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ABSTRACT 

Methods for the analysis of trace elements in natural fresh 

waters were investigated. 

ii 

Preconcentration of the water samples by reducing the volume 

and by using cation adsorption resins was studied. It was concluded 

that cation absorption was the more promising procedure. 

The methods used for analysis were absorption spectrophotometry, 

neutron activation analysis, and atomic absorption spectrophotometry. 

Atomic absorption spectrophotometry was considered the most suitable 

method for the analysis of trace elements in waters. 

Calcium, copper, lead, zinc, and cadmium were determined in 

a number of Missouri springs and stream water samples. 
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A. Introduction 

Chapter I 

INTRODUCTION 

1 

Analysis for trace elements in fresh water has become a major 

task in recent years. Several scientific disciplines are interested 

in this type of study. 

The geochemist needs a large number of reliable data to 

establish the range of geochemical. background values in determining 

the rate of weathering, supergene mobility of elements,and geochemical 

balance between continents and oceans. 

The applied geochemist is interested in using high trace 

element concentrations in ground and surface waters to find new 

ore deposits. 

Probably the most important application of trace element 

analysis in waters is with regard to pollution problems. Many 

trace elements, while harmless or even beneficious at "low" con­

centrations, become toxic at higher levels. Lead, an element of 

known toxicity, accumulates in bones. The cadmium concentration 

in water was recently reported as being possibly responsible for 

high blood pressure in humans. 

The "normal" values for trace elements in fresh waters are 

in a range of less than a part per billion (ppb) to a few ppb. 

Until. a few years ago, no analytical methods were available which 

permitted reliabl.e analysis of a large number of samples. In 

recent years, the devel.opment of new techniques and instruments, 

such as neutron activation anal.ysis and atomic absorption 
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spectrophotometry, has provided the scientist with tools to under­

take such studies. 

B. Purpose of this thesis. 

Relatively little work has been done to apply the recently 

developed sensitive analytical techniques for the analysis of 

trace elements in water. It was therefore felt that the most 

important task with regard to this problem was to compare several 

methods for their feasibility and to develope procedures to 

increase the efficiency and sensitivity of these methods. 

The analyzed water samples were collected from an area in 

the vicinity of Rolla, Missouri which is described in Chapter II. 

Since values for Missouri waters are not abundant the individual 

results are reported, but it should be kept in mind that the 

investigation of a specific region was of secondary importance 

in this thesis. The main emphasis was placed on the investigation 

of methods. 

c. Methods Used 

The following three methods were investigated: absorption 

spectrophotometry, neutron activation analysis,and atomic absorption 

spectrophotometry. The choice for these three procedures was based 

on the availability of facilities on the U.M.R. campus. 

The sensitivity of absorption spectrophotometry as well as 

atomic absorption spectrophotometry is in most cases not sufficient 

to determine trace elements in such low concentrations as present 

in the fresh water. The cations of interest must therefore be 
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concentrated from the original sample before analysis. Neutron 

activation analysis, while much more sensitive, also needs a certain 

amount of sample preparation as well as concentration if a nuclear 

reactor with a relatively low neutron flux is used as is the case 

with the reactor on the Rolla campus. Investigation of methods of 

sample pre-enrichment was therefore part of this study. The 

procedures studied for this purpose were reduction of the water 

volume by evaporation and concentration of cationS by ion absorption. 

D. Acknowledgements 

Dr. Ernst Bolter supervised the thesis. Thanks also goes 

to Dr. w. R. Carroll of the U! M.R. Chemistry Department and 

Dr. D. R. Edwards, Director of the University of Missouri at 

Rolla Reactor Center, and Mr. G. w. Leddicotte, Associate Professor 

of Nuclear Engineering of the University of Missouri at Columbia. 

Dr. Paul Dean Proctor, Dean of the School of Science, 

University of Missouri at Rolla took great interest in the 

progress of this thesis. 



Chapter II 

SAMPLING AREA 

The sampling points are located in Phelps, Dent, Crawford, 

and Pulaski Counties, Missouri (Fig. 1). 

The maximum dimensions of the area are bounded by parallels 

37° 25' and 38° 05 1 North latitude and meridians. 91° 50' and 

91° 55 1 West longitude (Fig. 2). 

4 

The area is drained by the Meramec River and tributaries, 

including Dry Fork, Little Dry Fork, Crooked Creek, Benton Creek, 

and others. The drainage basins are separated by long, sinuous 

divides. Dry Fork, the most important tributary of the Meramec 

River, drains a region which is underlain predominantly by the 

Roubidoux sandstone. 

