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ABSTRACT

A finite time suboptimal control strategy (named \ − � approximated algorithm)

was proposed in this study, which can provide the control engineers with a novel effective

and efficient design tool from the finite time optimal perspective. Based on the framework

of this proposed method, the original nonlinear dynamics were formulated in pseudo-linear

form, and the performance index was denoted by a linear quadratic regulator prototype

in this research. After that, the approximated solutions to intractable Hamilton-Jacobi-

Bellman (HJB) equation were acquired by putting vanishing perturbation terms into the

performance index. By tuning the parameters in perturbation terms, semi-global stability

and sub-optimalilty was guaranteed. By taking the advantages of the perturbation terms,

the large control was not required to cope with the large deviation at the initial time, which

alleviates the severe tests of the actuators. The detailed procedure to develop this tech-

nique and corresponding stability proof were provided. The effectiveness of the proposed

technique was verified by solving the two-dimensional benchmark problem, and the other

three aerospace applications, including Reusable Launch Vehicle (RLV) landing problem,

multiple satellites docking problem, and satellite maneuvering considering �2 perturbation

problem. In this research, contrary to the finite-time state dependent Riccati equation (FS-

DRE) technique , the proposed technique did not need excessive online computation, which

makes the real-time implementation in various engineering scenarios possible since the

computational resources are always limited for any specific engineering application; thus,

leading to the major contribution of this research for avoiding the online computation of

nonlinear Riccati equation and matrix inverse operation at each sample time.
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1. INTRODUCTION

1.1. NONLINEAR CONTROL BACKGROUND

The development of the control design techniques were based on the increasingly

complicated control objects, which originated from the requirement for the industrialization

and scientific developments. In 1788, JamesWatts’s invention of the governor was designed

to regulate the speed of the rotary steam engine. It was the first time that humankind touched

the concept of control. Up to this day, control engineers can designmore complex algorithms

to multiply satellites formation flying Liu et al. (2020b); Mashtakov et al. (2020), hundreds

of drones’ flying Bertizzolo et al. (2020), space vehicles Yedavalli (2020), and precision

landing of SpaceX rockets Blackmore (2016), just to name a few. The past two centuries

witnessed the enormous progress of control techniques and related theories. In broad terms,

the field of control theory can be divided into two branches: linear control theory and

nonlinear control theory. Due to the relatively simple characteristics, the control techniques

for linear systems are comparatively perfect and mature Chen (1996). Unfortunately, those

linear control techniques cannot satisfy the requirement for growing complexity control

objects, which are evolving with nonlinear dynamic property. As a result, the development

of the nonlinear control synthesis theories and techniques are of practical significance, which

attract a large number of scientists and engineers getting involved in this field. Because of

scholars’ effort in the past half century, there are numerous papers about the synthesis of

nonlinear control methods, which fall into the following categories: feedback linearization

Chiasson (1998), sliding mode control (SMC) Edwards and Spurgeon (1998), backstepping

Liu et al. (2020a), control Lyapunove functions (CLF) Garg et al. (2020), etc. There is

no universal method to satisfy all of application scenarios. Then, each nonlinear control

synthesis strategy has its advantages, but it also hold its own innate limitations which stem
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from the theoretical background and restrictive applicability scope. If one is interested in

those detailed derivation and analysis, one can refer to the comprehensive nonlinear control

textbooks for the further reading, such as Slotine et al. (1991), Isidori (2013), and Khalil

and Grizzle (2002).

Feedback Linearization technique is a well-studied and widely-used approach in

controlling nonlinear systems. Researchers can intends to come up with a proper coordinate

transformation to the given nonlinear system through a change of state variables and control

inputs, such that the final closed-loop system renders linear dynamics. After that, plenty

of linear control design methods were applied to transformed systems to meet the pre-

designed performance requirements. However, there was a prerequisite: this coordinate

transformation does exist for a given nonlinear system. Unfortunately, not all nonlinear

system has this valid transformation. Theoretically, since this method originated from the

differential geometry, the word "diffeomorphism" is taken from that. The prerequisite is

that the transformation must be a "diffeomorphism" to ensure that the transformed system

is an exactly equivalent representation of the original nonlinear system. Put simply, the

transformation has to satisfy two conditions: 1. It is inevitable; 2. Both the transformation

and its inverse are smooth so that the property of differentiability of original coordinate

system can be held in the new one. The second limitation was zero dynamics, which implies

some states can not be observed from the output measurement. Feedback linearization can

still be designed with the nonlinear systems, which have a relative degree that is less than

the dimension of state vector( one can get the relative degree though the Lie derivative).

Then, the transformed system must include zero dynamics, which could be unstable and

have fatal effects to the whole system since some internal states could blow up in finite

time. The third drawback was that feedback linearizaiton cannot utilize some beneficial

nonlinearities since all of them can be completely removed by the linerization process.

The operation could result in the actuator generating strong large control signal which

is not energy efficient. Actually, feedback linearization has been implemented in many
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areas, such as Zhang et al. (2020), Autonomous landing of UAVs Tripathi et al. (2020),

diesel engines Xu et al. (2020), etc. Feedback linearization is still an active research field.

Some researchers and engineers team with other concepts or techniques and extend to other

applications in the engineering community. A few typical examples are: Ammar et al.

(2020) incorporated a sliding mode observer into the feedback linerizaiton and took this

technique into induction motor drive control. Feedback linearization was also introduced

into the reinforcement learning framework to solve the double pendulum, quadrotor, and

7-DOFmanipulator arm problemsWestenbroek et al. (2020). Cooperative game theory and

feedback linerization were employed to addressed the fault-tolerant control for four-wheel

independent actuated electric vehicle Zhang and Lu (2020).

Sliding mode control (SMC) is another power tool for the control engineers to use

for designing the control for nonlinear systems, which sometimes could be coupled with

some bounded disturbances or uncertainties. The most marked feature of SMC is that

the control action is a discontinuous function of time, and can switch between continuous

structures, which need to be designed such that the trajectories of nonlinear systems can

move forward around the adjacent areas with different structures. This new type of motion

of system, as it slides along those boundaries, is named a sliding mode. The geometrical

locus, including those boundaries, is called sliding hypersuface (or manifold). Since SMC

practically employs high gain to force the trajectories of nonlinear dynamics to slide along the

restricted sliding mode surface, SMC is robust and it is insensitive to parameter variations

and can actively reject the disturbances or uncertainties. This robustness property is of

practical importance when doing control synthesis work for some nonlinear systems with

uncertainties. However, engineers have to implement SMC with more care since the

actuators have delays or other imperfections, which can result in large chatter, excitation

of unmodified dynamics, energy loss, and plant damage. More detailed information and

progress of SMC can be found in the survey papers Qureshi and Salim (2020); Zambelli and

Ferrara (2020). Current research is extending the application scope of the SMC, and also
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attempting to eliminate the chattering phenomenon Gao and Weng (2020); Hosseinabadi

et al. (2020); Wan et al. (2020).

Originating from the application of the direct Lyapunov method, control Lyapunov

function (CLF) was employed to obtain a Lyapunov function for the close loop system,

and a control can be derived to force the trajectories of the system to the equilibrium

states (stability is guaranteed). However, the limitation of this method is finding a proper

control Lyapunov function for a nonlinear dynamics since there does not exist a systematic

way to find a proper CLF. After the development of the backstepping technique by Peta

V. Kokotovic around 1990, this technique gained more attention and progressed, which

actually is an applicable extension of control Lyapunov function. Technically, backstepping

control design technique is a recursive procedure to choose CLF, which allows design

adaptive controllers for a class of nonlinear dynamics. Nonlinear dynamics is regraded

as the consists of different subsystems. By iteratively selecting some proper function of

state variables as a pseudo-control for each subsystem, the true feedback control can be

obtained by virtue of the final Lyapunov function. The advantage of this technique is that

it can solve adaptive control of nonlinear dynamics with high dimension. One can refer

to the book Krstic et al. (1995) for the details. Although this control design strategy has

favourable property, it can only apply to a certain type of nonlinear systems, which implies

the nonlinear systems must satisfy the strict-feedback form. In addition, the selection of the

pseudo-control for each subsystem and CLF is dependent on the designers’ knowledge and

experience. So, it is designer-originated method, the final performance of the system should

be varied. In recent years, both methods have been extending to address new significant

problems. The control of a hybrid dynamical system is designed by the CLF Sanfelice

(2020). The CLF is considered in the sliding mode control framework Sachan et al. (2020).

The control for the robotic systems involves the nonlinear model predictive control and

CLF Grandia et al. (2020). Some new backstepping applications can be found in recent

papers, such as, perturbed PVTOL aircraft Zheng andYang (2020), air-breathing hypersonic



5

vehicle Yu et al. (2020), and leader-follower AUV formation control Wang et al. (2020) .

Those aforementioned studies indicated that the research on backstepping technique is still

an active research field currently.

It is obvious that the review so far only emphasised on the existing major control

techniques to nonlinear systems. Actually, there exists another control synthesis method

branch for nonlinear dynamics based on the optimal perspective. The \ − � technique

of this dissertation is contributing to this branch. The next section will briefly review the

relative works of other researchers in this field.

1.2. RELEVANTWORKS OF OPTIMAL CONTROL DESIGN FOR NONLINEAR
DYNAMICS

Derived from the calculus of variationsGelfand et al. (2000) and got a control to

optimize a cost function with a given dynamic system, the well-established optimal control

strategy Lewis et al. (2012), which is based on the dynamic programming theory Bellman

(1966) and the minimum principle theory Athans (1967), is undoubtedly an effective tech-

nique to design control for nonlinear systems. See Bryson (1996); Sussmann and Willems

(1997) for further reading about the history of optimal control. It is apparent that solving

the Hamilton-Jacobi-Bellman (HJB) is the critical and inevitable for optimal control design.

Optimal control design for linear quadratic problems is easy to be solved since the HJB

equation degenerate to the analytically solvable Riccati equation. However, tremendous ap-

plications involving nonlinear systems lead to extreme difficulty to get analytical solutions

of the HJB equation, which restricts optimal control strategy of limited implementation for

nonlinear systems. Consequently, numerous researches have investigated different methods

to find approximated or numerical solutions to the HJB equation of nonlinear control prob-

lems, and they are systematically formed the sub-optimal control or near-optimal control

for nonlinear systems, extending the optimal control strategy to more fields such as robotics,

aerospace, process control, bio-engineering, economics, and finance.
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Generally speaking, from time dependence perspective, nonlinear optimal control

can be categorized into two groups: infinite horizon nonlinear optimal control and finite

horizon nonlinear optimal control (some articles refer to infinite time and finite time, as

well). Compared with the infinite horizon nonlinear optimal control case, which has been

extensively investigated within the control community, research on the finite horizon non-

linear optimal control case is still under-developed, although it enjoys great engineering

practical values because of the internal challenge caused by the time-dependent character-

istic of the solutions to the HJB equation for the nonlinear system.

For infinite time or infinite horizon category, the time-invariant nature provides fa-

vorable condition to attract researchers, hence the numerous academic papers. Al-Tamimi

and LewisWang et al. (2009) proposed a standard scheme to solve some classes of nonlinear

systems using value-iteration-based heuristic dynamic programming (HDP). There are two

standard neural networks (NN): a critic NN is taken to approximate the value function,

and an action network is employed to approach the optimal control policy. The author

emphasized that this approach allowed the implementation of HDP without knowing the

internal dynamics of the system. A discrete time policy iteration adaptive dynamic pro-

gramming(ADP) technique was developed by Liu Liu and Wei (2014) to solve the infinite

horizon optimal control problem for nonlinear system. This research indicated that the

iterative cost function was non-increasingly convergent to the optimal solution of the HJB

equation. Additionally, NNs were also employed to approximate the performance index

function and compute the optimal control law. Jagannathan Dierks and Jagannathan (2012)

also presented an ADP to solve the infinite horizon optimal regulation control of affine

nonlinear discrete-time systems in the presence of unknown internal dynamics and a known

control coefficient matrix. In Liu and Wei (2013); Wei et al. (2014), Liu et al. developed a

new iterative ADP algorithm to solve optimal control problems for infinite horizon discrete

time nonlinear systems with finite approximation errors. Balakrishnan et al. proposed

two improved schemes of ADP, Padhi et al. (2006), Ding and Balakrishnan (2011), named
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Single Network Adaptive Critic (SNAC) and JSNAC, for a wide class of infinite time opti-

mal control design of nonlinear systems. Compared with the regular schemes of ADP, the

two schemes can reduce computations and storage requirements. Beard et al. Beard et al.

(1998) proposed a numerical method, called successive Galerkin approximations, to solve

HJB equations to achieve near-optimal control. Chen et al. Chen et al. (2004) presented an

approximation solution method to infinite time nonlinear quadratic optimal control problem

by solving a Riccati equations and a series of algebraic equations. The method from Fakhar-

ian et al.Fakharian et al. (2010) relied on the Adomian Decomposition method to solve the

HJB arising in nonlinear optimal control problem. An iterative method was presented by

Xuesong et al. Chen and Chen (2017) to solved the generalized HJB (GHJB) equation. This

method converted the GHJB equation to a set of algebraic equations. Then, the proposed al-

gorithm solved equations numerically for value points around the origin by the linearization

of the non-linear equations under a ideal initial control guess. EG Al’brekht (1961) and DL

Lukes (1969) developed a recursive process to obtain sub-optimal control as a power series

in states.Garrard et,al. Garrard et al. (1967) expanded the optimal performance index as a

power series based on an auxiliary variable Y and obtained a recursive solution to the HJB

equation. Wernli and Cook Wernli and Cook (1975) proposed a technique by which the

original nonlinear systems are taken into apparent lineraization form. The suboptimal con-

trol led to the Taylor series expansion of the solution to a State Dependent Riccati Equation

(SDRE). Actually, the SDRE strategy Çimen (2008, 2010); Cloutier (1997); Cloutier et al.

(1996); Shamma and Cloutier (2003); Stansbery and Cloutier (2000) is also a powerful tool

to design optimal control for nonlinear system. By representing a nonlinear dynamics to

resemble linear-form structure, the strategy allowed the designers to adopt linear quadratic

regulator (LQR) methodology or �∞ design technique for the synthesis of nonlinear con-

trol systems. The foregoing methods and papers are few of the primary studies on infinite

time/horizon suboptimal/nearoptimal control design for nonlinear systems (refer to Lewis

and Liu (2013); Liu et al. (2017); Zhang et al. (2019) for more reading).
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Regarding the finite time/horizon category, there exists a striking contrasting phe-

nomenon. On the one hand, the property of time dependence poses a critical challenge to

design sub-optimal control for nonlinear system within engineering community. However,

on the other hand, it has great practical merits. For example, it is applicable in path-planning

problem for the approach and landing phase of a reusable launch vehicle (RLV) Harl and

Balakrishnan (2010), UAV rendezvous within certain time Yamasaki and Balakrishnan

(2010), and missile hitting targets problem Harl et al. (2010), etc. With the effort of Wang

et al. (2012, 2010), Liu et al. provided insight into solving the finite-horizon nonlinear

optimal control problem using the ADP strategy. Together with the regular ADP scheme,

Zhao et al. Zhao et al. (2014) presented a novel way to solve finite horizon optimal control

design problem with unknow the system dynamics, which further expanded the application

scopes. In the same year, Xu and Jagannathan Xu and Jagannathan (2014) proposed a

finite horizon optimal control design method to the stochastic nonlinear network system

with a similar logic in Zhao et al. (2014). Employing the same scheme of ADP, Kim et

al. Kim et al. (2020) adopted the Deep Neural Network (DNN), to replace the regular

NN (shallow NN), to approximately solve the HJB of finite-horizon optimal control in a

nonlinear control-affine system. The investigation showed that with appropriate training,

the use of DNN can be applied to high-dimensional problems and improve the performance

of a learned policy in the presence of uncertainty. Duan et al. Duan et al. (2020) posed

an optimal control problem for finite-time missile-target interception systems. In the study,

an event-based periodic adaptive dynamic programming (ADP) algorithm was employed

to find the Nash equilibrium solution for the designed Hamilton-Jacobi-Issac (HJI) equa-

tion. A single critic neural network was employed to implement the proposed event-based

optimal control algorithm, which not only alleviated some approximating errors but also

simplified regular structures of the ADP. In the past few years, Balakrishnan and his team

has published some works in the finite time category Heydari and Balakrishnan (2011a,

2013a, 2015, 2012, 2013b, 2014). The finite-time optimal control of nonlinear discrete
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system with input constraint was considered by taking an offline training strategy Heydari

and Balakrishnan (2011a, 2012). The time-varying property of finite horizon was tackled

by a single NN, which incorporated constant weights and time-variant active functions.

