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ABSTRACT 

Laser Powder Bed Fusion (LPBF) metal Additive Manufacturing (AM) fabricates 

3D metal parts layer-by-layer. The process enables production of geometrically complex 

parts that are difficult to inspect with traditional methods. The LPBF parts experience 

significant geometry driven thermal variations during manufacturing. This creates 

microstructure and mechanical property inhomogeneities and can stochastically cause 

defects. Mission critical applications require part qualification by measuring the defects 

non-destructively. The layer-to-layer nature of LPBF permits non-intrusive measurement 

of radiometric signals for a part’s entire volume. These measurements provide thermal 

features that correlate with the local part health. This research establishes Optical 

Emission Spectroscopy (OES) and Short-Wave Infrared (SWIR) imaging radiometric 

inspection methods that infer the final material state in LPBF. The instruments’ signals 

are correlated with bulk and local part properties to evaluate prediction capabilities. A 

probability framework defines the SWIR camera’s local defect detection successes and 

limitations. Finally, a superposition thermal model based on SWIR data predicts laser 

scan path driven thermal history effects for process correction applications. 
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1. INTRODUCTION 

1.1. BACKGROUND 

Laser Powder Bed Fusion (LPBF) is a powder bed based Additive Manufacturing 

(AM) process that fabricates 3D metal parts layer-by-layer [1]. In LPBF, an f‒θ lens, or 

dynamic focusing optical system, focuses a galvanometer guided laser beam on the 

powder bed. The laser scans the powder bed with prescribed processing parameters (e.g. 

laser power, scan speed, hatch distance), and thus fuses the metal, along paths determined 

by the part’s geometry. This procedure repeats after spreading a new powder layer with 

scan pathing updates based on the part’s next geometry slice. The LPBF methodology 

provides the ability to manufacture complex geometry parts at length scales of hundreds 

of millimeters with feature resolutions limited by the melt size, which is typically sub-

millimeter [2]. A wide range in structures (e.g. thick wall, thin wall, lattice) can compose 

a single LPBF part. The various structure types have unique optimal laser parameter sets 

and mechanical behavior [3]. A part’s complicated geometry combined with its varying 

local part properties make non-destructive inspection difficult. Typically, high value 

LPBF part inspection occurs after manufacturing and consists of micro-CT (µCT) 

scanning to obtain x-ray image based volumetric data sets [4]. This method permits the 

identification of local porosity that can negatively impact the part’s performance [5]. 

As LPBF manufacturing’s prevalence and its mission critical part production 

increase, inspection procedures must provide further insight into the local part properties 

with minimal process impacts. The layer-to-layer and laser driven thermal nature of 

LPBF presents an opportunity to inspect parts during manufacturing (i.e. in-situ) by non-
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intrusively measuring radiometric information [6]. Radiometric instruments (e.g. thermal 

cameras, pyrometers, photodiodes, and spectrometers) can produce a volumetric data sets 

based on the local thermal history for a part by combining measurements from each layer 

[7]. The radiometric information can be correlated to several part properties (e.g. 

porosity, microhardness, yield strength, etc.) [8]. Additionally, in-situ radiometric 

inspection can distinguish the thermal history variances caused by a part’s geometry [9]. 

The technique should simultaneously inspect the various part structure types that have 

significant differences in thermal history and mechanical properties. These abilities 

require the instrumentation to spatially monitor the thermal history, and the features from 

their measurements must have high sensitivity to LPBF process variances. 

Optical Emission Spectroscopy (OES) and thermography are both promising 

techniques that can spatially measure signals emitted during LPBF. Optical Emission 

Spectroscopy spectrally resolves light emitted from excited atoms. OES is established for 

both laser welding [10] and blown powder AM [11] where slow process dynamics and 

large laser powers produce high signal to noise ratios. OES measurements have been 

shown to provide information related to the blown powder AM part’s quality including 

material composition [12] and porosity [13]. One study explored implementing OES 

principles during LPBF [14]. The fast dynamics and low powers in LPBF make OES 

implementation difficult, which limits the significant contribution it can provide. Further 

development of OES for LPBF will allow it to be used for in-situ part inspection. 

Thermography is the use of instrumentation to perform spatiotemporal temperature 

measurements. Thermography can be active where a heat is applied to identify defects in 

parts [15], or passive to measure emission from parts like during AM [16]. Short-Wave 
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Infrared (SWIR) thermal cameras measure wavelengths corresponding peak emission at 

most metal’s melting temperatures. This allows measurement of features at temperatures 

critical to microstructure formation. Short-Wave cameras have been used to measure melt 

pool size [17] and cooling rates [18] in LPBF. Work remains to evaluate the correlation 

between SWIR measurements and LPBF part properties as well as determine the SWIR 

thermal feature’s ability to predict part state locally. 

An additional benefit of in-situ radiometric inspection is an experimental 

understanding of what contributes to thermal history variances. Wide ranging thermal 

models from analytical to high fidelity have made progress understanding this for LPBF 

from a theoretical standpoint [19–21]. Superposition models are process correction 

oriented and make part scale simulations feasible [22,23]. This idea combined with SWIR 

imaging measurements leads to the unique opportunity to perform superposition thermal 

modeling with experimental data. This modeling approach would allow quantitative 

prediction of how scan pathing affects the thermal history. 

1.2. RESEARCH OBJECTIVES 

This dissertation’s main objective is to establish in-situ radiometric inspection 

methods for LPBF that address the knowledge gaps that exist for current systems in the 

literature. These knowledge gaps and the work to address them are given in each of the 

dissertation’s four papers. The first paper’s objective is to study the ability to correlate 

OES signals with local LPBF part information and determine what build conditions affect 

those signals. The second paper’s objective is to define the capability of various SWIR 

imaging thermal features to correlate with LPBF part properties including yield strength 
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and porosity. The third paper’s objective is to quantify the ability to locally predict 

porosity by SWIR imaging for nominal LPBF manufacturing scenarios. The fourth, and 

final, paper’s objective is to quantify the scan path driven thermal history variance 

captured by a superposition thermal model based on SWIR data. 

  



 

 

5 

PAPER 

I. IN-SITU OPTICAL EMISSION SPECTROSCOPY OF SELECTIVE LASER 

MELTING 

 

Cody S. Lough1, Luis I. Escano2, Minglei Qu2, Christopher C. Smith1, 

Robert G. Landers1, Douglas A. Bristow1, Lianyi Chen2, Edward C. Kinzel3 

 
1Department of Mechanical and Aerospace Engineering, Missouri University of Science 

and Technology, Rolla, MO 65409 

 
2Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, 

WI 53706 

 
3Department of Aerospace and Mechanical Engineering, University of Notre Dame, 

Notre Dame, IN 46556 

 

ABSTRACT 

The variances in local processing conditions during Selective Laser Melting 

(SLM), a powder bed Additive Manufacturing (AM) process, can cause defects that lead 

to part failure. The nature of SLM permits in-situ monitoring of radiometric signals 

emitted from the part surface during the process, including optical emission from excited 

alloying elements. Using Optical Emission Spectroscopy (OES) to measure the spectral 

content of light emitted gives insight into the chemistry and relative intensities of excited 

species vaporized during SLM processing. The contribution from investigating the use of 

in-situ OES to gain information about local processing conditions during SLM is reported 

in this paper. A spectrometer is split into the SLM system laser beam path to measure 

visible light emitted from the melt pool and plume during the processing of 304L 
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stainless steel. The in-line configuration allows signal collection regardless of the laser 

scan location. The spectroscopic information is correlated to the melt pool size and 

features of SLM samples for various build conditions (i.e., process parameters, build 

chamber atmosphere type and pressure).The limitations that exist in OES implementation 

for certain build chamber conditions are discussed. The results in this paper are initial 

progress towards the use of OES in SLM part qualification and controls applications. 

 

1. INTRODUCTION 

 

Selective Laser Melting (SLM) is a powder bed based Additive Manufacturing 

(AM) process in which three-dimensional parts are built layer-by-layer. One challenge in 

SLM is that the temperature history varies with the part geometry and process 

parameters. The local variance in thermal history is a source of defects as well as general 

inhomogeneity in properties such as the melt pool size, density, and yield strength. 

Qualifying AM parts is critical for high-value applications. The layer-to-layer nature of 

AM presents an opportunity to collect radiometric information for the volume of the part 

by combining measurements taken from the top surface of each layer. The radiometric 

information is a function of the local melt pool thermodynamic state and can be 

potentially correlated to local part properties. These measurements then provide the 

opportunity to validate parts in-situ, and if processed in real-time, can be used for 

feedback-based control. Optical Emission Spectroscopy (OES) spectrally resolves light 

emitted from excited atoms. The emission wavelength depends on atomic transitions 
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while the intensity depends on the atomic concentrations, excitation temperature, and to a 

lesser extent pressure. 

Optical Emission Spectroscopy has previously been implemented in laser welding 

processes to provide information about the chemical species during the process and 

calculate the temperature and electron density in the vapor plume [1-3]. The 

spectroscopic data has been correlated with weld features, such as the melt pool depth to 

width ratio, and used to control the welding depth [4]. These OES methods have been 

extended and further developed to monitor the blown-powder metal Direct Energy 

Deposition (DED) process. The spectroscopic data was used to calculate plume 

temperatures, predict compositions, identify defects, and monitor clad quality [5-7]. 

Although OES has been established in blown-powder AM, there are fewer reports 

applying OES to powder-bed based AM. Dunbar et al. mounted a spectrometer at a fixed 

location in the build chamber of an SLM system and reported emission signal as a 

function of defocusing the process laser [8]. Dunbar and Nassar imaged the whole build 

plate onto a system of photodiodes with band-pass filters to measure the normalized 

strength of the chromium emission and correlated this signal with porosity of an Inconel 

718 part created with SLM [9].  

Implementing OES as a process monitoring tool in powder-bed based SLM can be 

more challenging when compared to blown-powder AM. In DED, the melt pool is 

stationary relative to the machine frame while in powder bed based SLM, the galvo-

scanner steered laser beam creates a moving melt pool. However, the melt pool is 

stationary from the point-of-view of the process laser. When the spectrometer collects 

light from along the beam path, the integration volume follows the melt pool and allows 
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measurement of spectral information from any point on the build plate. It should be noted 

that most SLM systems use optics optimized for the process laser (typically Near 

Infrared) and this has the potential to introduce chromatic aberration near the periphery of 

the build plate, which is a function of dispersion as illustrated in Figure 1. These effects 

can be corrected with calibration, or via the use of achromatic optics. The platform allows 

basic OES and supports the inclusion of additional interrogation lasers for more advanced 

measurements (e.g., Laser Induced Incandescence, Scattering, or Breakdown 

Spectroscopy). Additionally, the framework has the potential to generate 3D point cloud 

data sets containing information derived from spectroscopic measurements. These data 

sets can be used to track layer-to-layer differences in local processing conditions 

including the melt pool size and elemental depletion, or segregation, which can affect the 

properties of the SLM parts. 

In this paper, OES is performed during SLM with the spectrometer collection 

optics inserted into the beam path of the process laser. OES results for SLM of 304L 

stainless steel under various build conditions are reported, including the species in the 

vapor plume and relative emission intensities. The in-situ OES measurements, which 

correspond to the local processing conditions, are correlated with the melt pool properties 

of samples (melt pool size and morphology). This is significant because relating OES 

measurements to the melt pool features links information collected in-situ to a critical 

part feature that can contain defects due to under, or over melting [10] and establishes the 

density and surface roughness of SLM parts [11]. With further development, the in-situ 

spectroscopic measurements can be used in the qualification of parts during 

manufacturing and has potential for in-process control of SLM since they are effectively 
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monitoring the local melt pool attributes. Beyond the general framework and correlations, 

the paper also reports on the effects of the build chamber atmosphere and pressure on the 

melt-pool geometry and OES signal.  These results have implications for understanding 

the SLM process and future implementations of in-situ OES. 

 

2. EXPERIMENTAL APPROACH 

 

Experiments were performed using a home-built SLM system and an Andor 

Technology SR-750 spectrometer. The SLM system used an IPG Photonics YLR-500 

continuous wave fiber laser (λ = 1070 nm) with an IPG D30 collimator. The laser beam 

x-y position was controlled by a SCANLAB hurrySCAN and the laser was focused by a 

340 mm focal length f-θ lens (measured 1/e2 beam diameter of 145 μm). Spectroscopic 

data was collected using a 600 l/mm diffraction grating installed in the spectrograph and 

an Andor Technology iStar 734 series ICCD (system spectral range 400-700 nm, spectral 

resolution ~0.1 nm). The spectrometer operated without intensity calibration, which is 

justified by comparing emission lines over a narrow wavelength range. The spectrometer 

was coupled to the SLM system by inserting the collection optics into the process laser 

beam path using a dichroic mirror (Thorlabs DMLP900) as illustrated in Figure 1 (a). The 

reflectance of the dichroic mirror is plotted in Figure 1 (b). This shows the optic did not 

significantly impact relative optical emission line intensity measurements since the 

reflectance is greater than 98.5% across the visible wavelengths. The collection optics 

consisted of an optical fiber (Andor SR-OPT-8014) coupled to the spectrometer by using 

an f/# matcher (Andor SR-ASM-0018). The optical fiber was attached to a collimator 
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(Thorlabs F220SMA) and the collimated light was then expanded before the dichroic 

mirror by using a Keplerian beam expander comprised of two plano-convex lenses 

(Thorlabs, f1 = 50 mm and f2 = 100 mm). 
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Figure 1. (a) Schematic of SLM system optical components with spectrometer inserted 

into SLM laser beam path, (b) interrogation of the plume above the melt pool illustrating 

the solid angle and dispersion (colors correspond to qualitative over focus relative to 

process laser wavelength for wavelengths from blue to red) and (c) reflectance of 

dichroic mirror [15]. 

 

There is a potential concern that one may obtain a limited solid angle, Ω, and 

dispersion (previously mentioned) when inserting the spectrometer optics into the beam 

path. The optical system solid angle determines the light collection efficiency during 

OES. For the OES method using the optical system illustrated in Figure 1, the solid angle 

was limited by the galvo-scanner aperture size (20 mm diameter) and the value was 

determined to be approximately 0.002 steradians. Despite limiting the intensity of the 

collected radiation, as well as the cross-section of the interrogation volume, experiments 

show that sufficient signal is received by the spectrometer to evaluate the melt pool. The 
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issue of dispersion is illustrated in Figure 1 (b) for SLM processing at the center of the 

build plate where shorter wavelengths (blue) are over focused while longer wavelengths 

(red) are closer to focused relative to the focus of the process laser. This affects the 

relative intensities of optical emission lines; however, this can be addressed. In SLM, the 

melt pool and interrogation volume position is determined by the scanner and is known, 

which allows a wavelength specific correction to be applied in-situ when required. 

Alternatively, dynamic focusing optics could be added to the spectrometer beam path as 

the optical system is developed further. In this work, the optics were aligned using 632.8 

nm light at the center of the build plate and samples were not processed at the substrate 

edges to avoid the impacts of dispersion. Also, the effects of dispersion were negligible 

since measurements of relative emission intensities used in developing relationships with 

sample properties were made over a small wavelength range. 

Experiments were conducted to generate OES data while performing SLM with 

various laser powers and build chamber conditions (atmosphere type and pressure). The 

process windows for the experiments are listed in Table 1, where the build chamber 

atmosphere type in the varied laser power and pressure studies was argon. The laser 

power values were selected to develop correlations between experimental OES and melt 

pool size measurements for processing conditions that can be successfully used to 

manufacture parts. The build chamber atmosphere types were selected to understand the 

influences of typical processing environments used in powder bed fusion on OES signals 

that need to be considered when developing this measurement system for process 

monitoring and control (near atmospheric pressure air is included to demonstrate the 

effects of oxygen in the system as extreme case). In particular, the pressure is varied from 
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0.2 to 800 Torr in an Ar atmosphere, which can significantly affect both the melt pool 

geometry and behavior of the vaporization/ionization processes determining both the 

recoil pressure and the OES signal. 

