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ABSTRACT

The problem of learning latent representations of heterogeneous networks with

spatial and temporal attributes has been gaining traction in recent years, given its myriad

of real-world applications. Most systems with applications in the field of transportation,

urban economics, medical information, online e-commerce, etc., handle big data that can be

structured into Spatiotemporal Heterogeneous Networks (SHNs), thereby making efficient

analysis of these networks extremely vital. In recent years, representation learning models

have proven to be quite efficient in capturing effective lower-dimensional representations of

data. But, capturing efficient representations of SHNs continues to pose a challenge for the

following reasons: (i) Spatiotemporal data that is structured as SHN encapsulate complex

spatial and temporal relationships that exist among real-world objects, rendering traditional

feature engineering approaches inefficient and compute-intensive; (ii) Due to the unique

nature of the SHNs, existing representation learning techniques cannot be directly adopted

to capture their representations.

To address the problem of learning representations of SHNs, four novel frameworks

that focus on their unique spatial and temporal characteristics are introduced: (i) collective

representation learning, which focuses on quantifying the importance of each latent feature

using Laplacian scores; (ii) modality aware representation learning, which learns from the

complex user mobility pattern; (iii) distributed representation learning, which focuses on

learning human mobility patterns by leveraging Natural Language Processing algorithms;

and (iv) representation learning with node sense disambiguation, which learns contrastive

senses of nodes in SHNs. The developed frameworks can help us capture higher-order

spatial and temporal interactions of real-world SHNs. Through data-driven simulations,

machine learning and deep learning models trained on the representations learned from the

developed frameworks are proven to be much more efficient and effective.
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1. INTRODUCTION

Complex real-world systems handle big data that consist of spatial and temporal

attributes that lead to an inherently spatial-temporal and interconnected composition that

can be structured into Spatiotemporal Heterogeneous Networks (SHNs), thereby making

efficient analysis of these networks extremely vital. Most real-world networks as shown in

Figure 1.1 are heterogeneous and incorporate underlying spatiotemporal dependencies.

Figure 1.1. Real-world Spatiotemporal Heterogeneous Networks

In today’s digital world, spatiotemporal data has become increasingly available.

Mining spatiotemporal data can help us understand the intrinsic structure of systems while

simultaneously revealing the dichotomy of multi-class spatial and temporal relationships

that exist between objects. Effective analysis of spatiotemporal data can help us understand

the semantics of real-world systems, identify trends, forecast future events, and detect

anomalies.
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For example, in a vehicle with an autonomous driving system, sensors are connected

to monitor the condition of the terrain. Understanding underlying temporal and spatial

structure is imperative for the system to develop appropriate accident mitigation measures.

Smart transportation systems with advanced spatial and temporal information management

capabilities can help monitor traffic flow and safety, find the optimal route to get from

point A to point B (Route Planning), etc. By learning Spatiotemporal relationships we can

better quantitatively depict urban regions and understand factors influencing rapid growth,

expansion, and changes. SHNs also have applications in the field of healthcare, agriculture,

etc.

1.1. REPRESENTATION LEARNING

In recent years, representation learning models have proven to be quite effective

in capturing lower-dimensional representations of the data that can reduce variance and

support effective machine learning. The performance of machine learning frameworks

is heavily dependent on the choice of data representation (or features) on which they

are applied. For that reason, much of the actual effort in deploying machine learning

algorithms goes into the design of preprocessing pipelines and data transformations that

result in a representation of the data that can support effective machine learning. Such feature

engineering is important but labor-intensive and highlights the weakness of current machine

learning algorithms, their inability to extract and organize the discriminative information

from the data. Feature engineering is a way to take advantage of human ingenuity and prior

knowledge to compensate for that weakness. To expand the scope and ease of applicability

of machine learning, it would be highly desirable to make machine learning algorithms less

dependent on feature engineering so that novel applications could be constructed faster,

and more importantly, to make progress towards Artificial Intelligence (AI). An AI must
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fundamentally understand the world around us, and we argue that this can only be achieved

if it can learn to identify and disentangle the underlying explanatory factors hidden in the

observed data.

Real-world data are complex, heterogeneous, and high dimensional in nature. The

curse of dimensionality is one of the major problems that these models have to address. Many

machine learning and deep learning models struggle when dealing with high dimensional

data. Operating on high dimensional data is computationally expensive both in terms of

time and space. Many of the features in the data can be highly correlated and carry little to

no statistical significance. Contrarily, these features can make the model overfit and affect

its interpretability. Hence, it is necessary to reduce the data dimensionality and select the

most important features. Learning representations of the data that make it easier to extract

useful information when building classifiers or other predictors. In the case of probabilistic

models, a good representation is often one that captures the posterior distribution of the

underlying explanatory factors for the observed input. A good representation is also one

that is useful as input to a supervised predictor. Among the various ways of learning

representations, this dissertation focuses on deep learning methods, those that are formed

by the composition of multiple non-linear transformations, with the goal of yielding more

abstract and ultimately more useful representations. The rapid increase in scientific activity

on representation learning has been accompanied and nourished by a remarkable string

of empirical successes both in academia and in industry. Representation learning has a

strong impact in the area of network embedding, speech recognition, and signal processing,

object recognition, natural language processing, multi-task and transfer learning, etc. with

breakthrough results.

1.1.1. Representation Learning on Networks. Networks are one of the most pow-

erful structures for modeling problems in the real world. Machine learning models defined

on learned representations/embedding of complex real-world networks have the potential to

solve a variety of problems. Models developed for learning representations of networks map
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graph nodes to vectors of real numbers in a multidimensional space. To be useful, a good

embedding should preserve the structure of the graph. The vectors can then be used as input

to various network and graph analysis tasks. With link prediction, for instance, one can

predict whether two persons will become friends on a social network. Many machine learn-

ing algorithms, however, require that each input example is a real vector. Representation

learning models for a network encompass various methods for unsupervised, and sometimes

supervised, learning of feature representations of nodes and links in a network. Typically,

network representation learning methods are based on the assumption that the similarity

between nodes in the network should be reflected in the learned feature representations.

1.1.2. Representation Learning on Spatiotemporal Networks. Spatiotemporal

networks are spatial networks whose topology and parameters change with time. We aim

to investigate how these additional dimensions influence the structural properties and the

dynamic behavior of networks. From the spatial point of view, we study how the nodes of a

network can be placed in a metric space and how distance affects the pattern of connections

among them. These networks are important due to many critical applications such as

emergency traffic planning and route-finding services and there is an immediate need for

models that support the design of efficient algorithms for computing the frequent queries

on such networks. This problem is challenging due to potentially conflicting requirements

of model simplicity and support for efficient algorithms.

Large amounts of spatiotemporal data are collected every day from several domains,

including georeferenced climate variables, epidemic outbreaks, crime events, social media,

traffic, and transportation dynamics, among many others. Analyzing and mining such kinds

of data is of great importance for advancing the state-of-the-art in many scientific problems

and real applications. Nevertheless, data with spatial and temporal characteristics have

different properties in comparison to relational sources studied in classical data mining

literature. They present temporal and/or spatial dependencies, in which instances are not

independent or identically distributed. It means that samples can be structurally related
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in some spatial regions or specific temporal moments. Also, they are non-static, i.e., the

instances can change their class attribute depending on time and location. Thus, traditional

data mining methods are not the ideal tools for spatiotemporal data, which can result in

poor performance and misleading interpretation.

1.2. DISSERTATION STATEMENT

To facilitate efficient analysis of spatiotemporal data and in-turn Spatiotemporal

Heterogeneous Networks through representation learning this dissertation develops general

frameworks that can be used to create SHNs that can accurately represent spatiotemporal

data and learn effective representations from the constructed SHNs. Specifically, the

dissertation introduces four novel frameworks that adopt the following approaches:

• Collective representation learning framework with features importance: We develop

a graph-based framework that collectively integrates the multi-modal spatiotemporal

relationships through representation learning.

• Modality aware representation learning framework: Spatial-temporal data consists of

multiple dimensionalities. Hence, in this framework, we develop a tensor factorization-

based approach to integrate multi-class relationships and learn their representation

through tensor factorization.

• Distributed representation learning framework for learning human mobility patterns:

We develop a multi-graph-based framework that leverages power-law distribution

associated with human mobility patterns to learn representations.

• Representation learning framework with node sense disambiguation: The state of

relationships between nodes in an SHN is everchanging with respect to spatial and

temporal contexts. Thus we develop a framework that captures the representations

of such relationships between nodes by learning their contrastive contextual node

senses.
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1.3. DISSERTATION ORGANIZATION

In Section 2, literature review of some of the previous related work is provided to

demonstrate the idea of information flow. It briefly discusses research work related to the

developed frameworks. In Section 3, we study the problem of learning representations

of urban communities by investigating the structural behavior patterns of users. Section 4

presents the modality aware representation learning framework that is based on user profiling

by investigating the mobility patterns. Section 5 shows how the interactions between human

and the physical environment is modeled to learn representations by leveraging NLP based

algorithms. Section 6 presents the framework that models the dynamic nature of spatio-

temporal relationships between nodes as a contrastive node sense learning problem and

learn representations. Section 7, concludes the dissertation with a discussion on potential

future research directions.
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2. LITERATURE REVIEW

In this section, a literature review of some of the previous work is introduced. This

review helps in demonstrating the idea of information flow. We briefly discuss research work

related to the study of urban informatics, representation learning for network embedding,

learning word embeddings in NLP, and recommender systems. The section on urban

informatics consists of research work that studies experiences of people in the context

of cities and urban environments. The second section includes research work related to

the use of representation learning for network embedding, and the third section dicusses

research work pertaining to learning word embeddings in NLP. The fourth section consists

of work that have been widely used for building state-of-the-art recommender systems used

for recommending relevant items to users. In addition to the above categories, in the fifth

section we also discuss other research work specifically related to some of the techniques

adapted by the frameworks introduced in the dissertation.

2.1. URBAN INFORMATICS

Our work is partly related to urban informatics. Urban informatics focuses on

learning urban community structure by studying intricate spatial and temporal relations

created from dynamic human mobility between static geospatial entities of a city. With the

increasing availability of massive amounts of GPS and check-in data from taxi services and

social media, we can study the multiplex of overlapping factors that influence the growth of

urban environments in cities. Urban informatics uses geographical or spatial information

to produce business intelligence or other results. The most common spatial information

in daily life is the geographical building, POIs, and GPS trajectory data. In [1], Fu et

al. developed a geographical function ranking method by incorporating the functional

diversity of communities into real estate appraisal. The work in [2] ranked estates based

on investment values by mining user opinions about estates from online user reviews and
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offline moving behaviors. [3] and [4] developed a geographic method, named ClusRanking,

for estate appraisal by leveraging the mutual enforcement of ranking and clustering power.

The network embeddings learned from our models based on the constructed SHINs consist

of rich semantic and mobility information, which can help us understand the multiplex of

overlapping factors that propel the growth of a city.

2.2. REPRESENTATION LEARNING ON NETWORK EMBEDDING

Representation learning for network embedding is primarily used to find a way to

represent, or encode, network structure. It aims at learning low-dimensional representations

for the vertices of a network such that the proximity among them in the original space is

preserved. Machine learning models can then easily exploit the learned embeddings to

perform various tasks. Here we review some key advancements of network embedding in

the network domain. One such successful method that tries to learn the latent structure of a

network is random walk [5]. [6] develops to learn the network embeddings based on random

walk statistics. Thus, instead of using a deterministic measure of graph proximity, unlike

methods [6, 7] these random walk methods employ a flexible, stochastic measure of graph

proximity, which has led to superior performance in a number of settings [8]. [9] and [10]

are two such approaches that use random walks. Our work is influenced by DeepWalk [9].

DeepWalk combines random walk proximity with the skip-gram model [11], a language

model that maximizes the co-occurrence probability among the words that appear within

a window in a sentence. Node2vec [10] is another method that utilizes random walks. It

develops a biased random walk procedure to explore the neighborhood of a node. GraRep

[12] is a method that learns a latent representation of vertices on graphs to capture the

global structural information. LINE [13] is a method that can deal with arbitrary types of

information networks: undirected, directed, and/or weighted.
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Meta-path [14] is another such method that is used to calculate the proximity between

two vertices in a network. PathCount is a method that measures the number of meta-path

instances connecting the two objects, and PathSim is a normalized version of it [14, 15].

Path constrained random walk (PCRW) [16, 17] is a more sophisticated way to define the

proximity between two vertices based on an instance of meta-path P. PCRW calculates

the probability that a random walk restricted on a meta-path would follow the instances

connecting two objects. PCRW was initially developed [16] for the task of relationship

retrieval over bibliographic networks. Later, [18] developed an automatic approach to learn

the best combination of meta-paths and their corresponding weights based on PCRW.

However, the above models fail to harness complex dynamics of spatial and temporal

attributes that highly influence complex multi-class relationships that exists between nodes

of SHNs. Besides, computing the graph embeddings of SHNs based on naive random

walks or path constrained random walks for information propagation is inefficient as they

lack semantic information. To address these shortcomings and facilitate learning of efficient

representations of SHNs this dissertation puts forward four different approaches.

2.3. LEARNING WORD EMBEDDINGS IN NLP

Our work is also partly influenced by advancements made in word embedding

techniques used in the NLP domain. Human language is an integral part of intelligence, but

it poses some challenges for continuous gradient-based learning algorithms. Discreteness,

sparsity, high dimensionality, and sequences having variable length can be problematic for

machine learning algorithms, in a way different from other data modalities such as images.

This means that special care needs to be taken to learn representations that are useful

for this data modality. A very popular approach for NLP and text mining problems has

been to learn so-called word embeddings. Several methods have been developed to learn

word embeddings from text corpora [11, 19, 20]. Some techniques have been developed

to learn embeddings jointly using knowledge base relations and corpus co-occurrences
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[21]. Bilingual distributional representations have also attracted a lot of attention, and

researchers have addressed the training of bilingual embeddings using several approaches

[22, 23]. Due to the availability of large multilingual semantic networks and the need for

an accurate representation of word senses in different languages, some work have also been

developed for multilingual embedding. [24] is one such method that combines text-based

and knowledge-based methods, yielding multilingual vector representations.

2.4. RECOMMENDER SYSTEMS

Recommender systems have been widely used for recommending relevant items to

users. They are a subclass of information filtering that seeks to predict the "rating" or

"preference" a user would give to an item. Due to the availability of spatiotemporal data

involving users’ check-in activity, a great deal of work for providing location-based services

by recommending POIs to users based on their preference by using relevant information

has also been developed. Most of the related work use collaborative filtering [25], content-

based filtering [26], or hybrid [27]. Many Learning to Rank (LTR) methods have also

been developed for reliably recommending top-N ranked items. LTR methods can be

categorized into point-wise, pair-wise, and list-wise methods. Point-wise methods [28] use

scores assigned by individual users to items for learning ranking models. Binary classifiers

are learned by pair-wise LTR methods [29]; they compare ordered pairs for deciding if

the first item is preferred to the second. The pair-wise classifiers can be computationally

expensive as they have to generate training samples for binary classifiers. However, the

pair-wise approach works better in practice than the point-wise approach as the strategy

of predicting relative order is more similar to the nature of ranking than predicting class

labels or relevant scores. List-wise methods [30] leverage the entire list of items related

to the user to optimize a list-wise ranking function that measures the distance between the

reference lists of ranked items in the training data and the ranked list of items produced by

the ranking model.
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2.5. OTHER RELATED WORK

In this section we discuss some of the work that is closely related to the techniques

adapted in the developed frameworks. Chemla et al. [31, 32] developed the static re-

balancing problem paper, which deals with balancing Demand/supply of bikes. The paper

addressed the problem of redistribution of bikes to different locations. It presents efficient

algorithms for solving instances of reasonable size, and contains several theoretical results

related to this problem. Faghih-Imani et al. studies the decision process involved in

identifying destination locations after picking up a bicycle from a shared-bike station, in the

form of a multinomial logit model[33], The paper by Chen et al. [34] developed a dynamic

cluster based model to predict over demand of bikes taking into account the common

contextual factors opportunistic contextual factors that affect the bike usage pattern. Work

by Yang et al. developed a spatio-temporal bicycle mobility model based on historical bike-

sharing data, and devised a traffic prediction mechanism on a per-station basis[35]. Zhang

et al. introduce a new trip destination prediction and trip duration inference model on the

basis of analyzing individuals’ bike usage behaviors on traditional bike sharing systems[36].

Singla et al. developed a incentivizing approach for balancing bike sharing systems. The

authors develop a model to engage the users themselves to solve the imbalance problem

in bike sharing systems by providing them incentives to ride bikes from station suffering

from demand shortage of bikes[37]. Liu et al [38] developed a model for bike re-balancing

and data optimization. Meng et al. [39] wrote a paper in which they developed a complete

methodology for introducing bike-sharing systems. The developed methodology takes into

account potential demand for bicycle use and the willingness to pay of future users for

faster journey times, and also introduces a location model for fixing the bicycle pick-up

and drop-off stations made with the help of a geographical information system. Lin and

Yang studied the strategic planning of public bicycle sharing systems while considering the

interests of both users and investors, the developed model attempts to determine the number

and locations of bike stations[40]. Caggiani et al. developed a flexible fuzzy decision
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support system for the redistribution process in traditional bicycle sharing systems with

the main aim to minimize the redistribution costs for bike-sharing companies, determining

the optimal bikes repositioning flows, distribution patterns and time intervals between

relocation operations; overall the objective was of a high level for user satisfaction[41].

Froehlich et al. developed a model which adopted a Bayesian network to predict station

status based on the current time and current available dock number[42]. Kaltenbrunner et

al. [43] developed a short term prediction of the number of available bikes in stations via the

analysis of cyclic mobility patterns. It detects temporal and geographic mobility patterns

which are applied to predict the number of available bikes for any station. The predictions

are used to improve the bicycle program. Li et al. developed a hybrid and hierarchical

prediction model to predict the number of bikes that will be rented from/returned to each

station cluster in the early future[44]. Espegren et al. wrote a a paper that considers

the static bicycle repositioning problem (SBRP), which deals with optimally re-balancing

bike sharing systems (BSS) overnight by using service vehicles to move bikes from full

stations to empty stations. A new and improved mathematical formulation for the SBRP

is developed[45]. It makes fewer assumptions and considers factors such as heterogeneous

fleet, multiple visits to each station, and non-perfect re-balancing. The above models choose

clustering based approach, decision based approach, incentivizing approach, or static re-

balancing approach to answer problems such as balancing demand and supply of bikes,

redistribution of bikes. These models tend to ignore the unique nature of stationless bike-

sharing systems where the user gets to pick up and drop off a bike at any location. They

tend to focus on the static location-based information, ignore the temporal aspect, and suffer

from data sparsity problems. In the developed modality aware framework, by modeling

the spatiotemporal data as a multimodal tensor we focus on both the spatial and temporal

aspects of the data. We also leverage the use of tensor factorization to predict missing data
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values, which further enhances the ability of the developed model to address the problem

of balancing demand and supply of bikes, redistribution of bikes, and identifying regions

with parking problems.

Our work is also very closely related to Tensor Factorization. Rendle et al. developed

Factorization machines that combines the advantages of Support Vector Machines (SVM)

with factorization models[46]. Xiong et al. developed a temporal collaborative filtering

with bayesian probabilistic model using tensor factorization[47]. The work by Oentaryo

develops a Hierarchical Importance-aware Factorization Machine (HIFM), which provides

an effective generic latent factor framework that incorporates importance weights and

hierarchical learning[48]. The work by Karatzoglou introduces a Collaborative Filtering

method based on Tensor Factorization (TF), with types of context considered as additional

dimensions in the representation of the data as a tensor[49].The work by Rendle et al. [50]

presents the factorization model PITF (Pairwise Interaction Tensor Factorization) which is

a special case of the tensor decomposition model with linear runtime both for learning and

prediction.
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3. COLLECTIVE REPRESENTATION LEARNING FRAMEWORK WITH
FEATURES IMPORTANCE

In this section, a collective embedding framework that leverages the use of auto-

encoders and Laplacian score to learn effective embeddings of spatiotemporal networks of

urban communities is presented. In addition, it also introduces a novel weighted degree

centrality measure for constructing spatiotemporal heterogeneous networks. To evaluate

the performance of our developed model, it is tested on real-world urban community

data. Experimental zresults zdemonstrate the zeffectiveness zof zour zmodel zover zstate-of-the-art

zalternatives.

