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ABSTRACT

The average electron density and electron confinement time in

an electrostatically plugged magnetic spindle cusp device are

studied using a 20 GHz microwave interferometer. The results are

compared with the predictions from approximate theoretical

equations. With a magnetic induction in the point cusp of 5000 Gauss,

a plasma is produced by injecting a 5 mA, 500 eV electron beam into 

hydrogen gas at 10-5 Torr. The measured electron density is 

2x1010 cm-3 and the measured confinement time is 80 μsec, which 

agree to within a factor of two with values predicted by theory.
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The average electron density and electron confinement time of 
a plasma confined in an electrostatically plugged magnetic spindle 

cusp device is studied. A 20 GHz microwave interferometer is used 

to measure the electron density. A spark gap is used to pulse the 

electron beam and the electron density is measured as a function 

of time. Trends expected from theoretical equations are compared 

with the experimental results.

In many confinement schemes where the plasma is confined by 

a magnetic field in which the field lines surround the plasma 

smoothly, there is a tendency toward instability. The magnetic 

field lines, which may be thought of as being stretched around the 

plasma, can shorten themselves by burrowing into the plasma and 

forcing it outward. A confinement scheme which is stable against 

this type of interchange instability is one where the magnetic 

field lines curve away from the plasma. In order to satisfy this 

curvature requirement, the magnetic field configuration must possess 

cusps through which the field lines pass radially outward from the 

center of the confinement region.

The main limitation of cusp confinement schemes, which is the 

reason for little experimental investigation of cusps, is the high 

predicted plasma loss rate through the magnetic gaps in the cusp 

regions. There have been several proposals for reducing this loss 

rate. In the early 1960's, 0. A. Lavrent'ev of the Soviet Union 

proposed the use of static electric fields in the cusp regions to

I . INTRODUCTION



reduce the loss rate. The electric fields reflect all but the most

energetic electrons and ions in the plasma. The Soviet Union has

been conducting research on electrostatically plugged spindle cusp 
[12 31experiments ' ' since the mid 1960's. Experimental devices of 

the type are being constructed and tested at INRS-Energie,

Universite du Quebec^ and at the University of Missouri-Rolla (UMR) 

Microwave diagnostics is concerned with making nonperturbing 

measurements of wave properties and expressing them in terms of 

plasma parameters. Historically, the use of microwave radiation as 

a diagnostic tool is not new, coming into use in the 1920's. There 

are two basic approaches to microwave diagnostics, active and passive 

In passive wave diagnostics, if the emitted radiation can be 

identified and measured, then the appropriate parameters can be 

calculated. For example, if a high frequency oscillation is known 

to be due to electron plasma oscillations, then the electron density 

can be calculated from the plasma frequency relation. In active 

wave diagnostics, microwave radiation of a known frequency is 

transmitted through a plasma. From the effects the plasma has on 

the microwave radiation, appropriate parameters can be measured. 

Microwave interferometry belongs to this class of active wave 

diagnostics and will be discussed further in section III.
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II. CONFINEMENT SCHEME

A. Description

The plasma confinement scheme used in this experiment is an 

electromagnetic cusp device. The magnetic field is produced by two 

magnet coils carrying current in opposite directions. The magnetic 

field lines emerging from the ring gap between the two coils and the 

two axial openings connect the interior volume of the trap with the 

surrounding space, Fig. 1. This type of confinement is an open 

magnetic system with the magnetic field strength increasing radially 

outward from the center of the chamber, making this confinement scheme 

hydromagnetically stable.

Positive and negative electrodes (anodes and cathodes) are placed 

at the ring cusp and the two point cusps to accomplish the 

electrostatic plugging. The anodes along with the chamber wall are 

at ground potential, while the cathodes are at a large negative 

potential. The electric fields created by the anode and cathode in 

each cusp region reflect the less energetic electrons and ions, 

reducing the flow of charged particles out through the magnetic gaps, 

thus increasing the plasma density and confinement time.

The plasma is formed by injecting an electron beam through one 

of the point cusps into a low pressure neutral gas. Some of the 

electrons from the beam will accumulate in a thin layer along the 

magnetic surface forming a negative space charge and potential well 

for the ions. Electrons from the beam will also ionize the neutral 

gas. Some ions will immediately be lost to the cathode, leaving
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Fig. 1. Schematic Diagram of the Electrostatically 
Plugged Magnetic Spindle Cusp.
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additional electrons for the creation of the potential well. The 

magnetic field prevents the electrons from reaching the anode except 

by diffusion across the magnetic field lines. The potential of the 

cathode prevents most of the electrons from escaping along the 

magnetic field lines.

As the electron density in the electromagnetic trap is increased, 

electrons will begin to accumulate in the anode regions, partially 

screening the applied anode-to-cathode potential. This shielding 

effect reduces the applied potential by an amount proportional to 

the number of electrons accumulated in the anode.

A sketch of the electrostatic potential along the z-axis is 

shown in Fig. 2. The dashed curve represents the initial potential 

distribution in the absence of a plasma and the solid curve represents 

the potential in the presence of plasma. The applied potential 

between the anode and cathode is $ . The potential barriers "seen" 

by the positive ions and electrons are and $ , respectively.

The potential depression in the anodes caused by the accumulation of 

electrons in the anode regions is AeJ> and is discussed further in the 

next section. The radial potential distribution in the midplane has 

a similar shape. Therefore, the plasma is confined by the combined 

electric and magnetic fields and by the space charge field of the 

plasma itself.

B. Limitations

There are several limitations to the confinement of a plasma.

The first of these is the limitation of the reflection of charged
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Fig. 2. Axial Variation of the Electrostatic Potential $.
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particles from the plasma by the magnetic field. When the plasma is 

reflected, the magnetic field is displaced outward until the magnetic 

field pressure is equal to the plasma kinetic pressure. In order for 

the magnetic confinement to be effective, the plasma pressure must be 

less than the magnetic pressure at the surface of the chamber, 

otherwise, the magnetic field will be completely displaced from the 

chamber volume causing the plasma to come into contact with the wall.

As mentioned earlier, the electromagnetic cusp confinement scheme 

is hydromagnetically stable. However, there is an instability, called 

the diocotron instability, occurring in the ring anode gap. It results 

from the large electron density gradient and strong electric field 

found there. The diocotron instability grows on the accumulated cold 

electrons formed by ionization of the neutral gas in the magnetic gap. 

The electrons in the ring anode gap undergo an ExB drift in the 

azimuthal direction around the ring gap due to the applied electric 

and magnetic fields. The velocity of the drifting electrons increases 

toward the outer edges of the electron layer. This slipping or shear 

in the electron flow, moving in opposite directions about the ring 

anode centerline, causes the onset of the diocotron oscillation. The 

shear in the electron flow causes small ripples or oscillations in 

the flow which sets up a secondary drift of electrons toward the anode 

walls. This secondary drift can lead to plasma loss. The diocotron 

oscillation can be stabilized. Some of the methods for stabilization 

are: a) move the electron layer closer to one anode wall by varying

the magnetic field in each half of the trap^^ , b) decrease the size 

of the anode gap and c) apply a larger negative potential to the
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[4]cathode L

The dioctron instability can be beneficial by reducing the 

potential depression in the ring anode. This is accomplished by 

removing the cold electrons. The cold electrons have two degrading 

effects on the plasma and its confinement. First, the cold electrons 

reduce the average electron temperature. Secondly, the accumulation 

of electrons in the anode increases the potential depression,which in 

turn reduces the density of confined electrons. This is discussed 

below.

