show 𝑼★ = 𝑼(𝑼★0 ). First, the continuity of the bilinear form 𝑎(𝑼,𝑽)

leads to

𝑎(𝑼(𝑼𝑛𝑘

0 ),𝑽) = ⟨𝐴𝑼(𝑼𝑛𝑘

0 ),𝑽⟩ = ⟨𝑼(𝑼𝑛𝑘

0 ), 𝐴∗𝑽⟩

→ ⟨𝑼★, 𝐴∗𝑽⟩ = ⟨𝐴𝑼★,𝑽⟩ = 𝑎(𝑼★,𝑽)
(5.16)

as 𝑘 → ∞, where 𝐴∗ is the adjoint operator of 𝐴.

Considering the weak formulation:

∫ 𝑇

0
⟨
𝜕𝑼(𝑼𝑛𝑘

0 )
𝜕𝑡

,𝑽⟩𝑑𝑡 +
∫ 𝑇

0
𝑎(𝑼(𝑼𝑛𝑘

0 ),𝑽)𝑑𝑡 + (𝑼(𝑼𝑛𝑘

0 ) (·, 0),𝑽0)

=

∫ 𝑇

0
⟨𝑭,𝑽⟩𝑑𝑡 + (𝑼𝑛𝑘

0 ,𝑽0) ∀(𝑽,𝑽0) ∈ 𝑿div × 𝑳2(Ω).
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Based on the convergence results in (5.15) and (5.16), we have

∫ 𝑇

0
⟨𝜕𝑼

★

𝜕𝑡
,𝑽⟩𝑑𝑡 +

∫ 𝑇

0
𝑎(𝑼∗,𝑽)𝑑𝑡 + (𝑼★(·, 0),𝑽0) =

∫ 𝑇

0
⟨𝑭,𝑽⟩𝑑𝑡 + (𝑼★0 ,𝑽0),

which indicates that 𝑼★ = 𝑼(𝑼★0 ) via the definition of 𝑼(𝑼★0 ).

Now by the weakly lower semi-continuity of the cost functional 𝐽 (𝑼0), we deduce

𝐽 (𝑼★
0 ) =

𝛾

2
∥𝑼★0 ∥

2
0 +

1
2

∫ 𝑇

0
∥𝑼(𝑼★

0 ) −𝑼∥2
0𝑑𝑡

≤ lim inf
𝑘→∞

𝐽 (𝑼𝑛𝑘

0 ) = inf
𝑼0∈𝒀𝑎𝑑

𝐽 (𝑼0) ≤ 𝐽 (𝑼★0 ).

Hence,

𝐽 (𝑼★0 ) = inf
𝑼0∈𝒀𝑎𝑑

𝐽 (𝑼0),

where 𝑼★0 is the minimizer we need.

By the linear property of the Stokes-Darcy model, one can find out that 𝐹 (𝑼0) is

Fréchet differentiable and its second order derivative can be calculated as follows:

𝐽′′(𝑼0) (𝒁0, 𝒁0) =
∫ 𝑇

0

∫
Ω

𝑼2(𝒁0)𝑑𝑥𝑑𝑦𝑑𝑡 + 𝛾
∫
Ω

𝒁2
0𝑑𝑥𝑑𝑦 ≥ 𝛾∥𝒁0∥2

0 ∀𝒁0 ∈ 𝒀𝑎𝑑 .

Based on the standard argument for convex minimization we know the minimizer 𝑼★0 is

unique. Further, 𝑼★0 can be characterized by

𝐽′(𝑼★0 ) (𝒁0 −𝑼★0 ) =
∫ 𝑇

0

∫
Ω

(𝑼(𝑼★0 ) −𝑼) (𝑼(𝒁0) −𝑼(𝑼★0 ))𝑑𝑥𝑑𝑦𝑑𝑡

+ 𝛾
∫
Ω

𝑼★0 (𝒁0 −𝑼★0 )𝑑𝑥𝑑𝑦 ≥ 0 ∀𝒁0 ∈ 𝒀𝑎𝑑 .

This finishes the proof.
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Next, we show that the solution of problem (5.11) is stable regarding to the pertur-

bation of the observational data 𝑼 and the regularization parameter 𝛾.

Theorem 19 The solution of problem (5.11) continuously depends on the observation data

𝑼 and the parameter 𝛾.

Proof: Introducing perturbations 𝜖1 ∈ R on 𝛾 and 𝝐2 ∈ 𝐿2(0, 𝑇 ; 𝑳2(Ω)) on 𝑼

respectively, and letting 𝑼̄0 denote the perturbed optimal solution, we then have∫ 𝑇

0

∫
Ω

(𝑼(𝑼̄0) −𝑼 − 𝝐2) (𝑼(𝒁0) −𝑼(𝑼̄0))𝑑𝑥𝑑𝑦𝑑𝑡

+ (𝛾 + 𝜖1)
∫
Ω

𝑼̄0(𝒁0 − 𝑼̄0)𝑑𝑥𝑑𝑦 ≥ 0 ∀𝒁0 ∈ 𝒀𝑎𝑑 .

(5.17)

Taking 𝒁0 = 𝑼★0 in (5.17) and 𝒁0 = 𝑼̄0 in (5.14), we obtain

∫ 𝑇

0

∫
Ω

(𝑼(𝑼̄0) −𝑼 − 𝝐2) (𝑼(𝑼★0 ) −𝑼(𝑼̄0))𝑑𝑥𝑑𝑦𝑑𝑡

+ (𝛾 + 𝜖1)
∫
Ω

𝑼̄0(𝑼★0 − 𝑼̄0)𝑑𝑥𝑑𝑦 ≥ 0,∫ 𝑇

0

∫
Ω

(𝑼(𝑼★0 ) −𝑼) (𝑼(𝑼̄0) −𝑼(𝑼★0 ))𝑑𝑥𝑑𝑦𝑑𝑡 + 𝛾
∫
Ω

𝑼★0 (𝑼̄0 −𝑼★0 )𝑑𝑥𝑑𝑦 ≥ 0.

Adding the two inequalities together, we have∫ 𝑇

0

∫
Ω

(𝑼(𝑼★0 ) −𝑼(𝑼̄0))2𝑑𝑥𝑑𝑦𝑑𝑡 + (𝛾 + 𝜖1)
∫
Ω

(𝑼★0 − 𝑼̄0)2𝑑𝑥𝑑𝑦

≤
∫ 𝑇

0

∫
Ω

𝝐2(𝑼(𝑼̄0) −𝑼(𝑼★0 ))𝑑𝑥𝑑𝑦𝑑𝑡 + 𝜖1

∫
Ω

𝑼★0 (𝑼
★
0 − 𝑼̄0)𝑑𝑥𝑑𝑦.

(5.18)
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Applying the Cauchy-Schwarz and Young’s inequalities for the right-hand side terms in

(5.18), we have

∫ 𝑇

0

∫
Ω

𝜖2(𝑼(𝑼̄0) −𝑼(𝑼★0 ))𝑑𝑥𝑑𝑦𝑑𝑡 ≤
1
2

∫ 𝑇

0

∫
Ω

(𝑼(𝑼★0 ) −𝑼(𝑼̄0))2𝑑𝑥𝑑𝑦𝑑𝑡 (5.19)

+ 1
2
∥𝝐2∥2

𝐿2 (0,𝑇 ;𝑳2 (Ω)) ,

𝜖1

∫
Ω

𝑼0(𝑼★0 − 𝑼̄0)𝑑𝑥𝑑𝑦 ≤
|𝜖1 |
2

∥𝑼★0 ∥
2
0 +

|𝜖1 |
2

∫
Ω

(𝑼★0 − 𝑼̄0)2𝑑𝑥𝑑𝑦. (5.20)

Combining (5.18)-(5.20) and setting |𝜖1 | ≤ 𝛾

3 , we obtain the inequality

1
2

∫ 𝑇

0

∫
Ω

(𝑼(𝑼★0 ) −𝑼(𝑼̄0))2𝑑𝑥𝑑𝑦𝑑𝑡 + 𝛾
2

∫
Ω

(𝑼★0 − 𝑼̄0)2𝑑𝑥𝑑𝑦 (5.21)

≤ 1
2
∥𝝐2∥2

𝐿2 (0,𝑇 ;𝑳2 (Ω)) +
|𝜖1 |
2

∥𝑼★0 ∥
2
0, (5.22)

which implies that the solution of problem (5.11) continuously depends on the observational

data 𝑼 and the regularization parameter 𝛾.

Remark 15 Continuing on (5.18), a variant of treatment on the term
∫ 𝑇

0

∫
Ω
𝝐2(𝑼(𝑼̄0) −

𝑼(𝑼★0 ))𝑑𝑥𝑑𝑦𝑑𝑡 in (5.18) will produce a different stability estimation:

𝛾

2

∫
Ω

(𝑼★0 − 𝑼̄0)2𝑑𝑥𝑑𝑦 ≤ 1
4
∥𝝐2∥2

𝐿2 (0,𝑇 ;𝑳2 (Ω)) +
|𝜖1 |
2

∥𝑼★0 ∥
2
0. (5.23)

Inequality (5.23) offers more information about how parameter 𝛾 affects the stability of

solution. That is, small 𝛾 will generate ill-conditioning for the data assimilation system.

This is a similar argument of the Theorem 9 in Section 3.1.

5.2.2. First Order Optimality System. To find out the unique optimal solution

such that the objective functional (5.11) is minimized, we apply the Lagrange multiplier

rule which is apparently available due to the property of the operator 𝑀 (surjective of 𝑀′)
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shown in Section 5.1. The Lagrange functional is formed as:

L(𝝀,𝑼, 𝑝,𝑼0) =
1
2

∫ 𝑇

0
∥𝑼 −𝑼∥2

0𝑑𝑡 +
𝛾

2
∥𝑼0∥2

0 + ⟨𝝀, 𝑀 (𝑼, 𝑝,𝑼0)𝑇 ⟩, (5.24)

where 𝝀 ∈ 𝑳2(0, 𝑇 ; 𝑿′′) ∩ 𝑯1(0, 𝑇 ; 𝑿′) × 𝐿2(0, 𝑇 ;𝑄′′) × 𝑳2(Ω)′ is a Lagrange multiplier.

Since Hilbert space is reflexive, 𝑿 × 𝑄 and 𝑿′′ × 𝑄′′ are therefore isometric. The element

in dual space of a Hilbert space can be identified by the element in the Hilbert space itself.

Hence, using the definition of operator 𝑀 , (5.24) then can be rewritten as

L(𝑼∗, 𝑝∗,𝑼∗(·, 0),𝑼, 𝑝,𝑼0)

=
1
2

∫ 𝑇

0
∥𝑼 −𝑼∥2

0𝑑𝑡 +
𝛾

2
∥𝑼0∥2

0 +
∫ 𝑇

0
⟨𝜕𝑼
𝜕𝑡

+ 𝐴𝑼 + 𝐵∗𝑝 − 𝑭,𝑼∗⟩𝑑𝑡

+
∫ 𝑇

0
⟨𝐵𝑼, 𝑝∗⟩𝑑𝑡 + (𝑼(·, 0) −𝑼0,𝑼

∗(·, 0))

=
1
2

∫ 𝑇

0
∥𝑼 −𝑼∥2

0𝑑𝑡 +
𝛾

2
∥𝑼0∥2

0 +
∫ 𝑇

0
⟨𝜕𝑼
𝜕𝑡
,𝑼∗⟩𝑑𝑡 +

∫ 𝑇

0
𝑎
(
𝑼,𝑼∗

)
𝑑𝑡

+
∫ 𝑇

0
𝑏
(
𝑼∗, 𝑝

)
𝑑𝑡 +

∫ 𝑇

0
𝑏 (𝑼, 𝑝∗) 𝑑𝑡 + (𝑼(·, 0) −𝑼0,𝑼

∗(·, 0))

−
∫ 𝑇

0
⟨𝑭,𝑼∗⟩𝑑𝑡.

(5.25)

Variations in the Lagrange multipliers 𝑼∗, 𝑝∗ and 𝑼∗(·, 0) recover the constraint equation

(5.8). Variations with respect to 𝑼, 𝑝, and 𝑼0 yield∫ 𝑇

0
(𝑼 −𝑼,−𝑽)𝑑𝑡 +

∫ 𝑇

0
⟨𝜕𝑽
𝜕𝑡
,𝑼∗⟩𝑑𝑡 +

∫ 𝑇

0
𝑎
(
𝑽,𝑼∗

)
𝑑𝑡 +

∫ 𝑇

0
𝑏 (𝑽, 𝑝∗) 𝑑𝑡

+ (𝑽 (·, 0),𝑼∗(·, 0)) = 0 ∀𝑽 ∈ 𝑳2(0, 𝑇 ; 𝑿) × 𝑯1(0, 𝑇 ; 𝑿′),∫ 𝑇

0
𝑏
(
𝑼∗, 𝑞

)
𝑑𝑡 = 0 ∀𝑞 ∈ 𝐿2(0, 𝑇 ;𝑄),

𝛾(𝑼0, 𝒁0) − (𝒁0,𝑼
∗(·, 0)) = 0 ∀𝒁0 ∈ 𝑳2(Ω).

(5.26)
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Taking integration by parts with respect to time for
∫ 𝑇

0 ⟨ 𝜕𝑽
𝜕𝑡
,𝑼∗⟩𝑑𝑡 in the first equation of

(5.26), we obtain∫ 𝑇

0
(𝑼 −𝑼,−𝑽)𝑑𝑡 + (𝑽,𝑼∗) |𝑇0 −

∫ 𝑇

0
⟨𝜕𝑼

∗

𝜕𝑡
,𝑽⟩𝑑𝑡 +

∫ 𝑇

0
𝑎
(
𝑽,𝑼∗

)
𝑑𝑡

+
∫ 𝑇

0
𝑏 (𝑽, 𝑝∗) 𝑑𝑡 + (𝑽 (·, 0),𝑼∗(·, 0)) = 0.

