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ABSTRACT 

For decades, Neutron Depth Profiling has been used for the non-destructive 

analysis and quantification of boron in electronic materials and lithium in lithium ion 

batteries. NDP is one of the few non-destructive analytical techniques capable of 

measuring the depth profiles of light elements to depths of several microns with 

nanometer spatial resolution. The technique, however, is applicable only to a handful of 

light elements with large neutron absorption cross sections. This work discusses the 

possibility of coupling Particle Induced X-ray Emission spectroscopy with Neutron 

Depth Profiling to yield additional information about the depth profiles of other elements 

within a material. The technical feasibility of developing such a system at the Missouri 

University of Science and Technology Reactor (MSTR) beam port is discussed.  

This work uses a combination of experimental neutron flux measurements with 

Monte Carlo radiation transport calculations to simulate a proposed NDP-PIXE apparatus 

at MSTR. In addition, the possibility of implementing an Artificial Neural Network to 

perform automated data analysis of NDP is presented. It was found that the performance 

of the Artificial Neural Network is at least as accurate as traditional processing 

approaches using stopping tables but with the added advantage that the Artificial Neural 

Network method requires fewer geometric approximations and accounts for all charged 

particle transport physics implicitly.  
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1. INTRODUCTION 

1.1. NEUTRON DEPTH PROFILING  

Neutron Depth Profiling is a non-destructive technique for characterizing the 

depth profile of certain light elements such as 10B and 6Li in a material. NDP is one of a 

few non-destructive techniques that can accurately measure boron concentration in the 

surface of a material [1]. It is an important technique for measuring the concentration and 

distribution of light elements in several technologically important materials, along with 

Auger Electron Spectroscopy (AES), Secondary Ion Mass Spectroscopy (SIMS), and 

Rutherford Backscattering Spectrometry (RBS) [2, 3].  

Auger Electron Spectroscopy has good spatial resolution and sensitivity to low-Z 

elements but is limited to nanometer depths (without ion milling, which modifies the 

surface being analyzed). Secondary Ion Mass Spectroscopy is standard method for 

characterizing elemental depth profiles but it requires sputtering the surface and is 

therefore a destructive technique. Rutherford Backscattering Spectrometry is a non-

destructive technique capable of measuring heavy element depth profiles to micron or 

tens of micron ranges though it relatively insensitive to light elements. A technique 

related to RBS is Elastic Recoil Detection Analysis (ERDA). Light element analysis is 

substantially easier with ERDA though detection limits are likewise high. NDP offers the 

advantages of nanometer depth resolution, range of depth profile, low detection limits 

(i.e. high sensitivity), without modifying the surface of the sample. That said, most NDP 

analysis is specific to a small number of light elements. In NDP, a well-collimated beam 

of low energy neutrons passes through a thin sample in vacuum. 
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Some light elements, such as boron and lithium, contain naturally abundant 

isotopes with large cross sections for thermal neutron absorption (10B and 6Li). When 

these reactions produce a light charged particle (e.g. a proton or an alpha) the depth of the 

interaction can be determined by NDP. For example, in neutron capture by 10B, an α 

particle and 7Li ion are emitted. These particles can be emitted with two possible energies 

since the 7Li nucleus can be formed in either the ground state or an excited state. Ignoring 

energy loss mechanisms, the target nuclide is uniquely identified from the Q-value of its 

reaction. This Q-value can be inferred from the measured kinetic energy of either emitted 

charged particle. The reactions for boron-10 are: 

 𝑛 + 𝐵 → 𝐿𝑖3
7 (0.84 𝑀𝑒𝑉) + 𝐻𝑒(1.47𝑀𝑒𝑉) (93.7%)2

4
5

10
0
1  (1) 

 𝑛 + 𝐵 → 𝐿𝑖(1.01 𝑀𝑒𝑉)3
7 + 𝐻𝑒(1.78 𝑀𝑒𝑉) (6.3%)2

4
5

10
0
1  (2) 

Reactions (1) and (2) have branching ratios of 93.7% and 6.3%, respectively. 

Either of these charged particles, emitted near the surface, may escape before being 

stopped. The range of these particles depends on their energy, mass, charge, and the 

stopping power of the matrix. The charged particle loses energy on its way out of the 

specimen, primarily through electronic energy loss processes, though nuclear stopping 

becomes the dominant contributor to the energy loss at low energies.  Ignoring straggling 

effects, distance traveled and energy lost are in an essentially one-to-one correspondence. 

The elemental depth profile can be determined from the energy loss of the charged 

particle and knowledge of the material’s stopping power through the following relation 

based on the Continuous Slowing down Approximation (CSDA). 

The difference between the reaction Q-value(s) and measured particle kinetic 

energy gives the energy loss. From energy loss, one can infer the depth of the nuclear 
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reaction and therefore the concentration depth profile of the element of interest. To 

prevent the particle from losing the rest of its energy after leaving the sample surface and 

before hitting the detector, the sample and the detector are kept under vacuum. Figure 1.1 

shows a schematic view of a standard NDP apparatus.  

 𝑥 = ∫
1

𝑆(𝐸)
𝑑𝐸

𝐸0

𝐸(𝑥)

 (3) 

Here, 𝐸𝑜 is the particle’s initial energy, 𝑥 is the particle’s path-length in the material, 

𝑆(𝐸) is the stopping power of the matrix, and 𝐸(𝑥) is the remaining particle energy 

which is deposited in the detector after leaving the sample surface [4]. Note that this 

Equation does not take into account straggling effects and is therefore only accurate for 

high energy charged particles. To account for stopping in the target matrix, stopping 

tables or numerical calculations of the stopping power are generally used. 

Charged particles travel a distance on the order of microns in most condensed 

matter. This range depends on the type of emitted charged particle and its energy as well 

as the stopping power of the stopping medium. The energy loss of the particles after 

leaving the sample is measured with a charged particle detector (see Figure 1.2). 

Today, NDP systems are applied in a small number of different nuclear research 

reactor facilities around the world. For example, there are NDP facilities in the U.S. at the 

National Institute of Standards and Technology (NIST), Texas A&M, University of 

Texas-Austin, Penn State University (Figure 1.4), and Ohio State University (Figures 1.3 

and 1.5) [5-7]. Although many nuclei undergo charged-particle-producing neutron-

nuclear interactions, cross sections for these interactions, and therefore detection limits 

span several orders of magnitude for thermal neutrons. 
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Figure 1.1. Schematic of a Neutron Depth Profiling (NDP) Apparatus. 

 

Therefore, only a few nuclei with especially large cross section have been 

commonly used for NDP analysis. Table 1.1 has a list of these isotopes. Elements up to 

and including boron are generally well suited for NDP. Nitrogen and oxygen can be 

measured with NDP but have higher detection limits. Therefore, NDP analysis for those 

elements is only possible with longer acquisition times, a strong neutron source and when 

their concentration is high in the material. 
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Figure 1.2. NDP Process. 

 

 

Figure 1.3. Schematic of NDP System of Ohio State University (from [8]). 
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Figure 1.4. Schematic of Penn State Reactor Beam Port #4 and NDP Chamber (from [7]). 

 

 

Figure 1.5. Outside View of Ohio State University NDP Instrument (from [8]). 
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Table 1.1. Summary of the Light-Element That Could be Used for NDP. 

Nuclide Reaction 

Cross 

section 

(barns) 

Energy of emitted 

particles (keV) 

%Abundance or 

(atoms/mCi) 

Detection 

Limit 

(atoms/cm2) 

3He 3He(n,p)3H 5333 572 191 0.00014 4.2×1014 

6Li 6Li(n,α)3H 940 2055 2727 7.5 2.4×1015 

7Be 7Be(n,p)7Li 48000 1438 207 (2.5×1014) 4.7×1013 

10B 10B(n,α)7Li 3837 
1472(94%) 

1776(6%) 

840(94%) 

1013(6%) 
19.9 5.9×1014 

14N 14N(n,p)14C 1.83 584 42 99.6 1.2×1018 

17O 17O(n,α)14C 0.24 1413 404 0.038 9.4×1018 

22Na 22Na(n,p)22Ne 31000 2247 103 (4.4×1015) 7.3×1013 

33S 33S(n,α)30Si 0.19 3081 411 0.75 1.2×1019 

35Cl 35Cl(n,p)35S 0.49 598 17 75.8 4.6×1018 

40K 40K(n,p)40Ar 4.4 2231 56 0.012 5.1×1017 

59Ni 59Ni(n,α)56Fe 12.3 4757 340 (1.3×1020) 1.8×1017 

 

1.2. THE MISSOURI S&T RESEARCH REACTOR (MSTR) 

The Missouri University of Science and Technology Research Reactor (MSTR) is 

an open pool research reactor that operates at a maximum thermal power of 200 kW with 

a corresponding maximum flux of about 5×1012 cm-2 s-1 [9] (see Figure 1.6). The MSTR 

has been in operation since 1961 and has been used in different research projects 

spanning a range of subjects including materials science, nuclear medicine, reactor 
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physics and radiochemistry. MSTR is routinely used for Neutron Activation Analysis 

(NAA), in-core irradiations, criticality experiments, and measurements of the temperature 

and void coefficients of reactivity [9]. Recently the reactor has also been used for neutron 

spectroscopy and neutron tomography measurements [10, 11]. The reactor also contains 

an internet accessible hot-cell facility for conducting high dose irradiation and activation 

experiments [12]. 

The MSTR uses light-water moderation and natural convection cooling. The fuel 

is 19.75% enriched MTR plate fuel composed of U3Si2 dispersed in an Al matrix and clad 

in Al. The current reactor core configuration comprises 4 control rods, 12 full fuel 

elements, and 3 half-fuel elements. The MSTR has four control rods: three of them are 

shim (safety) rods while the fourth is a regulating rod.  The shim rods are composed of 

stainless steel with a 1.5% natural boron addition and are used for coarse reactivity 

control and to shut down the reactor. The regulating rod is made of stainless steel 

(SS304) and is used for finer reactivity insertions and to automatically maintain steady 

state reactor power. A plutonium–beryllium (PuBe) neutron source is used for low-power 

and subcritical operations.  

The MSTR has a 1.1×1.1×1.75 m graphite thermal column assembly located to 

the rear of the reactor core. The MSTR core can be positioned close to the thermal 

column, in which case it is in thermal-column-reflector mode (T mode). On the other 

hand, when water surrounds the core on all sides it is in water-reflector mode (W mode) 

[9, 13, 14]. Throughout the history of MSTR, the fuel has been reconfigured many times 

starting with core configuration 101 W and followed with increasing configuration 

numbers for each mode. 
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Figure 1.6. Side View of the MSTR. 

 

The current configuration, 128 W, and the previous configuration, 120 W, are 

shown in Figures 1.7 and 1.8 below. The key in Figure 1.9 indicates the meaning of each 

colored rectangle. 
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Figure 1.7. MSTR Core Configuration 128 W. 

 

 

Figure 1.8. MSTR Core Configuration 120 W. 

 

The core irradiation facilities in the MSTR include bare and cadmium lined rabbit 

pneumatic tubes for lower activity samples, a bare pneumatic rabbit tube connected to the 
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hot cell for high activity samples. In these facilities, the samples are brought to and from 

the reactor core using compressed nitrogen. 

 

 

Figure 1.9. Legend Description of Core Configuration. 

 

The bare rabbit tube allows irradiation with fast, epithermal, and thermal 

neutrons. The cadmium rabbit tube is used to filter out the thermal neutron component.  

Movable void tubes, an isotope production element and a core access element can also be 

positioned in the core grid plate depending on research needs. Other irradiation facilities 

include a source holder tube, a neutron beam tube, and the thermal column mentioned 

above. The beam port provides a beam of neutrons for ex-core irradiations and 

experiments.  