In experimental work done in the Soviet Union, the suppression 

of the diocotron oscillation resulted in an increase in plasma density 

from 108 to 2-5X10’'''1' cm 3 .

A third limitation is caused by the accumulation of electrons in 

the point and ring cusp anode regions. The electron space charge in 

the anode depresses the applied potential $ by an amount AS>, seen
Fig. 2. If A$ becomes too large, the electrostatic confinement ceases

to be effective. Ware and Faulkner^ calculated the maximum electron

density which can be confined in the cusp anodes. They assumed a

triangular distribution function for each cusp region centered about

the r and z-axis with a maximum density of n^ on the axis. The radius

of the electron cloud is assumed to be 2 Larmor radii (r ) in the ringL
[5]anode and 20 Larmor radii in the point cusp . For a potential 

depression of A$, their results are, in Gaussian units,

(V  .ring
A4>

2™ V « r  - 3 dx]
cm-3 (2-1)
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cm-3 (2-2)

where r. is the radius of the electron cloud and a is the radius of 1 P
the gap in the point cusp region, d^ is the half-width of the electron 

cloud and a^ is the half-width of the gap in the ring cusp region, e 

is the electronic charge in esu. The potential depression, A4>, is 

less than or approximately equal to the applied voltage. The 

average electron Larmor radius is given as

where V and W are the average electron velocity and the averageej_ ex
electron energy perpendicular to the magnetic field, c is the speed

The accumulation of electrons in the anodes effectively shields 

the applied electric potential and thus limits the density obtainable

ratio of the electron density in the anode to the density in the 

central plasma region to be

Vexr = — —L 0)ce

c (2mW ) 3.37(W [eV])1/2 cm
Bq [Gauss] (2-3)

of light, m is the electron mass, is the applied external magnetic 

field, and w is the electron cyclotron frequency defined as

7= 1.76x10 Bq [Gauss]radians/secce me

in the central plasma region. Moir, Barr and P o s t ^  calculated the

A
= e* (1 _ e r f  XV 2  

ne
(2-4)
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where x = e3>./KT . The energy an ion would need to penetrate the 
1 e

potential barrier <K is e$^ and kT^ is the electron temperature in

the anode region. Since electrons near the anode surface are

accelerated by the potential difference $^+A4>, the electron

temperature, kT , should be replaced by kT + e ($,+A$) . The average e e 1

electron energy perpendicular to the magnetic field is - icT̂ ,

while in the anode region W ~ kT + 2/3 (e$.+eA4>) .ej_ e l
Many of the parameters used are based on Soviet experimental

values ̂  except for values of A$ and r^. Lavrent’e v ^  indicated

in his discussion of the electron density in the ring cusp region

that the best confinement occurred when the potential depression was

0.2 to 0.3 times the electron injection voltage, U . Nothing wase
mentioned about the magnitude of the potential depression in the

point cusp region. From Fig. 2, it is obvious that A$ ^ , theP
plasma potential where = A$+$^. The experimental parameters for

the Soviet Jupiter 1M experiment indicates $ = 0.5 to 0.6 U whilep e
[7]A$ = 0.5 was assumed for this experiment. Osher and

Lavrent’ e v ^  indicated that for the Soviet results 0 U when thep e
”6pressure exceeded 10 Torr.

There is general agreement that the radius of the electron cloud

in the ring anode is about 2r ^ e r e  r is the Larmor radiusLr Lr
in the ring anode. Matching magnetic field lines between the ring

and point anodes, the electron cloud radius in the point cusp is 
1/2r, = 2 (Rr ) where R is the radius of the ring anode and r is the 1 Lp * Lp

Larmor radius in the point anode. Ware and F a u l k n e r ^ , on the other

hand, suggest a typical value for r, = 20r which is about 1/5 of1 Lp
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1/22 (RrT ) - A value of r, = 20r was assumed for this experimentLp 1 Lp
along with the approximation A$ = 0.5

In this experiment, the applied potential, is the same as 

the electron injection voltage, Ug , and not equal to the more 

negative potentials applied to the other cathodes. The reason for 

this is that the electrons will escape through the magnetic gap 

with the smallest applied potential.

Using Eqs. (2-1) to (2-4) , an approximate electron density can 

be calculated for this experiment. Listed In Table I are typical 

operating parameters for the UMR experiment. Substituting the 

parameters into Eqs. (2-1) and (2-2) , the electron densities obtained 

for the ring and point anode regions are 2.0xl0'L0 and 0.84xl01<3 cm 3, 

respectively. The point anode has the smaller of the two density 

values and thus it is the limiting anode in confining the plasma.

Equation (2-4) gives a density in the central plasma region of
, r , 1 0  -31.5x10 cm

In order to obtain a complete theoretical description of the 

plasma parameters (electron and ion temperature and density, the 

potential depression in the cusp anode regions, and the electron and 

ion potential barriers), a set of nonlinear and algebraic equations 

which depend on the externally applied magnetic field, the electron 

injection energy and current, the pressure and the applied 

anode-to-cathode voltage must be solved. Until this problem has been 

solved, we are limited to approximate mathematical equations and 

noting trends in the relation between various parameters obtained 

from previous experimental work.
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TABLE I. Typical Operating Parameters for the UMR Experiment.

Electron injection voltage: Ue 500 V

Electron injection energy: We = 500 eV

Base pressure: P = •~610 Torr

Operating pressure: P = -510 Torr

Magnetic induction

ring cusp: Br = 3000 Gauss

point cusp: Bz = 5000 Gauss

Ring gap half-width: ar = 0.38 cm

Point gap radius: aP = 0.7 cm

Empirical relations assumed:

Electron cloud radius

ring cusp: dl ss 9 r- n J 5 ]  2 r cmLr
point cusp: rl = 20 r cm ̂  Lr

Electron temperature: kTe 0.15 W eV^8] e
Ion temperature: kT,i 0.12 W eVf6'81 e
Potential depression in the anode: A$ *0.5 $ statvolt A
Plasma potential: $P

T610.6 $ statvolt1 A
Ion potential: i <E> - A$ statvolt P

*1 statvolt = 300 Volts
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III. EXPERIMENTAL CONSIDERATIONS

A. Electromagnetic Cusp Experiment

Figure 3 is a photograph of the experiment and Table II lists

pertinent information regarding the major components of the experiment.

The chamber, constructed of 304 and 316 stainless steel, is

cyclindrical in shape. It has eight diagnostic ports and two ports

for the point cusp electrodes and electron gun, see Fig. 4. Hollow

copper wire wound around each half of the chamber and two end coils

which fit over the point cusp ports comprise the coils. Two arc

welders supply approximately 600 amperes of current to each of the

coils. 600 amperes of current is equivalent to a magnetic induction

of approximately 3000 Gauss in the ring cusp and 5000 Gauss in the

point cusp. Figure 5 is a plot of the magnetic field lines and

surfaces of constant magnetic induction generated by the computer

code MAFCOL for 600 amps through the coils. Using the innermost

magnetic field lines as the plasma boundary, the plasma volume and
3 2surface area are found to be 469 cm and 1584 cm .

The coils are water-cooled to prevent overheating. The cooling

system is a closed loop cycle. Water is pumped from a 1 cubic meter
6 2tank through the coils under 2.8x10 dyne/cm (40 psi) pressure and 

returns through a large heat exchanger to the tank. Four fans are 

placed above the heat exchanger to improve the cooling capacity of 

the system.

Also shown in Fig. 5 is the relative size and location of the

point and ring cusp electrodes. The point cusp electrodes are



Klystron, wavemeter, 360° phase shifter and variable attenuator 
are setting on the table in front of the experimental device.