(5.27)

Choosing 𝑼∗(·, 𝑇) = 0 and simplifying (5.27), we have

∫ 𝑇

0
(𝑼 −𝑼,−𝑽)𝑑𝑡 −

∫ 𝑇

0
⟨𝜕𝑼

∗

𝜕𝑡
,𝑽⟩𝑑𝑡 +

∫ 𝑇

0
𝑎∗

(
𝑼∗,𝑽

)
𝑑𝑡 +

∫ 𝑇

0
𝑏 (𝑽, 𝑝∗) 𝑑𝑡 = 0,

(5.28)

where 𝑎∗ (𝑼∗,𝑽) is given as

𝑎∗
(
𝑼∗,𝑽

)
=2𝜈

(
D
(
𝒖∗

)
,D (𝒗)

)
Ω 𝑓

+ (𝐾∇𝜙∗,∇𝜓)Ω𝑝
+ ⟨𝑔𝒖∗ · 𝒏 𝒇 , 𝜓⟩

− ⟨𝜙∗, 𝒗 · 𝒏 𝑓 ⟩ + 𝛼⟨𝑃𝜏𝒖∗, 𝑃𝜏𝒗⟩ + 𝛼⟨𝑃𝜏𝒖∗, 𝑃𝜏 (K∇𝜓)⟩.
(5.29)

(5.29) is essentially a consequence of swapping terms related to 𝑽 and 𝑼∗ of 𝑎 (𝑽,𝑼∗).

Summarizing all operations from (5.24)-(5.29), the optimal solution 𝑼0 is attained

by solving the following coupled equation systems in the weak form:

the forward state equation


⟨𝜕𝑼
𝜕𝑡
,𝑽⟩ + 𝑎 (𝑼,𝑽) + 𝑏 (𝑽, 𝑝) = ⟨𝑭,𝑽⟩ ∀𝑽 ∈ 𝑿,

𝑏 (𝑼, 𝑞) = 0 ∀𝑞 ∈ 𝑄,

𝑼(·, 0) = 𝑼0, 𝑼0 ∈ 𝑳2(Ω),

(5.30)



114

the backward adjoint equation


− ⟨𝜕𝑼

∗

𝜕𝑡
,𝑽⟩ + 𝑎∗

(
𝑼∗,𝑽

)
+ 𝑏 (𝑽, 𝑝∗) = (𝑼 −𝑼,𝑽) ∀𝑽 ∈ 𝑿,

𝑏
(
𝑼∗, 𝑞

)
= 0 ∀𝑞 ∈ 𝑄,

𝑼∗(·, 𝑇) = 0,

(5.31)

and the optimality condition

𝑼0 =
1
𝛾
𝑼∗(·, 0). (5.32)

Concretely, by the definition of bilinear forms 𝑎 (·, ·), 𝑎∗ (·, ·) and 𝑏 (·, ·), (5.30)-(5.32) are

equivalent to:

the forward state equation



⟨𝜕𝜙
𝜕𝑡
, 𝜓⟩ + 𝑎𝑝 (𝜙, 𝜓) − ⟨𝒖 · 𝒏 𝒇 , 𝜓⟩ = ⟨ 𝑓𝑝, 𝜓⟩

⟨𝜕𝒖
𝜕𝑡
, 𝒗⟩ + 𝑎 𝑓 (𝒖, 𝒗) + 𝑏 𝑓 (𝒗, 𝑝) + ⟨𝑔𝜙, 𝒗 · 𝒏 𝑓 ⟩ + 𝛼⟨𝑃𝜏 (𝒖 + K∇𝜙) , 𝑃𝜏𝒗⟩ = ⟨ 𝒇 𝑓 , 𝒗⟩

𝑏 𝑓 (𝒖, 𝑞) = 0

𝜙(·, 0) = 𝜙0 𝒖(·, 0) = 𝒖0
(5.33)

the backward adjoint equation



− ⟨𝜕𝜙
∗

𝜕𝑡
, 𝜓⟩ + 𝑎𝑝 (𝜙∗, 𝜓) + ⟨𝑔𝒖∗ · 𝒏 𝒇 , 𝜓⟩ + 𝛼⟨𝑃𝜏𝒖∗, 𝑃𝜏 (K∇𝜓)⟩ = (𝜙 − 𝜙, 𝜓)

− ⟨𝜕𝒖
∗

𝜕𝑡
, 𝒗⟩ + 𝑎 𝑓

(
𝒖∗, 𝒗

)
+ 𝑏 𝑓 (𝒗, 𝑝∗) − ⟨𝜙∗, 𝒗 · 𝒏 𝑓 ⟩ + 𝛼⟨𝑃𝜏𝒖∗, 𝑃𝜏𝒗⟩ = (𝒖̂ − 𝒖, 𝒗)

𝑏 𝑓
(
𝒖∗, 𝑞

)
= 0

𝜙∗(·, 𝑇) = 0, 𝑼∗(·, 𝑇) = 0,

(5.34)
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and

𝜙0 =
1
𝛾
𝜙∗(·, 0), 𝒖0 =

1
𝛾
𝒖∗(·, 0). (5.35)

Moreover, note that 𝑎(𝑼,𝑽) = ⟨𝐴𝑼,𝑽⟩ = ⟨𝑼, 𝐴∗𝑽⟩, which gives ⟨𝐴∗𝑼,𝑽⟩ = 𝑎∗(𝑼,𝑽).

Then (5.30)-(5.32) are also equivalent to:

the forward state equation 

𝜕𝑼

𝜕𝑡
+ 𝐴𝑼 + 𝐵∗𝑝 = 𝑭,

𝐵𝑼 = 0,

𝑼(·, 0) = 𝑼0,

(5.36)

the backward adjoint equation


− 𝜕𝑼∗

𝜕𝑡
+ 𝐴∗𝑼∗ + 𝐵∗𝑝∗ = 𝑼 −𝑼,

𝐵𝑼∗ = 0,

𝑼∗(·, 𝑇) = 0,

(5.37)

and

𝑼0 =
1
𝛾
𝑼∗(·, 0). (5.38)

The coupled systems (5.30)-(5.32), (5.33)-(5.35) or (5.36)-(5.38) are the first order

necessary optimality system. The minimization problem (5.11) is strictly convex, thus the

first order necessary condition is also sufficient.
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5.3. NUMERICAL APPROXIMATION

5.3.1. Finite Element Approximation. In this section, we propose a fully discrete

approximation of the data assimilation problem (5.11), which is based on a finite element

discretization in space and the backward Euler scheme in time.

For spatial discretization, we consider 𝑿ℎ = 𝑋ℎ𝑝 × 𝑿ℎ
𝑓

and 𝑄ℎ being pairwise well-

defined finite element subspaces of 𝑿 = 𝑋𝑝 × 𝑿 𝑓 and 𝑄, respectively. These family of

spaces are parameterized by the mesh size ℎ that tends to 0, and we assume these finite

element spaces satisfy the inf-sup condition, i.e., there exists a positive constant 𝛽 such that

inf
0≠𝑞∈𝑄ℎ

sup
0≠V∈Xh

𝑏 (𝑽, 𝑞)
∥𝑞∥𝑄 ∥𝑽∥𝑿

≥ 𝛽. (5.39)

As usual, we also assume the following approximation properties: there exist con-

stants 𝑘 and 𝐶, independent of 𝜓, 𝒗, 𝑞 and ℎ, such that

inf
𝜓ℎ∈𝑋ℎ

𝑝

∥𝜓 − 𝜓ℎ∥1 ≤ 𝐶ℎ𝑚 ∥𝜓∥𝑚+1 ∀𝜓 ∈ 𝐻𝑚+1(Ω𝑝) 1 ≤ 𝑚 ≤ 𝑘 + 1, (5.40)

inf
𝒗ℎ∈𝑿ℎ

𝑓

∥𝒗 − 𝒗ℎ∥1 ≤ 𝐶ℎ𝑚 ∥𝒗∥𝑚+1 ∀𝒗 ∈ 𝑯𝑚+1(Ω 𝑓 ), 1 ≤ 𝑚 ≤ 𝑘 + 1, (5.41)

inf
𝑞ℎ∈𝑄ℎ

∥𝑞 − 𝑞ℎ∥0 ≤ 𝐶ℎ𝑚 ∥𝑞∥𝑚 ∀𝑞 ∈ 𝐻𝑚 (Ω 𝑓 ), 1 ≤ 𝑚 ≤ 𝑘 + 1. (5.42)

For the time discretization we uniformly construct a time grid 0 = 𝑡0 < 𝑡1 < · · · <

𝑡𝑛 < · · · < 𝑡𝑁 = 𝑇 with time step 𝜏 = 𝑇
𝑁

. Let 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛] denote the 𝑛-th sub-interval, we

use the finite-dimensional space

𝑿𝜏,ℎ = {𝑽 : [0, 𝑇] → 𝑿ℎ : 𝑽 |𝐼𝑛 ∈ 𝑿ℎ is constant in time}.

Let 𝑽𝑛
ℎ

be the value of 𝑽ℎ ∈ 𝑿𝜏,ℎ at 𝑡𝑛 and 𝑿𝑛
𝜏,ℎ

be the restriction to 𝐼𝑛 of the functions in

𝑿𝜏,ℎ.
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Given specific ℎ, 𝜏, 𝛾 > 0 and an admissible set 𝒀ℎ
𝑎𝑑

= 𝑿ℎ ∩ 𝒀𝑎𝑑 for the possible

initial values, the fully discrete approximation of problem (5.11) is stated as

min
𝑼0,ℎ∈𝒀ℎ

𝑎𝑑

𝐽ℎ (𝑼0,ℎ) =
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑼𝑛 −𝑼𝑛
ℎ∥

2
0 +

𝛾

2
∥𝑼0,ℎ∥2

0 (5.43)

subject to 

𝑼𝑛+1
ℎ

−𝑼𝑛
ℎ

𝜏
+ 𝐴𝑼𝑛+1

ℎ + 𝐵∗𝑝𝑛+1
ℎ = 𝑭𝑛+1 in (𝑿ℎ)′,

𝐵𝑼𝑛+1
ℎ = 0 in (𝑄ℎ)′,

𝑼0
ℎ = 𝑼0,ℎ in 𝑿ℎ.

(5.44)

Similar to the proof for the well-posedness of the continuous data assimilation

problem, one can prove the well-posedness of the fully discrete data assimilation problem

(5.43)-(5.44).

Theorem 20 Given 𝜏 = 𝑇
𝑁

and mesh size ℎ, for every fixed regularization parameter 𝛾,

there exists an unique optimal solution 𝑼★0,ℎ ∈ 𝒀ℎ
𝑎𝑑

such that the cost functional (5.44) is

minimized. The optimal solution continuously depends on the observation data 𝑼 and the

parameter 𝛾.

Furthermore, one can also observe that small 𝛾 will reduce the stability of the

discrete data assimilation problem.

We expect that the optimal discrete solution of (5.43)-(5.44) converges to the solution

of (5.11). That is, given a fixed 𝛾, 𝑼★0,ℎ → 𝑼★0 should be attained when the time step 𝜏

and finite element mesh size ℎ tend to 0. Essentially, this is not difficult to be observed

by a weakly argument, plus using a 𝑳2 projection from 𝒀𝑎𝑑 to the finite element space 𝑿ℎ

(cf.[114])

Theorem 21 For a fixed regularization parameter 𝛾, let {𝑼★0,ℎ}ℎ>0 be the corresponding

sequence of minimizers of the discrete data assimilation problems (5.43)-(5.44). Then

{𝑼★0,ℎ}ℎ>0 converges to the continuous optimal solution 𝑼★0 as ℎ → 0 and 𝜏 → 0.
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5.3.2. Derivation of the Discrete Optimality System. Similar to the continuous

VDA problem, we can derive the discrete optimality system via the Lagrange multiplier

technique for computing the optimal solution 𝑼0,ℎ. We formulate the discrete Lagrange

functional as:

L(𝑼̄ℎ, 𝑝ℎ,𝑼0,ℎ, 𝑼̄
∗
ℎ, 𝑝

∗
ℎ,𝑼

∗0
ℎ )

=
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑼𝑛 −𝑼𝑛
ℎ∥

2
0 +

𝛾

2
∥𝑼0,ℎ∥2

0 + 𝜏
𝑁−1∑︁
𝑛=0

⟨𝐵𝑼𝑛+1
ℎ , 𝑝∗𝑛ℎ ⟩

+ 𝜏
𝑁−1∑︁
𝑛=0

⟨
𝑼𝑛+1
ℎ

−𝑼𝑛
ℎ

𝜏
+ 𝐴𝑼𝑛+1

ℎ + 𝐵∗𝑝𝑛+1
ℎ − 𝑭𝑛+1,𝑼

∗𝑛
ℎ ⟩

+ (𝑼0
ℎ −𝑼0,ℎ,𝑼

∗0
ℎ ),

(5.45)

where 𝑼̄ℎ = (𝑼0
ℎ
,𝑼1

ℎ
,𝑼2

ℎ
, . . . ,𝑼𝑁

ℎ
), 𝑼̄∗

ℎ
= (𝑼∗1

ℎ
,𝑼∗2

ℎ
, . . . ,𝑼∗𝑁−1

ℎ
), 𝑝ℎ = (𝑝1

ℎ
, 𝑝2

ℎ
, 𝑝3

ℎ
, .