The MSTR beam tube consists of a sealed, air-filled aluminum tube protrude 

through the pool wall into the reactor pool to the edge of the core grid plate. The portion 

of the tube that penetrates through the pool wall terminates at an opening in a basement 



 

 

12 

experimental area. A stainless-steel shutter assembly is used to provide a collimated 

neutron beam, and consists of a fixed plug and a rotating shutter. An off-axis 70×44 mm 

Boral-lined rectangular duct passes through both plug and shutter. When the shutter 

assembly is closed, the middle segment of the shutter is rotated so as to break the neutron 

beam path. The plug in this case acts as a shield. In the open position, the shutter rotates 

such that the rectangular ducts align and form a path from the air-filled aluminum tube to 

the basement experimental area, separated only by a lead shield. The lead shield is 5.7 cm 

thick and is positioned before the beam path to reduce the prompt gamma flux in the 

basement experimental area. A cross-sectional view of the beam tube is shown in Figure 

1.10 [14]. 

 

 

Figure 1.10. The MSTR Beam Port Schematic. Dimension Details were Obtained from 

the Original Blueprints. 
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1.3. NEUTRON ACTIVATION ANALYSIS 

Neutron Activation Analysis (NAA) is a nuclear analytical technique used for 

determining the isotropic concentrations in pure elements or elemental concentrations in 

a compound or mixture. NAA is an exceptionally sensitive non-destructive technique for 

trace elemental analysis in a wide variety of materials. The first NAA experiment was 

conducted in 1936 by Hevesy et al. [15]. Since then, NAA has been further developed 

into a number of highly valuable analytical techniques and is routinely performed at a 

number of research reactors. Though NAA sometimes uses (α,n) neutron sources and 

neutron generators, the much higher neutron fluxes available at research reactors allow 

for a large number of elements in small volumes of material to be identified with 

exceptionally low detection limits [16]. 

In NAA, neutrons activate the sample material producing radionuclides. In a 

thermal spectrum nuclear reactor, neutrons are grouped into three main energy ranges: 

thermal, epithermal and fast. Thermal neutrons have an energy distribution described by 

the Boltzmann statistics of a non-interacting gas. The average thermal neutron at room 

temperature has an energy of 0.0253 eV and a speed of 2200 m s-1. Thermal neutrons are 

most often used in NAA experiments owing to the tendency for absorption cross sections 

to go as the inverse neutron velocity making them favorable reactions at low neutron 

energies. Epithermal neutrons are found in an approximate energy range from 0.5 eV to 

100 keV and have a characteristic slowing down spectrum described by an approximately 

1/E energy dependence. Fast neutrons range in energy from about 100 keV to 20 MeV 

[17]. Their energy spectrum is usually described with a semi-empirical Watt fission 

spectrum. 
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NAA is used for both qualitative and quantitative identification of elements in a 

specimen. In qualitative analysis, one identifies radionuclei in the activated specimen 

using one or more spectroscopic techniques. The characteristic decay radiations identify 

the radionuclei in the specimen. From this information, one can infer the target element 

or elements in the sample. Gamma ray spectroscopy is commonly used for this task as 

many activation products can be uniquely identified from the energies of their 

characteristic gamma rays. With the advent of High Purity Germanium Detectors, gamma 

spectroscopy has become a very powerful technique. Alpha, beta and X-ray spectroscopy 

are also used in certain circumstances. 

 In quantitative analysis, the number or intensities of specific gamma rays (or 

other radiations) emitted from the specimen can be related to a number of target atoms 

present in the sample. Analysis can be conducted based on the type of radiation, energy 

of radiation, intensity of radiation, and half-life of produced radioisotopes [18]. To permit 

quantitative analysis, one must also know, at the bare minimum, the mass of the 

specimen, the efficiency of the detector(s), the neutron flux, and the irradiation, decay 

and count times. Standards are sometimes used when the flux (or flux spectrum) is not 

well characterized. There are two types of gamma rays analysis depending on the 

timescale of the measurement. These are Prompt Gamma NAA and Delayed NAA. In 

Prompt Gamma Neutron Activation Analysis (PGNAA) the prompt gamma rays emitted 

during neutron irradiation are simultaneously detected by placing a detection system next 

to the specimen under irradiation. In Delayed Neutron Activation Analysis, the 

measurements are performed after irradiation while the specimen is undergoing 

radioactive decay [19]. 
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To summarize the entire NAA process, first, the target nucleus becomes unstable 

when it captures a neutron. This requires that the next heaviest isotope to the target is 

unstable. For the unstable nuclide to become stable again, the nucleus will usually 

undergo α, β-, β+, electron capture, γ decay, or any combination of these decay modes. 

Information about the neutron flux and concentration of the target can be known by 

measuring the activity of the unstable isotope [18]. Figure 1.11 illustrates the processes 

involved in neutron activation. 

 

 

Figure 1.11. Neutron Capture Reaction and Emission of Prompt and Delayed Neutrons 

[20]. 

 

Due to the high sensitivity of NAA and its ability to determine trace elemental 

concentrations, the technique has seen use in many different fields. These fields include: 

biology, medicine, geology, archeology, mining, and environmental research. NAA is 



 

 

16 

considered an ideal technique for determining the concentrations of a wide variety of 

trace elements in materials due to its sensitivity and accuracy [21]. 

In a traditional NAA experiment, an uncharacterized specimen is placed in a well 

characterized neutron flux. The known flux and measured activity are used to determine 

the target concentration. If the flux is not known but the target concentration is known, 

the same techniques can be used to measure the flux. This principle is used to 

characterize the flux in nuclear reactors. This approach is discussed further in Section 3 

where beam port characterization using gold foils was performed. 

1.4. ARTIFICIAL NEURAL NETWORKS 

Machine learning is a subset of artificial intelligence that incorporates a number 

of different algorithms to teach a computer to perform certain tasks without explicit 

instructions. In machine learning, algorithms learn from experience by modifying their 

response to input data. Artificial Neural Networks (ANN) represent a class of machine 

learning systems that use learning algorithms to mimic how an animal brain solves 

problems. Such algorithms can be classified into supervised and unsupervised learning 

algorithms. Supervised learning algorithms are the most generally used, while 

unsupervised learning algorithms are applicable to particular problems. In supervised 

learning an ANN trains itself using known pairs of input and output datasets. In 

unsupervised learning, networks have the ability to learn on their own without reference 

to known outputs [22].  

ANNs are inspired by the nervous system of the animal brain. The idea of 

artificial neurons was first posed by Warren McCulloch and Walter Pitts [23]. They used 
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it to simulate a biological nervous system. Since then, ANNs have been used in different 

fields. ANNs are a powerful tool used to solve diverse problems in science [24], 

mathematics [25], engineering [26], economics [27], and other fields [28]. An ANN is a 

non-linear modeling tool that can have a high accuracy in prediction and is able to 

identify relationships within large and complex datasets. For example, babies learn to 

identify objects by touching them. They learn to distinguish hard from soft and cold from 

hot through a continuous process of mapping sensory input (e.g. touch) to a subjective 

experience. Neurons in the human brain and their connections carry out the learning 

process in a similar way. A neuron receives signals from other neurons through 

connections. These signals are summed and passed through a threshold function. If higher 

than the threshold, the signal will pass towards the next connection. In an ANN, the 

threshold is referred to as an activation function. The activation function sets the criteria 

for deciding if the signal passes or not. Each connection has a weight associated with it. 

The weight is essentially a multiplication factor that scales the signal going into a neuron. 

The weighted signals in the neuron are summed and the resulting sum passes into the 

activation function. During the ANN learning process, weights are adjusted to minimize 

the error between known outputs and calculated outputs [29, 30].  

1.4.1. Training Algorithms.  The neural network updates connection weights 

during training using some metric of accuracy or error. The Mean Squared Error (MSE) 

between the known output and calculated output is usually used as a standard 

performance function. 

Optimum weights can be found when this error minimized. An ANN’s learning 

process consists of three steps which are: training, validation, and testing. 
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An ANN usually contains one input layer, one or more hidden layers, and one 

output layer. Each layer comprises one or more neurons. The neuron number in the input 

and output layers depend on the problem. Figure 1.12 represents an ANN with 2 input 

neurons, 3 hidden neurons, and 1 output neuron, and their associated connections.  

 

 

Figure 1.12. Example of a Simple Artificial Neural Network (ANN). 

 

The type of training algorithm chosen depends on the problem type, number of 

data points, and the complexity of the problem. There are different types of algorithms 

used for finding the correct weights between connections, including Levenberg-

Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) 

algorithms.  
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Table 1.2. Common Activation Function [29]. 

Function name Input-output relation 

Hard limit 

𝑎 = 0   when  𝑛 < 0 

𝑎 = 1   when  𝑛 ≥ 0 

Symmetrical hard limit 

𝑎 = −1   when  𝑛 < 0 

𝑎 = +1   when  𝑛 ≥ 0 

Linear 𝑎 = 𝑛  

Saturating linear 

𝑎 = 0   when  𝑛 < 0 

𝑎 = 𝑛   when  0 ≤ 𝑛 ≤ 1 

𝑎 = 1   when  𝑛 > 1 

Symmetric saturating linear 

𝑎 = −1   when  𝑛 = −1 

𝑎 = 𝑛   when  −1 ≤ 𝑛 ≤ 1 

𝑎 = 1   when  𝑛 > 1 

Log-Sigmoid 𝑎 =
1

1+𝑒𝑥𝑝−𝑛  

Hyperbolic tangent sigmoid 𝑎 = tanh 𝑛  

Positive linear 

𝑎 = 0   when  𝑛 < 0 

𝑎 = 𝑛   when  𝑛 ≥ 0 

 

LM is the fastest algorithm using a numerical approach to find the weights. 

However, for large networks, LM is less efficient due to memory requirements. Whereas, 

a probabilistic approach used in BR to reduce the performance index. There is no over 

fitting problem in the BR algorithm due to the probabilistic approach. In addition to LM 
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and BR methods, the SCG is the best method to use for large data sets due to its small 

memory requirements. A more comprehensive discussion of these algorithms can be 

found in [29, 31, 32].  

1.4.2. Activation Function.  The linear combination of the weighted neuron 

inputs pass through an activation function within the hidden layer neurons. Selection of 

the activation function depends on the problem in question. There are several types of 

functions that can be used as activation functions. The functions can be linear or 

nonlinear depending on the problem. Table 1.2 has commonly used activation functions. 

1.5. PARTICLE INDUCED X-RAY EMISSION 

Particle Induced X-ray Emission (PIXE) is an analytic method used to 

quantitatively determine the elemental composition in the surface of a material (see 

Figure 1.13). PIXE can provide compositional information about a material to depths on 

the order of a few microns to hundreds of microns, depending the ion specie used (e.g. H 

or He), the ion energy and the stopping power of the material. Light ions (H and He) with 

energies on the order of a few MeV are usually used in this analysis. Typical sources 

range from a radioactive source (i.e. an alpha source) to a medium energy van de Graff 

ion accelerator, to high energy proton cyclotrons.  

The basic interaction with of ions with target atoms is shown in Figure 1.14. Ions 

incident on matter may undergo elastic scattering (Rutherford scattering) with the nuclei 

or inelastic scattering (ionization and excitation) with the orbital electrons. When 

inelastic scattering results in the ionization of a core-shell electron, the excited target 

atom seeks to attain a lower energy state by reverting to its original electron 
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configuration, i.e. the ground state. It can do so when an outer shell electron fills the core-

shell vacancy resulting from the ionization collision. The resulting electronic transition 

can be accompanied by the emission of electromagnetic radiation in the form of X-rays. 

For low-Z elements, non-radiative Auger emission can also occur. X-ray emission and 

Auger are therefore competitive processes. These processes are shown in Figure 1.15. 

 

 

Figure 1.13. PIXE Spectrum [33]. 

 

While the Auger electrons are also useful for analytical purposes, it is the 

characteristic X-rays that provide information on the elemental composition of the film 

during irradiation in the PIXE technique [34]. Among the ion beam analytical techniques 

PIXE is a highly sensitive, multi-elemental technique and is routinely used in to 

characterize: thin films [35, 36], water [37], archaeological [38], and biological samples 

[33], to name just a few applications. 
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Figure 1.14. Particle Induced X-Ray Emission Process. (a) an Ion Ionizes a K-Shell 

Electron. (b) an L-Shell Electron Falls into the Resulting Vacancy Releasing a K-shell X-

Ray. 