3.1. BACKGROUND AND OVERVIEW

Many machine learning and deep learning models struggle when dealing with high

dimensional data. The curse of dimensionality is one of the major problems that these

models have to address when dealing with real-world data as they are heterogeneous.

Operating on high dimension data is computationally expensive both in terms of time and

space. Many of the features in the data can be highly correlated and carry little to no

statistical significance. Contrarily, these features can make the model overfit and affect its

interpretability. Hence, it is necessary to reduce the data dimensionality and select the most

important features.

Consequently, many machine learning models use filter or wrapper based feature

elimination methods as a way to deal with this problem. Filter methods use some math-

ematical evaluation function that is based on intrinsic characteristics of the features, like

correlation or mutual information. Wrapper based methods adopt more of a greedy search

approach by evaluating all the possible combinations of features against the evaluation cri-

teria. In recent years, feature extraction methods or representation learning models have

also proven to be quite effective in addressing the high dimensionality problem as they are
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capable of capturing lower-dimensional representations of the data that can reduce variance

and support effective machine learning. However, most of these models are ineffective when

dealing with high-dimensional spatiotemporal data. Models using filter or wrapper-based

techniques tend to be compute-intensive. These models also lack an efficient approach

to quantify the interconnectedness strength of nodes in SHNs. Hence, they struggle to

extract and organize the discriminative information from the complex spatial and temporal

relationships that exist between real-world objects.

Learning efficient embeddings of a spatiotemporal heterogeneous network (SHN)

can be quite challenging due to the complex nature of the relationships it encompasses.

Figure 3.1 presents an example of a region’s SHN, where nodes are Point of Interests (POIs)

and edges are comprised of sptiotemporal relationships.

Figure 3.1. SHN depicting human mobility between POIs

We have to consider the static spatial relationships that pertain to geographical struc-

tures and take into account the dynamic mobility patterns that exist between geographical

structures. By analyzing spatial relationships we can learn about the spatial allocations

and the significance of geographical structures. By studying mobility patterns we can learn
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about the dynamic nature of the relationships between geographical structures. Effective

analysis of these factors can help us better understand the evolution of cities and boost

commercial activities. All the above overlapping factors suggest the need to study how

to quantify zand zdiscover zurban zcommunity zstructures. zHowever, zdue zto zthe zheterogeneous

zand zcomplex znature zof zurban zcommunities, zlearning zurban zcommunity zstructure zcan zbe

zchallenging. zThree zunique zchallenges zthat zarise zin zachieving zthis zgoal zare:

• Efficient representation of spatial and temporal aspects of an urban community as a

set of SHNs.

• Collectively learning the embeddings of geographical structures from multiple SHNs.

• Mapping Point Of Interest (POI) Embeddings based on feature importance for learning

effective representations of urban communities.

In zwhat zfollows, zwe zoutline zhow zwe develop a unified approach for tackling zthese zchallenges.

Influenced by representation learning, we develop a deep autoencoder based collective em-

bedding framework to learn the embeddings of urban SHNs. We approach the problem of

learning urban community structure as an SHN representation learning task. The developed

framework can collectively learn the embedding of community structures from spatiotempo-

ral autocorrelation among multiple SHNs by combining static geographical structures data

with dynamic human mobility data as periodic spatiotemporal heterogeneous networks.

We first construct a set of SHNs using a new weighted degree centrality measure.

We then utilize the developed collective embedding framework for learning the embeddings

of important geographical structures or points of interest (POI) from multiple SHNs. We

also leverage the use of Laplacian scores [51] to ascertain the importance of latent features

in the generated embeddings and in turn preserve the intrinsic structure of the network.

This approach helps us to effectively regularize the model and enhances generalization

capability.
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We zevaluate zthe zperformance zof zour zdeveloped embedding framework zon zthe ztask

zof zidentifying zthriving zurban zcommunities zin za zregion zand zby zcomparing zthe zquality zof zthe

zlearned zembeddings zagainst zstate-of-the-art znetwork zembedding zmethods. zOur experimental

zresults zshow zthat zthe zdeveloped zmethod zoutperforms zall zalternative zapproaches zin zmost zof

zthe zqualitative zmeasures zused.

Overview. zThe zremainder zof zthis zSection 3 zis zorganized zas zfollows. zIn zSection

z3.2, zwe zprovide zthe zproblem zdefinition zfor a zdeep zautoencoder zbased zcollective zembedding

zframework. zSection z3.3 zgives zdetailed zinformation zabout zhow zwe zquantify zthriving zcommunities.

zSection z3.4 zprovides zdetails zabout zthe zframework zof zour zdeveloped zmodel. zIn zSection z3.5,

zwe zreport zthe zexperimental zresults zof zour zdeveloped zmodel. zSection z3.6 zprovides za zbrief

zreview zof zrelated zwork. zFinally, we conclude in Section 3.7.

3.2. PROBLEM STATEMENT

This zsection provides zsome zkey zdefinitions zto zformulate zthe zproblem zof learning the

embeddings of urban SHNs and also give a brief overview of the developed framework. The

following definitions are initially stated to help zbreak zdown zthe zproblem zand zthen zformalize

zthe zcommunity zlearning zproblem.

Definition 1: (Urban zCommunity): An urban zcommunity 𝑐𝑘 is made up of multiple resi-

dential and commercial buildings. It also consists of many geographical structures (POIs)

that zprovide za zvariety zof zurban zfunctions zand zliving zservices zto zresidents zof zthe zcommunity.

Definition 2: (Spatiotemporal Heterogeneous Networks): SHNs encapsulate the complex

spatial and temporal relationships that exists among real-world objects. Here, POIs are

considered as vertices and the frequency of human mobility between POIs are weighted

links between POIs. It can be represented as a SHN, 𝑆 = (𝑃, 𝐸), where 𝑃 = {𝑝𝑖}𝑖=1,....,𝑛

are POIs as nodes, and 𝑒𝑖, 𝑗 =
(
𝑝𝑖, 𝑝 𝑗

)
∈ 𝐸 is a link indicating human mobility relationship

between two vertices.
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Definition 3: (Periodic SHNs): The human mobility patterns between POIs are captured

based on different time intervals. This is done to accurately capture the generalized dynamics

of human mobility. For each day of the week seven periodic SHNs are extracted.

Definition 4: (Community SHN embedding): A community SHN embedding is a vector

representation of the SHN of a community. The vector representation encapsulates the static

spatial configuration of POIs as well as the dynamics of human mobility of the respective

community.

Problem Definition. Given a set of periodic SHNs 𝑆 (𝑘) =
{
𝑠𝑘1 , 𝑠

𝑘
2 , ....𝑠

𝑘
7
}
. We

formulate a function 𝑓 (𝑐) = 𝑆𝑘 → R𝑑 that projects each vertex 𝑣 ∈ 𝑉 to a vector in 𝑑 such

that static and dynamic relationships within the SHN of a community are preserved.

3.3. QUANTIFYING THRIVING COMMUNITIES

Presence of thriving communities in a region can help us understand the evolution

of cities and urbanization in general. Efficient representation of spatial and temporal aspects

of an urban community as a set of SHN can help us gain valuable insights. A significance

of a community can be measured based on the number of people visiting a community,

and on the variety of services a community can provide. The number of people visiting a

community can be calculated as a density measure based on the POI check-in activity within

the region. The variety of services a community provides can be calculated as a diversity

measure based on the presence of different categories of POIs and number of POIs in a

community. This approach helps us avoid considering densely packed and economically

poor regions as thriving communities as they lack in terms of the variety of services a

thriving community can provide.

Here, we develop a function to measure the significance of the community based on

the diversity and density aspects of a community. Density of a community a community 𝑐𝑘

is measured as the sum of number of check-in activities for POIs within a community:
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𝑑𝑒𝑛(𝑐𝑘 ) =
𝑛∑︁
𝑖=1

𝑣𝑖𝑠𝑖𝑡𝑠(𝑝𝑖) (3.1)

where, 𝑑𝑒𝑛(𝑐𝑘 ) is the density measure of the community 𝑐𝑘 and 𝑣𝑖𝑠𝑖𝑡𝑠(𝑝𝑖) is the number of

visits to the 𝑖𝑡ℎ POI

Diversity of a community 𝑐𝑘 is measured by considering the number of POIs present in the

community as well as the number of POI categories:

𝑑𝑖𝑣(𝑐𝑘 ) = 1 −
∑𝑛
𝑖=1 𝑃𝑖 (𝑃𝑖 − 1)
𝑃𝑐 (𝑃𝑐 − 1) (3.2)

where, 𝑃𝑖 is the total number of POIs in individual POI categories and 𝑃𝑐 is the total

number of POI categories.

Finally, we measure the significance of a community 𝑐𝑘 by fusing density and diversity

aspects of the community:

𝑆𝑖𝑔(𝑐𝑘 ) = 𝑑𝑒𝑛(𝑐𝑘 ) × 𝑑𝑖𝑣(𝑐𝑘 ) (3.3)

Once the significance scores of all the communities in a region are calculated, the signifi-

cance scores of individual communities are normalized:

𝑆𝑖𝑔(𝑐𝑘 )𝑛𝑜𝑟𝑚 =
𝑆𝑖𝑔(𝑐𝑘 ) − 𝑆𝑖𝑔(𝑐𝑘 )𝑚𝑖𝑛

𝑆𝑖𝑔(𝑐𝑘 )𝑚𝑎𝑥 − 𝑆𝑖𝑔(𝑐𝑘 )𝑚𝑖𝑛
(3.4)

We use the developed function to measure the significance score of each community.

Based on the significance score, the problem of identifying thriving communities is modeled.

3.4. METHODOLOGY

In this section, we describe our developed model. In Section 3.4.1 we elaborate on

the process of constructing SHNs. Then, we introduce our developed collective embedding

framework in Section 3.4.2 that is used to generate embeddings from the periodic SHNs.
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Finally, in Section 3.4.3 we implement a weighted node centrality based method to sys-

tematically align and aggregate POI embeddings for community structure representation

learning.

3.4.1. SHN Construction. Due to the heterogeneous nature of large scale SHNs,

it is challenging to ascertain the connectivity measurements between POIs of a community.

Ideally, to estimate the connectivity between two POIs we would directly count the total

number of visits between them. However, real-world data is messy, and we don’t always

have exact details about the origin POI or destination POI. This is because spatiotemporal

data is collected from numerous sources like smartphones, bike pickup and drop location,

social media check-ins, etc. For instance, data from Mobike trips might include a start and

an endpoint, but they don’t always accurately represent the exact origin POI and destination

POI. Hence, we use a probabilistic function as an estimation method that fits spatiotemporal

data from various sources and does not require exact origin POIs and destination POIs.

We first calculate the possibility of a person visiting a POI using Equation 3.5. The

equation adheres to the power law distribution which aligns with the fact that people tend

to visit POIs which are at close proximity:

𝑃 (𝑥) = 𝛽1
𝛽2
· 𝑦 · 𝑒𝑥𝑝

(
1 − 𝑦

𝛽2

)
(3.5)

where, variable 𝑦 represents the distance between the original drop-off point 𝑑 and the

destination POI 𝑝. 𝛽1 and 𝛽2 are the hyperparameters used to control the shape of the

function 𝑃 (𝑥).

The total number of times a POI 𝑝𝑖 is visited by users is calculated by aggregating all the

drop off points:

𝜏 (𝑝𝑖) =
∑︁
𝑑∈D

𝑃 (𝑑𝑖𝑠 (𝑑, 𝑝𝑖)) (3.6)

where, D is a set of bike drop-off points in the community.
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We then calculate the connectivity measure between a pair of POIs as weighted

links by multiplying the 𝜏 (𝑝𝑖) with 𝜏
(
𝑝 𝑗
)
, to describe the possibility of users visiting 𝑝 𝑗

from 𝑝𝑖. Based on the human mobility we can quantify the connectivity between 𝑝 𝑗 from

𝑝𝑖. The calculation can be formulated as:

𝜏𝑖 𝑗 =


𝜏 (𝑝𝑖) · 𝜏

(
𝑝 𝑗
)
, if 𝑖 ≠ 𝑗

0, if 𝑖 = 𝑗

(3.7)

Once the weights of the links between vertices (POIs) are calculated, we can find

the degree centrality measure of vertices in the SHN. For quantification of an SHN’s

interconnectedness strength a great variety of centrality measures have been developed

[52, 53, 54]. The degree centrality measure (DC) is one of the simplest centrality measures,

it uses the number of links between vertices as an indicator of a vertex’s interconnectedness.

The DC measure only concerns networks based on the presence or absence of a link between

vertices. However, this approach, when applied on weighted networks will result in loss

of information. An increasing number of studies have been focused on finding appropriate

measures for weighted networks [52, 55, 56].

In weighted networks, DC is calculated as the sum of weights of links assigned to

vertex and represents vertex strength centrality (SC). This method of calculating weighted

node centrality may not be optimal as it ignores the individual link weight imbalance factor.

Vertices having the same DC and SC but having varying levels of link weight imbalance

will be represented as having equal importance. To capture the complex spatiotemporal

relationship that exists between vertices of an SHN we need to overcome this disadvantage.

To address this problem we formulate a weighted centrality measure that assigns a calculated

degree centrality score while accounting for the link weight imbalance factor:

𝑊𝐷𝐶𝑝 =
1
𝑛

𝑛∑︁
𝑖=1

1
{
𝑝𝑤𝑐𝑑𝑖 ≥ 𝜇

}
(3.8)
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where, 𝑊𝐷𝐶𝑝 represents weight centrality measure of the vertex. 𝑝𝑤𝑐𝑑𝑖 is the weighted

cumulative distribution value of link weight 𝑝𝑤𝑖
. 𝜇 is the mean of

{
𝑝𝑤𝑐𝑑𝑖 , ....., 𝑝𝑤𝑐𝑑𝑛

}
.

The weighted cumulative distribution value 𝑃𝑤𝑐𝑑𝑖 is calculated as:

𝑝𝑤𝑐𝑑𝑖 =
1∑𝑛

𝑖=1 𝑝𝑤𝑖

𝑛∑︁
𝑖=1

𝑝𝑤𝑖
, if 𝑝𝑤𝑖

≤ 𝑝𝑤 (3.9)

where, 𝑃𝑤𝑖
is the link weight instance of connected vertices and 𝑃𝑤 is current vertex link

weight.

Figure 3.2 shows three scenarios where vertices 𝑃𝑥 , 𝑃𝑦, and 𝑃𝑧 with varying levels

of link weight imbalance have the same DC and SC scores. We can see that the traditional

approach for calculating DC and SC does not work here. By using the developed weighted

degree centrality measure (𝑊𝐷𝐶𝑝) we can more accurately quantify the interconnectedness

strength of individual vertices in a network.

Example 1 Example 2 Example 3
𝐷𝐶𝑃𝑥

= 5 𝐷𝐶𝑃𝑦
= 5 𝐷𝐶𝑃𝑧

= 5
𝑆𝐶𝑃𝑥

= 100 𝑆𝐶𝑃𝑦
= 100 𝑆𝐶𝑃𝑧

= 100
𝑊𝐷𝐶𝑃𝑥

= 1 𝑊𝐷𝐶𝑃𝑦
= 0.4 𝑊𝐷𝐶𝑃𝑧

= 0.2

Figure 3.2. Three examples where traditional approach of measuring degree and strength
centrality does not work.

By using the above steps for accurate representation of SHNs we construct seven

periodic SHNs for each day of the week 𝑆 (𝑘) =
{
𝑠𝑘1 , 𝑠

𝑘
2 , ....𝑠

𝑘
7
}

of community 𝑐𝑘 . Here,

the SHNs represent the urban community and vertices of SHNs are POIs of the urban

community. The SHNs are then fed into the collective embedding framework to capture the

static and dynamic relationships of urban communities.
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3.4.2. Collective Embedding Framework. In this section, we elaborate on the

deep autoencoder based collective embedding framework. Here, we give the detailed

architectural information about the collective embedding framework for learning community

structure from periodic SHNs. The architecture of the developed framework is shown in

Figure 3.3.

Figure 3.3. Collective embedding framework

The general idea behind an autoencoder is to learn the nonlinear relationship between

data samples via an encoder to a hidden layer. The hidden units are then used as the new

features by decoders to reconstruct the data:

ℎ𝑖 = 𝜎 (𝑤𝑖𝑒𝑖 + 𝑏𝑖) ; 𝑒𝑖 = 𝜎
(
𝑤 𝑗ℎ𝑖 + 𝑏 𝑗

)
(3.10)

where ℎ𝑖 ∈ R𝑛 is the hidden representation, and 𝑒𝑖 ∈ R𝑑 is the reconstruction of normalized

input. 𝑤𝑖 ∈ R𝑛×𝑑 and 𝑤 𝑗 ∈ R𝑑×𝑛 are the weight matrices, and bias vectors 𝑏𝑖 ∈ R𝑛 and

𝑏 𝑗 ∈ R𝑛. 𝜎 is an activation function.
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A traditional auto-encoder for learning the embeddings of the constructed periodic

SHNs is not suitable as it can zonly ztake zone zinput zduring zeach ztraining ziteration. zTo

zovercome zthis, A zcollective zlearning zmethod z is implemented to zlearn zthe zembeddings zof za

zcommunity’s zSHN zfrom zthe zinter-correlations zof zmultiple zperiodic zSHNs zthat zcapture zthe

zspatiotemporal zdynamics zof zthe zcommunity zstructure.

Given a community 𝑐𝑘 , the 𝑖𝑡ℎ row of the constructed periodic SHN 𝑆
(𝑘)
𝑑

represents

the 𝑖𝑡ℎ POI 𝑝 (𝑘)
𝑖,𝑑

on the day 𝑑 of the week. For each POI 𝑝 (𝑘)
𝑖

there are seven vectors
{
𝑝
(𝑘)
𝑖,𝑑

}∗
for each day of the week. These seven vectors are used as inputs for POI 𝑝𝑖. An embedding

ensemble method is used after the last layer of the encoder part of the auto-encoder to

handle the multiple inputs problem. The encoding step is formulated as:


𝑦
(𝑘),1
𝑖,𝑑

= 𝜎

(
𝑤
(𝑘),1
𝑖,𝑑

𝑝
(𝑘)
𝑖,𝑑
+ 𝑏 (𝑘),1

𝑖,𝑑

)
∀𝑑 ∈ {1, 2, ...., 7} ,

𝑦
(𝑘),𝑜+1
𝑖

= 𝜎

(∑
𝑑 𝑤
(𝑘),𝑜+1
𝑖,𝑑

𝑦
(𝑘),𝑜
𝑖,𝑑
+ 𝑏 (𝑘),𝑜+1

𝑑

)
,

𝑧
(𝑘)
𝑖

= 𝜎

(
𝑤 (𝑘),𝑜+2𝑦 (𝑘),𝑜+1

𝑖
+ 𝑏 (𝑘),𝑜+2

) (3.11)

where, 𝑧(𝑘)
𝑖

is the lower dimensional space in which encoding of 𝑝𝑖 is stored. 𝑤 and 𝑏

denote the weight and bias, respectively.