.., 𝑝𝑁
ℎ
) and 𝑝∗

ℎ
= (𝑝∗0

ℎ
, 𝑝∗1

ℎ
, 𝑝∗2

ℎ
, 𝑝∗3

ℎ
, . . . , 𝑝∗𝑁−1

ℎ
). By a few manipulations on 𝑼𝑛

ℎ
, 𝑼∗𝑛

ℎ
and

using the adjoint notation: ⟨𝐴𝑼,𝑽⟩ = ⟨𝑼, 𝐴∗𝑽⟩,we reorganize (5.45) as

L(𝑼̄ℎ, 𝑝ℎ,𝑼0,ℎ, 𝑼̄
∗
ℎ, 𝑝

∗
ℎ,𝑼

∗0
ℎ )

=
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑼̂𝑛 −𝑼𝑛
ℎ∥

2
0 +

𝛾

2
∥𝑼0,ℎ∥2

0 + 𝜏
𝑁−1∑︁
𝑛=0

⟨𝐵𝑼𝑛+1
ℎ , 𝑝∗𝑛ℎ ⟩

+ 𝜏
𝑁−1∑︁
𝑛=0

⟨𝐵∗𝑝𝑛+1
ℎ ,𝑼∗𝑛

ℎ ⟩ + 𝜏
𝑁−1∑︁
𝑛=0

⟨𝐴𝑼𝑛+1
ℎ ,𝑼∗𝑛

ℎ ⟩ − 𝜏
𝑁−1∑︁
𝑛=0

⟨𝑭𝑛+1,𝑼
∗𝑛
ℎ ⟩

+ 𝜏
𝑁−1∑︁
𝑛=0

⟨
𝑼𝑛+1
ℎ

−𝑼𝑛
ℎ

𝜏
,𝑼∗𝑛

ℎ ⟩ + (𝑼𝑁
ℎ ,𝑼

∗𝑁
ℎ ) − (𝑼𝑁

ℎ ,𝑼
∗𝑁
ℎ )

+ (𝑼0
ℎ −𝑼0,ℎ,𝑼

∗0
ℎ )

=
1
2
𝜏

𝑁∑︁
𝑛=1

∥𝑼̂𝑛 −𝑼𝑛
ℎ∥

2
0 +

𝛾

2
∥𝑼0,ℎ∥2

0 + 𝜏
𝑁∑︁
𝑛=1

⟨𝐵𝑼𝑛
ℎ, 𝑝

∗𝑛−1
ℎ ⟩

+ 𝜏
𝑁∑︁
𝑛=1

⟨𝐵∗𝑝𝑛ℎ,𝑼
∗𝑛−1
ℎ ⟩ + 𝜏

𝑁∑︁
𝑛=1

⟨𝐴∗𝑼∗𝑛−1
ℎ ,𝑼𝑛

ℎ⟩ − 𝜏
𝑁∑︁
𝑛=1

⟨𝑭𝑛,𝑼∗𝑛−1
ℎ ⟩

+ 𝜏
𝑁∑︁
𝑛=1

⟨
𝑼∗𝑛−1
ℎ

−𝑼∗𝑛
ℎ

𝜏
,𝑼𝑛

ℎ⟩ + (𝑼𝑁
ℎ ,𝑼

∗𝑁
ℎ ) − (𝑼0,ℎ,𝑼

∗0
ℎ ).

(5.46)
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Variations in the Lagrange multipliers 𝑼̄∗
ℎ
, 𝑝∗

ℎ
and𝑼∗0

ℎ
recover the constraint equation (5.44).

Variations with respect to 𝑼0,ℎ, 𝑼𝑛
ℎ

and 𝑝𝑛
ℎ

yield

𝜕L(𝑼̄ℎ, 𝑝ℎ,𝑼0,ℎ, 𝑼̄
∗
ℎ
, 𝑝∗

ℎ
,𝑼∗0

ℎ
)

𝜕𝑼0,ℎ
𝒁ℎ0 = (𝛾𝑼0,ℎ, 𝒁

ℎ
0) − (𝑼∗0

ℎ , 𝒁
ℎ
0) = 0 ∀𝒁ℎ0 ∈ 𝒀ℎ𝑎𝑑 ,

𝜕L(𝑼̄ℎ, 𝑝ℎ,𝑼0,ℎ, 𝑼̄
∗
ℎ
, 𝑝∗

ℎ
,𝑼∗0

ℎ
)

𝜕𝑼𝑛
ℎ

𝑽ℎ = 𝜏⟨
𝑼∗𝑛−1
ℎ

−𝑼∗𝑛
ℎ

𝜏
,𝑽ℎ⟩ + 𝜏⟨𝐴∗𝑼∗𝑛−1

ℎ ,𝑽ℎ⟩

+ 𝜏⟨𝐵𝑽ℎ, 𝑝∗𝑛−1
ℎ ⟩ − 𝜏(𝑼𝑛 −𝑼𝑛

ℎ,𝑽ℎ) = 0 ∀𝑽ℎ ∈ 𝑿ℎ, 𝑛 = 1, · · · , 𝑁 − 1,

𝜕L(𝑼̄ℎ, 𝑝ℎ,𝑼0,ℎ, 𝑼̄
∗
ℎ
, 𝑝∗

ℎ
,𝑼∗0

ℎ
)

𝜕𝑼𝑁
ℎ

𝑽ℎ = 𝜏⟨
𝑼∗𝑁−1
ℎ

𝜏
,𝑽ℎ⟩ + 𝜏⟨𝐴∗𝑼∗𝑁−1

ℎ ,𝑽ℎ⟩

+ 𝜏⟨𝐵𝑽ℎ, 𝑝∗𝑁−1
ℎ ⟩ − 𝜏(𝑼̂𝑁 −𝑼𝑁

ℎ ,𝑽ℎ) = 0 ∀𝑽ℎ ∈ 𝑿ℎ,

𝜕L(𝑼̄ℎ, 𝑝ℎ,𝑼0,ℎ, 𝑼̄
∗
ℎ
, 𝑝∗

ℎ
,𝑼∗0

ℎ
)

𝜕𝑝𝑛
ℎ

𝑞ℎ = ⟨𝐵∗𝑞ℎ,𝑼
∗𝑛−1
ℎ ⟩ = 0 ∀𝑞ℎ ∈ 𝑄ℎ, 𝑛 = 1, · · · , 𝑁.

Using the fact ⟨𝐵𝑽ℎ, 𝑝∗𝑛−1
ℎ

⟩ = ⟨𝐵∗𝑝∗𝑛−1
ℎ

,𝑽ℎ⟩, we obtain the discrete optimality system,

𝑛 = 0, 1, 2, 3, . . . , 𝑁 − 1,



𝑼𝑛+1
ℎ

−𝑼𝑛
ℎ

𝜏
+ 𝐴𝑼𝑛+1

ℎ + 𝐵∗𝑝𝑛+1
ℎ = 𝑭𝑛+1,

𝐵𝑼𝑛+1
ℎ = 0,

𝑼0
ℎ = 𝑼0,ℎ,

−
𝑼∗𝑛+1
ℎ

−𝑼∗𝑛
ℎ

𝜏
+ 𝐴∗𝑼∗𝑛

ℎ + 𝐵∗𝑝∗𝑛ℎ = 𝑼𝑛+1 −𝑼𝑛+1
ℎ ,

𝐵𝑼∗𝑛
ℎ = 0,

𝑼∗𝑁
ℎ = 0,

𝑼0,ℎ =
1
𝛾
𝑼∗0
ℎ .

(5.47)
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Remark 16 One may observe that the discrete optimality system (5.47) is the same as the

direct full discretization of (5.33)-(5.35). This is because of the special symmetric property

of Euler’s scheme, including the explicit Euler scheme. However, such coincidence may not

happen for other temporal discretization schemes, such as the Crank-Nicolson and most of

the Runge-Kutta methods.

5.3.3. Finite Element Convergence Analysis. In addition to the general conver-

gence result in (21), one may be more interested in how the convergence behaves in practical

simulations since it will help us properly set up discretization parameters for different sce-

narios. In the rest of this section, we focus on proving that, under enough smoothness

assumption on 𝑼0,𝑼, and 𝑼∗, the optimal finite element convergence rate is preserved for

each of them.

Recall that the discrete optimality system (5.47) coincides with the direct full dis-

cretization of (5.33)-(5.35) in sense of the operator form, see (5.36)-(5.38). (5.47) hereby

shares lots of similarities with the discretization of classical PDEs except only a few special

terms. Therefore, instead of directly investigating the error equation between (5.47) and

(5.33)-(5.35), we can utilize the FEM results from classical PDEs to study the convergence

behavior in the data assimilation problem.

Before doing so, we need to rescale (5.33)-(5.35) such that the rescaled formulations

possess crucial features for our analysis. The rescaling is achieved by multiplying the first

equation in (5.33) and the second equation in (5.35) with 𝜂, respectively, the corresponding

rescaled bilinear forms are as follows:

𝑎𝜂 (𝑼,𝑽) = 𝜂𝑎 𝑓 (𝒖, 𝒗) + 𝑎𝑝 (𝜙, 𝜓) + 𝜂⟨𝑔𝜙, 𝒗 · 𝒏 𝒇 ⟩

− ⟨𝒖 · 𝒏 𝒇 , 𝜓⟩ + 𝜂𝛼⟨𝑃𝜏 (𝒖 + K∇𝜙) , 𝑃𝜏𝒗⟩,

𝑎∗𝜂
(
𝑼∗,𝑽

)
= 𝑎 𝑓

(
𝒖∗, 𝒗

)
+ 𝜂𝑎𝑝 (𝜙∗, 𝜓) + 𝜂⟨𝑔𝒖∗ · 𝒏 𝒇 , 𝜓⟩ − ⟨𝜙∗, 𝒗 · 𝒏 𝑓 ⟩

+ 𝛼⟨𝑃𝜏𝒖∗, 𝑃𝜏𝒗⟩ + 𝜂𝛼⟨𝑃𝜏𝒖∗, 𝑃𝜏 (K∇𝜓)⟩.
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As stated in the following lemma, both 𝑎𝜂 (𝑼,𝑽) and 𝑎∗𝜂 (𝑼∗,𝑽) are coercive in

the sense of a Garding type inequality, and this property will be frequently used in the

convergence analysis.

Lemma 6 For appropriately chosen positive rescaling parameter 𝜂, there exist constants

𝐶1,𝜂, 𝐶2,𝜂, 𝐶3,𝜂, and 𝐶4,𝜂 such that 𝑎𝜂 (𝑼,𝑽) and 𝑎∗𝜂 (𝑼∗,𝑽) are coercive in sense of the

Garding type inequality:

𝑎𝜂 (𝑼,𝑼) + 𝐶1,𝜂∥𝑼∥2
0 ≥ 𝐶2,𝜂∥𝑼∥2

𝑿 , (5.48)

𝑎∗𝜂
(
𝑼∗,𝑼∗) + 𝐶3,𝜂∥𝑼∗∥2

0 ≥ 𝐶4,𝜂∥𝑼∗∥2
𝑿 . (5.49)

Proof: We first prove the coercivity of the adjoint bilinear form 𝑎∗𝜂 (𝑼∗,𝑼∗). According to

Korn’s, the Cauchy-Schwarz, Poincáre’s, Young’s and the trace inequalities, we deduce

𝑎∗𝜂
(
𝑼∗,𝑼∗

)
+ 𝐶3,𝜂∥𝑼∗∥2

0

= 𝐶3,𝜂∥𝑼∗∥2
0 + 2𝜈

(
D
(
𝑼∗

)
,D

(
𝑼∗

) )
Ω 𝑓

+ 𝜂(K∇𝜙∗,∇𝜙∗)Ω𝑝
+ 𝜂⟨𝑔𝑼∗ · 𝒏 𝑓 , 𝜙∗⟩

− ⟨𝜙∗,𝑼∗ · 𝒏 𝑓 ⟩ + 𝛼⟨𝑃𝜏𝑼∗, 𝑃𝜏𝑼
∗⟩ + 𝜂𝛼⟨𝑃𝜏𝑼∗, 𝑃𝜏 (K∇𝜙∗)⟩

≥ 𝐶3,𝜂∥𝑼∗∥2
0 + 2𝜈∥D(𝑼∗)∥2

0 + 𝜂𝜆min(K)∥∇𝜙∗∥2
0

− 𝜂𝑔𝐶1∥∇𝑼∗∥
1
2
0 ∥𝑼

∗∥
1
2
0 ∥∇𝜙

∗∥
1
2
0 ∥𝜙

∗∥
1
2
0 + 𝛼∥𝑃𝜏𝑼∗∥2

𝑳2 (Γ)

− 𝐶1∥∇𝑼∗∥
1
2
0 ∥𝑼

∗∥
1
2
0 ∥∇𝜙

∗∥
1
2
0 ∥𝜙

∗∥
1
2
0 − 𝜂𝛼𝜆max(K)∥∇𝑼∗∥0∥∇𝜙∗∥0

≥ 𝐶3,𝜂∥𝑼∗∥2
0 + 2𝐶0𝜈∥∇𝑼∗∥2

0 + 𝜂𝜆min(K)∥∇𝜙∗∥2
0 −

𝜂𝜆min(K)
4

∥∇𝜙∗∥2
0

− (𝐶1(𝜂𝑔 + 1))4

4𝜂𝜆min(K)
∥𝜙∗∥2

0 − 𝐶0𝜈∥∇𝑼∗∥2
0 −

1
16𝐶0𝜈

∥𝑼∗∥2
0 −

𝜂𝛼2𝜆2
max(K)

𝜆min(K)
∥∇𝑼∗∥2

0

− 𝜂𝜆min(K)
4

∥∇𝜙∗∥2
0

= (𝐶3,𝜂 −
1

16𝐶0𝜈
)∥𝑼∗∥2

0 + (𝐶3,𝜂 −
(𝐶1(𝜂𝑔 + 1))4

4𝜂𝜆min(K)
)∥𝜙∗∥2

0

+ (𝐶0𝜈 −
𝜂𝛼2𝜆2

max(K)
𝜆min(K)

)∥∇𝑼∗∥2
0 +

𝜂𝜆min(K)
2

∥∇𝜙∗∥2
0,



122

where 𝐶𝑖 are generic constants depending on Ω, or Γ, or both Ω and Γ, 𝜆min(K),

𝜆max(K) are the smallest and largest eigenvalues of matrixK, and ⟨𝑃𝜏𝒖, 𝑃𝜏 (K∇𝜙)⟩ is under-

stood as the duality between H1/2
00 (Γ) and (H1/2

00 (Γ))′. In addition, the above boundedness

of −(𝜂𝑔 + 1)𝐶1∥∇𝑼∗∥
1
2
0 ∥𝑼

∗∥
1
2
0 ∥∇𝜙

∗∥
1
2
0 ∥𝜙

∗∥
1
2
0 is decomposed as follows:

− (𝜂𝑔 + 1)𝐶1∥∇𝑼∗∥
1
2
0 ∥𝑼

∗∥
1
2
0 ∥∇𝜙

∗∥
1
2
0 ∥𝜙

∗∥
1
2
0

≥ −∥∇𝑼∗∥0∥𝑼∗∥0
2

− ((𝜂𝑔 + 1)𝐶1)2 ∥∇𝜙∗∥0∥𝜙∗∥0
2

≥ −𝐶0𝜈∥∇𝑼∗∥2
0 −

1
16𝐶0𝜈

∥𝑼∗∥2
0 −

𝜂𝜆min(K)
4

∥∇𝜙∗∥2
0 −

(𝐶1(𝜂𝑔 + 1))4

4𝜂𝜆min(K)
∥𝜙∗∥2

0.