 

 

Figure 1.15. (a) Charged Particle Impact Ionization of a K-Shell Electron (b) X-Ray 

Emission and (c) Auger Electron Emission. 
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1.6. OUTLINE OF THE DISSERTATION 

The remainder of this dissertation proceeds as follows. Section 2 presents a 

review of the relevant literature on Neutron Depth Profiling, Artificial Neural Networks 

and Particle Induced X-Ray Emission along with many applications of these tools and 

techniques. Sections 3-6 recount the main experimental, theoretical and numerical 

modeling tasks of this doctoral research project. Section 3 summarizes the experimental 

work done to characterize the neutron flux at the MSTR beam port. In Section 4 results 

from radiation transport calculations are used to evaluate the viability of building a NDP 

apparatus at the facility. Section 5 explores the use of an Artificial Neural Network for 

automated processing of NDP data and compares that approach with traditional data 

analysis methods. Section 6 demonstrates a concept for a new technique that couples 

NDP and PIXE to provide additional compositional information about a specimen. 
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2. LITERATURE REVIEW  

2.1. NEUTRON DEPTH PROFILING 

The NDP technique was introduced by Ziegler et al. [4] to study the boron 

concentration in semiconductors and other materials. This original measurements were 

performed at a neutron beam port of the Brookhaven National Laboratory High Flux 

Reactor (HFBR). The neutron flux from that beam port was 2.3×108 cm-2 s-1. A well-

collimated beam of thermal neutrons passed into a vacuum chamber and through a Si 

sample. The boron concentration profile in the sample was determined from the energy 

spectrum of the emitted alpha particles. The authors’ demonstrated that NDP was a 

different and more accurate alternative to the traditional electrical measurements used at 

the time to address the problem of determining boron concentration in silicon. NDP had 

the ability to profile boron with a depth resolution of 20 nm. Boron is an important p-type 

dopant for silicon and it is commonly added to silicon through ion implantation which 

produces heterogeneous boron concentrations in the surface. Therefore, measurement of 

the boron distribution in the semiconductor industry is of great importance as it affects a 

number of electronic and device properties. 

Muller et al. [39] introduced the use of a silicon surface barrier detector for more 

accurate NDP measurements. This detector has been widely adopted since then in 

different NDP facilities such as The University of Texas at Austin and National Institute 

of Standards and Technology (NIST). 

Later, Biersack et al. [40] applied the NDP technique to light elements other than 

boron. These included 6Li, 3He, 22Na, and 7Be. They also profiled isotopes implanted in 
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materials other than silicon, such as molybdenum and niobium. Downing et al. [41-43] 

also applied the NDP technique to boron, nitrogen, and lithium. Biersack and Fink also 

studied boron and lithium implanted in semiconductors [44]. 

Since then, NDP has been used extensively to profile Li in lithium-ion batteries, 

boron implanted silicon, and few other materials [7, 41, 42, 45-47]. To improve the 

sensitivity and resolution of the technique, various instrumentation modifications have 

been developed. A cold neutron [48] beam was used at NIST to improve the detection 

limits of NDP. A cold neutron beam is used instead of a thermal neutron beam to increase 

the probability of absorbing a neutron by the specimen. Most absorption reaction cross 

sections are inversely proportional to the neutron velocity. Thus absorption reaction rates 

tend to increase with decreasing neutron temperature. This modifications made led to 

both an increase in the neutron fluence in the beamline and a four-fold improvement in 

the detection limit over the previous depth profiling system. An illustration of the NIST 

cold neutron depth profiling chamber is shown in Figure 2.1 

Time-of-flight (TOF) measurements [7, 49, 50] have been used to decrease the 

uncertainty in the charged particle energy. Traditional spectroscopy using a barrier 

detector and TOF measurements have been compared [7]. In TOF-NDP, there is a timing 

start and stop signal to determine the velocity (hence energy) of the emitted alpha while 

in traditional NDP, residual kinetic energy of the charged particle is measured directly. In 

TOF-NDP, secondary electrons produced when the charged particle leaves the surface 

were detected with a microchannel plate (MCP) as shown in Figure 2.2. 

The signal was used as the TOF start trigger. A second microchannel plate was 

used to acquire the stop signal from the alpha.  
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Figure 2.1. Illustration of NIST Cold Neutron Depth Profiling Chamber (from [51]). 

 

The time-of-flight of the charged particle is the time elapsed between the start 

signal and when the particle hits the stop detector. The TOF apparatus had a significant 

resolution improvement over the traditional spectroscopy methods used in NDP. The 

reason for this improvement is that the energy uncertainty introduced from a timing 

measurement using microchannel plates is relatively small compared to the energy 

resolution of semiconductor detectors.  

Vacík et al. [52] used pulse shape discrimination to reduce the NDP background 

noise. This signal processing resulted in significantly less low energy noise.  To increase 
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the count rate for a low flux reactor, large angle coincidence spectrometry was used 

without corrupting depth resolution [53]. However, for this method to be viable, the 

sample should be thin enough for both charged particles to exit the sample. 

 

 

Figure 2.2. Schematic of Neutron Depth Profiling-Time of Flight (TOF-NDP) (from 

[50]). 

 

6Li depth profiling has been emerging in recent years. In situ measurements of 

lithium movement in thin film electrochromic coatings was conducted by Lamaze et al. 

using cold neutron depth profiling [54]. In this study, different bias voltages on the film 
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layers were taken for in situ measurements. Simultaneous optical transmission data and 

lithium NDP spectra were taken. Measurement of lithium migration was conducted on a 

complete, active device. This device was installed in the sample position in the neutron 

beam and electrodes were connected to either batteries or a power supply via electrical 

feedthroughs in the vacuum chamber. 

Benchmarking between two NDP facilities at NIST and UT-Austin, was 

conducted using lithium ion cell electrodes [55]. Cathodes of differing composition in 

lithium batteries were analyzed. These materials included: LiMn1/3Ni1/3Co1/3O2 and 

LiFePO4. Shape, concentration, and depth of the lithium were measured and yielded 

similar results at each facility. 

NDP was used to study the aging of lithium ion batteries [56]. To understand the 

loss of active lithium as a battery ages, lithium concentration measurements within a 

LiFePO4 cathode and graphite anode were conducted over the operational lifetime and 

correlated with ageing mechanisms. The effect of charging and discharging current rates 

(C-rate) was also studied in the lithium ion cell. The graphite anode was bonded to a 

copper substrate while the cathode was bonded to aluminum substrate. The electrolyte 

used in the cell was lithium hexafluorophosphate (LiPF6). The evolution of the lithium 

concentration profile before and after ageing is shown in Figure 2.3. 

In situ Neutron Depth Profiling has been used to provide temporal and spatial 

measurements of Li concentration and transport during charging and discharging  [57]. 

The apparatus used is shown in Figure 2.4. In situ NDP provides exceptional sensitivity 

in both temporal and spatial domains and is a powerful technique for studying battery 

technology. 
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Figure 2.3. Li Profile in LiFePO4/Graphite Cell Measured with NDP. The Figure on the 

Left Shows the Li Profile in the Graphite Anode Before and After Ageing. The Figure on 

the Right Shows the Same for the LiFePO4 Cathode (from [56]). 

 

 

Figure 2.4. Illustration of an In Situ NDP Apparatus for Studying Li Ion Batteries (from 

[57]). 
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2.2. ARTIFICIAL NEURAL NETWORK 

The first use of artificial neurons was in the 1940s by McCulloch and Pitts to 

model real biological neutrons. They consisted of two inputs and one output [23]. The 

authors demonstrated that an ANN can be used in computation. Rosenblatt [58] 

developed the perceptron network used in learning. He used randomly connected 

perceptrons to change the weights of the network. A mathematical method for adapting 

connection weights was developed by Nguyen and Widrow [59] to reduce training time. 

They used a gradient search method to minimize the mean squared error. This algorithm 

later became known as Least Mean Squares (LMS). 

Ghal-Eh et al. [60] investigated the use of ANNs for analyzing Prompt Gamma 

Neutron Activation Analysis (PGNAA) data. Their measurements involved the 

determination of NaCl content in a NaCl aqueous solution using an AmBe neutron 

source, and BGO detector. They trained their neural network using MCNPX-simulated 

spectra. 

Skrypnyk [61] used a combination of MCNP and Geant4 simulations to model the 

CdZnTe detector response to 75Co, 137Sc,131I,133Ba and 241Am sources. The spectra 

obtained were used to train a neural network. 

Detection of illicit drugs and plastic explosives using ANN was demonstrated by 

Ferreira et al. [62]. Their network had the ability to recognize illicit materials with an 

automated response in approximately 1 min. 

Varley et al. [63] developed a method to reliably characterize the spatial 

distribution of radon contamination in an area. Medhat [64] used an ANN to identify the 

naturally occurring radionuclides, 226Ra, 232Th and 40K in soil samples. 
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Kardan et al. [65] trained a neural network to unfold fast neutron spectra from 

threshold activation detectors. Their results showed that neural networks are efficient in 

predicting neutron spectra. Doostmohammadi et al. [66] also used a neural network 

trained with simulated prompt gamma spectra to identify elements a sample. They used 

MCNP to simulate the prompt gamma spectra produced by thermal neutron absorption in 

TNT sample. Their ANN model had the ability to identify elements correctly 96% of the 

time. 

Zadeh et al. [67] used an ANN for analyzing gamma spectra to determine the 

composition of cement. They used MCNP simulations to simulate neutron capture 

delayed gamma-ray spectra of samples with variable concentrations of Ca, Si, Al and Fe.  

Sang Hai-feng et al. [68] studied the carbon, hydrogen and oxygen contents in 

coal using the Pulsed Fast-Thermal Neutron Analysis method (PFTNA). A Bi4Ge3O12 

(BGO) detractor was used to measure the elemental makeup of coal. A neural network 

back-propagation (BP) model was used to process the data. Their study showed that a 15 

min acquisition time was needed when traditional data analysis was performed, while 

similar results could be obtained within a matter of seconds by the trained neural 

network. 

2.3. PARTICLE INDUCED X-RAY EMISSION 

X-rays were first discovered by Roentgen [69] using a cathode ray tube. Birks et 

al.[70] compared characteristic X-ray production from different specimens of Ti, Cr, Fe, 

Cu, Ge, Zr, and Au using protons and electron impact. Chadwick [71] was the first to 

reported  X-rays emission from alpha particle bombardment. He concluded that X-ray 
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emission was not practical for analytical purposes due to the low intensities observed. 

The use of Ion-Induced X-rays (IIX) for analytical purposes was first reported by Khan et 

al. [72] in 1965. In their experiments, a 100 keV proton beam was used to induce X-ray 

emission in thin films. A proportional counter was used to detect the X-rays. The low 

energy resolution on that early detector type prevented clear separation of certain 

elements. The historical name IIX later changed to Particle Induced X-ray Emission 

(PIXE). It is now regarded as a powerful and standard method for quantitative trace 

elemental analysis. It is used in diverse fields including biology, environmental science, 

and archaeology [38, 73, 74].  

Johansson et al. [75] were the first to combine a several MeV proton beam with a 

much higher energy resolution Si(Li) photon detector. They showed that PIXE is a highly 

sensitive multi-element technique capable of 10-12 g detection limits. Alpha particles 

were also explored as an excitation source by Watson et al. [76] and Flocchini et al. [77]. 

Heavy ions were used as an excitation source as early as 1970 [75]. Widespread adoption 

of heavy ion techniques, however, only became more common with the commodification 

of ion beams. The possibility of producing X-ray using heavy ions was reported by 

Garcia et al. [78]. They found that heavy ions were good at characterizing trace high-Z 

elements. Heavy ions produce very complicated X-ray spectra however. For this reason, 

they have not been pursued for multi-elemental analysis to the same extent as light ions. 