Actually, the philosophy of Heydari and Balakrishnan (2011a, 2012) is a regular direct

heuristic dynamic programming (DHDP)-based scheme which employed policy/value iter-

ations. The terminal constraint was satisfied by using an augmented vector incorporating

the terminal value of the co-state. The strategy of Heydari and Balakrishnan (2011a, 2012)

was used to solve a tracking problem in Heydari and Balakrishnan (2014). Later on, a

closed-form solution Heydari and Balakrishnan (2015) was creatively proposed to establish

finite horizon sub-optimal control of nonlinear systems based on the SDRE technique. In

the research, a detailed proof was provided to guarantee the validation of this method. In

Heydari and Balakrishnan (2013a), which is an application of Heydari and Balakrishnan

(2015), the path-planning problem of the reentry phase of a reusable launch vehicle(RLV)

was considered. Regardless of the ADP schemes employed, the online or offline proper

training of neural networks is inevitably required. This requirements increases the com-

plicity of implementation and restricts the applications of the schemes to some extent.

The ADP strategy is a time-consuming process and requires great computational efforts

due to its iterative property and the required training process, needless to say finite time

sub-optimal control design for the high-dimensional nonlinear system. To summarize the

main idea of the ADP and its variants were trying to approximate either the cost function

or the optimal control expressions with different types of neural networks architectures.

However, the synergistic relationship between the co-state and the resulting solutions is

not exploited in those studies. Another limitation is the online or offline training of the

neural network. If the dimension of the states of system is high, the difficulty in training a

reliable neural network increases, and it is a time-consuming work. For numerical methods,

the computational cost is very expensive if we would like to get resulting solutions with

good accuracy. Although Heydari and Balakrishnan (2015) offered a closed-form solution
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which provides a convenient and effective way to handle the finite time problem, the major

limitation of this method is the tedious requirement of the online computation the algebraic

Riccati equation at each sample time. As the system order increases, this computation load

would make real-time implementation difficult.

Recently, Xin and Balakrishnan proposed a novel \ − � methodology and a series

of applications Balakrishnan et al. (2007); Drake et al. (2004); Ming et al. (2006); Xin and

Balakrishnan (2002, 2003, 2004, 2005); Xin et al. (2004a, 2005, 2007, 2008, 2004b, 2003,

2004c,d); Xin and Pan (2011). This method was first proposed in Xin and Balakrishnan

(2002) and applied to the missile guidance law design problem. Later on, a more com-

prehensive research Xin and Balakrishnan (2005) on this method was presented to control

community. The rest of papers were a series of applications, including missile autopilot

designMing et al. (2006); Xin and Balakrishnan (2003); Xin et al. (2003, 2004c), spacecraft

position and attitude control Xin et al. (2004b); Xin and Pan (2011), ascent phase of reusable

launch vehicles Drake et al. (2004), wing rock motion control Xin and Balakrishnan (2004),

station-keeping problem of satelliteXin et al. (2008, 2004d), and spacecraft formation Bal-

akrishnan et al. (2007); Xin et al. (2004a, 2005, 2007). However, the expertise in Xin and

Balakrishnan (2002, 2005) and the rest of the aforementioned applications only considered

the infinite time/horizon case. So,since many important mechanical and aerospace appreci-

ations fall under finite horizon/ time control, for example, trajectory design for space vehicle

and missile guidance, it is necessary to develop a finite time/horizon \ −� technique which

can inherit the effective and efficient advantages of the infinite time/horizon version.

One of important nonlinear control design areas is aerospace field, which attracts

lots of scientists and engineers to develop new effective and efficient control algorithms. In

this research, a novel finite time optimal control strategy is developed to some aerospace

applications, including Reusable Launch Vehicle (RLV) landing problem, multiple satellites

docking problem and satellite maneuvering with considering J2 perturbation problem. The

brief description of the background is given in the next section.
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1.3. AEROSPACE APPLICATION BACKGROUND

Reusable Launch Vehicles returning from outer space is the final stage of the whole

space exploration mission. Return or reentry from space is similar to skipping rocks on the

surface of a lake. In order to make the stone skip several times over the water before finally

plunging into the lake, one must make the stone strike the water’s surface at a precise angle

and proper velocity. Otherwise, there is no skipping, only a noisy splash. With the same

logic, the RLV must be controlled to ensure the atmospheric layer is at an accurate angle

and speed for a safe landing. Otherwise, the RLV will either skip off the atmospheric layer

and return back to icy outer space, or it will experience a fiery journey due to the friction

with the air. The challenges of ice and fire promotes the development of the RLV reentry

technology. In this research, the focus was on the approaching and landing (A&L) phase,

the final step of the whole reentry process, which includes the reentry step, the terminal

area energy management(TAEM) step and, the A&L step.

At the end of TAEM phase when sufficient energy has already been dissipated, the

A&L phase will be initialized, which begins at 10,000 feet altitude and ends with landing

on the runway. The autoland guidance control of this A&L phase are required to guide the

RLV to follow a predefined landing trajectory, and finally to land on a proper runway with

less than 9 feet/second of vertical velocity and near-zero flight path angle James (1988).

Although engineers have considered a wide range of possible scenarios to make this au-

toland guidance controller more robust, all RLV-faced circumstances can not be predicted

in advance since there are too many uncertainties in the two previous stages. Also, the RLV

might have some structural, or unpredictable damage and perturbations. In order to guide

the RLV to land safely within the finite horizon, it is necessary to design a feasible trajec-

tory online based on the currently-available flight data of RLV, instead of the pre-designed

trajectory.

Actually, there exists some but not many, previous works about finite horizon (called

finite time in some academic papers) guidance control design of the A&L phase. The three-
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dimensional A&L case was considered in Xiangdong et al. (2017). By exploiting the

higher-order sliding mode control technique, a multiple sliding surface guidance technique

(MSSG) was developed. Due to the inherent property of reaching sliding surface within

finite time, MSSG was regarded as finite time guidance control. Combining integral sliding

control concepts with polynomial feedback control methods, a new finite time sliding mode

control law was created in Liao and Chen (2016). This study claims that the robustness was

ensured along the motion, the convergence time can be selected in advance and guaranteed,

and system states can be formed in an analytical way. Another finite-time approach and

landing guidance law was discussed in Li and Hu (2018). Based on all-coefficient adaptive

control theories, a predictor-corrector guidance control law was proposed. The author in-

dicated that the law can generate the new trajectories online according to the current states

and final state conditions. Finally, the stability and finite time convergence of this guidance

law were studied. Based on the techniques of extended-state observer and non-singular

fast terminal sliding mode control, a finite-time controller was designed in presence of the

disturbance in Zhang et al. (2018). The stability analysis and numerical simulation were

given to verity the validation of this method. Harl and Balakrishnan (2010) developed a

finite-time guidance law based on the second-order sliding mode concept, which allowed

for the design of the trajectories offline. They were then generated online by a closed-loop

law. This method employs the finite-time-reaching phase of the sliding mode control to

ensure that any desired state constraints can be fulfilled in a finite time. The techniques

mentioned above are involved with the concepts of adaptive control or sliding mode control

to fulfil the guidance control law with the finite horizon.

Another typical problem of formation control design for multiple satellites was

adopted and numerically simulated to demonstrate the performance of the proposedmethod.

Satellite formation flying is a challenging task, but a real cutting edge, which implies that

several satellites forming a group and working together will accomplish space exploration

missions. Most missions were taken by a single larger, more complicated, and more expen-
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sive satellite decades ago. Normally, more complicated systems are vulnerable to failure

because of small part malfunctions. Fortunately, formation flying groups of satellites can

avoid this situation, and it can also provide for limited degradation of performance during

the period of the satellite malfunction. This means that the overall space mission will be

at risk if a single larger satellite has a system fault. However, if only a single satellite

in a group fails, the rest of the satellites in this formation may continue to accomplish the

mission with the sacrifice of some performances. Another advantage of the formation flying

is that it can offer flexibility to space exploration mission designers in that each satellite

of a formation can be re-positioned to satisfy different tasks’ requirement. For example, a

ground-observing space-based sensor should be designed as formation flying, which can

increase the aperture size as compared to constructing of a larger satellite. This formation

flying system can provide the sensor more flexibility since the aperture size and orientation

are adjustable in orbit. Actually, docking operation is one kind of formation flying that

ensures satellites can find each other and keep station in the same orbit.

Over the past fifty years, with the development of the space exploration, many re-

searchers have been devoted to developing effective control algorithms for the formation

flying due to the aforementioned beneficial properties. Zhou et al. (2013) developed a

quaternion-based finite time nonlinear control law to force the the attitude of the rigid

spacecraft (follower) to synchronize the attitude of the leader. Meanwhile, the angular

velocity will converge to zero in finite time. Additionally, employing the a finite time

sliding-mode estimator, a modified control law was invented to reduce the heavy commu-

nication burden. Jin (2016) created a interesting fault tolerant finite time leader-follower

control strategy, which aimed at multiple under-actuated autonomous surface vessels in-

volved with the partially known control gain functions. Also, there exists two constrained

conditions: line-of-sight and angle tracking errors. Recently, A paper by Hao et al. (2020)

addressed the problem of attitude synchronization and tracking control of formation flying

with external disturbance. By adopting the neural network to estimate the upper bound
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of the disturbance, a hyperbolic tangent function-based sliding mode control method is

designed to fulfil the consensus purpose. The output feedback finite time attitude con-

tainment control problem of formation flying was considered by Chen and Zhao (2020)

with a novel finite time command filtered backstepping containment control strategy. From

finite time/horizon optimal perspective, there also exists some researches about the forma-

tion flying. Heydari and Balakrishnan (2011a) proposed a single network adaptive critics

strategy to solve the finite time optimal control problem involving input constraint. Two

years later, a model-based reinforcement learning algorithm was developed by Heydari and

Balakrishnan (2013b) for fixed-final-time optimal control of nonlinear systems with soft

and hard terminal constraints. A state dependent Riccati equation(SDRE) based dynamic

programming method was proposed in Geng et al. (2020) to address the fixed time optimal

re-pointingmaneuvers problemwith the terminal constraints. Actually, the researches about

the finite time optimal control for formation flying are not many. However, this research

direction is of practical significance to control satellite or spacecraft formation flying in the

space. Additionally, when there is one design control algorithm for satellite flying, the �2

perturbation is unavoidable concern due to the fact that the Earth is an oblate spheroid. It

is an obvious physical property that the centrifugal force will definitely bulge the equator

of the earth when it rotates along the axis. The word "�2" is based on the infinite series

equation which represents the the perturbational effects of oblation on the gravity of a

planet. The coefficients of each item in this series, which are �2, �3, �4, · · · , are named

zonal coefficients. The fact is that �2 is the dominating term since �2 is over 1000 times

larger than the others and exerts the strongest perturbing influence on orbits. Some papers

were presented as follows about the control design from optimal perspective with the �2

influence. Vadali et al. (1999) developed a fuel-optimal, low-thrust, variable Isp propul-

sion control scheme to the satellite formation flying involving the �2 perturbation. Two

techniques, Mixed-integer Linear Programming and the Particle Swarm Optimization, were

used to solve the fuel minimum in-plane satellite reconfiguration maneuver in �2 perturbed
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near-circular orbits. Franco and dos Santos (2020)’s paper, the linear model in Cartesian

coordinates, called Clohessy-Wiltshire Equations was considered. Then, the optimal con-

trol approach, described by the Linear Quadratic Regulator (LQR), were taken to carry out

the ITASAT-2 mission, which launched three satellites in formation flying while consider-

ing the �2 perturbation. Bilal et al. (2019) provided the State-Dependent Riccati Equation

(SDRE) control approach to tackle a formation flying of low Earth orbit (LEO) satellites.

At the meantime, an exact nonlinear differential �2 perturbation model was considered in

the relative orbital dynamics. However, the control strategy for the satellite formation flying

coupling with the �2 perturbation from the finite time optimal perspective can not be found.

However, it is useful because it can provide the designers or engineers with a freedom to

control the operation times.

1.4. RESEARCH OBJECTIVES AND CONTRIBUTIONS

Based on the aforementioned discussions, researchers and engineers have made

enormous progress in nonlinear control synthesis in the past half century, who generated

lots of techniques and extended those techniques to different application scopes. Although

each of them has its own advantages and limitations, those methods can obtain a relative

good performance results from theoretical perspectives. In this research, the goal is to create

an algorithm which can take "finite time","optimal" and "saving computational resources"

simultaneously into consideration. If those requirements can be satisfied, this algorithm

can be effectively and efficiently implemented in real time, which can provide the engineer

with a promising tool in the real application practice in aerospace or other fields. Based on

this guiding ideology and previous research work completed by the team, a novel finite time

suboptimal nonlinear control synthesis (\ − � approximation) design strategy is proposed,

which aim to find an approximately analytical solution to partial Hamilton-Jacob-Bellman

(HJB) equation. The optimal cost or costate can be approximated by the summation of

power series of \, which is regarded as the auxiliary parameter. The partial HJB equation
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can be replaced by a set of recursive algebraic Lyapunov equations. The perturbation

terms (D terms) is added into the framework to avoid generation of the large control by the

actuator to offset the possible large initial state. Note that no actuator can produce unlimited

signals. Though appropriately manipulating the parameters in D terms, the semi-globally

asymptotic stability can be guaranteed based on the Lyapunov stability theory.

The contributions of this research are listed as follows:

1. To develop a new optimal control technique for a class of nonlinear dynamics from

the finite time optimal perspective.

2. To provide an effective and efficient tool for engineers when they design a finite time

optimal controller.

3. To obtain a closed form solution and avoid the intensive computation load compared

with the finite time SDRE technique, which needed to computer nonlinear Ricatti

equation and twice matrix inverse operation at each sample state.

4. To avoid the large control to large initial state problem due to the existing D terms,

which can effectively protect the actuators and save money.

5. To make the real-time implementation possible of the proposed algorithm with dif-

ferent engineering application scenarios.

6. To implement successfully the finite time \ − � method into aerospace applications,

which verify the proposed finite time \ − � method is promising.

7. To offer a new tool for solving multiagent cooperation control design problem.

8. With proper transformation, non-affine control nonlinear systems can also be tackled

with this proposed method, which implies both affine-control and non-affine control

nonlinear dynamics can be handled with the proposed method.
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9. Other project-oriented independent variables (altitude,down-ranges,etc) could be for-

mulated "time" in the finite time \ − � framework, which can extend the application

scope.

10. The modeled disturbances or uncertainties can be rejected with this proposed method.

1.5. ORGANIZATION OF THIS DISSERTATION

The overall development of finite the time \ − � algorithm is presented in Section

2. In this section, the theoretical part of this technique will be discussed, including the goal,

the algorithm, and the related necessary proof. After that, a two dimensional benchmark

nonlinear problem are studied by the proposed method to show the related advantage

properties. At the same time, the comparison work is carried out with finite-time SDRE

technique Heydari and Balakrishnan (2015) from performance, cost, and overall run time

to verify the effective and efficient characteristics of the proposed method.