Once one chooses 𝜂 and 𝐶3,𝜂 satisfying

𝜂 <
𝐶0𝜈𝜆min(K)
𝛼2𝜆2

max(K)
and 𝐶3,𝜂 ≥ max{ 1

16𝐶0𝜈
,
(𝐶1(𝜂𝑔 + 1))4

4𝜂𝜆min(K)
},

there exists a positive constant 𝐶4,𝜂 such that

𝑎∗𝜂
(
𝑼∗,𝑼∗

)
+ 𝐶3,𝜂∥𝑼∗∥2

0 ≥ 𝐶4,𝜂∥𝑼∗∥2
𝑿 .

Moreover, proceeding argument similar to above, one can identify 𝜂 and 𝐶1,𝜂 satisfying

𝜂 <
𝐶0𝜈𝜆min (K)
𝛼2𝜆2

max (K)
and 𝐶1,𝜂 > max{ (𝐶1 (𝜂𝑔+1))4

8𝜂𝐶0𝜈
, 1

8𝜆min (K) }, then there exists a constant 𝐶2,𝜂 such

that

𝑎𝜂 (𝑼,𝑼) + 𝐶1,𝜂∥𝑼∥2
0 ≥ 𝐶2,𝜂∥𝑼∥2

𝑿 .

The proof is complete by choosing 𝜂 < min{𝐶0𝜈𝜆min (K)
𝛼2𝜆2

max (K)
,
𝐶0𝜈𝜆min (K)
𝛼2𝜆2

max (K)
}.

The following lemma is for the continuity of 𝑎𝜂 (𝑼,𝑽) and 𝑎∗𝜂 (𝑼∗,𝑽), which follow

naturally from a group of standard inequalities, such as the trace, Korn’s, the Cauchy-

Schwarz and Poincáre’s inequalities.
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Lemma 7 𝑎𝜂 (𝑼,𝑽) and 𝑎∗𝜂 (𝑼∗,𝑽) are continuous, i.e., there exist constants 𝐶 depending

on Ω, Γ, 𝜂, 𝑔, 𝛼, K such that

𝑎𝜂 (𝑼,𝑽) ≤ 𝐶∥𝑼∥𝑿 ∥𝑽∥𝑿 , (5.50)

𝑎∗𝜂 (𝑼∗,𝑽) ≤ 𝐶∥𝑼∗∥𝑿 ∥𝑽∥𝑿 . (5.51)

Proof: We provide a sketch proof for the adjoint bilinear form 𝑎∗𝜂 (𝑼∗,𝑽), since the analysis

of the others is very similar.

𝑎∗𝜂 (𝑼∗,𝑽) ≤ 2𝐶3𝜈∥𝒖∗∥𝑿 𝑓
∥𝒗∥𝑿 𝑓

+ 𝐶7𝜂𝜆max(K)∥𝜙∗∥𝑋𝑝
∥𝜓∥𝑋𝑝

+ 𝐶4(1 + 𝜂𝑔)∥𝒖∗∥𝑋 𝑓
∥𝜓∥𝑋𝑝

+ 𝐶5𝛼∥𝒖∗∥𝑿 𝑓
∥𝒗∥𝑿 𝑓

+ 𝐶6𝜂𝛼𝜆max(K)∥𝒖∗∥𝑿 𝑓
∥𝜓∥𝑋𝑝

≤ 𝐶3,5(∥𝒖∗∥2
𝑿 𝑓

+ ∥𝜙∗∥2
𝑋𝑝
) 1

2 (∥𝒗∥2
𝑿 𝑓

+ ∥𝜓∥2
𝑋𝑝
) 1

2

+ 𝐶4,6(∥𝒖∗∥2
𝑿 𝑓

+ ∥𝜙∗∥2
𝑋𝑝
) 1

2 (∥𝒗∥2
𝑿 𝑓

+ ∥𝜓∥2
𝑋𝑝
) 1

2

+ 𝐶7𝜂𝜆max(K) (∥𝒖∗∥2
𝑿 𝑓

+ ∥𝜙∗∥2
𝑋𝑝
) 1

2 (∥𝒗∥2
𝑿 𝑓

+ ∥𝜓∥2
𝑋𝑝
) 1

2

= 𝐶∥𝑼∗∥𝑿 ∥𝑽∥𝑿 ,

where 𝐶𝑖 and 𝐶𝑖, 𝑗 are generic constants depending on Ω, Γ, and

𝐶3,5 = max{2𝐶3𝜈, 𝐶5𝛼}, 𝐶4,6 = max{𝐶4(1 + 𝜂𝑔), 𝐶6𝜂𝛼𝜆max(K)}

𝐶 = max{𝐶3,5, 𝐶4,6, 𝐶7𝜂𝜆max(K)}.

Remark 17 A consequence of Lemma 6 and Lemma 7 is the optimal FEM convergence of

the backward adjoint equation equipped with a regular, non-variable force term. This can

be shown by an extension of the proof in [105, Theorem 4.4].
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In the following, we will use the rescaled norms which are naturally defined as:

∥𝑽∥0,𝜂 = (𝜂∥𝒗∥2
0 + ∥𝜙∥2

0)
1
2 , ∥𝑽∥𝐿2 (0,𝑇 ;𝑳2

𝜂 (Ω)) =

(∫ 𝑇

0
∥𝑽∥2

0,𝜂𝑑𝑡

) 1
2

,

∥𝑽∥0,𝜂∗ = (∥𝒗∥2
0 + 𝜂∥𝜙∥

2
0)

1
2 , ∥𝑽∥𝐿2 (0,𝑇 ;𝑳2

𝜂∗ (Ω))
=

(∫ 𝑇

0
∥𝑽∥2

0,𝜂∗𝑑𝑡

) 1
2

.

By definition, one can easily establish the norm equivalences for ∥ · ∥0, ∥ · ∥0,𝜂 and ∥ · ∥0,𝜂∗

stated in the following lemma.

Lemma 8 Norms ∥ · ∥0, ∥ · ∥0,𝜂 and ∥ · ∥0,𝜂∗ are connected each other as:

𝐶1
𝜂 ∥𝑼∥0,𝜂 ≤ ∥𝑼∥0 ≤ 𝐶2

𝜂 ∥𝑼∥0,𝜂, (5.52)

𝐶1
𝜂 ∥𝑼∥0,𝜂∗ ≤ ∥𝑼∥0 ≤ 𝐶2

𝜂 ∥𝑼∥0,𝜂∗ , (5.53)

𝐶3
𝜂 ∥𝑼∥0,𝜂∗ ≤ ∥𝑼∥0,𝜂 ≤ 𝐶4

𝜂 ∥𝑼∥0,𝜂∗ , (5.54)

where

𝐶1
𝜂 = min{1, 1

√
𝜂
}, 𝐶2

𝜂 = max{1, 1
√
𝜂
}, 𝐶3

𝜂 = min{√𝜂, 1
√
𝜂
}, 𝐶4

𝜂 = max{√𝜂, 1
√
𝜂
}.

Define notations

⟨𝜕𝑼
𝜕𝑡
,𝑽⟩𝜂 = ⟨𝜕𝜙

𝜕𝑡
, 𝜓⟩ + 𝜂⟨𝜕𝒖

𝜕𝑡
, 𝒗⟩, ⟨𝑭,𝑽⟩𝜂 = ⟨ 𝑓𝑝, 𝜓⟩ + 𝜂⟨ 𝒇 𝑓 , 𝒗⟩,

⟨𝜕𝑼
𝜕𝑡
,𝑽⟩∗𝜂 = 𝜂⟨

𝜕𝜙

𝜕𝑡
, 𝜓⟩ + ⟨𝜕𝒖

𝜕𝑡
, 𝒗⟩, ⟨𝑭,𝑽⟩∗𝜂 = 𝜂⟨ 𝑓𝑝, 𝜓⟩ + ⟨ 𝒇 𝑓 , 𝒗⟩.

Then, using equivalent arguments similar to those used for (5.6), (5.7), (5.8), and (5.9), we

can rewrite the continuous optimality system (5.33)-(5.35) as


⟨𝜕𝑼
𝜕𝑡
,𝑽⟩𝜂 + 𝑎𝜂 (𝑼,𝑽) = ⟨𝑭,𝑽⟩𝜂 ∀𝑽 ∈ 𝑿div,

𝑼(·, 0) = 𝑼0 in 𝑳2(Ω),
(5.55)
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
− ⟨𝜕𝑼

∗

𝜕𝑡
,𝑽⟩∗𝜂 + 𝑎∗𝜂

(
𝑼∗,𝑽

)
= ⟨̂𝑼 −𝑼,𝑽⟩∗𝜂 ∀𝑽 ∈ 𝑿div,

𝑼∗(·, 𝑇) = 0 in 𝑳2(Ω),
(5.56)

𝑼0 =
1
𝛾
𝑼∗(·, 0). (5.57)

As mentioned previously, we intend to carry out the convergence analysis for the

data assimilation problem by the finite element convergence results for classical PDEs. A

key step is to introduce the following auxiliary equations:


⟨𝜕𝑼(𝑼0,ℎ)

𝜕𝑡
,𝑽⟩𝜂 + 𝑎𝜂

(
𝑼(𝑼0,ℎ),𝑽

)
= ⟨𝑭,𝑽⟩𝜂 ∀𝑽 ∈ 𝑿div,

𝑼(𝑼0,ℎ) (·, 0) = 𝑼0,ℎ in 𝑳2(Ω),
(5.58)


− ⟨𝜕𝑼

∗(𝑼0,ℎ)
𝜕𝑡

,𝑽⟩∗𝜂 + 𝑎∗𝜂
(
𝑼∗(𝑼0,ℎ),𝑽

)
= ⟨̂𝑼 −𝑼(𝑼0,ℎ),𝑽⟩∗𝜂 ∀𝑽 ∈ 𝑿div,

𝑼∗(𝑼0,ℎ) (·, 𝑇) = 0 in 𝑳2(Ω),
(5.59)


− ⟨𝜕𝑼

∗(𝑼ℎ)
𝜕𝑡

,𝑽⟩∗𝜂 + 𝑎∗𝜂
(
𝑼∗(𝑼ℎ),𝑽

)
= ⟨̂𝑼 −𝑼ℎ,𝑽⟩∗𝜂 ∀𝑽 ∈ 𝑿div,

𝑼∗(𝑼ℎ) (·, 𝑇) = 0 in 𝑳2(Ω).
(5.60)

Equations (5.58) and (5.59) are used to remove the concern from the initial condition in

(5.55). Equation (5.60) basically recovers the Galerkin orthogonality we lost between the

continuous and discrete adjoint equations 5.56 and (5.47). Analyzing these equations in

pair,we can establish the inequalities stated in the following lemma.

Lemma 9 Let 𝑼(𝑼0,ℎ),𝑼∗(𝑼0,ℎ),𝑼∗(𝑼ℎ) be solutions of equations ( 5.58),

(5.59) and (5.60), respectively, and let (𝑼,𝑼∗,𝑼0) and (𝑼ℎ,𝑼
∗
ℎ
,𝑼0,ℎ) be solutions of the

continuous and discrete optimality systems (5.55)-(5.57) and (5.47), then the following
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estimates hold

∥𝑼 −𝑼(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) ≤ 𝐶Ω,Γ,𝑇 ∥𝑼0 −𝑼0,ℎ∥0,𝜂 (5.61)

∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇 ∥𝑼(𝑼0,ℎ) −𝑼∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) (5.62)

sup
0≤𝑡≤𝑇

∥𝑼∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ)∥0,𝜂∗ ≤ 𝐶Ω,Γ,𝑇 ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) , (5.63)

∥𝑼∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇 ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) . (5.64)

Proof: Subtracting (5.58) from (5.55), we have


⟨𝜕 (𝑼 −𝑼(𝑼0,ℎ))

𝜕𝑡
,𝑽⟩𝜂 + 𝑎𝜂

(
𝑼 −𝑼(𝑼0,ℎ),𝑽

)
= ⟨0,𝑽⟩𝜂 ∀𝑽 ∈ 𝑿div,

(𝑼 −𝑼(𝑼0,ℎ)) (·, 0) = 𝑼0 −𝑼0,ℎ in 𝑳2(Ω).
(5.65)

Taking 𝑽 = 𝑼 −𝑼(𝑼0,ℎ) on (5.65), using the coercive inequality (5.48) and norm relation

(5.52), we obtain

𝑑∥𝑼 −𝑼(𝑼0,ℎ)∥2
0,𝜂

𝑑𝑡
+ 𝐶2,𝜂∥𝑼 −𝑼(𝑼0,ℎ)∥2

𝑿 ≤ 𝐶1
𝜂 ∥𝑼 −𝑼(𝑼0,ℎ)∥2

0,𝜂 . (5.66)

Applying the Gronwall inequality on (5.66) leads to

∥(𝑼 −𝑼(𝑼0,ℎ)) (·, 𝑡)∥2
0,𝜂 + 𝐶Ω,Γ,𝑇

∫ 𝑡

0
∥𝑼 −𝑼(𝑼0,ℎ)∥2

𝑿 ≤ 𝐶Ω,Γ,𝑇 ∥𝑼0 −𝑼0,ℎ∥2
0,𝜂 . (5.67)

Inequality (5.67) gives us

∥𝑼 −𝑼(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) ≤ 𝐶Ω,Γ,𝑇 ∥𝑼0 −𝑼0,ℎ∥0,𝜂 . (5.68)
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Again, we subtract (5.59) from (5.56) to obtain


− ⟨𝜕 (𝑼

∗ −𝑼∗(𝑼0,ℎ))
𝜕𝑡

,𝑽⟩∗𝜂 + 𝑎∗𝜂
(
𝑼∗ −𝑼∗(𝑼0,ℎ),𝑽

)
= ⟨𝑼(𝑼0,ℎ −𝑼),𝑽⟩∗𝜂 ∀𝑽 ∈ 𝑿div,

(𝑼∗ −𝑼∗(𝑼0,ℎ)) (·, 𝑇) = 0 in 𝑳2(Ω).