 

Table 1. Experimental process windows. 

Laser 

Power [W] 

Build Chamber 

Atmosphere 

Build Chamber 

Pressure [Torr] 

200 Air: 730 Torr 0.2 

250 Argon: 730 Torr 100 

300 Nitrogen: 730 Torr 200 

350 Argon: 0.2 Torr 300 

400  400 

  500 

  600 

  700 

  800 

 

 

In all the experiments, the laser was scanned in a raster pattern at a constant scan 

speed (675 mm/s) and hatch spacing (85 µm). The emission signals reported in the 

following section are processed time series spectral data averaged over laser melting 5×5 

mm2 areas of a single, 50 µm thick 304L stainless steel powder layer. The powder size 

and chemistry of the 304L stainless steel lot used in this work were reported in [16]. The 

D50, or median particle size of the 304L stainless steel powder on a volume basis was 

~28 μm and the chemical composition is listed in Table 2. The signals measured during 

processing the single layers contained an incandescent background with optical emission 

lines superimposed. Each frame of the time series OES data was processed by excluding 

the optical emission lines to fit the background with an eighth-order polynomial. This fit 

was subtracted from the original data, including optical emission signals, to remove any 
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effects of the incandescent background. The processed OES signals were then averaged 

over the 5×5 mm2 layer area to produce representative emission spectra corresponding to 

the respective SLM processing conditions. 

 

Table 2. Chemical composition of 304L stainless steel powder in weight percent. 

C Cr Cu Fe Mn N Ni O P S Si 

0.018 18.4 <0.1 Balance 1.4 0.06 9.8 0.02 0.012 0.005 0.63 

 

 

The melt pool sizes of the single layer samples produced by processing with the 

various conditions were measured through optical microscopy (Hirox KH-8700) after 

metallographic sample preparation (mounted, polished to 0.05 µm, and electrolytically 

etched with 60/40 nitric acid). The measured melt pool sizes for the samples processed 

with various laser powers were then correlated to corresponding emission line intensities. 

Experiments with various build chamber atmosphere types and pressures were conducted 

to explore the effects of these static environmental conditions on OES signals generated 

during SLM of 304L stainless steel. 

 

3. RESULTS AND DISCUSSION 

 

The relative intensities for optical emission lines are  

    mn m mn mnI N A h    (1) 

where Imn is the intensity, Nm is the upper state population, Amn is the transition 

probability, h is the Planck constant, and νnm is the frequency (m and n denote the upper 
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and lower energy levels, respectively) [5]. Figure 2 contains the average optical emission 

spectra for 304L collected during processing in an argon build chamber atmosphere with 

laser power varied from 200 to 400 W. The averages are from time series OES data 

sampled at 14 Hz during processing, which resulted in at least 9 frames of spectra for 

each laser power. The species of the emission lines measured during SLM of 304L 

stainless steel were identified by consultation of the NIST database [12]. The optical 

emission lines in Figure 2 correspond to neutral chromium, iron, and manganese, with 

chromium having the most apparent emission signal. 

 

 

Figure 2. Average optical emission spectra of 304L stainless steel for wavelength ranges 

plotted from (a) 400 to 435 nm and (b) 515 to 540 nm measured during SLM with 

various laser powers. 

 

The results in Figure 2 show the overall optical emission signal intensity increases 

for processing with higher laser powers. This increase in emission signal intensity was 

most likely due to the higher laser powers leading to more vaporization of the 304L 

stainless steel alloying elements from larger melt pools and higher temperatures. The 

strongest intensity corresponded to chromium emission around λ = 520.6 nm. The 
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average and standard deviation of intensity values of at λ = 520.6 nm were determined for 

correlation with the melt pool size. Figure 3 (a) is the plot of the intensity at λ = 520.6 nm 

for processing 304L in an argon atmosphere with the various laser powers. In Figure 3, 

the variance in the average intensity over the respective layers is most likely due to 

combined effects of the raster pattern scan path and the sampling frequency. The raster 

pattern scan path leads to increased dwell time where the laser goes around corners. The 

increased dwell time could result in more vaporization at the corners and higher 

temperatures, which would directly correspond to larger measured intensities. The 

measurement frequency results in under sampling of emission intensities for the middle 

of the raster pattern scan path where the melt pool reaches steady state. It is expected that 

increased sampling for this portion of the manufacturing process will reduce the 

magnitude of the emission intensity variance across the part. The longer dwells at the part 

edges, combined with the low sampling frequency, amplify the increase in variance for 

the measured intensity, especially for higher laser powers. 

Figure 3 (b) is the correlation of the average chromium emission intensity around 

λ = 520.6 nm with the average melt pool size (i.e., the depth, D, and half width, W, 

defined in the optical micrograph) across single layer samples processed with the various 

laser powers. Figure 3 (b) shows larger melt pools correspond to higher chromium 

emission intensities; however, the standard deviations in both measurements (error bars) 

result in some overlap. The results in Figure 3 (b) strongly suggest a dependence of the 

melt pool depth on the recoil pressure caused by material vaporization during processing. 

It is expected that a larger recoil pressure (increased vaporization) would correspond to a 

melt pool depth increase. This result was qualitatively tracked by the OES measurements 
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where the higher emission intensities from increased vaporization correspond to deeper 

melt pools. The fits of the melt pool properties as a function of the chromium emission 

intensity show that the half width is slightly more sensitive than the depth for the samples 

processed by the home-built SLM system. Overall, these results demonstrate a strong 

relationship between local processing conditions obtained through OES and SLM sample 

properties. 

 

 

Figure 3. (a) Average intensity of chromium emission around λ = 520.6 nm and (b) 

average melt pool size of single layers plotted versus average intensity of chromium 

emission for corresponding layers. 

 

In addition to their dependence on laser power, OES signals also depend on the 

build chamber atmosphere type and pressure. Experiments show that these parameters 

have significant effects on OES implementation in the SLM process. Figure 4 (a) 

contains the average OES signals for processing single layers of 304L stainless steel with 

various build chamber atmosphere types including air, argon, and nitrogen, all at a 

pressure of 730 Torr, and a low pressure argon atmosphere (0.2 Torr). The single layer 
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samples were processed in the various atmospheres using a laser power of 300 W. Figure 

4 (a) shows the average optical emission line intensities measured during processing in an 

air atmosphere are much stronger than the signals collected in the argon, nitrogen, and 

low pressure argon atmospheres. The higher signal intensity when processing in air could 

be due to increased material vaporization leading to larger element populations in the 

plume. The increased vaporization would be reflected in a more keyhole mode like 

appearance of the melt pool, or an increased melt pool depth due to larger keyhole 

formation during laser melting. Micrographs of the melt pool cross-sections (Figure 4 (b-

e)) show conduction mode melting dominates regardless of chamber atmosphere. 

However, the average melt pool depth when processing in air is larger, supporting the 

idea of increased vaporization leading to the stronger OES signal. The increased OES 

signal strength for air could also be explained by the oxidation of the vaporized 

chromium and iron. The exothermic oxidation process adds heat to the vapor plume 

above the melt pool, increasing both the excitation temperature and the resulting signal 

intensity measured through OES [13]. The OES signals are not amplified from the 

oxidation process during SLM in the inert argon, nitrogen, and low pressure argon 

environments. The similar emission intensities for the argon and nitrogen atmospheres 

reported in Figure 4 (a) correspond to similar average melt pool sizes in the respective 

single layer samples. 

In Figure 4 (a), there were no apparent emission lines measured for processing 

with the build chamber atmosphere at a pressure of 0.2 Torr. This result occurred during 

processing in chamber pressures lower than 300 Torr. Figure 5 (a) shows the dependence 

of optical emission signal measured during SLM processing on the build chamber 
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pressure. The build chamber atmosphere type for OES data collection during this 

experiment was argon. In Figure 5 (a), the emission line intensities increase with 

increasing chamber pressure (0.2 to 800 Torr). The weaker, or lack of optical emission 

signals, for processing with the chamber pressures of 0.2 to 300 Torr were a result of less 

interaction of the laser with the plume. This was caused by the lack of vapor plume 

confinement for the lower pressure atmospheres, leading to the quick expansion of the 

vaporized alloying elements away from the laser exposure location. The increase in 

optical emission signals for the pressures ranging from 400 to 800 Torr were due to an 

increased plume confinement at the higher pressures, resulting in longer laser interaction 

times for the vaporized alloying elements. [14] 

 

 

Figure 4. (a) OES signal collected during SLM processing with different build chamber 

atmospheres and (b-e) representative micrographs of 304L stainless steel single layer 

cross-sections processed in various atmospheres. 

 

Figure 5 (b) is the intensity of the neutral chromium emission around λ = 520.6 

nm as a function of chamber pressure. An increase in intensity variation is observed for 

pressures greater than 500 Torr. Photographs of parts for selected pressures (100, 400, 
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and 700 Torr) are included in Figure 5 (b). Lower chamber pressures resulted in 

qualitatively better surface finishes for the layers and this result demonstrates that higher 

surface finish quality correspond to weaker optical emission signal intensities. The 

chamber pressure also affected the size and morphology of the melt pools in the single 

layer samples as shown in Figure 5 (c-e). Low pressures resulted in deeper and less wide 

melt pools, while higher pressures led to shallower and wider melt pools with more 

variance in the half width dimension. The increase in optical emission signal variation 

and change in melt pool morphology at higher chamber pressures are also due to 

increased plume confinement. The confinement at higher pressures leads to increased 

variation in optical emission signals due to more plume-laser interaction. As a result, the 

laser is attenuated and defocused leading to the shallower and wider melt pools observed. 

The results in Figures 4 and 5 show that the build chamber atmosphere type and 

pressure significantly impact the measured OES signals and melt pool properties of the 

SLM samples. Understanding the reported effects of the processing environment on the 

measurements is critical for the development of OES as a process monitoring tool for 

qualification and controls applications. Also, a limitation for this method exists in the 

case of low chamber pressures. OES did not provide meaningful information about 

emission signal for chamber pressures less than 400 Torr. The effects of laser processing 

parameters and build chamber environment on emission signal intensity and sample 

properties will be explored further in future work. 
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Figure 5. (a) OES signal collected during SLM processing with different build chamber 

pressures, (b) intensity of chromium emission around λ = 520.6 nm, and (c-e) 

representative micrographs of 304L stainless steel single layer cross-sections processed 

with various pressures. 

 

4. SUMMARY AND CONCLUSIONS 

This paper reported in-situ OES measurements of local processing conditions 

through the interrogation of the SLM melt pool and plume during movement in a 

stationary global reference frame. The measurement system was used to explore the 

effects of SLM processing conditions including laser power and build chamber 

atmosphere type and pressure on OES signals. The intensity of chromium emission was 

found to correlate well with the melt pool size. This result demonstrated a relationship 

between radiometric measurements from OES and a meaningful sample property, which 

points to the ability to implement the method in SLM part qualification and controls. The 

OES results in this paper also show optical emission signals heavily depend on build 
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chamber atmosphere type and pressure, with higher chamber pressures resulting in 

stronger measured intensities and low pressures leading to a limitation in measurement 

capability. The pressure results corresponded to a change in the surface finishes of the 

layers and melt pool sizes and morphologies. These effects are critical to understand in 

the development of OES as an SLM process monitoring tool. 

In general, the use of OES as a process monitoring tool provides meaningful 

information about the local process conditions in SLM and is helpful for system 

development. The spectrometer is readily adaptable to take measurements during SLM of 

different materials with different processing conditions for decision making. Future work 

will involve expanding the experimental process windows to explore the influence of 

scan speed on the measured optical emission signals and manufacturing multi-layer parts 

to demonstrate the correlation of properties including density and yield strength to 

information from OES signals. Further improvements of the process and the correlations 

of OES signals to sample properties will allow the possibility of this measurement 

method to be used in SLM part qualification and feedback control applications. 
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ABSTRACT 

In the Laser Powder Bed Fusion (LPBF) process, the local thermal history can 

vary significantly over a part as the heat transfer characteristics and the laser scan path 

are geometry dependent. The variations introduce the potential for defects that lead to 

part failure, some of which are difficult to identify non-destructively with common ex-

situ evaluation techniques. These defects include significant microstructural and 

mechanical property differences in the part interiors. In this paper, thermal features are 

extracted from in-situ Short-Wave Infrared (SWIR) imaging measurements to compile 

voxel based part representations and understand how the complexities in the thermal 

history affect part performance. The deviations in thermal features due to different laser 

processing parameters and complex scan pathing are explored. Empirical correlations are 

developed to map thermal features with the engineering properties (bulk yield strength, 

area percentage porosity, and local state) of 304L stainless steel parts manufactured by 



 

 

25 

LPBF. Processing modes (insufficient melting and keyholing) are determined by 

mapping part property measurements with multiple thermal features. Generating the 

relationships between thermographic measurements and resulting SLM part properties 

lays the foundation for in-situ part qualification. 

 

1. INTRODUCTION 

 

Laser Powder Bed Fusion (LPBF) is a powder bed based Additive Manufacturing 

(AM) process in which 3D metal parts are produced layer-by-layer. Within a layer, a 

laser scans and fuses the metal powder bed in areas determined by the geometry of the 

part slice corresponding to that layer. The ability to manufacture complicated geometries 

with LPBF results in the generation of complex laser scan patterns and cooling paths 

dependent on the previously processed material. For a fixed process parameter set, the 

differences in part cross-sectional area within a layer and the changes in geometry as the 

part is manufactured lead to inhomogeneity in the thermal history and, thus, significant 

variations in the part microstructure and mechanical properties [1]. The variations in the 

thermal history experienced by parts during fabrication potentially introduce significant 

defects. Finding the differences in the local part properties and locating defects can be 

challenging using ex-situ characterization. Spatially monitoring the thermal history and 

its variations during processing with in-situ non-intrusive thermography can provide an 

understanding of LPBF processes and establishes a framework for addressing this 

problem. 
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Previous studies have used various non-intrusive instruments, including 

visible/high-speed cameras [2-12], infrared cameras [13-30], pyrometers [31,32], and 

photodiodes [41-43], to perform measurements of the part’s thermal profile and features 

during AM processes. These thermal features are related to the local processing 

conditions experienced by AM parts while they are being manufactured. Studies have 

been performed to utilize the features from the measured thermal imaging and photodiode 

data to develop reconstructions of part geometries [33-40]. These efforts were a part of 

understanding how the thermal history varies throughout the part in working towards 

validation of AM processes. Few researchers have worked to relate in-situ thermographic 

measurements to AM part properties. Some correlations between data measured using 

photodiodes and the resulting part mechanical properties and density/porosity have been 

developed. Bisht et al. related melt pool intensity data measured with an off-axis 

photodiode during the Direct Metal Printing (DMP) to the ultimate strength and plastic 

elongation of Ti-6Al-4V ELI specimens [41]. Coeck et al. correlated 3D maps generated 

by in-situ photodiode measurements of melt pool events taken during DMP with the Ti-

6Al-4V ELI part density obtained by Computed Tomography (CT) scanning [42]. Alberts 

et al. used a system of in-line photodiodes to monitor the melt pool during LPBF of 

Inconel 718 where time series data were combined with laser position to generate 2D 

maps, and measurements from various processing conditions were correlated with part 

density by plotting both parameters as a function of the energy input [43]. Data sets from 

visible and some types of infrared cameras have also been related to melt pool 

information, or part properties. Demir et al. used an in-line process monitoring system 

consisting of visible and Near Infrared (NIR) detectors to measure light emitted during 
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LPBF of 8Ni300 maraging steel, which was reported as a function of energy input, and 

correlated the signals with part porosity [44]. Foster et al. demonstrated that melt pool 

characteristics determined from in-situ monitoring during LPBF (Renishaw AM250) of 

Inconel 718 with a Mid-Wave Infrared (MWIR) camera could be used with information 

from comprehensive ex-situ characterization to possibly detect process failures [45]. 