In the decoding part of the the auto-encoder, we use 𝑧(𝑘)
𝑖

as the input and the final

output is reconstructed as 𝑝 (𝑘)
𝑖

. We pass 𝑧(𝑘)
𝑖

as seven latent vectors for each day of the

week and then reconstruct embeddings at each hidden layer. The relationship among these

vector variables can be denoted as:


𝑦̂
(𝑘),𝑜+1
𝑖

= 𝜎

(
𝑤̂ (𝑘),𝑜+2𝑧(𝑘)

𝑖
+ 𝑏̂ (𝑘),𝑜+2

)
,

𝑦̂
(𝑘),1
𝑖,𝑑

= 𝜎

(
𝑤̂
(𝑘),1
𝑖,𝑑

𝑦̂
(𝑘)
𝑖,𝑑
+ 𝑏 (𝑘),1

𝑖,𝑑

)
∀𝑑 ∈ {1, 2, ...., 7} ,

𝑝
(𝑘)
𝑖

= 𝜎

(
𝑤̂
(𝑘),1
𝑖,𝑑

𝑦̂
(𝑘),1
𝑖,𝑑
+ 𝑏̂ (𝑘),1

𝑖,𝑑

) (3.12)

where, 𝑝 (𝑘)
𝑖

is the reconstructed vector. 𝑤 and 𝑏 denote the weight and bias, respectively.
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We then formulate the loss function by aggregating the loss of each day 𝑑:

L (𝑘) =
∑︁

𝑑∈{1,..7}

∑︁
𝑖




(𝑝 (𝑘)
𝑖,𝑑
− 𝑝 (𝑘)

𝑖,𝑑

)


2

2
(3.13)

where, 𝑝 (𝑘)
𝑖,𝑑

represents the original POI vector and 𝑝 (𝑘)
𝑖,𝑑

is the predicted vector.

3.4.3. Mapping POI Embeddings Based on Feature Importance. With the de-

veloped framework, we obtain the SHN embedding of POIs. However, our main aim here

is to learn the embeddings of urban communities as a whole. As an urban community

encompasses multiple POIs, we aim to map the learned SHN embeddings of POIs based on

feature importance to obtain the representations of urban communities.

Since the size and structure of SHNs vary over different urban communities we

approach the task of learning the embeddings of urban communities by mapping learned

individual POI embeddings with their respective POI categories. Then, we align the POI

category embeddings to their respective urban community embeddings. We order individual

POIs with their respective POI categories as the number of POI categories is fixed in every

urban community. This helps us deal with the varying structure of urban communities.

The task of mapping learned individual POI embedding with their respective POI

categories can simply be achieved by summing up the learned embedding of all the POIs

that belong to a particular POI category. However, such a simple approach can be ineffective

when dealing with POI embeddings as we cannot ignore the importance of latent features.

Each feature encapsulates different characteristics of a POI that can give us insights about

the nature of relationships. To quantify the importance of each latent feature we develop

the following approach.

To ascertain the importance of latent features in the learned embeddings we leverage

the use of Laplacian score [51]. It is used to measure the similarity between two sample

features. It calculates the locality preserving power of a feature which inn turn indicates its

significance. It is based on the observation that two training samples belong to the same
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feature set if they are close to each other:

𝐿𝑟 =

∑
𝑖, 𝑗

(
𝑓𝑟𝑖 − 𝑓𝑟 𝑗

)2
𝑆𝑖 𝑗

𝑉𝑎𝑟 (f𝑟)
(3.14)

where, 𝑓𝑟𝑖 and 𝑓𝑟 𝑗 are the 𝑖𝑡ℎ and 𝑗 𝑡ℎ sample of feature r, 𝑉𝑎𝑟 (f𝑟) is the estimated variance

of the 𝑟 𝑡ℎ feature, and 𝑆𝑖, 𝑗 is the edge weight.

The edge weight 𝑆𝑖, 𝑗 between data points 𝑥𝑖 and 𝑥 𝑗 is calculated as

𝑆𝑖, 𝑗 = 𝑒
− ∥𝑥𝑖−𝑥 𝑗 ∥

2

𝑡 (3.15)

where, 𝑡 is number of edges linking 𝑥𝑖 and 𝑥 𝑗 with other data points.

The Laplacian score function aims to identify the feature samples that are more

similar. It tends to be small for training samples belonging to the same feature set. The edge

weight between a pair of POIs is calculated by measuring similarity between embedding

vectors of two POIs using improved sqrt-cosine similarity [57]:

𝐼𝑆𝐶𝑠𝑖𝑚𝑖, 𝑗 =

∑√︁
𝑝𝑆(𝑘) [𝑖, 𝑟] × 𝑆(𝑘) [ 𝑗 , 𝑟]√︃∑

𝑝𝑆(𝑘) [𝑖, 𝑟]2 ×
√︃∑

𝑝𝑆(𝑘) [ 𝑗 , 𝑟]2
(3.16)

where, 𝑆(𝑘) represents the embedding vectors of all POIs in the community 𝑐𝑘 , 𝑟 is the of

𝑟 𝑡ℎ feature in the POI embedding vector.

Given zthe z𝑟 𝑡ℎ zfeature zin zthe zPOI zembedding zvectors the Laplacian zscore z is calculated as:

L𝑤𝑟 =

∑
𝑖, 𝑗

(
𝑆
(𝑘)
𝑟𝑖 − 𝑆

(𝑘)
𝑟 𝑗

)2
𝐼𝑆𝐶𝑠𝑖𝑚𝑖 𝑗

𝑉𝑎𝑟

(
𝑆
(𝑘)
𝑟

) (3.17)

where L𝑤𝑟 represents the Laplacian score of the 𝑟 𝑡ℎ feature, 𝑆(𝑘)𝑟 represents the 𝑟𝑡ℎ feature

of POI embeddings in the community 𝑐𝑘 , and 𝐼𝑆𝐶𝑠𝑖𝑚𝑖, 𝑗 is the edge weight
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Using Equation 3.13, the latent feature weight set 𝑤 (𝑘) =
{
L𝑤𝑘1 ,L𝑤

𝑘
2 , ....L𝑤

𝑘
𝑛

}
is ob-

tained.

𝑆(𝑘) [𝑣, 𝑟] =
∑︁
𝑝𝑖∈Φ𝑣

𝑆(𝑘) [𝑖, 𝑟] × 𝑤𝑘𝑝 (3.18)

where 𝑆(𝑘) is the zPOI-category zembedding zgraph zfor the zcommunity 𝑐𝑘 , and Φ𝑣 is the 𝑣𝑡ℎ

POI zcategory.

The POI category embeddings are then mapped to community embeddings. Given

a zcommunity 𝑐𝑘 , each row of 𝑆(𝑘) is aligned into a vector to form community embedding

𝑆(𝑘) such that 𝑆(𝑘) =
(
𝑆(𝑘) [1, ∗] , 𝑆(𝑘) [2, ∗] , ......., 𝑆(𝑘) [𝑣, ∗]

)𝑇
. 𝑆(𝑘) is zthe output of the

zdeveloped zrepresentation zlearning zframework.

3.5. EXPERIMENTAL SECTION

Thez performancesz ofz thez developedz modelz is evaluated againstz baselinez modelsz onz

real-worldz urbanz communityz andz humanz mobilityz datasets.

3.5.1. Data Description. This section,z providesz detailsz aboutz thez Mobike,z POI,z andz

Weiboz &z Jiepangz datasetsz usedz forz evaluation.z Tablez 3.1z showsz thez statisticsz ofz thez datasetsz

mentionedz above.

Table 3.1. Datasets Statistics.
Dataz Sources Attributes Statistics

Mobikez Trips
#tripz records z 3,214,096
#z users z 349,693
z Tripz startz time
Tripz startz location

Tripz endz location
Bikez id

Timez periodz ofz recordsz

05/10/2017 -
05/24/2017

POIs
Numberz ofz POIsz 328,668
#z POIz categories z 20

Weiboz &z Jiepang
#z Check-In z 2,020,967
#z users z 212,362
z POIz Name

z POIz Location
z POIz address
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Mobike,z thez stationlessz bikez sharingz company,z releasedz itsz Beijingz cityz tripz datasetz

inz thez 2017z Mobikez Bigz Dataz Challenge.z Itz containsz detailsz ofz 3,214,096z trips.z Itz includesz

informationz aboutz thez numberz ofz users,z tripz startz time,z tripz endtime,z bikez id,z tripz startz

location,z andz tripz endz location.z Thez POIz dataz setz forz thez cityz ofz Beijingz wasz acquiredz

fromz www.dianping.com,z whichz isz az commercialz reviewz andz recommendationz website.z Itz

containsz detailsz aboutz 328,668z POIsz dividedz intoz 20z differentz categoriesz likez Hospitals,z

Malls,z Restaurant,z theaters,z etc.z Thez Weiboz &z Jeipangz datasetsz togetherz includez 2,020,967z

check-inz entriesz ofz POIsz inz Beijing.z Itz containsz detailsz likez POIz name,z POIz check-inz time,z

POIz address,z andz POIz location.

3.5.2. Spatiotemporal Heterogeneous Network Construction. Toz evaluatez thez

effectivenessz ofz ourz developedz modelz onz veryz largez andz complexz SHNs,z wez constructz anz

SHNz fromz Mobike,z 𝑃𝑂𝐼,z andz Weiboz &z Jeipangz datasets.z Thisz sectionz providesz informationz

aboutz thez stepsz followedz toz constructz thez SHN.z Wez integratedz thez 𝑃𝑂𝐼 z datasetz,z Weiboz

&z Jeipangz datasetz withz thez Mobikez datasetz toz assimilatez thez richz multi-classz humanz

mobilityz relationshipsz andz thez geospatialz relationshipsz thatz existz withinz thez POIz dataset.z

Toz summarize,z ourz SHNz is comprised ofz 1,765,025z verticesz andz encapsulatesz multi-classz

spatialz andz temporalz relationshipsz likez visitsz perz day, averagez commutez speed,z geographicz

proximity,z POIz categories,z numberz ofz individualz userz visits, and average visits.

Additionally, we classify a region as an urban community if the region consists of

one or more residential complexes and is surrounded by multiple POIs (within the radius of

1km) that provide various services.

3.5.3. Identifying Thriving Communities. We model the problem of identifying

thriving communities as a Learning to Rank (LTR) task. Based on the analysis of the

significance score we observe that its distribution zcomplies with the zpower-law zdistribution.

We notice that only a very few communities have a high significance score; whereas, the
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majority of the communities have scores that are close to or below the mean value of

significance score. From the curve, we identify 4 inflection points. These points are used

as 4 measures on which we rank the communities, Figure 3.4.

Figure 3.4. Analysis of urban communities

3.5.3.1. Effective feature set selection. For the task of identifying thriving com-

munities and for evaluating the effectiveness of the latent features learned from our model

we compare it with explicit features extracted from the data.

• Explicitz Featuresz (EF):Featuresz like POIz numbersz perz categoryz, averagez commutez dis-

tance, averagez commutez speed, averagez commutez time, numberz ofz check-ins, averagez

distancez betweenz POIs explicitly pertaining to the data are used.

• Latentz Features (LF): Featuresz fromz thez network embeddings generated by the

developedz collectivez embeddingz framework.

3.5.3.2. Baseline models. Applicationz relatedz rankingz methods are usedz toz demonstratez

thez effectivenessz ofz ourz method.Sixz Learningz toz Rankz (LTR)z methodsz asz baselines are se-

lected z forz comparison.
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• AdaRank (AR) [58]: This zis za zlearning zalgorithm zwithin zthe zframework zof zboosting.

zIt zworks zby zrepeatedly zconstructing zweak zrankers zbased zon zre-weighted ztraining zdata.

zIt zthen zlinearly zcombines zthe zweak zrankers zfor zranking zprediction. zIt zcan zminimize za

zloss zfunction zdirectly zdefined zon zthe performance zmeasures.

• ListNetz (LN)z [59]:z ListNetz isz az probabilisticz methodz withz twoz probability modelsz

calledz permutationz probabilityz andz topz onez probabilityz thatz definez az listwisez lossz

functionz forz learning.

• Random Forest (RF) [60]: This zmethod zworks zby zbuilding zan zensemble zof zdecision

ztrees zthat zare ztrained zusing zthe zbagging zmethod. zIt zworks zon zthe zidea zthat zthe

zcombination zof zlearning zmodels zincreases zthe zoverall zresults.

• Multiplez Additivez Regressionz Treesz (MART)[61]:z Thisz isz a boosted treez modelz inz

whichz thez outputz ofz thez modelz isz az linearz combinationz ofz thez outputsz ofz az setz ofz

regressionz trees.

• RankBoostz (RB)z [62]:z RankBoostz isz az boostedz pairwisez rankingz method,z whichz trainsz

multiplez weakz rankersz andz combinesz theirz outputs asz finalz ranking.

• RankNetz (RN)z [63]:z RankNetz usesz az neuralz networkz toz modelz thez underlyingz probabilisticz

costz function.

3.5.3.3. Parameter setting. Wez usez the ranklib2z Python libraryz forz implementingz

thez 6z LTRz algorithms. For zListNet zand zRankNet zwe zset zlearning zrate z= z0.001, znumber zof

zhidden zlayers z= z1, zthe znumber zof zhidden znodes zper zlayer z= z10, zand zthe znumber zof zepochs zto

ztrain= z500. zFor zRankBoost zwe zset zthe znumber zof ziterations z= z500, zand znumber zof zthreshold

zcandidates z= z10. zFor zMART zwe zset znumber zof ztrees z= z300, znumber zof zleaves z= z8, zthreshold

zcandidtes z= z256, zand zlearning zrate z= z0.1. zFor zRandom zForest zwe zset znumber zof zbags z= z300,

zsampling zrate z= z0.5, znumber zof ztrees z= z8, znumber zof zleaves z= z100. zFor zAdaRank zwe zset
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znumber zof zepochs z= z500, ztolerence z= z0.002, zmax zsampling z= z5. zWe zsplit z75% zof dataset into

training dataset and the remaining 25% is used as testing dataset. The ranking relevance

for communities is based on the significance score 𝑆𝑖𝑔(𝑐𝑘 ).

3.5.3.4. Evaluation metrics. (1) Normalized zDiscounted zCumulative zGain z(NDCG):

zThis metric zis zbased zon zthe zideal zdiscounted zcumulative zgain z(DCG). zNDCG zat zthe z𝑛𝑡ℎ

zposition zis zcomputed zas 𝑁𝐷𝐶𝐺 [𝑛] = 𝐷𝐶𝐺 [𝑛]
𝐷𝐶𝐺 ′[𝑛] .

(2) F1-score: F1-score is a measure of a test’s accuracy. It zincorporates zboth zprecision zand

zrecall zin za zsingle zmetric zby ztaking ztheir zharmonic zmean. 𝐹1 = 2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

(3) Kendall’s Tau Coefficient (Tau) : Tau zis za zmeasure zof zrank zcorrelation. We zuse zit zto

zmeasure zthe zoverall zranking accuracy. zLet zus zassume zthat zeach zcommunity z𝑖 zis zassociated

zwith za zbenchmark zscore z𝑦𝑖 zand za zpredicted zscore z 𝑓𝑖. Then za zcommunity zpair z ⟨𝑖, 𝑗⟩ , ⟨𝑖, 𝑗⟩ zis

zsaid zto zbe zconcordant, if zboth z𝑦𝑖 > 𝑦 𝑗 zand z 𝑓𝑖 > 𝑓 𝑗 zor zif zboth z𝑦𝑖 < 𝑦 𝑗 zand z 𝑓𝑖 < 𝑓 𝑗 . zAlso,⟨𝑖, 𝑗⟩

zis zsaid zto zbe zdiscordant, if zboth z𝑦𝑖 < 𝑦 𝑗 zand z 𝑓𝑖 > 𝑓 𝑗 . Tau is given by 𝑇𝑎𝑢 = 𝑐𝑜𝑛𝑐−𝑑𝑖𝑠𝑐
𝑐𝑜𝑛𝑐+𝑑𝑖𝑠𝑐 .

3.5.3.5. Results and analysis. Figure 3.5(a) and 3.5(b) show the NDCG and F1-

Score of the 6 baseline models for different values of N on both the explicit features

extracted directly from the dataset and latent zfeatures zlearned zfrom zthe zdeveloped zcollective

zembedding zmethod. Figure 3.5(c) shows the overall ranking accuracy (Tau) of the 6 LTR

models on explicit features and latent features. In all baselines models, we can observe

significant improvements in performance when trained on latent features. The observations

made on the evaluation metrics NDCG, F1-Score, and Tau, zdemonstrate the zsuperiority

of the zlatent zfeatures zlearned from the developed collective embedding framework. This

also shows that the constructed SHNs are capable of efficiently capturing the dynamic

and static information of communities. It also shows that our developed weighted degree

centrality measure for constructing SHNs can comprehensively and effectively represent

static geographical structures as well as dynamic human mobility aspects of a community.
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(a) NDCG at various values of N

(b) Fmeasure at various values of N

(c) Tau

Figure 3.5. Overall zperformance zcomparisons zof zthe zLTR models on latent and explicit
features in zterms zof zNDCG, zF1-Score, zand zTau.
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3.5.4. Evaluation of the Learned Embeddings. In this section, we zevaluate zthe

zquality zof zembeddings zlearnt zfrom zour zdeveloped zrepresentation zlearning zframework (CEF-

A). We compare it against embeddings zlearned zfrom zother zstate-of-the-art z network embed-

ding methods.

3.5.4.1. Baseline models. We use the below three network embedding methods as

baselines for evaluating the efficiency of the learned SHN embeddings.

• LINE [13]: LINE zcan zpreserve zboth zfirst-order zand zsecond-order zproximities zfor

zthe zundirected znetwork zthrough modeling znode zco-occurrence zprobability zand znode

zconditional probability.

• GraRep [12]: GraRep zpreserves znode zproximities zby constructing zdifferent zk-order

ztransition zmatrices.

• Node2vec [10]: node2vec zdevelops za zbiased zrandom zwalk zprocedure zto zexplore zthe

zneighborhood zof za znode, zwhich zcan zstrike za zbalance zbetween zlocal zproperties zand

zglobal zproperties zof za znetwork.

3.5.4.2. Parameter setting. We zuse the zOpenNE Python ztoolkit zto zimplement

zLINE, zGraRep, zand znode2vec zmodels. zFor znode2vec zmethods, zwe zset zthe zwindow zsize

z= z5, zfor zeach zvertex zwe zset zwalk zlength z= z10, zand zwe zset zthe znumber zof zwalks z= z15. z

zFor zLINE zwe zset znegative zsamples z= z5, zand zthe zlearning zrate z= z0.025. zFor zGraRep zwe zset

zmaximum zmatrix ztransition zstep zK=6.

3.5.4.3. Results and analysis. We zuse zthe zthree zbaseline zmodels zto zgenerate zembeddings;

zthe zlearned zembeddings zare zthen zpassed zas zinputs zinto zthe z6 zLTR zalgorithms zto zexamine

zthe z effectiveness of the learned embeddings. zWe zuse zNDCG zas zthe zevaluation zmetric, and

evaluate for different values of N. zWe then zcompare zthe zperformance zof zour zmodel zagainst

zLINE, zGraRep, zand znode2vec models. zTable z3.2 zshows zthe zexperimental zresults. zWe zcan

zsee zthat zour zdeveloped zframework (CEF-A) zoutperforms zthe zthree zbaseline zmodels.
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Table 3.2. Representation learning evaluation

Baseline Models NDCG→N=5 NDCG→N=10 NDCG→N=15 NDCG→N=20
CEF-A 0.467 0.725 0.772 0.805
LINE 0.112 0.162 0.193 0.445

AdaRank GraRep 0.402 0.385 0.227 0.410
node2vec 0.327 0.612 0.502 0.431
CEF-A 0.512 0.783 0.906 0.928
LINE 0.246 0.105 0.336 0.591

ListNet GraRep 0.397 0.336 0.273 0.412
node2vec 0.407 0.591 0.441 0.539
CEF-A 0.237 0.421 0.541 0.595
LINE 0.231 0.310 0.413 0.364

MART GraRep 0.164 0.375 0.397 0.412
node2vec 0.249 0.372 0.451 0.460
CEF-A 0.416 0.487 0.615 0.709
LINE 0.171 0.408 0.162 0.461

Random Forest GraRep 0.342 0.183 0.187 0.438
node2vec 0.369 0.434 0.426 0.526
CEF-A 0.592 0.683 0.8 0.916
LINE 0.117 0.409 0.173 0.192

RankBoost GraRep 0.351 0.330 0.216 0.234
node2vec 0.538 0.546 0.398 0.371
CEF-A 0.381 0.427 0.75 0.93
LINE 0.282 0.392 0.497 0.415

RankNet GraRep 0.238 0.364 0.459 0.389
node2vec 0.147 0.269 0.308 0.406

3.6. CONCLUSION

In Section 3, a novel collective deep autoencoder based embedding framework

for efficiently capturing higher-order zspatial zand ztemporal zinteractions zof zreal-world zSHNs

is introduced. zTo zeffectively zexplore zpotential zspatial zand ztemporal zrelationships zamong

zvertices we employ weighted degree centrality measure which enables us to build spatial-

temporal heterogeneous networks that unify zand zrepresent zstatic zPOIs zand zdynamic zhuman

zmobility zrecords. zTo zlearn zthe zembeddings zof zPOIs zfrom zthe zperiodic zspatiotemporal

zmobility zgraphs, we then develop a deep autoencoder based embedding framework for

learning community structure from periodic SHNs. This helps us effectively capture the

latent features between POIs in a community. We further develop a mapping procedure that

leverages the use of Laplacian score. This approach helps us quantify the importance of

each latent feature. It helps us learn community embeddings based on the POI embeddings
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learned from the developed framework. To zevaluate zthe zperformance zof zthe zdeveloped

zapproach, zwe zapplied zit zto zpredict zthriving zurban zcommunities zfrom zreal-world zdatasets.

zWe zalso zevaluate zthe zquality zof zthe zlearned zembeddings zagainst zstate-of-the-art znetwork

zembedding zmodels. Experimental zresults zshow zthat zthe zembeddings learned from our

developed framework can capture the intrinsic structure of the urban community more

accurately, and outperforms state-of-the-art alternatives.
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4. MODALITY AWARE REPRESENTATION LEARNING FRAMEWORK

In this section, a multidimensional tensor framework which learns from the complex

user mobility pattern is presented. It addresses the station-less bike sharing challenges posed

by multi-dimension data with spatial and temporal attributes. Specifically, it attempts to

resolve some of the problems faced by stationless bike sharing systems. Primary challenges

associated are identifying regions within the city suffering from demand shortage of bikes,

supply shortage of bikes, and regions with parking problems. The Mobike dataset for the

city of Beijing is used to evaluate the presented framework, and the experimental results

show the superior performance of the developed framework.