Fig. 3. Photograph of the Electromagnetic Cusp Experiment.
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TABLE II. Pertinent Information on Major Components 
of the UMR Experiment.

CHAMBER

inside diameter: 24.6 cm 

inside length: 17.8 cm 

number of diagnostic ports: 8 

inside diameter of ports: 3.4 cm 

MAGNET SYSTEM

magnet coil wire: copper
2cross-sectional area: 0.8 cm

2center hole cross-sectional area: 0.5 cm 

cooling system: water under 40 psi pressure 

current source: 2 arc welders

rated: 1000 amps at 50 volts

obtainable: 600 amps at 50 volts 

coil resistance: 0.083 ft 

magnetic field strength obtainable at 600 amps 

point cusp region: ^5000 Gauss 

ring cusp region: ^3000 Gauss 

VACUUM SYSTEM

dry-vane mechanical pump

vacuum obtainable: ^20 Torr 

liquid nitrogen cryosorption pump
-3vacuum obtainable: ^10 Torr

ionization pump
-7vacuum obtainable: £10 Torr
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TABLE II. (cont.)

> “ 6base pressure in chamber: £10 Torr
total conductance of connecting tubes: ^12 liter/sec. 

ELECTROSTATIC PLUGGING SYSTEM

point cusp electrodes, anode and cathode 

inside diameter: 1.4 cm 

length: 3.0 cm

separation between electrodes: 1.3 cm 

ring cusp electrodes

anode gap width: 0.76 cm 

anode radius: 16.1 cm

cathode: 0.8 cm diameter hollow steel ring 

cathode radius: 17.8 cm 

ELECTRON GUN

filament: directly heated thoriated tungsten wire mesh 

maximum output current: ^10 milliamps 

anode and grid: same dimensions as other point cusp electrodes 

separation between anode and grid: 1.3 cm 

cathode: flat circular disk placed approximately 0.3 cm

behind filament
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0 10 20 01

Fig. 4 Schematic Diagram of the Electromagnetic Trap Showing 
Location of Diagnostic Ports and Cusp Electrodes.



Fig. 5. Magnetic Field Lines and Surfaces of Constant Magnetic Induction for the Electromagnetic Trap.
f—*
CD
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hollow cylinders. A gap in the wall where the flange of the two 

chamber halves fit together forms the ring cusp anode. A hollow 

steel loop, resting on four insulating posts outward from the 

anode gap, forms the ring cusp cathode. Nominal operating voltages 

for the point cusp cathode are -5 to -7 kilovolts and -5 kilovolts 

for the ring cusp cathode.

The electron gun consists of a cylindrically shaped anode and 

grid in front of the filament. The grid is used to pulse the 

electron beam. The filament of the electron gun is directly 

heated by its own power supply. Increasing the current through the 

filament increases the thermionic emission current from the filament. 

The electron injection voltage is supplied by a separate power 

supply. Thus, the electron beam current can be varied while 

maintaining a constant injection voltage.

B. Operation of the Microwave Interferometer

A schematic of the experimental arrangement is illustrated in 

Fig. 6. The components of the microwave interferometer are: 

klystron, variable attenuator, wavemeter, tunable waveguide tee,

transmitting and receiving antennas, tunable detector, variable
-y yattenuator, 360° phase shifter, EH tuner, and klystron power supply.

Upon leaving the klystron, the microwaves are split into two 

paths. In one, which is referred to as the transmission path, are 

the transmitting and receiving antennas. In the other, referred to
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1. KLYSTRON, VARIABLE ATTENUATOR 

AND WAVEMETER

2. TRANSMITTING AND RECEIVING 

ANTENNA

3. TUNABLE DETECTOR

4. 360 ° PHASE SHIFTER

5. VARIABLE ATTENUATOR

6. EH TUNER

7. KLYSTRON POWER SUPPLY

8. OSCILLOSCOPE

9.  POINT AND RING CATHODE H. V.  
POWER SUPPLY

10. ELECTRON GUN FILAMENT POWER 

SUPPLY

1 1 .  ELECTRON GUN CATHODE H. V.  
SUPPLY

Fig. 6. Schematic Diagram of the Microwave Interferometer. O
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as the reference path, are the phase shifter, attenuator and EH tuner. 

The latter, along with the tuning stub on the detector, are adjusted 

so the reference wave interferes destructively with the transmitted 

wave yielding a null output in the absence of a plasma. When a 

plasma of sufficient density is present in the transmission path, a 

shift in phase occurs which unbalances the circuit. The resulting 

output is recorded on the oscilloscope.

The operation and service manual for the Hewlett Packard 715A 
[9]Klystron Power Supply describes the controls and their functions, 

and the general operation of the power supply and reflex klystron. The 

klystron generates a 20.0 GHz signal and is tunable over a frequency 

range of approximately ±10%. Knowing the frequency of operation of 

the klystron is more important than tuning the klystron for a 

particular frequency.

The correct procedure for energizing the klystron is described

in Ref. [10]. With the klystron modulated at 1 kHz, the reflector

voltage can be adjusted to give a rectangular pulse shape. Having

tuned the klystron for maximum power at the desired frequency, the

reference path of the interferometer is tuned so the reference wave

will interfere destructively with the transmitted wave. The

attenuator varies the amplitude of the wave in the reference path to

match the amplitude of the wave in the transmission path. The phase

shifter varies the phase of the reference signal through 360°. The 
>■ y tEH tuner and the tuning stub at the detector act as a phase shifter.. 

When the amplitudes are matched and the tuners are adjusted properly, 

the detector signal can be nulled with the phase shifter making
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<p = 180° where <J> represents the phase angle between the waves from 

the two arms of the interferometer. Reference [11] gives a more 

complete description of the microwave components.

Upon completing the above adjustments, a 1 kHz rectangular wave 

pulse with some given maximum amplitude at </> = 0° should be seen on 

the oscilloscope. If the tuning stub on the phase shifter is rotated, 

the amplitude of the 1 kHz signal will decrease smoothly to zero, 

tj) = 180° . Continued rotating of the tuning stub will again increase 

the amplitude of the pulse to the same maximum value, <|> = 360°.

Slight readjustment of the modulation or reflector voltage may be 

necessary to maintain a consistent maximum signal amplitude and a 

clean rectangular pulse shape.

Plotting the amplitude of the signal obtained from the scope 

versus the phase angle (j) introduced by the phase shifter, the plot 

in Fig. 7 is obtained. The equation for this curve is

Vmax,, .V = — — (1 + cos cf>) .

The equation can be solved for <j> in terms of the voltage readings 

obtained from the scope.

The procedure for obtaining data is as follows: First, the 

magnetic field is energized and the maximum amplitude of the 

microwave signal is recorded. The phase shifter is adjusted so the 

amplitude is approximately half the maximum. The reason for doing 

this is that any phase shift about <J> = 90° (see Fig. 7) will appear 

as a larger deflection on the scope than would the same phase shift



VO
LT

AG
E 

RE
AD

IN
G 

FR
OM

 O
SC

IL
LO

SC
OP

E
PHASE ANGLE <J> (degrees)

Fig. 7. Oscilloscope Voltage Variation as a Function of Phase Angle. N)CO



24

about <J> - 0° or 180°. Next, the electron beam is energized, producing 

a plasma, which causes the amplitude of the signal to change. This 

value is also recorded. Several readings are then taken with the 

plasma alternately turned "on" and "off" and then averaged. Finally, 

the maximum deflection is measured again and averaged with its 

initial value, since it may drift a few percent.