Yoder et al. captured Near Infrared (NIR) images after each layer during Electron Beam 

Melting (EBM) of Ti-6Al-4V to detect porosity and show variations in part properties for 

various build conditions [46]. Lu et al. detected and correlated features in optical images 

taken after recoating with part density, yield, and ultimate strength for LPBF of 316L 

stainless steel with various laser parameters [47]. 

The studies performed to correlate features from thermographic signals with part 

properties, including mechanical strength and density/porosity, have used mapped 

photodiode data, averaged inline camera data, or processed single frame images. While 

these thermographic measurements have been shown to correlate well with part 

properties, they are effectively single point, or single frame, measurements and, thus, are 

limited since they do not contain information from the entire thermal history. Recording 

spatiotemporal thermal data during LPBF has the potential to provide more insight into 

the process. This is possible because events that impact the final part microstructure (i.e., 

re-melting, cooling rates, thermal gradients) are measurable. Thermal cameras should 

work well in developing the correlations since they permit the mapping of complex 

features (e.g., spatial and temporal derivatives, integration features) that are more closely 

related to the final part microstructure than the data from single point intensity 

measurements, or images taken after a layer is completed.  
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Infrared cameras with various wavelength sensitivities including NIR (0.7-1.1 

µm) [13-19,44,46], SWIR (0.9-1.7 µm) [20-23], MWIR (3-5 µm) [24,25,45], and Long-

Wave Infrared (LWIR, 8-14 µm) [26-30] have been used to monitor AM. Cameras 

operating in the NIR, SWIR, and MWIR capture fast dynamic events at high 

temperatures. Typical LWIR cameras (microbolometer based) can capture events that 

occur at lower temperatures, but have much slower framerates making them appropriate 

for monitoring thermal stress, but not melt pool dynamics. SWIR cameras have 

advantages over the alternative thermal cameras. For example, at the melting point of 

304L stainless steel (~1720 K), the sensitivity of the radiance with respect to the 

blackbody temperature in the SWIR wavelength band is ~4 times higher than NIR, ~3 

times higher than MWIR, and ~32 times higher than LWIR. This is because the Planck 

distribution peaks at the melting temperature in the SWIR band. Additionally, as in the 

visible and NIR range, conventional silica based optics and windows can be used 

throughout the SWIR range, whereas glass is absorbing in the MWIR and LWIR. A 

SWIR camera was selected for this work since they capture the fast melt pool dynamics 

during LPBF through measurement of wavelengths that correspond to peak emission at 

the temperatures (i.e., liquidus, solidus, and below solidus) that are critical during 

microstructure formation in LPBF of stainless steel. 

This paper develops correlations between information extracted from in-situ 

SWIR imaging measurements and part properties for LPBF of 304L stainless steel. The 

SWIR measurements are processed by a voxel based framework to generate 3D 

reconstructions of part geometries that are composed of extracted thermal features. In this 

work, a voxel is a 3D pixel with values that directly correspond to the local thermal 



 

 

29 

history a part experienced during manufacturing. The thermal features extracted included 

the apparent melt pool area, the time above threshold, the maximum radiance, the 

maximum radiance decrease rate, and the radiance sum above threshold. Local voxel 

value averages of the various thermal features are correlated with the energy input during 

LPBF and resulting part properties including the yield strength and the bulk area 

percentage porosity. Multiple thermal features are combined to distinguish LPBF 

processing modes. The thermal features in a full 3D reconstruction of a sample 

manufactured with an embedded feature is correlated with the local state of the part 

indicated by ex-situ micro-computed tomography (µCT) scanning. The correlations 

developed in this paper indicate the potential for the prediction of local LPBF part 

properties in efforts towards qualification based on in-situ SWIR imaging measurements. 

 

2. EXPERIMENTAL SETUP 

 

A Renishaw AM250 was used to manufacture 304L stainless steel cylindrical 

tensile test specimens (ASTM E8) and various samples for layer-to-layer SWIR imaging. 

The Renishaw AM250 processes parts by scanning an SPI Lasers fiber laser (maximum 

power is 200 W and wavelength is 1,070 nm) with a point-to-point exposure strategy. In 

this strategy, the laser steps discretely by the point distance, dp, and then turns on for the 

exposure time, te. This is performed in a raster pattern with the distance between laser 

scans defined as the hatch spacing, dh. At the conclusion of the laser raster, two border 

scans are performed. The process repeats with a rotation of the laser raster pattern from 

layer-to-layer. The 304L stainless steel tensile specimens were manufactured using this 
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laser scan strategy with various laser process parameter sets to generate a range in 

thermal histories and mechanical properties. The parameter sets are listed in Table 1 and 

included combinations of the laser power from 100 W to 200 W (increments of 25 W) 

and the exposure time varied from 50 µs to 125 µs (increments of 25 µs). The point 

distance (dp = 60 µm) and the hatch spacing (dh = 85 µm) were held constant. 

 

Table 1. Process parameter set combinations used to manufacture tensile specimens and 

partitions in recording sample. 

Parameter 

Set 
P [W] te [µs] F [J/mm2] 

1 100 50 1.3 

2  75 2.0 

3  100 2.6 

4  125 3.3 

5 125 50 1.6 

6  75 2.4 

7  100 3.3 

8  125 4.1 

9 150 50 2.0 

10  75 2.9 

11  100 3.9 

12  125 4.9 

13 175 50 2.3 

14  75 3.4 

15  100 4.6 

16  125 5.7 

17 200 50 2.6 

18  75 3.9 

19  100 5.2 

20  125 6.5 

 

 

The process parameter combinations can be simplified to the optical energy per 

unit area by computing the fluence 

 


= e

b

P t
F

A
 (1) 
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where P is the laser power, te is the exposure time, and Ab is the laser beam area. The 

fluence values for the various process parameter sets are listed in Table 1 and ranged 

from 1.3 J/mm2 to 6.5 J/mm2. In addition, a recording sample was manufactured with 

tensile specimens to efficiently measure the differences in thermal history generated by 

the various process parameter sets through SWIR imaging. The designs for the tensile 

specimens and the various parameters recording sample can be seen in Figure 1 (a) and 

Figure 1 (c), respectively. 

 

 

Figure 1. (a) ASTM E8 tensile specimen design, (b) build image showing specimen 

layout, (c) various process parameters recording sample for SWIR imaging data 

collection, and (d) schematic of SWIR camera observation during manufacturing 

recording sample with annotations for the AM250 process parameters. 
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As illustrated in Figure 1 (a) and (c), the cross-sectional geometry of the recording 

sample corresponded to the gauge length of the ASTM E8 tensile specimens. The 

recording sample was partitioned perpendicular to the build direction and consisted of a 

100 layer base and 20 sections, each containing 18 layers and having unique process 

parameter sets. The design and plan for manufacturing the various parameters recording 

sample assumed the thermal history did not vary significantly with build height for a near 

constant layer-to-layer time and the thermal history of parts with the same cross-sectional 

geometry and process parameter set was similar. A schematic of the SWIR Camera 

observation during LPBF of a layer in the recording sample is included in Figure 1 (d). 

The SWIR camera used in this work was a FLIR SC6201 camera (sensitive: 0.9-1.7 µm, 

filtered: 1.45 ± 0.05 µm). The camera was installed in a staring configuration above the 

build chamber to observe the build plate through a custom window. The 640×512 camera 

pixel array was reduced to an 80×80 pixel window enabling high frame rate recording 

(~2500 Hz). The x-direction instantaneous field of view of the SWIR camera was ~130 

µm/pixel. The y-direction instantaneous field of view was ~135 µm/pixel due to the 

observation angle (θ = 15°) of the SWIR camera shown in Figure 1 (d). A non-uniformity 

correction (NUC) was performed to account for differences in the SWIR measurements 

across the imaging area due to the observation angle, vignetting from the viewing 

window, and variance in pixel sensitivities. The SWIR camera was not calibrated for 

temperature and raw data is reported as radiance values of arbitrary units (a.u.); however, 

an estimate of the measurable temperature range was determined. The floor temperature 

was approximately 800 K. This was found by heating a LPBF manufactured blackbody 

with the process laser and comparing thermocouple data with SWIR imaging radiance 
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measurements. The upper limit of the measureable temperature range was greater than 

the liquidus temperature of 304L stainless steel (~1720 K). This was determined through 

observation of the radiance corresponding to apparent phase transition during 

solidification and the lack of saturation in the raw radiance data for normal LPBF 

processing conditions. The goal of this work was to develop relationships between 

thermal features extracted from the radiance measurements and bulk part properties of the 

304L stainless steel samples corresponding to the various process parameters by using a 

voxel based approach. 

The part properties determined for the LPBF of 304L stainless steel were the yield 

strength, σy, and area percentage porosity, φ. The tensile specimens’ yield strengths were 

tested on an Instron 5969 following ASTM E8 standards [48]. Averages and standard 

deviations for the yield strength of the specimens were calculated using the results from 5 

samples. The locations of each parameter sets’ 5 tensile specimens was randomized and 

the LPBF build layout is shown in Figure 1 (b). The tensile specimens’ porosities were 

measured through image analysis of 25 representative optical micrographs taken after 

metallographic sample preparation (sample sectioned, mounted in Bakelite, ground, and 

polished to 0.05 μm using diamond suspension). The image processing procedure used to 

determine area percentage porosity followed ASTM E2109 [49], and was similar to the 

methods found in [50]. 
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3. SWIR CAMERA DATA PROCESSING 

3.1. INTRODUCTION TO THERMAL FEATURE EXTRACTION 

Figure 2 (a-c) is an example of raw time series radiance data that was measured 

from the middle of the raster scan path in the recording sample for three of the process 

parameter sets. The parameter sets were the minimum (Figure 2 (a)), nominal (Figure 2 

(b)), and maximum fluence inputs (Figure 2 (c)). The inset images of the apparent melt 

pool included in Figure 2 (a-c) correspond to the frame when the center pixel was at 

maximum radiance. The raw data in Figure 2 provides insight into the LPBF process for 

each of the process parameter sets with qualitative comparisons of the melt pool images 

showing larger areas and radiances for the higher fluence inputs. Additionally, an 

increase in maximum radiance with increasing fluence input is visible in the plots of the 

time-series data. While qualitative differences are observed in the time series radiance 

data, meaningful quantitative relationships can be developed with this information and 

the LPBF part properties through thermal feature extraction. This method is a 

computationally inexpensive approach of processing the time series SWIR imaging 

measurements that permits the efficient observation of differences in the thermal history 

of parts for correlation development with both the fluence input and engineering 

properties. 

The extraction of thermal features results in the reduction of a multi-frame 

recording to a single image representation for each layer. The concatenation of the 2D 

thermal feature data for each layer builds a 3D voxel based reconstruction of the sample. 

The voxel thermal feature values in the sample reconstruction retains information directly 
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related to the local thermal history for development of correlations with a significantly 

smaller amount of data. For example, this approach resulted in the compression of ~100 

GB of time series data for the entire volume of a cylindrical ASTM E8 tensile specimen 

into ~3 MB of voxel based data reconstruction. 

 

 

Figure 2. (a-c) Time series radiance data for various process parameter sets, and (d) time 

series data showing apparent phase transition region with illustrations of selected thermal 

features. 

 

The thermal features extracted for this work included the apparent melt pool area, 

A, the time above threshold, τ, the maximum radiance, Lmax, the maximum radiance 

decrease rate, ∆Lmax, and the radiance sum above threshold, ΣL. These thermal features 
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were selected to compare common measurements used in the literature that are obtainable 

by various instrumentation. Thermal cameras are used to take single frame images, or 

information is extracted from the spatiotemporal data (melt pool size/area, maximum 

radiance, features analogous to maximum radiance decrease rate). Some researchers 

extract features that correspond to the time above threshold, or radiance sum above 

threshold. Photodiodes are used to spatially map a feature corresponding to the maximum 

radiance. The results in this work will show that the features are strongly related; 

however, the time above threshold has advantages making it the feature of major interest. 

The advantages include a high signal to noise ratio, smoothness of the data, and high 

correlation strength with fluence and mechanical properties. 

The thermal features were extracted from both the spatial and temporal domains 

of the SWIR imaging data. The spatial feature of the apparent melt pool area is  

 ( ) ( ) ( ) , : , ,= A t x y L x y t threshold  (2) 

where L(x, y, t) denotes the radiance measurement of the pixel (x, y) at time t and |▪| 

denotes the measure of the set. The apparent melt pool area is illustrated in Figure 2 (d) 

where pixels above a threshold have been flagged (white pixels) for determining the 

value for the feature. The value for the melt pool area is assigned to the voxel that 

corresponds to the centroid of the melt pool; therefore, some voxels may not be assigned 

a value. 

The thermal features extracted from the time domain included the time above 

threshold, the maximum radiance, the maximum radiance decrease rate, and the radiance 

sum above threshold. Saturation in the time series SWIR imaging measurements due to 

excessive radiance must be considered for thermal features based on the maximum 
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values, or total radiance. The time above threshold is a feature proportional to the local 

melt pool size where larger melt pool sizes lead to more re-melting, which results in an 

increased time above threshold for a voxel. Since the time above threshold is a time 

domain thermal feature, each voxel has a value. The time above threshold is  

 ( ) ( ) , : , ,= x y t L x y t threshold . (3) 

The time above threshold is illustrated in Figure 2 (d). This feature is determined by 

interpolating the time from the point the radiance crosses the threshold during heating to 

the point the radiance drops below the threshold value during cooling. The time above 

threshold thermal feature for a single pixel is the sum of all the interpolated times 

corresponding to the melting and (possible) re-melting events that occur during LPBF 

processing. 

The temporal thermal features, including the maximum radiance and maximum 

radiance decrease rate, are the least computationally expensive to determine; however, 

they cannot be computed if the SWIR imaging data saturates. The maximum radiance is 

 ( ) ( ) max , : max , ,=   L x y t L x y t  (4) 

and the maximum radiance decrease rate is 

 ( )
( ) ( )

max

, , 1 , ,
, : min

 + −  
 = −  

   

L x y t L x y t
L x y t

t
. (5) 

The thermal feature of the radiance sum above threshold is 

 ( ) ( ) , : sum , , =   L x y t L x y t threshold . (6) 

While saturation would inhibit the determination of the maximum radiance, the 

maximum radiance decrease rate, and the radiance sum above threshold, the time above 
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threshold should remain unaffected. In this work, the remaining temporal thermal 

features were determined through preventing saturation of the data in experiments by 

sufficiently increasing the f/# of the SWIR imaging camera. 

Threshold selection is a critical part of thermal feature extraction. In this work, a 

radiance threshold corresponding to the physical property of solidification was selected. 

Additionally, the signal to noise ratio a threshold provides should be considered. While 

not included, a study was ran to determine the threshold that led the highest signal to 

noise ratio. The threshold based on solidification was found to provide the highest signal 

to noise ratio. The threshold value used in this work was 7120 a.u. and corresponds to the 

measured radiance of the apparent phase transition region during solidification. The 

apparent phase transition region during solidification is observed in the time series SWIR 

imaging data plotted in Figure 2 (d) and is well below the saturation limit. The threshold 

value was determined through multiple observations in the time series radiance data from 

various pixels over several layers.  