Moreover, fewer heavy ion impact cross section data libraries exist making quantitative 

analysis difficult. Accelerators that produce particle beams of energetic protons, alpha 

particles and heavy ions have made trace element analysis with PIXE possible in many 

different materials [76, 79]. 
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3. NEUTRON FLUX CHARACTERIZATION OF THE BEAM PORT OF THE 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY REACTOR 

3.1. OVERVIEW 

The primary purposes of the Missouri University of Science and Technology 

reactor (MSTR) are education, training, and research [80].  MSTR has various 

experimental facilities including: an isotope production element, in-core irradiation void 

tubes, bare and Cd-lined pneumatic irradiation systems (rabbit system), and a moveable 

core access element. Neutron beamlines are routinely used in fields of materials science, 

physics, polymer science, manufacturing, analytical chemistry and structural biology 

[81]. Neutron Depth Profiling (NDP) [55, 82, 83], Prompt Gamma Activation Analysis 

(PGAA) [84, 85], neutron radiography/tomography [86, 87], and Positron Annihilation 

Spectroscopy (PAS) [88, 89] are a few examples of techniques developed at beamlines of 

small research reactors [6].  

For the purposes of designing most beam port apparatus, it is necessary to know 

the magnitude and angular/spatial distribution of the neutron flux exiting a beam port. 

Neutron-sensitive radiograph imaging plates and gold foils have been used for 

characterizing the total flux at the Oregon State University TRIGA reactor beam port 

[84]. The neutron beam profile may be determined using a regular array of gold foils [90, 

91]. The combination of activation techniques and neutron imaging has also been used 

for characterizing the neutron beam profile at other facilities [6, 92, 93].  

Though most neutron beam line experiments utilize a primarily thermal or cold 

neutron spectrum, it is important to quantify both the thermal and epithermal flux in order 

to assess the possible influence of higher energy neutron interactions and interferences in 
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the experimental apparatus as well as to protect detectors and other sensitive electronics 

equipment. This section presents the experimental work performed to characterize the 

neutron flux spatial distribution and two group energy spectrum of the MSTR beam port. 

Information about the neutron flux at the beam port is needed in the simulations 

presented in Sections 4-6. 

3.2. BEAM FLUX CHARACTERIZATION USING NEUTRON ACTIVATION 

ANALYSIS 

Neutron Activation Analysis is a method that is routinely used to determine the 

concentration of trace elements in a matrix given prior knowledge about the neutron 

source strength and its spectrum or, indirectly, by comparing to the activation rates for a 

suitable set of comparable standards. The same approach can also be used to precisely 

characterize a neutron source given a known target (usually referred to as flux monitor), 

its mass, composition and appropriately weighted group cross sections and correction 

factors describing its activation and self-shielding [90, 94]. Indeed several methods 

relying on activation of metallic foils, wires and solutions can be used to characterize a 

reactor flux [95-97]. Briefly, a flux monitor is irradiated in a neutron field to activate 

nuclei producing characteristic decay radiations that can be quantified using 

spectroscopic techniques, such as gamma ray spectroscopy. Gold (Au) foils were 

irradiated at the beam port of the MSTR which is commonly used for measuring the 

neutron flux using the Neutron Activation Analysis (NAA). This method was used to 

determine the thermal and epithermal neutron flux and its spatial distribution at the 

opening of the Missouri University of Science and Technology Research Reactor 

(MSTR) beam port.  
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3.3. METHODOLOGY 

The neutron flux was experimentally determined using a foil activation method 

and compared to simulated results from an MCNP model of the MSTR beam port. The 

sample activity after irradiation is given by the basic form of the neutron activation 

Equation. 

 𝐴(𝑡𝑖𝑟) =  𝑁𝜎𝜙(1 –  e−𝜆𝑡𝑖𝑟) (4) 

where 𝐴(𝑡𝑖𝑟) is the sample activity at the end of irradiation, 𝑁 is the number of target 

nuclei, 𝜎 is the effective one-group microscopic cross section of the target nuclei, 𝜙 is the 

one-group neutron flux, 𝜆 is the decay constant of the activated nuclei, and 𝑡𝑖𝑟 is the 

irradiation time. The number (𝑁) of target nuclei is given by: 

 𝑁 =
𝑎𝑖𝑚𝑖𝑁𝐴

𝐴𝑖
 (5) 

where 𝑎𝑖 is the natural isotopic abundance of the target nuclide (at.%), 𝑁𝐴 is Avogadro’s 

number, 𝑚𝑖 is the target isotope mass, and 𝐴𝑖 is the isotope atomic weight. The sample 

activity after a decay time 𝑡𝑑 following irradiation is given by 

 𝐴(𝑡𝑑) = 𝐴(𝑡𝑖𝑟)𝑒−λt𝑑 (6) 

Equation (4) is deceptively simple in that the effective one-group cross section can 

depend quite sensitively on the neutron spectral shape, the dimensions of the flux 

monitor, and self-shielding effects. Failing to accurately account for these effects can 

result in large systematic errors in the measured flux. A less error-prone approach to 

quantifying the beam port flux considers the contribution from both thermal neutrons and 

epithermal neutrons and various correction factors for the foil material, its geometry and 

the irradiation geometry. 
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The thermal flux and epithermal flux parameter at the MSTR beam port were 

calculated using a modification of ASTM standard E262-13 [98]. This method compares 

the activation of a bare flux monitor to the activation of a flux monitor in a cadmium 

filtered spectrum to determine the thermal flux and epithermal flux parameter (magnitude 

of the 1/E slowing down flux), effectively breaking Equation (4) into two Equations, each 

with a different effective one-group cross section and flux. The method accounts for 

departures from non-ideal 1/𝑣 behavior as well as the effects of neutron self-shielding in 

highly absorbing activation foil materials, such as gold, which was used in these 

experiments. The thermal flux, 𝜙𝑡, and epithermal flux parameter, 𝜙𝑒, are given by 

 𝜙𝑡 =
1

𝑔𝜎𝑡𝐺𝑡ℎ
[𝑅𝑏 − 𝑅𝐶𝑑 (1 +

𝑔𝜎𝑡𝑓1

𝐺𝑟𝑒𝑠𝐼𝑜
+

𝜎𝑡𝑤′

𝐺𝑟𝑒𝑠𝐼𝑜
)] (7) 

 𝜙𝑒 =  
𝑅𝐶𝑑

𝐼𝑜𝐺𝑟𝑒𝑠
 (8) 

g is the Westcott factor which accounts from departures from ideal 1/𝑣 energy 

dependence of the cross section in the thermal range. 𝜎𝑡 is the thermal-averaged capture 

cross section. 𝑅𝑏 and 𝑅𝐶𝑑 are reaction rates for a bare foil and cadmium covered foil, 

respectively. 𝑓1 accounts for 1/𝑣 activation in the 5kT to 𝐸𝑐𝑑 energy range while 𝑤′ 

accounts for non-1/𝑣 behavior in the same range. 𝐺𝑡ℎ and 𝐺𝑟𝑒𝑠 are thermal and resonance 

neutron self-shielding correction factors, respectively. 𝐼𝑜 is the resonance integral. 

Though flux depression factors should normally be included when the activation foils are 

surrounded by a moderating medium, the present experiments were conducted in air and 

therefore moderation effects are negligible.  

The epithermal component Equation (8) assumes that all neutrons above the Cd 

cutoff energy behave as slowing down neutrons with an energy-dependent flux that goes 
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as the inverse neutron energy (1/E-dependence). In reality, the fission spectrum neutrons 

also add to the neutron flux at fission neutron energies, so a simple 1/E flux spectrum 

underestimates the reaction rate for fast neutrons. However, since the fission spectrum-

averaged cross section for radiative capture in 197Au (approx. 51 mb) is small compared 

to the resonance integral, this contribution is negligible. Nevertheless, the resonance self-

shielding correction factor calculated in the analysis did include a superimposed Watt 

fission spectrum term. The resonance self-shielding correction factor is given by 

 𝐺𝑟𝑒𝑠 =
∫ 𝜎𝑎(𝐸)𝑓(𝐸)𝜙(𝐸)𝑑𝐸

∞

𝐸𝐶𝑑

∫ 𝜎𝑎(𝐸)𝜙(𝐸)𝑑𝐸
∞

𝐸𝐶𝑑

 (9) 

where 𝑓(𝐸) is the energy-dependent resonance self-shielding correction factor. 𝜙(𝐸) was 

a superimposed 1/E+Watt fission spectrum weight function with an approximately 2:1 

ratio of fast to epithermal neutrons. Although there is considerably less self-shielding in 

the fast energy range, inclusion of the Watt fission spectrum term only accounts for about 

a 1% difference in the value of 𝐺𝑟𝑒𝑠 compare to the calculation only using the 1/E weight 

function. This is due to the small magnitude of the absorption cross section in that energy 

range. A similar argument can be made comparing the difference between the resonance 

integral and epi-Cd group cross section weighted by both 1/E and Watt spectrum terms. 

The resonance integral, by definition, only includes the 1/E term. Inclusion of the Watt 

term again only increases the group cross section by 1% of 𝐼𝑜. This can be taken to imply 

that the fast flux does not need to be known to accurately determine the epithermal flux 

parameter, at least up to a 2:1 fast to epithermal flux ratio. The authors will note that 

threshold nuclear reactions such as 58Ni(n,p)58Co and multi-foil spectral unfolding 

techniques can be used to measure the fast flux. 
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3.3.1. Experimental Procedure.  Based on the expected magnitude of the total 

flux at the MSTR beam port, gold activation foils were used for this characterization. 

Gold has a single stable isotope, 197Au, with a 98.7 barn cross section for radiative 

capture (197Au(n,γ)Au198) [98, 99]. Although self-shielding in gold complicates the 

subsequent analysis somewhat, its large cross section makes it suitable for measuring low 

neutron fluences. 198Au undergoes β- decay with a 2.7 d half-life to Hg-198 releasing a 

411.8 keV gamma in 96% of the beta decays [98, 99]. Six high-purity gold foils 

(Shieldwerx) of 25 μm thickness were irradiated in each experiment. The masses of each 

foil are included in Table 3.1. 

 

Table 3.1. Gold Foil Masses. 

Foil Mass (g) 

1 0.124 

2 0.116 

3 0.122 

4 0.114 

5 0.112 

6 0.062 

 

Two sets of gold foils were prepared and activated at the pool wall opening of the 

MSTR beam port. Six bare Au foils were irradiated in the beam. The second set was 

irradiated under the same conditions apart from the insertion of a 1 mm thick cadmium 

(Cd) filter between the beamline opening and the foils. Cd has a large thermal cross 
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section but also a exhibits an unusual energy dependence originating from a low-energy 

resonance allowing it to act, in some sense, as a high pass filter for neutron energy. If the 

thickness of the Cd filter is properly selected, it will allow the majority of neutrons above 

the so-called cadmium cutoff energy, 𝐸𝐶𝑑, to pass through and interact with the flux 

monitor.  The cutoff depends on the thickness of the Cd filter and its value, in part, 

determines the tabulated values of 𝑓1 and 𝑤′ used in Equation (7). Thus it is important to 

match the parameters in Equation (7) with the thickness of the filter used in the 

experiment. For the 1 mm thick cadmium filter used in this work and recommended in 

the ASTM standard, the Cd cutoff energy is 𝐸𝐶𝑑  =  0.55 eV. The cross section parameters 

for 25 μm thick, high purity Au-197 at this Cd thickness are given in Table 3.2. It should 

be mentioned that the self-shielding parameters, Gres and Gth were calculated using the 

beam geometry factors from [28,29] and ENDF/B-VII nuclear data [30] rather than using 

the tabulated values provided in the ASTM standard, which are only valid in the case of 

an isotropic neutron flux. 

Foils were suspended in front of the beam port opening in the array shown in 

Figure. 3.1. For the Cd filtered irradiations, a 1 mm sheet of Cd was placed between the 

foils and the beam port opening. Though the ASTM standard method calls for the Au 

foils to be encapsulated on all sides in 1 mm thick Cd boxes, the foils in these 

experiments were only shielded from thermal neutrons coming out of the beam port. 