Section 2 and Section 3 are about the applications of the proposed finite time

\ − � method. The optimal path planning of RLV landing problem is investigated in this

section. Actually, this dynamics of the RLV landing is a non-affine control system. The

method is employed to convert this non-affine control into finite time \ − � framework.

Besides, the independent variable "downrange" is considered as "time" in the proposed

method. Additionally, a certain robustness property of this finite time \ − � technique is

demonstrated. In Section 3, two applications can be found: multiple satellite consensus

problem and satellite orbit maneuvering problem with �2 perturbation. This part can show

that the proposedmethod can be extended tomulti-agent cooperative control and disturbance

rejection work. The final Section 5 gives the final conclusion and the list of future research

direction.
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2. FINITE TIME SUBOPTIMAL CONTROL OF A CLASS OF NONLINEAR
SYSTEMS

2.1. PROBLEM STATEMENT

In this part, the objective is to develop closed-from suboptimal controllers for

nonlinear dynamic systems. Focus will be on time-invariant nonlinear system of the form

¤G = 5 (G) + �(G)D (2.1)

where G ∈ Ω ⊂ <=, 5 (G) : G ∈ Ω→<=,�(G) : G ∈ Ω→<=×<, and D ∈ * ⊂ <<

The goal is to seek a controller which can minimize the quadratic cost function

� (G, D), which is defined by

� (G, D) = 1
2
G(C 5 ))( 5 G(C 5 ) +

1
2

∫ C 5

0
(G)&G + D)'D)3C (2.2)

where & ∈ <=×=, ' ∈ <<×<, and ( 5 ∈ <=×= . The matrices & and ( 5 are semi-positive

definite, and ' is a positive definite. The known final time is denoted by C 5 .

The following assumptions are specified to guarantee that the above optimal control

design problem is a well-posed one:

(A1) Ω is a compact set which includes origin as an interior point; * is an admissible

control set which is also a compact set.

(A2) 5 (G) is continuously differentiable on Ω, and 5 (0) = 0.

(A3) the dynamic system (2.1) is controllable over the compact set Ω.

(A4) the dynamic system (2.1) is zero-state observable Byrnes et al. (1991) overΩ. With the

dynamic system given by (2.1) and the above assumptions (�1) − (�4), the minimization

of the cost function, given by (2.2) leads to the following partial differential equation for
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the optimal cost:

+)G 5 (G) −
1
2
+)G �(G)'−1�) (G)+G +

1
2
G)&G = −+C (2.3)

where +G = m+ (G,C)
mG

and +C = m+ (G,C)
mC

. + (G, C) is the optimal cost, i.e.

+ (G, C) = min
D

(
1
2
G(C 5 ))( 5 G(C 5 ) +

1
2

∫ C 5

0
(G)&G + D)'D)3C

)
(2.4)

with + (G, C) > 0 and + (0) = 0. The necessary condition to get optimality results in

D = −'−1�(G))+G (2.5)

Remark 1. From 2.5, we know that +G is required to compute the optimal controller.

Unfortunately, the HJB equation is extremely hard to solve in general, hence the limited

use of optimal control techniques for nonlinear systems. There exists some research in

intelligent control or neural network literature that approximated the cost function or the

optimal expression using various kinds of neural network schemes. The adaptive dynamic

programming (ADP) or related variants were employed to approximate the co-state or the

Lagrange’s multiplier within those literature. However, those studies did not exploit the

synergistic relations between the costate and the resulting solution because the those papers

hardly addressed the fundamental problem with HJB equation, which is that it leads to a

two point boundary value problem.

Remark 2. The crux of the whole optimal control problem is that the boundary conditions

for the costate are specified at the final time. Once the costate is known at each point in

time, optiaml control can be obtained easily. The method proposed in this dissertation is to

approximate the costate. A critical problem exists in the fact that it represents the partial

derivative of the cost with respect to the state, and the optimal cost is a function of state and
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time in a finite time problem. That is, how can we retrieve + (G, C) from m+ (G)/mG ? In the

next part, an approach is outlined with a series expansion that approximates the costates.

Then, we further show recurrence relations.

2.2. FINITE TIME \ − � SUBOPTIMAL CONTROL DEVELOPMENT

An infinite power series is added into the cost function for operating the approxima-

tion procedure and assuming a power series solution to be the gradient of the optimal cost

+ .

Now, let us consider a perturbation term
∑∞
8=1 �8\

8 to be added to the cost function

� (G, D) = 1
2
G(C 5 ))( 5 G(C 5 ) +

1
2

∫ C 5

0

[
G)

(
& +

∞∑
8=1

�8\
8
)
G + D)'D

]
3C (2.6)

where \ is a scalar and �8 is a matrix. \ and �8 are chosen such that
(
& + ∑∞

8=1 �8\
8
)
is

semi-positive definite.

The original dynamic equation (2.1) can be re-arranged as

¤G = 5 (G) + �(G)D =
[
�0 + \

(
�(G)
\

)]
G +

[
60 + \

(
6(G)
\

)]
D (2.7)

where �0 and 60 are constant matrices such that (�0, 60) is a stablizable pair and
[(
�0 +

�(G)
)
,

(
60 + 6(G)

)]
is pointwise controllable.

Define the costate as

_ = +G (2.8)

Assume a power series expansion of _ based on \

_ =

(
)0 +

∞∑
8=1
)8 (G)\8

)
G (2.9)
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where matrices )0, )8 (1 ≤ 8 < ∞) are to be determined, and they are assumed to be

symmetric. In order to motivate the solution of the HJB equation, first, consider only two

terms of the expression on the RHS of (2.9).

With the assumed expression of _ in (2.9), the next step is to get an expression for

the optimal cost function, called +G . We now motivate this part by taking only the first two

terms of the \-based series expansion for +G as

m+ (G)
mG

=

[
)0 + )1(G)\

]
G (2.10)

Then, the optimal cost function can be written as

+ (G, C) =
∫ (

m+ (G)
mG

))
3G + 2(C)

=

∫
G)

(
)0 + )1(G)\))3G + 2(C)

=
1
2
G))0G + \F(G) + 2(C)

(2.11)

where 2(C) is a function of time satisfying the boundary condition and F(G) is a function

of G only

F(G) =
∫

G)))1 (G)3G (2.12)

Note that, in (2.10), only two items are considered. Actually, if we take all the items

of (2.9) into account, F(G) =
∫
G)

( ∑∞
8=1 \

8−1)8 (G)
))
3G . We can easily identify that F(G)

is still a function of G.

At C = C 5 and with (2.11), + (G(C 5 ), C 5 ) is given by

+ (G(C 5 ), C 5 ) =
1
2
G(C 5 )))0(C 5 )G(C 5 ) + \F(GC 5 ) + 2(C 5 ) (2.13)
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From the cost function definition in (2.2)

+ (G(C 5 ), C 5 ) =
1
2
G(C 5 ))( 5 G(C 5 ) (2.14)

By equating (2.13) and (2.14) and assuming that F(GC 5 ) = 0 and {2(C) = 0|C ∈

[0, C 5 ]}, we get for all G

1
2
G(C 5 )))0(C 5 )G(C 5 ) =

1
2
G(C 5 ))( 5 G(C 5 ) (2.15)

Consequently:

)0(C 5 ) = ( 5 (2.16)

With the previous assumption of {2(C) = 0|C ∈ [0, C 5 ]}

m+ (G, C)
mC

=
m

mC

[
1
2
G))0G + \F(G) + 2(C)

]
=
m

mC

[
1
2
G))0G

]
=

1
2
G) ¤)0G

(2.17)

since F(G) is a function of G only.

Generalizing this argument for all the terms in the series expression for _ in (2.9),

the HJB equation (2.3) can be rewritten as

+C ++)G 5 (G) −
1
2
+)G �(G)'−1�) (G)+G +

1
2
G)

(
& +

∞∑
8=1

�8\
8
)
G = 0

=⇒ 1
2
G) ¤)0G + G)

(
)0 +

∞∑
8=1
)8 (G)\8

)) (
�0 + �(G)

)
G

− 1
2
G)

(
)0 +

∞∑
8=1
)8 (G)\8

)) (
60 + 6(G)

)
'−1

(
60 + 6(G)

))
×

(
)0 +

∞∑
8=1
)8 (G)\8

)
G + 1

2
G)

(
& +

∞∑
8=1

�8\
8
)
G = 0

(2.18)
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Note that each item in the HJB equation is premultiplied by G) and postmultiplied

by G. Equating the coefficients of powers of \ to zero in (2.18) leads to the following series

of equation:

)0�0 + �)0)0 − )060'
−16)0)0 +& = − ¤)0 (2.19)

)1(�0 − 60'
−16)0)0) + (�)0 − )060'

−16)0 ))1

= −)0�(G)
\
− �

) (G))0
\

+ )060'
−16

) (G)
\

)0 + )0
6(G)
\
'−16)0)0 − �1 (2.20)

)2(�0 − 60'
−16)0)0) + (�)0 − )060'

−16)0 ))2

= −)1�(G)
\
− �

) (G))1
\

+ )060'
−16

) (G)
\

)1 + )0
6(G)
\
'−16)0)1

+ )0
6(G)
\
'−16

) (G)
\

)0 + )160'
−16)0)1 + )160'

−16
) (G)
\

)0 (2.21)

+ )1
6(G)
\
'−16)0)0 − �2

)= (�0 − 60'
−16)0)0) + (�)0 − )060'

−16)0 ))=

= −)=−1�(G)
\

− �
) (G))=−1
\

+
=−2∑
9=0
)9
6(G)
\
'−16

) (G)
\

)=−2− 9

+
=−1∑
9=0
)9

[
60'

−16
) (G)
\
+ 6(G)

\
'−16)0

]
)=−1− 9 +

=−1∑
9=1
)960'

−16)0)=− 9 − �= (2.22)

Note that there exists only one nonlinear differential equation(2.19) with the final

condition (2.14) which has the same form in a linear quadratic problem, that is for )0, and

can be solved offline to provide a closed-form solution. The rest of the )8 (G) equations are

all linear Lyapunov equation, and a closed-form solution can be solved for each one of them

since each )8 (G) equation is the function of the current state G, which is known, and of the
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coefficient )8−1(G). Hence, with (2.9), a closed-form solution for optimal control can be

expressed as the follows:

D = −'−1�) (G)
∞∑
8=0
)8 (G)\8G (2.23)

Remark 3. Since (2.19) can be solved offline and we can get all )0 value at each sample

time in advance, we can rewrite (2.9) as a compact form
∑∞
8=0 )8 (G)\8G for a concise reason.

Remark 4. In the rest of the dissertation, (2.19) − (2.23) will be named as finite-time

\ − � technique. If the � term does not exist, this technique will be called finite-time \

approximation.The limitation of \ approximation is that when the nonlinear systems face

a large initial value (the most serious challenge for controllers of nonlinear systems), the

controllers have to generate a large initial control signal to nonlinear system, which is a

tough trial for any actuators in real engineering applications. Sometimes, the large initial

control signal will result in an intensively varied transient process, even leading to instability

of the nonlinear system.

Now, we design �8 term as follows: 8 = 1, · · · , =

�1 = :1 exp−;1C
[
− )0�(G)

\
− �

) (G))0
\

+ )060'
−16

) (G)
\

)0 + )0
6(G)
\
'−16)0)0

]
(2.24)

�2 = :2 exp−;2C
[
− )1�(G)

\
− �

) (G))1
\

+ )060'
−16

) (G)
\

)1 + )0
6(G)
\
'−16)0)1

+ )0
6(G)
\
'−16

) (G)
\

)0 + )160'
−16)0)1 + )160'

−16
) (G)
\

)0 + )1
6(G)
\
'−16)0)0

]
(2.25)

�= = := exp−;=C
[
− )=−1�(G)

\
− �

) (G))=−1
\

+
=−2∑
9=0
)9
6(G)
\
'−1

6) (G)
\

)=−2− 9

+
=−1∑
9=0
)9

[
60'

−16
) (G)
\
+ 6(G)

\
'−16)0

]
)=−1− 9 +

=−1∑
9=1
)960'

−16)0)=− 9

]
(2.26)
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where :8 > 0 and ;8 > 0; 8 = 1, · · · , = are freedom and problem-originated variables which

should be tuned properly .

Remark 5. The effect of the large initial value has been stated in remark 4. The philosophy

that we design (2.24),(2.25) and (2.26) to mitigate this effect will be stated as follows:Let us

observe the (2.20). Without considering the term �1, one can find that at each sample time,

�0, 60, )0, \ are known and �(G) is a state-dependent variable and the only term which can

directly affect the magnitude of )1. This )1 will further affect the following )2, )3, · · · , )=

and finally determinate the magnitude of control. This observation leads to find ways to

alleviate this effect. We realize that the vanishing perturbation terms in the cost function

provide the �8 terms on the RHS of (2.20),(2.21) and (2.22). With the �8 terms in the

RHS, our goal is to design a proper �8 which could decrease the impact of RHS terms in

(2.20),(2.21) and (2.22) to the )8 and could further offset the large control problem without

compromising the performance of the original nonlinear system. This could happen if those

extra terms (2.24),(2.25) and (2.26) are small enough and decrease quickly with time.

With the �8 terms of (2.24),(2.25) and (2.26), the (2.20),(2.21) and (2.22) will

change to

)1(�0 − 60'
−16)0)0) + (�)0 − )060'

−16)0 ))1

= Y1(C)
[
− )0�(G)

\
− �

) (G))0
\

+ )060'
−16

) (G)
\

)0 + )0
6(G)
\
'−16)0)0

]
(2.27)

)2(�0 − 60'
−16)0)0) + (�)0 − )060'

−16)0 ))2

= Y2(C)
[
− )1�(G)

\
− �

) (G))1
\

+ )060'
−16

) (G)
\

)1 + )0
6(G)
\
'−16)0)1

+ )0
6(G)
\
'−16

) (G)
\

)0 + )160'
−16)0)1 + )160'

−16
) (G)
\

)0 (2.28)

+ )1
6(G)
\
'−16)0)0

]
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)= (�0 − 60'
−16)0)0) + (�)0 − )060'

−16)0 ))=

= Y= (C)
[
− )=−1�(G)

\
− �

) (G))=−1
\

+
=−2∑
9=0
)9
6(G)
\
'−16

) (G)
\

)=−2− 9

+
=−1∑
9=0
)9

[
60'

−16
) (G)
\
+ 6(G)

\
'−16)0

]
)=−1− 9 +

=−1∑
9=1
)960'

−16)0)=− 9

]
(2.29)

where Y8 (C) = 1− :84−;8C , (8 = 1, · · · , =) is a small enough number that should be within the

interval [0, 1).

Remark 6. Y8 (C) is to employed to avoid the large magnitude value of )8 in (2.20), (2.21)

and (2.22). The choice of Y8 (C) should satisfy the convergence and stability requirement

which will be stated in the next section. The term 4−;8C (;8 > 0) guarantees the perturbation

terms in the cost function and HJB equation to diminish as time passes, which restrict the

perturbation term just could affect the sample times at beginning.

Remark 7. From (2.19) to (2.29) provide sufficient, rather than necessary, condition of

+G =
∑∞
8=0 )8 (G)\8G to be the solution of the corresponding HJB equation. The reason is that

at the very beginning, we assume that the gradient of an optimal cost function is of the form∑∞
8=0 )8 (G)\8G. To get an optimal control, another condition is made: this solution is also the

gradient of a positive definite function with + (0) = 0. There is a proposition in the Remark

2.2 of Xin and Balakrishnan (2005) which guarantees such an optimal cost function exists.