4.1. BACKGROUND AND OVERVIEW

The world has witnessed a rise in popularity of station-less bike sharing systems in

recent years, with many cities all over the world implementing them. These station-less

bike sharing systems have become especially popular in metropolitan cities like Beijing as

they not only help ease the pressure of public transportation systems and help reduce traffic

congestion in cities, but also provide an affordable and green way for daily commuters to

travel from point A to point B. The station-less bike sharing systems are inherently different

from regular bike sharing systems as the bikes are not tied down to stations. With regular

bike sharing systems, the commuters need to pick up bikes from a station closest to them

and then drop it off at a station nearest to the user’s end location. Due to this kind of

system, the regular bike sharing systems fail to address the commuter’s last mile problem

in which commuters face the problem of being stuck in a place in between their destination

location and the bike station to justify the effort of picking up and dropping off the bike.

However, with their ability to be station-less, the station-less bike sharing systems have been

successful in addressing the commuter’s last-mile problem. With station-less bike sharing

systems, commuters don’t have to face the last mile problem of having to pick up the bike
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from a station and then park the bike back in a station at the end of the trip which may or

may not be close to their original starting or destination location. Station-less bike sharing

systems offer commuters the flexibility of picking up a bike from any location and then at

the end of the trip just park the bike at a location most convenient to them. The whole

system is managed using an app on the phone. Users can check for any available bikes near

them using the pre-installed station-less bike app on their phone, the app displays bikes

nearest to them. The user then picks a bike from the available ones for his/her trip. After

the completion of the trip the user can park the bike at any point and then lock it, which

signifies the end of the trip. The app records details of the trip like check-in/out time and

the distance traveled based on which a fee will be charged.

Along with all of these advantages, due to the distinct and unique nature of station-

less bike sharing systems where the user gets to pick up and drop off a bike at any location,

they are facing new challenges which need to be addressed and solved. Three of the primary

challenges are identifying regions within the city suffering from demand shortage of bikes,

supply shortage of bikes and regions with parking problems. Since a user can pick up and

drop off a station-less bike at any arbitrary location, the task of identifying regions suffering

from these problems has become even more of a challenge. As a result busy streets of cities

like Beijing are being flooded by thousands of bikes parked everywhere as shown in 4.1.

This in turn is adding to the already existing parking and traffic congestion problems.

The main contributions of the developed framework are:

• We develop a multidimensional model to address some of the major problems being

faced by the station-less bike sharing systems.

• Our developed framework can successfully identify problem areas within the city for

different periods of time. Our model also incorporates a clustering model in addition

to multiple dimensions.
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Figure 4.1. Streets of Beijing overflowing with bikes

• In-order to deal with this kind of high amount of data as well as data sparsity we

implement tensor factorization.

• We evaluate our model over Mobike datasets with more than 3.2 million trips in the

city of Beijing. The experimental results verify the effectiveness of the developed

model compared with baseline models.

4.2. DATA DESCRIPTION

In this section, we provide details about the Mobike and POI data sets that we have

used in developing our multidimensional tensor model based on Tensor Factorization. Table

4.1 shows the statistics of our real-world data sets.

The Mobike trip dataset was released by Mobike in the Mobike Big Data Challenge

2017. The dataset is from the time period of May-10 to May-24 of 2017. It contains details

of 3,214,096 trips along with 7 attributes associated with them. For each trip the associated

attributes include details like the userid, orderid, trip start_time, trip start_location, trip

end_location, etc. The initial data analysis revealed that the 84.29% of the entire dataset

was made up by loyal users of Mobike who had regular routes and fixed patterns of bike
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usage. Out of the remaining 15.71% of the data which was made up by new/fickle users,

2.92% of the users had similar bike usage patterns and routes as the loyal users, and the

remaining 12.83% of the data was generated by new/fickle customers who did not have

the same bike usage patterns and routes. With these results we were able to conclude that

87.22% of the data had similar pattern. During the data analysis we considered users who

rented bikes more than 7 times during the entire 14 days time period as loyal users and the

users who rented bikes less than 7 times were categorized as new/fickle customers. The

statistics from the analysis shown in Figure 4.2 drove us to the conclusion that the bike usage

data had a consistent pattern and can be used to our advantage while identifying demand

shortage regions, supply shortage regions and regions with parking problem.

Figure 4.2. Data content identification

The POI data set for the city of Beijing was obtained from www.dianping.com,

which is a commercial review and recommendation website. It consists of 328,668 POI’s

divided into 20 different categories like Hospitals, Malls, Restaurant, theaters, etc. We use

the POI dataset to cross reference it with Mobike data and identify high activity regions

within the city.
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Table 4.1. Statistics of the datasets.
Data Sources Attributes Statistics

Mobike Trips
Number of trip records 3,214,096
Number of users 349,693
Trip start time
Trip start location
Trip end location
Bike id
Time period of records 05/10/2017 -

05/24/2017

POIs
Number of POIs 328,668
Number of POI categories 20

4.3. PROBLEM DEFINITION AND FRAMEWORK

In this section we provide some key definitions and also give a brief overview of the

developed framework.

4.3.1. Problem Definition. We initially state the below definitions to help break

down the problem for better understandability. We then go on to give a more formal

definition of the problem as well.

Definition 1: (Trip): A bike trip is defined as 𝑇𝑟𝑖𝑝 = {𝑇𝑖𝑑 , 𝑇𝑆𝑙𝑜𝑐, 𝑇𝐸𝑙𝑜𝑐𝑇𝑡}, where 𝑇𝑖𝑑

denotes the trip’s unique order id, 𝑇𝑆𝑙𝑜𝑐 consists of the latitude and longitude point of the

trip’s starting location, similarly 𝑇𝐸𝑙𝑜𝑐 consists of latitude and longitude point of trip’s

ending location, and 𝑇𝑡 denotes the trip’ start time.

Definition 2: (Bike Supply Shortage Region): A region r is defined as a bike supply shortage

region 𝑆𝑟 at time t if the number of CheckIn bikes is smaller than the number of CheckOut

bikes.

Definition 3: (Bike Demand Shortage Region): A region r is defined as a bike demand

shortage region 𝐷𝑟 at time t if the number of CheckIn bikes is greater than the number of

CheckOut bikes.

Definition 4: (Bike check-in Tensors): The three dimensional bike check-in tensor can be

denoted as X ∈ R𝐼×𝐽×𝐾 . The check-in tensor contains data about the number of bikes

checked in at a particular region for each day and hour.
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Definition 5: (Bike check-out Tensors): The three dimensional bike checkOut tensor can

be denoted as Y ∈ R𝐼×𝐽×𝐾 . The check-out tensor contains data about the number of bikes

checked out from a particular region for each day and hour.

Definition 6: (Bike Parking Problem Region): A region r is defined as a bike parking

problem region 𝑃𝑟 at time t if the total number of bikes present in region r at time t is

greater than the predefined threshold 𝑃𝑡ℎ.

Problem Definition. Given a dataset consisting of bike trips along with their origin

location, destination location, trip start time, order id, user id, and POIs of a city, our

objective is to identify regions of the city with bike demand/supply shortage and parking

problems.

Figure 4.3. Framework of the developed model

4.3.2. Brief Overview of the Framework. Figure 4.3 shows the framework of

our developed model. It consists of 4 major steps: preliminary data analysis and clus-

tering model, tensor construction and factorization, identification of problem areas and

optimization.

During the preliminary data analysis stage we leverage the POI data for the city of

Beijing along with the bike check-in/out data from the Mobike dataset and cross-reference

both of them to identify regions of the city with high activity. Then we construct 2 three

dimensional tensors, one for bike check-in data and the other for bike check-out data. Here,

regions, days and hours make up the 3 dimensions of the tensors. This enables us to capture

the check-in/out data of every region for each hour of each day. In the identification of
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problem areas step we use the two constructed tensors to identify total number of bikes

present in each region at specific times. We then use the resulting tensor to identify problem

areas. Since we are dealing with multidimensional data the parameters required to be stored

in a tensor can increase exponentially; additionally, to deal with the data sparsity problem

we develop using the tensor factorization method.

4.4. CONSTRUCTING MULTIDIMENSIONAL MODEL

We use context information to construct our multidimensional model.

4.4.1. Preliminary Data Analysis and Clustering. The flow of data analysis and

clustering is shown in Figure 4.4. We use the POI dataset for the city of Beijing to first

identify regions with highest number of POI’s in the city. The regions with higher number of

POIs are considered as high human activity regions. We then also analyze the bike check-in

and check-out data to identify regions which have high bike activity. We then cross-reference

the high human activity regions with high bike activity regions which enables us to identify

regions with highest activity in the city of Beijing in terms of POI’s and bike activity. After

identifying the highest activity regions we implement our clustering model on them to group

the locations within the regions into clusters, with each cluster having a radius of 500 mt

radius. Each cluster contains n number of both POI locations and bike check-in, check out

locations.

Figure 4.4. Clustering model
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4.4.2. Tensor Construction. Based on the clustered model we take into account

clustered regions which can also be considered as virtual stations to construct 2 tensors,

one for bike check-in data and the other for bike check-out data as shown in Figure 4.5.

Figure 4.5. Check-in and check-out tensors

For both check-in and check-out tensors we represent each clustered region 𝑖1, 𝑖2....𝑖𝑛

as the first dimension. We represent days 𝑗1, 𝑗2.... 𝑗𝑛 and hours in a day 𝑘1, 𝑘2....𝑘𝑛 as second

and third dimensions. Check-in tensor X is represented as X ∈ R𝐼×𝐽×𝐾 and check-out tensor

Y is represented as Y ∈ R𝐼×𝐽×𝐾 .

4.4.3. Tensor Factorization. In-order to account for the missing data and to com-

press the data we implement tensor factorization using CP decomposition method[64]. We

use the SiLRTC algorithm[65] in-order to detect missing values in a tensor. With this

method we are not only able to retrieve the missing data but also will be able to store

the data in its compressed form which can be retrieved later on for any future operations.

The CP decomposition method factorizes a tensor into sum of a finite number of rank-one

tensors. For example, given a third-order tensor M ∈ R𝐼×𝐽×𝐾 we can write it as

M ≈
𝑅∑︁
𝑟=1

𝑎𝑟 ◦ 𝑏𝑟 ◦ 𝑐𝑟 (4.1)
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where R is a positive integer and 𝑎𝑟 ∈ R𝐼 , 𝑏𝑟 ∈ R𝐽 , and 𝑐𝑟 ∈ R𝐾 . This can also be written

elementwise as

𝑚𝑖 𝑗 𝑘 ≈
𝑅∑︁
𝑟=1

𝑎𝑖𝑟𝑏 𝑗𝑟𝑐𝑘𝑟

𝑓 𝑜𝑟 𝑖 = 1, ..., 𝐼, 𝑗 = 1, ..., 𝐽, 𝑘 = 1, ..., 𝐾.

(4.2)

4.4.4. Fusing Tensors for Problem Area Identification. By fusing the two com-

pleted tensors we can identify demand/supply shortage regions and regions suffering from

parking problems. By fixing the two dimensions of the tensor and performing matrix

subtraction we are able to identify regions with demand/supply shortage problems. Now,

in-order to identify regions suffering from parking problems we analyze the data based on

the trip start time. By doing so, we were able to identify a pattern between bike usage and

particular hours in a day. Figure 4.6 shows the usage pattern.

Figure 4.6. Bike usage pattern

We observed that the bike usage is high during 7AM and 8AM in the morning,

and during 5PM, 6PM and 7PM in the evening. This is probably because of the number

of people going to work and coming back from work after a night shift in the morning
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and people returning back home after work or people going to watch a movie or eat at a

restaurant after getting off from work in the evening. This can be true not only for people

who are using bikes to commute but also for people who are using taxis, buses and other

means of transportation. We also observe a slight rise in bike usage from 11AM to 1PM.

This might be due to people going out for lunch during break and people coming in for

their afternoon shift at work. It is safe to assume that during these hours the probability of

a region suffering from traffic congestion as well as a parking problem is at its peak.

We detect regions with parking problems by initially setting a parking threshold

𝑅𝑝𝑡 . We set a parking threshold while taking into consideration the fact that we’re only

analyzing the dataset of Mobike and that there are multiple companies like Mobike offering

similar services whose bikes may also be present in the region being analyzed. We calculate

parking threshold for individual regions depending on the growth rate of bikes parked in

those regions. Given a region r and an initial parking threshold 𝑃𝑖𝑡ℎ with number of bikes

parked in region r at hour 0 denoted as 𝑟𝑖ℎ0 and number of bikes parked in region r at hour

23 denoted as 𝑟𝑖ℎ23; we can then determine parking thresholds of individual regions:



𝑅1𝑝𝑡 = 𝑃𝑖𝑡ℎ + {[(𝑟1ℎ0/𝑟1ℎ23)1/24 − 1] × 𝑃𝑖𝑡ℎ}

𝑅2𝑝𝑡 = 𝑃𝑖𝑡ℎ + {[(𝑟2ℎ0/𝑟2ℎ23)1/24 − 1] × 𝑃𝑖𝑡ℎ}

𝑅3𝑝𝑡 = 𝑃𝑖𝑡ℎ + {[(𝑟3ℎ0/𝑟3ℎ23)1/24 − 1] × 𝑃𝑖𝑡ℎ}

𝑅4𝑝𝑡 = 𝑃𝑖𝑡ℎ + {[(𝑟4ℎ0/𝑟4ℎ23)1/24 − 1] × 𝑃𝑖𝑡ℎ}

.

.

.

𝑅𝑛−1𝑝𝑡 = 𝑃𝑖𝑡ℎ + {[(𝑟𝑛−1ℎ0/𝑟𝑛−1ℎ23)1/24 − 1] × 𝑃𝑖𝑡ℎ}

𝑅𝑛𝑝𝑡 = 𝑃𝑖𝑡ℎ + {[(𝑟𝑛ℎ0/𝑟𝑛ℎ23)1/24 − 1] × 𝑃𝑖𝑡ℎ}

(4.3)
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The generic form of the equation can be written as,

𝑅𝑖𝑝𝑡 = 𝑃𝑖𝑡ℎ + {[(𝑟𝑖ℎ0/𝑟𝑖ℎ23)1/24 − 1] × 𝑃𝑖𝑡ℎ} (4.4)

The parking threshold 𝑅𝑖𝑝𝑡 value differs for different regions. The region r is

considered as a region suffering from parking problem 𝑃𝑟 at time t if the total number of

bikes present in that region is greater than the predefined threshold. Algorithm 1 gives the

details of the procedure. Based on this we are also able to determine that parking problem

of a region is independent of supply shortage and demand shortage factor of a region. It is

solely dependent on the predefined threshold and individual hours of a day.

Algorithm 1 Supply, Demand and Parking problem regions detection

Input: CheckIn tensor X, checkOut tensor Y and set of parking thresholds p for different
categories

Output: Identification of demand shortage regions 𝐷𝑟 , supply shortage regions 𝑆𝑟 and
parking problem regions 𝑃𝑟

Initialize tensors X and Y after fixing any two dimensions 𝑑0, 𝑑1 provided both fixed
dimensions 𝑑0 and 𝑑1 are same for the two tensors.

if 𝑑1, 𝑑2 of X == 𝑑1, 𝑑2 of Y then
Z = X − Y
if Z𝑖, 𝑗 ,𝑘 > 0 then

𝑍𝑖, 𝑗 ,𝑘 = 𝐷𝑟
end
else if Z𝑖, 𝑗 ,𝑘 < 0 then

𝑍𝑖, 𝑗 ,𝑘 = 𝑆𝑟
end
for 𝑝1, 𝑝2, 𝑝3...𝑝𝑛 do

for 𝑓 in [1, 𝑘] do
if r(𝑍𝑖, 𝑗 ,𝑘 ) > 𝑝 then

𝑟 (𝑍𝑖, 𝑗 ,𝑘 ) = 𝑝𝑟
end

end
end

end
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4.5. MODEL EVALUATION

We evaluate our model for two criteria: (i) We implement tensor factorization on

different ranks to test which rank gives the optimal accuracy while keeping the number of

parameters to be stored at an acceptable limit when the tensor is decompressed. (ii) We

test our model against different methods to examine the accuracy of the predicted missing

values recovered by implementing tensor factorization. Based on this we determine its

effectiveness.

Root Mean Square Error (RMSE)[66] measures how much error there is between

two data sets. In other words, it compares a predicted value and an observed or known

value. The formula for calculating RMSE is as below.

𝑅𝑀𝑆𝐸 =

√︂
1
𝑛
Σ𝑛
𝑖=1

(
𝑦 𝑗 − 𝑦̂ 𝑗

)2

It quantifies how different a set of values are. The smaller an RMSE value, the closer

predicted and observed values are.

In-order to find the optimal rank we factorize our tensors on different ranks and

then check the RMSE error between the original tensor and the recovered tensor. In the

experiment we implement tensor factorization as well as matrix factorization [67] on the

data set while keeping the rank same for both the methods.

Table 4.2. RMSE values for different ranks

Rank

Matrix Factorization Matrix Factorization Tensor Factorization

RMSE Parameters RMSE Parameters

1 5.04315 1286 3.16346 988

2 3.54652 2572 2.75363 1976

3 3.47987 3858 2.50851 2964

4 2.61652 5144 2.22143 3952

5 2.57374 6430 2.12987 4940
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The experimental results shown in Table 4.2 lead us to conclude that tensor factor-

ization not only provides better accuracy while reconstructing the original tensor from the

factorized tensor, but can also keep the number of parameters to be stored at minimal when

compared with matrix factorization.

For the second criteria we evaluate our model against other models to determine its

effectiveness. We test our model against Matrix Factorization and Linear Regression for

different percentage of missing data.

Matrix Factorization is one of the most widely used methods to predict missing

values and also to compress the data. Models based on Matrix Factorization(MF) have

received greater exposure, mainly as an unsupervised learning method for latent variable

decomposition and dimensionality reduction [68][45]. It is most similar to the tensor

factorization method. In MF, a matrix V is factorized into two matrices W and H and the

missing values are approximated numerically.

Linear Regression is also one of the most widely used methods to predict missing

values. Its broad appeal and usefulness results from a conceptually logical process of using

an equation to express the relationship between a variable of interest and a set of related

predictor variables. It uses the relationship between scalar dependent variables and one or

more explanatory variables to predict missing values[69].