The area has many springs which are especially common in 

the lower courses of the smaller creeks near the contact of the 

Gasconade with the Roubidoux formation. S~tcoe~in the Roubidoux 

are significant aquifers and dolomites of the Gasconade formation 

contain many caves and other solution openings. 

The lowest points in the area range fran 648 to 840 feet from 

sea level and the highest from 1,200 to 1,349 feet. The relief 

between ridges and valleys ranges from 250 to 596 feet. 

The Ordovician rock formations practically cover the largest 

portion of the area (Figs. 3 and 4). They consist of sandstone, 

dolamite,and argillaceous dolomite. Cenozoic forms the broad 

alluvium in the flood plain and terraces. 
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The area contains many small and uneconomical mineral deposits. 

The main deposits are fire clay and iron ores. The sink structures 

usually contain the fire clay deposits. Pyrite occurrences are 

common in the area and limonite is found in the soils of all 

fonnations. 

Weathering in the Gasconade formation has produced a large 

number of caves. galleries, and sinkholes. 

HENDRIKS (1954) has studied the geology of the Steelville 

quadrangle, LEE (1913) has investigated the geology of the Rolla 

quadrangle. and MUELLER (1951) and YORSTON (1954) have studied 

the geology of the north and south halves of Meramec Spring 

Quadrangle respectively. 

The names and characteristics of most of the springs are 

taken fran BECKMAN and HINCHEY ( 1944) who have studied the large 

springs of Missouri. Some springs • being too small to be recorded 

by these authors, are described by the names given by the land 

owners. 
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Chapter III 

PREPARATION OF THE SAMPLES 

A. Collection and Filtering 

10 

The water samples of the springs, Meramec River, and Dry 

Fork were collected from the area shown on Figure 2. The samples 

were collected in polyethylene and teflon containers and then 

transferred to the Geochemistry Laboratory of the University of 

Missouri at Rolla. 

The temperature of the water samples was measured and ranged 

from 13°C to 20°C, and the pH from 6.4 to 8.2 

The samples were collected from active parts of the streams 

and from the outflow of the springs. The containers were first 

cleaned and washed with hydrochloric acid in the laboratory and 

then rinsed with water at the time of collection. From each 

sampling point one gallon of water was collected. 

As soon as the samples were taken to the laboratory, they 

were filtered with Millipore filters with a pore size of 0.45 

microns in order to remove the suspended solids. The process 

of filtering was very slow and took about 30 to 35 hours per 

gallon. 

B. Concentrating of Samples 

The concentration of metals in water is usually too low for 

direct measurement with the analytical methods and it was therefore 

necessary to concentrate the metal content in the water. During 

this process, the loss of cations or contamination of the sample 
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is a strong possibility. To investigate and compare several 

concentration methods became therefore one of the major objectives 

of this study. 

Two methods of concentration were used in this project: 

reducing the volume of the water sample to dryness or near dryness 

and concentration of the metals by absorption on a cation exchange 

resin. 

1. Drying Procedures 

The samples were dried in two different ways. 

In an Open Beaker 

In one set of experiments, 1 ml of distilled 

concentrated nitric acid was added to 3-4 liter of sample. The 

sample was then reduced in an open glass beaker to a volume of 

a few milliliters. At this concentration the sample was usually 

in a jelly-like form. The concentrated sample was then transferred 

into a small volumetric beaker. The large drying vessel was 

washed with distilled nitric acid and water. After adding the 

washing solutions to the sample, the sample volume was adjusted 

to a specific volume, usually 10 ml, by further drying or diluting. 

If the sample was intended for analysis by neutron activation, 

this small container was the same 10 ml teflon capsule in which 

the sample was subsequently irradiated in the nuclear reactor. 

During this drying process, the temperature of the sample 

was kept below boiling point in order to avoid loss by splattering. 

The process took about 50 hours. 

The advantage of this method lies in its simplicity, but it 

is obvious that the method has disadvantages which make it 
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unsuitable far precise analysis. The time needed to reduce a 

sample to a small volume is too long. During reducing in an open 

beaker 1 the sample may become contaminated fran the air. Probably 

the most obvious drawback was the observation that part of the 

sample dried on the walls of the beaker and could not be brought 

completely back into solution, even with concentrated nitric acid. 

Adding 1 ml of concentrated nitric acid to the water sample before 

drying improved the solubility of the residue, since it was now in 

the form of a more soluble nitrate, but it did not solve the 

problem completely. 

