

Missouri University of Science and Technology Scholars' Mine

Physics Faculty Research & Creative Works

Physics

07 Sep 2015

Possible Evidence of 3rd and 4th Order Interactions Contributions to Double Ioni- Zation of Helium by Protons and Antiprotons

A. C.F. Santos

Robert D. DuBois Missouri University of Science and Technology, dubois@mst.edu

S. T. Manson

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork

Part of the Physics Commons

Recommended Citation

A. C. Santos et al., "Possible Evidence of 3rd and 4th Order Interactions Contributions to Double Ioni-Zation of Helium by Protons and Antiprotons," *Journal of Physics: Conference Series*, vol. 635, no. 2, article no. 022017, IOP Publishing, Sep 2015. The definitive version is available at https://doi.org/10.1088/1742-6596/635/2/022017

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

PAPER • OPEN ACCESS

Possible Evidence of 3rd and 4th order Interactions Contributions to Double Ioni- zation of Helium by Protons and Antiprotons

To cite this article: A C F Santos et al 2015 J. Phys.: Conf. Ser. 635 022017

View the article online for updates and enhancements.

You may also like

- Zwicky Transient Facility and Globular Clusters: the Period–Luminosity and Period–Luminosity–Color Relations for Late-type Contact Binaries Chow-Choong Ngeow, Szu-Han Liao, Eric C. Bellm et al.
- <u>Data-driven discovery of a model equation</u> describing self-oscillations of direct current <u>discharge</u> Dmitry Levko
- <u>Efficient Conservative Reformulation</u> <u>Schemes for Lithium Intercalation</u> Pierre Celestin Urisanga, Derek Rife, Sumitava De et al.

This content was downloaded from IP address 131.151.26.204 on 11/11/2024 at 14:30

Possible Evidence of 3rd and 4th order Interactions Contributions to Double Ionization of Helium by Protons and Antiprotons

A. C. F. Santos^{*1}, R. D. DuBois^{† 2}, and S. T. Manson^{#3}

^{*}Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ, Brazil [†] Department of Physics, Missouri University of Science and Technology, Rolla, MO, 65409, USA [#]Department of Physics & Astronomy, Georgia State University, Atlanta, GA, 30303, USA

SynopsisPublished cross sections for double ionization of helium by protons and antiprotons are analyzed in terms of the traditional interference between 1st and 2nd amplitudes. Between 3 and 10 a.u., the velocity dependence implies a dominant 2nd order interaction. For slower collisions it is shown that the velocity dependences are consistent with 3rd and 4th order interactions becoming important with these interactions having negative coefficients.

Recently, we analyzed a large data set of published cross sections for double ionization of helium [1] using the model proposed by McGuire [2] where three terms are considered, namely the 1st order shake off term, the 2nd order TS2 term, and an interference term. Since the interference term is of opposite sign for proton and antiproton impact, adding the double ionization cross sections for proton and antiproton impact removes the interference contribution. Under the assumption that the 1st order contribution is the same for proton and antiproton impact, the 2^{nd} order TS2 contribution, σ_{2nd} , was isolated and found to have a $\ln(v)/v^4$ dependence at higher velocities. This was interpreted as implying sequential emission of two electrons via independent interactions. At lower velocities, σ_{2nd} reached a maximum and then decreased. These data and fit are shown by the black open squares and line in Fig. 1. Ref. 1 contains additional details plus references for the data used. Here we take a closer look at the lower velocity region and find that the velocity dependences in this region are consistent with 3rd and 4th order processes becoming increasingly important at lower impact en-ergies.

The absolute values for differences between the data and fit mentioned above are shown by the filled red circles with the red line illustrating these have a v⁻⁶ dependence above 3 a.u. The differences between the red data and line are shown by the filled blue stars which, as shown by the blue line, have a v⁻⁸ dependence. These velocity dependences suggest that for intermediate to high velocities, e.g., between ~ 3 and 10 a.u., the 2nd order TS2 mechanism dominates. But around the cross section maximum, the velocity de-pendence implies a 3rd order double ionization mech-anism having negative coefficient а becoming im-portant and eventually dominating below ~ 1.5 a.u. At still lower velocities, e.g., below 1 a.u., the v⁻⁸ de-pendence implies a 4th order double ionization mech-anism, also with a negative coefficient, becoming dominant.

Unfortunately, we do not know of any theoretical treatments of double ionization beyond 2nd order and can only state that in spite of uncertainties associated with error bars in the cross sections and several subtractions between data and fitted curves, the data in Figure 1 imply that some type of 3rd and 4th order double ionization mechanisms are present for low energy proton and antiproton impact. Finally, we do not believe our analysis is simply a fortuitous result of a polynomial fit to the data as this should yield both even and odd powers of v whereas we find only even powers to be present.

Figure 1. Possible 2nd, 3rd, and 4th order contributions to double ionization of helium by protons and antiprotons. See text for details and ref. 1 for sources of original data.

References

[1]R. D. DuBois, A. C. F. Santos, and S. T. Manson, 2014, Phys. Rev. A 90, 052721. [2] J. H. McGuire 1982, Phys. Rev. Lett. 49, 1153.

- ^{#3}E-mail: dubois@mst.edu
- ³E-mail: smanson@gsu.edu

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution (\mathbf{i}) of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

¹E-mail: toni@if.ufri.br