The main aim of this evaluation is to check which model can better predict the

missing data. We measure accuracy using RMSE method. In the first case where there is

only 10% of the data is missing, the RMSE value is considerably low, but as we increase the

percentages of deleted data the RMSE value also increases. In the final test case where we

test against 50% of the missing data, we can see that RMSE value increases considerably

more. In all the test cases, we observe that RMSE value of tensor factorization manges to

be lower when compared with values of other methods and based on this we conclude that

our model performs better than the other two methods. Figure 4.7 shows the result of our

experiment.
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Figure 4.7. RMSE values of TF, MF and LR for different missing data percentage

4.6. CONCLUSION

In Section 4, we develop a framework which combines a cluster model and a

multidimensional tensor based model to address some of the major problems faced by

station-less bike sharing systems. We use our model to predict and detect areas with

demand/supply shortage of bikes and areas with parking problems. In-order to achieve

this, we combine Mobike dataset for the city of Beijing and the POI dataset to build our

model. We first use the POI dataset along with bike check-in and check-out data to identify

regions with high activity. We then use clustering model to divide these high activity

regions into virtual stations. Then we construct our multidimensional tensor based model.

We start construction of our model by building two separate tensors, one for check-in data

and the other for check-out data of bikes, then we implement tensor factorization to predict

any missing values within the data and to compress data. Final steps consist of fusing

the two tensors which enables us to successfully identify regions with demand/supply

shortage of bikes and parking problems. The unique perspective of our model is due to

the combination of clustering and the multidimensional tensor model. Experimental results

show the effectiveness of our model.
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5. DISTRIBUTED REPRESENTATION LEARNING FRAMEWORK FOR
LEARNING HUMAN MOBILITY PATTERNS

To address the problem of learning representations of spatiotemporal heterogeneous

networks, in this section, two types of collective representation learning models for learning

distributed representations of Spatiotemporal Heterogeneous Network Embedding (SHNE)

are presented. (i) Multilingual SHNE (M-SHNE): the developed model leverages the use

of random walks along with a multilingual word embedding technique used in natural

language processing (NLP) to collectively learn the spatiotemporal proximity measures

between vertices in Spatiotemporal Heterogeneous Networks (SHNs) and preserve it in a low

dimensional vector space. (ii) Meta-path Constrained Random walk SHNE (MCR-SHNE):

this combines the advantage of meta-path counting algorithm, path constrained random

walks, and a word embedding technique to generate lower dimensional embeddings that

preserve the spatiotemporal proximity measures in Spatiotemporal Heterogeneous Networks

(SHNs). Experimental results demonstrate the effectiveness of the two developed models

over state-of-the-art algorithms on real-world datasets.

5.1. BACKGROUND AND OVERVIEW

Lately, new network embedding models which consider the interconnected, multi-

typed properties of heterogeneous networks have been developed. Some of the existing

network embedding models [12, 13] develop structural analysis approaches by leveraging

the rich semantic meaning of structural types of objects and links in the networks. Hetero-

geneous networks embody a vast number of interrelated facts, and they can facilitate the

discovery of interesting knowledge [70]. Figure 5.1 illustrates a SHN of a region within the

Beijing city.
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Figure 5.1. Spatiotemporal Heterogeneous Network

Here, we consider POIs (points of interest) as vertices and edges between vertices

represent multiple spatial and temporal relationships between POIs of different class types

(e.g., POI categories, distance, region, day and time of visit, Check-In, Check-Out, etc.).

The proximity among vertices in a heterogeneous network is not just a measure of closeness

or distance, but it is dependent on semantics as well. For example, the SHN in Figure 5.1

represents POIs in a city and multiple relationships connecting them. 𝑃𝑂𝐼1 is connected

to both 𝑃𝑂𝐼2 and 𝑃𝑂𝐼3, but the proximity between them differs. From Figure 5.1 we can

observe that 𝑃𝑂𝐼1 and 𝑃𝑂𝐼2 are connected by day of visits whereas 𝑃𝑂𝐼1 and 𝑃𝑂𝐼3 have

much stronger connection as not only are they connected by day of visits, they also belong

to the same POI category and are geographically situated close to each other.

In this section, we develop two distributed representation learning-based methods for

collectively embedding the spatial and temporal properties of SHNs. (i) Multilingual SHNE

(M-SHNE): this method treats a SHN as a set of individual homogeneous networks where

each homogeneous network contains information about a type of relationship (distance, time

of visits, category, etc.) that exists between vertices. Random walks are then used to capture
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the latent structure of these individual homogeneous networks and generate a corpus. The

generated corpora of all the homogeneous networks in the set are then treated as a set of

multilingual corpora where each corpus is a translation of the same network but in a different

language. The model then leverages a multilingual word embedding technique used in NLP

[71] to learn the embeddings of the SHN as a whole. (ii) A second method called Meta-path

Constrained Random walk SHNE (MCR-SHNE) is developed. This method captures the

relationship between vertices in an SHN by leveraging the use of path constrained random

walks (PCRW) [16] and a meta-path counting algorithm [14, 53]. A refined corpus which

encompasses the different relationships between vertices in a SHN is then generated based

on the path constrained random walks and meta-path counting algorithm. It then learns

the embedding of the SHN by using a language embedding technique on the generated

corpus. Experiments are conducted on multiple real-world SHN datasets to compare our

two developed methods with state-of-the-art network embedding methods (i.e., LINE [13],

Deep- Walk [9], GraRep [12] and node2vec [10]) on classification and clustering tasks.

Our experimental results show that the two developed methods outperform all alternative

approaches in most of the qualitative measures used.

Overview. The remainder of Section 5 is organized as follows. In Section 5.2, we

provide the problem definition for SHN embedding. Section 5.3 provides details about the

frameworks of our two developed models. In Section 5.4, we report the experimental results

of our two developed models for SHN embedding. Section 5.5 provides a brief review of

related works. Finally, we conclude in Section 5.6.

5.2. PROBLEM DEFINITION

We initially provide the below definitions to help break down the problem for better

understandability. We then give a formal definition of the problem.
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Definition 1: (Homogeneous Network (HN)): A homogeneous network is represented as

𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣𝑖}𝑖=1,....,𝑁 consists of a set of vertices, 𝑒𝑖, 𝑗 =
(
𝑣𝑖, 𝑣 𝑗

)
∈ 𝐸 is an

edge that indicates the relationship between two vertices.

Definition 2: (Network Embedding (NE)):Network embedding aims to capture the latent

structure of a network in a low dimensional representation 𝑥𝑖 ∈ R𝑑 for each vertex 𝑣𝑖 ∈ 𝑉 ,

where d is the dimension of the embedding space.

Definition 3: (Spatiotemporal Heterogeneous Network (SHN)): A SHN is a directed graph

𝐺 = (𝑉, 𝐸, 𝜙, 𝜓) with an object type mapping function 𝜙 : 𝑉 → L and a link type mapping

function 𝜓 : 𝐸 → R, where each object 𝑣 ∈ 𝑉 belongs to an object type 𝜙 (𝑣) ∈ L and each

link 𝑒 ∈ 𝐸 belongs to a link type 𝜓 (𝑒) ∈ R. Here, POIs constitute vertices in the network

and edges represent multi-class spatiotemporal relationships.

Definition 4: (Meta-paths): In a SHN𝐺, two vertices 𝑣0, 𝑣1 may be connected via multiple

edges. We call the connecting edges meta-paths. Conceptually, each of these meta-paths

represents a specific direct or composite relationship between them. In Figure 5.1, 𝑃𝑂𝐼𝑠

𝑃𝑂𝐼3 and 𝑃𝑂𝐼4 are connected via multiple paths. For example, 𝑃𝑂𝐼3 → 𝑐 → 𝑃𝑂𝐼4

path represents a relationship that the 𝑃𝑂𝐼1 and 𝑃𝑂𝐼3 belong to the same POI category.

𝑃𝑂𝐼3 → 𝑐 → 𝑃𝑂𝐼6 → 𝑣 → 𝑃𝑂𝐼4 indicates that 𝑃𝑂𝐼3 is connected to 𝑃𝑂𝐼4 via 𝑃𝑂𝐼6

where 𝑃𝑂𝐼3 and 𝑃𝑂𝐼6 belong to the same POI category and 𝑃𝑂𝐼6 and 𝑃𝑂𝐼4 are connected

via day of visit.

Definition 5: (Multilingual Embedding): Multilingual word embeddings represent words of

multiple languages embedded in the same vector space and allow the transfer of knowledge

from one language to the other without machine translation.

Problem Definition. Given a spatiotemporal heterogeneous network (SHN) 𝐺 =

(𝑉, 𝐸, 𝜙, 𝜓). We formulate a function 𝑓 : 𝑉 → R𝑑 that projects each vertex 𝑣 ∈ 𝑉 to a

vector in 𝑑 dimensional space R𝑑 , such that the multiple different classes of spatial and

temporal relationships that exist between vertices of a SHN are also preserved.
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Figure 5.2. Framework of Multilingual SHNE model

5.3. DEVELOPED MODELS

In this section, we describe our two developed models. In Section 5.3.1, we introduce

our first method M-SHNE. Then, we introduce our second model MCR-SHNE in Section

5.3.2.

5.3.1. Multilingual SHN Embedding (M-SHNE) . The framework of the devel-

oped Multilingual SHN Embedding (M-SHNE) method is as shown in Figure 5.2. The

model accepts a SHN as input and separates it into a series of homogeneous networks,

where each homogeneous network represents a different relationship between vertices. It

then performs random walks on the extracted homogeneous networks to capture the under-

lying latent structure. Here each random walk pass is treated as a sentence, and in this way,

a corpus comprised of multiple passes of random walks is generated for each homogeneous

network. The model treats these generated set of corpora as multilingual, i.e., where each

corpus represents the same space and the same set of POIs as vertices but encompasses

different relationships between vertices. Multilingual word embedding technique is then

used to learn SHN embeddings from the multilingual corpora.
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5.3.1.1. Homogeneous network extraction. The model analyzes the SHN to iden-

tify different individual relationships that exist between the vertices. For each link 𝑒 ∈ 𝐸

that belongs to a link type 𝜓 (𝑒) ∈ R, it extracts and creates a series of homogeneous

networks which is the same as the number of identified relationships within the SHN. Each

extracted homogeneous network is of the same space and contains the same number of

vertices, but they only encompass a single-class of spatial or temporal relationship.

Figure 5.3. Framework of MCR SHN Embedding

5.3.1.2. Multilingual corpora generation. The model performs random walks on

the extracted homogeneous networks to capture their latent structures. Here, the model

considers each random walk pass as a sentence and builds a corpus based on the sentences

generated from multiple random walks on each vertex of the network. The set of corpora

generated from these homogeneous networks is considered as a multilingual corpora as

each corpus in the set represents the same network space and vertexes. The only difference

is the way random walks capture the spatial and temporal contextual relationships between

the vertices.
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5.3.1.3. SHN embedding. We use skip-gram for Multilingual SHN Embedding.

It is a language model that maximizes the co-occurrence probability among the words that

appear within a window, w, in a sentence [11]. Specifically, we use an objective function

shown in Equation 5.1 to map the lexical vector T of multilingual corpora to its semantic

space 𝐸 .

𝐸 (T ) =

∑
𝑣𝑜∈𝑣𝑙𝑒𝑥 (T )

(
1

(𝑣𝑜,𝑣𝑙𝑒𝑥) (T )𝐸 (𝑣𝑜)
)

∑
𝑣𝑜∈𝑣𝑙𝑒𝑥 (T )

(
1

(𝑣𝑜,𝑣𝑙𝑒𝑥) (T )

) (5.1)

where, 𝐸 (𝑣𝑜) is the embedding-based representation of the vertex 𝑣𝑜 in 𝐸 , and (𝑣𝑜, 𝑣𝑙𝑒𝑥) is

the vertex dimension corresponding to the 𝑣𝑜 in the lexical vector 𝑣𝑙𝑒𝑥 (T ).

The objective function helps us preserve the spatiotemporal heterogeneities influence

on data semantics and meaning in the SHN embedding by mapping lexical vectors and

extracting semantic information. Algorithm 2 demonstrates the process of SHN embedding.

Algorithm 2 Multilingual Heterogeneous Network embedding

Input: graph 𝐺 = (𝑉, 𝐸, 𝜙𝜓)
window size 𝜔
embedding size d
walks per vertex 𝛾
walk length t

Output: matrix of vertex representation Φ ∈ R|𝑉 |×𝑑
Initialization: Extract 𝑔(𝑉, 𝐸) from 𝐺 = (𝑉, 𝐸, 𝜙, 𝜓) for each 𝑣𝑖 ∈ 𝐺 do

for 𝑖 = 0 to 𝛾 do
select 𝑔𝑖 ∈ 𝐺 with prob 1

|𝑔 |
W𝑣𝑖=RandomWalk(𝑔, 𝑣𝑖, 𝑡)

end
W𝑔 ← 𝑊𝑣𝑖 + 1
for each𝑊𝑣𝑖 ∈ W𝑔 do

for each 𝑣 𝑗 ∈ 𝑊𝑣𝑖 do
for each 𝑢𝑘 ∈ W𝑣𝑖 [ 𝑗 − w : 𝑗 + w] do

𝐽 (Φ) = −𝑙𝑜𝑔𝑃𝑟
(
𝑢𝑘 |Φ

(
𝑣 𝑗
) )

Φ = Φ − 𝛼 ∗ 𝜕 𝑗

𝜕Φ

end
end

end
end
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The M-SHNE first extracts homogeneous networks 𝑔 (𝑉, 𝐸) from SHN𝐺 = (𝑉, 𝐸, 𝜙, 𝜓).

For each 𝑣𝑖 ∈ 𝐺 we perform 𝛾 random walks on the selected homogeneous network

𝑔𝑖 ∈ 𝐺,where 𝐺 = {𝑔1, 𝑔2, ...., 𝑔𝑛} and generate a corpusW𝑔 of the network. The skip-

gram then iterates over each corpusW𝑔 and all possible collocations in the random walk

that appear within the window w of the corpora. It maps each vertex 𝑣𝑖 to its current

representation vector Φ(𝑣𝑖) ∈ R𝑑 . It updates the generated SHN embedding over every iter-

ation by mapping lexical vectors to their semantic space and preserves complex proximity

measures that exist between vertices in a heterogeneous network.

5.3.2. MCR SHN Embedding (MCR-SHNE). The framework of the developed

Meta-path Constrained Random walk SHN Embedding method (MCR-SHNE) is as shown

in Figure 5.3. The model takes a SHN as input. Path constrained random walks are

performed on the SHN to identify and capture several meta-path instances that exist between

vertices. A path counting algorithm then uses identified meta-path instances to calculate

the proximity measures between vertices. Based on this, a refined meta-path based corpus

encompassing multiple meta-path instances of multi-class spatial and temporal relationships

between vertices is then formed. Word embedding technique is then used on the meta-path

based corpus to learn embeddings of SHN.

5.3.2.1. Meta-path corpus generation. Here we adopt a slightly modified version

of random walks called path constrained random walks (PCRW) for corpus generation.

In addition to preserving proximity measures as random walks, PCRW also encapsulates

information about the multiple meta-path instances that exist between vertices. Table 5.1

shows a few meta-path instances that exist between POIs, according to the SHN in Figure

5.1. We then generate a refined meta-path based corpus based on the proximity scores

calculated by PCRW.

The meta-path counting algorithm calculates the proximity between two vertices

𝑣𝑠, 𝑣𝑡 as:

𝑠 (𝑣𝑠, 𝑣𝑡) =
∑︁

𝑠 (𝑣𝑠, 𝑣𝑡 |P) (5.2)
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where, 𝑠 (𝑣𝑠, 𝑣𝑡 |P) is the proximity score between vertices 𝑣𝑠 to 𝑣𝑡 .

It is calculated based on the probability that a PCRW path restricted on a meta-path would

follow the instance 𝑝𝑣𝑠→𝑣𝑡 . We can calculate the probability score between a pair of vertices

𝑣𝑠, 𝑣𝑡 ∈ 𝑉 based on the meta-path instances generated from PCRWs as:

𝑠 (𝑣𝑠, 𝑣𝑡 |P) =
∑︁

𝑝𝑣𝑠→𝑣𝑡 ∈P
𝑠
(
𝑣𝑠, 𝑣𝑡 |𝑝𝑣𝑠→𝑣𝑡

)
(5.3)

where 𝑠
(
𝑣𝑠, 𝑣𝑡 |𝑝𝑣𝑠→𝑣𝑡

)
is the proximity score w.r.t mata path instance 𝑝𝑣𝑠→𝑣𝑡 between

(𝑣𝑠, 𝑣𝑡).

Table 5.1. Meta-paths between POIs in SHN of Figure 5.1

Meta-Path Semantic Meanings

𝑃𝑂𝐼1 → 𝑡 → 𝑃𝑂𝐼2 𝑃𝑂𝐼1 and 𝑃𝑂𝐼2 open at same

time

𝑃𝑂𝐼3 → 𝑒→ 𝑣 → 𝑃𝑂𝐼4 𝑃𝑂𝐼3 and 𝑃𝑂𝐼4 belong to same

category and are visited at

same time

𝑃𝑂𝐼4 → 𝑐 → 𝑣 → 𝑃𝑂𝐼8 𝑃𝑂𝐼4 and 𝑃𝑂𝐼8 on average

have same number of

people checking in and

are visited at same time

𝑃𝑂𝐼5 → 𝑐 → 𝑣 → 𝑒→ 𝑃𝑂𝐼4 𝑃𝑂𝐼5 and 𝑃𝑂𝐼8 belong to same

category, have same number of

people checking in on average

and are visited at same time

5.3.2.2. SHN embedding. Algorithm 3 shows the steps for generating MCR based

SHN embedding. Here, we use short truncated random walks of length t and meta-path

length l along with path constraint factor C to control the length of the meta-path. We do this

because shorter meta-paths are more informative than longer ones; longer meta-paths tend

to link more remote vertexes which might be less contextually related [14]. The goal here

is to create a SHNE using meta-path based corpus in a way that given a SHN 𝐺 = (𝑉, 𝐸),

we develop an embedding that transforms each vertex 𝑣 ∈ 𝑉 to a vector in R𝑑 , such that the
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proximities between any two vertices in the original heterogeneous networks are preserved

in R𝑑 . The MCR-SHNE performs PCRW walks on each node 𝑣𝑠 ∈ 𝐺 based on the walks

per vertex 𝛾 , walk length t, meta-path length l, and path constraint C hyperparameters set

on it and generates meta-path based corpus. The meta-path based corpus is then passed

as input to skip-gram. The skip-gram then iterates over all possible collocations of PCRW

that appear within the window w of the corpusM𝑣. It maps each vertex 𝑣 𝑗 to its current

representation vector Φ(𝑣𝑖) ∈ R𝑑 and generates SHNE that preserves complex spatial and

temporal proximity measures between vertices in an SHN.

Algorithm 3 MCR SHNE

Input: graph 𝐺 = (𝑉, 𝐸, 𝜙, 𝜓)
window size 𝜔
embedding size d
walks per vertex 𝛾
path constraint C
walk length t
meta-path length l

Output: matrix of vertex representation Φ ∈ R|𝑉 |×𝑑

for each 𝑣𝑠 ∈ 𝐺 do
for 𝑖 = 0 to 𝛾 do

Rlength = 0
Mlength = 0
if Rlength < t && Mlength < l then
𝑝𝑣𝑠→𝑣𝑡 = select 𝑣𝑡 with prob 1

|𝑣𝑡∈𝐶 |
M𝑣 ← 𝑝𝑣𝑠→𝑣𝑡 + 1
𝑀𝑙𝑒𝑛𝑔𝑡ℎ← 𝑀𝑙𝑒𝑛𝑔𝑡ℎ + 1
𝑅𝑙𝑒𝑛𝑔𝑡ℎ← 𝑅𝑙𝑒𝑛𝑔𝑡ℎ + 1

end
for each 𝑣 𝑗 ∈ M𝑣 do
W𝑣𝑖 =M𝑣 →M𝑣 + 1
for each 𝑢𝑘 ∈ W𝑣𝑖 [ 𝑗 − w : 𝑗 + w] do

𝐽 (Φ) = −𝑙𝑜𝑔𝑃𝑟
(
𝑢𝑘 |Φ

(
𝑣 𝑗
) )

Φ = Φ − 𝛼 ∗ 𝜕 𝑗

𝜕Φ

end
end

end
end
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5.3.3. Negative Sampling. We also implement Negative sampling in the skip-

gram part of both of our developed models. Negative sampling [11] is a loss function which

rewards the estimate of the probability for vertices that co-occur with each other, while

penalizing the estimate of the probability for random vertex pairs co-occurring with each

other. Negative sampling has proven to be a very effective alternative to the computationally

expensive softmax, where we need to sum the overall non-zero proximity scores 𝑠(𝑣𝑖, 𝑣 𝑗 )

for a specific vertex 𝑣𝑖. Negative sampling has achieved state of the art results in many NLP

tasks and plays a major role in substantially speeding up the learning process and helps

generate better embeddings [72].