3.2. RESULTS OF THERMAL FEATURE EXTRACTION 

The time above threshold will be the primary thermal feature used to demonstrate 

the capabilities of the layer-to-layer SWIR imaging framework. Figure 3 contains the 

time above threshold voxel based reconstruction of the various parameters recording 

sample illustrated in Figure 1 (c). The voxel based data can be sliced for inspection and 

further processing. The slicing is demonstrated in the two cross-section views of the 

recording sample’s voxel based reconstruction. The first slice of the voxel based data in 

the x-z plane shows qualitatively clear differences in the time above threshold for the 
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various process parameter combinations. The slice of the voxel data in the x-y plane 

shows uniform time above threshold values in the center of the part with higher values at 

the edges of the part due to the increased dwell times where the laser corners and border 

scans are performed. Spatial filtering was applied to avoid the observable effects of the 

border scan areas on thermal feature distributions. The spatial filtering is demonstrated in 

Figure 3 (b) using the time above threshold map for the nominal process parameter set. 

Data in a map was only kept for analysis if it corresponded to the interior of the part 

cross-section away from the border scan area. While not included here, the remaining 

thermal features were also extracted for the various process parameters recording sample 

to generate reconstruction maps. The distributions of the various thermal features for a 

layer processed with the nominal parameter set are discussed below along with analysis 

of the layer-to-layer variation for the time above threshold. 

 

 

Figure 3. (a) Voxel based time above threshold reconstruction of various process 

parameters recording sample with slicing of experimental data and (b) demonstration of 

spatial filtering in x-y plane slice to exclude effects of border scan area data. 
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The distributions of the various thermal features for a nominal layer are plotted in 

Figure 4. The thermal feature maps are included as insets in Figure 4 with the mean 

feature values, μ, and standard deviations, σ, for the layer listed. The variations in the 

thermal features were compared by quantifying the percentage of pixel values within one 

standard deviation of the mean. The time above threshold demonstrated the best 

distribution with 71% of the pixel values within one standard deviation of the mean while 

the apparent melt pool area resulted in only 42%. The maximum radiance, maximum 

radiance decrease rate, and radiance sum above threshold resulted in 62%, 64%, and 67% 

of pixels within one standard deviation of the mean, respectively. The melt pool area 

performed poorly when compared to the other features because of several pixels with 0 

values, which was a result of the spatial nature of the feature. An interesting result in 

Figure 4 is that the time above threshold and radiance sum above threshold have similar 

appearance for their respective maps, but dissimilar distributions. The results in Figure 4 

show that time above threshold is the most uniform feature overall in both the map 

appearance for the layer and the distribution of the pixel values (excluding border scan 

region). 

Figure 5 (a) contains color maps of the 18 layers processed with the nominal laser 

parameter set. The thermal feature distributions of the part cross-section excluding border 

scan data are plotted in Figure 5 (b) for layers 1, 9, and 18 of the nominal section. Both 

the color maps and distributions show that there was minimal layer-to-layer variation that 

exists for the time above threshold. The slight differences that existed in the time above 

threshold were because of the laser raster pattern rotation and layer-to-layer powder bed 

variation, but these effects did not significantly impact the thermal history. 
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Figure 4. Distributions of the (a) apparent melt pool area, (b) time above threshold, (c) 

maximum radiance, (d) maximum radiance decrease rate, and (e) radiance sum above 

threshold, all excluding border scan data for a layer processed with the nominal laser 

parameter set. 

 

The results in Figure 5 were consistent for the sections processed with other 

fluence values. This is demonstrated in Figure 6 (a) where the averages and standard 

deviations of the time above threshold for the minimum, nominal, and maximum fluence 

are plotted for each layer of the respective sections. Figure 6 (a) shows that no significant 

variation from layer-to-layer exists for the fluence values analyzed. This result means that 

the thermal features in the volume of each section in various process parameters 

recording sample can be treated as continuous distributions. The various sections in the 

recording sample were processed to determine an average and standard deviation for each 

thermal feature as a function of the fluence input. The data was first averaged across the 

build direction within the section corresponding to a single parameter. Figure 6 (b) 

contains the averaged time above threshold color maps for the cross-section of the 
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recording sample plotted for the various laser powers and exposure times used to 

manufacture the 20 partitions. 

 

Figure 5. (a) Time above threshold maps for the layers processed with the nominal laser 

parameter set with (b) the feature value distributions for selected layers excluding border 

scan data. 

 

 

Figure 6. (a) Time above threshold for the layers corresponding to minimum, nominal, 

and maximum fluence input showing layer-to-layer consistency and (b) averaged time 

above threshold color maps for 20 process parameter sets of recording sample. 
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A qualitative observation of Figure 6 (b) shows there is an increase in the time 

above threshold with both increasing laser power and exposure time. The color maps in 

Figure 6 (b) also demonstrate the impacts that the laser cornering and border scans have 

on thermal feature extraction at the part edges for all process parameter combinations. 

Data sets similar to the time above threshold plots in Figure 6 (b) were generated for the 

remaining thermal features to determine their averages and standard deviations. These 

averaged thermal feature data sets were used to develop correlations with the fluence and 

part properties. The averaging was performed after spatially filtering the color maps to 

exclude the data from the border regions. The average thermal features with standard 

deviations are correlated with fluence in Figure 7 (a-e). 

 

 

Figure 7. Correlations between (a) melt pool area, (b) time above threshold, (c) maximum 

radiance, (d) maximum radiance decrease rate, and (e) radiance sum above threshold and 

fluence. 

 

Figure 7 shows the thermal features all increase with increasing fluence. The 

correlations for the various thermal features were fit to a second-order model for 
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evaluation of the strength of fit. The time above threshold and radiance sum above 

threshold were found to correlate the strongest with the fluence. This result is due to the 

similar integrated information captured by the extraction of those thermal features. The 

remaining thermal features have weaker correlations due to more spread across the 

fluence inputs. This is a result of increased sensitivity to the laser exposure time for those 

features. The thermal features are further evaluated in the next section by comparing their 

correlation strengths with bulk part properties. 

 

4. CORRELATIONS OF THERMAL FEATURES WITH PART PROPERTIES 

4.1. CORRELATIONS WITH BULK PART PROPERTIES 

Figure 8 is the correlation of the averaged time above threshold with the part 

properties of yield strength and area percentage porosity. This correlation is 

representative of the trends observed for each thermal feature. As each thermal feature 

increased in value, the yield strength increased and then saturated at a maximum value, 

while the porosity decreased and then saturated at a minimum value. The capabilities of 

the thermal features extracted from the SWIR imaging data to predict LPBF part 

properties were evaluated by curve fitting the correlations with heuristic non-linear 

models. The non-linear model for the correlations between thermal features and the yield 

strength was 

 
( )1 1

1 1 e
−  − =  −

 
B x C

y A  (7) 

and the model for the correlations of the thermal features with the area percentage 

porosity was 
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 ( )2 2

2 e
−  −

= 
B x C

A . (8) 

In the models, A, B, and C are fitting parameters, and x is the thermal feature. The fits for 

the part properties as a function of the thermal feature are plotted as a black line. The 

95% confidence intervals, CI, of the fit and the 95% prediction intervals, PI, for new data 

points were determined for each thermal feature by the non-linear regression. The 95% 

CI band for the fit is plotted in blue and the 95% PI band for a new data point is plotted in 

red in Figure 8. The plots demonstrate that the prediction intervals for yield strength 

allow more confidence in estimation of part performance than porosity. This is because 

the band widths for porosity are wider than the optimum less than 1% typically achieved 

during LPBF with nominal parameters. The band widths for yield strength are a small 

percentage of the mean values, which creates higher confidence. 

 

 

Figure 8. Correlations of (a) yield strength and (b) area percentage porosity with thermal 

feature of time above threshold. 

 

The strength of fits, predictive capabilities, and processing times (Dell OptiPlex 

5040, Intel Core i7-6700 CPU, 3.4 GHz) for the thermal features are reported in Table 2 

for comparison. The correlation coefficients for the thermal features and the yield 
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strength were all similar. The correlation coefficients for the porosity fitting demonstrated 

that the thermal features again performed similarly except for a noticeably smaller value 

for maximum radiance decrease rate. All the thermal features can effectively be used by 

themselves to model and have the potential to predict the part properties. However, 

benefits exist in using the time above threshold, even though its processing time is the 

largest as seen in Table 2, and include its very strong correlation with both yield strength 

and area percentage porosity. Additionally, limitations to the other thermal features must 

be considered. One limitation is the influences of exposure time on the melt pool area, the 

maximum radiance, and the maximum radiance decrease rate slightly reduce their 

modeling ability when compared to the time above threshold because separate curves for 

these thermal features begin to appear with increasing exposure time. This is especially 

noticeable in the spread of the maximum radiance decrease rate plotted in Figure 7 (d). 

Also, digitization of the apparent melt pool area due to the camera’s limited spatial 

resolution may lead to higher uncertainties in the thermal features [51]. 

 

Table 2. Correlation coefficients with fluence input, minimum prediction interval band 

widths from non-linear regression, and extraction processing times for various thermal 

features. 

Thermal 

Feature 

Correlation 

Strength with 

Fluence 

Correlation 

Strength with 

Yield Strength 

Correlation 

Strength with 

Porosity 

Yield Strength 

Prediction 

Interval [MPa] 

Porosity 

Prediction 

Interval [%] 

Processing 

Time for 900 

Layers [s] 

A 0.94 0.99 0.84 ±8 ±2.2 910 

τ 0.98 0.99 0.86 ±8 ±2.1 1370 

Lmax 0.85 0.98 0.87 ±10 ±1.9 490 

ΔLmax 0.72 0.97 0.77 ±13 ±2.6 690 

ΣL 0.98 0.99 0.84 ±9 ±2.1 1000 

 

 



 

 

47 

The results in Figure 6 through Figure 8 establish the process parameter effects 

observable by the SWIR imaging framework. While in these nominal cases the part 

properties could be correlated directly to the process parameters, the framework can be 

extended to various scenarios where the direct relationships could fail. The scenarios 

include large variances in the thermal histories of parts processed with complex scan 

pathing due complicated geometries and machine state changes. Examples of machine 

state change include a drop in the recirculated Argon flow due to filter contamination and 

attenuation of the fluence reaching the powder bed due to deposition of vaporized 

material on the f-θ lens’ protective window. The deposition can be non-uniform across 

the window and lead to sub-optimal fluence input (causing defects) for specific areas on 

the build plate. The SWIR imaging framework would automatically monitor the variation 

in the thermal features and indicate the corresponding mechanical property values for 

parts manufactured in these scenarios. 

4.2. DISTINGUISHING PROCESSING MODES 

The use of multiple thermal features in the development of correlations provided a 

unique advantage over the use of a single feature in distinguishing the processing modes 

that led to differences in part properties. The thermal features were first correlated with 

each other and then a color map was assigned based on the corresponding part property 

values to demonstrate this ability. Figure 9 summarizes the correlation between the 

various thermal features and the time above threshold (taken as baseline for this analysis 

due to discussed strengths). The correlation of the maximum radiance decrease rate with 
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the time above threshold is plotted in Figure 9 (a) and the correlation coefficients for a 

linear fit are tabulated in Figure 9 (b) for the remaining thermal features. 
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Figure 9. (a) Correlation of the maximum radiance decrease rate with the time above 

threshold and (b) summary of the linear correlation strengths for the various thermal 

features with the time above threshold. 

 

Figure 10 demonstrates the use of the maximum radiance decrease rate with the 

time above threshold to distinguish part performance by developing color maps of the 

yield strength and porosity. The maximum radiance decrease rate was selected because it 

had the weakest correlation with time above threshold, which resulted in a larger feature 

space in the part property mapping. Figure 10 (a) is the map for yield strength (color 

scale is linear) and Figure 10 (b) is the map for porosity (color scale is logarithmic). 

Porosity modes were assigned to the thermal feature space in Figure 10 (a) and (b) based 

on observations in optical micrographs. Porosity mode 1 corresponds to lack of fusion 

porosity and occurs in the low time above threshold and maximum radiance decrease rate 

space. Porosity mode 2 is the minimization of lack of fusion and keyhole porosity and 

occurs for a narrow band in the time above threshold and maximum radiance decrease 

rate space. Porosity mode 3 is an increase in porosity due to keyholing that corresponds 

Thermal 

Feature 

Correlation 

Strength with τ 

A 0.99 

Lmax 0.93 

ΔLmax 0.83 

ΣL 0.99 

 

(a) (b) 
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to a larger band in the higher time above thresholds and radiance decrease rate space. 

Figure 10 (c) demonstrates the various porosity modes in representative optical 

micrographs. Figure 10 (a) shows that the optimum yield strength value was found for 

each porosity case indicating a lack of sensitivity to processing mode. The thermal 

feature mapping distinguishes the processing modes and can be used to determine parts 

with excessive porosity, even though they may have the nominal yield strength. The 

results suggest that the weakly related thermal features are capturing different 

phenomenon in LPBF and can be used to provide guidance in the future development of 

more instructive thermal features that can distinguish processing modes with their 

standalone use. 

 

Figure 10. (a) Yield strength and (b) porosity mapped correlation of maximum radiance 

decrease rate with time above threshold and (c) various porosity modes in optical 

micrographs of polished sample cross-sections. 
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4.3. RELATIONSHIPS WITH LOCAL STATE 

The correlation of bulk part properties with SWIR imaging data can be expanded 

to a comparison of in-situ thermal feature reconstruction characteristics with local state 

information obtained by ex-situ µCT scanning. A 4 mm diameter cylindrical sample was 

built with an embedded feature. The feature consisted of internal scan pathing with 

increased complexities due to embedded text, KCNSC – MST, processed with an off 

nominal laser power of 100 W. The bulk of the sample was processed with the nominal 

parameters (P = 200 W, te = 75 µs) and internal border scans around the feature were 

applied. Processing the sample with the embedded feature resulted in different 

phenomena, which included insufficient melting due to the low laser power and 

differences in state due to re-melting effects. While these features were driven by the 

embedded text, they correspond to events that occur naturally in LPBF due to complex 

scan pathing, or attenuation in the fluence. 

Figure 11 (a) and (b) contain the voxel reconstructions from µCT scanning and 

SWIR imaging of the embedded feature sample, respectively. The µCT voxel data 

contains gray scale values of arbitrary units and the SWIR imaging data is the time above 

threshold. Figure 11 (a) and (b) include a sliced view parallel to the build direction at the 

middle of the sample volume, a magnification of the MST, and three layers (326,424,442) 

for both reconstructions. The layers were selected based on the representative features 

that they contained for the sample. Layer 326 contains differences in local state due to the 

low laser power, layer 424 contains features from re-melting effects, and layer 442 is 

nominal. A qualitative comparison of the reconstructions demonstrates that the SWIR 

imaging data contains features that indicate the differences in local state measured by 



 

 

51 

µCT. The differences in local state corresponded to the defect of porosity within the 

volume of the sample. Some discrepancies exist between the µCT data and SWIR 

imaging reconstruction due to re-melting effects from layer-to-layer and keyhole porosity 

appearing below the layer indicating the defect. This is because keyhole porosity 

generally forms at the bottom of the melt pool during a collapse. 

 

 

Figure 11. (a) ex-situ µCT scan results, (b) time above threshold reconstruction for the 

embedded feature sample and distributions of (c) the µCT data and (d) the thermal 

feature data for the selected layers. 
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In addition to qualitative observations, the three layers’ uniformities were 

compared by plotting the distributions of the voxel values for both data sets in Figure 11 

(c) and (d). The distribution plots exclude data outside of the sample’s border. An inset 

demonstrating the values corresponding to porosity in the µCT data is included in Figure 

11 (c). Layer 326 has the largest amount of porosity in the µCT reconstruction and the 

most voxels less than 3 ms in the time above threshold data. An interesting result for this 

layer is observed in Figure 11 (d) where the distribution is shifted towards higher time 

above threshold values. This is unexpected for a layer with an area processed by the 

suboptimal laser power and is due to an increased time above threshold for the shorter 

scan path lengths used to process the surrounding nominal geometry. Layer 424 contains 

an increase in interior porosity due to re-melting at the T. This is demonstrated in the 

histogram for the µCT data by an increase in voxel values less than 175 a.u. and for the 

SWIR data by a broadening of the distribution and multiple voxels with values greater 

than 15 ms that are observable in Figure 11 (d)’s inset. The interior of layer 442 is 

uniform for both the µCT and SWIR imaging reconstructions, while the periphery 

contains porosity and higher time above threshold values due to the laser cornering and 

border scans. 