(5.69)

Testing (5.69) with 𝑼∗ − 𝑼∗(𝑼0,ℎ) and using the coercive inequality (5.49), the Cauchy-

Schwarz, Young’s inequalities and (5.53)-(5.54), we deduce

−
𝑑∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥2

0,𝜂∗

𝑑𝑡
+ 𝐶4,𝜂∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥2

𝑿

≤ 𝐶3,𝜂∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥2
0 + ∥𝑼(𝑼0,ℎ) −𝑼∥0,𝜂∗ ∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥0

≤ (
𝐶2
𝜂

2𝐶3
𝜂

+ 𝐶3,𝜂 (𝐶2
𝜂 )2)∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥2

0,𝜂∗ +
𝐶2
𝜂

2𝐶3
𝜂

∥𝑼(𝑼0,ℎ) −𝑼∥2
0,𝜂 .

(5.70)

The Gronwall’s inequality immediately implies

∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇 ∥𝑼(𝑼0,ℎ) −𝑼∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) . (5.71)

Finally, subtracting (5.60) from (5.56), we have


− ⟨𝜕 (𝑼

∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ))
𝜕𝑡

,𝑽⟩∗𝜂 + 𝑎∗𝜂
(
𝑼∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ),𝑽

)
= ⟨𝑼(𝑼0,ℎ) −𝑼ℎ,𝑽⟩∗𝜂 ∀𝑽 ∈ 𝑿div,

(𝑼∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ)) (·, 𝑇) = 0 in 𝑳2(Ω).

(5.72)
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Similarly, by choosing appropriate test function in (5.72) and applying the coercive inequal-

ity (5.49), the norm relations (5.53)-(5.54), the Cauchy-Schwarz inequality, the Young’s

inequality, and the Gronwall’s inequality, the following estimates hold

sup
0≤𝑡≤𝑇

∥𝑼∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ)∥0,𝜂∗ ≤ 𝐶Ω,Γ,𝑇 ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) , (5.73)

∥𝑼∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇 ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) . (5.74)

The proof is completed by putting (5.68), (5.71), (5.73) and (5.74) together.

By using the triangle inequality and inequality (5.61), ∥𝑼 −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) can be

estimated as:

∥𝑼 −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω))

≤ ∥𝑼 −𝑼(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) + ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2

𝜂 (Ω))

≤ 𝐶Ω,Γ,𝑇 ∥𝑼0 −𝑼0,ℎ∥0,𝜂 + ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) .

(5.75)

One also can bound ∥𝑼∗ −𝑼∗
ℎ
∥𝐿2 (0,𝑇 ;𝑳2

𝜂∗ (Ω))
using inequalities (5.62), (5.64) and (5.61),

∥𝑼∗ −𝑼∗
ℎ∥𝐿2 (0,𝑇 ;𝑳2

𝜂∗ (Ω)

≤ ∥𝑼∗ −𝑼∗(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

+ ∥𝑼∗(𝑼0,ℎ) −𝑼∗(𝑼ℎ)∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

+ ∥𝑼∗(𝑼ℎ) −𝑼∗
ℎ∥𝐿2 (0,𝑇 ;𝑳2

𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇 (∥𝑼(𝑼0,ℎ) −𝑼∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) + ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2

𝜂 (Ω)))

+ ∥𝑼∗(𝑼ℎ) −𝑼∗
ℎ∥𝐿2 (0,𝑇 ;𝑳2

𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇 (∥𝑼0 −𝑼0,ℎ∥0,𝜂 + ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)))

+ ∥𝑼∗(𝑼ℎ) −𝑼∗
ℎ∥𝐿2 (0,𝑇 ;𝑳2

𝜂∗ (Ω))
.

(5.76)
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Note that𝑼ℎ and𝑼∗
ℎ

are the classical finite element approximations of𝑼(𝑼0,ℎ) and𝑼∗(𝑼ℎ),

which is as desired. From (5.75) and (5.76), we observe that the bounds for the error in

these classical finite element approximations depend on ∥𝑼0 −𝑼0,ℎ∥0,𝜂, which is estimated

in the following lemma through two given equalities 𝑼0 = 1
𝛾
𝑼∗(·, 0) and 𝑼0,ℎ =

1
𝛾
𝑼∗0
ℎ

.

Lemma 10 Let 𝑼0, 𝑼0,ℎ, 𝑼∗0
ℎ

, 𝑼∗(𝑼0,ℎ) (·, 0) be functions defined in equations (5.33),

(5.47), and (5.59), the following error estimate holds:

∥𝑼0 −𝑼0,ℎ∥0,𝜂 ≤
𝐶Ω,Γ

𝛾
∥𝑼∗(𝑼0,ℎ) (·, 0) −𝑼∗0

ℎ ∥0,𝜂∗ . (5.77)

Proof: Using 𝑼0 = 1
𝛾
𝑼∗(·, 0) and 𝑼0,ℎ =

1
𝛾
𝑼∗0
ℎ

we have

∥𝑼0 −𝑼0,ℎ∥2
0 =

1
𝛾
(𝑼∗(·, 0) −𝑼∗0

ℎ ,𝑼0 −𝑼0,ℎ)

=
1
𝛾
(𝑼∗(·, 0) −𝑼∗(𝑼0,ℎ) (·, 0),𝑼0 −𝑼0,ℎ)

+ 1
𝛾
(𝑼∗(𝑼0,ℎ) (·, 0) −𝑼∗0

ℎ ,𝑼0 −𝑼0,ℎ).

(5.78)

Taking 𝑽 = 𝑼∗ −𝑼∗(𝑼0,ℎ) on (5.65) without the scalar 𝜂 and integrating with respect to 𝑡,

we obtain ∫ 𝑇

0
( 𝜕 (𝑼 −𝑼(𝑼0,ℎ))

𝜕𝑡
,𝑼∗ −𝑼∗(𝑼0,ℎ))𝑑𝑡

+
∫ 𝑇

0
𝑎(𝑼 −𝑼(𝑼0,ℎ),𝑼∗ −𝑼∗(𝑼0,ℎ))𝑑𝑡 = 0.

(5.79)

Integration by parts with respect to 𝑡 on (5.79) results in

((𝑼 −𝑼(𝑼0,ℎ)) (·, 𝑇), (𝑼∗ −𝑼∗(𝑼0,ℎ)) (·, 𝑇))

− ((𝑼 −𝑼(𝑼0,ℎ)) (·, 0), (𝑼∗ −𝑼∗(𝑼0,ℎ)) (·, 0))

−
∫ 𝑇

0
( 𝜕 (𝑼

∗ −𝑼∗(𝑼0,ℎ))
𝜕𝑡

,𝑼 −𝑼(𝑼0,ℎ))𝑑𝑡

+
∫ 𝑇

0
𝑎(𝑼 −𝑼(𝑼0,ℎ),𝑼∗ −𝑼∗(𝑼0,ℎ))𝑑𝑡 = 0.

(5.80)
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Using equation (5.69) without the scalar 𝜂 and the fact 𝑎(𝑼 −𝑼(𝑼0,ℎ),𝑼∗ −𝑼∗(𝑼0,ℎ)) =

𝑎∗(𝑼∗ −𝑼∗(𝑼0,ℎ),𝑼 −𝑼(𝑼0,ℎ)), we simplify the previous equation as

((𝑼 −𝑼(𝑼0,ℎ)) (·, 0), (𝑼∗ −𝑼∗(𝑼0,ℎ)) (·, 0))

= −
∫ 𝑇

0
(𝑼 −𝑼(𝑼0,ℎ),𝑼 −𝑼(𝑼0,ℎ))𝑑𝑡.

The nonnegativity of
∫ 𝑇

0 (𝑼−𝑼(𝑼0,ℎ),𝑼−𝑼(𝑼0,ℎ))𝑑𝑡 and the equality in (5.78) immediately

show

∥𝑼0 −𝑼0,ℎ∥0,𝜂 ≤
𝐶Ω,Γ

𝛾
∥𝑼∗(𝑼0,ℎ) (·, 0) −𝑼∗0

ℎ ∥0,𝜂∗ ,

where 𝐶Ω,Γ =
𝐶2
𝜂

𝐶1
𝜂
, this is the fact using the norm relations (5.52) and (5.53).

Using (5.77) and the triangle inequality, ∥𝑼0 −𝑼0,ℎ∥0,𝜂 can be bounded as below

∥𝑼0 −𝑼0,ℎ∥0,𝜂 ≤
𝐶Ω,Γ

𝛾
∥𝑼∗0

ℎ −𝑼∗(𝑼0,ℎ) (·, 0)∥0,𝜂∗

≤ 𝐶Ω,Γ

𝛾
∥𝑼∗0

ℎ −𝑼∗(𝑼ℎ) (·, 0)∥0,𝜂∗ +
𝐶Ω,Γ

𝛾
∥𝑼∗(𝑼ℎ) (·, 0) −𝑼∗(𝑼0,ℎ) (·, 0)∥0,𝜂∗

≤ 𝐶Ω,Γ

𝛾
max

0≤𝑖≤𝑁−1
∥𝑼∗𝑖

ℎ −𝑼∗(𝑼ℎ) (·, 𝑡𝑖)∥0,𝜂∗ +
𝐶Ω,Γ

𝛾
sup

0≤𝑡<𝑇
∥𝑼∗(𝑼ℎ) −𝑼∗(𝑼0,ℎ)∥0,𝜂∗

≤ 𝐶Ω,Γ

𝛾
max

0≤𝑖≤𝑁−1
∥𝑼∗𝑖

ℎ −𝑼∗(𝑼ℎ) (·, 𝑡𝑖)∥0,𝜂∗ +
𝐶Ω,Γ

𝛾
∥𝑼ℎ −𝑼(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2

𝜂 (Ω)) .

(5.81)
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Summarizing (5.75), (5.76), (5.81) and the classical FEM error estimates [105, Theorem

4.4] and (17), we finally arrive at the estimation

∥𝑼0 −𝑼0,ℎ∥0,𝜂 + ∥𝑼 −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) + ∥𝑼∗ −𝑼∗

ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇 ∥𝑼0 −𝑼0,ℎ∥0,𝜂 + ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)

+ ∥𝑼∗(𝑼ℎ) −𝑼∗
ℎ∥𝐿2 (0,𝑇 ;𝑳2

𝜂∗ (Ω))

≤ 𝐶Ω,Γ,𝑇

𝛾
max

0≤𝑖≤𝑁−1
∥𝑼∗𝑖

ℎ −𝑼∗(𝑼ℎ) (·, 𝑡𝑖)∥0,𝜂 +
𝐶Ω,Γ,𝑇

𝛾
∥𝑼ℎ −𝑼(𝑼0,ℎ)∥𝐿2 (0,𝑇 ;𝑳2

𝜂 (Ω))

+ ∥𝑼(𝑼0,ℎ) −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω) + ∥𝑼∗(𝑼ℎ) −𝑼∗

ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω)

≤ 𝐶𝛾,Ω,Γ,𝑇 (ℎ𝑟+1 + 𝜏),

where 𝑟 is the polynomial degree of the finite element basis function.

Theorem 22 Let (𝑼0,𝑼,𝑼
∗) and (𝑼0,ℎ,𝑼ℎ,𝑼

∗
ℎ
) be solutions of the continuous optimality

system (5.33)-(5.35) and discrete optimality system (5.47) respectively. Assuming the input

data are smooth enough, then the following error estimate holds

∥𝑼0 −𝑼0,ℎ∥0,𝜂 + ∥𝑼 −𝑼ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂 (Ω)) + ∥𝑼∗ −𝑼∗

ℎ∥𝐿2 (0,𝑇 ;𝑳2
𝜂∗ (Ω))

≤ 𝐶𝛾,Ω,Γ,𝑇 (ℎ𝑟+1 + 𝜏),
(5.82)

where 𝐶𝛾,Ω,Γ,𝑇 is a constant proportional to 1
𝛾

and also depends on Ω, Γ and 𝑇 .

The inequality in (5.82) indicates that very small regularization parameter 𝛾 may

have a negative impact on the numerical accuracy. Therefore, in practice, more refined ℎ

and 𝜏 are necessarily applied to offset the impact from a small 𝛾.
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5.4. ITERATIVE METHODS FOR SOLVING THE DISCRETE
OPTIMALITY SYSTEM

Due to the complex structure of Stokes-Darcy model and the forward-backward

coupled temporal nature in the optimality system, solving the (5.47) directly results in an

extreme large coupled linear system [54], thereby being very computationally expensive.

Hence we propose two iterative algorithms, the conjugate gradient method and the inexact

line search steepest descent method, to decouple the discrete optimality system.