Thus, a maximum reading vmaxf a reading at approximately half the 

maximum V^alf with no plasma present and a reading with the plasma 

present V are obtained. With these readings, the phase angle for 

the microwaves in a vacuum and in a plasma can be found from,

2V
<|>v = Arc cos ( ~ -5----1) (3-1)

max

<f> = Arc cos -1). (3-2)
^ max

The difference between the two phase angles gives the phase shift A<J> 

due to the plasma,

A<f> = - (+ -*v> • (3-3)

Appendix A describes the operation of the confinement device 

while Appendix B describes some of the major problems encountered in 

operating the experimental device.

C. Microwave Interferometer Phase Shift-Electron Density Relation

To use the microwave interferometer effectively as a diagnostic
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tool, a relationship between the frequency of the microwave signal,

the wavelength of the signal in the plasma and the electron density

must be determined. This relationship is called a dispersion relation

and is derived in Appendix C. For an electromagnetic wave propagating

through a vacuum this relation is k = co/c where k (:'.: 2ir/X ) , 1 andv v v v
a) are the wave number, wavelength and the frequency of the

electromagnetic wave. A subscript p on k, X and co indicate

quantities in reference to the plasma. The speed of light, c, is the

phase velocity, v , of an electromagnetic wave propagating through a P
vacuum.

Because of the alignment of the microwave antennas with the 

magnetic field, only propagation perpendicular to the magnetic field,

0 = 90°, needs to be considered. The waveguide is situated so the

electric field vector, E, of the electromagnetic wave is parallel to

Appendix D. This particular alignment of the electromagnetic wave 

with the magnetic field is referred to as the "ordinary wave" because 

it has the same dispersion relation as if no external magnetic field 

were present. The dispersion relation for the ordinary wave is 

derived in Appendix C and is repeated as

the external magnetic field BQ. Actually the wave propagation, k, 

is not always perpendicular to B^ and a general case is discussed in

k ^  =  ( m V )  [ 1  -  (co / c o ) 2 ]P P (3-4)

where

4irn e e
2 ^

m
4 1/2= 5.64x10 (n ) radians/sec e (3-5)
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is referred to as the plasma frequency, is the electron density, 

m is the electron mass and e is the electronic charge in esu.

Figure 6 illustrates the experimental arrangement of the 

microwave interferometer. The signal in the reference path is 

adjusted for a null output at the detector in the absence of a 

plasma. When a plasma is present, the wavelength of the signal, and 

thus its phase through the plasma, are changed and the signal at the 

detector is no longer zero.

The phase constants for a vacuum and plasma of thickness L are

d> = 2u ( — ) = k L radians * v X vv

and (3-6)

<l> = 27T (t— ) = k L radians.P a pP

The phase advancement introduced by the plasma in the transmission 

path becomes

A<|> = -/L (k - k ) dx. (3-7)
0 P v

Substitute Eq. (3-4) and the expression for k^ into Eq. (3-7) to 

obtain

n (x) 1/2
A<|> = - / [1 - (1 - — ---) ] dx

C 0

2 2where n^ = (to m/4ne ) corresponds to a critical density associated

with the signal frequency to and defined by the plasma frequency
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relation and n^(x) is the electron density at a position x along the

transmission path. If n^fx) at any point along the transmission path

becomes greater than n^, the microwave signal will be cut off. To

first order in n (x)/n , e c

A<j> dx. (3-8)

An average electron density over the path L can be defined as

fL n (x) dx
o e

Solve Eq. (3-8) for the integral and substitute this into the above 

equation to obtain

e L 2ir

or

n[cm ■*] 118 4 (o)/2tt) [Hz ] A<f> [rad] 
L [ cm] (3-9)

Equation (3-9) is the desired relation between the average electron 

density, the frequency of the microwave signal, the thickness of the 

plasma and the measured phase shift.
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IV. RESULTS

A. Discussion of Errors

The average electron density is found from Eq. (3-9). The 

microwave frequency is determined from the wavemeter in the 

interferometer. The path length is approximated from Fig. 5 and 

the phase shift is obtained experimentally as described in 

section III-B.
10 -3The error bars are quite large, typically about ±1.3x10 cm , 

which is about 50% of the largest values. The error in the electron 

density is given by the equation

6ne
ne

1/2

' O ' <T>

where <5 represents the error in a reading.

The plasma thickness, as measured from the magnetic field line 

plot of Fig. 5, is approximately 7 cm with an error of ±1.5 cm. The 

error in reading the oscilloscope is ±1 mm, whereas, the maximum 

deflection of the signal as compared with the reference (no plasma) 

signal is approximately 3 mm. Using Eqs. (3-1) through (3-3), it is 

found that the phase shift varies from about 1 degree to 6 degrees.

Thus, it can be seen that the largest contribution to the error 

is the small voltage deflection on the oscilloscope. Increasing the 

amount of the deflection will reduce the size of the error. This can 

be accomplished by using a lower frequency interferometer or, 

preferably, by increasing the plasma density through modifications to 

the experiment.
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B. Electron Confinement Time

The plasma confinement time is closely related to the electron 

"e-folding time" or electron confinement time which can be measured. 

There are several mechanisms by which plasma can be lost from the 

electromagnetic trap. Electron-ion recombination need not be 

considered for this experiment. The diocotron instability does not 

seem to lead to rapid plasma loss . The electron energy

distribution function in the plasma is truncated at the electron 

potential barrier height e$e> thus, electrons can be lost by diffusion 

in velocity space over the potential barrier. The same mechanism 

leads to loss of ions.

Electrons can also be lost by diffusion across the magnetib 

field due to collisions of the electrons with other particles. (This 

loss mechanism has been neglected in cusp geometries since the loss 

rate through the cusp openings was much greater. However, with 

electrostatic plugging in the cusp regions, the cusp losses have been 

greatly reduced.) For this device, the principle loss mechanism is 

classical diffusion, the diffusion across the magnetic field lines 

due to electron-neutral atom collisions.

A high voltage spark gap switch was used to pulse the grid of the 

electron gun. A continuous injection of electrons is required to 

maintain the electron space charge by replacing those electrons lost 

from the trap. When pulsing the electron gun on and off, the electron 

density can be measured as a function of time from the interferometer 

signal displayed on the oscilloscope. From this information, the

confinement time for electrons can be determined. Data were taken at



30

a pressure of 10 Torr hydrogen gas. The magnetic induction in the 

point cusp was 5030 Gauss and the electrons were injected into the 

trap with energies of 500, 600, 750 and 1000 eV. Figures 8 and 9 

illustrate the results of this experiment. The time required for 

the electron density to decrease by a factor of e is a measure of 

the electron confinement time. For injection energies of 500, 600, 

750 and 1000 eV, the corresponding experimental confinement times 

for electrons are 80, 115, 93 and 37 psec. The largest error is 

20 visec. These data points are plotted in Fig. 10.
[121The diffusion time for the UMR experiment is approximated as

r 2, Lmax, ,  l r .  n , „-9 4 t„ = (— -— )/(5.9x10 p)ri JL
sec (4-1)

where p is the background gas pressure. The diffusion across the 

magnetic field lines occurs most rapidly in the ring anode region

because of the small dimensions. Thus, r is the Larmor radius inL
the ring gap and r is the distance between the centerline in the Lmax
ring anode and the magnetic flux line that grazes the anode surface.

This flux line is determined from the field lines in the point anode.