In order to determine the magnitude of the loss during the 

drying process, three samples were spiked with about ·o.s mg 

radioactive Agl10 , of known activity, which had been produced in 

the nuclear reactor at the University of Missouri at Rolla for 

this purpose. The sample was then concentrated in the described 

way and the percent recovery of the silver spike was determined 

by counting the ganuna activity. The results are shown in Table 1. 

The range of recovery for AgllO was 26.0 to 42.0 percent, with an 

average of 33.6 percent. 

In a Retort 

In a second set of experiments 3-4 liters of water 

spiked with 1 ml distilled nitric acid were reduced in glass retorts 

to a volume of about 30 ml. The volume of the retorts was 2-3 liters. 

During the drying process, the water was brought to boiling point. 

The process took about 30 to 40 hours. 

After reducing the volume to about 30 ml, the concentrated 

sample was transferred to a small volumetric glass beaker. The 
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retort was washed with distilled nitric acid and distilled water 

and the washing combined with the concentrated sample. The sample 

was then reduced in the small open beaker to 10 ml. 

Drying the sample in a retort rather than an open beaker has 

the advantage of preventing contamination from the air. It was 

obvious that as in the experiments with open beakers, part of the 

residue formed during the process could not be removed from the 

walls of the retort even by using nitric acid. 

In order to determine the losses, samples were spiked with 

radioactive AgllO, sr85, or non-radioactive copper and then 

processed in the way described above. The results are given in 

the Tables 2, 3, and 4. 

The recovery of the spike in retorts is much better than in 

an open beaker. Of the silver, 70 to 90 percent was recovered, 

while the recovery for sr85 was in the range of 78 to 96.5 percent. 

To six samples of 1.5 liters volume each, 10 micrograms of 

copper were added and the samples reduced to 10 ml in retorts. 

The recovery of the copper was determined with the absorption 

spectrophotometer and was in the range of 84 to 96 percent, with 

an average of 91 percent (Table 4). 

Although concentrating the samples in a retort is a large 

improvement compared to the use of open beakers, the results 

were not satisfactory. Too large a percentage of cations is lost 

and the needed time is much to long for large scale analysis. The 

use of cation exchange resins was therefore chosen as an alternative 

concentration method. 
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TABLE 1 

Chemical Recovery Experiments 

Sample Number Spike Element Recovery by Beaker 
Percent 

1 AgllO 32.4 

2 AgllO 42.0 

3 AgllO 26.0 

33.6% 

TABLE 2 

Chemical Recovery Experiments 

Sample Number Spike Element Recovery by R@~' 

Percent 

1 AgllO 90.0 

2 AgllO 70.0 

' 3 AgllO ss.o 

81.6% 

TABLE 3 

Chemical Recovery Experiments 

Sample Number Spike Element Recovery by ~~ 
Percent 

1 srBS 90.0 

2 sr85 96.5 

3 sr85 78.0 

88.10\ 
' --... 
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TABLE 4-

Chemical Recovery Experiments 

~ample Number Spike Element Recovery by Retort 
.~ Percent 

1 Cu 90.0 

2 Cu 92.0 

3 Cu aa.o 

4- Cu 84-.0 

5 Cu 95.0 

6 Cu 96.0 

91.0% 
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2. Use of Cation Exchange Resins 

Since the method of concentrating the metals by reducing the 

volume of water was considered unsatisfactory, the possibility of 

enriching the metals by cation absorption was investigated. 

Absorption of ions on organic or inorganic resins and 

subsequent elution has been widely used in the past for the 

separation of ions in analytical chemistry. Foil ' ·our purpose, 

the task was to adsorb the metals efficiently on a resin and 

then to elute the metals with as small a volume of eluent as 

possible. 

The resin used for adsorption studies was the hydrogen form 

of AG 50 W - XS, 200 - 400 mesh, a strongly acidic cation exchange 

resin composed of nuclear sulfonic acid exchange groups attached 

to a styrene-divinyl benzene polymer lattice. The resin is 

produced by Bio-Rad and is analytical grade. The adsorption and 

elution characteristics of zinc and cadmium were investigated to 

demonstrate the feasibility of this method. 