5.4.1. Matrix Formulation. For the description of the iterative methods, we intro-

duce the matrix formulation for the fully discrete optimality system. By definition of the

operators 𝐴, 𝐴∗, 𝐵, 𝐵∗, the discrete OptS (5.47) at each time step can be written as



1
𝜏
𝑀𝑎

©­­­­­­­«

©­­­­­­­«
𝜙𝑛+1
ℎ

𝒖𝑛+1
ℎ

𝑝𝑛+1
ℎ

ª®®®®®®®¬
−

©­­­­­­­«
𝜙𝑛
ℎ

𝒖𝑛
ℎ

𝑝𝑛
ℎ

ª®®®®®®®¬

ª®®®®®®®¬
+ 𝑆

©­­­­­­­«
𝜙𝑛+1
ℎ

𝒖𝑛+1
ℎ

𝑝𝑛+1
ℎ

ª®®®®®®®¬
=

©­­­­­­­«
𝑓 𝑛+1
𝑝,ℎ

𝒇 𝑛+1
𝑓 ,ℎ

®0

ª®®®®®®®¬
, 𝑼0

ℎ
=

©­­­«
𝜙0
ℎ

𝒖0
ℎ

ª®®®¬ ,

−1
𝜏
𝑀𝑎

©­­­­­­­«

©­­­­­­­«
𝜙∗𝑛+1
ℎ

𝒖∗𝑛+1
ℎ

𝑝∗𝑛+1
ℎ

ª®®®®®®®¬
−

©­­­­­­­«
𝜙∗𝑛
ℎ

𝒖∗𝑛
ℎ

𝑝∗𝑛
ℎ

ª®®®®®®®¬

ª®®®®®®®¬
+ 𝑆∗

©­­­­­­­«
𝜙∗𝑛
ℎ

𝒖∗𝑛
ℎ

𝑝∗𝑛
ℎ

ª®®®®®®®¬
=

©­­­­­­­«
𝜙𝑛+1
ℎ

𝒖̂𝑛+1
ℎ

®0

ª®®®®®®®¬
− 𝑀𝑎

©­­­­­­­«
𝜙𝑛+1
ℎ

𝒖𝑛+1
ℎ

®0

ª®®®®®®®¬
,

𝑼∗𝑁
ℎ

=

©­­­«
𝜙∗𝑁
ℎ

𝒖∗𝑁
ℎ

ª®®®¬ =
©­­­«
®0

®0

ª®®®¬ , 𝑼0,ℎ =
1
𝛾

©­­­«
𝜙∗0
ℎ

𝒖∗0
ℎ

ª®®®¬ ,

(5.83)
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where 𝑀𝑎, 𝑆, and 𝑆∗ in (5.83) are formulated as:

𝑀𝑎 =

©­­­­­«
𝑀𝑎𝜙 0 0

0 𝑀𝑎𝒖 0

0 0 0

ª®®®®®¬
, 𝑀𝑎𝒖 =

©­­«
𝑀𝑎𝑢 0

0 𝑀𝑎𝑢

ª®®¬ ,

𝑆 =

©­­­­­«
𝑆𝑎𝜙 𝑆𝒖𝜙 0

𝑆𝜙𝒖 𝑆𝑎𝒖 + 𝑆𝒖𝒖 𝑆𝑝𝒖

0 𝑆𝒖𝑝 0

ª®®®®®¬
, 𝑆∗ =

©­­­­­«
𝑆𝑎𝜙 𝑆∗𝒖𝜙 0

𝑆∗
𝜙𝒖 𝑆𝑎𝒖 + 𝑆∗𝒖𝒖 𝑆𝑝𝒖

0 𝑆𝒖𝑝 0

ª®®®®®¬
.

Here, the related matrices 𝑀𝑎𝜙, 𝑀𝑎𝑢, 𝑆𝑎𝜙, 𝑆𝑎𝒖, 𝑆𝒖𝜙, 𝑆𝒖𝒖, 𝑆𝜙𝒖, 𝑆𝑝𝒖, 𝑆𝒖𝑝, 𝑆∗𝒖𝜙, 𝑆
∗
𝒖𝒖, 𝑆∗

𝜙𝒖 and

other vectors 𝑓 𝑛+1
𝑝,ℎ
, 𝒇 𝑛+1

𝑓 ,ℎ
, 𝜙𝑛+1

ℎ
, and 𝒖̂𝑛+1

ℎ
are assembled as follows:

𝑀𝑎𝜙 =

[∫
Ω𝑝

𝜓 𝑗𝜓𝑖𝑑𝑥𝑑𝑦

]
, 𝑀𝑎𝑢 =

[∫
Ω 𝑓

𝑣 𝑗𝑣𝑖𝑑𝑥𝑑𝑦

]
, 𝑆𝑎𝜙 =

[∫
Ω𝑝

K∇𝜓 𝑗∇𝜓𝑖𝑑𝑥𝑑𝑦
]
,

𝑆𝑝𝒖 =

[
−
∫
Ω 𝑓

𝑞 𝑗∇ · 𝒗𝑖𝑑𝑥𝑑𝑦
]
, 𝑆𝒖𝑝 = 𝑆

𝑇
𝑝𝒖, 𝑆𝑎𝒖 =

[∫
Ω 𝑓

2𝜈D
(
𝒗 𝑗
)

: D (𝒗𝑖) 𝑑𝑥𝑑𝑦
]
,

𝑆𝜙𝒖 =

[∫
Γ

𝑔𝜓 𝑗𝒗𝑖 · 𝒏 𝒇 𝑑𝑆

]
+
[∫

Γ

𝛼𝑃𝜏
(
K∇𝜓 𝑗

)
𝑃𝜏𝒗𝑖𝑑𝑆

]
, 𝑆𝒖𝜙 = −

[∫
Γ

𝒗 𝒋 · 𝒏 𝑓𝜓𝑖𝑑𝑆
]
,

𝑆𝒖𝒖 =

[∫
Γ

𝛼𝑃𝜏𝒗 𝑗𝑃𝜏𝒗𝑖𝑑𝑆

]
, 𝑆∗𝒖𝜙 =

[∫
Γ

𝑔𝒗 𝑗 · 𝒏 𝒇𝜓𝑖𝑑𝑆

]
+
[∫

Γ

𝛼𝑃𝜏𝒗 𝑗𝑃𝜏 (K∇𝜓𝑖) 𝑑𝑆
]
,

𝑆∗𝒖𝒖 =

[∫
Γ

𝛼𝑃𝜏𝒗 𝑗𝑃𝜏𝒗𝑖𝑑𝑆

]
, 𝑆∗𝜙𝒖 = −

[∫
Γ

𝜓 𝑗𝒗𝑖 · 𝒏 𝑓 𝑑𝑆
]
,

𝑓 𝑛+1
𝑝,ℎ =

[∫
Ω𝑝

𝑓𝑝 (𝑡𝑛+1)𝜓𝑖𝑑𝑥𝑑𝑦
]
, 𝒇 𝑛+1

𝑓 ,ℎ =

[∫
Ω 𝑓

𝒇 𝑓 (𝑡𝑛+1)𝒗𝑖𝑑𝑥𝑑𝑦
]
,

𝜙𝑛+1
ℎ =

[∫
Ω𝑝

𝜙(𝑡𝑛+1)𝜓𝑖𝑑𝑥𝑑𝑦
]
, 𝒖̂𝑛+1

ℎ =

[∫
Ω 𝑓

𝒖̂(𝑡𝑛+1)𝒗𝑖𝑑𝑥𝑑𝑦
]
,

where {𝜓𝑖}, {𝒗𝑖} = (𝑣𝑖, 𝑣𝑖)𝑇 and {𝑞𝑖} are basis functions of the finite element spaces 𝑋ℎ𝑝 ,

𝑿ℎ
𝑓

and 𝑄ℎ, respectively.

5.4.2. The Conjugate Gradient Method. Motivated by the fundamental conjugate

gradient method in [54, 68], to efficiently solve 5.47 we propose the following iterative

method to decouple the equation system: given 𝑼(0)
0,ℎ , 𝑼

(1)
0,ℎ and 𝜖 , solve the following
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equations sequentially until the stop criteria ∥𝑼(𝑖+1)
0,ℎ −𝑼(𝑖)

0,ℎ∥0 ≤ 𝜖 (or ∥𝛾𝑼(𝑖+1)
0,ℎ −𝑼∗0(𝑖+1)

ℎ
∥0 ≤

𝜖) is satisfied: 

𝑀𝑎

𝜏

©­­­­­«
©­­­­­«
𝜙
𝑛+1(𝑖)
ℎ

𝒖𝑛+1(𝑖)
ℎ

𝑝
𝑛+1(𝑖)
ℎ

ª®®®®®¬
−
©­­­­­«
𝜙
𝑛(𝑖)
ℎ

𝒖𝑛(𝑖)
ℎ

𝑝
𝑛(𝑖)
ℎ

ª®®®®®¬
ª®®®®®¬
+ 𝑆

©­­­­­«
𝜙
𝑛+1(𝑖)
ℎ

𝒖𝑛+1(𝑖)
ℎ

𝑝
𝑛+1(𝑖)
ℎ

ª®®®®®¬
=

©­­­­­«
𝑓 𝑛+1
𝑝,ℎ

𝒇 𝑛+1
𝑓 ,ℎ

®0

ª®®®®®¬
,

𝑼0(𝑖)
ℎ

=
©­­«
𝜙

0(𝑖)
ℎ

𝒖0(𝑖)
ℎ

ª®®¬ ,
(5.84)



− 𝑀𝑎

𝜏

©­­­­­«
©­­­­­«
𝜙
∗𝑛+1(𝑖)
ℎ

𝒖∗𝑛+1(𝑖)
ℎ

𝑝
∗𝑛+1(𝑖)
ℎ

ª®®®®®¬
−
©­­­­­«
𝜙
∗𝑛(𝑖)
ℎ

𝒖∗𝑛(𝑖)
ℎ

𝑝
∗𝑛(𝑖)
ℎ

ª®®®®®¬
ª®®®®®¬
+ 𝑆∗

©­­­­­«
𝜙
∗𝑛(𝑖)
ℎ

𝒖∗𝑛(𝑖)
ℎ

𝑝
∗𝑛(𝑖)
ℎ

ª®®®®®¬
=

©­­­­­«
𝜙𝑛+1
ℎ

𝒖̂𝑛+1
ℎ

®0

ª®®®®®¬
− 𝑀𝑎

©­­­­­«
𝜙
𝑛+1(𝑖)
ℎ

𝒖𝑛+1(𝑖)
ℎ

®0

ª®®®®®¬
,

𝑼∗𝑁 (𝑖)
ℎ

=
©­­«
𝜙
∗𝑁 (𝑖)
ℎ

𝒖∗𝑁 (𝑖)
ℎ

ª®®¬ =
©­­«
®0
®0

ª®®¬ ,
(5.85)

𝑼0(𝑖+1)
ℎ

= 𝑼0(𝑖)
ℎ

+ 𝜁 𝑖+1𝐸 𝑖 (𝑼∗0(𝑖)
ℎ

− 𝛾𝑼0(𝑖)
ℎ

) + 𝜂𝑖+1𝐶𝑖 (𝑼0(𝑖)
ℎ

−𝑼0(𝑖−1)
ℎ

), (5.86)

where 𝑛 = 0, 1, 2, 3, . . . , 𝑁 − 1 is the time moment, 𝑖 = 0, 1, 2, 3, . . . is the iteration step,

𝑼0(𝑖)
ℎ

,𝑼𝑛(𝑖)
ℎ

, and𝑼∗𝑛(𝑖)
ℎ

are iterative sequences, 𝐸 𝑖 and𝐶𝑖 are two symmetric positive definite

matrices, 𝜁 𝑖+1 and 𝜂𝑖+1 are parameters updated at each iteration.

Following the ideas in [54, 55] we use 𝐸 𝑖 and 𝐶𝑖 as identity matrices, 𝜁 𝑖+1 and 𝜂𝑖+1

are then updated as

𝜁 𝑖+1 =
1
𝑞𝑖+1 , 𝜂

𝑖+1 =
𝑒𝑖

𝑞𝑖+1 , (5.87)

where

𝑒𝑖 =


0 𝑖 = 0,

𝑞𝑖
∥𝝌𝑖 ∥2

0
∥𝝌𝑖−1∥2

0
𝑖 > 0,

𝑞𝑖+1 =
∥𝝌𝑖∥2

𝐿

∥𝝌𝑖∥2
0
− 𝑒𝑖, 𝑖 = 0, 1, 2, 3, · · · .
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Here 𝝌𝑖 = 𝛾𝑼0(𝑖)
ℎ

−𝑼∗0(𝑖)
ℎ

and ∥𝝌𝑖∥𝐿 = (𝐿𝝌𝑖, 𝝌𝑖)
1
2
Ω

. The operator 𝐿 acting on 𝝌𝑖 is defined

as follows 

𝑀𝑎

𝜏

©­­­­­«
©­­­­­«
𝜙𝑛+1
𝐿,ℎ

𝒖𝑛+1
𝐿,ℎ

𝑝𝑛+1
𝐿,ℎ

ª®®®®®¬
−
©­­­­­«
𝜙𝑛
𝐿,ℎ

𝒖𝑛
𝐿,ℎ

𝑝𝑛
𝐿,ℎ

ª®®®®®¬
ª®®®®®¬
+ 𝑆

©­­­­­«
𝜙𝑛+1
𝐿,ℎ

𝒖𝑛+1
𝐿,ℎ

𝑝𝑛+1
𝐿,ℎ

ª®®®®®¬
=

©­­­­­«
®0
®0
®0

ª®®®®®¬
,

𝑼0
𝐿,ℎ = 𝝌𝑖,

(5.88)



− 𝑀𝑎

𝜏

©­­­­­«
©­­­­­«
𝜙∗𝑛+1
𝐿,ℎ

𝒖∗𝑛+1
𝐿,ℎ

𝑝∗𝑛+1
𝐿,ℎ

ª®®®®®¬
−
©­­­­­«
𝜙∗𝑛
𝐿,ℎ

𝒖∗𝑛
𝐿,ℎ

𝑝∗𝑛
𝐿,ℎ

ª®®®®®¬
ª®®®®®¬
+ 𝑆∗

©­­­­­«
𝜙∗𝑛
𝐿,ℎ

𝒖∗𝑛
𝐿,ℎ

𝑝∗𝑛
𝐿,ℎ

ª®®®®®¬
= −𝑀𝑎

©­­­­­«
𝜙𝑛+1
𝐿,ℎ

𝒖𝑛+1
𝐿,ℎ

®0

ª®®®®®¬
,

𝑼∗𝑁
𝐿,ℎ =

©­­«
®0
®0

ª®®¬ ,
(5.89)

𝐿𝝌𝑖 = 𝛾𝝌𝑖 −
©­­«
𝜙∗0
𝐿,ℎ

𝒖∗0
𝐿,ℎ

ª®®¬ . (5.90)

We summarize the above iterative scheme as:

Algorithm 12 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess two initial

functions 𝑼0(𝑖)
ℎ

and 𝑼1(𝑖)
ℎ

, and then start the iteration at step 𝑖 = 1.

Step 1 (Forward phase): Use 𝑼0(𝑖)
ℎ

as the initial condition to solve (5.84) forward

for 𝑼𝑛(𝑖)
ℎ

, 𝑛 = 1, 2, 3, · · · .