From the magnetic field line data in Fig. 5, it is found that

r =0.05 cm.Lmax
The theoretical diffusion time, t  , is plotted as a function of 

electron injection energy in Fig. 10 for comparison with the 

experimental values of the electron confinement time. The agreement 

between theory and experiment is within 65%.
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Fig. 8. Time-Decay of Electron Density at
Injection Energies of 500 and 1000 eV.
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Fig, 9. Time-Decay of Electron Density at
Injection Energies of 600 and 750 eV.
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ELECTRON INJECTION ENERGY WE (eV)

Fig. 10. Dependence of Electron Confinement 
Time on Injection Energy.
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C. Electron Density

Figure 11 illustrates the electron density as a function of

electron injection current at 500 eV injection energy and at a 
-5pressure of 10 Torr hydrogen gas for various magnetic fields in

the point cusp. A voltage of -5000 volts was applied to the other

point cusp and ring cusp cathodes. For each magnetic field, the

electron density shows a rapid increase to about 2 mA injection

current and changes to a gradual, almost linear, increase to 10 mA.

If a linear least-square fit is drawn for the data to the right of

I = 2 mA (Fig. 12) , the electron density as a function of electron

injection current and magnetic induction can be more easily seen.

From the linear portion of the = 5030 Gauss curve in Fig. 11

or 12, the electron density is found to be approximately 
10 -3(2.5 ± 1.3)xl0 cm .

The electron density in the central plasma region, calculated
10 -3from Eq. (2-4), is approximately 1.5x10 cm for a magnetic 

induction of 5000 Gauss in the point cusp and an electron injection 

energy of 500 eV. The theoretical and experimental densities agree 

to within experimental error.

The dependence of electron density on injection current can be
[13]seen from the electron conservation equation

dn I e e ,
— — = —  + n v dt eV m m a n n. r e l n vu - e H n v e ve

where and v  are the electron diffusion loss rates across the H ve
magnetic field and in velocity space over the potential barrier $ ,
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ELECTRON INJECTION CURRENT I£ ( mA)

Fig. 11. C'ependence of Electron Density on Injection
Current for Different Magnetic Inductions.,



Fig, 12. Dependence of Electron Density on Injection Current (Least-Squares Fit) . OJ
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n v is the effective plasma source due to ionization of incident m m
neutrals, n. is the ion density, a is the effective recombination l 1 r
coefficient and V is the plasma volume. The loss rates v„ and vH ve
are discussed in Ref. [12]. For the steady state condition, the 

equation becomes

ne
I /eV + n v e_______ m m

(v + v + a n. ) H ve r l
(4-2)

Initially, the electron density will increase as the injection 

current is increased. This increase in density occurs because the 

additional electrons will replace the electrons lost from the system, 

increase the potential well depth and ionize neutral atoms. As the 

injection current is increased further, the space charge limitations 

in the anode cause A4> to become large and to decrease, increasing 

v . Any additional injection current will be lost through the cusp 

openings. Thus, the electron density will reach some saturation 

value and any further increase in the injection current will have no 

effect on the density. The electron density associated with the 

increasing A$ can be determined from Eqs. (2-2) and (2-4).

Figure 13 illustrates the results of injecting 500 eV electrons
-5 -6into the magnetic trap at 10 Torr hydrogen gas and 4x10 Torr air 

with = 4190 Gauss. The electron density at the pressure of 4x10 

Torr air shows the same general behavior as at 10 Torr hydrogen.

The observed densities differ very little as a function of pressure. 

However, the percentage of neutral gas ionized increases with 

decreasing pressure from about 6% at 10  ̂Torr to about 14% at
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ELECTRON INJECTION CURRENT I c (mA)b
Fig. 13. Dependence of Electron Density on Injection

Current for Different Pressures.

10
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4x10  ̂Torr.

The dependence of electron density on pressure can be seen

through the expression for x , Eq. (4-1), and the electronH
conservation equation, Eq. (4-2) , where v = The term n v inM ^ H H m m
Eq. (4-2) also depends on pressure where n^ is the density of the 

neutral atoms.

Figure 14 shows the electron density as a function of electron

injection current for injection energies of 500 and 1000 eV at a 
-5pressure of 10 Torr hydrogen gas and a magnetic induction in the

point cusp of 5030 Gauss. As shown, the electron density shows

little dependence on injection energy. On the other hand, the data
[21obtained by Pankrat'ev using a different diagnostic technique 

showed the ion density increasing over two orders of magnitude for 

injection energies varying from 500 to 1500 eV. A simultaneous 

solution to a complete set of equations may provide better insight 

to the dependence of density on injection energy, but such 

theoretical studies are not yet complete.

Figure 15 shows a plot of the electron density from Figs. 11 or 

12 versus the square of the magnetic induction for a constant 

injection current. The electron density appears to vary linearly with 

the square of the magnetic induction, however, the error bars are too 

large to permit firm conclusions.

If Eq. (2-3) for the Larmor radius in the point anode is 

substituted into Eq. (2-2) , an equation showing explicitly the 

behavior of the electron density on the applied anode-to-cathode 

voltage and the magnetic induction is obtained. This equation is
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ELECTRON INJECTION CURRENT IE (mA)

Fig. 14 Dependence of Electron Density on Injection
Current for Different Injection Energies.
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Fig. 15. Dependence of Electron Density on Magnetic Induction.
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(V

5.84xl07 f,$ B2 1 A z
point 2 5 2  .

f2f3We[9 + I ln(
a BP z

3-37f (f W )2 3 e
1/2 )]

(4-3)

where f = A$/$ , f = r /r and f = W /W . The injection energy 1 A 2 1 Lp 3 ex e
is equal to e4> because the injection voltage applied to the electron

gun cathode is also the applied voltage. Using the parameters listed

in Table I, it is found that f =0.5, f = 20 and f = 0.55. From
1 2  3

Eq. (4-3) , the electron density in the point anode and in the central 

plasma region will increase slightly with injection energy (or 

applied voltage) and with the square on the magnetic induction which 

is in general agreement with the results obtained from Figs. 14 and 

15.

Summarizing, it is found that:
10 -31. The error bars are quite large, typically about ±1.3x10 cm

2. The electron density in the central plasma region is

approximately 2.5xl0'L0 cm Fig. 11 or 12, and agrees with the

theoretical density to within experimental error for a
-5B = 5000 Gauss, W = 500 eV and p = 10 Torr. z e

3. The electron confinement time is 80 ysec, Fig. 10. Generally, 

the theoretical curve agrees with the experimental points to 

within an error of 65%.

4. The electron density rises very rapidly to about 2 mA injection 

current and then levels off to a gradual increase. The electron 

density also increases with magnetic field, Figs. 11 and 12. The 

theoretical dependence of electron density on injection current
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is found in Eq. (4-2).

5. The electron density shows little dependence on pressure,

Fig. 13, but the fraction of neutral gas ionized increases,with 

decreasing pressure.

6. The electron density shows little dependence on injection energy, 

Fig. 14, but tends to vary linearly with the square of the 

magnetic induction, Fig. 15. The theoretical dependence on 

injection energy and magnetic induction indicates a behavior 

similar to Figs. 14 and 15.
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V'. CONCLUSIONS

The results indicate that the confinement scheme will confine a 

plasma and that the plasma behaves approximately as expected. The 

density generally increases with electron injection current and with 

magnetic induction. The plasma electron density, so far, is less 

than the neutral gas density. The theoretical estimate of electron 

density is consistent with experimental values for the UMR 

experiment. The theoretical and experimental electron confinement 

times agree to within 65%.