Previous Work 

RICHES (1946) used Amberlite IR-100 and CHl to separate Cu, 

Cd, Ni, Zn and Mn. In 1947 he repeated the experiment with a 

different size resin and a faster flow rate of the eluent. KRAUS 

(1952) investigated the use of Dowex-1 to separate Ni, Mn, Co, Cu, 

Fe and Zn, with o.OOS-12 M HCL. CRRIT (1953) used cellulose acetate 

and a carbon tetrachloride solution of dithizone to concentrate 

Ph, Zn, Mn, Cd, Co, and Cu. CANNEY (1960) used Amberlite IR-120 

resin to determine Cu, Pb, Zn, Co and Ni in barren surface waters. 
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Using l gallon of original sample and 2 M HCl as eluent, he achieved 

an enrichment factor of 38. FRITZ (1961) used 0.1 and 1 M HF as 

eluent for large numbers of metal ions. In this investigation 

Dowex SOW - XS, 100 to 200 mesh resins were used. FRILZ (1962) used 

the same resins, but with 0.3 M HBr as eluent. In 1963 he used 

Dowex SOW - XB to separate Bi, Fe, Cd, Cu, Mn and Ni using various 

mixtures of aqueous acetone and HCl for elution. STRELOW (1963) 

also used Bio-Rad AG SOW - XS f~ cation exchange equilibrium 

distribution. Nitric acid and sulfuric acid were used for elution 

with a concentration range of 0.1 N to 4.0 N. Except for the 

work done by CARRIT (1953) and CANNEY (1960), the previous 

studies were concerned with the separation of elements, not their 

concentration. Nevertheless, these determinations were a valuable 

help in selecting promising eluents for the work. 

Since CARRIT (1953) used cellulose acetate which was considered 

inferi~ to modern resins, his study was of little value to this 

project. The work of CANNEY (1960) indicated that HCl would be 

a pranising eluent. 

Method 

About 1 to 2.5 gm of resin was used to prepare adsorption 

columns in 100 ml burettes with a 1.2 em diameter. Both top and 

bottom of the resin column were plucked with glass wool to keep 

the resin in place. 

Before using the column, the following procedure was used to 

prepare the resin: 

1) The column was washed with 50 ml of demineralized water. 



2) The column was washed again with 20 ml of 10% ammonium 

citrate. 

3) 30 ml 3 M HCl was passed through to convert the resin to 

the hydrogen form. 
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4) The free acid was then washed out with demineralized water, 

until the elution produced no AgCl in an AgN03 solution. 

After preparation of the adsorption column, Zn or Cd was 

adsorbed from aqueous solutions. The aqueous metal containing 

solutions had been brought to a pH of 6.5 to 7.5. After adsorption 

of the cation, it was eluted at a certain flow rate with the selected 

eluent. The eluted solution was separated during elution into 

individual fractions and the metal content in every fraction 

determined with an atomic absorption spectrophotometer. 

In different experiments, Zn was eluted with a mixture of 

equal parts of 85 percent acetone and 2.1 M HCl (Tables 5 and 6), 

with equal parts of 1 M EDTA and 6 M HCl (Tables 7 and 8) 1 with 

2 M HCl (Table 9 1 Figure 5) and with 4 M HCl (Table 10 1 Figure 6). 

In five different experiments, cadmium was eluted with 150-250 ml 

volumes of 2-6 M HCl and also the acetone - HCl mixture used for Zn. 

The percent recovery was then determined (Table 11). 

The ads~ption of both zinc and cadmium at the resin was in 

all cases 100 percent if the pH of the water sample was adjusted 

to pH 6.5 - 7.5. 

The results from elution were not in all cases satisfactory. 

It is easy to remove more than 50 percent of the adsorbed metal with 

about 50 ml eluent, but the last few percent of the adsorbed metal 

needs a relatively large volume of eluent, which decreases the 
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concentration factor (Figures 5 and 6). 

Cadmium 

In the experiments for cadmium elution, 150-250 ml of different 

eluents stripped off only between 70 and 80 percent of the Cd from 

the column (Table 2). It is Obvious that elution with HCl or an 

acetone HCl mixture as used in these experiments is not satisfactory. 

Zinc 

The use of 85 percent acetone - 2.1 M HCl mixture resulted in 

an incomplete recovery (Tables 5 and 6). When the stripping was 

done with a 0.1 M EDTA (Disodium ethylenediamine tetraacetate) 

-6 M HCl mixture too much eluent was needed for 100 percent recovery 

(Tables 7 and 8). 