Keyholing is likely to be the cause of the large porosity in layer 424 based on the 

very high time above threshold values present at the defect location; however, the cause 

of the porosity in layer 326 is not obvious. The methods discussed in Section 4.2 were 

applied to determine the processing mode present in layer 326. The area of layer 326 with 

the majority of porosity at the interior experienced a low time above threshold and a very 

low maximum radiance decrease rate (not shown). This corresponds to processing mode 
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1 (lack of fusion). The edges of this area were processed with border scans and contain 

porosity with a more spherical morphology consistent with mode 3. This was confirmed 

by the higher time above threshold and a low maximum radiance decrease rate present at 

the border areas. These results further suggest that the SWIR imaging framework is able 

to distinguish the processing mode present, even if there is mixed mode processing, for a 

LPBF sample built with complex scan pathing. 

The results in Figure 11 demonstrate that the in-situ SWIR imaging framework’s 

voxel based reconstructions capture the differences in the physical features observed in 

the µCT data of the sample and validate the promising opportunity in future work to 

locally predict and non-destructively qualify part properties. Additionally, analysis of the 

SWIR data on a layer-by-layer basis lends itself to application in statistical process 

control. For example, the distribution of the thermal features in a nominal layer could be 

used to establish control charts. Layers with enough voxels outside of tolerance could be 

flagged as defective. In the study presented here, observation of Figure 11 (d) shows that 

layers 326 and 424 would be flagged relative to the nominal layer. Applying this 

technique in-situ provides the opportunity to make corrections on a layer-to-layer basis in 

addition to part qualification. 

 

5. SUMMARY AND CONCLUSIONS 

 

In this paper, an in-situ LPBF process monitoring framework incorporating layer-

to-layer SWIR imaging was used to generate voxel data for parts based on thermal 

features extracted from time-series data. The framework was used for processing 304L 
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stainless steel with a Renishaw AM250, but has the capability to be adapted to different 

part materials and machine platforms. The use of this framework in the construction and 

subsequent averaging approach processing of voxel based thermal data for LPBF parts 

enabled the correlation of various extracted thermal features to bulk properties including 

the yield strength and the area percentage porosity. The predictive capabilities of the 

various thermal features extracted in this work were compared by evaluating their 

respective correlation strengths with the part properties. The thermal feature of time 

above threshold, radiance sum above threshold, and melt pool area resulted in the 

strongest correlations with the yield strength (0.99) and the maximum radiance correlated 

the best with the area percentage porosity (0.87). Through the averaging approach 

analysis, it was found that the time above threshold and the melt pool area demonstrated 

the strongest predictive capabilities for the yield strength. The maximum radiance 

resulted in the strongest predictive capability for the area percentage porosity. The 

correlations developed for the thermal features have the possibility to estimate the yield 

strength to ±8 MPa and porosity levels to ±1.9% for new measurements. The voxel based 

framework was also used to generate a full 3D reconstruction of a sample with an 

embedded internal feature for comparison with µCT data. 

The quantitative analysis with bulk properties and the demonstration of the 

relationship between thermal features and local state from ex-situ µCT scanning in this 

work motivate the use of SWIR imaging measurements to qualify LPBF parts consisting 

of simple geometries processed with complex scan pathing. The information obtained in 

the thermal feature analysis provides the opportunity to flag parts with predicted 

mechanical properties that are suboptimal, or that include defects on a localized basis. 
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While the SWIR imaging framework has shown success, there are some limitations. The 

predictive capabilities of the bulk part property models should be validated for complex 

geometries where cooling paths are significantly different (e.g., overhang structures, 

lattice geometries) before implementation in qualification. The framework should also be 

tested for the accuracy of predictions in cases of significant changes in the layer-to-layer 

processing time where the differences in temperature for parts at the start of the layer 

may impact the thermal feature values input into the part property models. Finally, the 

framework may fail to capture the negative effects of global events that occur at lower 

temperatures such as part deformation due to thermal stress. The developed framework 

will be further evaluated for local part properties predictions by comparing thermal 

feature voxel based data with results from experimental measurements. 
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ABSTRACT 

The local thermal history can significantly vary in parts during metal Additive 

Manufacturing (AM) leading to local defects. The sequential layer-by-layer nature of AM 

facilitates in-situ part voxelmetric observations. The challenge is to relate this local 

radiometric data with local defect information to estimate process error likelihood. These 

predictions have application in both part qualification and control. This paper uses a 

Short-Wave Infrared (SWIR) camera to record the temperature history for parts 

manufactured with Laser Powder Bed Fusion (LPBF). The defects from a simple 

cylindrical specimen are measured by ex-situ micro-computed tomography (µCT). Data 

from the SWIR camera of this specimen, combined with the µCT data, are used to train 

thermal feature-based porosity probability models. The porosity predictions made by 
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various SWIR thermal feature-porosity probability models of a specimen with a complex 

geometry are scored against the true porosity obtained via µCT. The results from the 

complex specimen demonstrate that approximately 88% of the porosity identified in µCT 

data is correctly predicted, with a 27% false positive rate, through the utilization of the 

constructed probability models. 

 

1. INTRODUCTION 

 

The expanding presence of metal Additive Manufacturing (AM) in industry has 

increased the need for qualification of parts with complexities unseen in those built by 

traditional manufacturing processes. Laser Powder Bed Fusion (LPBF) is an established 

AM technology that produces intricate part geometries with high resolutions by 

leveraging micron scale melt pool sizes and layer thicknesses. Parts manufactured with 

this laser driven process experience significant thermal variations at a local level due to 

changing scan pathing and heat transfer boundary conditions. The defects (e.g., lack of 

fusion, keyholing porosity, balling) depend on the melting modes and are difficult, if not 

impossible, to design out of the process due to the inherent thermal variations. An 

understanding of the correlation between the measured thermal history and defects is 

needed for part/process qualification. The layer-to-layer material addition in LPBF 

permits the ability to interrogate the thermal history at every point in a part through in-

situ radiometry. The information obtained from the non-contact measurements can 

identify part thermal variances and, thus, the locations with a high probability for defects. 
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The development of local part property prediction maps based on thermal measurements 

allows microstructure state estimation to aid the qualification of mission critical parts. 

Porosity is an extensively studied defect for LPBF due to the difficulties 

eliminating it from the manufacturing process and the negative impacts it has on the 

mechanical performance of parts. Various types of porosity exist with classifications 

based on the dynamics leading to its formation. Gong et al. defined four processing 

regimes for LPBF of Ti-6Al-4V according to the resulting porosity/defect type [1]. The 

regimes include fully dense, over melting, incomplete melting, and overheating. The 

porosity occurring in the over melting regime is primarily a result of keyholing. The 

incomplete melting, or lack of fusion, porosity occurs when insufficient energy to sinter 

the powder particles is delivered to the powder bed. The porosity types are minimized in 

the nominal region. Wide ranging studies have aimed understand under what conditions 

the various porosity types occur. King et al. implemented a normalized enthalpy 

calculation based on LPBF parameters to determine where conduction mode melting 

transitioned to keyholing and applied this analysis to single track experiments [2]. Wang 

et al. combined analytically determined melt pool measurements with powder packing 

information to understand lack of fusion porosity’s sensitivity to processing parameters 

[3]. Hojjatzadeh et al. used high-speed X-ray imaging to determine various phenomenon 

leading to LPBF porosity formation including, and beyond keyholing [4]. These studies 

help guide LPBF process development towards a reduction of porosity by understanding 

the physics; however, porosity will still exist in real manufacturing scenarios. This 

motivates the need for in-situ measurement-based porosity detection. 
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Studies have used various in-line, or staring configured instruments including 

visible cameras, infrared cameras, pyrometers, and photodiodes to obtain information 

(apparent melt pool geometry, intensity/temperature, laser spatter, etc.) from radiometric 

signals during powder bed fusion AM. Craeghs et al. demonstrated that the melt pool area 

from time series imaging measurements can be processed into 2D feature maps that 

indicate part failures [5]. Krauss et al. evaluated how averaged mapped measurements 

progress layer-wise [6]. Methods implementing thermography and pyrometry have 

identified embedded voids and naturally occurring porosity in powder bed fusion AM 

parts. Mireles et al. acquired infrared camera images to detect various geometry voids 

down to 600 µm designed into a part manufactured by Electron Beam Melting (EBM) 

[7]. Bartlett et al. used Long-Wave Infrared (LWIR) images captured after the raster in 

LPBF to identify subsurface defects for samples manufactured with baseline and porosity 

promoting parameters [8]. Yoder et al. demonstrated that features in voxel 

reconstructions based on static Near Infrared (NIR) images captured after each layer 

correlate to porosity resulting from a decrease in layer-to-layer time in EBM of Ti-6Al-

4V [9]. Mitchell et al. detected voids manufactured within a LPBF part down to 120 µm 

by volumetric reconstructions of thermal data and successfully correlated locations of 

natural porosity with outlier melt pool images through two color pyrometry [10]. Mohr et 

al. found promising results when analyzing the overlap of porosity from micro-computed 

tomography (µCT) scanning and anomalies in volumetric thermal feature data for a 

single LPBF sample manufactured with three parameter sets, and two overhang 

conditions [11]. They demonstrated that approximately 71% of the pores in the sample’s 

CT data were encompassed by the anomalous thermal features. These studies strongly 
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suggest local prediction of porosity is possible via in-situ measurements. Coeck et al. 

demonstrated the porosity prediction potential for LPBF of Ti-6Al-4V in a study that 

implemented measurements from two off-axis photodiodes [12]. The photodiode data 

produced melt pool intensity reconstructions of samples for which anomalies were 

correlated with porosity in CT scans. The framework identified 54 out of 93 pores with 

61 false positives (36 true positives out of 39 pores that were 0.0015 mm3 or larger). 

Machine learning is one possible way to predict porosity, and some works that 

classify thermal measurements have been conducted. Khanzadeh et al. used supervised 

learning to categorize thermography acquired melt pool images as pores or nominal for 

laser engineered net shaping [13]. For powder bed based AM, Kwon et al. implemented 

deep neural networks to identify melt pool images measured with a high speed camera 

according to the laser power used in manufacturing [14]. Scime and Beuth used 

unsupervised machine learning to link high speed imaging melt pools with parameter 

spaces associated defects by multiple gradient features for LPBF of IN718 [15]. 

Baumgartl et al. identified areas in a thermal image acquired during LPBF that 

corresponded to delamination by a convolutional neural deep network [16]. Gaikwad et 

al. reported in-situ measurement classifications are improved for processing regime 

physics informed machine learning in an exhaustive 316L stainless steel single-track 

study [17]. Statistical training is a less complex alternative to machine learning for 

porosity prediction. Forien et al. studied the correlation between in-situ pyrometry 

measurements and porosity obtained by ex-situ X-ray imaging for single laser scans of 

316L stainless steel [18]. Thermal and porosity data sets from various laser parameters 

provided pyrometer signal distributions corresponding to nominal material and pores. 
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These distributions defined the probability of keyholing porosity for a given pyrometer 

measurement. Forien et al. concluded that probabilistic predictions of keyholing porosity 

during LPBF is possible. 

In-situ radiometry has been established as a feasible tool to identify porosity in 

LPBF parts through thermal history anomaly correlations. Studies demonstrated that 

machine learning is a powerful, but complex, way to categorize anomalies in thermal 

measurements for prediction applications. One study reveals a simpler method to classify 

thermal measurements by statistical mappings that define the probability at which 

porosity occurs. This leads us to explore the knowledge gap: can statistical maps 

informed by in-situ thermographic measurements be used to locally predict porosity in 

LPBF parts for real manufacturing scenarios? In this paper, probability maps based on 

Short-Wave Infrared (SWIR) imaging data produce local porosity predictions for a 

stainless steel part fabricated by LPBF. The SWIR camera has high sensitivity at 

wavelengths corresponding to peak emission of stainless steel’s melting temperature 

making it suitable to capture porosity formation signatures. Recording the spatial and 

temporal components of the LPBF thermal history allows multiple features to be included 

for predictions of porosity. This goes beyond the information provided by single point 

intensities from photodiodes, or single images captured for layers post fusion. Thermal 

feature data (i.e., time above threshold and maximum temperature) from a cylindrical part 

built with various process parameters that cover the nominal fabrication space, as well as 

situations where lack of fusion and keyhole porosity occurs, trains the porosity 

probability maps. The maps predict the porosity of a complex part by only using its 

thermal data. The complex part contains porosity from naturally occurring thermal 
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history variances. A comparison with µCT ground truth scores the porosity probability 

models’ predictions for the complex part. 

 

2. EXPERIMENTAL SETUP 

2.1. LPBF SYSTEM WITH IN-SITU SWIR CAMERA 

A Renishaw AM250 LPBF system processing 304L stainless steel manufactured 

the cylindrical part and complex geometry part (CAD models included as Figure 1 (a)). 

The Renishaw AM250 employs an SPI Lasers fiber laser (Pmax = 200 W, λ = 1070 nm) to 

build parts with a point-to-point exposure strategy. A staring configured FLIR SC6201 

SWIR imaging camera (sensitivity: λ = 0.9‒1.7 µm) recorded manufacturing layer-by-

layer through a custom window. A 0.05 µm FWHM band pass filter centered at 1.45 µm 

(Edmund Optics #85-913) provided unsaturated SWIR data. Figure 1 (b) is a schematic 

of the camera observing the powder bed. The 640×512 focal plane array camera’s 130 

µm/pixel x-direction and 135 µm/pixel y-direction instantaneous field of view produced 

an 83×69 mm2 total field of view. The camera recorded with an integration time of 5 µs 

at a frame rate of 2585 Hz by windowing to 80×80 pixels. A non-uniformity correction 

(NUC) accounted for the emission signal’s cosine dependence from measurements at 

~15° off normal and vignetting caused by the viewing window. 

The SWIR camera provides radiation data in arbitrary units. A combination of 

experimental blackbody temperature data and theoretical Planck distribution exitance 

data calibrates the SWIR measurements. The temperature calibration permits data 

reporting with engineering units instead of arbitrary units and will not impact the 
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findings. The Renishaw’s process laser heated a LPBF manufactured blackbody for the 

calibration experiment. Thermocouples measured the blackbody’s temperature and the 

SWIR camera simultaneously recorded raw radiation. Integrating the Planck distribution 

over the camera’s observation wavelengths provides theoretical blackbody exitance at a 

given temperature. The theoretical blackbody exitance from this integration scales with 

temperature to the 5.6th power. This relationship combined with the thermocouple 

measurements produces the theoretical exitance emitted by the blackbody during the 

heating experiment. The SWIR camera’s raw radiation measurements linearly transforms 

to the theoretical blackbody exitance. The theoretical temperature-exitance relationship 

inverse calibrates the transformed SWIR data to temperature with units of Kelvin. This 

calibration assumed the emissivity of the 304L stainless steel to be 1, neglecting the 

temperature and phase dependence. The calibrated SWIR data is reported as the 

equivalent blackbody temperature, TBB. 

 

 

Figure 1. (a) Cylindrical sample and complex sample CAD models, (b) SWIR camera 

observation of the LPBF process, (c) SWIR time above 1700 K reconstructions of 

samples, and (d) laser scan path schematic showing raster vector stripes and border 

vectors. 
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Thermal features were extracted from the time series SWIR measurements. A 

thermal feature is a physics-based metric obtained from a part’s local thermal history. 