Now, we summarize all the step of the finite-time \ − � method as follows:

Note that:

(1). Once �0, 60, &, and ' are determined, the differential Riccati matrix equation (2.19)

can be solved backward to get )0 since the final time state )0(C 5 ) is given with (2.16). This

step can be done offline. Note that )0 is a non-negative definite matrix;

(2). Let us observe the (2.27). This is a general form of linear Lyapunov equation. At

each sample time, (�0 − 60'
−16)0)0) and (�)0 − )060'

−16)0 ) are constant matrices. They

can be computed offline. Based on matrices theory, and denoting all of items of the

RHS of (2.27) as &1, the close-formed solution of (2.27) can be expressed as +42()1) =



27

Algorithm 1 : Finite-time \ − � Sub-optimal Control Design Algorithm
Input:
( 5 : terminal state weight matrix; &: state weight matrix;
': control weight matrix; G8=8C80; : initial value of state;
\, :8, ;8 : adjustable parameters;
�0, 60: factorize �(G) from 5 (G), 6(G) from �(G) with G = G8=8C80;
C 5 : the final time; 3C: sample time;
Output: x: state under the suboptimal control
1: for each 8 ∈ [1, C 5 /3C] do
2: solve the differential Riccati equation (2.19) with ( 5 to get solutions of )0;
3: end for
4: for each 9 ∈ [1, C 5 /3C] do
5: calculate �(G),6(G);
6: compute )1 with the equation (2.27);
7: compute )2 with the equation (2.28);
8: · · ·
9: compute D = −'−1�) (G) ()0 + \)1 + \2)2 + · · · )G;
10: with the dynamic equation (2.1), one can compute the state with the above control;
11: store the state for the next iteration;
12: end for

(
� ⊗ (�)0 −)060'

−16)0 ) + (�
)
0 −)060'

−16)0 ) ⊗ �
)−1
+42(&1)Brewer (1978). We can realize

that the inverse operation of
(
� ⊗ (�)0 − )060'

−16)0 ) + (�
)
0 − )060'

−16)0 ) ⊗ �
)
can also be

calculated offline and in advance. What we need to compute online are some simple matrix

multiplication and additions, leading to an effectively and efficiently solved finite time

nonlinear optimal control problem online with high reliability. The rest of the equations

could be solved with the same logic.

(3). How many )8s are needed for computing the control D should depend on the specific

problems. Normally, three items )0, )1, )2 are enough.

(4). There does not exist a criteria to factorize �(G) from 5 (G). Fortunately, based on

SDRE, Cloutier Cloutier (1997); Cloutier et al. (1996) and Cimen Çimen (2008, 2010) have

investigated how to factorize �(G) with theoretical analysis and some real applications.

With the finite time scenario, Heydari and Balakrishnan (2011a) demonstrated a theoretical

proof about the stability property involving the different �(G).
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2.3. THE CONVERGENCE AND STABILITY ANALYSIS

Before starting the analysis, we make some assumptions to ensure that the control

design problem we investigate in this dissertation is a well posed one.

(C1) G ∈ Ω, where Ω is a compact set within n-dimensional Euclidean space.

(C2) With properly factorized from 5 (G), �(G), �(G) and 6(G) are continuous over compact

set Ω, which implies that all entries of �(G) and 6(G) should be continuous. Besides,

‖�(G)‖2 ≠ 0, ‖6(G)‖2 ≠ 0, ∀G ∈ Ω.

(C3) (�0, 60) is a stabilized pair.

(C4) _<0G
[
(�0 − 60'

−16)0)0) + (�)0 − )060'
−16)0 )

]
< 0, where _<0G denotes the largest

eigenvalue

Note that:

(N1) To simplify the notation, the argument G in �(G), 6(G), )8 (G) and C in Y8 (C) will be

omitted. However, in some places, the argument will be added to avoid confusion.

(N2) We introduce a set of new variables: )̂0 = \
0)0; )̂1 = \

1)1; )̂2 = \
2)2; · · · ; )̂= = \=)=.

Then (2.19), (2.27), (2.28), (2.29) will lead to

)̂0�0 + �)0 )̂0 − )̂060'
−16)0 )̂0 +& = − ¤̂)0 (2.30)

)̂1(�0 − 60'
−16)0 )̂0) + (�)0 − )̂060'

−16)0 ))̂1

= −Y1

[
)̂0� + �))̂0 − )̂060'

−16))̂0 − )̂06'
−16)0 )̂0

]
(2.31)

)̂2(�0 − 60'
−16)0 )̂0) + (�)0 − )̂060'

−16)0 ))̂2

= −Y2

[
)̂1� + �))̂1 − )̂060'

−16))̂1 − )̂06'
−16)0 )̂1 − )̂06'

−16))̂0

− )̂160'
−16)0 )̂1 − )̂160'

−16))̂0 − )̂16'
−16)0 )̂0

]
(2.32)
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)̂= (�0 − 60'
−16)0 )̂0) + (�)0 − )̂060'

−16)0 ))̂=

= −Y=
[
)̂=−1� + �))̂=−1 −

=−2∑
9=0
)̂96'

−16))̂=−2− 9

−
=−1∑
9=0
)̂9

[
60'

−16) + 6'−16)0

]
)̂=−1− 9 −

=−1∑
9=1
)̂960'

−16)0 )̂=− 9

]
(2.33)

2.3.1. Mathematical Preparation. Lemma 1. Jacobson (1970); Kučera (1973)

With ( ≥ 0, & ≥ 0, ' > 0, the solutions of differential Riccati equation − ¤% = %� + �)% −

%�'−1�)% + &, %(C 5 ) = (, are bounded on the time interval [C0, C 5 ], regardless of ( and

C 5 .

Lemma 2. Rudin et al. (1964) Let 5 and 6 be continuous functions on a metric space - .

Then 5 + 6, 5 6, 5 /6 are continuous on - .

Lemma 3. Rudin et al. (1964) If 5 is a continuous mapping of a compact metric space -

into<: , then 5 (-)n is closed and bounded. Thus, 5 is bounded.

Lemma 4. Rudin et al. (1964) Suppose 5 is a continuous real function on a compact metric

space - and " = BD??∈- 5 (?), < = 8= 5?∈- 5 (?). Then there exist points ?, @ ∈ - such

that 5 (?) = " and 5 (@) = <.

Lemma 5. Zedek (1965) If the coefficient of a polynomial, some of whose leading

coefficients are zeros, are varied continuously, the existing roots of the polynomial vary

continuously.

Lemma 6. If G ∈ D ⊂ <=, where D is a compact set within Euclidean space, and there is

a continuous function Π(G), where Π(G) : D → <<×=), then the matrix function Π(G) is

bounded.

Proof. With lemma 3, the image of a compact space under a continuousmapping is compact.

So, one can conclude that the continuous function Π(G) : D → <<×= is a compact set

within<<×=. Thus, Π(G) is closed and bounded. In particular, each coordinate lives within

a compact subset<.
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Lemma 7. If G ∈ D ⊂ <=, where D is a compact set within Euclidean space, and there

is a continuous function Π(G), where Π(G) : D → <<×<, which implies each entry is

continuous, then the eigenvalue function _8 (G), 0 ≤ 8 ≤ < are continuous function of G.

Further, the bound of _8 (G) exist.

Proof. Let us consider the characteristic polynomial

?(_, G) = 34C (_� − Π(G)) (2.34)

we can see that the coefficient ?8 (G) of ?(_, G) =
∑<
8=0 ?8 (G)_8 depends continuously on

c8 9 (G), which is the 8Cℎ row and 9 Cℎ column entry of matrix Π(G). With lemma 2, we can

state that the coefficient ?8 (G) is also a continuous function of G. Thus, with lemma 5, we

can conclude root _8 (G) of the ?(_, G) =
∑<
8=0 ?8 (G)_8 or the eigenvalue function of Π(G) is

a continuous function of G. Further, the bound of each _8 (G) exists within the compact set

D, based on lemma 4.

Lemma 8. Mori and Deresei (1984) Given a continuous Lyapuvnov equation

�)% + %� = −& (2.35)

where �, %, & ∈ <=×=, if � is a stable matrix, we have the norm bound for %

‖%‖• =
‖&‖•

−`•(�) ) − `•(�)
(2.36)

where `•(�) is a matrix measure of � induced form ‖‖•. In this study, 2-norm is employed

`2(�) =
1
2
_<0G (� + �) ) (2.37)



31

2.3.2. Convergence Analysis. The goal is to prove that
∑∞
8=0 )8\

8 is a point-wise

convergent series under the conditions C(1), C(2), C(3) and C(4). With (N2), we otherwise

prove that
∑∞
8=0 )̂8 is a point-wise convergent series.

Proof:

Step One: Let us consider equation (2.31) first.

With the optimal control theory, if (C3) and )̂0 from differential Riccati equation

(2.30) are satisfied, (�0 − 60'
−16)0 )̂0) is a stable matrix. Based on (36) and (37), we can

get:

‖)̂1‖ ≤ −Y1
‖)̂0� + �))̂0 − )̂060'

−16))̂0 − )̂06'
−16)0 )̂0‖

_<0G
[
(�0 − 60'−16)0 )̂0) + (�)0 − )̂060'−16)0 )

] (2.38)

Define

� = − 1
_<0G

[
(�0 − 60'−16)0 )̂0) + (�)0 − )̂060'−16)0 )

] (2.39)

Due to )̂0 = \
0)0 defined by (N2), (C4) can be rewritten as _<0G

[
(�0−60'

−16)0 )̂0)+

(�)0 − )̂060'
−16)0 )

]
< 0

(2.38) will lead to

‖)̂1‖ ≤ Y1�‖)̂0� + �))̂0 − )̂060'
−16))̂0 − )̂06'

−16)0 )̂0‖

≤ Y1�

(
‖�‖ + ‖�) ‖ + 2‖)̂0‖‖'−1‖‖60‖‖6‖

)
‖)̂0‖

(2.40)

With lemma 6, we know that �(G) and 6(G) are bounded within the compact set

Ω. With lemma 1, we also can also conclude that ‖)̂0‖ is bounded within a time interval

[0, C 5 ]. Now, we suppose the item (‖)̂0‖‖'−1‖‖60‖‖6‖) can pick the largest value when

‖)̂0‖ and ‖6‖ can get the maximum value over the compact set.

Define

�� = (D?G∈Ω

[
‖�‖ + ‖�) ‖

]
(2.41)
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�61 = (D?G∈Ω

[
‖'−1‖‖60‖‖6‖

]
(2.42)

�C0 = max
C∈[0,C 5 ]

(‖)̂0‖) (2.43)

Thus, (2.40) becomes:

‖)̂1‖ ≤ Y1�
(
�� + 2�C0�61

)
‖)̂0‖ (2.44)

Therefore, by choosing enough small Y1, we can make

Y1�
(
�� + 2�C0�61

)
≤ @ < 1 (2.45)

where @ is a constant scalar number within interval (0, 1).

Then,

‖)̂1‖ ≤ @‖)̂0‖ (2.46)

Step Two: let us consider (2.32).

Following the logic of the previous step, we can get

‖)̂2‖ ≤ Y2�‖)̂1� + �))̂1 − )̂060'
−16))̂1 − )̂06'

−16)0 )̂1 − )̂06'
−16))̂0

− )̂160'
−16)0 )̂1 − )̂160'

−16))̂0 − )̂16'
−16)0 )̂0‖

(2.47)

Define

�62 = (D?G∈Ω

[
‖'−1‖‖6‖‖6‖

]
(2.48)

�60 = ‖'−1‖‖60‖‖60‖ (2.49)

Thus, (2.47) becomes

‖)̂2‖ ≤ Y2�

[ (
�� + 4�C0�61 + @�60

)
‖)̂1‖ + �62�C0‖)̂0‖

]
≤ Y2�

[ (
�� + 4�C0�61 + @�60

)
@ + �62�C0

]
‖)̂0‖

(2.50)
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We can choose a sufficiently small Y2 to make

Y2�

[ (
�� + 4�C0�61 + @�60

)
@ + �62�C0

]
≤ @2 < 1 (2.51)

Thus, we can get

‖)̂2‖ ≤ @2‖)̂0‖ (2.52)

Step Three: Suppose we can select the parameters Y3, · · · , Y=−1 to make ‖)̂3‖ ≤ @3‖)̂0‖,

· · · , ‖)̂=−1‖ ≤ @=−1‖)̂0‖ valid. Let us consider (2.33)

‖)̂=‖ ≤ Y=�
( 


)̂=−1� + �))̂=−1




 + 





=−2∑
9=0
)̂96'

−16))̂=−2− 9













=−1∑
9=0
)̂9

(
60'

−16) + 6'−16)0
)
)̂=−1− 9







 +






=−1∑
9=1
)̂960'

−16)0 )̂=− 9








)

≤ Y=�
(
��‖)̂=−1‖ + �62

=−2∑
9=0
‖)̂9 ‖‖)̂=−2− 9 ‖ + 2�61

=−1∑
9=1
‖)̂9 ‖‖)̂=−1− 9 ‖

+ �60

=−1∑
9=1
‖)̂9 ‖‖)̂=− 9 ‖

)
≤ Y=�

(
��@

=−1 + (1/2)=(= − 1)@=−2�62�C0 + =(= − 1)�61�C0@
=−1

+ (1/2)=(= − 1)�60�C0@
=

)
‖)̂0‖

≤ Y=�
(
��@

−1 + (1/2)=(= − 1)�62�C0@
−2 + =(= − 1)�61�C0@

−1 (2.53)

+ (1/2)=(= − 1)�60�C0

)
@=‖)̂0‖

From (2.53), we can find that it is reasonable to manipulate Y= to make

Y=�

(
��@

−1 + (1/2)=(= − 1)�62�C0@
−2 + =(= − 1)�61�C0@

−1 + (1/2)=(= − 1)�60�C0

)
< 1
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Thus, we can get

‖)̂=‖ ≤ @=‖)̂0‖ (2.54)

Thus, from the above analysis, we can realize that

=∑
8=0
‖)̂8‖ ≤ (1 + @ + @2 + · · · + @=)‖)̂0‖ (2.55)

We can see that when = approaches to infinity, the RHS of (2.55) is a convergent

geometric series, since 0 < @ < 1.

Thus, we can conclude that
∑∞
8=0 )̂8 is a convergent series, which implies that

∑∞
8=0 )8\

8

is convergent.

2.3.3. Positive Definite Analysis. Now, we have already proven that
∑∞
8=0 )8\

8 is

convergent. Since our goal is stability analysis, we have to show that
∑∞
8=0 )8\

8 is positive

definite. With (N2), we just need to show that )B =
∑∞
8=0 )̂8 is positive definite.

Proof:

The first step is to rewrite equation (2.30) as the form of equation (2.31). The idea

is to add −)̂060'
−16)0 )̂0 to the both sides of the equation (2.30).

After that operation, the equation (2.33) can be changed to (2.56). Since (�0 −

60'
−16)0 )̂0) is stable, and )̂0 is semi-positive definite, then the RHS of (2.56) is equally

semi-negative definite.