Elution with 4 M HCl (Table 10, Figure 6) gave better results 

than elution with 2M HCl (Table 9, Figure 5). Zinc was completely 

removed from the column with 175 ml of eluent. If four litres of 

natural water would be used for concentration on the resin, an 

elution with 175 ml of 4 M HCl would represent an enrichment of 

zinc by almost a factor of 23. This would be enough to determine 

zinc in natural water by atomic absorption spectrophotometry. 

c. Comparison of Concentration Procedures 

It can already be seen from the results outlined above, that 

concentrating metals by cation absorption is by far the most promising 

among the investigated methods. Using about one gallon of water for 

the concentration by absorption takes a few hours, while 1-2 days are 

needed to reduce the same volume to achieve the desired concentration 



of metals. Also, by using analytical grade adsorption resins, 

the possibility of contamination of the sample can be greatly 

reduced. The greatest advantage in using adsorption resins, 

however, lies in the fact that a 100 percent recovery can be 

achieved. This was demonstrated in the experiments described 

above. To show this point even more clearly, unspiked samples 

from 3 springs were divided into 3,000 ml portions each and 

concentrated by the described 3 procedures (in a beaker, in a 

retort, and by cation adsorption using 2 M HCl as an eluent). 

Then zinc was determined in the concentrated samples with the 
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atomic absorption spectrophotometer and the zinc concentration in 

the spring waters was calculated. The results are shown in Table 12. 

Assuming that the values determined by cation exchange concentration 

are correct, then only 10 to 15 percent of the zinc was found 

using concentration in an open beaker. Using a retort, the 

results were better, but the yield was still only between 68 and 

77 percent compared to the cation adsorption procedure. The yields 

achieved in this experiment are even lower than the above described 

results of the experiments with spiked water, in which other cations 

(Ag, Sr, Cu) had been used. 



TABLE 5 

Elution of Zinc 

F"ractions Eluent 
(ml) 

20 (85% Acetone + 2.1 HCl) 

20 " 
20 " 
20 " 
20 " 
50 " 

50 " 
-

200 

DETAILS: 

Amount adsorbed •••••••••• 1~g 

Amount of resin •••••••••• ! gm 

Flow rate••••••••••••••••l/2 ml/minute 

Absorption ••••••••••••••• lOO% 

Percent Recovery 

58.58 

4.60 

.27 

0 

0 

0 

0 

63.45% 

RecoverY•••••••••••••••••63.45% with 200 ml eluent 

21 
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TABLE 6 

Elution of Zinc 

Fractions Eluent Percent Recovery 
(ml) ' 

'25 ( 85% Acetone + 2.1 HCl) 69.11 

25 " 8.00 

25 " 5.l:r2 

25 " 5.12 

25 " 4.85 

25 " 3.49 

50 " 0 

50 " 0 

-
250 95.70\ 

DETAILS: 

Amount adsorbed· •••••••••• l~g 

Amount of resin •••••••••• 2.5 gm 

Flow rate •••••••••••••••• l/2 ml/minute 

Absorption ••••••••••••••• lOO\ 

Recovery ••••••••••••••••• 95.7% with 150 ml eluent 
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TABLE 7 

Elution of Zinc 

Fractl,ons Eluent Percent Recovery 
(ml) 

10 (1:1 0.1 M EDTA + 6 M HCl) 19.6 

10 " 14.8 

10 " 21.2 

20 " 16.0 

20 " 7.0 

30 " 13.4 

so " a.o 

50 " 2.6 

50 " 0 

-
250 102.6% 

DETAILS: 

Amount adsorbed •••••••••• s~g 

Amount of resin •••••••••• l gm 

Flow rate •••••••••••••••• l/2 rnl/minute 

Absorption ••••••••••••••• lOO% 

RecoverY•••••••••••••••••l02.6% with 200 ml eluent 
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TABLE 8 

Elution of Zinc 

Fractions Eluent Percent Recovery 
(ml) 

10 (1:1 0.1 M EDTA + 6 M HCl) 72.40 

10 " 14.80 

10 " 1.60 

20 " 1.32 

20 " 1.32 

30 " 0.44 

50 " 2.40 

50 " 0 

-
200 94.28\ 

DETAILS: 

Amount adsorbed •••••••••• 5~g 

Amount of resin •••••••••• 2.5 gm 

Flow rate •••••••••••••••• l ml/ minute 

Absorption ••••••••••••••• lOO\ 

Recovery ••••••••••••••••• 94.28\ with 150 ml eluent 
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TABLE 9 

Elution of Zinc 

Fractions Eluent Percent Recovery 
(ml) 

20 2 M HCl 78.5 

20 " 7.5 

20 " 2.7 

20 " 2.6 

20 " 1.2 

20 " 1.0 

20 " I 0.9 

20 " o.a 

20 " 0.9 

20 " 0.1 

-
240 96.2\ 

DETAILS: 