If the modifications (see Appendix E) increase the electron 

density as planned, more meaningful data can be obtained and a 

complete parametric study over a full range of electron injection 

energies, pressure and magnetic induction should be possible.
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APPENDIX A

OPERATION OF THE PLASMA CONFINEMENT DEVICE
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There are four precautions that must be taken while operating 

the experiment. Two of these are related to potential health 

hazards.

1. Avoid electrical shock.

2. Avoid eye hazards (from glass breaking on vacuum system). 

The other two involve potential damage to the equipment.

3. The cooling water to the magnet coils must be flowing under 

40 psi pressure before and while the welders are operating.

4. The klystron cooling fan must blow a stream of air across 

the klystron while its power supply is operating.

The procedure for operating the cusp device is as follows:

1. Turn on the klystron cooling fan.

2. Turn on the main power switch to the klystron power supply 

and turn the modulation switch to CW to allow the klystron 

and power supply to warm up.

3. Turn on the cooling water pump. The pressure should 

indicate 40 psi pressure.

4. Check the magnet cables and high voltage cables to the 

ring and point cusp cathodes for possible shorts.

5. Turn on the power supply to the electron gun filament and 

gradually increase the current through the filament.

6. Perform the power peaking and alignment procedure as 

described earlier.

7. Turn on the ring and point cusp power supplies and set 

for the desired voltages.
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8. Energize the magnetic field and set for the desired current.

9. Turn on the power supply for the electron gun injection 

voltage and set for the desired voltage.

10. Perform the experiment.

Figure 16 is a checklist for recording initial settings. Close 

attention should be kept to the magnet coil outlet water temperature. 

The temperature in the two hottest hoses should not exceed 85°C.

For shutdown, all power supplies should be turned off. The 

klystron cooling fan should remain on for a few minutes after 

shutdown to provide additional cooling of the klystron. The power 

supply to the electron gun filament should be turned down until 

the filament glows dimly.
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ELECTROMAGNETIC CUSP EXPERIMENT: EQUIPMENT CHECKLIST AND SETTINGS

operator & assistant ..................

date/starting time .....................

cooling water pressure ..........  (psi)

check magnet cables.....................

east welder, voltage............ (V) .

current............ (A) .

west welder, voltage............ (V) .

current............ (A) .

water temperature.......................

inlet.............. (C) .

outlet.............. (C) .

point cusp voltage.............. (kV) .

ring cusp voltage................ (kV) .

cathode heater .........................

variac.............. (div)

voltage............ (V) .

current .............(A) .

klystron fan on? .......................

beam voltage........ (V) .

reflector voltage . . (V) .

current............ (mA) .

initial pressure, log scale. . . . (Torr) 

pulser parameters, if used ............

Fig. 16. Electromagnetic Cusp Experiment: 
Equipment Checklist and Settings.
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APPENDIX B

PROBLEMS ENCOUNTERED IN OPERATING THE EXPERIMENT



Several problems have been encountered which should be

mentioned. The present electron gun filament design, as mentioned

earlier, is two layers of thoriated tungsten mesh approximately 
20.6 cm in area. Several other filament designs have been tried, 

none of which has worked satisfactorily. Some of these designs are 

directly and indirectly heated tantalum wire and foil with and 

without a lanthanum hexaboride coating, tungsten mesh with coatings 

of strontium-barium-calcium oxide, and lanthanum hexaboride. The 

filaments have either overheated (with the coating sputtered onto 

the ceramic insulators), or the coatings became too brittle and 

broke off, or the wire mesh overheated and tore in half.

Another problem encountered was the inability of the ring 

cathode to hold a large voltage. Upon taking the chamber apart at 

the main flange, a small screw which had fallen down into the ring 

gap region was found. It had shorted the cathode to the chamber 

wall. Later, it was found that the screw probably came from a 

microwave antenna flange.

During the time the chamber was disassembled, a flat steel 

ring was installed on each of the ring anode surfaces with eight 

screws. The purpose of the ring was to reduce the anode gap 

thickness from 0.76 cm to 0.3 cm for the reasons stated in section 

II-B. A few months later there was trouble obtaining a plasma. 

After several attempts to correct the problem, the chamber was 

disassembled. One of the anode rings had warped and melted in two 

different places. The warped ring had partially blocked the anode 

gap and shorted the plasma electron sheath to ground.
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One problem which has been bothersome from the beginning is a 

poor base pressure in the chamber (10 ^ Torr). Whenever heat was 

applied to a diagnostic port containing a microwave waveguide and 

antenna for the purpose of baking out the chamber, the pressure 

would rise to a very high level- Upon disassembling the chamber 

for modifications, it was found that this port, when cleaned with 

acid, apparently had not been thoroughly rinsed with water and some 

green powder had formed on the waveguide and inside the port.
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APPENDIX C

DERIVATION OF A GENERAL DISPERSION RELATION 

ELECTROMAGNETIC WAVE PROPAGATING THROUGH A

FOR AN 

PLASMA
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There are two levels of approach to plasma theory. The first

of these is based on the direct solution of the Boltzmann transport

equation. This approach is also referred to as the microscopic,

statistical or kinetic theory description. The kinetic theory

approach is capable of providing a more complete description of the

dynamics of the plasma. However, this procedure is mathematically

more difficult. The second method is based on using a closed set

of moment equations derived from the Boltzmann equation to describe

the behavior of the plasma. This description (also referred to as

the macroscopic, hydrodynamic or fluid description) describes the

plasma in such quantities as number density, average velocity,

pressure and temperature. This method has the merit of relative

mathematical simplicity and is applicable when the phase velocity (v^

=a>/k) of the wave is much greater than the characteristic thermal

speed in a collision-free plasma (referred to as the "low
[141temperature approximation")

The moment equations and Maxwell's equations will be used to 

obtain the desired dispersion relation. The dispersion relation as 

derived from the kinetic theory is given in Ref. [15] p. 111. For 

plasifia parameters expected for the UMR experiment, this relation will 

reduce to the same relation as derived from the fluid equations.

A plasma consists of a collection of electrons and positive ions
» • "V “Vwith each species described by a distribution function f(r,v,t) such 

that f(r,v,t) dr dv represents at time t the probable number of 

particles with velocities between v and v + dv and with positions 

between r and r + dr. Some of the macroscopic variables are defined
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a) The number of particles at position r at time t is given by

n(r,t) = n/f(r,v,t) dv

where n is the total number of particles of a given species divided 

by the volume of the plasma.

b) The average velocity of the particles at position r and time t 

is given by

V(r,t) Jvf(r,v,t) dv 
/f(r,v,t) dv

c) Similarly, the current density is given by

J(r,t) = l  v y v f  (r,v,t) dv
a

- I  V , (r,*>
a

where the summation is over the various particle species a and q^ is 

the electronic charge of the species under consideration,

d) and the pressure tensor,

P(r,t) = n rnf (v - V) (v - V)f (r,v,t) dv.