Thermal features quantitatively describe process phenomenon indirectly seen in time 

series data via the reduction of the data to a single measure per pixel. This process 

compresses a part’s data set from gigabytes to megabytes and produces 3D point clouds 

for decision making. A number of thermal features have been proposed in literature, 

including melt pool dimensions (Cheng et al., 2018), maximum temperature (Krauss et 

al., 2014), cooling rates (Heigel and Whitenton, 2018), and time above threshold (Mohr 

et al., 2020). This study uses the temporal features of the time above threshold and the 

maximum temperature. The selected features compare the performance of a single point 

measurement in maximum temperature with an integration of spatiotemporal effects in 

time above threshold. The time above threshold is the total time a pixel measures above a 

set temperature for the current layer. The threshold used during feature extraction 

depends on the physics of interest. At the melting temperature, the time above threshold 

is proportionate to the physical melt pool size, with larger melt pools corresponding to an 

increased value. Figure 1 (c) shows the time above 1700 K (approximate melting 

temperature) point clouds for the cylindrical and complex 304L stainless steel samples. 

The time above threshold at temperatures below the melting point informs the fusion 

quality since it is more dependent on the part’s cooling paths. Typically, the reduction in 

the conduction path resulting from lack of fusion porosity causes slower cooling rates at 

lower temperatures in the SWIR data, leading to higher values of the time above 

threshold. Extraction of the time above threshold in the higher temperature regime 

potentially informs the area above vaporization, which gives keyholing insight. This 



 

 

70 

threshold is lower than the physical vaporization temperature due to the simultaneous 

interrogation of cooler temperatures with the keyhole depression region. A single pixel 

collects signal corresponding to vaporization temperatures and cooler temperatures as the 

melt pool rasters past its 130×135 µm2 instantaneous field of view. The effective 

averaging of the signal over the interrogated pixel area reduces the measured 

temperature. The same phenomenon occurs for all measurements and is embedded in the 

maximum temperature thermal feature. 

2.2. MICRO-COMPUTED TOMOGRAPHY 

Micro-computed tomography scanning established the porosity ground truth for 

the samples. The µCT X-ray image slices’ gray scale intensities correlate to beam 

attenuation. The part’s porosity reduces the beam’s attenuation which indicates a relative 

density decrease. The relative density slices combine to form a 3D point cloud for a part. 

The µCT data sets in this study have a voxel resolution of 15 µm/pixel in the x-y plane 

and 10 µm/pixel in the z-direction. Figure 2 outlines the procedure used to register the 

µCT data with SWIR imaging thermal feature reconstructions. The registration procedure 

requires simultaneous down-sampling of the µCT data to the SWIR data resolution by 

averaging and production of a binary part state map. The binary map states include 

porosity and fully dense (nominal). A down-sampled voxel is porosity in the binary map 

if more than 5% of the original resolution data within that voxel corresponds to porosity. 

The 5% criterion produces binary maps that flag the fine porosity features observable in 

the original µCT data. After manual build direction (z-direction) alignment, the procedure 

automatically registers the µCT binary state with the SWIR data in the x-y plane layer-



 

 

71 

by-layer through translations. The registration produces thermal feature maps with voxels 

classified as porosity, or nominal. 

 

 

Figure 2. Registration of µCT data and time above 1700 K for voxel-by-voxel thermal 

feature class assignment to porosity, or nominal. 

 

3. RESULTS AND DISCUSSION 

3.1. CYLINDRICAL GEOMETRY BASELINE 

The cylindrical sample’s data demonstrates the SWIR imaging measurements’ 

abilities to locally correlate with µCT porosity and to build prediction models. The 

cylindrical sample’s diameter is 4 mm and has 20 sections, each 20 layers thick. 

Randomized combinations of laser power, P = 100 – 200 W (25 W increments) and 

exposure time, te = 50 – 125 µs (25 µs increments) processed the samples sections. These 

process parameter combinations produced lack of fusion porosity, keyholing porosity, or 
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nominal material. The laser point distance, dp = 60 µm, and hatch spacing, dh = 85 µm, 

were constant over the sample. Figure 3 demonstrates the local correlation of anomalies 

in various SWIR measurements and porosity in the µCT results for the cylindrical part’s 

layers 306 (a), 350 (b), and 429 (c). Nominal material locations serve as a comparison 

baseline within those layers. The SWIR measurements include time series temperature 

data, melt pool images at the time of maximum temperature for the analyzed locations, 

time above 1700 K maps, and maximum temperature maps. The blue temperature curves, 

highlighted images, and pixels in Figure 3 correspond to porosity in the µCT data, while 

the red curves, highlighted images, and pixels correlate to nominal material. 

Figure 3 (a) contains SWIR measurements corresponding to significant lack of 

fusion porosity. This porosity occurs when there is insufficient thermal energy and 

typically has irregular morphologies due to fused but not fully melted powder. The time 

series data indicates the porosity by the qualitatively significant temperature buildup with 

slower cooling when compared to the nominal data. Similarly, the blue highlighted melt 

pool image suggests an issue by a large area of the layer remaining above 1700 K. 

Nominal melt pools produce sharper temperature gradients as shown by the red 

highlighted image. The slow cooling at layer 306’s porosity locations results in time 

above threshold values greater than 10 ms producing an obvious local correlation. The 

porosity is not reflected in layer 306’s maximum temperature map. The application of 

border scans after the laser raster increases the time above threshold and the maximum 

temperature at the part’s periphery. Figure 1 (d) depicts the laser raster‒border scan 

interaction. The significant porosity in layer 306 is a result of the transition from 

manufacturing with a nominal laser power and a 125 µs exposure time to a 100 W laser 
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power and a nominal exposure time. Manufacturing with the high exposure time 

produced layers with a slightly concave surface for the cylindrical sample, and thus 

uneven powder deposition. After the process parameter change, the low laser power 

sufficiently fused the powder at the part’s edges but failed to melt the interior. This led to 

agglomeration of the powder in the part’s middle, which produced the slow cooling and 

high time above threshold. The porosity is not observable in the maximum temperature 

map since the laser passed over the entire cross-section and produced a similar 

temperature value regardless of the final fusion quality.  

 

 

Figure 3. Comparison of time series temperature data, melt pool images, and thermal 

features local correlations with porosity in cylindrical sample’s layers for (a,b) lack of 

fusion/powder agglomeration, and (c) laser spatter induced cases with nominal material 

baseline. 
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The porosity for layer 350 analyzed in Figure 3 (b) occurred during processing 

with P = 175 W and te = 50 µs. A portion of the porosity location’s time series 

temperature data (red) demonstrates slower cooling occurred when compared to the 

nominal baseline (blue); however, the melt pool images are similar for the layer. The blue 

highlighted anomaly in the time above 1700 K map matches the pore location in the µCT 

slice, while there is no obvious correlation seen in the maximum temperature map. 

Powder agglomeration induced the lack of fusion pore in this layer. The porosity is 

localized and stochastic for processing with near nominal laser parameters. The lack of 

fusion reducing the conduction path and agglomeration resulted in the slow cooling at 

that location. The local nature of the porosity caused the melt pool to retain a nominal 

appearance. The slow cooling results in the time above threshold increase at the porosity 

location for layer 350, with the maximum temperature appearing similar as in layer 306. 

Figure 3 (c) is thermal data that correlates to a laser spatter induced pore in layer 

429. The time series data and melt pool images for this layer both indicate nominal 

processing except for the temperature spike in the blue curve at approximately 300 ms 

after the laser passes nearest to the pixel that corresponds to the pore. This led to an 

increase in the time above 1700 K map of that pixel, while leaving the maximum 

temperature map unchanged. The temperature spike in the time series data, the increase 

in the time above 1700 K, and the porosity are the result of a molten laser spatter landing 

on the part. The spatter event does not appear in the maximum temperature map since it 

did not exceed the value experienced during the laser raster. Layer 429 was processed 

with P = 150 W and te = 75 µs, which normally produces a nominal layer. This result 
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indicates that spatter induced defects may be missed by analysis based on the maximum 

temperature alone. 

The results in Figure 3 demonstrate that thermal feature anomalies can indicate 

obvious, and localized porosity. Figure 3 (b) suggests that porosity formation for near 

nominal processing is random. This is further explored in Figure 4, where the cylindrical 

geometry sample’s µCT data slices are compared with thermal feature results for various 

LPBF processing regimes. The keyholing and lack of fusion regimes are defined by the 

resulting porosity class (lack of fusion discussed for Figure 3) and are due to above 

nominal exposure time and below nominal laser power, respectively. Keyholing porosity 

occurs when the vaporization depressed region of the melt pool (i.e., keyhole) collapses 

trapping gas from vaporized material, or the build chamber atmosphere. This porosity is 

typically smooth and spherical and becomes more frequent for higher laser energy inputs. 

The nominal processing regime is defined as the laser parameter space where lack of 

fusion and keyholing porosity are minimized. The µCT data slice and time above 1700 K 

map for the cylindrical part’s cross-section are plotted in Figure 4 (a) and Figure 4 (b), 

respectively. A qualitative comparison of the various partitions in Figure 4 (a) and Figure 

4 (b) informs the global relationship between the thermal feature values and porosity 

amount. Significant porosity in the cylindrical sample correlates to low thermal feature 

values and is a result of lack of fusion from insufficient energy input. A range of thermal 

features correspond to minimized porosity in the sample, and then there is a porosity 

increase for higher thermal feature values due to keyholing from higher energy inputs.  

The thermal feature‒porosity correlations are analyzed locally for the three 

processing regimes in Figure 4 (c-e), where µCT data and time above 1700 K maps for 
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representative layers are plotted with time series temperature data. The nominal layer 

µCT data in Figure 4 (c) manufactured with P = 200 W and te = 75 µs shows no porosity 

in the interior and a small amount of porosity at the periphery. Two interior locations, 

indicated by circles on the µCT slice and time above 1700 K map, are selected to provide 

a comparison of time series temperature data. The time series temperature plot shows 

slight variances occurred in the layer’s interior thermal history. The variances are 

reflected in the time above 1700 K map. The minimized porosity in the nominal layer’s 

interior is a result of enough energy for fusion with high keyhole stability minimizing 

collapses. The thermal history variances observable in the time series and time above 

1700 K data are within the stable range. The porosity at the nominal layer’s periphery is 

keyholing porosity caused by the laser’s increased dwell time at its turning point. This 

phenomenon has been observed by in-situ X-ray imaging [21]. 

Figure 4 (d) shows the results from a layer processed with a 200 W and a 125 µs 

exposure time, which resulted in keyholing porosity. The time series data is for nominal 

material (red), and a pore (blue) with locations highlighted on the CT and time above 

1700 K map. The time series data demonstrates the difficulty in distinguishing the 

nominal thermal history from the keyholing pore producing thermal history. This is also 

the case for the time above 1700 K thermal feature map. Areas with a larger time above 

1700 K do not always correspond to pore formation. The saturated location in the thermal 

feature map is where the laser raster ends and is caused by the heat accumulation during 

scanning. Even though this location experienced a much higher time above threshold, it 

does not correspond to an increase in porosity. The overall increase in keyholing porosity 

in Figure 4 (d) when compared to Figure 4 (a) is a result of manufacturing with a higher 
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exposure time. The higher exposure time leads to increased keyholing depth and 

instability, which produces more pore causing collapses. The porosity is stochastic due to 

the randomness of keyhole collapses. Additionally, there is the potential for pore 

offsetting in the z-direction due to the trapping of pores at the bottom of the melt pool. 

 

 

Figure 4. Cylindrical geometry sample (a) µCT and (b) time above 1700 K thermal 

feature slices with representative layers and time series data for (c) nominal, (d) 

keyholing, and (e) lack of fusion processing regimes demonstrating local correlation 

complexities for near nominal manufacturing. 

 

The µCT and thermal data for a layer that experienced lack of fusion are plotted 

in Figure 4 (e). A laser power of 125 W and an exposure time of 75 µs processed this 

layer. The time series data is from locations corresponding to a pore (red), and nominal 
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material (blue), which are highlighted on the µCT slice and the time above 1700 K map. 

The time series data corresponding to the pore includes a region with slower cooling, but 

the overall thermal history is difficult to distinguish from the nominal. The thermal 

feature map has various areas of higher time above 1700 K. Some of those areas 

correspond to pores, while some appear nominal in the µCT data. The data slices show 

that the lack of fusion porosity forms randomly. The slight disturbances in the cooling 

rate near the porosity locations is caused by a decrease in the conduction paths as in 

Figure 3 (b). This leads to the increased time above 1700 K. The random nature of the 

lack of fusion porosity is most likely due to the powder bed packing for that layer. Some 

areas of the powder bed produce agglomerates or are not fully melted when exposed by 

the laser, while others are sufficiently fused. The effects of re-melting from subsequent 

layers may drive some differences between the µCT slice’s porosity and time above 1700 

K’s anomalies. 

The random porosity formation demonstrated by the results in Figure 4 (d-e) adds 

complexity in establishing local correlations with thermal features for prediction model 

development. A specific thermal feature value, or a range in values does not always 

correspond to porosity. This paper uses porosity probability models to address this local 

correlation complexity. These models empirically define the probability of porosity for a 

given thermal feature value. The probability model method assumes that the thermal 

history experienced during the layer is the most critical factor in porosity formation, and 

thus neglected layer-to-layer effects. The thermal features classified by the procedure in 

Figure 2 produce probability density functions for the data corresponding to porosity, and 

nominal material. These data sets combine to produce a total probability density function 
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for the thermal feature space. Spatial filtering separates the part’s interior and border 

thermal features due to the differences in the dynamics of porosity formation where the 

laser corners during rastering. Radially, the three outermost voxels in the part’s thermal 

feature map correspond to the border scan and laser cornering locations. The cylindrical 

sample’s time above 1700 K and the maximum temperature probability density functions, 

both total (i.e., porosity and nominal) and porosity only, are plotted in Figure 5 (a) and 

Figure 5 (b), respectively. The dashed lines in Figure 5 (a) and Figure 5 (b) are the 

cylindrical part’s total thermal feature probability density functions with red denoting 

interior data and blue border data. These functions consist of ~300,000 data points 

produced from 23 GB of SWIR data and 1.3 GB of µCT data. The solid lines in Figure 5 

(a) and Figure 5 (b) are the porosity distributions (red: interior, blue: borders). Increases 

in the thermal features’ means are clearly observable for the part’s border. The fewer 

number of porosity voxels is a result of processing most of the sample with nominal, or 

near nominal laser parameter sets. The increase in the time above 1700 K and maximum 

temperature means at the border area is caused by the increased dwell time when the laser 

corners. An additional increase in the time above 1700 K mean is a result of the border 

scans re-melting the part’s edges. 

The data plots in Figure 5 (a) and Figure 5 (b) are the bases for porosity 

probability model derivation. The probability of porosity, denoted φ, given a thermal 

feature (e.g., time above threshold, τ) is 
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where ( )P    is the probability density function of the porosity and the time above 

threshold, and ( )P   is the probability density function of the time above threshold. In 

Figure 5 (a), ( )P    is the solid red line and ( )P   is the red dashed line for the 

cylindrical sample’s interior. The porosity probability models for a given time above 

1700 K and maximum temperature are plotted in Figure 5 (c) and Figure 5 (d), 

respectively. The red curves are the porosity probabilities for the interiors of parts, and 

the blue curves are for the border areas. From low to high thermal feature values, the 

porosity probabilities start high, decrease to a minimum, and then increase. The slope 

magnitude for the decreasing region is higher than that for the increasing region. Also, 

the curves for the interior and borders are similar in the decreasing region of both 

porosity probability models.  