Epithermal and fast neutrons, in principle, could be transmitted through both filter 

and Au foil, backscatter and be moderated by some materials behind the foils in the 

experimental area, re-enter and finally be absorbed by the foils thereby resulting in an 

undesirable flux contribution in either the thermal or epithermal groups. This is possibly a 
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legitimate concern when the foils are mounted on any material with even weakly 

moderating properties. However, as the space behind the foils was essentially empty apart 

from approximately 2 m of air and a beam stop, the likelihood of the transmitted beam 

being scattered and reabsorbed by the foils is negligible.  

 

Table 3.2. Cross Section Parameters of 25 μm Thick Au Foil and a 1 mm Thick Cd Filter 

[98, 100-102]. 

Parameter Value 

𝑓1 0.468 

𝐼𝑜 1550 b 

𝑤′ 0.0500 

𝐺𝑟𝑒𝑠 0.539 

g 1.005 

𝐺𝑡ℎ 0.991 

 

Irradiations were conducted at full reactor power (200 kW) for 4 hours. After 

irradiation, the foils were placed in a lead shielded High Purity Germanium Detector 

(HPGe, Canberra) to perform gamma spectroscopic analysis of the 411.8 keV 198Au 

photopeak. A traceable multi-isotope europium calibration source (containing 152Eu, 

154Eu, and 155Eu) was used to calibrate the detector efficiency as a function of energy. 

Eight photopeaks from 40-1408 keV were used in the efficiency calibration. Interpolation 

on a best fit polynomial was used to estimate the efficiency at 411.8 keV. Calibration 

source and foil spectra were analyzed using Canberra analytical software application, 
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PROSPECT [103]. The detector efficiency, ε, for each Eu photopeak was determined 

using 

 𝜀 =
𝐶

𝛾𝐴𝑡𝑐
 (10) 

where 𝐶 is the net counts in a given photopeak, 𝛾 is the intensity of the gamma-ray for 

the photopeak, 𝐴 is the source activity (known from the certificate of analysis and age of 

the source), and 𝑡𝑐 is the live counting time. The detector-to-sample distance was chosen 

to keep the detector dead time below 10%. The actual dead times were on the order of 

1%.  

The activation rates, 𝑅, for each foil (bare and Cd covered) were determined by 

 𝑅 =  
𝐶𝜆

𝑁𝜃𝛾𝜀
 (11) 

 𝜃 =  (1– 𝑒–𝜆𝑡𝑖)(𝑒–𝜆𝑡𝑑)(1– 𝑒–𝜆𝑡𝑐) (12) 

where 𝐶 now represents the number of counts for the 411 keV photopeak of 198Au. 𝜆 and 

𝛾 are the decay constant and 411 keV gamma ray intensity for 198Au. 𝑁 is the number 

density of target nuclei (197Au) calculated using Equation (5). 𝜀 is the efficiency 

interpolated to 411 keV from the Eu efficiency calibration. 𝑡𝑖, 𝑡𝑑 and 𝑡𝑐 are the 

irradiation, decay and counting times, respectively. The number of counts in the 411 keV 

photopeak was determined from 

 𝐶 =  𝐺 –  𝐵 (13) 

 𝐵 =  (
𝑀

2𝑛
) (𝐵1 +  𝐵2) (14) 

𝐶 is the net peak area (number of net photopeak counts), 𝐺 is the gross counts in the 

region of interest (ROI) with 𝑀 channels, and 𝐵 is the number of continuum 
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(background) counts in the same region of interest. The linear continuum counts, 𝐵, is 

calculated from the sample spectrum using Equation (14). 𝐵1 and 𝐵2 are the sums of 𝑛 

continuum channels to the left and right of the ROI region, respectively. The uncertainty 

in the number of counts was propagated from the uncertainties of the gross counts and 

continuum counts by taking the square root of the sum of the squared errors, assuming 

Poisson statistics. The uncertainty in the reaction rate included the uncertainty in the 

number of counts and the uncertainty in the efficiency calibration (about 5%). Other 

uncertainties that should, in principle, be included but were deemed to be too small to 

contribute to the final result include: dead-time correction factor; uncertainty in the 

irradiation, decay and count times; uncertainty in the foil mass; uncertainty in the gamma 

ray intensity; and the uncertainty in the decay constant. These were all insignificant when 

compared to the uncertainties from counting statistics and detector efficiency.  

Once the reaction rates for each of the flux monitors was determined, Equations 

(7) and (8) were used to determine the thermal and epithermal flux at each location at the 

beam port opening. Uncertainties on the thermal and epithermal flux values were 

propagated from Equations (7) and (8). Contributions included uncertainties on the 

following parameters: 𝑅𝑏, 𝑅𝐶𝑑, 𝐺𝑟𝑒𝑠, 𝐺𝑡ℎ, 𝜎𝑡 and the ratio 𝐼𝑜/𝑔𝜎𝑡. The uncertainties on 

the activation rates are discussed above. Other uncertainties were available from the 

nuclear data (i.e. 𝜎𝑡, 𝐼𝑜/𝑔𝜎𝑡) while the uncertainties on 𝐺𝑡ℎ and 𝐺𝑟𝑒𝑠 were estimated by 

propagating the uncertainties in the correction factors described in [100, 101] The 

majority of the uncertainty of the final flux values was found to originate from the 

uncertainty in the energy interpolation on the detector efficiency calibration curve. Given 

that 198Au only exhibits a single strong photopeak, it may be possible to reduce this 
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contribution to the uncertainty by using a high-efficiency gamma ray detector such as a 

large volume NaI well detector. 

 

 

Figure 3.1. Gold Foil Positions. The Small Circles (1-6) Represent the Gold Foils. The 

Outer Rectangle is the Rectangular Opening. All Lengths are in cm. 

 

3.3.2. Monte Carlo N-particle Code. The radiation transport code MCNP6 [104] 

was used to calculate the MSTR beam port neutron flux. MCNP is a general-purpose 

Monte Carlo radiation transport code to simulate transport and interactions of different 

types of particle radiation.  

Neutrons, photons, electrons and many other particles can be transported 

individually or together for applications ranging from nuclear reactor criticality and 

neutronics calculations, to dose reconstruction, simulation of radiation detector response, 

shielding design, and high energy physics processes. In the Monte Carlo radiation 
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transport technique, the trajectory and interactions of an individual particle constitute a 

history. Many histories are simulated and aggregate statistical information is stored in the 

form of tallies which measure quantities such as flux, energy deposition, and current 

[105].  

The MSTR model includes the reactor core, thermal column, fuel elements, grid 

plate, control rods, beam port, and pool water.  A major limitation of the model is that it 

assumes fresh fuel while the current core configuration contains fuel elements with 

different burnup histories. Only limited information about the core-averaged fuel element 

burnup is available and the fission product inventory can only be roughly predicted from 

burnup calculations. Cells at the end of the beam port were modeled to simulate the 

neutron flux corresponding to the experiment position, as shown in Figure 3.1. An energy 

card (E card) with sixty-nine energy bins was included with the flux tallies. The energy 

bins ranged from 10-10  to 18 MeV. An F4 tally, which calculates the cell-averaged flux, 

was used to obtain the neutron flux at each foil at the same positions as the experiment. 

The MSTR MCNP6 model uses the cross-section library ENDF/B-VI (.66c) for all 

isotopes.  

The MCNP calculations were split into a pair of uncoupled simulations. In the 

first, the entirety of the reactor core and beam port was included in the cell and material 

definitions (Figure 3.2). This input deck was used for a criticality (KCODE) calculation. 

The KCODE criticality calculation was performed with 1 million particles per cycle for 

5000 total active cycles with 50 passive cycles. All particles passing a surface plane near 

the beam tube surface were written into a surface source file using a Surface Source 

Write (SSW) card. A second input deck, which only comprised the beam port, pool wall 
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and part of the pool, and contained no fissile materials read in the histories tallied in the 

SSW card during the criticality calculation via a surface source read (SSR) card. 

Approximately 10 billion source particles (NPS) were used to obtain the subsequent flux 

tallies. The advantage of this method is that it greatly reduces the computational effort 

required to pass statistical checks in the neutron flux tally at the experimental end of the 

beam line. Neutrons recorded by the surface source write, being near the beam port, are 

more likely to be transported down it. By breaking the problem into separate parts, one 

creates a more efficient fixed-source problem where a greater portion of particle histories 

contribute to the final flux tally at the beam port opening and a lower average time per 

history. With this approach, all transport calculations could be performed on a desktop 

computer with no additional variance reduction.  

3.4. RESULTS AND DISCUSSION  

The experimental neutron flux values and the Monte Carlo simulation results are 

shown in Table 3.3. Thermal, epithermal and total (thermal+epithermal) flux values are 

tabulated with corresponding uncertainties for each foil. The experimental and calculated 

epithermal flux values were calculated by integrating the epithermal flux spectrum from 

the Cd cutoff (0.55 eV) to 100 keV, the transition energy between the slowing down 

region and the Watt fission spectrum. The MCNP calculations were found to consistently 

underestimate the experimental values for the thermal flux and total flux but overestimate 

the values for the epithermal flux. The variance between the experiment and the 

simulation is thought to be caused by a number of uncertainties and discrepancies  
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between the actual core and the MCNP model. Perhaps the most significant factor 

contributing to the discrepancies is the assumption of fresh fuel in the MCNP model. 

 

 

Figure 3.2. Top Down Cross Section of the MSTR. 

 

The actual fuel elements, which vary in burnup, require a larger thermal neutron 

flux to produce the same element-averaged fission rate as a fresh fuel element. Thus the 

MCNP calculations, which assume fresh fuel, systematically underestimate the thermal 

neutron flux required to achieve a specified power level. At the same time, the fast flux, 

which is approximately proportional to the fission rate, and therefore to the power, is also 
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roughly proportional to the thermal flux times the macroscopic fission cross section. 

Therefore, as the fuel is burnt and as neutron poisons are added, the ratio of the fast flux 

to the thermal flux decreases (spectral softening). This is observed in Table 3.3 by 

comparing the ratios of fast to thermal flux in the MCNP calculation (fresh fuel) to the 

ratios of the experimental values (irradiated fuel).  

 

Table 3.3. Experimental and MCNP Neutron Flux at the Gold Foils. 

Foil 
Exp. 

Thermal 

×106  cm-2 s-1 

Exp. Epi. 

×105  cm-2 s-1 

MCNP 

Thermal 

×106  cm-2 s-1 

MCNP Epi. 

×105  cm-2 s-1 

%Difference 

in (epi.+ thermal) 

flux 

1 7.9 ± 0.4 9.9 ± 0.4 5.2 ± 0.09 17 ± 1 23% 

2 5.5 ± 0.3 8.2 ± 0.3 3.1 ± 0.06 9.8 ± 0.8 35% 

3 7.6 ± 0.4 7.5 ± 0.3 4.1 ± 0.08 13 ±1 34% 

4 5.1 ± 0.3 6.8 ± 0.3 2.6 ± 0.05 8.1± 0.7 41% 

5 5.0 ± 0.3 5.6 ± 0.2 2.6 ± 0.05 8.1 ± 0.7 39% 

6 2.9 ± 0.2 5.6 ± 0.2 2.5 ± 0.05 8.1± 0.7 3% 

 

If, as a first approximation, one considers the systematic error in the total flux as 

constant flux correction factor (in this case 1.45), the average MCNP flux can be 

normalized to better agree with the average experimental flux. This is basically what is 

shown in Figure 3.3 except that the flux of each foil is normalized by the average flux 

over all foils. This is done for both the experimental and numerically simulated flux 

values. Apart from one outlier (foil 6), this resulted in better qualitative agreement with 
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the MCNP calculations. The experimental data and numerical predictions for foils 1-5 

were all within 16% relative error of each other after this normalization was performed. 