The Boltzmann transport equation is

(_  + v .Vr + a.Vv)f(r,v,t) = (gf) (C-l)
collisions

where and represent the gradient operators in coordinate, r, and
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velocity, v, space respectively. (-|̂ ) represents the time rateat coll ^
of change of f resulting from collisions, v and a F/m) represents 

the velocity and acceleration of the individual particles. There 

is a separate Boltzmann equation for each particle species. F can 

be adequately represented by the Lorentz force

F = q E (r,t) + q v xB(r,t)

where E and B denote the electric and magnetic fields respectively 

which satisfy Maxwell's equations

v *i = i! 3  + i |§c c 3t (C-2)

V xe = i  al
c 3t (C-3)

-)• ~yV*E = 4irp and V*B = 0q (04)

where p = / n q . q u a a ^ a -y y yMultiplying Eq. (C-l) by 1, mv, and m w ,  and assuming f becomes 

sufficiently small at large values of the velocity, the following 

moment equations for each particle species are o b t a i n e d ^ '16'̂ ,

+ V-nV = 0 dt (05)

nm(-|̂  + V*V)V - nq(E + V *B) + V*P = -m/nv(-|̂ -) dv (06)
coll



59

9 ~y _ ~ y ■> -► - y  - y T q .~ y  ~y ^ ■>—  P + V*(Q + VP) + P-VV„ + (P*WJ + —-*(Bxp - PXB)dt 0 0 0 me
cr ,"$* 1 ->■ ->■ •+■ ->* cf 1 -->■ d -> d ->- mnP(E + -  V x b) ] V - mnV[^(E + -  V x b) ) + mn [—  V V + V —  V jm c 0 m c O  d t O  d t O

= (—  P ) l3t coll; (C-7)

T -*•where A denotes the transpose of A and is the velocity of the

center of mass of the particles. Summing these equations over all

species of the system and assuming only electrons and one species of

ions, the following equations are o b t a i n e d ^ ^ ^ ,

3—  p + V•J = 0, dt q

_ - y  - y3 ~ y - y  - y  ~y j xb _ ->■Pm r - v  + Pm (V-V)V - P E ----—  + V-Pm dt m q c = 0,

3 ->■ “>■ >—y -> -> T e " ̂ •+ —>• ->—  P + V* (Q + VP) + P*VV + (P*VV) + — (Bxp - pxB) d t me
~ y  - y  ~ y !->•->* ~y - y  - y 3 ~y- (J - p V) (E + - VXB)-(E + -  VXB) (J - P  V) = —  Pq c c q dt

where p and p are the charge and mass densities, e is the electronic q m
charge (esu), Q is the heat flow tensor and J is the total current 

density. These equations are respectively referred to as the 

equation of continuity, equation of momentum transfer and the 

equation of motion of the pressure tensor. An equation for Q could 

be obtained by taking the third moment of the Boltzmann equation, 

however, this equation would involve higher moments of the 

distribution function and again the system of equations would not be
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closed. The system of equations can be terminated by setting
->■ #V•Q = 0 which is equivalent to assuming there is no heat flow in 

the system (see Ref. [17] p. 46).

In studying wave phenomena, high frequency oscillations will 

perturb the electrons and have a lesser effect on the positive ions, 

creating regions of local charge density p^. Thus, as an 

approximation, only the equations for electrons will be used.

Consider a uniform plasma of electron density nQ at rest in a 

uniform magnetic field, B^, with no electric field or plasma currents 

present. Assume that a plane electromagnetic wave is traveling in 

the direction of the vector wave number k and perturbs the plasma 

such that

n. ni <<c no

B1 << Bo

(C-8)

where the zero subscript terms refer to the constant equilibrium

quantities and the one subscript terms refer to the space and time

perturbed quantities. I is the identity matrix, p (= mcT) is the

equilibrium scalar pressure. allows for anisotropy of the pressure
[14]tensor during perturbation Substitute Eq. (C-8) into the fluid
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equations, Eqs. (C-5) to (C-7), for electrons to obtain a set of 

linearized moment equations

9_
at (C-9)

m 3_J
e at 1 + n 0 e t 1

1 ■+•- —  J XB + V*P = 0 c 1 0 *1 (C-10)

a_
at

kT T— [V-J I + 7J. + (VJ.) ] = 0 e l  1 1 (C-ll)

where collisions, all second order terms in the equation of 

continuity and in the equation for momentum transfer, all nonlinear 

terms, and those involving the magnetic field in the equation of 

motion of the pressure tensor have been neglected. These are

essentially the assumptions of low temperature and weak magnetic
.. .. [14,15] fields

Assume the perturbed electric field and current density vary in 

space and time as

E = E ei(5̂  ' wt) 1 1

~ i(k*r - cut) 
J1 " Jle

(C-12)

Taking the divergence of Eq. (C-ll) to obtain

| _ (v.pi) - —  [27(V-J.) + (V-V)Jl dt 1 e 1 1 = 0. (C-13)

Solve Eq. (C-10) for V*P^, substitute this into Eq. (C-13) and use

Eq. (C-12) to obtain
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. mu> 
1 —  e + n0eEi +

V Ji T •» ~---—[ 2kk• + k»k]J.e 1 0.

Rearranging the equation to obtain

El = -i 4ir (~) [1
wP

0)
-  i(-

ce
0) X )  -

kT (2kk* k*k)]J. = 0
mui

(C-14)

where

U)P = (■
4irn e e

m

2
-)

1/2
5.64xl04 (n ) e

1/2 radians 
sec

6B
■* 0 , , „7_ r_ , radiansco = ---= 1.76x10 B„ [Gauss]--------ce me 0 sec

are referred to as the plasma frequency and the electron cyclotron

resonance frequency, respectively. The coefficient of is the
-1tensor resistivity, a , of the plasma. It can be inverted to obtain 

the plasma conductivity tensor a  and dielectric tensor e.

Without loss of generality, a coordinate system can be choosen 

where the z-axis lies along the steady magnetic field, B^, and the 

vector k lies in the x-z plane. Thus, k and u can be written as

k = ]j (ui/c) (C,0,?)

to =  ( 0 , 0 , oj ) ce ce

where y is the index of refraction (= c/v ), v is the phase velocity,P P
£ and £ are the direction cosines of k. k and y can be complex. Prom 

equation (C-14), the coefficient of becomes, in matrix form
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where

l-6(l+252) iY -2655
-1 . . io a = -x 4ir — r -iY 1-6 0ztoP 2-2655 0 1-6(1+25 )

Y =
(0ce . k --- and 6 = 2 kT V — r •to 2me

Note that 6 is the square of the ratio of the electron thermal speed 
to wave phase velocity which is required to be small for the low 
temperature approximation. The reciprocal of the resistivity is the 
conductivity

a  = x-
<o / (4tt(i)) _£_____

(1-6)2(1-36) - Y2[l-6(1+2C2)]

X

1-26(1+C2) + 62 (1+2C2)

iY[1-6(1+25 )]

2655(1-6)

-iY[1-6 (1+25 ) ] 

1-46+362 

-i2Y655

2655(1-6) 

i2Y655 

1-26(1+52)

+62(l+252) - Y2

(C-15)

where the coefficient is understood to multiply each element of the 
matrix.

The linearized form of Maxwell's equations, Eqs. (C-3) and (C-4),
are

4ir -* 
c J1 + 1  3_ 

c 3t
-> (C-16)



Substitute Eq. (C-16) into the curl of Eq. (C-17) and use Eq. (C-12) 
to obtain

kxkxE, + —  e*E, = 0 1 2  1c
(C-18)

where

e I + i (C-19)

Eq. (C-18) can be written as

-*■ -> co ~[kxkx + —  e • ]E^ = 0. 
c

(C-20)

This is a set of homogeneous equations. The determinant of the
coefficients of must vanish to insure a nontrivial solution.