The minimum porosity probability magnitudes are less for the interiors of parts. 

The porosity probabilities are higher for the borders of parts when compared to the 

interiors as the thermal feature values increase past the mean. There is also a higher slope 

in that thermal feature region for the border areas. Lack of fusion causes the high porosity 

probabilities for thermal feature values less than the mean. Keyholing causes the 

increases in porosity probability past the porosity probabilities’ minimum range. Lack of 

fusion occurring over a narrower thermal feature range produces the higher slope 

magnitudes in Figure 5 (c) and Figure 5 (d) for low thermal feature values. The interior 

and border porosity probability curves are similar in the lack of fusion region because 

that porosity type equally occurs near the edges of parts, and in the middle for the laser 

parameter sets resulting in a significant amount. The minimum interior porosity 
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probabilities are less because keyholing porosity is not as frequent. The border area 

porosity probability is increased and more sensitive for the higher thermal feature values 

because the laser cornering raises the chance for keyholing. 

 

 

Figure 5. (a) Time above 1700 K and (b) maximum temperature probability density 

functions for all voxels and porosity voxels at the interior and borders of cylindrical 

geometry with respective porosity probabilities (c,d). 

 

A combination of thermal features generates 2D porosity probability models. This 

is demonstrated for the time above 1700 K and maximum temperature in Figure 6. The 

porosity probability models for the interiors and borders determined in the maximum 

temperature and time above 1700 K space are plotted in Figure 6 (a) and Figure 6 (b), 

respectively. The color map value in Figure 6 is the probability of porosity for a given 

time above 1700 K and maximum temperature. The interior map in Figure 6 (a) contains 

a region of minimum porosity probability with some locally higher values and increases 

as maximum temperature and time above threshold both decrease. The border region map 
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in Figure 6 (b) has higher porosity probabilities at the extremes in the time above 1700 K 

and maximum temperature space. 

 

 

Figure 6. Porosity probability models for (a) interior and (b) border of cylindrical 

geometry part in time above 1700 K and maximum temperature space. 

 

A continuous region of minimum porosity occurs for high maximum temperatures 

and low time above thresholds at the borders. The 2D porosity probability models 

provide a smaller predictable magnitude for the minimum porosity when compared to the 

single thermal feature models. The interior data contains a larger region of small porosity 

probability in the thermal feature space due to the concentration of the results for near 

nominal processing. The local increases within that region are from keyholing porosity. 

The change from a nominal processing mode to lack of fusion produces the clear 

transition from a low porosity probability to a high porosity probability. For the border 

model, the regions of increased porosity probability in the low time above threshold and 
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maximum temperature space are capturing lack of fusion porosity. Keyholing produces 

the increase in porosity probability for the high time above 1700 K and maximum 

temperature for that model. The area of minimum porosity probability for high maximum 

temperature and low time above 1700 K for the border is a result of the inner most voxel 

moving towards interior manufacturing behavior. The 2D porosity probability models 

provide a smaller predictable magnitude due to an increased ability to distinguish 

nominal manufacturing from the other processing regimes. 

3.2. COMPLEX GEOMETRY PREDICTION 

Porosity predictions for the complex geometry sample establish the performance 

of the porosity probability model framework. The complex sample’s rectangular cross-

section is 7×8 mm2, the equilateral triangular cross-section has 8 mm side lengths, and 

the triangular pyramids consists of 8 mm base side lengths with 45° face angles. A single 

nominal laser parameter set (P = 200 W, te = 75 µs) and scan path striping manufactured 

the complex sample. Scan path striping, illustrated in Figure 1 (d), is the division of a 

layer’s cross-sectional area into shorter sets of laser raster vectors. As a result, the laser 

corners in the part’s interior and seams occurs where the stripes overlap. The striping 

orientation and seam positions change from layer-to-layer producing laser raster vector 

length and cornering dwell location differences. This combined with the complex part’s 

geometry dependent heat transfer boundary conditions (supported, or overhang) induced 

the natural thermal history variations. The complex sample’s time above 1700 K and 

maximum temperature data produced the 2D probability density function set plotted in 

Figure 7. The 2D probability density function set shows that most of the complex 
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sample’s data lies within the thermal feature space used to train the defect probability 

models in Figure 5 and Figure 6. There are some voxels in the border data that have time 

above thresholds outside of the training space. The interior data in Figure 7 (a) is 

clustered in the region corresponding to minimum porosity probability in Figure 6 (a) 

since it was manufactured with a nominal parameter set. The border data outside of the 

bounds of the training model is due to the complex part’s overhang boundary condition. 

This is demonstrated by a cross-section view in Figure 7 (c) where the overhang portions 

experience higher time above 1700 K due to slower cooling. 

 

 

Figure 7. (a) Interior and (b) border area time above 1700 K and maximum temperature 

2D probability density functions for entire volume of complex sample with (c) time 

above 1700 K reconstruction cross-section. 

 

While not all plotted in this paper, the procedures discussed for Figure 5 and 

Figure 6 produced additional single feature models and 2D models (maximum 

temperature and time above threshold) based on the cylindrical geometry’s time above 

threshold extracted at various temperatures. The models’ temperature thresholds range 
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from 1100 K (low temperature) to 2100 K (high temperature), which includes 

temperatures for the lack of fusion oriented time above threshold and the keyholing 

sensitive time above threshold. Time above threshold at temperatures over 2100 K 

produces insufficient data sets for porosity probability modeling. The time above 

threshold, maximum temperature, and 2D porosity probability models convert the 

complex sample’s respective thermal feature measurements to make local predictions. 

Both the interior and border models predict the complex sample’s porosity, where the 

border model only applies to the three outermost pixels within the part’s layers. The 

prediction framework saturates pixels with measurements that fall outside of the models’ 

thermal feature space. Figure 8 contains example prediction results for the complex 

sample obtained by using the combined maximum temperature and time above 1700 K 

porosity probability model in Figure 6. The complex sample’s µCT cross-section is the 

center plot in Figure 8. Color coding highlights the locations of selected layers from the 

various geometry sections. The layer data includes µCT slices and the corresponding 

porosity probability model predictions. The µCT data shows the sample’s porosity is 

small and primarily occurred at its borders. Additionally, the µCT data reveals geometry 

deviations at the sample’s overhangs. The model from Figure 6 (a) generally predicts low 

porosity probabilities for the part’s interior regardless of cross-sectional geometry and 

overhang case. The probability predictions for the borders of the rectangular cross-

section, triangular cross-section, and supported pyramids are higher than the interior. The 

probability prediction magnitudes are much higher for the border areas of the overhang 

pyramids. The pore size and locations in Figure 8’s µCT data are characteristics of the 

keyholing porosity that occurs during nominal processing discussed for Figure 4 (c). 
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Overheating producing agglomeration at the overhangs causes the geometry deviations. 

Porosity probability model training did not account for that defect type. The low 

predictions for the complex part’s rectangular cross-section, triangular cross-section, and 

supported pyramid interiors match the expectations for the processing mode. The border 

area porosity probability increase for those sections also tracks the observations and 

discussion for nominal processing. An interesting result for the overhang geometries is 

the sharp transition predicted for the defect probability at the sections’ interiors. The 

probability model predicts a very small chance for porosity at locations in the overhang 

geometries fused with enough conduction paths. The µCT slices confirm these 

predictions. This result shows that sufficient conduction paths occur within a short 

distance from the overhang. 

An operating point transforms a model’s porosity probability predictions to binary 

for voxel-by-voxel scoring with the ground truth from µCT. Predictions falling below the 

operating point are nominal, and predictions above are porosity. For example, if the 

operating point is a porosity probability of 5%, then predictions above that value are 

defined as porosity, and the remaining are assumed nominal. Comparing the converted 

prediction data with the binary µCT ground truth provides the true positives (i.e., 

prediction and truth are both porosity), false positives (i.e., prediction is porosity, but 

truth is no porosity), true negatives (i.e., prediction and truth are both no porosity), and 

false negatives (i.e., prediction is no porosity, but truth is porosity). Calculations based on 

those metrics yield the true positive and false positive rates. The true positive rate, TPR, 

is the total number of true positives divided by the sum of the true positives and false 

negatives. The false positive rate, FPR, is the total number of false positives divided by 
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the sum of false positives and true negatives. Sweeping the operating point over a range 

and calculating the respective prediction rates generates a Receiver Operating 

Characteristic (ROC) curve for a porosity probability model. The ROC curve is a plot of 

the true positive rate against the false positive rate. Figure 9 demonstrates the ROC 

development process for the maximum temperature only model’s porosity prediction 

results over an operating range from 0 to 40%. This porosity probability model’s 

predictions are the baseline for comparisons of the various time above threshold, and the 

2D models’ results. The true positive rate (blue) and false positive rate (red) are plotted as 

a function of the operating point in Figure 9 (a). The inset of the maximum temperature 

model’s predictions for the complex geometry in Figure 9 (b) qualitatively informs where 

the porosity occurred for a given operating point. Both the true and false rates start at 1 

and then follow different curves as they decrease to 0 at higher operating points. For very 

low operating points, every voxel in the predictions will be assigned as porosity. This 

produces the high true and false positive rates. The rates fall with increasing the operating 

point because less data is flagged as defective. The spread between the true positive rate 

and false positive rate corresponds to the performance of the prediction model. This is 

easily observable through the ROC plot in Figure 9 (b). The ROC curve describes the 

performance of the porosity probability model, with more accurate predictions producing 

curves shifted up and to the left. A perfect detector will produce a ROC curve that only 

contains true positive rates of 1 and false positive rates of 0, regardless of operating point. 

Real detectors/frameworks produce a ROC with an inflection point, where the difference 

between the true positive rate and false positive rate is maximized. This point for the 

maximum temperature porosity probability model corresponds to a true positive rate of 
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0.89, and a false positive rate of 0.32. A common way to quantify the overall 

performance of the porosity probability model is the area under the ROC curve (AUC). 

The AUC for the maximum temperature porosity model is 0.82. 

 

 

Figure 8. Complex sample µCT data slices with corresponding porosity probability 

predictions using 2D time above 1700 K and maximum temperature model for layers 

selected from various geometries. 

 

The ROC curve for the maximum temperature model in Figure 9 shows that the 

false positive rates become large for true positive rates greater than 0.9. This is a result of 

uncertainties inherent to the SWIR imaging process, and registration with the µCT data. 

The instantaneous field of view for the SWIR camera is larger than most keyholing 
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porosity. The camera measurements can flag where this porosity is likely to occur, but the 

pixel size combined with the random nature of the porosity formation produces error. The 

registration between the SWIR thermal features and µCT data contains errors due to 

thermally driven part deformation that occurs during manufacturing. An example of this 

is observable in Figure 8 for the structures supporting the complex geometry’s pyramids. 

Additionally, the final locations of some keyholing porosity formed during 

manufacturing may occur below the correctly registered data slices. This keyhole 

offsetting leads to increase in false positives. These reasons for error will be common to 

all porosity probability models used for prediction which means a contrast of their 

performance is still possible. 

 

 

Figure 9. (a) Complex geometry porosity probability prediction false positive and true 

positive rates at various operating points for maximum temperature model with (b) 

corresponding ROC curve and inset of prediction for sample’s cross-section. 
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Figure 10 compares the performance of the various porosity probability models. 

The ROC curves for the time above threshold only models’ predictions are plotted in 

Figure 10 (a) with a shared legend in Figure 10 (b). The ROC curves in Figure 10 (a) 

show that prediction performance increases for higher thresholds. The 1100 K and 1300 

K models are the worst performing with the false positive exceeding the true positive rate 

for all operating points since the curves fall below the line with a slope of unity. The 

predictions based on the threshold of 1300 K and below fail due to the lack of contrast in 

the thermal feature data corresponding to porosity and nominal material. This is a result 

of the low thresholds producing very high time above threshold values where noise from 

laser spatter is significant. 

 

 

Figure 10. ROC curves for (a) time above threshold only and (b) 2D porosity probability 

models with (c) a comparison of the AUC’s for the various models. 
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The increase in prediction performance for the time above threshold models in 

Figure 10 (a) is explained by observations from their respective porosity probability 

models. The interior and border porosity probability models for the time above threshold 

at 1500-2100 K are plotted in Figure 11 (a) and Figure 11 (b), respectively. These models 

demonstrate similar characteristic as those discussed for Figure 5. The porosity 

probability starts at a high level, decreases to a minimum, and then rises with increasing 

time above threshold. This behavior with increasing time above threshold respectively 

corresponds to the progression through the lack of fusion, nominal, and keyholing 

processing regimes. Figure 11 shows that the sensitivity of the models for thermal feature 

values away from the nominal region increases for the higher temperature threshold 

features. This is especially the case for keyholing porosity in the border area models 

plotted in Figure 11 (b). The sensitivity increase is a result of a narrowing in the thermal 

feature probability density functions informing the porosity models. The reduction in the 

thermal history space leads to an increase in porosity frequency at the bounds since it has 

fewer time above threshold values for correspondence. The increased frequencies drive 

the higher sensitivity in the porosity probability as the thermal feature value moves away 

from the nominal location. The nominal location in the porosity probability models retain 

a low magnitude. Therefore, the time above threshold probability models perform better 

in Figure 10 (a) for the complex sample as the temperature extraction threshold increases. 

The models trained with the time above threshold at higher temperatures have more 

ability to distinguish thermal histories that result in porosity and nominal material. 

The ROC curves for the predictions made by the 2D porosity probability models 

in time above threshold and maximum temperature space are plotted in Figure 10 (b). 
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The combined models provide predictions with similar ROC curves regardless of the 

temperature threshold. This occurs because the 2D thermal feature space produces clear 

regions in the porosity probability models that correspond to the lack of fusion, nominal, 

and keyholing processing regimes. The definitions of the processing regions in the 2D 

models are more defined than for a single thermal feature. This permits a more accurate 

determination of porosity probability, which explains the drastic performance increase for 

the models using the time above threshold extracted at lower temperatures. The AUC was 

calculated for the ROC curves in Figure 10 (a) and Figure 10 (b). The results are 

benchmarked against the maximum temperature porosity probability model’s AUC in 

Figure 10 (c). The AUC for the time above threshold only porosity probability models are 

plotted in blue, and the AUC for the 2D probability models are plotted in red. The data is 

plotted as a function of the time above threshold extraction temperature. The maximum 

temperature model’s AUC is the dashed line. The time above threshold only models’ 

predictions approaches the maximum temperature result with increasing threshold until 

2300 K. The combined features slightly outperform the maximum temperature only 

predictions for the models based on time above threshold at 1100 K through 2100 K. As 

discussed for Figure 10 (a), the increasing temperature threshold for time above threshold 

extraction produces porosity probability models with increased sensitivity. As the 

threshold increases, the results converge to the information provided by the maximum 

temperature producing the similar AUC. The 2D porosity probability models leverage the 

information provided by both the maximum temperature and time above threshold to 

inform the porosity probability more accurately, which yields the performance increase. 
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The matched performance by the time above 1900 K model and the slightly better 

performances for the 2D models suggest that the maximum temperature only model may 

be enough to locally predict porosity. This must be viewed in the context of the results in 

Figure 3 and Figure 8. In Figure 3, the maximum temperature does not identify porosity, 

while clear local correlations are observable for the time above 1700 K. This of course is 

not the case for every porosity location in the part due to the complexities discussed in 

Figure 4, and overall, the maximum temperature provides strong contrast for the thermal 

histories resulting in porosity and nominal material. The time above threshold adds to the 

maximum temperature’s baseline, which permits the ability to detect porosity more 

accurately.  

 

 

Figure 11. Time above threshold porosity probability models from the cylindrical 

geometry sample for (a) interior and (b) border regions. 