Equation 5 describes the loss function for each vertex context occurrence in a SHN

corpus generated from our two developed models. Here, we consider 𝑣 ∈ 𝑉 as the target

vertex, 𝑐 ∈ 𝐶 a context vertex and 𝑐𝑛 ∈ 𝐶 as random negative sample (indexed by n) drawn

from a noise distribution 𝑝 (𝑐).

𝐽𝑠𝑔 (𝑣, 𝑐) = log
(
𝜎
(
𝑐𝑡𝑣

) )
+

𝑁∑︁
𝑛=1
E𝑐𝑛∼𝑃(𝑐)

[
log

(
𝜎
(
−𝑐𝑡𝑛𝑣

) ) ]
(5.4)

The total loss is the summation of Equation 5.4 for all pairs of vertices v and c co-occurring

in the corpus, as extracted using a context window of size w.

5.4. EXPERIMENTAL SECTION

We evaluate the performances of our developed models against baseline models on

real-world SHNs of Beijing city.

5.4.1. Data Description. In this section, we provide details about the Mobike, POI,

and Weibo & Jiepang datasets used for evaluation. Table 5.2 shows the statistics of the

datasets mentioned above.
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Table 5.2. Statistics of the datasets.
Data Sources Attributes Statistics

Mobike Trips
# trip records 3,214,096
# users 349,693
Trip start time
Trip start location
Trip end location
Bike id

Time period of records
05/10/2017 -
05/24/2017

POIs
Number of POIs 328,668
# POI categories 20

Weibo & Jiepang
# Check-In 2,020,967
# users 212,362
POI Name
POI Location
POI address

Mobike, the stationless bike-sharing company, released its Beijing city trip dataset

in the 2017 Mobike Big Data Challenge. It contains details of 3,214,096 trips. It includes

information about the number of users, trip start time, trip endtime, bike id, trip start

location, and trip end location. The POI data set for the city of Beijing was acquired

from www.dianping.com, which is a commercial review and recommendation website. It

contains details about 328,668 POIs divided into 20 different categories like Hospitals,

Malls, Restaurant, theaters, etc. The Weibo & Jeipang datasets together include 2,020,967

check-in entries of POIs in Beijing. It contains details like POI name, POI check-in time,

POI address, and POI location.

5.4.2. SHN Construction. To evaluate the effectiveness of our two developed mod-

els on very large and complex SHNs, we construct two SHNs from Mobike, 𝑃𝑂𝐼, and Weibo

& Jeipang datasets. This section provides information about the steps followed to construct

the two SHNs.

SHN1: For the construction of our SHN1, we utilize the Mobike and the POI

datasets. We assigned 1,765,025 trip start and end locations with visits greater than 300

as vertices. We integrated the 𝑃𝑂𝐼 dataset into the Mobike dataset to assimilate the rich

multi-class relationships that exist within the POI dataset into SHN1. To summarize, our
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SHN1 consisted of 1,765,025 vertices and encapsulates multi-class spatial and temporal

relationships like visits per day, visits per hour, geographic distance, 20 different POI

categories, high activity time, and low activity time.

SHN2: To construct our SHN2, we use the Weibo & Jeipang dataset in combination

with the 𝑃𝑂𝐼 dataset. We considered the 472,654 individual POIs present in the datasets as

vertices. By combining the POI dataset, we also increased the number of multi-class spatial

and temporal relationships that exist between vertices. To summarize, our SHN2 consisted

of 472,654 vertices in total and encapsulates multi-class spatial and temporal relationships

like visits per day, visits per hour, geographic distance, 20 different POI categories, number

of individual user visits, high activity time, and low activity time.

5.4.3. Baseline Models and Experimental Settings. We consider four baselines

to demonstrate the effectiveness and robustness of our two developed models.

• DeepWalk [9]: DeepWalk first transforms the network into node sequences by trun-

cated random walk, and then uses it as input to the skip-gram model to learn repre-

sentations.

• LINE [13]: LINE can preserve both first-order and second-order proximities for

the undirected network through modeling node co-occurrence probability and node

conditional probability.

• GraRep [12]: GraRep preserves node proximities by constructing different k-order

transition matrices.

• Node2vec [10]: node2vec develops a biased random walk procedure to explore the

neighborhood of a node, which can strike a balance between local properties and

global properties of a network.

5.4.4. Parameter Setting. We evaluate our developed models against the baseline

models on classification and clustering data mining tasks. We use OpenNE Python toolkit

to implement the DeepWalk, LINE, GraRep, and node2vec models. For the DeepWalk and
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node2vec methods, we set the window size, walk length, and the number of walks on each

vertex as 10, 40, and 10, respectively. For LINE we set the number of negative samples as

5, and the learning rate is set to be 0.025. For GraRep we set maximum matrix transition

step K=6, and we also used L2 normalization.

For our two developed models, we set the number of negative samples per input

sample m to 5, window size, walk length, and the number of walks on each vertex as 10, 40,

and 10. For all models and SHNs, we set the embedding dimension to d = 80. We evaluate

the performances of the models by calculating Macro-F1 and Micro-F1 scores.

5.4.5. Classification and Robustness Check. Classification in network analysis is

an important task in many applications. We perform the task of multi-label classification

using generated network embeddings of SHN1 and SHN2 from the developed models as

well as the baseline models on a logistic regression classifier. For the task of classification,

we imply network embeddings as vertex features and feed them into a logistic regression

classifier model, and we use different POI categories as labels. To check the robustness of

the models, we perform classification on the datasets with varying percentages of labeled

nodes from 10% to 90%. Table 5.3 and Table 5.4 show classification accuracies with

different training ratios on different datasets. The best results are bold-faced.

We observe that M-SHNE and MCR-SHNE methods perform better than baseline

models in most of the cases. However, GraRep performs slightly better than our two

developed models on two occasions where embeddings generated from SHN1 were used.

A potential explanation for this could be the low number of labeled nodes available for

our models to build corpus on and generate quality embeddings. On SHN2 our models

outperform all the baseline models. To summarise, our developed models outperform

baseline models and generate better network embeddings that preserve the multi-class

relationships between vertices in a SHN. They also generate superior robust embeddings

and consistently outperform all the other baselines for varying ratios of labeled nodes.
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Table 5.3. Accuracy (%) of node classification on SHN1

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 56.53 57.03 57.90 58.42 60.15 62.73 64.79 63.26 63.82

LINE 53.84 54.51 55.14 55.87 56.22 56.94 57.27 58.43 58.94

GraRep 59.19 60.73 60.57 59.65 60.37 61.76 62.64 63.52 64.16

Micro-F1% node2vec 55.71 55.03 56.90 58.39 60.14 60.84 61.75 62.93 62.21

M-SHNE 57.34 58.93 59.67 61.84 62.24 63.88 63.27 64.04 65.82

MCR-SHNE 58.63 59.85 60.85 62.74 64.71 65.26 65.92 66.36 67.47

DeepWalk 31.25 32.65 33.19 33.80 34.40 35.17 35.88 36.02 35.72

LINE 28.30 29.85 30.90 30.33 31.47 31.65 32.45 33.73 33.57

GraRep 33.44 34.62 35.02 35.89 36.32 36.78 35.25 36.45 37.57

Macro-F1% node2vec 28.68 29.81 30.54 32.12 32.94 33.87 34.03 34.79 35.78

M-SHNE 33.14 34.67 35.33 36.01 36.87 37.32 36.57 37.90 38.34

MCR-SHNE 34.51 35.65 36.23 35.31 37.05 37.87 38.72 37.61 39.83

Table 5.4. Accuracy (%) of node classification on SHN2
% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 46.26 47.92 48.53 49.12 51.28 52.40 53.23 55.06 56.49

LINE 42.43 42.92 43.85 44.63 45.06 46.48 47.12 49.84 53.73

GraRep 47.43 47.96 48.62 49.13 49.86 49.64 50.38 51.15 51.76

Micro-F1% node2vec 48.43 48.96 49.75 50.64 51.91 52.74 53.28 53.82 54.65

M-SHNE 49.43 50.45 51.30 51.69 53.71 54.38 56.18 57.34 58.78

MCR-SHNE 50.29 52.12 52.55 53.39 54.77 55.02 55.83 57.95 59.02

DeepWalk 29.96 30.18 30.75 31.93 32.38 33.13 33.63 34.70 35.18

LINE 19.35 20.41 21.70 22.04 22.43 23.69 23.26 24.90 25.67

GraRep 23.47 24.22 24.87 25.54 26.84 27.17 27.73 28.45 28.02

Macro-F1% node2vec 27.15 27.28 28.05 24.33 24.19 25.17 25.56 26.21 27.17

M-SHNE 30.04 30.96 31.74 31.66 32.43 32.79 36.26 37.83 36.53

MCR-SHNE 31.24 32.11 34.02 34.89 35.08 36.34 37.74 37.24 38.56

5.4.6. Clustering. Clustering is the data mining task of identifying natural groups

in the data. Here, as we are dealing with SHNs of Beijing city, we aim to identify commu-

nities that share similar functionality and representations. For the sake of experimentation,

we define a community as consisting of (i) a location (i.e., latitude and longitude) of a

residential complex, and (ii) a neighborhood area (e.g., a circle with a radius of 1 km)

consisting of POIs. Adhering to this definition, we identify around 1,023 communities in

SHN1 and 712 communities in SHN2 made up of multiple POIs belonging to different



65

(a) Clustering on SHN1 (b) Clustering on SHN2

Figure 5.4. Visualization of clustering results from SHNE

categories within them. We perform k-means clustering on the generated SHNEs of SHN1

and SHN2 from the baseline models and our two developed models. We use the parameter

settings mentioned in Section 5.4.3 for generating the embeddings and k is set to 5.

Figure 5.4 shows the clustering representation of communities that share similar

functionality and representations learned from SHNEs of all the different models. We

observe that the embeddings generated for SHN1 and SHN2 from our two developed models

learn better clustering and separation of the vertices, and the boundaries of each group are

much clearer when compared to other baseline models. Specifically, the results shown in

Figure 5.4(a) and Figure 5.4(b) for SHN1 and SHN2 prove that network embeddings learned

from our developed models better preserve spatial and temporal proximity measures when

compared to baseline models.
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5.4.7. Spatial and Temporal Influence on SHNE. In this section, we conduct

experiments to demonstrate the influence of spatial and temporal attributes on the quality

of generated SHNE. Here, we create two different versions of networks for both SHN1

and SHN2. Specifically, V1 is a simplified network where spatial attributes associated

with all POI pairs in the network are ignored; this eliminates the spatial associations in

successive check-in behaviors of users. In V2, we ignore the temporal characteristics of

user mobility between POIs so that no specific temporal periodic pattern is utilized in

the embedding process. Finally, we use the original network V, which integrates spatial

attributes associated with all POI pairs and the temporal characteristics of user mobility

between POIs. We compare performances on the task of classification, and accuracy is

used as the evaluation metric. We use 65% of data for training, 35% for testing and POI

categories are used as labels.

Figure 5.5. Spatial and temporal influence on SHNE
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Figure 5.5 shows the results of our experiment. We observe that in cases where

we use SHN1, embeddings learned from V1 seems to perform better than embeddings

learned from V2. Whereas in the case of SHN2, embeddings of V2 perform better than

embeddings of V1. A possible explanation for these observed results could be the fact

that SHN1 contains a vast amount of temporal relations generated from human mobility

(bike trips) between vertices (POIs); this results in V1 embeddings performing better. In

the case of SHN2, since it includes more spatial relations between vertices (POIs), V2

embeddings perform better. However, in all the cases, network embeddings generated from

V1 and V2 networks underperform when compared to embeddings generated from network

V. Thus, the results indicate that preserving both spatial and temporal relationships within

the network helps us generate higher quality embeddings.

5.4.8. Parameter Sensitivity. We discuss the parameter sensitivity factor in this

section. Specifically, we assess how the different choices of dimension d and maximal scale

size k can affect the quality of SHN embeddings learned from our models. We measure the

quality of our SHN embeddings based on the accuracy achieved in vertex classification and

clustering tasks.

Figure 5.6 shows the classification accuracy achieved while using SHN embeddings

generated from our two developed models over different settings of dimension d. At first, the

accuracy shows an apparent increase. This is intuitive as more bits can encode more useful

information in the increasing bits. However, when the number of dimensions continuously

increases, the performance starts to drop slowly. The result proves that having too small

a dimension d can be inadequate for capturing rich information of SHNs. However, a

larger dimension d may also introduce noise which will deteriorate the quality of SHN

embedding and reduce the performance accuracy. Hence, it is necessary to find an optimal

d value for embedding. Figure 5.9 shows the accuracy scores over different choices of k

on the clustering task. We can observe that the setting k=7 has a significant improvement

over the setting k=2, and k=10. The above observation confirms that different k-order can
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(a) Number of dimensions

(b) Number of scales

Figure 5.6. Parameter Sensitivity

learn complementary local information. However, when k becomes too large or too small,

learned k-order relational information becomes too weak to capture the original structural

and semantic information of SHNs.

5.5. CONCLUSION

In Section 5, we introduces two comprehensive frameworks for learning SHN em-

beddings. Both models develop new approaches for efficiently capturing higher-order spatial

and temporal interactions of real-world SHNs. To effectively explore potential relationships

among vertices M-SHNE leverages random walks and a multilingual word embedding tech-
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nique to generate a set of multilingual corpora. We then formulate an objective function

that collectively maps each lexical vector of multilingual corpora to its semantic space in

the low-dimensional space embedding, effectively preserving the intrinsic structure of the

SHN. We also develop a second method called MCR-SHNE that combines the advantages

of PCRW and path counting algorithm first to construct a corpus consisting of collective

meta-path instance that encapsulates the multiplex of complex relations between vertices

and edges in a SHN. Word embedding technique is then employed to generate a fused SHN

embedding that incorporates innate spatiotemporal relationships between vertices of a SHN.

As shown in our extensive experiments, our network embedding methods can re-

cover the original network more accurately, and have better performances over data mining

tasks like classification and clustering over state-of-the-art network embedding methods.

Network embeddings generated from our two developed methods can also be adapted to

learn real-world urban community structures. They can effectively learn from dynamic

human mobility patterns between static geospatial entities of a city’s SHN and identify

urban communities that share similar functionalities and representations, and distinguish

between POIs of different categories, as demonstrated in the experiments.

Analysis of spatiotemporal data has applications in various fields, one of which is

political science. Given the availability of sufficient data, the developed framework can be

applied to study human mobility patterns and urban communities with respect to factors such

as ethnicity, linguistic, socioeconomic status, etc. The insights gained from the framework

can be used to detect or create Gerrymandered districts.
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6. REPRESENTATION LEARNING FRAMEWORK WITH NODE SENSE
DISAMBIGUATION

In this section, a spatiotemporal context-aware network embedding framework that

jointly captures the spatial regularities between objects and the sequential transition patterns

of human mobility by learning contrastive context senses associated with nodes is presented.

The framework first models the heterogeneous urban mobility data collected from multiple

sources as an SHN using a probabilistic weighted degree centrality measure. To learn the

sequential transition patterns of human mobility in urban regions, meta-path constrained

random walks (MPCRWs) are performed on the constructed SHN, which captures the

proximities between multi-typed objects via their rich spatiotemporal links. By treating the

generated meta-path instances as sentences, the framework captures multiple contrastive

context senses associated with nodes in an SHN produced due to a multiplex of spatial

and temporal dependencies between objects in urban mobility data; this is facilitated by

performing spectral graph clustering. The learned contrastive contextual node senses are

mapped with respective meta-path instances. Finally, latent embeddings of the mapped

meta-path instances are learned by using the word2vec model skip-gram. The performance

of the developed framework is evaluated on real-world application problems. Experimental

zresults zdemonstrate the zeffectiveness zof zthe framework zover zstate-of-the-art zalternatives.

6.1. BACKGROUND AND OVERVIEW

An SHN of a region contains real-world objects such as places, and things whose

interrelationships are defined on a multitude of complex spatial and temporal attributes.

Effective analysis and representation of the static spatial relationships between geographical

structures and the dynamic nature of human mobility patterns are vital for building many

critical applications like designing smart traffic systems, understanding the evolution of

urbanization, etc. However, most developed network embedding models struggle to capture
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efficient representations of static spatial and dynamic temporal relationships between nodes

in an SHN. It is challenging to model large-scale SHNs generated from different sources

and learn their latent embeddings that encapsulate the context of relationships between

real-world objects defined by their spatial and temporal dependencies.

An effective SHN embedding model should be capable of capturing geographic

influence as well as temporal influence. Recently, the study of spatiotemporal data from

sources such as mobile devices, GPS data from vehicles, and online social networks that

include user check-in information has shown that there is a spatial corelation between a user’s

visit pattern and geographic proximity between places the user visits [73]. For example,

users who want to shop usually check-in to places that are close to each other. We believe

that a user’s sequence of activities is influenced by geographic proximity between places that

are previously visited. By studying geographic influence we can gain valuable insights into

how geographic proximity between structures influences human mobility patterns. This,

in turn, can help us more accurately represent static allocations of various geographical

structures. By studying temporal influence we can learn about how temporal factors affect

human mobility patterns. For example, people usually maintain a fixed routine of daily

check-ins they perform. On weekdays, a user might check-in to locations closer to work.

During weekends, the same user might check-in to bars and restaurants in a commercial

region. Some work have focused on temporal drifting [74, 75], but they ignore multiple

contrastive contextual node senses an individual node can possess. The nature of the

relationship between nodes in an SHN modeled over urban mobility data is dynamic due

to the multiplex of spatial and temporal dependencies. This results in multiple spatial and

temporal contexts that a node can be associated with which in turn can cause node sense

ambiguity. This problem is very similar to the lexical ambiguity problem faced in the field

of Natural Language Processing (NLP) where the words have more than one meaning given

their context of occurrence [76]. Hence, it is essential to learn contrastive contextual node

senses for generating effective SHN embeddings. Learning individual node senses can help
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us better capture the structural similarity between nodes in the latent representation. Figure

6.1 shows an SHN of a region where Points of Interest (POIs) or nodes are interconnected

by multiple relationships such as day of visits, POI categories, Check-In frequency, time of

visit, etc. Nodes are represented by POIs and the nature of their interconnecting relationships

are defined within the box.

Figure 6.1. Spatiotemporal Heterogeneous Network

The focus of this work was to develop a framework that can collectively learn the

network embeddings of an SHN modeled through urban mobility data for the identification

and quantification of complex urban structures. In zwhat zfollows, zwe zoutline zhow zwe develop

a spatiotemporal context-aware network embedding framework that can address:

• How to quantify, unify, and construct an SHN in uniform model space from urban

mobility data generated from diverse sources

• What are the sequential transition patterns of human mobility and how are they

influenced by spatial and temporal attributes

• How to delineate the spatiotemporal context of a node and assimilate the learned

contrastive node senses in the generated network embeddings
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The developed framework uses a probabilistic weighted degree centrality measure

to quantify a multiplex of relationships between real-world objects and model the SHN. It

then employs MPCRWs to capture semantic spatial and temporal aspects of urban mobility

patterns from the constructed SHN. The generated MPCRW instances are sequences of

structurally similar nodes observed by weighted random walks traversing an SHN. Figure

6.2 shows two meta-path instances between nodes generated from weighted random walks.