)̂0�0 + �)0 )̂0 − )̂060'
−16)0 )̂0 +& = − ¤̂)0

=⇒ )̂0�0 + �)0 )̂0 − )̂060'
−16)0 )̂0 − )̂060'

−16)0 )̂0

= −& − ¤̂)0 − )̂060'
−16)0 )̂0

=⇒ )̂0(�0 − 60'
−16)0 )̂0) + (�)0 − )̂060'

−16)0 ))̂0

= −& − ¤̂)0 − )̂060'
−16)0 )̂0 (2.56)
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Now, we can add (2.56), (2.31), (2.32), (2.33) together when =→∞; then, one can

obtain

)B (�0 − 60'
−16)0 )̂0) + (�)0 − )̂060'

−16)0 ))B

= [−& − ¤̂)0 − )̂060'
−16)0 )̂0] −

∞∑
:=1

Y: [)̂:−1� + �))̂:−1]

+
∞∑
:=2

Y: (
:−2∑
9=0
)̂96'

−16))̂:−2− 9 ) +
∞∑
:=1

Y: (
:−1∑
9=0
)̂9

(
60'

−16) + 6'−16)0
)
)̂:−1− 9 )

+
∞∑
:=2

Y: (
:−1∑
9=1
)̂960'

−16)0 )̂:− 9 ) (2.57)

In order to justify that
∑∞
8=0 )̂8 is positive-definite, we just need to show that the RHS

of (2.57) is negative definite since (�0 − 60'
−16)0 )̂0) is stable.

Equivalently, with (2.56), one can show that the following expression is positive

definite:

G)
[
−

(
)̂0(�0 − 60'

−16)0 )̂0) + (�)0 − )̂060'
−16)0 ))̂0

)
+
∞∑
:=1

Y: [)̂:−1� + �))̂:−1]

−
∞∑
:=2

Y: (
:−2∑
9=0
)̂96'

−16))̂:−2− 9 ) −
∞∑
:=1

Y: (
:−1∑
9=0
)̂9

(
60'

−16) + 6'−16)0
)
)̂:−1− 9 )

−
∞∑
:=2

Y: (
:−1∑
9=1
)̂960'

−16)0 )̂:− 9 )
]
G > 0 (2.58)

Define several symbols to represent the items of (2.58), to simplify the deviation

C1 = G
)

(
− )̂0(�0 − 60'

−16)0 )̂0) − (�)0 − )̂060'
−16)0 ))̂0

)
G (2.59)

C2 = G
)

( ∞∑
:=1

Y: [)̂:−1� + �))̂:−1]
)
G (2.60)

C3 = G
)

( ∞∑
:=2

Y: (
:−2∑
9=0
)̂96'

−16))̂:−2− 9 )
)
G (2.61)
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C4 = G
)

( ∞∑
:=1

Y: (
:−1∑
9=0
)̂9

(
60'

−16) + 6'−16)0
)
)̂:−1− 9 )

)
G (2.62)

C5 = G
)

( ∞∑
:=2

Y: (
:−1∑
9=1
)̂960'

−16)0 )̂:− 9 )
)
G (2.63)

The first item can be expressed as

C1 =G
)

(
− )̂0(�0 − 60'

−16)0 )̂0) − (�)0 − )̂060'
−16)0 ))̂0

)
G

≥�_1 ‖G‖2
(2.64)

where �_1 = _<8=

(
− )̂0(�0 − 60'

−16)0 )̂0) − (�)0 − )̂060'
−16)0 ))̂0

)
> 0. Since )̂0 is

bounded within [0, C 5 ], and other �0, 60, ' are constant, then minimal eigenvalue exists

within [0, C 5 ]. For the )2 term,

C2 = G
)

( ∞∑
:=1

Y: [)̂:−1� + �))̂:−1]
)
G ≥ G)

(
Y<

∞∑
:=1

)̂:−1 [� + �) ]
)
G (2.65)

where if C2 > 0, then Y< = <8=(Y8, 8 = 1, · · · ,∞) within [0, C 5 ]; if C2 < 0, then Y< =

<0G(Y8, 8 = 1, · · · ,∞) within [0, C 5 ].

Since �(G) is continuous on the compact set Ω, and )B is also a continuous function

of x on Ω, then they are bounded on the compact set Ω (lemma 3, lemma 4).

C2 ≥ Y<G)
(
)B [� + �) ]

)
G ≥ Y<�_2 ‖G‖2 (2.66)

where �_2 = _<8=

(
)B [� + �) ]

)
.

Note that lemma 7 guarantees the above minimal eigenvalue �_2 exists over the

compact set Ω.
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Now, let us consider the third term C3

C3 =G
)

( ∞∑
:=2

Y: (
:−2∑
9=0
)̂96'

−16))̂:−2− 9 )
)
G

≤‖G‖2
∞∑
:=2

Y:

∞∑
9=0
‖)̂9 ‖‖6'−16) ‖

∞∑
9=0
‖)̂:−2− 9 ‖

≤‖G‖2
∞∑
:=2

Y:

∞∑
9=0
‖)̂9 ‖‖6'−16) ‖

∞∑
9=0
‖)̂9 ‖

(2.67)

Since
∑∞
9=0 ‖)̂9 ‖ is a convergent series and equation of (2.48), we assume that

�_3 =
∑∞
9=0 ‖)̂9 ‖‖6'−16) ‖∑∞9=0 ‖)̂9 ‖. Then, we can get C3 ≤

∑∞
:=2 Y:�_3 ‖G‖2.

Since (0 ≤ Y: < 1, : = 1, · · · ,∞) are user-defined parameters, we can always

choose a small enough Y: such that
∑∞
:=2 Y: is a convergent series. Assume that Y2 =∑∞

:=1 Y: , and one will get

C3 ≤
∞∑
:=2

Y:�_3 ‖G‖2 ≤ Y2�_3 ‖G‖2 (2.68)

With the same logic to handle term C3, we can analyze term C4 and C5 by defining

�_4 =

∞∑
9=0
‖)̂9 ‖‖60'

−16) + 6'−16)0 ‖
∞∑
9=0
‖)̂9 ‖ (2.69)

�_5 =

∞∑
9=0
‖)̂9 ‖‖60'

−16)0 ‖
∞∑
9=0
‖)̂9 ‖ (2.70)

Then, one can get

C4 ≤ Y2�_4 ‖G‖2 (2.71)

C5 ≤ Y2�_5 ‖G‖2 (2.72)
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Combining (2.58),(2.64),(2.66),(2.68),(2.71),(2.72), then we get

G)
[
−

(
)̂0(�0 − 60'

−16)0 )̂0) + (�)0 − )̂060'
−16)0 ))̂0

)
+
∞∑
:=1

Y: [)̂:−1� + �))̂:−1] −
∞∑
:=2

Y: (
:−2∑
9=0
)̂96'

−16))̂:−2− 9 )

−
∞∑
:=1

Y: (
:−1∑
9=0
)̂9

(
60'

−16) + 6'−16)0
)
)̂:−1− 9 ) −

∞∑
:=2

Y: (
:−1∑
9=1
)̂960'

−16)0 )̂:− 9 )
]
G

≥ ‖G‖2(�_1 + Y<�_2 − Y2�_3 − Y2�_4 − Y2�_5) (2.73)

Thus, by choosing proper Y< and Y2, the right-hand side of the inequality of (2.73)

can be made positive definite, and, equivalently, the right hand side of (2.57) is negative

definite. Therefore, )B =
∑∞
8=0 )̂8 or

∑∞
8=0 )8\

8 is positive definite.

2.3.4. Stability Analysis. Let us choose a Lyapunov candidate function

! =
1
2
G)

∞∑
8=0
)̂8G (2.74)

Taking the derivative with respect to time, both sides of (2.74) become

3!

3C
= G)

∞∑
8=0
)̂8 ¤G +

1
2
G)

[
3)̂0
3C
+
∞∑
8=1
(�= ⊗ ¤G) )

m)̂8

mG

]
G (2.75)

Since +G =
∑∞
8=0 )̂8G, and +C =

1
2G
) ¤)0G (2.17) satisfies the HJB equation

+C ++)G ( 5 (G) + �(G)D) +
1
2
D)'D + 1

2
G)

(
& +

∞∑
8=1

�8\
8
)
G = 0 (2.76)

The above equation can be rearranged as

G)
∞∑
8=0
)̂8 ( 5 (G) + �(G)D) = −+C −

1
2
D)'D − 1

2
G)

(
& +

∞∑
8=1

�8\
8
)
G

= −1
2
G) ¤)0G −

1
2
D)'D − 1

2
G)

(
& +

∞∑
8=1

�8\
8
)
G

(2.77)
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Substituting (2.77) into (2.75), and with D = −'−1�)
∑∞
8=0 )̂8G

3!

3C
= −1

2
G) ¤)0G −

1
2
D)'D − 1

2
G)

(
& +

∞∑
8=1

�8\
8
)
G

+ 1
2
G)

[
3)̂0
3C
+
∞∑
8=1
(�= ⊗ ¤G) )

m)̂8

mG

]
G

= −1
2
D)'D − 1

2
G)

(
& +

∞∑
8=1

�8\
8
)
G + 1

2
G)

( ∞∑
8=1
(�= ⊗ ¤G) )

m)̂8

mG

)
G

= −1
2
G)

(
& +

∞∑
8=1

�8\
8 +

∞∑
8=0
)̂8�'

−1�)
∞∑
8=0
)̂8

)
G

+ 1
2
G)

( ∞∑
8=1
(�= ⊗ ¤G) )

m)̂8

mG

)
G

(2.78)

From (2.6), we know that&+∑∞8=1 �8\
8 is semi-positive definite. Because the whole

expression
(
& +∑∞

8=1 �8\
8 +∑∞

8=0 )̂8�'
−1�)

∑∞
8=0 )̂8

)
is simple addition and multiplication

operation, then the result of it is the function of x and also continuous, based on lemma 2.

With lemma 7, we can conclude that

−1
2
G)

(
& +

∞∑
8=1

�8\
8 +

∞∑
8=0
)̂8�'

−1�)
∞∑
8=0
)̂8

)
G ≤ −1

2
�_‖G‖2 (2.79)

where �_ = _<8=
(
& +∑∞

8=1 �8\
8 +∑∞

8=0 )̂8�'
−1�)

∑∞
8=0 )̂8

)
> 0.

The second term

1
2
G)

( ∞∑
8=1
(�= ⊗ ¤G) )

m)̂8

mG

)
G ≤ 1

2
‖G‖2

( ∞∑
8=1
‖�= ⊗ ¤G) ‖‖

m)̂8

mG
‖
)

=
1
2
‖G‖2

( ∞∑
8=1
‖�= ⊗ ( 5 (G) + �(G)D)) ‖‖

m)̂8

mG
‖
) (2.80)

Let us observe the =Cℎ recursive equation of )̂= (2.33). We know that (2.33) is regular

form of linear Lyapunov equation. There exist a closed-form solution.
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We can define

&= (G) =
[
)̂=−1� + �))̂=−1 −

=−2∑
9=0
)̂96'

−16))̂=−2− 9

−
=−1∑
9=0
)̂9

[
60'

−16) + 6'−16)0

]
)̂=−1− 9 −

=−1∑
9=1
)̂960'

−16)0 )̂=− 9

]
(2.81)

Then, (2.33) will become

)̂= (�0 − 60'
−16)0 )̂0) + (�)0 − )̂060'

−16)0 ))̂= = −Y=&= (G) (2.82)

Thus,

+42()̂=) = Y=
(
� ⊗ (�0 − 60'

−16)0 )̂0) + (�)0 − )̂060'
−16)0 ) ⊗ �

)
+42(&= (G)) (2.83)

Then, we can realize that ‖ m)̂8
mG
‖ includes Y8 parameters. ( 5 + �D) is also continuous

function with G of the compact set Ω, which implies that it is bounded.

3!

3C
≤ −1

2
�_‖G‖2 +

1
2
‖G‖2

( ∞∑
8=1
‖�= ⊗ ( 5 (G) + �(G)D)) ‖‖

m)̂8

mG
‖
)

≤ −1
2
(1 − U)�_‖G‖2 −

(
1
2
U�_ −

∞∑
8=1
‖�= ⊗ ( 5 (G) + �(G)D)) ‖‖

m)̂8

mG
‖
)
‖G‖2

(2.84)

where 0 < U < 1. One can choose a sufficiently small Y8 included by term ‖ m)̂8
mG
‖ to ensure(

1
2U�_ −

∑∞
8=1 ‖�= ⊗ ( 5 (G) + �(G)D)) ‖‖

m)̂8
mG
‖
)
is non-negative. Therefore, 3!

3C
< 0.

2.4. NUMERICAL EXPERIMENT

The goal of this section is to show some properties of the proposed finite time \ −�

algorithm with a two dimensional benchmark problem. The experiment will be carried out

by the personal Laptop Thinkpad R480 with the CPU Intel(R) Core(TM) i3-7130U 2.70
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GHZ and 16GB RAM. The first part will show the dynamic function and relative parameter

selection. The scenario of without using D terms for relatively small initial conditions will

be presented in second set. The third set will cover the analysis of )8 term selection. The

final set is about the D term influence to the control when encountering large initial state

values..

2.4.1. Nonlinear Dynamics and Penalty Matrices Selection. Finding a control

D = [D1, D2]) to minimize the cost function:

� =
1
2
G(C 5 ))( 5 G(C 5 ) +

1
2

∫ C 5

0
(G)&G + D)'D)3C (2.85)

where ( 5 =


5 0

0 5

 ; & =


1 0

0 1

 ; ' =

2 0

0 2

 ; C 5 = 4 time unit.

with the dynamic function described by

¤G1 = G1 − G3
1 + G2 + D1 (2.86)

¤G2 = G1 + G2
1G2 − G2 + D2 (2.87)

We can factorize the 5 (G) as �0 =


1 1

1 −1

 ; � =

−G2

1 0

0 G2
1

 .
2.4.2. Case I: Relatively Small Initial Conditions and without using � Terms.

In this case, we consider an arbitrarily small initial condition [1,−1]. The auxiliary

parameter \ is set to 1 while the � terms are not adopted in this case. The finite time SDRE

(FSDRE) technique Heydari and Balakrishnan (2015) is also employed as a comparison.

Also, three )8 terms are used as usual. From Figure.2.1, we can observe the state history

over the four seconds. After applying the control from the proposed method, we can get

the almost the similar performance by the FSDRE technique. Both techniques can force
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Figure 2.1. State Responses: G0=[1,-1], without using � Term

Figure 2.2. State Error Responses: G0=[1,-1], without using � Term
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Figure 2.3. Control Responses: G0=[1,-1], without using � Term

Figure 2.4. Control Error Responses: G0=[1,-1], without using � Term
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the states to arrive zero at the final time of 4 seconds. Since the state difference of those

two methods can not easily identified, Figure.2.2 provides more detailed insight of the state

error history. Notice that the maximum value of the difference are 5× 10−3 of first state and

−5× 10−3 of second state, which can verify the effectiveness of the proposed method since

it can achieve the almost same performance of FSDRE technique. For the FSDRE method,

the overall run time is 8.751358 seconds with the cost of 1.049 × 103 . However, the run

time of the proposed method is only 1.638861 seconds with the cost of 1.048× 103. It is an

attractive property that the run time of the proposed technique is one fourth of that of the

FSDRE while both of them have comparable cost value, which can prove that the proposed

method is efficient one and is ideally suitable for online implementation. In this case, three

terms )0, )1 and )2 are used to calculated the finite time \ − � control. The Figure.2.3

shows that the control history by three terms is good enough to approximate the control

getting from the FSDRE. To get more detailed view of both controls, the history of control

error is demonstrated in Figure.2.4. One can find that there exist a relatively large different

at the beginning of 1 second. After that, there are almost no difference which implies that

the tree terms are enough for the practical engineering problems.