 

Prediction of the geometry variations discussed for Figure 8 is not included, but 
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the locations where the geometry variations occur, especially when it is extracted at lower 

temperatures. This further explains the relative decrease in performance for those 

porosity probability models. The higher time above threshold models are more sensitive 

to porosity than the geometry variations, which is why they produced prediction results 

like the maximum temperature. The maximum temperature’s lower sensitivity to the 

overhang effects increases its porosity prediction performance. The strength of the time 

above threshold to identify geometry variations is beyond the scope of this work but 

should be explored. With further training, the information the 2D thermal feature space 

models provide may permit a wider range of predictable defects than single feature 

models. 

Analyzing the complex part on a section-by-section basis produces marginal ROC 

improvements. The part’s three section types are nominal (i.e., the rectangular and 

triangular), overhang pyramid, and supported pyramid. This analysis uses the maximum 

temperature model and the time above 1500 K combined models since they perform best 

for the entire sample. Figure 12 contains the sectioned ROC curves using those models 

with the part’s sections highlighted on the maximum temperature prediction slice inset in 

Figure 12 (a). The curves in Figure 12 (a) and Figure 12 (b) demonstrate that both models 

perform better for the nominal and supported pyramid data than for the overhang pyramid 

data. The models’ performances increase for the rectangular and triangular cross-sections 

because those geometries were manufactured with heat transfer boundary conditions most 

like the training data. The combined feature model performs better for the supported 

pyramid when compared to the overhang because the layers had enough conduction paths 

for time above threshold to contribute effectively. The maximum temperature and 
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combined models perform worse at the overhangs due to the absence of training data for 

that boundary condition. The AUC for these results are listed in Table 1. The AUC clearly 

shows the 2D feature space model provides more accurate predictions than the maximum 

temperature for the nominal and supported sections, which is due to the increased ability 

to recognize the processing regime. The results also demonstrate that the overhang data 

likely reduces the performance for all models analyzed in this study, which solidifies the 

need to train for that boundary condition in the future. Moreover, further classification 

and training porosity probability models by geometry type, like bulk and thin wall 

structures with interior and border subregions, would make this approach applicable to 

any geometry. 

 

 

Figure 12. ROC curves from (a) maximum temperature and (b) 2D maximum 

temperature and time above 1500 K porosity probability models for various sections of 

complex sample. 
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Table 1. AUC for maximum temperature and 2D maximum temperature and time above 

1500 K porosity probability models based on each section of complex sample. 

Section Tmax AUC 
τ1500 and Tmax 

AUC 

Nominal 0.88 0.94 

Overhang 0.69 0.69 

Supported 0.74 0.81 

 

 

4. SUMMARY AND CONCLUSIONS 

 

In this paper, porosity probability models informed by SWIR imaging thermal 

features locally predicted porosity for a LPBF manufactured 304L stainless steel sample. 

The porosity probability model approach addressed the difficulties that arise in 

developing local correlations between SWIR thermal features and porosity in µCT data. 

Thermal feature data from a cylindrical part manufactured with various parameters 

trained the porosity probability models which spanned lack of fusion, keyholing, and 

nominal processing. The models converted SWIR measurements from a nominally 

manufactured complex geometry sample to porosity probability, and Receiver Operating 

Characteristic curves scored the predictions. Approximately 1% of the complex geometry 

sample’s volume corresponded to porosity, and the framework predicted those at an 88% 

true positive rate, with a 27% false positive rate using the best performing model. This 

result is promising, but it reveals the challenges of high false positive rates in the local 

porosity predictions. The local porosity probability predictions must be completed with 

recognition that this will occur during operation due to the random nature of pore 
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formation, the size of the pores relative to the thermal camera’s instantaneous field of 

view, and some impact from data indexing errors. 

The results in this paper demonstrated that porosity predictions made by 2D 

thermal feature models had the best performance due to an increase in the ability to 

locally distinguish the processing regime. The porosity prediction rate improved when 

only considering the complex sample’s non-overhang geometries. The combined 

maximum temperature and time above 1500 K porosity probability model reduced the 

false positive rate by an average of 8% in those sections when compared to the maximum 

temperature only predictions. Future work should improve the porosity probability 

models by considering the keyhole offsetting in data registration, which may reduce the 

false positives in predictions. While beyond the scope of this work, the baseline for 

predictions must be expanded to include overhang and thin wall structures to better 

account for porosity and geometry deviations. This training may require algorithms with 

increased complexity such as machine learning but will produce multi-thermal feature-

based models that predict additional defect types beyond porosity. 
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ABSTRACT 

This paper evaluates experiment-based superposition thermal modeling for Laser 

Powder Bed Fusion (LPBF) with a pulsed laser. An analytical pulsed laser thermal model 

establishes the modeling procedure. The framework inverts an experimental powder 

bed’s single pulse temperature response from spatiotemporal Short-Wave Infrared 

(SWIR) camera data. Superimposing this response along a scan path simulates multi-

pulse LPBF. Results show the experimentally informed superposition model rapidly and 

accurately predicts a layer’s temperature history. The model has applications in 

correction of thermally driven LPBF errors and in-situ part qualification. 

 

1. INTRODUCTION 

 

Laser Powder Bed Fusion (LPBF) fabricates high resolution, complex, metal parts 

layer-by-layer. Part geometry variances and changing laser scan pathing drive thermal 
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differences within layers that produce defects [1]. Analytical [2], numerical [3], and high 

fidelity [4] thermal models aim to understand LPBF’s underlying physics causing those 

variations with significant computational expense. Controls-oriented superposition 

thermal models quickly predict a layer’s temperature history. The superposition 

approach’s linear assumptions reduce a layer’s computation time from days, or weeks, to 

minutes, making it feasible for application in real-time process correction. 

Moran et al. combined Rosenthal’s moving point heat source solution with FEA 

to perform superposition simulations of a laser scanning Ti-6Al-4V [5]. Moran et al. 

found their model provides results accurate to FEA only simulations with a significant 

decrease in computation time. The computation time reduction makes large scale 

simulations practical. Schwalbach et al. used Green’s function methodology to develop a 

thermal model for LPBF with a continuous wave (CW) laser [6]. Schwalbach et al.’s 

model approximates a scanning CW laser by superimposing the temperature response 

from distinct heat sources seeded along the raster path. Schwalbach et al. demonstrated 

their model’s temperature results agree with analytical solutions, calibration provides 

accurate melt pool dimension predictions, and the approach indicates thermal history 

spatial variations. 

Temperature and state dependent thermal properties, latent heat effects from 

melting and solidification, and material vaporization make the LPBF process highly non-

linear. This limits analytical superposition models to qualitatively predicting part 

geometry-scan path interaction effects. A superposition model informed by thermal 

camera data would provide quantitative predictions with LPBF’s physics embedded, but 

this requires the experimental measurements to behave linearly. The quantitative analysis 
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may improve decision making capability, and baseline in-situ measurements to assist part 

qualification. 

This paper presents an LPBF superposition thermal model constructed with Short-

Wave Infrared (SWIR) thermal camera measurements. A theoretical superposition 

model’s derivation for pulsed laser LPBF reveals the methodology for experiment-based 

modeling. The superposition modeling process gauges the SWIR camera measurement’s 

linearity. Processing simulation and experimental data with an in-situ framework 

evaluates the superposition model’s ability to predict real thermal history variances. 

 

2. MOTIVATING THEORY 

 

The theoretical pulsed laser superposition model’s derivation follows Schwalbach 

et al.’s work for CW systems [6]. The pulsed laser’s volumetric heat source model, 

( ), , ,q x y z t , is [7] 

 ( )
( )

( )
2 2

2 2

2 1
, , , exp 2 exp 1 e

p p

zR P x y
q x y z t t t

δ πω ω δ

 −  +
= − − − −      

   

, (1) 

where ( ), ,x y z  are the spatial coordinates, t is the time, R is the reflectance, P is the laser 

power, δp is the laser’s optical penetration depth, ω is the beam waist, Θ is the Heaviside 

function, and te is the exposure time. The temperature field, ( ), , ,T x y z t , a single laser 

pulse produces in a semi-infinite domain is  
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where 0T  is the initial temperature and α is the thermal diffusivity. The relative 

temperature change, ( ) 0, , ,T x y z t T− , is the laser pulse’s basis function. The x-y plane 

radially symmetric basis function, G(r,t), at z = 0 is  
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         


, (3) 

where 2 2r x y= + . 

Superimposing single pulse basis function copies shifted in space and time 

simulates multiple laser pulses. The basis function copies offset spatially according to the 

laser scan path and temporally by the pulse period. The temperature for a multi-pulse 

simulation at z = 0 is 

 ( ) ( )0

1

, , ,
K

k

k

T x y t T G r t
=

= +  , (4) 

where Gk is the kth laser pulse’s basis function. The kth pulse’s radius, r, to a given (x,y) 

and its relative time, t , are  
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( ) ( )

2 2

0, 0,

0,

k k

k

r x x y y

t t t


= − + −


  = −

, (5) 

where ( )0, 0,,k kx y  are its exposure coordinates and 
0,kt  is when exposure begins. 

Figure 1 demonstrates superposition for six laser pulses (P = 200 W, te = 70 µs, ω 

= 70 µm, δp = 60 µm) striking 304L stainless steel (k = 15 W/m·K, ρ = 7800 kg/m3, cp = 

500 J/kg·K). Figure 1 (a) contains the pulses’ basis function profile plots (purple to red 

curves) at their relative times, offset in space by the laser point-to-point distance (60 µm). 

The profiles demonstrate the basis function’s temperature magnitude decreases, and its 

waist increases after the exposure time as heat conducts away from the exposure location. 

Adding the pulses’ temperatures at a particular spatial point produces that location’s total 

temperature. Figure 1 (a) shows the final superposition result by a profile plot (black 

curve) from the 2D temperature map in Figure 1 (b). 

 

 

Figure 1. (a) Theoretical laser pulse basis function profiles with resulting superposition 

temperature and (b) 2D temperature map with coordinate system and exposure points. 
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A matrix algebra approach equivalently provides the superposition results in 

Figure 1. Equation 4 in matrix notation is 

 
0 AT T G= + , (6) 

where T  is the temperature vector, A is a matrix tracking the active basis function 

components for each ( ), ,x y t , and G  is the basis function vector. The laser’s scan path 

and relative exposure time information build A. Inverting Eq. 6 solves for an unknown 

basis function by utilizing known scan pathing and spatiotemporal temperature data like 

Figure 1 (b). The temperature data’s samplings in space and time can provide, but do not 

limit, the inverted basis function’s radial and temporal resolutions. Equation 6’s inversion 

yields G  exactly for theoretical cases with a full rank A. 

 

3. EXPERIMENTAL BASIS FUNCTION INVERSION 

 

A SWIR camara observing a Renishaw AM250 (pulsed laser) rastering a 5×5 

mm2, 50 µm thick, 304L stainless steel layer provides the spatiotemporal thermal data for 

basis function inversion. The camera samples at 3345.8 Hz with 130 µm/pixel and 135 

µm/pixel x and y instantaneous field of views, respectively (see [8] for further details). 

The raw camera data calibrates to temperature using a procedure like [9]. Figure 2 (a) 

shows a calibrated image with the laser’s exposure points (white dots) and parameters 

annotated. The laser scans with a 0° rotation angle, a 60 µm point-to-point distance, dp, 

and an 85 µm hatch spacing, dh. Each image supplies an A sub-matrix and a T  sub-

vector. Since A’s columns must equal G ’s length, the procedure builds A sub-matrices 



 

 

107 

by assuming 0G →  after 10 ms, or beyond a radius of 0.78 mm. Also, the process 

assumes G  has resolutions of Δt = 150 µs and Δr = 130 µm. Data from 500 consecutive 

thermal images assemble A and T  to invert G . Multiple images provide a full rank A 

and reduce G ’s noise. Least squares produces G  with minimum error by 

 ( ) ( )
1

0A A A
T TG T T

−

= −  (7) 

Figure 2 (b-d) contain the experimental basis function. The basis function’s 

temperature magnitude decreases with increasing radius. For each radial component, the 

basis function’s temperature magnitude quickly reaches a maximum, and then decreases 

with increasing time. Sampling rate variances and scan path location uncertainty cause 

the basis function’s noise. The inversion success reveals the SWIR temperature data’s 

linearity. 

 

 

Figure 2. (a) SWIR melt pool image with laser exposure points and experimental basis 

function (b) plotted as a function of radius for various times, (c) plotted as a function of 

time for all radial components, and (d) mapped for various times. 
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4. SIMULATION RESULTS 

 

The superposition model simulates the LPBF temperature field the SWIR camera 

measures by applying the experimental basis function in Eq. 6. The model predicts the 

5×5 mm2 layer’s thermal history in 4 minutes (Dell OptiPlex 5050, Intel Core i-7700 

CPU, 3.6 GHz). Figure 3 compares the superposition predictions with the layer’s 

experimental temperature results. Figure 3 (a-c) show selected pixels’ temporal data 

relative to their respective times at experimental maximum temperature. The data in 

Figure 3 (a-c) illustrate thermal history differences arise when the laser progresses from a 

corner to the raster’s middle. The superposition simulation predicts those differences with 

the root mean square errors (RMSE) annotated on Figure 3 (a-c). The melt pool images in 

Figure 3 (d-f) demonstrate the spatial temperature agreement between the experiment’s 

measurements and the simulation’s predictions. 

Thermal features capture the layer’s entire thermal history by compressing each 

pixels’ temporal data to a single metric. This process produces a thermally based data 

map for layers. Thermal features have application in part property correlations and in-situ 

defect detection. A layer’s thermal feature map also clearly show how the laser’s scan 

path affects the thermal history. Two common thermal features are the maximum 

temperature [10] and the time above threshold [11]. Figure 4 evaluates the superposition 

simulation’s predictions of those thermal features. Figure 4 contains experimental and 

simulated thermal feature profile plots and maps. The maximum temperature, Tmax, 

predictions in Figure 4 (a) and (c) match the experiments in the interior but deviate at the 

layer’s edges. This suggests a linearity reduction where the laser corners. The entire 
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layer’s maximum temperature RMSE is 177 K. Figure 4 (b) and (d) illustrate the 

simulation successfully predicts the experimental time above threshold, τ. Time above 

threshold experimental deviations occur at some locations due to balling. The time above 

threshold prediction has a 1.2 ms RMSE. 

 

 

Figure 3. Experiment and superposition simulation (a,b,c) temperature histories and 

(d,e,f) melt pool images for various locations along a laser raster in the 5×5 mm2 layer. 
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Figure 4. Experiment and superposition (a) maximum temperature and (b) time above 

threshold profile plots from 2D (c) maximum temperature and (d) time above threshold 

maps. 

 

5. CONCLUSIONS 
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experimental data in part qualification, and feedforward controls. Future work will 

explore experimental superposition for various LPBF manufacturing cases and evaluate 

the ability to flag defects in parts. 
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SECTION 

2. CONCLUSIONS  

 

This dissertation establishes in-situ inspection methods for metal Laser Powder 

Bed Fusion Additive Manufacturing. Optical Emission Spectroscopy (OES) was 

performed for LPBF by collecting signal through the laser beam path. The spectra 

measured during laser melting 304L stainless steel correlates with the melt pool size. The 

OES framework also demonstrates that spectra strongly depend on the build chamber’s 

atmospheric conditions including pressure and composition. Thermal features extracted 

from Short-Wave Infrared (SWIR) data correlate with bulk properties of 304L stainless 

steel. The SWIR thermal feature voxel based data for parts can successfully predict their 

local porosity using a probability mapping but this occurs with high false positive rates. 

Multiple SWIR thermal features provide improved correlation and prediction capabilities. 

Finally, superposition thermal modeling based on experimental SWIR data is achieved. 

The model predicts the effects laser scan pathing has on the thermal history for 

application in LPBF process correction. 
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