The framework then utilizes spectral graph clustering to learn contrastive node senses

based on meta-path instances. The different contexts are learned based on the occurrences

of nodes in multiple meta-path instances. Finally, it leverages the use of skip-gram to learn

representations of the nodes. This approach helps us to effectively regularize the model and

enhance generalization capability.

We zevaluate zthe zperformance zof zour zdeveloped embedding framework zon zthe ztask

of recommending relevant POIs for user visits. We also evaluate the quality of the learned

embeddings by comparing it against zstate-of-the-art znetwork zembedding zmethods over data

mining tasks of classification and clustering. Experimental zresults zshow zthat zthe zdeveloped

zmethod zoutperforms zall zalternative zapproaches zin zmost zof zthe zqualitative zmeasures zused.

Figure 6.2. Meta-path instances
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Overview. zThe zremainder zof Section 6 zis zorganized zas zfollows. zIn zSection z6.2, zwe

zprovide zthe zproblem zdefinition zfor the zspatiotemporal heterogeneous network zembedding

zframework. zSection z6.3 zprovides zdetails zabout zthe zframework zof zour zdeveloped zmodel.

zIn zSection z6.4, zwe zreport zthe zexperimental zresults zof zour zdeveloped zmodel. zSection z6.5z

provides za zbrief zreview zof zrelated zworks. zFinally, we conclude in Section 6.6.

6.2. PROBLEM STATEMENT

In this section, we formalize the problem of spatiotemporal network embedding by

providing some key definitions.

Definition 1: (Point of Interest (POI)): A POI is a unique geographic structure or a point lo-

cation into which the users check-in. A POI is represented as: < 𝑝𝑖𝑑 , 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 >.

We use the terms POI and node interchangeably.

Definition 2: (Check-in): Check-in is a user activity indicator. It is reported by the user 𝑢,

in location 𝑙, at time 𝑡. It can be represented as: 𝑐𝑖 =< 𝑢, 𝑙, 𝑡 >. A single user can have

multiple check-ins, 𝑢𝑖 =< 𝑐1, · · ·, 𝑐𝑛 >

Definition 3: (Spatiotemporal Heterogeneous Network): An SHN represents a multiplex of

complex spatial and temporal relationships that exists between real-world objects. Here, we

consider the POIs as nodes and human mobility between POIs as weighted links. We can

represent an SHN as 𝐺 = (𝑉, 𝐸, 𝜙, 𝜓) where 𝜙 : 𝑉 → L is a mapping function for nodes

and 𝜓 : 𝐸 → R is a link type mapping function. 𝐺 is a directed graph defined over nodes

𝑉 and edges 𝐸 where each node 𝑣 ∈ 𝑉 belongs to an object type 𝜙 (𝑣) ∈ L and each link

𝑒 ∈ 𝐸 belongs to a link type 𝜓 (𝑒) ∈ R.

Definition 4: (Meta-Paths): A set of Meta-paths P in an SHN can be used to capture

various semantic spatial and temporal relationships between nodes. A meta-path instance

𝑝𝑖 defined on an SHN 𝐺 = (𝑉, 𝐸, 𝜙, 𝜓) can be represented as 𝑣1 →
𝑒1
𝑣2 →

𝑒2
𝑣𝑖 →

𝑒𝑖
· · · →

𝑒𝑛−1
𝑣𝑛,

where 𝑣 represents nodes and 𝑒 is the edge that represents composite relationships between

nodes.
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Figure 6.2 shows different instances of meta-paths. Figure 6.2(a) exhibits a meta-

path instance 𝑃𝑂𝐼2 → 𝑑 → 𝑃𝑂𝐼1 → 𝑐 → 𝑃𝑂𝐼4. 𝑃𝑂𝐼2 and 𝑃𝑂𝐼4 are connected based on

day of visit (𝑑) and check-in (𝑐) frequency. The meta-path instance 𝑃𝑂𝐼3 → 𝑠→ 𝑃𝑂𝐼6 →

𝑑 → 𝑃𝑂𝐼4, shown in Figure 6.2(b), indicates that 𝑃𝑂𝐼3 is connected to 𝑃𝑂𝐼4 via 𝑃𝑂𝐼6

where 𝑃𝑂𝐼3 and 𝑃𝑂𝐼6 belong to the same POI category shopping (𝑠) and 𝑃𝑂𝐼6 and 𝑃𝑂𝐼4

are connected via the day of visit (𝑑).

Definition 5: (Contrastive Node Sense): Given a node in an SHN with multiple spatial and

temporal dependencies, it is essential to learn the multiple contexts it is associated with.

We define the task of learning contrastive node senses as a clustering problem. The node

senses 𝑁𝑠 learned by clustering meta-paths are then mapped to respective nodes 𝑁𝑠 (𝑣𝑖),

such that 𝑁𝑠 (𝑣𝑖) ⊆ 𝑠𝑒𝑛𝑠𝑒𝑠𝐷 (𝑣𝑖) where, 𝑠𝑒𝑛𝑠𝑒𝑠𝐷 (𝑣𝑖) is a set of contrastive node senses for

node 𝑣𝑖.

Problem Definition. Formally, given a heterogeneous dataset of an urban region

with spatial and temporal attributes, the goal of our problem is to first model the observed

mobility patterns as a spatiotemporal heterogeneous network (SHN) 𝐺 = (𝑉, 𝐸, 𝜙, 𝜓). We

then formulate a function 𝑓 : 𝑉 → R𝑑 that maps each node 𝑣 ∈ 𝑉 of the SHN to a vector

in 𝑑 dimensional space R𝑑 , such that the spatial allocations indicating the importance of

geographical structures and the dynamic sequential transition of human mobility pattern

between the geographical structures are preserved.

6.3. METHODOLOGY

In this section, we describe our developed spatiotemporal context-aware network

embedding framework. In Section 6.3.1, we elaborate on how we use the developed prob-

abilistic weighted degree centrality measure to construct the SHN. Then, we explain how

MPCRWs are used to generate meta-path instances that represent the sequential transition

of human mobility in Section 6.3.2. Section 6.3.3 shows how we leverage the use of spectral
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graph clustering to learn different contexts from the generated MPCRW instances to build a

set of node senses. Finally, Section 6.3.4 describes how we employ skip-gram for learning

SHN embeddings of a region.

Figure 6.3. Spatiotemporal Context-Aware Network embedding framework

6.3.1. SHN Construction. Due to the heterogeneous nature of large scale SHNs,

it is quite challenging to delineate the complex spatial and temporal relationships that

exist between real-world objects. This task becomes even more complex when building

SHNs of a region using its urban mobility data. Nodes in an SHN represent important

geographic locations/Point of Interests (POIs) and the heterogeneous links represent the

multi-class relationships that exist between the nodes. For quantification of a network’s

interconnectedness strength, a great variety of centrality measures have been developed

[52, 53]. Ideally, when building weighted networks we use degree centrality measure for

quantification of its interconnectedness strength. Degree centrality measure is one of the

simplest measures which uses the number of links between nodes as an indicator of a node’s

interconnectedness strength. However, in this case, we have to keep in mind the fact that the

spatiotemporal data is collected from various sources like GPS devices of vehicles, mobile

devices, social media, etc. Also, real-world data are messy, we don’t always have details

about the exact origin location or the destination location. Hence, to overcome this problem
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we develop a probabilistic weighted centrality measure that fits spatiotemporal data from

various sources and does not require the exact origin POI and destination POI information.

We first calculate the probability of a user visiting a POI using Δ(𝑥):

Δ (𝑥) = 𝛽1
𝛽2
· 𝑥 · 𝑒𝑥𝑝

(
1 − 𝑥

𝛽2

)
(6.1)

where, 𝑥 is the distance between the original drop-off point 𝑑 and the destination POI. 𝛽1

is the maximum probability of a user visiting the destination POI from the drop-off point

under the function Δ (𝑥). 𝛽2 is the optimal walking distance between the drop-off point and

the destination POI with respect to 𝛽1 value. 𝛽1 and 𝛽2 are used as hyperparameters to

control the shape of the function Δ (𝑥).

We then proceed to calculate the weight of a node based on its diversity and density

aspects. We define density as the total number of times a user visits a POI.

𝛿(𝑝𝑖) =
𝑛∑︁
𝑖=1

Δ𝑥 (6.2)

where, 𝛿(𝑝𝑖) is the density measure of the node 𝑝𝑖 and Δ𝑥 is the number of visits.

We then calculate the diversity aspects based on the total number of different cate-

gories of POIs connected to the node. This measure accounts for the heterogeneity of the

network.

𝛾(𝑝𝑖) = 1 −
∑𝑛
𝑖=1 𝑃𝑖 (𝑃𝑖 − 1)
𝑃𝑐 (𝑃𝑐 − 1) (6.3)

where, 𝑃𝑖 is the total number of POIs in individual POI categories and 𝑃𝑐 is the total

number of POI categories.

The weight of the node is then calculated by fusing the density and diversity aspects of the

node.

W𝑝𝑖 = 𝛿(𝑝𝑖) · 𝛾(𝑝𝑖) (6.4)

where,W𝑝𝑖 is the weight of the node 𝑝𝑖.
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By considering the density and diversity factors of the node, its significance can be quantified

more effectively and also help represent the network structure more accurately.

6.3.2. Meta-path Constrained Random Walks. This section elaborates on meta-

path constrained random walks. Random walks have often been employed by many works

to learn the structural similarities present within the network. The significance of the node

is determined by estimating the likelihood of observing node 𝑣𝑖 given all the previous nodes

visited so far in the random walk. Meta-path, in general, was developed as a technique

through which meta-structure of the information could be explored. It can also be used to

capture numerous semantic relationships across multiple entities systematically. As meta-

paths carry rich information about the semantic relationships between entities, they can be

used to capture the proximity between nodes in a network using several meta-path-based

similarity measures.

Given an SHN, a meta-path based proximity between two nodes can be calculated

based on meta-path instance 𝑝𝑖 as:

𝜎 (𝑣𝑠, 𝑣𝑡) =
∑︁

𝑠 (𝑣𝑠, 𝑣𝑡 |P) (6.5)

where, 𝜎 (𝑣𝑠, 𝑣𝑡) is the proximity score between nodes 𝑣𝑠 to 𝑣𝑡 .

This is calculated based on the probability of a PCRW restricted on a meta-path following

the instance 𝑝𝑖𝑣𝑠→𝑣𝑡 . The probability score between a pair of nodes is calculated 𝑣𝑠, 𝑣𝑡 ∈ 𝑉

based on the meta-path instances generated from PCRWs as:

𝑠 (𝑣𝑠, 𝑣𝑡 |P) =
∑︁

𝑝𝑣𝑠→𝑣𝑡 ∈P
𝑠
(
𝑣𝑠, 𝑣𝑡 |𝑝𝑣𝑠→𝑣𝑡

)
(6.6)

where, 𝑠 (𝑣𝑠, 𝑣𝑡 |𝑝𝑖𝑣𝑠 → 𝑣𝑡) is the proximity score w.r.t meta-path instance 𝑝𝑖𝑣𝑠→𝑣𝑡 between

(𝑣𝑠, 𝑣𝑡).

Table 6.1 lists some meta-path instances from Figure 6.1 and gives insight into the

relationships between nodes and their respective semantic meanings. Equation 6.5, is used
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Table 6.1. Meta-paths between POIs in SHN of Figure 6.1

Meta-path Semantic Meanings

𝑃𝑂𝐼1𝑑 → 𝑃𝑂𝐼2 𝑃𝑂𝐼1 and 𝑃𝑂𝐼2 are visited

on the same day (𝑑)

𝑃𝑂𝐼3 → 𝑒→ 𝑑 → 𝑃𝑂𝐼4 𝑃𝑂𝐼3 and 𝑃𝑂𝐼4 belong to the

POI category entertainment (𝑒)

and are visited on same day (𝑑)

𝑃𝑂𝐼4 → 𝑐 → 𝑑 → 𝑃𝑂𝐼8 𝑃𝑂𝐼4 and 𝑃𝑂𝐼8 on average

have similar check-in (𝑐)

frequency and are visited on the

same day (𝑑)

𝑃𝑂𝐼5 → 𝑐 → 𝑃𝑂𝐼7 → 𝑖 → 𝑃𝑂𝐼8 𝑃𝑂𝐼5 and 𝑃𝑂𝐼8 are connected

via 𝑃𝑂𝐼7. 𝑃𝑂𝐼5 and 𝑃𝑂𝐼7

have similar check-in (𝑐)

frequency, 𝑃𝑂𝐼7 and 𝑃𝑂𝐼8

belong to the same POI

category industry (𝑖)

to calculate the proximity between two nodes as the sum of proximity scores of all the meta-

paths. Shorter meta-paths tend to be more informative than the longer ones. Meta-paths

with longer lengths are ineffective when indicating the relationship between nodes. The

number of possible meta-paths grows exponentially based on the length of meta-paths. It

can even become infeasible in certain large scale information networks. To overcome this,

we restrict the length of the meta-path using a threshold 𝑙.

𝛿𝑙 (𝑣𝑠, 𝑣𝑡) =
∑︁

𝑙𝑒𝑛(𝑝)≤𝑙
𝑠 (𝑣𝑠, 𝑣𝑡 |P) (6.7)

We can calculate the proximity based on path constrained random walks as:

𝛿𝑙
(
𝑣𝑖, 𝑣 𝑗

)
=

∑︁
(𝑣𝑖 ,𝑣′)∈𝐸

𝑝𝑣𝑖 → 𝑣′𝜓(𝑣𝑖 ,𝑣
′) · 𝛿𝑙−1

(
𝑣′, 𝑣 𝑗

)
(6.8)

where, 𝑝𝑣𝑖 → 𝑣′𝜓(𝑣𝑖 ,𝑣
′) is the probability of a random walk occurring from 𝑣𝑖 to 𝑣′ w.r.t. to

the edge 𝜓(𝑣𝑖, 𝑣′).
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6.3.3. Learning Contrastive Node Senses. Given the dynamic nature of spatial

and temporal relationships between nodes in an SHN, it is essential to learn their contrastive

node senses for generating effective node embeddings. Each sense of a node in an SHN

corresponds with a particular kind of context it appears in, and the similarity between node

senses can be measured by their corresponding contexts. This problem becomes more

convoluted when attempting to learn the node sense of a node that represents a POI, such

as a Mall that offers multiple services as it incorporates restaurants, theaters, departmental

stores, clothing stores, tech stores, etc. In our model, we use spectral graph clustering to

cluster the multiplex of meta-path instances such that meta-path instances that refer to the

same context appear in the same cluster. By clustering the meta-path instances, we can learn

different contextual node senses of each node based on the multiple meta-path instances

that they occur in. By learning contrastive node senses we can more accurately interpret

the different contexts in which they appear.

Spectral zclustering zis za ztechnique zwith zroots zin zgraph ztheory, zwhere zthe zapproach

zis zused zto zidentify zcommunities zof znodes zin za zgraph zbased zon zthe zedges zconnecting zthem.

zSpectral zclustering zuses information zfrom zthe zeigenvalues z(spectrum) zof zspecial zmatrices

zbuilt zfrom zthe zgraph zor zthe zdata zset. Given the MPCRW based corpus, a spectral graph

clustering algorithm can always generate a division, no matter whether the structure exists

or not.

Following the mathematical procedure, we first define the Laplacian 𝐿 as:

𝐿 = 𝐷 − 𝐴 (6.9)

where, 𝐷is the diagonal matrix and 𝐴 is the adjacency matrix.

We then define the normalized Laplacian as:

𝐿 = 𝐷−
1
2 𝐿𝐷−

1
2 (6.10)
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Eigenvalues and eigenvectors of 𝐿 are then calculated. The smallest eigenvalue 𝜆0 is

always equal to zero. The multiplicity of zero among the eigenvalues is equal to the number

of connected components in the graph. We consider the eigenvector belonging to the second

smallest eigenvalue 𝜆1, also called Fiedler value and Fiedler vector, that correspond to the

nodes in the network. We then sort the Fiedler vector, thus sorting the nodes in the graph.

We then make 𝑛 − 1 cuts along the Fiedler vector, dividing the elements of the vector into

two sets. We then compute the conductance for each cut as:

𝜙 (𝑆) = 𝑑 (𝑉)
��𝜕 (

𝑆, 𝑆
) ��

𝑑 (𝑆) , 𝑑
(
𝑆
) (6.11)

where, 𝑑 (𝑆) = ∑
𝑖∈𝑆W𝑝𝑖 . Total weight of the edges between 𝑆 and 𝑆 is indicated by 𝜕

(
𝑆, 𝑆

)
.

𝑉 = 𝑆 + 𝑆 is the set of all nodes in the graph.

We then choose the cut with the smallest conductance 𝜙 (𝑆), by deleting the edges between

𝑆 and 𝑆. The procedure is carried out until the conductance 𝜙 (𝑆) reaches threshold 𝑡.

The task of embedding node sense by using the MPCRW corpus as an inventory

of nodes is achieved by clustering MPCRW instances together based on vector similarities.

The centroids of the clusters are inferred as representing node senses.

𝑁𝑠 (𝑣𝑖) =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑣𝑖 ∈ 𝑉
𝑑 (𝑠𝑖, 𝑣𝑖) (6.12)

where, 𝑁𝑠 (𝑣𝑖) is node sense of nodes 𝑣𝑖 and 𝑠𝑖 is the proximity score of MPCRW.

6.3.4. SHN Embedding. Analysis of the SHN dataset consisting of POIs and the

user’s check-in data showed that the frequency of POI check-ins follows the power-law

distribution similar to word frequency distribution. This aspect motivated us to use the

famous word2vec model skip-gram [11] to learn sequential transition of human mobility

between POIs. Figure 6.3 shows the framework of our developed model and Algorithm 4

shows the steps for generating the SHN embeddings.
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Algorithm 4 SHN Embedding

Input: graph 𝐺 = (𝑉, 𝐸, 𝜙, 𝜓)
window size 𝜔
embedding size d
walks per node 𝛾
path constraint C
walk length t
meta-path length l

Output: matrix of node representation Φ ∈ R|𝑉 |×𝑑

for each 𝑣𝑠 ∈ 𝐺 do
for 𝑖 = 0 to 𝛾 do

Rlength = 0
Mlength = 0
if Rlength < t && Mlength < l then
𝑝𝑣𝑠→𝑣𝑡 = select 𝑣𝑡 with prob 1

|𝑣𝑡∈𝐶 |
M𝑣 ← 𝑝𝑣𝑠→𝑣𝑡 + 1
𝑀𝑙𝑒𝑛𝑔𝑡ℎ← 𝑀𝑙𝑒𝑛𝑔𝑡ℎ + 1
𝑅𝑙𝑒𝑛𝑔𝑡ℎ← 𝑅𝑙𝑒𝑛𝑔𝑡ℎ + 1

end
end

end
compute laplacian matrices

{
L (𝑝)𝑡

}
compute first k eigenvectors 𝑢1 · · · ·𝑢𝑘 of L
for each 𝑣 𝑗 ∈ M𝑣 do

assign 𝑣 𝑗 → cluster 𝑐𝑘
end
for each 𝑣 𝑗 ∈ M𝑣 do

𝑁𝑠
(
𝑣 𝑗
)
= 𝑐1 · · · ·𝑐𝑘 → 𝑣 𝑗

end
for each 𝑣 𝑗 ∈ M𝑣 do
W𝑣𝑖 =M𝑣 →M𝑣 + 1
for each 𝑢𝑘 ∈ W𝑣𝑖 [ 𝑗 − w : 𝑗 + w] do

𝐽 (Φ) = −𝑙𝑜𝑔𝑃𝑟
(
𝑢𝑘 |Φ

(
𝑣 𝑗
) )

Φ = Φ − 𝛼 ∗ 𝜕 𝑗

𝜕Φ

end
end

We use the truncated meta-path constrained random walk instances 𝑝 of length 𝑙

along with path constraint factor C to control the length and the direction of the random

walks. We utilize the two hyper-parameters to generate truncated MPCRW instances
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that effectively capture semantic structural information between nodes. Shorter MPCRW

instances are more informative than the longer ones as longer meta-paths link more remote

nodes that might be less contextually related [14]. The generated meta-path instances are

then infused with node senses that are based on the different contexts than they occur in

using spectral graph clustering.