2.4.3. Case II: )8 Terms Selection and without using � Terms. Practically, we

take )0, )1 and )1 to calculate the control in the finite time \ − � framework. This case

will show how to influence the performance with more )8 terms selection. Similarly, we

still consider initial condition of [1,−1]. The \ is set to 1 while the � terms are also not

used in this case. The five )8 terms are employed in this case as a comparison with the

three )8 terms. Figure.2.5 shows the state history with the FSDRE control, three )8 terms

control and five )8 terms control. We can find that the overall trend is almost same with

those three controls. But it is not clear to identify the details. When zoom in some part of

the state history in Figure.2.6, we can observe that the states of five )8 term control will be

more closer to states of FSDRE control than the states of three )8 term control. The same

phenomenon can be found in the state error history of Figure.2.7. The control history in
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Figure.2.8., control zoom in plot of Figure.2.9 and the control error history in Figure.2.10.

also indicate that five)8 term finite time \−� control is more closer to the control of FSDRE

than three )8 term finite time \ − � control. Based on this simulation results, we can get a

conclusion that more )8 terms will certainly generate better performance. But it will take

more run time of 4.244108 seconds than 1.638861 seconds of three )8 terms calculation.

So, the engineers can determinate how many )8 terms will be employed to calculate finite

time \ − � control based on the the project performance requirement. The contribution of

each )8 term to total finite time \ − � control are displayed in Figure.2.11 and Figure.2.12.

One can observe that the fourth term and fifth term do less contribution to the final control

since they are close to zero, which implies that the first term, second term and third term

are denominating part for the total control. From practical perspective, we can save some

computational resources with sacrificing some insignificant terms.

Figure 2.5. State Responses: G0=[1,-1], without using � Term
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Figure 2.6. State Error Responses Zoom in: G0=[1,-1], without using � Term

Figure 2.7. State Error Responses: G0=[1,-1], without using � Term
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Figure 2.8. Control Responses: G0=[1,-1], without using � Term

Figure 2.9. Control Responses Zoom in: G0=[1,-1], without using � Term
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Figure 2.10. Control Error Responses : G0=[1,-1], without using � Term

Figure 2.11. First Control Items Responses: G0=[1,-1], without using � Term
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Figure 2.12. Second Control Items Responses: G0=[1,-1], without using � Term

Figure 2.13. State Responses: G0=[10,10], without using � Term
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Figure 2.14. Control Responses: G0=[10,10], without using � Term

Figure 2.15. State Responses: G0=[10,10], using � Term
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Figure 2.16. Control Responses: G0=[10,10], using � Term

2.4.4. Case III: Adopting � Terms. The aforementioned analysis is employing

the finite time \ − � algorithm without using the perturbation D term. In this case,

D term will be employed to offset the large initial state challenge since actuators will

generate lager control signal to large initial state. Due to this merit of D terms, the

proposed method can protect the actuators in the practical applications. With the initial

condition of G0 = [10, 10]) , the left plot of Figure.2.13 shows the states history without

using the D terms. Certainly, three )8 terms are taken here. However, the second state

history is not clear. The right plot of Figure.2.13 indicates the history of second state

between [0.5B, 4B].Both plots can verify that the proposed algorithm can drive the both

states to zero at the final time of 4 seconds, which implies that the proposed method is

working well with larger initial condition. Unfortunately, when we observe the control

response, we can find that the actuator have to pay a great effort since the initial control is
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D(0) = [−1.73774 + 04,−1.93574 + 04]. That is a huge control in magnitude which could

jeopardize the actuators in engineering applications. It can be tackled when the D term

will be involved in this algorithm. After employing the D term with, we can observe the

Figure.2.15 and Figure.2.16. we can find that the state history is almost same. Attractively,

from Figure.2.16, the control signal is greatly reduced as compared with Figure.2.14. Here,

:8 = 1 − 1
‖)0∗�0+�′0∗)0‖ and ;8 = 0.1. Definitely, there are other selections based on the

designers. The only principle to choose :8 and ;8 is that the control will be insensitive to the

initial states. To summarize that the D term can prevent the actuators from overloading in

the real applications and can save money since control is always expensive.
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3. PATH PLANNING FOR APPROACHING AND LANDING PHASE OF THE
REUSABLE LAUNCH VEHICLE BY A NEW FINITE-HORIZON

NEAR-OPTIMAL CONTROL DESIGN TECHNIQUE

The path planning for the approaching and landing (A&L) phase of Reusable Launch

Vehicle (RLV) is re-formulated as a finite-horizon optimal control problem.The nonlinear

dynamic equations are rewritten as a state-dependent pseudo-linear structure character-

ized with cost function of a linear quadratic regulator prototype and an intractable partial

differential Hamiltonian-Jacobi-Bellman (HJB) equation. Motivated by finite time state-

dependent Riccati equation (FSDRE) technique, a novel method, named finite-horizon \−�

near-optimal control design, is developed to address this challenge. Compared with the FS-

DRE approach, the proposed method presents a more simple closed-form solution, and it

extremely reduces the online computation load, which makes the real-time implementation

of this technique possible. Actually, any control algorithm working on the A&L phase

of RLV must satisfy a rigid requirement such that the touchdown should occur at a fixed

downrange with the sink rate (vertical velocity) near-zero and the flight path angle close to

zero. Finally, the numerical simulation demonstrates that this novel control strategy offers a

reliable performance, not only satisfying the strict requirement, but it also provides a certain

robustness to the variant initial values.

3.1. DYNAMIC EQUATIONS OF RLV IN A&L PHASE AND PROBLEM FORMU-
LATION

3.1.1. Mathematical Model. In this section, the dynamics of RLV in A&L phase

Heydari and Balakrishnan (2011b) will be depicted (See Figure 3.1). This study is restricted

the concern that the A&L phase occurs in a vertical plane and there does not exits the cross-

range for the runway.
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Figure 3.1. The Schematic Diagram of Landing Phase of RLV

¤E = −dE2(0��/(2 ∗ <) − 6 ∗ B8=(W) (3.1)

¤W = dE2(0�!/(2 ∗ < ∗ E) − 6 ∗ 2>B(W)/E (3.2)

¤ℎ = E ∗ B8=(W) (3.3)

¤- = E ∗ 2>B(W) (3.4)

where E is velocity of RLV ( 5 C/B42), W is flight path angle (346), ℎ is altitude ( 5 C) , - is

downrange ( 5 C), d is air density (B;D6B/ 5 C3), (0 is aerodynamic reference area ( 5 C2). ��

is drag coefficient. �! is lift coefficient, < is RLV mass (B;D6B), 6 is earth gravitational

acceleration with the constant value of 32.174 5 C/B422.
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The parameters of air density d, lift coefficient �! , and drag coefficient �� can be

calculated as follows Yedavalli (2020):

d = d0 exp(−ℎ/�) (3.5)

�! = �!0 ∗ U (3.6)

�� = ��0 +  � ∗ �2
! (3.7)

where d0 is sea-level air density with a constant value of 0.0027 B;D6B/ 5 C3, � is scale

height with a number of 27887.1 5 C, �!0 is zero angle of attack lift coefficient, U is angle of

attack (346), ��0 is zero lift drag coefficient.  � is lift-induced drag coefficient parameter.

Note that (3.1)-(3.7) constitutes the dynamics of RLV in A&L phase with the state of

[E, W, ℎ, -] and control of U.It is important that if (3.6) is taken into (3.7), the control U

will be changed to the square of U. The the dynamics of RLV in A&L phase is a control

non-affine system which can not be addressed by the finite horizon \ − � technique. In

order to employ the finite horizon \ − � technique, conversions must be made, that is, a

new control variable D is introduced into the system as input equaling to the first derivative

of U.

¤U = D (3.8)

The state will be augmented to [E, W, ℎ, -, U] with new control D, which implies

that the system is the control affine dynamics.

3.1.2. Finite Horizon Optimal Control Problem Formulation. The designed

guidance controller can guide the RLV along a optimal trajectory with the final vertical

velocity and flight path angle as small as possible with a given downrange location. Usually,

the final vertical velocity is less than 9 5 C/B42, and the flight path angle should be close to
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zero 346 when the RLV reach on the runway at the final time.Note that there is interest in the

the optimal touchdown in a fixed downrange, not a fixed time in the practical engineering

scenario. It is convenient for later analysis to convert the independent variable from time C

to downrange - . When it is divided (3.1)-(3.3) and (3.8) by (3.4). Then the solution is

E′ =
¤E
¤-
=
3E

3C
∗ 3C
3-

=
3E

3-
=
−dE2(0��/(2 ∗ <) − 6 ∗ B8=(W)

E ∗ 2>B(W) (3.9)

With the same logic,

W′ =
¤W
¤-
=
3W

3-
=
dE2(0�!/(2 ∗ < ∗ E) − 6 ∗ 2>B(W)/E

E ∗ 2>B(W) (3.10)

ℎ′ =
¤ℎ
¤-
=
3ℎ

3-
= tan W (3.11)

U′ =
¤U
¤-
=
3U

3-
=

D

E ∗ 2>B(W) (3.12)

The time variable will become an incidental variable, which is denoted as:

C′ =
3C

3-
=

1
¤-
=

1
E ∗ 2>B(W) (3.13)

When (3.9)-(3.13), the states is G = [E, W, ℎ, C, U] and control is D. New dynamics

is used for the following design control.

The cost function is given as

� =
1
2
G) (- 5 )( 5 G(- 5 ) +

1
2

∫ - 5

-0

(
G)&G + D)'D

)
3- (3.14)

where ( 5 ≥ 0 is final state weighted matrix, & ≥ 0 is state weighted matrix, ' > 0 is

control weighted matrix. - 5 is denoted as a fixed downrange. The whole finite horizon

optimal control problem setting is composed of (3.9)- (3.14).
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3.2. NUMERICAL EXPERIMENT

3.2.1. State Dependent Coefficient �(G) and �(G). There is no general method

to factorize �(G) and �(G) (refer to Çimen (2008) for more reading). In this research, the

nonzero entries of matrix �(G) and �(G) are given as:

�(1, 1) =
−d0 exp(−G3/�)(0 (��0 +  ��2

!0
G2

5) − d(0��0

4< ∗ 2>B(G2)

�(1, 2) = −6 ∗ tan(G2)
G1G2

�(1, 3) =
−d0(0��0G1 exp(−G3/�)

4<G3 ∗ 2>B(G2)
+

d0(0��0G1

4<G3 ∗ 2>B(G2)

�(1, 5) =
−d0 exp(−G3/�)(0 ��2

!0
G1G5

4< ∗ 2>B(G2)

�(2, 1) = − 6
G3

1
(3.15)

�(2, 3) =
d0 exp(−G3/�)(0�!0G5

4<G3 ∗ 2>B(G2)
−

d0(0�!0G5

4<G3 ∗ 2>B(G2)

�(2, 5) =
d0(0�!0 (exp(−G3/�) + 1)

4< ∗ 2>B(G2)

�(3, 2) = tan(G2)
G2

�(4, 1) = 1
G2

1 ∗ 2>B(G2)

�(5, 1) = 1
G1 ∗ 2>B(G2)

where G1 = E, G2 = W, G3 = ℎ, G4 = C, G5 = U, due to the state vector of G = [E, W, ℎ, C, U] .

3.2.2. Selection of Related Parameters. The requisite parameters for the simula-

tion are given, �!0 = 2.3, ��0 = 0.0975,  � = 0.1819, (</< = 0.912 5 C2/B;D6. The matri-

ces are chosen as ' = 1, & = 3806( [0, 0, 05, 0.01, 10−6, 1]), ( 5 = 3806( [0, 106, 103, 0, 0]).

Note that the goal is to guide the RLV to land with a small value of vertical speed and

a sharply shortened flight path angle. In the terminal penalty matrix ( 5 , the 2=3 and 3Cℎ

diagonal elements are endowed as a higher values since they are corresponding with the

W and ℎ, respectively. The initial values for the simulation are 10,000 5 C for altitude, 300
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Figure 3.2. The Histories of Horizontal and Vertical Velocities by Two Techniques

5 C/B42 for velocity, -30 346 for the fligth path angle and 10 346 for attack angle. The fixed

downrange is given as 20,000 5 C. Since the independent variable is downrange - , then

the sampling interval is unit of 5 C. In this simulation, the sampling point is every 20 5 C.

Additionally, The parameter of \ is set to 1. � terms are set to 0 in this case.

3.2.3. Simulation Result and Analysis. This simulation experiments are carried

out in Dell OptitPlex 5070 Desktop with CPU I7-9700 and 16GB RAM. The first set of

simulation are carried out with the proposed finite-horizon \ − � method as compared

with the FSDRE technique in Heydari and Balakrishnan (2015). The second set leads to

a robustness property of the proposed finite-horizon \ − � method to the varying initial

conditions.
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Figure 3.3. The Histories of Flight Path Angle and Altitude by Two Techniques

Figure 3.4. The History of Angle of Attack by Two Techniques
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Figure 3.5. The The Schematic Diagram of Angles

3.2.3.1. Case I: finite-horizon \ −� vs FSDRE. With the same initial conditions,

Figure 3.2.– Figure 3.4. show the performances by Finte-Horizon \ − � and FSDRE

techniques. From Figure 3.2, the vertical velocities with two methods are close to zero. The

flight path angle W also approaches zero with two strategies based on the LHS plot of Figure

3.3. With the RHS plot of Figure 3.3, the altitudes are forced to zero. Those three figures

indicate that both Finte-Horizon \ − � and FSDRE techniques are all effective to guide the

A&L phase of RLV, while satisfying the designed objectives. Those figures illustrate that

although the Finte-Horizon \−� algorithm just picked three terms to calculate the control, it

does not sacrifices the final performance compared with the FSDRE technique. Those three

figures (Figure 3.2-Figure 3.4) can verify that our proposed finite-horizon \ − � technique

is an effective tool. Besides, the total run time of FSDRE technique is 1.6517 seconds

with the cost of 16.4918. At the meantime, the total run time of the proposed method is

only 0.1125 seconds with the cost of 15.0135. It can be found that the run time of the

proposed method is considerably less than those of FSDRE method with comparable cost

of those two methods. Typically, from the run time perspective, it is clear that the proposed

method in this research is a more efficient method and a better selection for practical online

implementation. To summarize the proposed finite horizon \ − � technique can obtain

almost same performance with the FSDRE technique with much less computation time and
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Figure 3.6. The History of W and ℎ with Different Initial Altitudes

cost. Additionally, for the better illustration the variables changing of the whole physical

landing process, the Figure 3.5 shows a schematic diagram of the landing. When the RLV

arrive the runway, it is clear that the vertical velocity will close to zero, the altitude will

go to zero, and flight path angle will also be zero since the direction of trajectory of RLV

should be along with the horizontal axis. However, the horizontal velocity and angle of

attach will keep certain values.

3.2.3.2. Case II: robustness to the varying initial conditions. This section will

displays the proposed algorithm is robust property to the some varying initial conditions,

which simulates the different scenarios of RLV in A&L phases. If the RLV could start

the A&L phase from different altitudes, Figure 3.6. shows that the proposed method still

has a good guidance performance. Also, we choose different flight path angles, different
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Figure 3.7. The History of W and ℎ with Different Initial Flight Path Angles

Figure 3.8. The History of W and ℎ with Different Initial Velocities
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Figure 3.9. The History of W and ℎ with Different Initial Downranges

velocities and different downranges. It can be identified from Figures 3.7 - Figure 3.9 that

the Finte-Horizon \−� algorithm holds up well to the various situations, which can provide

a reliable guidance law to help the RLV land safely.
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4. FINITE TIME SUBOPTIMAL CONTROLLER DESIGNWITH \ − �
TECHNIQUE FOR AEROSPACE APPLICATIONS: SATELLITE CONSENSUS

PROBLEM AND SATELLITE MANEUVERING PROBLEM

In this section, two typical aerospace problems about satellites operation are in-

vestigated. Section 4.1 includes the multiply satellites consensus (or docking ) operation.