Amount adsorbed •••••••••• lO~g 

Amount of resin •••••••••• column of 1.2 x 12 em 

Flow rate •••••••••••••••• l ml/minute 

Absorption ••••••••••••••• lOO% 

RecoverY•••••••••••••••••96.2% with 240 ml eluent 



-. s . 
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Figure s. Elution of zinc with 2 M HCl. 
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TABLE 10 

Elution of Zinc 

Fractions Eluent Percent Recovery 
(ml) 

25 4 M HCl 99.90 

25 " 0.65 

10 " 0.20 

25 " 0.05 

25 " 0 

25 " 0 . -
225 100.80% 

DETAILS: 

Amount adsorbed •••••••••• lO~ 

Amount of resin •••••••••• column of 1.2 x 12 em 

Flow rate••••••••••••••••l ml/minute 

Absorption ••••••••••••••• lOO% 

Recovery•••••••••••••••••99.9% with 25 ml eluent 
100.8\ with 175 ml eluent 
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TABLE 11 

Elution of Cadmium 

Total Volume (ml) Eluent ~ 

Percent Recovery : 

250 2 M HCl 70.0 i 
200 3M HCl 71.4 

150 4 M HCl 72.6 

200 6 M HCl 73.2 

200 (85% acetone - 2.1 M HCl) 78.0 

DETAILS: 

Amount adsorbed •••••••••• 5 p.g 

Amount of resin •••••••••• 2.5 gm 

Flow rate••••••••••••••••l ml/minute 

Absorption ••••••••••••••• lOO% 

TABLE 12 

Comparison of Concentration Methods for the Zinc Determination. 
Zinc Concentration in Three Springs 

Sample By By By 
Beaker Retort Cation Exchange 

(ppb) (ppb) (ppb) 

Heramec Spring 8.o 53 78 

!Brook Spring 8.4 50 70 

!Lake Spring 9.0 49 64 

I 



Chapter IV 

ANALYTICAL METHODS 
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For analysis of trace elements in water, three methods were 

investigated: absorption spectrophotometry, neutron activation 

analysis, and atomic absorption spectrophotometry. These procedures 

were selected because they were the only ones for which the 

necessary equipment was available on the U.M.R. campus. 

Availability as well as performance of the needed equipment 

influenced the course of this project to a great extent. For 

instance, neutron activation analysis is an excellent tool to 

determine very low trace concentrations, if the neutron flux in 

the nuclear reactor is high (lol2 - 1014 n/cm2•sec). HQwever, the 

reactor on the U.M.R. campus produced only a flux of about 

1olO n/cm2•sec at the time of this investigation. The question 

was therefore not how useful is neutron activation for the analysis 

of trace elements in water, but how much work can be done by using 

a reactor with such a low neutron flux. 

The possibility of investigating the use of the atomic absorption 

spectrophotometer, a very promising method for trace element analysis, 

was limited because the available instrument was acquired and 

installed by the Department of Geological Engineering and Geology 

at a very late stage of this project. The time available far the 

use of this instrument was therefore very limited. Also, a very 

limited number of element emission lamps were available. 
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A. Absorption Spectrophotometry 

From previous investigations in the Department of Geology 

and from literature research it was concluded that the only heavy 

metal in fresh waters which might be determined by this method was 

copper and only copper analyses were therefore performed with 

this method. 

1) Theory of Absorption Spectrophotometry 

The use of light absorption in quantitative analysis is 

based upon the laws of Lambert and Beer, which relate the proportion 

of light absorbed to the length of the light path in the absorbing 

medium and to the concentration of the absorbing species. The two 

laws of light absorption are usually combined in the derived equation 

p 
Po = 

or, taking logarithms 

Symbols: 

p 
LoglO r = 

Po = incident radiant power 

abc 

P = transmitted radiant power 

a = absorptivity (specific extinction) 

b = internal cell length 

c = concentration (grams/liter) 

Absorbance is therefore proportional to concentration for any given 

substance at a particular wave length. However, Beer's Law relating 

concentration and absorption may appear not to hold for a given system, 

if the absorbing molecules are modified by changes in the medium or 

by an increase in concentration. This makes calibration under 
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precisely controlled conditions, such as exist for the test 

measurements, essential. Instruments are normally ca1ibrated in 

absorbance and percentage transmissions units. The former are more 

generally used in plotting absorption and calibration curves, since 

they simplify mathematical calculations. 