The goal of the developed spatiotemporal network embedding framework is to create

an SHN embedding using meta-path based corpus given a SHN 𝐺 = (𝑉, 𝐸). To achieve

this, we leverage the use of skip-gram. The corpus comprised of MPCRW instances infused

with node senses is then passed as input to skip-gram. The skip-gram then iterates over all

possible collocations of MPCRW instances that appear within the window w of the corpus

M𝑣. It maps each node 𝑣 𝑗 to its current representation vector Φ(𝑣𝑖) ∈ R𝑑 and generates

SHN embeddings that preserve complex spatial and temporal proximity measures between

nodes in an SHN.

We also employ negative sampling while learning the SHN embeddings using skip-

gram. Negative sampling [11] is a loss function which rewards the estimate of the probability

for nodes that co-occur with each other, while penalizing the estimate of the probability

for random node pairs co-occurring with each other. Negative sampling has proven to be a

very effective alternative to the computationally expensive softmax, where we need to sum

the overall non-zero proximity scores 𝑠(𝑣𝑖, 𝑣 𝑗 ) for a specific node 𝑣𝑖. Negative sampling

has achieved state of the art results in many Natural Language Processing (NLP) tasks and

plays a major role in substantially speeding up the learning process and helps generate

better embeddings [72]. Equation 6.13 describes the loss function for each node context

occurrence in a SHN corpus generated from our developed model. Here, we consider 𝑣 ∈ 𝑉

as the target node, 𝑐 ∈ 𝐶 as a context node and 𝑐𝑛 ∈ 𝐶 as a random negative sample (indexed

by n) drawn from a noise distribution 𝑝 (𝑐).

𝐽𝑠𝑔 (𝑣, 𝑐) = log
(
𝜎
(
𝑐𝑡𝑣

) )
+

𝑁∑︁
𝑛=1
E𝑐𝑛∼𝑃(𝑐)

[
log

(
𝜎
(
−𝑐𝑡𝑛𝑣

) ) ]
(6.13)
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The total loss is the summation of Equation 6.13 for all pairs of nodes v and c co-occurring

in the corpus, as extracted using a context window of size w.

6.4. EXPERIMENTAL SECTION

This section details the empirical evaluation of the developed framework assessed

on an SHN modeled on real-world urban mobility data procured from multiple sources.

6.4.1. Data Description and Analysis. In this section, we provide details of the

three data sets used for constructing the SHN. Table 6.2 shows the statistics. The Mobike

Table 6.2. Statistics of the datasets.

Data Sources Attributes Statistics

Mobike Trips # trip records 3,214,096
# users 349,693
Trip start time
Trip start location
Trip end location
Bike id

Time period of records 05/10/2017 -
05/24/2017

POIs
Number of POIs 328,668
# POI categories 20

Weibo & Jiepang
# Check-In 2,020,967
# users 212,362
POI Name
POI Location
POI address

dataset was released as a part of the Mobike big data challenge in 2017 by Mobike. The data

set period ranges from May-10 to May-24 of 2017. It contains details of 3,214,096 trips and

is comprised of attributes like userId, orderId, trip start time, trip start location, and trip end

location. The POI data set for the city of Beijing was obtained from www.dianping.com; it

is a commercial review and recommendation website. It consists of 328,668 POIs divided

into 20 different categories like Hospitals, Malls, Restaurants, Theaters, etc. The Weibo &

Jeipang are Chinese social media data sets that together include 2,020,967 check-in entries
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of POIs in Beijing. They contain attributes like POI name, POI check-in time, POI address,

and POI <lat, long> location.

Figure 6.4. Distribution of user visits

Initial analysis of the three data sets revealed that the user check-in activity follows

the power-law distribution. It gives us an insight into how some patterns cover a wide

range of magnitudes. The power-law predicts that most nodes in the network have a few

connections, while a small number of nodes, have a rich local neighborhood. Accordingly,

Figure 6.4 shows that only a few popular POIs have high check-in activity whereas in the

majority of POIs the number of check-ins are close to or below the mean value.

6.4.2. Modeling an SHN Over Urban Mobility Data. To demonstrate the effec-

tiveness of our model on very large and complex SHNs, we construct an SHN by combining

Mobike, 𝑃𝑂𝐼, and Weibo & Jeipang datasets. We initialize 1,765,025 trip start and end

locations with visits greater than 300 as nodes. We then integrated the 𝑃𝑂𝐼 and Weibo

& Jeipang datasets with the existing 1,765,025 nodes using our developed probabilistic

weighted degree centrality measure to supplement the heterogeneous spatial and temporal

relationship that exists between nodes. Specifically, the constructed SHN encapsulates
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multi-class spatial and temporal relationships like visits per day, visits per hour, geographic

distance, number of individual user visits, high activity time, low activity time, 20 different

POI categories, and their associated hierarchical relationships.

6.4.3. POI Recommendation. We evaluate the effectiveness of our developed

model based on the task of recommending POIs to users. We also test the superiority

of the latent features (LF) learned from our model when compared to the explicit features

(EF) highlighted in Section 6.4.2 extracted directly from the dataset.

6.4.3.1. Baseline algorithms. We chose the following Learning to Rank (LTR)

models as baselines for comparison.

• RankNet (RN) [63]: This approach uses a feedforward neural network to model the

underlying probabilistic cost function.

• RankBoost (RB) [62]: The idea behind RankBoost is to model the learning to rank as

a binary classification problem on instance pairs. RankBoost forms the final ranking

function by first training one weak ranker at each iteration and then combining these

weak rankers.

• ListNet (LN) [59]: This model defines a listwise loss probabilistic function that

involves two probabilities called permutation probability and top one probability.

• LambdaMART (LM) [77]: This approach is a boosted version of LambdaRank [78].

It solves ranking tasks by leveraging gradient boosted decision trees using a cost

function based on LambdaRank.

• AdaRank (AR) [58]: This method uses a linear combination of weak rankers by

performing re-weighted training and then linearly combines all the weak rankers for

making predictions.

• Random Forest (RF) [60]: Random Forest learns the ranking of objects by learning

the prediction from an ensemble of random trees.
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6.4.3.2. Parameter settings. We use the RankLib [79] for implementing the 6 LTR

models. For RankNet we set number of epochs = 100, hidden layers = 1, number of hidden

nodes per layer = 10, and the learning rate = 0.0005. For RankBoost, we set the number of

epochs = 300 and number of threshold candidates = 10. We set number of hidden layers =

5, epochs = 100, number of hidden nodes per layer = 10, and the learning rate = 0.0005 for

ListNet. For LambdaMART, we set number of trees = 500, number of leaves = 10, learning

rate = 0.01, threshold candidates = 200. For AdaRank, we set the number of iterations =

500, tolerance = 0.002, and feature sampling = 5. For Random Forests, we set number of

bags = 300, sub-sampling rate = 1.0, feature sampling = 0.3, learning rate = 0.01. We use

65% of the data for training and remaining 35% is used for testing.

6.4.3.3. Evaluation metrics. We use the following measures for evaluating the

performance of the LTR models.

• Normalized Discounted Cumulative Gain (NDCG): NDCG is calculated based on

Discounted Cumulative Gain (DCG). DCG is given by,

𝐷𝐶𝐺 [𝑛] =


𝑟𝑘𝑟𝑒𝑙 if 𝑛 = 1

𝐷𝐶𝐺 [𝑛 − 1] + 𝑟𝑘𝑟𝑒𝑙
𝑙𝑜𝑔2𝑛

if 𝑛 ≥ 2

Given the ideal DCG, we can calculate NDCG at the 𝑛𝑡ℎ position as 𝑁𝐷𝐶𝐺 [𝑛] =
𝐷𝐶𝐺 [𝑛]
𝐷𝐶𝐺 ′[𝑛] . The larger the NDCG score is, higher is the top-n ranking accuracy.

• F1-Score: F1-Score considers both precision and recall in a single metric. It is

calculated as 𝐹1 = 2 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 .

6.4.3.4. Quantifying ranking relevance of POIs. The ranking relevancy of POI

is based on Equation 6.14. We quantify it based on 3 factors: (i) distance between user’s

current location and destination POI location; (ii) frequency of user Check-Ins in a given

time window; (iii) weight of the node (POI) in the constructed SHN. Due to the sparsity

in urban mobility data, most users do not have recent check-in history. For such users, we
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only consider factors (i) and (iii) to quantify the ranking relevance of a POI visit.

Q(𝑢) =


W𝑝𝑖 + ∥𝜆 − 𝑑∥−1 +∑𝑛

𝑖=1𝑉[𝑡−𝜏] if 𝑉 ≥ 1

W𝑝𝑖 + ∥𝜆 − 𝑑∥−1 if 𝑉 = 0
(6.14)

where, W𝑝𝑖 is the weight of the node, 𝑑 is the distance between user’s current location

and destination POI, 𝜆 is the robust mean of distance between user’s current location and

surrounding POIs, 𝑉 is the total number of user check-in between time 𝑡 and time window 𝜏.

(a) NDCG for different values of N

(b) F1-Score for different values of N

Figure 6.5. Overall zperformance zcomparisons zof zthe zLTR models on latent and explicit
features in zterms zof zNDCG and zF1-Score.
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6.4.3.5. Results and analysis. Figure 6.5(a) and Figure 6.5(b) show the NDCG

and F1-Score of the 6 baseline models for different values of N on both the EF and LF

zlearned zfrom zthe zdeveloped method. In all baseline models, we can observe significant

improvements in performance when trained on latent features. This shows the effectiveness

of latent features over explicit features.

6.4.4. Embedding Evaluation. The developed framework maps the SHN features

to latent high-dimensional semantic feature space. The learned semantic feature directly

determines the semantic richness of the latent feature. We compare the quality of the

embeddings learned from our model against state-of-the-art network embedding models on

the tasks of classification and clustering.

6.4.4.1. Baseline models. We chose the following three network embedding mod-

els as baselines.

• DeepWalk [9]: DeepWalk uses short truncated random walks to transform a network

into node sequences. It then leverages the use of skip-gram to learn its representations.

• LINE [13]: LINE models node co-occurrence probability and node conditional prob-

ability of a network. By doing so, it can preserve both the first-order and the

second-order proximities of the undirected network.

• Node2vec [10]: Node2vec can strike a balance between local and global properties of a

network by leveraging the use of biased random walks for exploring the neighborhood

of a node.

6.4.4.2. Parameter setting. We implemented the baseline models using the OpenNE

Python toolkit. For DeepWalk and node2vec, we set the number of walks per node = 10,

length of random walk = 20, and window size = 10, respectively. For LINE, we set the

number of negative samples = 5 and order = 3.
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Table 6.3. Accuracy (%) of POI classification on SHN

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 37.51 33.24 39.53 40.39 41.63 42.17 42.82 44.12 45.08

LINE 26.75 27.14 28.82 29.04 30.61 31.49 32.23 33.98 35.67

Macro-F1% node2vec 38.15 40.42 34.07 35.61 36.19 37.82 39.56 41.33 42.71

ns2vec 36.35 39.81 43.91 45.72 46.38 47.34 49.05 49.62 50.16

DeepWalk 63.14 67.01 65.52 69.25 70.42 72.03 73.31 74.85 75.47

LINE 61.56 61.98 62.74 63.62 64.07 65.37 66.42 67.16 68.82

Micro-F1% node2vec 67.22 65.09 68.63 66.51 67.78 68.04 68.85 69.16 69.94

ns2vec 65.73 64.87 70.81 71.43 73.18 74.62 75.84 76.36 77.31

For our developed model (ns2vec), we set the window size = 10, walk length = 20,

walks per node = 10, and negative sample per input sample = 5. We set the embedding

dimension d = 300. We use Macro-F1 and Micro-F1 scores as evaluation metrics as there is

a class imbalance in the dataset. The number of POIs for each POI category is not equally

distributed.

6.4.4.3. Classification. In network analysis, classification is an important task. We

performed multi-label classification using a logistic regression classifier. For the task of

classification, we used learned embedding as node features, and the POI categories as node

labels. Also, to evaluate how the model deals with data sparsity, we performed classification

with varying percentages of labeled nodes. Table 6.3 shows classification accuracies with

different training ratios on different datasets. The best results are bold-faced.

We observe that our developed model (ns2vec) outperforms the three baseline mod-

els in most of the occasions. However, node2vec performs slightly better than ns2vec on

two occasions where there was a low number of labeled nodes available for our model to

build corpus on and generate quality embeddings. Overall performance also proves that our

developed model can better address the data sparsity problem as it consistently outperforms

other baselines for varying ratios of labeled nodes.
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6.4.4.4. Clustering. We use clustering as a way to group POIs into different groups.

Owing to the latent semantics of the generated embeddings, the POIs with the same func-

tional semantics will be more close in the latent semantic space. We perform cosine distance

based k-means clustering to verify the discriminability and validity of the latent semantic

features on the generated embeddings of the baseline models and our developed model.

Here, k is set to 5. Figure 6.6 shows the results of the clustering task. We have used

Figure 6.6. Clustering visualization

t-SNE to reduce the high dimensional features vector to 2 dimensions. By using the 2

dimensions as x,y coordinates, the nodes can be plotted. We observe that the embeddings

generated from our developed model helps learn better clustering, separation of the vertices,

and boundaries of each group when compared to the baseline models. The results further

demonstrate that network embedding learned from our model can help preserve spatial and

temporal proximities more efficiently.
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6.5. CONCLUSION

Section 6 develops a spatiotemporal network embedding framework that considers

the users’ current location, the influence of the temporal dimension, and geographic influ-

ence while capturing latent representations of the spatiotemporal networks. In particular,

the model uses a weighted probabilistic measure to effectively represent the importance of

POIs as nodes and sequential transition patterns of human mobility between nodes. It then

employs meta-path constrained random walks to learn the structural similarities present

within the constructed spatiotemporal network observed by weighted random walks. Also,

it captures contrastive node senses based on mutiplex of spatial and temporal contexts that

a node in an SHN can be associated with by leveraging the use of spectral graph clustering.

For embedding the spatiotemporal network, the model employs skip-gram to map node

vectors to their semantic space in the low-dimensional space, effectively preserving the

intrinsic structure of the SHN. The effectiveness of learned embeddings is evaluated by first

testing it on the task of recommending POIs to users by using learning to rank models. To

test the ability of the developed network embedding method to recover the original network

more accurately, it is compared against state-of-the-art network embedding methods over

the data mining tasks of classification and clustering. The experimental results are validated

by comparing them with real-world cases. The POI recommendations results are validated

by checking if the user actually visited any one of the 𝑛 recommended POIs given his

location 𝑙 at time 𝑡 in real life. The classification and clustering results are validated by

using POI categories as true labels. The results prove that the developed framework can

be effectively used to capture the relationship between spatial structures and the dynamic

sequential transition patterns of human mobility in an urban region.
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7. SUMMARY AND CONCLUSIONS

The dissertation systematically discusses the novel frameworks developed to effec-

tively learn the representations of a multiplex of spatial and temporal relationships that exist

between nodes in Spatiotemporal Heterogeneous Networks (SHNs). We can summarize

their contribution, limitations, and evolution from one framework to the next as follows:

The collective representation learning framework with features importance intro-

duces a collective network embedding approach that uses autoencoders and Laplacian score

to learn effective embeddings of SHNs of urban communities [80]. Additionally, it also

introduces a new weighted degree centrality measure to more accurately ascertain the node’s

interconnectedness strength. Experimental results show that the embeddings learned from

the developed framework can capture the intrinsic structure of the urban communities more

accurately, and outperforms state-of-the-art alternatives. However, the techniques used by

the framework to learn the embeddings from constructed periodic SHNs render it inefficient

for learning the multimodal correlation that exists between objects in an SHN. This makes

the embeddings learned from the framework unsuitable for spatiotemporal applications

geared towards traffic and smart transportation systems. This drawback is addressed by the

Modality Aware Representation Learning Framework.

The modality aware representation learning framework [81] approaches the problem

of learning the multimodal correlation between objects in an SHN by using the tensor

factorization method. It first models the spatiotemporal data as multi-dimensional tensors.

It then applies the CP decomposition technique to factorize the tensor into a sum of lower-

dimensional rank one tensors. Additionally, the tensor factorization method when used to

reconstruct the compressed tensor can also predict missing data. The framework leverages

these properties to address problems related to traffic and transportation. Specifically, we

use the framework to identify regions with demand and supply shortages of stationless

bicycle and to address the traffic congestion problems caused due to parked bicycles. The
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experimental results prove that the developed framework provides better accuracy while

reconstructing the original tensor from the factorized tensor, and can also keep the number

of parameters to be stored at minimal compared to other baseline models. However,

one of the major disadvantages of the developed framework is its inability to capture the

intrinsic characteristics of the spatiotemporal features like correlation or mutual information

which in turn results in loss of information about spatial and temporal allocations and the

significance of geographical structures. This hinders its ability to efficiently learn human

mobility patterns and raises the need to build an intuitive framework. Also, the performance

of the tensor factorization model in terms of predicting missing data goes down when

handling very high dimensional tensors and becomes computationally expensive. These

disadvantages are addressed by the Distributed Representation Learning Framework.

To address the problem of learning representations of human mobility patterns

encompassed by SHNs, we develop two types of distributed representation learning frame-

works [82] that leverage the power-law distribution associated with human mobility patterns

. (i) Multilingual SHNE (M-SHNE): It leverages the use of random walks along with a

multilingual word embedding technique used in natural language processing (NLP) to col-

lectively learn the spatiotemporal proximity measures of human mobility patterns between

nodes in Spatiotemporal Heterogeneous Networks (SHNs) and preserve it in a low dimen-

sional vector space. (ii) Meta-path Constrained Random walk SHNE (MCR-SHNE): It

combines the advantage of meta-path counting algorithm, path constrained random walks,

and a word embedding technique to generate lower dimensional embeddings that preserve

the spatiotemporal proximity measures of human mobility patterns in SHNs. Experimental

results demonstrate the effectiveness of the two developed models over state-of-the-art al-

gorithms on real-world datasets. However, as both the developed models use skip-gram for

embedding the SHN they suffer from node sense ambiguation problem, i.e. given a node

that occurs in multiple different contexts of human mobility pattern the skip-gram is unable

to deal with it, resulting in the learning of ambiguous representations. This problem is
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especially challenging to deal with when attempting to learn the representations of SHNs as

most of the nodes appear in multiple contexts and unlike NLP-based algorithms, we cannot

resolve the problem by using a supervised labeling approach. This problem is addressed in

the developed Node Sense Disambiguation Framework.

The state of relationships between nodes in an SHN is everchanging with respect

to spatial and temporal contexts. Thus, to deal with the node sense ambiguation problem

posed by the skip-gram model, we develop a node sense disambiguation framework that

captures the representations of such nodes by learning their contrastive contextual node

senses. Specifically, we use Spectral graph clustering to first calculate the edge weight

between node vectors, and then the conductance for each cut is measured. Similar node

vectors are then clustered into groups, each identifying a sense of the target node. Each node

sense is then mapped to their respective nodes. The new vectors with mapped node senses

are then trained using the skip-gram model to create SHN embeddings that incorporate

contrastive contextual node senses. Experimental results demonstrate the effectiveness

of the node sense disambiguation framework over the developed M-SHNE, MCR-SHNE,

and other baseline models. However, the utilization of Spectral Graph Clustering to learn

contrastive node senses does make the framework more resource and memory intensive

compared to the other two algorithms.

Based on the developed representation learning frameworks for SHNs, possible re-

search direction moving forward could be on developing models that are more interpretable.

Specifically, majority of the existing representation learning models lack interpretability.

This is due to non-intuitive mappings from data features to salient properties of the repre-

sentation. Some possible ways to overcome this would be (i) developing visualization tools

that can help visualize the modeling process; (ii) investigating the causality between the

input and the output.
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Additionally, research in the direction of protecting the privacy & security of the data

can be valuable. Rich Spatiotemporal data collected from various sources, if not protected,

can pose serious privacy and security threats. Therefore, it is essential to handle data of

such nature with great care. We can alleviate risks associated by adapting techniques such

as federated learning. It offers a way to preserve user privacy by decentralizing data from

the central server to end devices.
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