Nowadays, more andmore space explorationmissions are carried out by a group of satellites,

which can avoid of totally failing of exploration missions if those missions are executed by a

single larger, more complicated and more expensive satellite. Obviously, for any engineer-

ing systems, more complicated one is vulnerable to be failure due to a small malfunctional

component. Put simply, the whole space exploration mission would be at risk due to an

error of a single satellite. However, if the mission is carried out by a group of satellites, the

rest of satellites in this group may continue to accomplish the mission with sacrificing of

some limited performance if some satellites do not function properly. Meanwhile, mission

with group can offer flexibility to the designers in that each satellite of the group can be

re-positioned to satisfy different mission’s requirement. For example, a ground-observing

space-based sensor should be designed as a group of satellites’ mission which can increase

the aperture size as compared to the constructing a larger satellite. This group system can

provide this sensor more flexibility since the aperture size and orientation are adjustable on

orbit. With those aforementioned advantages, it is of practical meaning to investigate the

control of a group of satellites. Inevitably, the �2 perturbation effect to satellite movement

must be considered in a successful satellite operation design, which is presented in Section

4.2. How to reject the �2 perturbation effect deserves to do study, while the energy efficiency

and successful maneuvering the satellite are considered. In this part, one can find that those

two typical problems can be solved by the proposed finite time \ − � technique after a

certain formulation operation.
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4.1. FINITE TIME \ − � CONTROL DESIGN FOR CONSENSUS PROBLEM

In this section, four satellites (regarded asmass points) alongwith different orbits are

taken into consideration and finite time \ − � based decentralized controller is constructed

to bring them to one position for docking purpose. This problem is regarded as cooperative

multi-agent tracking (leader-followers form) one characterized by nonlinear dynamics.As

long as the communication topology of the four satellites satisfies a certain requirement,

the states of followers can synchronize to those of leaders at finite time by adopting the

proposed technique.

4.1.1. Basic Graph Topology. First, a basic introduction of graph topology is

needed. A directed graph (usually called digraph) is represented as G = (V, E,A)

with # nodes set {V|E1, E2, · · · , E#} and edges set E ⊂ V × V with adjacency matrix

A = {F8 9 ∈ R#×# }. In this study, the time-invariant digraph is considered which implies

A is constant real-valued matrix. An edge from node 9 to node 8 can be denoted as

(E 9 , E8), which indicates the information or signal can flow from node 9 to node 8. The

value of F8 9 represents the weight of edge (E 9 , E8) and F8 9 > 0 if {(E 9 , E8) ∈ E}, otherwise

F8 9 = 0. Note that this study do not involve the repeated edges and self loops, which implies

{F88 = 0,∀8 ∈ #}.

1. Defining 9 node is a neighbor of 8 node if (E 9 , E8) ∈ E.

2. The neighborhood set of node 8 is denoted as #8 = { 9 | (E 9 , E8) ∈ E}.

3. The in-degree matrix is D = 3806{38} ∈ R#×# ,where 38 =
∑
9∈#8

F8 9 .

4. The Laplacian matrix can be define as L = D − A. Apparently, L1# = 0 where

1# ∈ R# indicates a vector with all elements to be one.

5. A directed path implies the existance of a sequence of successive edges

{(E8, E: ), (E: , E;), · · · , (E<, E 9 )} from 8 node to 9 node.

6. If a directed path exists from a root node to every other node in a graph, a claim can be

made that there is a spanning tree in this graph. Actually, the consensus can be reached if
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there is a spanning tree in a graph. Intuitively, this requirement condition easily understood

since all of nodes(followers) can (directly or indirectly)access to the information of the root

nodes(leaders).

4.1.2. Problem Formulation. The 8Cℎ, 8 ∈ # follower satellites’ dynamics can be

written as:

¤G8 = 5 (G8) + �D8 (4.1)

where G8 ∈ R=, 5 (G8) ∈ R=, � ∈ R=×<, D8 ∈ R< .

The dynamics of the leader satellites labeled 0 is given by

¤G0 = 5 (G0) (4.2)

where G0, 5 (G0) have the same dimensions with G8, 5 (G8).

Note that: In some cases, the information of leader can be obtained by a few (or

part) of the followers. If the 8Cℎ follower can get the information from the leader, one can

say there exists a edge (E0, E8) with a weight 68 > 0. One can call the followers with 68 > 0

as pinned followers. Let us denote the pinning matrix as G = 3806{68} ∈ R#×# .

Our objective of this consensus problem is to design a distributed controller D8 for all

followers, which leads them to reach the leader’s trajectory in finite time, which can be

expressed as:

lim
C→C 5
(G8 (C) − G0(C)) = 0,∀8 ∈ # (4.3)

4.1.3. Control Design with Finite Time \ − � Technique. In order to implement

the \ − � technique, the (4.1) can be reconstructed the \ − � form as:

¤G8 =
[
�0 + \

(
�(G8)
\

)]
G8 + �D8, 8 ∈ # (4.4)
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Definition 1. In this research, consensus error of follower 8 is defined as

48 =
∑
9∈#8

F8 9 (G8 − G 9 ) + 68 (G8 − G0) (4.5)

The cost function of the 8Cℎ follower is defined as:

� (G8, D8) =
1
2
G8 (C 5 ))( 5 G8 (C 5 ) +

1
2

∫ C 5

0
(G)8 &G8 + D)8 'D8)3C (4.6)

The control protocol for each followers 8 can be designed as:

D8 = −2 ∗  (G8) ∗ 48 (4.7)

where  (G8) can be computed by using algorithm 1 with  (G8) = '−1�) ()0 + \)1(G8) +

\2)2(G8)). The coupling parameter c should be picked carefully to guarantee states of

followers that approach the states of leader at finite time.

Note that:

1. For any feedback tracking control, the error signal could be (G − G34B8A43). G is the states.

G34B8A43 is the reference or desired states. In this problem, the error signal of 8Cℎ follower

have to involve the leader part as 68 (G8 − G0) and also consider the other followers in its

neighbourhood set as
∑
9∈#8

F8 9 (G8 − G 9 ) since the information flow might go to leader and

neighbours.

2. The coupling parameter 2 is a positive scalar number and need to be properly selected

since it determines the convergent rate.

3. )0, )1(G8), and )2(G8) can be calculated by (2.19), (2.20) and (2.21).

4. Based on description of the second part about the \ − � algorithm, the control for the

each follower is suboptimal. For this scenario, we can say that the local opitmality can be

achieved to overall system Lewis et al. (2013).
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4.1.4. Dynamical Mathematical Model. The dynamic equation of each satellite

(point mass) in the gravitational field with an inertial frame centered at center of gravity is

Curtis (2013):

¥r = `

‖r‖3
r + F (4.8)

where r represents the position vector of the satellite from the gravitational center; the

two norm form of ‖r‖ is the magnitude of the vector r; the gravitational coefficient ` is

3.986 × 105:<3/B422 and F denotes the vector of the force applied to the satellite per its

unit of mass. Additionally, ¥r is the second time derivative of the position vector r w.r.t the

inertial frame.

After normalizing the parameters with some selected reference length R and refer-

ence time T , one can get the normalized parameters r, ¤r and F as:

r =
1
R

r; ¤r = T
R
¤r;F = T

2

R
F ; (4.9)

In this case, selecting the specific reference time as T =
√

R3/` and normalizing

(32) leads to:

¥r = − 1
‖r‖3

r + F (4.10)

The position vector r within the inertial frame can be denoted as [G1, G2, G3]) and

their rates are [G4, G5, G6]) = [ ¤G1, ¤G2, ¤G3]) . Then, the overall state can be constructed as

G = [G1, G2, G3, G4, G5, G6]) (4.11)

The normalized control force per unit can be represented in the inertial frame as

F = [D1, D2, D3]) . In this case,the control vector is:

D = [D1, D2, D3]) (4.12)
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With (4.9),(4.10) and (4.11), the mathematical dynamic equation is:



¤G1

¤G2

¤G3

¤G4

¤G5

¤G6



=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

− 1
(G2

1+G
2
2+G

2
3)3/2

0 0 0 0 0

0 − 1
(G2

1+G
2
2+G

2
3)3/2

0 0 0 0

0 0 − 1
(G2

1+G
2
2+G

2
3)3/2

0 0 0





G1

G2

G3

G4

G5

G6



+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




D1

D2

D3


(4.13)

Note that one can pick the state coefficient matrix as �(G), the control direction

matrix as �.

4.1.5. Parameter Selection. The orbital elements of four satellites are given in

Table 4.1.

Table 4.1. The Orbital Elements of Four Satellites
Elements Satellite One Satellite Two Satellite Three Satellite Four
0 (:<) 9,000 11,000 13,000 15,000
Ω (deg) 20 0 40 50
8(deg) 20 0 40 50
4 0 0 0 0

In this table, 0 is orbital semi-major axis, Ω represents right ascension of the

ascending node, 8 denotes inclination and 4 is eccentricity. In this case, before applying any

maneuver operations for those satellites, it is considered that those four satellites are running

within the equatorial plan from the Southern hemisphere to the Northern hemisphere. The

objective is to maneuver the satellite two, three, four and to make them dock in the location

of satellite one at finite time. This means that the satellite one keeps rotating along the orbit

without any control input excreted on it and the remaining satellites are supposed to have

the ability to obtain the position and speed information of satellite one and dock with it at

finite time.
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The communication topology among those satellites is demonstrated as follows

Figure 4.1. Four Satellites Communication Graphic Topology

From Figure.4.1, satellites two three, and four can directly get the information from

the satellite one, while satellite three does not have direct access to satellite one. Note that

in this topology exists a spanning tree with satellite one as the root.

The reference length is set as R = 9000:<, and reference time is selected as

T = 1352.4B. With this condition, each control unit is R/T 2 = 4.921</B2. Based on

Table 4.1, the initial condition of each satellite can be computed and listed as follows:

G0
1 = [0.9397, 0.3420, 0,−0.3214, 0.8830, 0.3420])

G0
2 = [1.222, 0, 0, 0, 0.9405, 0])

G0
3 = [1.1065, 0.9285, 0,−0.4097, 0.4883, 0.5348])

G0
4 = [1.0713, 1.2767, 0,−0.3814, 0.3200, 0.5934])

(4.14)

The three weight matrices of the cost function are defined as:

& = 3806(1200, 1100, 1600, 0, 0, 0) (4.15)

( 5 = 3806(1000, 1000, 1000, 0, 0, 0) (4.16)

' = 3806(1, 1, 1) (4.17)
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In this simulation, without losing of generality, the \ is set to 1, �8 is chosen as 0

and the coupling parameter 2 is 0.2.

4.1.6. SimulationResult. This simulation experiment is carried out by the personal

Laptop Thinkpad R480 with the CPU Intel(R) Core(TM) i3-7130U 2.70 GHZ and 16GB

RAM. This first set is to show the effectiveness of finite time \ − � control to this docking

problem. The second set is a comparative analysis with the FSDRE technique, which

demonstrates the efficient property of the proposed method.

a. Simulation Results with Finite Time \ − � Technique

Figure.4.2 shows the history of position error between satellite two and satellite

one in X, Y, and Z direction. It can be found that the error can be driven to zero at the

final time of eight time unit, which implies that the proposed finite time \ − � controller

is effective. The similar phenomenon also can be observed in Figure.4.3 and Figure.4.4,

which represent the error histories of the satellite three to satellite one and satellite four

to satellite one. Figure.4.5 shows the history of states of all satellites along the X, Y, Z

direction. The red line represents the satellite one or leader, which is simulated with 30

time unit and can be found that the leader satellite is varied periodically. This plot provides

an overall picture that satellite two, three, four can reach the position of satellite one at the

eight time unit with the proposed finite time \ − � controller. Unfortunately, it is not clear

to see what happen between the time unit interval [0, 8]. In order to get insight into this part,

the state histories of those satellites within the [0, 8] are presented separately in Figure.4.6,

Figure.4.7 and Figure.4.8. Figure.4.6 shows the trajectories of all of four satellites in X

direction, which also verify that our proposed technique is valid. Meanwhile, Figure.4.7 and

Figure.4.8 also exhibit the trajectories of all satellites in Y and Z direction. The results is

quite good. Let us observe Figure.4.6, Figure.4.7 and Figure.4.8, we can find an interesting

phenomena that the states in Y direction are oscillating more intensively than other two

directions. The reason is arisen from the initial values. In - direction, the initial values

of the four satellites are [0.939, 1.222, 1.1065, 1.0713] in / coordinate , and the initial
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Table 4.2. Cost Value and Run Time with Finite Time \ − � Vs FSDRE
Techniques Satellite Two Satellite Three Satellite Four

Finite Time \ − � Cost 5.1166e+03 5.0061e+03 5.1184e+03
Run Time 7.540481 seconds

FSDRE Cost 5.1202e+03 5.0114e+03 5.1924e+03
Run Time 70.116641 seconds

values of 4 satellites is [0, 0, 0, 0] . But there is a large initial value difference between the

satellites in . direction [0.3420, 0, 0.9285, 1.2767]. Furthermore, Figure.4.9, Figure.4.10

and Figure.4.11 show the trajectories in three-dimensional coordinates, which offer a more

visual perception of the movement history of the three satellites to track the leader.Note

that the five-point star represents the starting point, and the circle are the reaching point. To

summarize, Figure.4.2-Figure.4.11 prove that the proposed finite time \ − � technique is

an effective one in this satellite docking problem.

b. Compassion Results

The aforementioned analysis reveals the proposed method is effective to control

design for multi-agents problem. Furthermore, in order to show the proposed \ −� method

is more efficient than the popular FSDRE technique, the simulation is operated by two

methods. Table 4.2 includes the results of �(�'� and finite time \ − � method. We can

find the cost for the three satellites with FSDRE technique are 5.1202e+03, 5.0014e+03

and 5.1924e+03. The total run time is 70.116641 seconds. However, we also can find

the cost for those satellites with the proposed method are 5.1166e+03, 5.0061e+03 and

5.1184e+03, which are comparable with the cost of FSDRE technique. Astonishingly, the

run time is only 7.540481 seconds which is almost one tenth of the run time of FSDRE

method. Figure.4.12 shows history of positions error between satellite two and satellite one

by those two method. we can find that they are almost same. To identify what is the detailed

difference between those twomethod, Figure.4.13 show the difference of Figure.4.12, which

can be observed that the difference is very small. Figure.4.14 - Figure.4.17 also reflect the

same phenomenon. So, from Figure.4.12 to Figure.4.17, those figures demonstrate that the
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performance of those two techniques is quite same. To summarize, the proposed finite time

\ − � can achieve the almost same performance with FSDRE technique with much less

computation time can comparable cost.

4.2. FINITE TIME CONTROL DESIGN FOR SPACECRAFT FORMATION FLY-
INGWITH �2 PERTURBATIONS

The importance of the formation flying has been mentioned in case one. For this

case, an exact nonlinear differential �2 perturbation model is used for the relative orbital

dynamics, and the \ − � finite time tracking is posed as an error regulator problem. In the

aerospace engineering community, the relative movement of the deputy satellites are often

depicted with a chief satellite by the relative position and velocities. For the convenient

formation configuration purpose, the dynamics of relative motion are expressed within

the Local Vertical Local Horizontal (LVLH) Franzini and Innocenti (2020) frame of chief

satellite.

4.2.1. The Development of Dynamical Mathematical Model. If one consider a

perturbed eccentric orbit for the chief satellite, the equations of relative motion for the

deputy satellite are constructed as Bilal et al. (2019), where,

32d

3C2
= ¥d� − 2l × 3d

3C
− 3l
3C
d − l × (l × d) + d + u (4.18)

¥d� = −
`(r0 + d)
‖r0 + d‖3

+ `
A3

0
r0 (4.19)

1.d = [G, H, I]) corresponding to the radial, along track, and cross track distance of the

deputy satellite relative to the chief satellite.