A spectrophotometric method may depend upon the natural 

absorption of the ion, group or molecular species of interest. 

More frequently in inorganic trace analysis it is necessary to 

convert the substance to another chemical form or complex (e.g. 

with an organic reagent). For instance, for the copper analysis 

the copper 2-2 1 biquinoline complex is most frequently used. 

2) Method 

The Beckman Model B Spectrophotometer was used for 

analysis. The determination of copper was done by utilizing the copper 

2-2 1 biquinoline complex according to a method described by 

CHENG KUANG LU (1953) and GUEST (1953). Before analysis, the 

spring and stream water samples were concentrated by a factor of 

ten by reducing the water in open beakers on an electric hot plate. 

The procedure for analysis is the modification of CHENG and 

GUEST'S as follows: 

1) 5 ml of concentrated water sample was placed in a 60 ml 

separatory funnel. 

2) 1 ml of solution containing SO mg of hydroxylamine hydro­

chloride was added and mixed. 

3) The pH was adjusted to pH 5-6 with NH4 0H 

4) 10 ml of copper buffer solution consisting of sodium acetate, 
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hydroxylamine hydrochloride and sodium tartrate was added. 

5) Exactly 4 ml of 0.02% 2-2' biquinoline was added. 

6) The solution was vigorously shaken for one minute and then 

let stand for five minutes. 

7) The aqueous part of the solution was drained. 

8) Eight drops of distilled water was added to wash the organic 

compound. The water was then drained. 

9) The solution was then centrifuged for one minute to pull 

down all suspended particles or trapped air. 

10) The spectrophotometer wave length was adjusted to 546 mf• 

11) The copper compound was drained in a quartz cell for 

measurement. 

12) A blank solution prepared in the same way was 'Placed into 

the instrument. and slit and dark control of the spectro­

photometer were adjusted to zero absorption. 

13) The absorption of standards prepared exactly as the unknown 

samples was measured and a standard curve plotted. 

14) Absorption of the water samples was measured. 

15) The copper concentrations in the unknown samples were 

determined by comparing the absorption values with the 

standard curve and by correcting for the pre-enrichment 

of the water sample. 

3) Previous Work 

GUEST (1953) used 2-2' biquinolene for detection of copper 

in metallurgical analysis. His recommendations for pH 4.4-7.5 and 

period of shaking were observed. The analytical range is reported 

as being between o.ool-10.0 percent. 
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HOSTE, !:.!• al (1953) used cupreine for the analysis of water 

(Isomyl alcohol containing 0.01% cupreine). The sensitivity of this 

method is 0.02 pg/ml. HOSTE (1950) demonstrated that 2-2 1 biquinolene 

as a reagent for copper is specific. SMITif AND McCURDY ( 1952) have 

used 2,9 - Dimethyl -1, 10 phenanthroline for determination of 

copper instead of the 2-2 1 biquinolene reagent. NORWITZ and GORDON 

(1965) used a solution of neo-cuproine (0.1% in ethanol) and chloro­

form for copper analysis. CHENG (1953) used 2-2 1 biquinolene at a 

pH of 4-5. HASHMI, .!.!.• ,!..!. (1966) claims that formic acid hydrazide 

reacts with Au, Cu, Co and Ni in acid medium and gives a definite 

color. The blue color of the copper compound remains for more 

than six hours. 

4) Results 

The results for 30 spring and stream samples are given 

in Table 13. A standard curve is shown in Figure 7. By concentrating 

the water samples by a factor of 10, the sensitivity of this method 

is about 1 ppb. This compares quite well with atomic absorption 

spectrophotometry, a method which will be described later. But the 

work necessary to produce the copper biquinolene complex for absorption 

spectrophotanetry makes this method cumbersome and time conswning 

compared with atomic absorption spectrophotometry. 

B. Neutron Activation Analysis 

The analysis of trace elements by neutron activation analysis 

during this study was limited by the fact that the training reactor 

at the u.M.R. campus at the time of this study had a neutron flux of 

only 1olO n/sec cm2. Since the concentration of metals in fresh 
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TABLE 13 

Values Obtained for the Copper Content of Springs 
and Streams Water Samples by Absorption Spectrophotometer 

Name ~ample Number Concentration (mg/1) 