 

 

Figure 3.3. The Total Neutron Fluence per Activation Foil Normalized by the Average 

Fluence for all Foils. Comparison Between the Experimental (Blue) and MCNP 

Calculations (Red) Indicate Reasonable Qualitative Agreement in the Spatial Distribution 

of the Flux Across the Surface of the Beam Port Opening. 
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Additional discrepancies may result from differences in how reactor power is 

defined. At the MSTR, reactor power measurements are made with a pair of 

Compensated Ion Chambers positioned on either side of the core. Although they are 

calibrated to the reactor thermal power, it would be more accurate to say that they 

measure neutron flux at two particular points in the reactor pool that correlate well with 

reactor power. As such, the correspondence between measured reactor power and the 

power that factors into the burnup calculation through the fission rate is not exact. The 

effect of flux tilting from control rod burnup as well as rod shadow can result in (usually 

small) perturbations to the flux profile in the core relative to the ion chambers. Additional 

uncertainties in the experimental data not included in the present analysis could include 

variations in the foil thickness and Cd thickness, the reproducibility of the foil positioning 

in front of the beam port opening and variations in the flux profile between experiments 

due to neutron poison effects. 

 

 

 

 



 

 

50 

4. EVALUATION OF NDP CAPABILITY AT MSTR 

A model of a simple NDP system was developed for the Monte Carlo N-Particle 

code version 6 (MCNP6). The Monte Carlo simulations were based on a conceptual CAD 

model for the depth profiling system illustrated in Figure 4.1. The sides of the chamber 

body contains two aluminum windows for the neutron beam entrance and exit. 

Aluminum is chosen to avoid the production of long lived activation products. The 

detector and sample were located in a cylindrical steel vacuum chamber of 15 cm radius 

and 30 cm height. A small port is included for exchanging samples.  

The actual MCNP model in the present work is a simplified version of the CAD 

model. Details about the chamber dimensions, number of viewports and flanges, vacuum 

conditions etc., while important in the construction and actual operation of such a system, 

are irrelevant to the radiation transport simulations. The MCNP model consists of a Si 

detector, boron containing sample, within the chamber body. The neutron beam is treated 

as a 0.0253 eV monodirectional disk source inside the chamber. The boron sample is 

located in the path of the neutron beam. The neutron flux from the source was normalized 

to the flux determined from experiment (Section 3). To cover the whole area of the 

sample, the thermal neutron beam has a radius of 3 cm. The active region of the charged 

particle detector was modeled as a 100 μm thick Si cylinder, facing the sample on the 

side opposite the incident neutron beam. The sample, the beam, and the detector were 

placed in a line along the beam axis. A pulse height tally (F8) was used to mimic the 

response of an energy-sensitive detector and spectroscopy signal processing circuit. The 

F8 tally records deposited energy per alpha particle history and generates a histogram of 
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frequency vs. deposited energy. Neutron and alpha physics were included in the 

simulations. Both the regions inside and outside the chamber were modeled as void but 

the neutron and alpha importance outside of the chamber was 0 while inside it was 1.  

 

 

Figure 4.1. Basic Design of the NDP Instrument. 

 

The first sample simulated was a borosilicate glass NIST standard (SRM-93a) 

was modeled. The standard is used for NDP channel energy calibration. SRM-93a is a 

32.2 mm diameter by 6.3 mm thick wafer with a uniform distribution of 12.5 wt% 𝐵2𝑂3 
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throughout the sample depth. The alpha spectrum (F8 tally) of the NIST standard (SRM-

93a) is shown in Figure. 4.2 with the α1 and α2 peaks indicated. 

 

 

Figure 4.2. Alpha Energy Spectrum of the SRM-93a NIST Standard. 

 

The second specimen studied comprised a silicon wafer with a 

borophosphosilicate glass (BPSG) film and second silicon layer deposited on top to 
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create a Si/BPSG/Si sandwich. The specimen dimensions were 2 cm × 2 cm × 1 mm. The 

thickness of the BPSG layer was 850 nm and was composed of P2O5, B2O3, and SiO2. 

The Si top layer was 20 nm in thickness. Figure 4.3 shows the energy spectrum of the 

BPSG sample. 

 

 

Figure 4.3. BPSG Alpha Energy Spectrum. 
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The depth profile of 10B was determined using the 1472 keV α1 peak from the 

BPSG spectrum. The depths were obtained based on the residual energy versus path 

length calculated using the Stopping and Range of Ions in Matter (SRIM) program [106]. 

 

 

Figure 4.4. Concentration of BPSG as a Function of Depth Obtained from MCNP. 

 

Figure 4.4 shows the resulting depth profile obtained from analyzing the MCNP 

F8 tally. The calculated depth showed excellent agreement with the expected boron 
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concentration to a depth of about 800 nm. Beyond this, straggling effects and other non-

linearities not considered in the stopping tables result in an underestimate of the boron 

concentration.  

The SRM 93a standard has a count rate of 2 cps per atomic percent per channel 

[CPS/at%/channel]. This implies that for such a specimen, an acquisition time of about 1 

hour at full power would sufficient to achieve relative uncertainty of <1% assuming 

Poisson statistics. The BPSG sample had a predicted count rate of ~1.5 counts per second 

per atomic percent per channel [CPS/at%/channel]. Because of the slightly lower boron 

concentration, 2 hours at full power would be sufficient to achieve a relative uncertainty 

of <1% assuming Poisson statistics. It is worth noting that in both specimens the boron 

concentration was not at trace levels. Therefore, NDP measurements at the MSTR beam 

port would probably be infeasible for trace boron measurements due to the relatively low 

neutron flux. 

Despite the low flux compared to higher power research reactors, these results 

indicate that the MSTR beam port likely adequate for some boron Neutron Depth 

Profiling analysis. Quantitative profiling is possible within a few hours. A major 

disadvantage of the current core configuration is the lower neutron flux at the beam port. 

The MSTR fuel is further from the beam tube in the current core configuration (see 

Figure 1.7). However, if the MSTR fuel is moved back towards the beam tube as shown 

in Figure 1.8 characterization can be done within shorter time. Indeed previous 

measurements at the beam port for an older configuration yielded a total flux of 108 cm-2 

s-1. With such a flux, trace analysis is more within reach. 
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5. AUTOMATED DATA PROCESSING OF NEUTRON DEPTH PROFILING 

SPECTRA USING AN ARTIFICIAL NEURAL NETWORK 

5.1. OVERVIEW 

This purpose of this section is to investigate the applicability of ANNs in 

automated analysis of Neutron Depth Profiling data. An advantage of such an approach 

would be to eliminate the need for reference to a specific stopping power table or 

formula. The Monte Carlo N-Particle version 6 (MCNP6) radiation transport code [104] 

was used to model neutron and alpha transport in a NDP system. In the model, a NIST 

standard was included and used to compare the ANN predictions with traditional data 

analysis using stopping tables. The ANN model was trained with data sets generated from 

MCNP simulations. Each simulation calculated the NDP alpha energy spectrum from a 

specimen with a randomly generated boron depth profile. The trained ANN was used for 

automated analysis of the boron concentration within the SRM2137 standard. 

5.2. METHODOLOGY 

The methodology of the traditional and automated models using MCNP6 and 

ANN are illustrated below.  

5.2.1. Modeling.  To compare the performance of the data analysis procedures 

using the ANN model and the traditional method (stopping tables), an analog of the NIST 

standard, SRM-2137, was modeled in MCNP6.  

SRM-2137 is a single crystal silicon substrate implanted with 10B, often used for 

testing the performance of both NDP system and in the concentration calibration of 

Secondary Ion Mass Spectrometry (SIMS) systems. The continuous boron depth profile 
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was approximated in MCNP by stacking 10 nm thick Si layers with varying boron 

concentration. 

5.2.2. Artificial Neural Network.  A supervised back-propagation neural 

network (BPNN) was used. In a BPNN, the connection weights for the input, hidden, and 

output layers of the network are iteratively adjusted to minimize the overall error of the 

prediction with respect to a reference result [107]. Figure 5.1 shows the structure of the 

BPNN used to analyze NDP spectra. This model uses the Levenberg-Marquardt (LM) 

algorithm. Each neuron in each layer is interconnected with all neurons in the previous 

layer and the following layer. Each bin of the input alpha spectra (histograms) was 

mapped onto [0,1] by normalizing the spectra. 96 energy bins corresponding to the α1 

energy peak were used in the input data sets. Tangent sigmoid functions were used to 

map the output of the hidden layer neurons onto [0,1]. The input datasets (training, 

validation and testing) were generated from MCNP simulations of NDP spectra of 300 

randomly generated specimens. Each specimen contained 10 layers of Si with random 

concentrations of 10B added. The boron concentrations were uniformly sampled from the 

range 6.8 ×1016 to 8.5 ×1019 cm-3. Each layer was 35 nm thick.The training data input 

consisted of 96 neurons corresponding to the number of channels in the input data, the 

hidden layer contains 50 neutrons and the output layer contains 10 neurons corresponding 

to the 10 layers of the specimen. 

Validation prevents overfitting when the network tends to memorize insignificant 

details of the training data [108]. To develop the ANN model, the MCNP dataset of the 

NDP system was divided into three subsets: training, validation, and testing in 

proportions of 70%, 15%, and 15%, respectively. 
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The testing dataset was used to evaluate the performance of the ANN model at 

different learning stages. Training stops when the error of the testing set increases.  

 

 

Figure 5.1. Artificial Neural Network Design for Analyzing 10B NDP Spectra. 

 

5.3. RESULTS AND DISCUSSION 

Figure 5.2 shows the alpha energy spectrum of the SRM-2137 standard. Alpha 

peaks can be seen at 1472 keV and 1776 keV. 

The depth profile of 10B was determined using the 1472 keV α1 peak from the 

SRM-2137 spectrum. The energy-to-depth conversion was based on the residual energy 

versus path length calculated using stopping tables from the Stopping and Range of Ions 

in Matter (SRIM) program [109].  

The ANN developed in MATLAB using the Levenberg-Marquardt (LM) 

algorithm was trained with the aforementioned MCNP generated spectra. The 

performance of the network was evaluated using the Mean Squared Error (MSE) obtained 

during training and validation processes. Figure 5.3 shows the ANN predicted boron 

content (output), versus the actual boron content (target). The R value was 0.98223 for all 
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data sets, while the R values for training, validation and testing were 0.997, 0.97069, and 

0.92562, respectively. 

 

 

Figure 5.2. The Alpha Energy Spectrum of NIST Standard SRM-2137. 
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The performance of the model is shown in Figure 5.4. The validation process was 

stopped once the MSE was minimized.  

 

 

Figure 5.3. Crossplot of Predicted and Actual Datasets of the Boron Samples for 

Training, Validation, Testing, and all Datasets. 

 

Figure 5.5 shows the boron depth profile in the SRM-2137 standard. The profile 

was determined using both the traditional method of relating depth to energy loss using 
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stopping tables and with the proposed ANN method. The results of both methods can be 

compared to the accepted profile (black curve). Both methods give comparably accurate 

results with the ANN method slightly overestimating the concentration and the traditional 

method slightly underestimating the concentration. 

 

 

Figure 5.4. Mean Squared Error Values During Training. 

 

Further improvement of the ANN result may be possible with additional training. 

It is interesting to note that the ANN method does not rely on stopping tables. The 

stopping power appears only indirectly through the radiation transport calculations. 

Therefore, energy loss physics in the radiation transport calculations could, in theory, 
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bias the ANN. On the other hand, the physics of the energy loss is more “complete” in 

the simulations in the sense that straggling, backscattering and solid angle effects are 

implicitly accounted for in the simulations.  