- yFor k in the x-z plane and using Eqs. (C-15) and (C-19), this 
condition becomes

2 2 2 1-y ? - 0  -a y 0xx xy xz

-0 yx

y2?C-azx

, 21-y -0 -ayy yz

-0 l-y2£2-0zy zz

= 0 (C-21)

where 0 , 0 , **' are the respective elements of the conductivityxx xy
tensor each multiplied by
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(ui /O))2_____________ E_______________  .
(1-6)2(1-36) - Y2[1-6(1+2C2)]

(C-21a)

If 5=1 and 5=° in Eqs. (C-21) and (C-21a), the dispersion relation 
for wave propagation perpendicular to the external magnetic field,
Bg is obtained. This dispersion relation has two components, one 
component for E of the wave parallel to ("ordinary wave") and the 
other component for E of the wave perpendicular to B^ ("extraordinary 
wave"). The dispersion relation for wave propagation parallel to the 
external magnetic field is obtained by setting 5=0 and 5=1 in 
Eqs. (C-21) and (C-21a). There are three components to this 
dispersion relation, a left and a right circularly polarized wave 
and wave motion parallel to the external magnetic field. See 
Ref. [16], pp. 182-200 and Ref. [18], chapter 4, for additional 
discussion of the different waves. Propagation at any angle other 
than the two mentioned is possible but the dispersion relation 
becomes quite complicated.

For propagation perpendicular to the external magnetic field, 
Eqs. (C-21) and (C-21a) combine to give

[V2 1 +
(oi /to)P
(1-6)

2

- ] { [ 1  -

(to /to) 2 (1-6) ______E____________
[(1-6) (1-36)-(w /to)2] ce

to 2 2 - (to /to)2 - 46
- [1 - (-£) -------- E--------- — ]} = 0. (C-22)

[ (1-6) (1-36)- (to /to) ] ce

In the approximation of low temperature, the ordinary wave is
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not coupled to the magnetic field and the expression in the first 
bracketed term is used. The second bracketed term represents the 
dispersion relation for the "extraordinary wave", with E polarized 
perpendicular to B^. This term is coupled to the magnetic field 
through the expression for w . To first order in temperature

2
v ord = 1 -

(mp/u))'

1 - kT. U>

me
T ! - ( / ) ]2 0)

or

k2
P

2 2
to u> kt

me2 (C-23)

where k^ is the wave number for the ordinary electromagnetic wave 
propagating through the plasma. Ebr the expected range of electron 
temperatures and densities (see Table I) Eq. (C-23) reduces to

- 22 to
* - ~rt 1 ~ (J£) ]. (C-24)

P  2  01
C

This is the dispersion relation to be used in relating the electron 
density to microwave data.
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APPENDIX D

EFFECTS OF OTHER WAVE MODES
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Equation (3-4) gives the dispersion relation for an
-y  ~yelectromagnetic wave with its E vector parallel to BQ and 

propagating perpendicular to B^. However, since the direction of

the magnetic field is changing along the propagation path of the
~y ~yelectromagnetic wave, both and its E vector will have components

~y ~yparallel and perpendicular to Bq . k^ can be considered as the 

resultant of several waves propagating through the plasma. There 

are four waves of interest. These are (see Ref. [ 18] p. 130): 

ordinary wave: kjBQ, E If

kord = ' (<ApA>)2] (D-l)

-> - y  - yextraordinary wave: kj_BQ , E_̂ B̂

ex = (tu/c)ll -
1 - (oi /w)

{------ — r}J

1 - (
2 2 0) +0) ce *)
0)

(D-2)

~y ~y ~yleft and right hand circularly polarized wave: kliB^, E^B^

2 < V W>k, .. = (w/c)2 [l - -— r2-— — 1l,r 1 ± (i) /oi ce
(D-3)

2 2where the temperature correction term, [1 - (w /ca) icT/mc ], has beenP
neglected since this term is approximately equal to one for this 

experiment.

The wave propagation vector through the plasma can be represented 

as
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2 ,2 k = xk j + p ord ykL  + (1-x-y,kl,r (D-4)

where x and y are the fractions of the total wave comprising the

ordinary and the extraordinary wave, respectively, and (1-x-y) is

the fraction with k parallel to B,.. The values of these fractionsP 0
are determined mainly by the angle between and B^. This angle 

varies along the propagation path and with the distance from the 

center line connecting the two waveguide antennas.

Substitute Eqs. (D-l), (D-2) and (D-3) into Eq. (D-4) and 

expand the denominator in the last two terms to obtain

kP (1+z) 1/2 ord (D-5)

where

y[-fe2 (l-b2) (1+C^+C^t* • 0 + b 2] + (1-x-y) [-b2 (-aia^i• • •) 3
(1—b2) (1-b2)

(D-6)

and

a2 = (to /to)2, ce

b2 = (to /to)2 ,P

C2 = (to /to)2 + (to /to)2, ce p

If Eq. (D-5) is substituted into Eq. (3-7) for k , the equation forP
A<t> becomes
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** - - } L  i u t 2>1/2 kord - kvi a*.

1/2Expand (1+z) in the above equation to obtain

A* = -/L [(kord - kv)+(f - f- + •••) kord] dx.

Substitute the expression for k (Eq. D-l), into the above
2 1/2 °r<J

equation and expand (1-b j to obtain

...) - i + . ..)

• • •) ] dx.

Neglecting the higher order terms, the equation for A$ becomes

M  « 2 ^ r  /Lne(x) (1 - H  <d-7>2Cnc 0 6 b Z  2

2which is similar to Eq. (3-8) except for the term (1-z/b ).

In reference to Fig. 5, the innermost set of magnetic field 

lines form the plasma boundary. The ellipses are surfaces of 

constant magnetic induction. Moving from the center outward, these 

surfaces have values of 260, 540, 820 and 1100 Gauss, 3040 Gauss in 

the ring cusp region and 5030 Gauss in the point cusp region. In 

the wave propagation region of interest, the magnetic induction 

varies from zero to 1000 Gauss. With = 1000 Gauss,

w = 1.8xl010 sec 1 and to /w = 0.14. For an expected electronce ce
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10 -3density of 1.5x10 cm , oĵ /u) = 0.053. Using these approximations 

in Eq. (D-6) , the error in approximating by kQr(j is listed below 

for possible values of x and y along with the error if the electron 

density where increased by an order of magnitude.

X y error (n = 1.5x10^ cm ) e error(1.5X1011

0.0 0.0 16.0% 16.5%

0.0 0.8 4.8 5.0

0.0 1.0 2.0 2.1

0.8 0.15 1.1 1.1

1.0 0.0 0.0 0.0

Wave propagation parallel to BQ corresponds to x=0 and y=0 while 

x=l, y=0 corresponds to the ordinary wave. Thus, there is little

error in assuming k^ to be represented by
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APPENDIX E

PROPOSED MODIFICATIONS TO THE EXPERIMENTAL DEVICE
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The chamber is currently undergoing several modifications. The 

3.4 cm ID point cusp ports will be replaced with 5.5 cm ID tubes.

The three tubes which connect the chamber to the vacuum system will 

be removed and the ionization pump will be connected directly to 

the point cusp port. At the other point cusp, the 5.5 cm tube will 

be adapted to a 15.2 cm ID "cross" with a small ionization pump 

attached to the "cross". The effective pumping speed will be 

increased from 12 liter/sec to approximately 50 liter/sec. Internal 

heaters will be installed in the chamber for bakeout.

With the larger space in the point cusp, a more rugged electron 

gun can be constructed using a commercial filament.

Additional coils will be wound and placed over the larger point 

cusp ports to provide a £ 6000 Gauss.

After sufficient data has been been taken with these 

improvements, one of the steel rings which was installed and removed 

earlier will be welded onto the ring anode decreasing the ring anode 

gap thickness to 0.53 cm. Data will then be taken with the smaller 

gap thickness to determine the effect of the smaller ring anode 

dimension on the electron density.
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