Step 2 (Backward phase): Pass 𝑼𝑛(𝑖)
ℎ

, 𝑛 = 1, 2, 3, · · · to (5.85) and solve (5.85)

backward for 𝑼∗0(𝑖)
ℎ

.

Step 3 (Computing operator 𝐿):
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(1) Set 𝝌𝑖 = 𝛾𝑼0(𝑖)
ℎ

−𝑼∗0(𝑖)
ℎ

as initial value to solve equation (5.88) forward to

obtain

©­­­­­«
𝜙𝑛
𝐿,ℎ

𝒖𝑛
𝐿,ℎ

𝑝𝑛
𝐿,ℎ

ª®®®®®¬
;

(2) Pass

©­­­­­«
𝜙∗𝑛
𝐿,ℎ

𝒖∗𝑛
𝐿,ℎ

𝑝∗𝑛
𝐿,ℎ

ª®®®®®¬
to (5.89) and solve equation (5.89) backward for attaining

©­­­­­«
𝜙∗0
𝐿,ℎ

𝒖∗0
𝐿,ℎ

𝑝∗0
𝐿,ℎ

ª®®®®®¬
;

(3) Compute 𝐿𝝌𝑖 = 𝛾𝝌𝑖 −
©­­«
𝜙∗0
𝐿,ℎ

𝒖∗0
𝐿,ℎ

ª®®¬.
Step 4 (Update phase): Calculate 𝜁 𝑖+1, 𝜂𝑖+1 by using (5.87) and then update

𝑼0(𝑖+1)
ℎ

= 𝑼0(𝑖)
ℎ

+ 𝜁 𝑖+1𝐸 𝑖 (𝑼∗0(𝑖)
ℎ

− 𝛾𝑼0(𝑖)
ℎ

) + 𝜂𝑖+1𝐶𝑖 (𝑼0(𝑖)
ℎ

−𝑼0(𝑖−1)
ℎ

).

Step 5 (Criteria for stopping the iteration): Compute ∥𝑼0(𝑖+1)
ℎ

−𝑼0(𝑖)
ℎ

∥0. If ∥𝑼0(𝑖+1)
ℎ

−

𝑼0(𝑖)
ℎ

∥0 ≤ 𝜖 then stop. Otherwise go back to Step 1 and continue.

5.4.3. The Inexact Line Search Steepest descent Method. The conjugate gradient

method described above has a descent convergence rate and solves the discrete optimality

system (5.47) effectively in most cases. However, its descent direction is sensitive to

the stability of the data assimilation problem which can hinder the convergence of the

conjugate gradient method for a problem with a low stability which might be caused by a

small regularization parameter 𝛾 in the cost functional (5.43).

This shortcoming motivates us to propose a steepest descent method in [52, 53] that

gains more stability at the cost of a lower convergence rate. To begin with, we need to

calculate the derivative of the cost functional (5.43) and find out its representation in the

admissible set,

𝐽′ℎ (𝑼0,ℎ)𝒁ℎ = 𝜏
𝑁∑︁
𝑛=1

(𝑼𝑛 −𝑼𝑛
ℎ, (𝑼

𝑛
ℎ)

′𝒁ℎ) + (𝛾𝑼0,ℎ, 𝒁ℎ) ∀𝒁ℎ ∈ 𝒀ℎ𝑎𝑑 . (5.91)
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Note that (𝑼𝑛
ℎ
)′𝒁ℎ is essentially equal toU𝑛

ℎ
which is the solution of the following discretized

equation
U𝑛+1
ℎ

−U𝑛
ℎ

𝜏
+ 𝐴U𝑛+1

ℎ + 𝐵∗𝑝𝑛+1
ℎ = 0, 𝐵U𝑛+1

ℎ = 0, U0
ℎ = 𝒁ℎ. (5.92)

To compute 𝐽′
ℎ
(𝑼0,ℎ)𝒁ℎ, we introduce the adjoint variables

©­­«
𝑼∗𝑛
ℎ

𝑝∗𝑛
ℎ

ª®®¬
𝑁−1

𝑛=0

=

©­­­­­«
𝜙∗𝑛
ℎ

𝒖∗𝑛
ℎ

𝑝∗𝑛
ℎ

ª®®®®®¬

𝑁−1

𝑛=0

and let

𝑼∗𝑁
ℎ

=
©­­«
𝜙𝑁
ℎ

𝒖𝑁
ℎ

ª®®¬=0,

©­­­­­«
𝜙∗𝑛
ℎ

𝒖∗𝑛
ℎ

𝑝∗𝑛
ℎ

ª®®®®®¬

𝑁−1

𝑛=1

is the discrete solution of equation:

−
𝑼∗𝑛+1
ℎ

−𝑼∗𝑛
ℎ

𝜏
+ 𝐴∗𝑼∗𝑛

ℎ + 𝐵∗𝑝∗𝑛ℎ = 𝑼𝑛+1 −𝑼𝑛+1
ℎ , 𝐵𝑼∗𝑛

ℎ = 0, 𝑼∗𝑁
ℎ = 0. (5.93)

Proceeding the similar technique as (5.46), the derivative of the cost functional (5.44) is

obtained as

𝐽′ℎ (𝑼0,ℎ)𝒁ℎ = (𝛾𝑼0,ℎ −𝑼∗0
ℎ , 𝒁ℎ), (5.94)

and 𝛾𝑼0,ℎ −𝑼∗0
ℎ

is the gradient of 𝐽ℎ at 𝑼0,ℎ.

With the gradient information in (5.94) we now present the steepest descent method

to solve the discrete data assimilation problem: given 𝑼0(𝑖)
ℎ

and 𝜖 , solve the following

equations sequentially until the stop criteria ∥𝑼0(𝑖+1)
ℎ

−𝑼0(𝑖)
ℎ

∥0 ≤ 𝜖 (or ∥𝛾𝑼(𝑖+1)
0,ℎ −𝑼∗0(𝑖+1)

ℎ
∥0 ≤

𝜖) is satisfied: 

𝑀𝑎

𝜏

©­­­­­«
©­­­­­«
𝜙
𝑛+1(𝑖)
ℎ

𝒖𝑛+1(𝑖)
ℎ

𝑝
𝑛+1(𝑖)
ℎ

ª®®®®®¬
−
©­­­­­«
𝜙
𝑛(𝑖)
ℎ

𝒖𝑛(𝑖)
ℎ

𝑝
𝑛(𝑖)
ℎ

ª®®®®®¬
ª®®®®®¬
+ 𝑆

©­­­­­«
𝜙
𝑛+1(𝑖)
ℎ

𝒖𝑛+1(𝑖)
ℎ

𝑝
𝑛+1(𝑖)
ℎ

ª®®®®®¬
=

©­­­­­«
𝑓 𝑛+1
𝑝,ℎ

𝒇 𝑛+1
𝑓 ,ℎ

®0

ª®®®®®¬
,

𝑼0(𝑖)
ℎ

=
©­­«
𝜙

0(𝑖)
ℎ

𝒖0(𝑖)
ℎ

ª®®¬ ,
(5.95)
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

− 𝑀𝑎

𝜏

©­­­­­«
©­­­­­«
𝜙
∗𝑛+1(𝑖)
ℎ

𝒖∗𝑛+1(𝑖)
ℎ

𝑝
∗𝑛+1(𝑖)
ℎ

ª®®®®®¬
−
©­­­­­«
𝜙
∗𝑛(𝑖)
ℎ

𝒖∗𝑛(𝑖)
ℎ

𝑝
∗𝑛(𝑖)
ℎ

ª®®®®®¬
ª®®®®®¬
+ 𝑆∗

©­­­­­«
𝜙
∗𝑛(𝑖)
ℎ

𝒖∗𝑛(𝑖)
ℎ

𝑝
∗𝑛(𝑖)
ℎ

ª®®®®®¬
=

©­­­­­«
𝜙𝑛+1
ℎ

𝒖̂𝑛+1
ℎ

®0

ª®®®®®¬
− 𝑀𝑎

©­­­­­«
𝜙
𝑛+1(𝑖)
ℎ

𝒖𝑛+1(𝑖)
ℎ

®0

ª®®®®®¬
,

𝑼∗𝑁 (𝑖)
ℎ

=
©­­«
𝜙
∗𝑁 (𝑖)
ℎ

𝒖∗𝑁 (𝑖)
ℎ

ª®®¬ =
©­­«
®0
®0

ª®®¬ ,
(5.96)

𝑼(𝑖+1)
0,ℎ = 𝑼(𝑖)

0,ℎ + 𝜂
𝑖+1(𝑼∗0(𝑖)

ℎ
− 𝛾𝑼0(𝑖)

ℎ
), (5.97)

where 𝑛 = 0, 1, 2, 3, . . . , 𝑁 − 1 is time moment, 𝑖 = 0, 1, 2, 3, . . . is the iteration step, 𝑼(𝑖)
0,ℎ,

𝑼𝑛(𝑖)
ℎ

, 𝑼∗𝑛(𝑖)
ℎ

are iterative sequences, and 𝜂𝑖+1 is a constant called the learning rate.

To reduce the iterations and improve computational efficiency, the learning rate 𝜂𝑖+1

is determined by using the inexact line search algorithm: find 𝜂𝑖+1 via repeatedly solving

(5.95) with initial value

𝑼(𝑖+1)
0,ℎ = 𝑼(𝑖)

0,ℎ + 𝜂
𝑖+1(𝑼∗0(𝑖)

ℎ
− 𝛾𝑼(𝑖)

0,ℎ) by updating 𝜂𝑖+1 = 𝜌𝜂𝑖+1,

until the following inequality is satisfied

𝐽ℎ (𝑼(𝑖+1)
0,ℎ ) ≤ 𝐽ℎ (𝑼(𝑖)

0,ℎ) + 𝛿𝜂
𝑖+1⟨𝐽′ℎ (𝑼

(𝑖)
0,ℎ),𝑼

∗0(𝑖)
ℎ

− 𝛾𝑼(𝑖)
0,ℎ⟩, (5.98)

where 𝜂𝑖+1 is typically initialized as a constant equal or greater than 1, 𝛿 and 𝜌 are chosen

between (0, 1).

We summarize this inexact line search descent algorithm as follows:

Algorithm 13 Step 0 (Initialization): Specify a convergence tolerance 𝜖 , guess initial

function 𝑼(0)
0,ℎ , and start the iteration step 𝑖 = 1.

Step 1 (Forward phase): Use 𝑼(𝑖)
0,ℎ as initial condition to solve equation (5.95)

forward for 𝑼𝑛(𝑖)
ℎ
, 𝑛 = 1, 2, 3, . . . , 𝑁 .
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Step 2 (Backward phase): Pass𝑼𝑛(𝑖)
ℎ
, 𝑛 = 1, 2, 3, . . . , 𝑁 to equation (5.96) and solve

equation (5.96) backward for 𝑼∗0(𝑖)
ℎ

.

Step 3 (Inexact line search for 𝜂𝑖+1):

(1) Initialize a constant 𝜂𝑖+1 ≥ 1, set 0 < 𝜌 < 1 and 0 < 𝛿 < 1;

(2) Use 𝑼(𝑖+1)
0,ℎ = 𝑼(𝑖)

0,ℎ + 𝜂
𝑖+1(𝑼∗0(𝑖)

ℎ
− 𝛾𝑼(𝑖)

0,ℎ) as initial value to solve equation

(5.95) forward to obtain 𝑼𝑛
ℎ

for computing 𝐹ℎ (𝑼(𝑖+1)
0,ℎ );

(3) Update 𝜂𝑖+1 = 𝜌𝜂𝑖+1 until inequality (5.98) is satisfied;

(4) Output 𝜂𝑖+1.

Step 4 (Update phase): Use 𝜂𝑖+1 from Step 3 and then update

𝑼(𝑖+1)
0,ℎ = 𝑼(𝑖)

0,ℎ + 𝜂
𝑖+1(𝑼∗0(𝑖)

ℎ
− 𝛾𝑼(𝑖)

0,ℎ).

Step 5 (Criteria for stopping the iteration): Compute ∥𝑼∗0(𝑖)
ℎ

− 𝛾𝑼(𝑖)
0,ℎ∥, if ∥𝑼∗0(𝑖)

ℎ
−

𝛾𝑼(𝑖)
0,ℎ∥ ≤ 𝜖 then stop; otherwise, go back to Step 1 and continue.

Remark 18 If the admissible set is in a box constraint: 𝒀ℎ
𝑎𝑑

= {𝑼0,ℎ ∈ 𝑳2(Ω) : 𝒂 ≤ 𝑼0,ℎ ≤

𝒃}, for both of the conjugate gradient and steepest descent methods, we need to project

the 𝑼(𝑖+1)
0,ℎ (at each iteration of the 𝑈𝑝𝑑𝑎𝑡𝑒 𝑝ℎ𝑎𝑠𝑒) onto 𝒀ℎ

𝑎𝑑
, i.e., the update in 𝑆𝑡𝑒𝑝 4 is

replaced as: 𝑼(𝑖+1)
0,ℎ = max{𝒂,min{𝒃,𝑼(𝑖+1)

0,ℎ }}. This is then called the projected gradient

method.

Remark 19 (Application of the Incremental POD) The incremental POD technique can

be used in the Forward phase for both conjugate gradient method steepest descent method

to save computer memory.
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5.5. NUMERICAL EXPERIMENTS

This section presents numerical results to demonstrate the optimal convergence

established in Section 5.3 and the performance of the state prediction using the algorithms

developed in Section 5.4. The Taylor-Hood finite element method is applied for the space

discretization.