 

 

Figure 5.5. The Boron Depth Profile for SRM-2137. The Black Curve is the Accepted 

Profile for the Reference. The Red Circles Represent the Depth Profile Resulting from 

MCNP Generated Alpha Spectra Processed with Stopping Tables. The Green Diamonds 

Represent the Depth Profile Resulting from MCNP Generated Spectra Processed with the 

ANN. 
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It would be possible, in principle, to train the ANN with experimental data 

provided the set of specimens was large and already well characterized. This would also 

train the ANN to automatically adjust for other instrumental parameters such as dead 

time, detector resolution, detector nonlinearities and imprecisions in apparatus geometry.  
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6. NIXE: NEUTRON DEPTH PROFILING COUPLED WITH PARTICLE 

INDUCED X-RAY EMISSION 

6.1. OVERVIEW 

As mentioned in Section 1, a NDP measurement produces the depth profile of a 

specific isotope of a specific element in the surface of a specimen. Though the element 

(say boron or lithium) can be profiled by assuming the isotope is present in its natural 

abundance, little to no information about the distribution of other elements in the matrix 

can be gained. This section proposes a way to use secondary radiation emitted during the 

NDP measurement to obtain such additional information. This technique is couples 

Neutron Depth Profiling with Particle Induced X-Ray Emission. Hereafter it is called 

NDP-PIXE or NIXE for short.  

As mentioned in Sections 1 and 2, in a PIXE measurement, a charged particle 

undergoes stopping as travels through the material. The charged particle interacts with 

other atoms in the surrounding matrix, transferring energy to core shell and valence 

electrons through ionization collisions and collective excitation processes. The energies 

and intensity of the characteristic X-rays produced through charged particle-induced core 

shell ionization is related to the elemental composition of the material. The main 

difference between traditional PIXE and NIXE is that in PIXE the particle is produced 

via an external source (e.g. alpha emitter or ion beam) while in NIXE the particle is 

generated internally. 

Table 6.1 below lists some of the possible reactions for NDP analysis. Monte 

Carlo radiation transport simulations of charged particle generation and transport in an 

NDP apparatus was coupled with an analytical model describing characteristic X-ray 
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generation to predict the coincidence count rates of alpha particles and characteristic K-

shell X-rays of Si, P, Na, and O a layered glass material. The objective of this work is to 

demonstrate the feasibility of combining NDP and PIXE (NIXE) into a compound non-

destructive analytical technique. 

 

Table 6.1. Possible Nuclear Reactions for NDP Analysis. 

Reaction Energy of Emitted 

Particles [keV] 

Approximate 

Range in Silicon 

[μm] 

Cross Section [b] 

3He(n,p)3H 572 7.2 5333 

6Li(n,α)3H 2055 7.3 940 

10B(n,α)7Li 1472 5.2 3837 

14N(n,p)14C 584 7.4 1.83 

17O(n,α)14C 1413 5.0 0.24 

33S(n,α)30Si 3081 12.5 0.19 

35Cl(n,p)35S 598 7.6 0.49 

 

6.2. THEORY  

In an NDP apparatus, a thermal neutron is captured by a target nucleus producing 

a light charged particle (e.g. p, α, t, h). As the charged particle exits the material, it loses 

energy through stopping (primarily in the form of electronic stopping for swift light ions). 

The measured energy is then used to determine the particle’s starting depth through 

stopping tables or calculations. In the following discussion the particle is referred to as an 

alpha particle but the analysis is fairly general and could apply to other swift light ions. 

Suppose the alpha particle is produced at a depth 𝑥 from the exiting surface of the 

specimen (see Figure 6.1). If it leaves the specimen at an angle 𝜆 relative to the surface 
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normal and strikes a charged particle detector, the kinetic energy measured by the 

detector is given by 

 𝐸(𝐿) = 𝐸 (
𝑥

cos 𝜆
) = 𝑓−1(

𝑥

cos 𝜆
) (15) 

𝑓 is a monotonic function describing the distance the particle with initial energy 𝐸0 has 

traveled after it has slowed to an energy of 𝐸 (i.e. after it has lost 𝐸0 − 𝐸). Assuming that 

the particle is at an energy where electronic energy loss dominates and straggling is 

relatively minor, the distance traveled can be approximated by 

 𝑙 = 𝑓(𝐸) ≅ ∫
𝑑𝐸

𝑆(𝐸)

𝐸0

𝐸

 (16) 

 

 

Figure 6.1. Depiction of the NDP and PIXE Acquisition Process. 
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The rate at which charged particles in the energy interval (𝐸, 𝐸 + 𝑑𝐸) reach the 

charged particle detector is 

 𝑅(𝐸)𝑑𝐸 =
Ω𝛼

4𝜋
𝐴𝜎𝑡𝜙𝑡(𝑥)𝑁(𝑥)𝛿(𝐿 − 𝑓(𝐸))𝑑𝑥 (17) 

the first term, 
Ω𝛼

4𝜋
, accounts for the probability that a particle, isotropically emitted, 

reaches the detector. 𝐴 is the area of the neutron beam, 𝜎𝑡 is the thermal averaged neutron 

absorption cross section and 𝜙𝑡 is the thermal neutron flux. 𝑁(𝑥) is the depth-dependent 

target number density (the NDP depth profile in other words). The delta function 

accounts for the one-to-one energy-depth relationship (again ignoring straggling).  

Implicitly, it is assumed that the detector solid angle Ω𝛼 and specimen area are 

sufficiently small that a single value of 𝐿 may be used. Alternatively one could write an 

expression in terms of a differential solid angle, 𝑑Ω𝛼. In that case, angular dependence 

also appears in both 𝐿 and 𝜆 and the entire rate must be integrated over all solid angles. 

For the sake of simplicity, it is assumed that the solid angle and sample area are both 

small enough to approximate those terms as constants. Substituting in 𝑥 for 𝐿 gives 

 𝑅(𝐸)𝑑𝐸 =
Ω𝛼

4𝜋
𝐴𝜎𝑡𝜙𝑡(𝑥)𝑁(𝑥)𝛿 (

𝑥

cos 𝜆
− 𝑓(𝐸)) 𝑑𝑥 (18) 

Using the composition formula for delta functions gives 

 𝑅(𝐸)𝑑𝐸 =
Ω𝛼

4𝜋
𝐴𝜎𝑡 cos 𝜆 𝜙𝑡(cos 𝜆 𝑓(𝐸))𝑁(cos 𝜆 𝑓(𝐸))𝑑𝑥 (19) 

Over the micrometer depths that charged particles can be detected, the neutron 

flux should not vary greatly (except for exceptionally strong absorbers). Therefore it is 

reasonable to ignore the depth dependence on the flux entirely 
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 𝑅(𝐸)𝑑𝐸 =
Ω𝛼

4𝜋
𝐴𝜎𝑡 cos 𝜆 𝜙𝑡𝑁(cos 𝜆 𝑓(𝐸))𝑑𝑥 (20) 

𝜙𝑡 is now taken to mean the flux on the detector side of the specimen. 

Given that 

 𝑥 = 𝐿 cos 𝜆 = 𝑓(𝐸) cos 𝜆 (21) 

 𝑑𝑥 = cos 𝜆
𝑑𝑓

𝑑𝐸
𝑑𝐸 =

cos 𝜆 𝑑𝐸

𝑆(𝐸)
 (22) 

The differentials can be made to cancel so that 

 𝑅(𝐸) =
Ω𝛼

4𝜋
𝐴𝜎𝑡 cos2 𝜆 𝜙𝑡𝑁(cos 𝜆 𝑓(𝐸))

1

𝑆(𝐸)
 (23) 

Thus, provided one knows the depth-dependent target density, a table of 𝑓 values 

as a function of energy, the neutron flux, the detector solid angles, the rate at which the 

particles deposit energy in the detector can be estimated. In practice, most charged 

particle energy spectroscopy systems use multichannel analyzers to acquire spectra. The 

count rate in a given channel with average energy 𝐸𝑖 and channel width Δ𝐸 is 

 𝐶𝑖 ≈
Ω𝛼

4𝜋
𝐴𝜎𝑡 cos2 𝜆 𝜙𝑡𝑁𝑖

1

𝑆𝑖
Δ𝐸 (24) 

 𝑁𝑖 = 𝑁(𝑥𝑖) = 𝑁(cos 𝜆 𝑓𝑖) (25) 

 𝑓𝑖 = 𝑓(𝐸𝑖) (26) 

 𝑆𝑖 = 𝑆(𝐸𝑖) (27) 

Equation (24) may be used to estimate the count rate for a given specimen at a reactor 

beam port with a known thermal neutron flux. 

Turning the attention to characteristic X-rays, the goal in the following derivation 

is to show that it is possible to acquire the elemental depth profile using PIXE if given 

prior knowledge of the origin of the alpha particle inducing the X-ray signal. Through 
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coincidence counting one can simultaneously profile a particular element (such as B or 

Li) and also use a detected alpha particle to tag characteristic X-rays collected within a 

coincidence time window and correlate those X-rays with a particular depth range for the 

interaction. 

Suppose a charged particle passing through a thin slab of thickness 𝑑𝑙 has an 

energy 𝐸. As it passes through the slab, it will ionize some of the core shell electrons in 

the atoms in the slab. If element i has atomic number density, 𝑛𝑖, then the number of 

electrons ejected from shell 𝑠 (i.e. number of K, L, M-shell holes) of element i is given by 

 #𝑒𝑠
− = 𝑛𝑖𝜎𝑖,𝑠(𝐸)𝑑𝑙 (28) 

𝜎𝑖,𝑠 is the s-shell ionization cross section. It depends on the ion specie and energy. 

If the slab is thick then one must integrate this expression over the length of the ion’s 

trajectory. The total rate, 𝑅𝑖,𝑠, of 𝑠-shell ionization for a charged particle born at depth 𝑥 

and traveling a length 𝐿 before reaching the specimen surface is 

 𝑅𝑖,𝑠(𝑥) = ∫ 𝑛𝑖(𝑙)𝜎𝑖,𝑠(𝐸)𝑑𝑙

𝐿

0

 (29) 

Transforming from variable 𝑙 to energy 𝐸 

 𝑅𝑖,𝑠(𝑥) = ∫ 𝑛𝑖(𝑓(𝐸))𝜎𝑖,𝑠(𝐸)
𝑑𝑓

𝑑𝐸
𝑑𝐸

𝐿

0

= ∫ 𝑛𝑖(𝑓(𝐸))𝜎𝑖,𝑠(𝐸)
𝑑𝐸

𝑆(𝐸)

𝐸0

𝑓−1(
𝑥

cos 𝜆
)

 (30) 

The above expressions are not unlike the integrals appearing in the X-ray yield in 

traditional PIXE apart from the fact that the yield now depends on depth 𝑥. A matrix 

attenuation term could also be included in this integral but is ignored here for simplicity. 
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The X-ray photopeak yield for such an event can then be determined by 

multiplying by the fluorescence yield, 𝜔𝑠, the X-ray detector solid angle, Ω𝛾, and detector 

efficiency 𝜀𝑠. 

 𝐶𝑖,𝑠(𝑥) =
Ω𝛾

4𝜋
𝜔𝑠 𝜀𝑠𝑅𝑖,𝑠(𝑥) (31) 

This expression gives the X-ray counts for a particle traveling along a known 

path. For a system where both alpha and X-ray detectors are set up in a coincidence 

circuit such that X-rays are only counted when an alpha particle is detected, Equation 

(31) gives the expectation value of the number of s-shell X-ray counts per alpha count in 

element i. 𝑥 is determined from the energy of the alpha particle deposited in its detector 

through stopping tables (NDP). Naturally, due to the stochastic nature of the process, 

many such coincident events must be acquired and X-ray spectra sorted into to 𝑥 bins to 

approximate 𝐶𝑖,𝑠(𝑥) as a histogram. It is worthwhile to note that the derivative of 𝐶𝑖,𝑠(𝑥) 

gives the depth profile of the elements, 𝑛𝑖 

 
𝑑𝐶𝑖,𝑠(𝑥)

𝑑𝑥
=

Ω𝛾

4𝜋
𝜔𝑠 𝜀𝑠

𝑑𝑅𝑖,𝑠(𝑥)

𝑑𝑥
 (32) 

 𝑑𝑅𝑖,𝑠(𝑥)

𝑑𝑥
=

1

cos 𝜆
𝑛𝑖 (

𝑥

cos 𝜆
) 𝜎𝑖,𝑠(𝑓−1(

𝑥

cos 𝜆
))

𝑑𝑓−1(
𝑥

cos 𝜆
)

𝑑𝑥

𝑆(𝑓−1(
𝑥

cos 𝜆
))

 
(33) 

 𝑛𝑖 (
𝑥

cos 𝜆
) =

cos 𝜆 𝑆(𝑓−1(
𝑥

cos 𝜆
))

Ω𝛾

4𝜋 𝜔𝑠 𝜀𝑠

𝑑𝑓−1(
𝑥

cos 𝜆
)

𝑑𝑥
𝜎𝑖,𝑠(𝑓−1(

𝑥
cos 𝜆

))

×
𝑑𝐶𝑖,𝑠(𝑥)

𝑑𝑥
 (34) 

Though not particularly amenable to hand calculations, the above expression can 

be discretized and tabularized and solved using a computer. Doing this therefore gives the 

elemental depth profile. One conspicuous omission here is that in a nuclear reaction 
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involving the production of a light charged particle, another charged particle is emitted at 

180 degrees to the detected particle. This energy is also deposited in the opposite 

direction of the detected charged particle and can also be expected to contribute to the X-

ray yield. For example the 1.47 MeV alpha emitted in the 10B (n,α)7Li reaction also 

comes with a 840 keV 7Li nucleus emitted in the opposite direction. Though the Li 

nucleus will not travel as far, it can have a sizable contribution to the X-ray yield. As 

such the above expression should be modified to include the effect of the heavier charged 

particle. Lacking 7Li impact ionization cross sections, the numerical analysis to follow 

ignores the contribution to the light yield from 7Li. 