2.l indicates the angular velocity of the LVLH frame with the refenece to the inertial frame.

3.u and d are control and disturbance respectively.

4.r0 is the position vector of the chief satellite and denoted as r0 = [A0, 0, 0]) .

5.` is the gravitational coefficient with 3.986 × 105:<3/B422.



74

In this case, the scenario of the formation flying of low Earth orbit(LEO) satellite

is considered.There exists some perturbations for satellites, including the presence of other

celestial bodies(sun andmoon), the solar radiation pressure, and non-sphericity of the Earth,

etc. Usually, the major disturbance for the satellite in LEO is Earth oblateness effect(or

called �2 perturbations). The modeling of the �2 perturbations with the relative motion can

be expressed as Xu and Wang (2008)

�23G = −[2
5 G − (Z 5 − Z)B8B\ − A ([

2
5 − [

2)

�23H = −[2
5 H − (Z 5 − Z)B82\

�23I = −[2
5 I − (Z 5 − Z)2\ (4.20)

where �23G , �
23H, �

23I are �2 perturbation along G, H, I direction in the LVLH frame,

respectively. The disturbance term in (4.18) can be specified as d = [�23G , �
23H, �

23I]) .

The related parameters in (4.20) are defined as

[2 =
:�2

A5
0
−

5:�2B
2
8
B2
\

A5
0

(4.21)

Z =
2:�2B8B\

A4
0

(4.22)

[2
5 =

:�2

A5 −
5:�2A

2
/

A7 (4.23)

Z 5 =
2:�2A/

A5 (4.24)

A/ = B8B\ (A0 + G) + B82\H + 28I (4.25)

:�2 =
3
2
`�2'

2
4 (4.26)

where, �2 is coefficient as 1.08262668 × 10−3. Additional, the angular velocity l =

[lG , lH, lI]) within the equation (4.18) is Xu and Wang (2008)

lG = −
:�2B28B\

ℎ0A
3
0

;lH = 0;lI =
ℎ0

A2
0

(4.27)
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where 8 is inclination, \ represents argument of latitude, A0 indicates radial distance and ℎ0

stands for angular momentum of the chief satellite orbit. The radial distance of the deputy

satellite is A =
√
(A0 + G)2 + H2 + I2. '4 represents the radius of the Earth.The B(∗) and 2(∗)

stand for the sine operation and cosine operation. Note that the chief satellite states can

be represented as [A0, ¤A0, ℎ0, \, 8] and states propagation can be calculated by the dynamic

equations of (9)-(14) in Xu and Wang (2008).

4.2.2. Tracking Problem Development. Suppose there exists a reference trajec-

tory state is denoted as xd(t) in LVLH frame. For brevity purpose, the notation of state as

function of C will be omitted in the following statement. Also, one can define error e to be

the difference between the satellite state vector x = [d, d]T and the the reference state xd.

e = x − xd = [ed, ed]) (4.28)

Correspondingly, the original cost function (2.2) should be reformulated as

� (4, D) = 1
2
4(C 5 ))( 5 4(C 5 ) +

1
2

∫ C 5

0

(
4)&4 + D)'D

)
3C (4.29)

In order to use \−� technique, the equation (4.18) and (4.19) should be reformulated

as error dynamics form Bilal et al. (2019)

e = �(e)e + �D =


03×3 I3×3


 +G(e)

 e + �D (4.30)

where


 = −
[
[ ¤l×] + [l×][l×], 2[l×]

]
(4.31)

G(e) = [�3×3, 03×3] (4.32)

�3×3 = [W, ed)ed])ed) (4.33)
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W = 56 (e + xd) − 56 (xd) + d(e + xd) − d(xd) (4.34)

56 (x) = ¥d� (4.35)

where, [l×] represents the skew-symmetric matrix of l Salkuyeh (2020) and � matrix

has the same expression in (4.13). With properly choosing the weight matrices ( 5 , &, ' in

(4.29),our goal is to design a controller by \ − � technique to make the error e reach zero

at finite time, which implies that the deputy satellite can be driven to reach the reference

trajectory at finite time.

4.2.3. Parameter Selection. In this case, the orbital elements of the chief satellite

are 0 = 6952:<, 4 = 0.001, 8 = 97.7346, Ω = 0346, l = 0346, 5 = 0346. The deputy

satellite’ orbital elements are 0 = 6955.10:<, 4 = 0.0046,8 = 97.3847346,Ω = 0.2406346,

l = 47.2196346, 5 = 312.4508346. The reference radius(A3) and reference phase(q3) are

A3 = 50:< and q3 = 120346. Additionally,the weight matrices in (4.29) are selected as

( 5 = 3806( [10, 10, 10, 0, 0, 0]) (4.36)

& = 3806( [10−11, 10−12, 10−12, 0, 0, 0]) (4.37)

' = 3806( [1, 1, 1]) (4.38)

The other parameters in \ − � algorithm are set as \ = 1 and � = 0. The finite

time is set to three different times, 0.6) seconds,0.8) seconds and ) seconds, where the )

is the period of the chief satellite as ) = 2c
√

65923/` seconds.This means that the \ − �

technique is employed to design a control which can drive the deputy satellite to reach the

reference trajectory at the final times of 0.6) seconds,0.8) seconds and ) seconds.

4.2.4. Simulation Results. This simulation experiment is also carried out by the

personal Laptop Thinkpad R480 with the CPU Intel(R) Core(TM) i3-7130U 2.70 GHZ and

16GB RAM. This first set is also to show the effectiveness of finite time \ − � control

to this satellite maneuvering problem. The second set is a comparative analysis with the
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Table 4.3. Cost Value and Run Time with Finite Time \ − � Vs FSDRE

Techniques 0.6T 0.8T T

Finite Time \ − � Cost 1.7671e-05 1.7432e-05 1.7596e-05
Run Time(seconds) 2.225677 2.955464 3.202443

FSDRE Cost 1.777e-05 1.7503e-05 1.7679e-05
Run Time(seconds) 10.031524 14.142157 16.962306

FSDRE technique with three time, 0.6) seconds, 0.8) seconds and ) seconds, which also

demonstrates the efficient property of the proposed method.

a. Simulation Results with Finite Time \ − � Technique

The Figure.4.18 is to show the position error of the deputy satellite to reference

satellite. We can find that the error in X, Y and Z direction will arrive zero at the finite

time 0.6) seconds by employing the proposed finite time \ − � control. With choosing

different final times 0.8) seconds and ) seconds, the position error will also approach the

zero with the proposed method,which can be observed in Figure.4.21 and Figure.4.24. The

histories of position state about deputy and reference satellite in three difference finite time

are demonstrated in Figure.4.19, Figure.4.22 and Figure.4.25. Those six figures verify that

the proposed method is an effective tools.Besides, it can provide the aerospace engineers a

freedom to design the reaching time depended on the various task requirements. Addition-

ally, the visualized three dimensional version of the movement of deputy satellites in three

different final times can be found in Figure.4.20, Figure.4.23 and Figure.4.26.

b. Compassion Results

So far, it is easy to identify that the proposed finite time \−� technique is quite valid

to control design for the satellite orbital maneuver problem. Compared with the FSDRE

control strategy, the proposed method is more efficient can be verified. The simulations

are carried out with three different final times, 0.6) seconds, 0.8) seconds and ) seconds.

Results from the both methods are shown in Table 4.3. From the third row of this table, we

can find the integrated cost function values with the FSDRE method are 1.777e-05 for 0.6)
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seconds, 1.7503e-05 for 0.8) seconds and 1.7679e-05 for ) seconds. Correspondingly, the

run time is 10.031524 seconds, 14.142157 seconds and 16.962306 seconds,respectively.

From the second row of Table 4.3, note that the costs with proposed method are 1.7671e-05

for 0.6) seconds, 1.7432e-05 for 0.8) seconds and 1.7596e-05 for ) seconds, which are a

little bit smaller than the cost of FSDRE method. However, the run is 2.225677 seconds

, 2.955464 seconds and 3.202443 seconds respectively, which is considerably less and al-

most one fifth of the run time of the FSDRE method. It is clear that the proposed \ − �

technique is a better selection for the practical online use. From the left-hand side figures

of Figure.4.27, Figure.4.28 and Figure.4.29, one can find the blue line can fit the red line

very well, which indicates that those two technique can get the almost same performance in

X direction. In addition, in Y and Z directions, those two methods bring some difference.

One can find that the FSDRE method generate more errors. That is the reason that the cost

values of FSDRE are a little bit more that the cost values of the proposed method. However,

both can force the trajectories to reach zero at final time. Overall, Figure.4.27, Figure.4.28

and Figure.4.29 show that the proposed finite time \ − � can obtain similar performance

with the FSDRE technique. To summarize, with the aforementioned simulation results and

detailed analysis, the proposed finite time \ −� method can obtain the similar performance

with FSDRE with much less computational time and comparable costs, indicating it as a

the potentially powerful design tool. From the engineering practical and finite time optimal

perceptive, the proposed finite time \ − � technique is a good choice when the online

implementation is needed.
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Figure 4.2. History of Position Error along X,Y,Z Direction between Satellite Two with
Satellite One

Figure 4.3. History of Position Error along X,Y,Z Direction between Satellite Three with
Satellite One
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Figure 4.4. History of Position Error along X,Y,Z Direction between Satellite Four with
Satellite One

Figure 4.5. History of States of All Satellites along X,Y,Z Direction
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Figure 4.6. History of States of All Satellites along X Direction in [0,8] Time Unit

Figure 4.7. History of States of All Satellites along Y Direction in [0,8] Time Unit
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Figure 4.8. History of States of All Satellites along Z Direction in [0,8] Time Unit

Figure 4.9. State History of Satellite Two in 3 Dimensional Frame
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Figure 4.10. State History of Satellite Three in 3 Dimensional Frame

Figure 4.11. State History of Satellite Four in 3 Dimensional Frame
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Figure 4.12. History of Position Error between Satellites Two with Satellites One by Finite
Time \ − � Vs FSDRE

Figure 4.13. Detailed Difference by Finite Time \ − � Vs FSDRE between Satellites Two
with Satellites One
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Figure 4.14. History of Position Error between Satellites Three with Satellites One by Finite
Time \ − � Vs FSDRE

Figure 4.15. Detailed Difference by Finite Time \ −� Vs FSDRE between Satellites Three
with Satellites One
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Figure 4.16. History of Position Error between Satellites Four with Satellites One by Finite
Time \ − � Vs FSDRE

Figure 4.17. Detailed Difference by Finite Time \ − � Vs FSDRE between Satellites Four
with Satellites One
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Figure 4.18. History of Position Error in [0,0.6T]

Figure 4.19. State History of Deputy and Reference Satellite
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Figure 4.20. State History in 3 Dimensional Frame

Figure 4.21. History of Position Error in [0,0.8T]
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Figure 4.22. State History of Deputy and Reference Satellite

Figure 4.23. State History in 3 Dimensional Frame
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Figure 4.24. History of Position Error in [0,T]

Figure 4.25. State History of Deputy and Reference Satellite
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Figure 4.26. State History in 3 Dimensional Frame

Figure 4.27. History of Position Error in [0, 0.6T] with Finite Time \ − � Vs FSDRE
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Figure 4.28. History of Position Error in [0, 0.8T] with Finite Time \ − � Vs FSDRE

Figure 4.29. History of Position Error in [0, T] with Finite Time \ − � Vs FSDRE
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5. CONCLUSIONS

5.1. CONCLUSION

In this dissertation, a novel finite time nonlinear optimal control synthesis technique,

which is called finite time \ − � technique, was proposed. Originating from famous linear

quadratic regulator (LQR) framework and State Dependent Riccati equation (SDRE) tech-

nique, the challenge of obtaining the closed form of finite time nonlinear optimal control

problem was tackled successfully with the proposed finite time \ −� technique. Normally,

LQR can get the optimal feedback control only for linear dynamics. SDRE can get optimal

feedback control for nonlinear dynamics but with intensive computations. Different from

other existing approximate expertise to get the sunoptimal finite time feedback controller,

the finite time \ − � technique can guarantee the semi-global stability, and it was easy to

implement online because the intensively computational load can be avoided. Practically,

)0, )1(G, \) and )2(G, \) are enough for engineering applications. Certainly, one can choose

more )8 (G, \) terms to get better performance with more computational time. The number

of terms chosen was based on the design requirement. Dependent on the specific application

and finite)8 (G, \) terms, the semi-globally asymptotic stability and approximate closed form

feedback controller was obtained. The phrase suboptimal property implies that the solution

is not the analytical one, but an approximate one to the partial HJB equation because the

exact analytical solution can not be obtained. By constructing the optimal cost expression,

the power series of auxiliary parameter \, and adding the perturbation term �8 (:8, ;8)), the

asymptotic stability based on Lyapunov theory and desired performance was guaranteed by

tuning parameters :8 and ;8. This technique inherited the property of the LQR and that can

be applied to the applications, which can be formulated as regulator or tracking problems.

Most engineering applications can fall into this category.
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Three aerospace applications were exemplified in this dissertation. Those three

applications extended the originally proposed finite time \−� technique. The RLV landing

dynamics is a non-affine control nonlinear system. In order to apply the proposed technique

into the RLV landing dynamics, a method was applied to transform the non-affine control

to affine control by adding one more state variable. When one took the finite time \ − �

technique to design control to nonlinear non-affine control application, this operation is

routine practice. This application showed that other independent project-oriented variables

(altitude, downrange,etc) can be viewed as "time" variable in the proposed finite time \ −�

framework. That extends the application scope for this technique. As the !&' inherently

held a certain robustness, this proposed technique also had robustness with different initial

conditions. The most intriguing property was that this algorithm made online planning

possible, which can guarantee the safe landing with a high probability. The second and

third applications are satellite operations. The second one is the multiple satellites consen-

sus control design from finite time optimal perspective. The proposed method can enrich

the control design tool reservoir for the multiagent cooperative control. Also, the merit

of time-saving computation can make it implementation on-board. The third application

is to show how to implement the finite time \ − � technique with some model-known

disturbance. In this application, a simple, but effective, way to handle the disturbance was

shown. The final simulation result indicated that the disturbance rejection ability of this

proposed technique was potential.

In conclusion, this dissertation provided an overall theoretical development proce-

dure and applications of finite time \ −� technique characterised with nonlinear dynamics.

Although the three applications are all from the aerospace engineering, it can also extend

to other mechanical, electrical or even financial systems , whose dynamics are nonlinear

and can be formulated to regulator or tracking tasks. This research is in its infants. The

following are possible continuations for this work in the coming years.
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5.2. FUTURE RESEARCH RECOMMENDATIONS

1. A systematic way to choose :8 and ;8 needs to be developed.

2. In the third application, a simple way to address the model-known disturbance was

presented. In the following research, the adaptive and robust way of tackling the

disturbance or uncertainties should be developed. At the mean time, if the distur-

bances/uncertainties are unknown or partially known, one needs to determine how to

address them.

3. Since the control algorithm should be processed by digital computer in those days, it

is necessary to develop a discrete time version of \ − � control algorithm.

4. Since the filter/observer was the dual form of the controller, finite time \ − � filter

can be presented to some applications.

5. In this dissertation, only a few applications were considered. It is necessary to

find more interesting applications in different areas, whose mathematical models are

characterized as nonlinear dynamics and the problems can be formulated as regulator

or tracking form.

6. In this dissertation, the state constraints and input constraints problems were not

addressed. It will involve many practical engineering problems; for example, control

saturation, obstacle-avoidance in Unmanned Aerial Vehicle (UAV) or automatons

cars, single-agent or multi-agent obstacle-avoidance, etc. Transforming the constraint

conditions into the state penalty matrix&(G) and input penalty matrix '(G) is needed.

The question is how to transform, which deserves further investigation.
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