5.5.1. Verification of the Finite Element Convergence Rate. In this example, we

let K = I, 𝛼 = 1, 𝑔 = 1, Ω𝑝 = (0, 𝜋) × (0, 1), Ω 𝑓 = (0, 𝜋) × (−1, 0), Γ : 𝑥 = 0, and

𝑼 |𝜕Ω = 0. Based on the numerical example in [115], whose analytic solutions satisfy the

Beavers-Joseph interface conditions, we choose the following initial functions and source

term functions:

𝑾0 =((2 − 𝜋 sin(𝜋𝑥)) (−𝑦 + cos(𝜋(1 − 𝑦))), 𝑥2𝑦2 + 𝑒−𝑦, (−2/3)𝑥𝑦3 + 2 − 𝜋 sin(𝜋𝑥))𝑇 ,

𝑓𝑝 = cos(2𝜋𝑡) (𝜋2(2 cos(𝜋(1 − 𝑦)) − 2𝜋 sin(𝜋𝑥) cos(𝜋(1 − 𝑦)) + 𝜋𝑦 sin(𝜋𝑥)))

− 2𝜋 sin(2𝜋𝑡) (2 − 𝜋 sin(𝜋𝑥)) (−𝑦 + cos(𝜋(1 − 𝑦))),

𝑓1 = cos(2𝜋𝑡) (−2𝑦2 − 2𝑥2 − 𝑒−𝑦 + 𝜋2 cos(𝜋𝑥) cos(2𝜋𝑦))

− 2𝜋 sin(2𝜋𝑡) (𝑥2𝑦2 + 𝑒−𝑦) sin(2𝜋𝑡) (−2𝜋),

𝑓2 = cos(2𝜋𝑡) (4𝑥𝑦 − 𝜋3 sin(𝜋𝑥) + 2𝜋(2 − 𝜋 sin(𝜋𝑥)) sin(2𝜋𝑦))

− 2𝜋 sin(2𝜋𝑡) (2
3
𝑥𝑦3 + 2 − 𝜋 sin(𝜋𝑥)).

To construct a set of smooth observation data satisfying both the interface conditions and

homogeneous boundary conditions, we numerically solve the Stokes-Darcy model with

ℎ = 1/64, 𝜏 = 1/4000, initial function 𝑾0, and source term 𝑭 = ( 𝑓𝑝, 𝑓1, 𝑓2)𝑇 in the

time interval [0, 0.75]. Then the numerical solution in the time interval [0.25, 0.75] is

considered as the observation data 𝑼.
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Table 5.1. The finite element convergence rate of the recovered initial condition 𝜙0 of the
Stokes-Darcy equation.

𝛾 | |𝜙0 − 𝜙0, 18
| |0 | |𝜙0 − 𝜙0, 1

16
| |0 rate | |𝜙0 − 𝜙0, 1

32
| |0 rate

1 1.16 × 10−2 1.30 × 10−3 3.15 1.20 × 10−4 3.44
1
5 4.19 × 10−2 4.90 × 10−3 3.09 4.70 × 10−4 3.38
1
50 9.83 × 10−2 1.22 × 10−2 3.01 1.30 × 10−3 3.23
1

200 1.14 × 10−1 1.41 × 10−2 3.02 1.50 × 10−3 3.23

Table 5.2. The finite element convergence rate of the recovered initial condition 𝒖0 of the
Stokes-Darcy equation.

𝛾 | |𝒖0 − 𝒖0, 18
| |0 | |𝒖0 − 𝒖0, 1

16
| |0 rate | |𝒖0 − 𝒖0, 1

32
| |0 rate

1 2.10 × 10−3 2.42 × 10−3 3.12 2.91 × 10−4 3.06
1
5 1.03 × 10−2 1.25 × 10−3 3.04 1.41 × 10−4 3.15
1

50 4.94 × 10−2 6.00 × 10−2 3.04 6.64 × 10−3 3.17
1

200 6.69 × 10−2 8.65 × 10−2 2.95 8.80 × 10−3 3.29

Table 5.3. Relative finite element errors according to 𝛾 of the Stokes-Darcy equation.
𝑅
𝜙0
ℎ

=
| |𝜙0−𝜙0,ℎ | |0

| |𝜙0 | |0 , 𝑅𝒖0
ℎ

=
| |𝒖0−𝒖0,ℎ | |0

| |𝒖0 | |0 .

𝛾 𝑅
𝜙0
1
8

𝑅
𝜙0
1

16
𝑅
𝜙0
1
32

𝑅
𝒖0
1
8

𝑅
𝒖0
1

16
𝑅
𝒖0
1

32
1 0.2184 0.0247 0.0023 0.0972 0.0119 0.0013
1
5 0.2341 0.0278 0.0027 0.1167 0.0143 0.0016
1
50 0.2496 0.0314 0.0033 0.1649 0.0208 0.0023
1

200 0.2524 0.0313 0.0034 0.1811 0.0236 0.0027

For the data assimilation problem, we use the mesh sizes of 1/8, 1/16, 1/32, 1/64 and

time step sizes of 1/16, 1/128, 1/1024, 1/4000 to produce numerical solutions, based on the

conjugate gradient method. For each 𝛾, the numerical solution with ℎ = 1/64, 𝜏 = 1/4000

is considered to replace the analytical solution when computing the numerical errors. Tables

5.1-5.3 illustrate the convergence performance. From tables 5.1 and 5.2, we can see that the

𝑳2 norm errors for 𝜙 and 𝑼 appear to converge optimally. In addition, the relative errors in

table 5.3 become larger when 𝛾 decreases, which is consistent with the conclusion that the

coefficient 𝐶𝛾,Ω,Γ,𝑇 in Theorem 22 is proportional to 1
𝛾
.
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5.5.2. Data Assimilation Performance. We now investigate the performance of

the state forecast for Stokes-Darcy model utilizing the data assimilation methods developed

in this Section. Let K = I, 𝛼 = 1, 𝑔 = 1, Ω𝑝 = (0, 𝜋) × (0, 1), Ω 𝑓 = (0, 𝜋) × (−1, 0),

Γ : 𝑥 = 0, 𝑼 |𝜕Ω = 0, and

𝑭 = (𝜋 sin(𝑥) + cos(𝑦) + 3/2, 𝑥2 + 𝑦 + cos(𝑦) + 1, sin(𝑦) + 2𝑥 + 𝑦 + 2)𝑇 ,

𝜙0 =



(2 − 𝜋 sin(𝜋𝑥)) (−𝑦 + cos(𝜋(1 − 𝑦))) + 𝑦 + sin(𝑥), 𝑦 ≥ 1
2 ,

(2 − 𝜋 sin(𝜋𝑥)) (−𝑦 + cos(𝜋(1 − 𝑦))) + 𝑦 + cos(𝑥), 𝑦 ≤ −1
2 ,

(2 − 𝜋 sin(𝜋𝑥)) (−𝑦 + cos(𝜋(1 − 𝑦))), otherwise ,

𝑢10 =



(𝑥2𝑦2 + 𝑒𝑥𝑝(−𝑦)) + 1 + sin(𝑦), 𝑦 ≥ 1
2 ,

(𝑥2𝑦2 + 𝑒𝑥𝑝(−𝑦)) + 1
2 + cos(𝑦), 𝑦 ≤ −1

2 ,

(𝑥2𝑦2 + 𝑒𝑥𝑝(−𝑦)), otherwise ,

𝑢20 =



−2
3𝑥𝑦

3 + 2 − 𝜋 sin(𝜋𝑥) + 1
2 + sin(𝑦), 𝑦 ≥ 1

2 ,

−2
3𝑥𝑦

3 + 2 − 𝜋 sin(𝜋𝑥) + 1 + cos(𝑦) + 𝑥, 𝑦 ≤ −1
2 ,

−2
3𝑥𝑦

3 + 2 − 𝜋 sin(𝜋𝑥), otherwise .

Set ℎ = 1/20, 𝜏 = 1/100. To construct a set of non-smooth observation data

satisfying both the interface conditions and homogeneous boundary conditions, we nu-

merically solve the Stokes-Darcy model with initial function 𝑼0 = (𝜙0, 𝑢10, 𝑢20)𝑇 and

source term 𝑭 = ( 𝑓𝑝, 𝑓1, 𝑓2)𝑇 in the time interval [0, 1]. Then the numerical solution in

the time interval [1/20, 1] is considered as the observation data 𝑼1 without noise. The

observations 𝑼2 with noise is produced by adding perturbation with normal distribution

𝑁 (0, 1
50 ) to𝑼1. The ˜𝑳2 and 𝑳∞ norms, which are defined as | |𝑼 | |

˜𝑳2 = (∑𝑁
𝑛=1 𝜏∥𝑼𝑛∥2

0)
1
2 and

| |𝑼 | |𝑳∞ = sup1≤𝑛≤𝑁 ∥𝑼𝑛∥𝑳∞ (Ω) , are used to measure the errors.
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For observations without noise, table 5.4 shows the errors between the numerical

solutions and the observation data 𝑼1 as well as the number of iteration steps. For ob-

servations with noise, table 5.5 shows the errors between the numerical solutions and the

observation data 𝑼2 as well as the number of iteration steps. We can see that the errors

between the numerical solutions and the observations become smaller when 𝛾 becomes

smaller. Furthermore, the convergence comparison between the conjugate gradient method

and steepest descent method indicates that the conjugate gradient method is preferred for the

moderate 𝛾 because of its higher convergence rate, and the steepest descent method is a prior

option for a small 𝛾 due to its better stability. All of these agree well with our expectation

and validate the methods proposed in this Section for solving the data assimilation problem

of Stokes-Darcy model.

Table 5.4. Data assimilation result without noise for the Stokes-Darcy equation. The ˜𝑳2-
and 𝑳∞- norm errors between 𝑼1 and the numerical solution 𝑼ℎ, NI=Number of Iteration.

The conjugate gradient method The steepest descent method
𝛾 | |𝑼ℎ −𝑼1 | |

˜𝑳2 | |𝑼ℎ −𝑼1 | |𝐿∞ NI | |𝑼ℎ −𝑼1 | |
˜𝑳2 | |𝑼ℎ −𝑼1 | |𝐿∞ NI

1 0.2441 0.3764 6 0.2441 0.3764 6
1

10 0.1725 0.2713 9 0.1725 0.2713 63
1

200 0.0299 0.0519 18 0.0298 0.0517 432
1

2000 0.0039 0.0058 49 0.0038 0.0057 713
1

10000 \ \ ∞ 0.0022 0.0043 1135

Table 5.5. Data assimilation result with noise for the Stokes-Darcy equation. The ˜𝑳2- and
𝑳∞-norm errors between 𝑼2 and the numerical solution 𝑼ℎ, NI=Number of Iteration.

The conjugate gradient method The steepest descent method
𝛾 | |𝑼ℎ −𝑼2 | |

˜𝑳2 | |𝑼ℎ −𝑼2 | |𝐿∞ NI | |𝑼ℎ −𝑼2 | |
˜𝑳2 | |𝑼ℎ −𝑼2 | |𝐿∞ NI

1 0.2503 0.3845 6 0.2503 0.3845 6
1

10 0.1806 0.2812 9 0.1806 0.2812 63
1

200 0.0432 0.0684 18 0.0431 0.0683 433
1

2000 0.0198 0.0272 52 0.0196 0.0270 716
1

10000 \ \ ∞ 0.0180 0.0230 1139
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5.5.3. Data Assimilation Results using Incremental POD. Besides the classical

gradient methods, we provide the data assimilation results using incremental POD data

compression in this section. We use the same model parameters in Section 5.5.2 to generate

the observations without introducing noise. The time step size and mesh size are given

𝜏 = 1/400 and ℎ = 1/20, respectively. The regularization parameter 𝛾 is 1/10.

Table 5.6 shows that the use of incremental POD saves computer storage around

90%, which effectively solves the memory issues in the gradient descent method from the

data assimilation problem. In Table 5.7, simulation accuracy is not affected by using the

approximated data when relatively small POD truncation is applied. This is might because

the gradient method itself is correcting the information deviation to rule out the sacrifice

from the incremental POD procedure. It might be also due to the total information loss

from incremental POD in our numerical experiment is minimal. More investigations are

deserved for this promising POD behavior in optimizations.

Table 5.6. Memory saved from the incremental POD with relatively large truncation for
the data assimilation of the Stokes-Darcy equation. the Gradient convergence tolerance is
10−3, the POD truncation thresholds are all 10−10.

Storage Saved During Gradient descent Iterations
Original Data size Compressed Data size Storage Saved

𝜙 1681 × 400 1681 × 21 89%
𝑢1 1681 × 400 1681 × 20 90%
𝑢2 1681 × 400 1681 × 20 90%

Table 5.7. Data assimilation comparison between the use and no use of the incremental POD
for the data assimilation of the Stokes-Darcy equation. 𝐷𝑂: observations; 𝐷ℎ: numerical
results without using POD; 𝐷𝐶

ℎ
: numerical results using POD truncation thresholds 10−10.

Error Comparison to Observations
| |𝐷𝑂 − 𝐷ℎ | |𝐿2 (0,𝑇 ;𝐿2 (Ω)) | |𝐷𝑂 − 𝐷𝐶

ℎ
| |𝐿2 (0,𝑇 ;𝐿2 (Ω))

𝜙 0.03827 0.03827
𝑢1 0.05158 0.05158
𝑢2 0.04234 0.04234
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6. CONCLUSIONS

Based on the optimal control theory, we proposed the variational data assimilation

method to improve the state prediction of a dynamical system with interface conditions.

In this dissertation, we made contributions for dealing with such problem in multiple

perspectives. First, up to our knowledge, this is one of the pioneer works on data assimilation

for interface problems. Second, based on a weak interpretation of the dynamical system, we

rigorously formulated the data assimilation into an optimization problem, and established

the existence, uniqueness, and stability of the optimal solution. We derived the first order

optimality system by dual method and Lagrange multiplier rule. Third, we present a fully

discrete approximation of the continuous data assimilation with finite element methods, and

demonstrated the optimal finite element convergence rate via employing skillful numerical

techniques. In addition, besides the implementation of classical gradient descent methods,

we develop the time parallel algorithm and proper orthogonal decomposition methods to

optimize the computational resource during the data assimilation procedure.

The promising numerical performances encourage us to further investigate more re-

alistic and complex data assimilation scenarios, such as the consideration for dual-porosity

models, nonlinear governing systems, inhomogeneous Dirichlet boundary condition, inho-

mogeneous interface conditions, and sparse data simulation. Besides, we also keep eyes on

parallel computing and POD methods, especially, the iterative nature of parallel computing

may enable us to imbed the reduced basis method to greatly optimize the computational

efficiency.
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