6.3. METHODOLOGY 

MCNP6 model of NDP was used to have two different elemental depth profiling. 

The data analysis of the PIXE is discussed below. 

6.3.1. Monte Carlo Radiation Transport.  Numerical predictions of the alpha 

particle energy spectrum from a layered glass specimen was obtained using the same 

MCNP6 model described in Sections 4 and 5 apart from the sample definition. 

The sample was 2 μm in thickness and composed of three layers of equal thickness and 

stopping power but different material compositions. The layer compositions are described 

in Table 6.2.  

6.3.2. Data Analysis.  The average charged particle energy as a function of 

distance traveled Equation (16) was calculated from stopping tables.  

This information along with the simulated charged particle spectrum was used to 

determine the depth profile of the target nuclide. This same information, along with alpha 
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impact K-shell ionization cross sections and fluorescence yields was used to calculate the 

X-ray yields for K-shell ionization of each element and hence their depth profiles. The 

target material stopping power was determined using the Stopping and Range of Ions in 

Matter (SRIM) code of Ziegler et al. [106]. This code was used to calculate the stopping 

and range tables of the helium ions. In the analysis of the PIXE response a single 

stopping power curve was assumed for all layers of the specimen. 

Tabulated ionization cross sections for each element were interpolated over a fine 

mesh of alpha energies. These data and the K-shell fluorescence yields were obtained 

from quasi-empirical PIXE data [110-112]. The expected yield of each element was 

calculated using the tabulated data, the element number density, depth-vs-energy 

relationship, and the alpha spectrum count rate through Equation (34). Angle cosines and 

geometric efficiency factors were taken to be unity. The X-ray counts were calculated 

using the energy interpolated from only the 𝛼1 energy peak and the X-ray yield. Such a 

technique, while possible in theory, should have reasonable coincident counting statistics 

to be a practical quantitative technique. 

 

Table 6.2. Sample Thickness and Composition. 

Glass sample Thickness (μm) Composition and mass 

fraction 

Borosilicate glass 0.67 B2O3 (0.2) SiO2 (0.8)   

Borophosphosilicate glass 

(BPSG) 

0.67 

P2O5 (0.2) B2O3 (0.2) SiO2 

(0.6) 

Sodium borosilicate glass 0.67 

Na2O (0.7) B2O3 (0.2) SiO2 

(0.1) 
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A number of factors will naturally influence this. These include: detector solid 

angles, material stopping power, composition and neutron flux. In fact, the two most 

important factors relating to the sensitivity of the technique and speed of spectral 

acquisition are 𝐶𝑖,𝑠(𝑥) and 𝑅(𝐸). These factors determine the ratio of coincidence counts 

to the total rate of alpha counts as well as the total acquisition time. Given the above 

expressions it is illustrative to use them to simulate the NIXE depth profile from a 

hypothetical measurement.  

6.4. RESULT AND DISCUSSION 

Figure 6.2 shows the alpha energy spectrum generated from the pulse height light 

tally of alpha particles from 10B neutron interactions in the sample material. The spectrum 

contains both 1.47 MeV and 1.77 MeV alpha signals. The count rate was based on a 

beam port thermal neutron flux of about 5×106 cm-2 s-1. This value is on the lower end of 

thermal neutron flux available at research nuclear reactors. 

Figure 6.3 shows the K-shell coincident X-ray count rate per detected alpha 

particle for the K-shell X-rays of Si, O, P and Na. In other words given a detected alpha 

particle, Figure 6.3 gives the X-ray count rates as a function of measured alpha particle 

kinetic energy. The X-ray yield increases with the measured alpha energy for energies 

less than about 0.9 MeV paralleling the lower energy edge of the raw alpha spectrum 

Figure 6.2. 

Above 0.9 MeV the yield decreases with energy. This is due to the fact that the 

alpha particle path length to the surface of the specimen decreases with increasing 

detected alpha energy. The shorter the path length, the less ionization and hence lower the 
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X-ray yield. . The highest counts of K-shell X-rays for Si, P, Na, and O were 1.5×103, 

2.0 ×102, 1.8×104, and 1.8×105, respectively. 

 

 

Figure 6.2. Alpha Spectrum from Boron NDP of a Multilayer Glass Specimen. 

 

The wide range of K-shell yields can be mostly ascribed to difference in the 

magnitudes of the K-shell ionization cross sections and fluorescence yields, though 
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differing atomic number densities of the constituent elements also contribute to the 

different yields.  

Figure 6.4 shows the depth profiles for each element in the sample. These were 

calculated by post-processing the MCNP alpha spectrum Figure 6.2 and the predicted 

coincidence count rates Figure 6.3 with Equation (34). The expected number densities 

(i.e. data input into the MCNP cell and material data cards) are overlaid for comparison. 

Conversion from alpha energy to depth was obtained using the stopping tables from 

SRIM. The uncertainties on the number densities depend on, among other things, the 

counting statistics of both the alpha spectrum and X-ray spectra. Because the number 

density of Equation (34) depends on the derivative in the number of X-ray counts with 

respect to depth, there is an inherent tradeoff between depth resolution and precision. In 

order to achieve less than 1% relative error in the depth profile, the difference in the 

number of coincidence events between any two consecutive energy channels would need 

to be at least 10,000, assuming Poisson counting statistics and ignoring other sources of 

systematic and random error. Given the alpha particle count rates of Figure 6.2 and using 

the relatively fine 20 keV energy resolution (hence depth resolution) of Figure 6.3, it 

would be possible to achieve relative uncertainties of between 1-10% in the Na and O 

depth profiles with acquisition times on the order of a few hours. 

The Si and P profiles would likely require days owing to their lower coincidence 

count rates. One could, however, combine counts from multiple bins to achieve faster 

convergence of the depth profile, effectively trading shorter acquisition times for coarser 

depth resolution. At the extreme, one would simply sum up all coincident events to 

determine the average composition from the surface of the material to a depth of about 
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the stopping range of the alpha particle. More sophisticated data processing techniques 

(e.g. entropy minimization, machine learning) might also be considered for NIXE data 

analysis. 

 

 

Figure 6.3. K-Shell Coincidence Count Rate for (a) Si (b) P (c) Na and (d) O. 
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Figure 6.4. Depth Profile of (a) Si (b) P (c) Na and (d) O. 

 

It should be kept in mind that the count rates of Figure 6.2 are also normalized to 

a very modest neutron flux of 5×106 cm-2 s-1. This value is based on recent measurements 

at the beam port of the Missouri S&T research reactor (MSTR). The configuration of the 

fuel element at the time of those measurements was not optimized to provide a large flux 
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at the beam opening. Many other neutron beam port facilities can achieve orders-of-

magnitude higher thermal flux [6, 84, 113].  

Thus coincidence count rates and acquisition time are dependent on the available 

flux at the NDP facility in question as well as the specimen characteristics (ionization 

cross sections and neutron cross sections), detector efficiencies and desired depth 

resolution. Nevertheless, under favorable conditions, PIXE coupled to NDP appears to be 

a potentially practical non-destructive technique. More numerical modeling work and 

sensitivity analysis should be done to further investigate the possibility of incorporating 

this technique into current NDP systems for different materials. 
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7. CONCLUSIONS 

This dissertation explores several concepts related to the design of a proposed 

Neutron Depth Profiling system for the Missouri University of Science and Technology 

Nuclear Reactor (MSTR). This involved first determining if such a system would exhibit 

high enough count rates to be of practical use. Original contributions to the technique 

were also put forth. These include a new experimental technique, NIXE, which couples 

Neutron Depth Profiling with Particle Induced X-Ray Emission and a new data 

processing approach using Machine Learning. 

The thermal and epithermal neutron flux of the MSTR beam port and its spatial 

distribution was determined using Neutron Activation Analysis of bare and cadmium 

filtered gold activation foils. The experimental results were compared to Monte Carlo 

radiation transport predictions of the beam port flux using the MCNP6 transport code. 

While the spatial distribution of the flux was found to be in reasonable qualitative 

agreement, the MCNP total flux predictions were systematically lower than the 

experimental results by about 29%, on average. The discrepancy is largely attributed to 

the assumption of fresh fuel in the core in the MCNP model. The results could be 

potentially improved by considering the burnup level of the fuel elements.  

Based on the experimentally measured and calculated flux values, and Monte 

Carlo simulations of alpha spectra, it appears that an NDP apparatus at the MSTR beam 

port would be of practical use for characterizing certain boron containing materials within 

a reasonable acquisition time and with low uncertainty from counting statistics. Such an 

apparatus would likely be limited for trace elemental analysis in MSTR’s current core 
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configuration. Increasing the beam port flux, however, should be possible by reverting to 

an older core configuration. Future work will be needed to repeat the simulations for 

other commonly analyzed element such as Li. 

A concept for coupling Neutron Depth Profiling (NDP) with Particle Induced X-

Ray Emission (PIXE) to provide additional elemental depth profiling capabilities to a 

traditional thermal neutron-based NDP instrument is presented. The simple addition of an 

X-ray spectroscopy detector in coincidence with the NDP charged particle spectroscopy 

system are relatively minor modifications that could be used to gain the NIXE capability. 

Calculations involving numerical radiation transport simulations and an analytical model 

describing X-ray production using tabulated ionization cross sections and fluorescence 

data were used to emulate K-shell X-ray production as a function of coincident alpha 

particle energy. Monte Carlo simulations in MCNP6 were used to calculate the alpha 

energy spectrum. The expected and calculated depth profiles were found to be in good 

agreement though the ability to perform accurate and precise measurements is expected 

to be constrained by a combination of neutron flux, desired depth resolution, acquisition 

time and sample composition. Future computational and experimental work will be 

needed to better understand the technical limitations with such a technique as well as to 

demonstrate it with real data. 

Neutron Depth Profiling spectra from randomly generated non-uniform samples 

containing boron were simulated in MCNP6 . The randomly generated sample spectra 

were used to train an Artificial Neural Network. The depth profile of boron within NIST 

standard SRM-2137, was used to demonstrate the performance of the NDP system and 

validate the use of MCNP for these simulations. The determined depth profiles of 10B 
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obtained using the ANN processing method and the traditional method with stopping 

tables both showed good agreement with the reference profile provide from NIST. Both 

methods had comparable accuracy. With additional training the ANN may possess 

several advantages over the traditional processing method.  

Despite being nearly 50 years old, NDP is a technique with untapped potential. It 

has mainly been limited to boron analysis in semiconductors and lithium analysis in 

battery materials. However, by exploiting the secondary radiations that are naturally 

emitted during an NDP measurement, additional complimentary information about a 

specimen can be obtained. This work adds to and advances NDP to extend its range of 

analytical capabilities.  
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