Montauk Spring 1 8.8 

Lake Spring 14 16.0 

Brook Spring 16 17.0 

Haacke-Owned S-ing (a) 3 

Dry Fork 26 17.1 

Meramec River 50 4.0 

Miller-Owned Spring (a) 13 

Moore-Owned Spring 11 10.5 

Maramec River 1-1 11.0 

Joe Smith-Owned 
Spring (a) 9 4.5 

Indian Spring 7 8.6 

Flag Spring 12 14.5 

Mint Spring 23 (l.o 

Meramec River 24 5.a 

Elm Spring 2 

Meramec River 25 6.5 

Piney Creek 4 8.6 

Yancy Mill Spring 10 

Boiling Spring 5 7.2 

Martin Spring 21 3.5 

Rock Spring 6 

Carrol Spring (a) 8 



Name 

~ilkins Spring 

Callahan Spring 

Roulfs Spring 

Meramec Spring 

Bubbling Spring 

Brc:Mn Spring 

Dry Fork 

Dry Fork 

TABLE 13 
(continued) 

Sample Number 

17 

15 

20 

18 

22 

19 

27 

48 

(a) Name of spring as given by owner. 
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Concentration (ml/1) 

4.0 

.... 5 

3.5 

4.9 

a .... 

5.3 

10.0 

4.8 



c 
0 
·~ 
~ 
0. 

0.035 

0.030 

o. 025 

~ 0.015 
~ 

0.010 

o.oo5 

0 0.05 0.10 0.15 0.20 0.25 

Concentration (p.p.m.) 

F~re 7. Standard curve for Copper by Absorption Spectrophotometry. 
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waters is in the low ppb range, it could be expected that such a 

low neutron flux would produce a measurable amount of radioactive 

isotopes only far a very limited number of elements. 

1) Theory of Neutron Activation 

The basic principle of activation analysis is that a 

stable isotope, when bombarded with neutrons (or charged particles) 

can undergo a nuclear transformation to a radioactive nuclide. 

After the radio nuclide is farmed . and its emanations have 

been characterized by radiation detection equipment, qualitative 

and quantitative inferences can be made of the elemental composition 

of the original sample before irradiation. 

The reactions occurring during activation of a sample are 

described in a number of books and publications, e.g. by ROSS (1964) 

and CALI ( 1964). 

Stable isotopes can undergo a variety of nuclear transformations. 

The reaction used in this study, which is generally the most extensively 

used in activation analysis, is the netttron-gamma (n, IS'> reaction. 

This is illustrated by the following expression 

+ n' 0 + 

which is usually more simply expressed by the expression 

cu63 (n t 8'>cu64 

0 
8'o 

Activation analysis of an element and sensitivity of the method 

are influenced by a number of factors, all of which must be taken 

into consideration when this method of analysis is planned. 



a) Cross Section 

The cross section of an isotope is the probability 

with which the isotope is undergoing a nuclear process. The cross 

section has the dimensions of an area and is usually given in "barr 

(1 barn = lo-24cm2). 

b) Half-life 

The half-life of the produced radioactive isotope 

is given by the formula 

= 0.69315 

~ 
where ~ is the characteristic decay constant. The half-life of 

an isotope is most favorable for activation analysis, if it is jus1 

long enough to permit the necessary work for analysis, such as 

radiochemical separations and counting. If the half-life is too 

long, the number of decays in a given time is too small for accura1 

counting. 

c) Percent Abundance 

Most natural elements have several stable isotopes, 

which are present in nature in a specific ratio. Since in most 

cases only one of the isotopes is suitable far activation analysis, 

its percent abundance must be considered. 

d) Neutron Flux 

The neutron flux with which an isotope is bombarded 

is measured in neutrons/cm2 sec. Without going into the details oj 

how to calculate the neutron flux and its effects, it can be statec 

that the number of produced radioactive isotopes increases with 

increasing neutron flux. Most nuclear reactors have a neutron flw 

of 1012 - 101~ n•cm-2•sec-l. The U.H.R. reactor with a flux of ab1 
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1010 -2 -1 . • . n•cm •sec ~s well below th~s f~gure. 

e) Activation Time 

Initially, the produced raqioactivity is dependent 

on the duration of activation. After a certain time, which depends 

on the half-life of the produced isotope, a saturation point is 

reached, i.e. the number of newly produced radio isotopes is 

equal to the number of decaying isotopes. Activation past this 

saturation point does therefore not increase the sensitivity of 

the method. 

2) Method of Activation Analysis 

The U.M.R. reactor is a swimming pool type. The sample 

is therefore ~ersed in water during the activation. This demands 

that the sample be sealed watertight in a container. In this study, 

teflon capsules with a 10 ml volume were used. 

Monitors 

Since the neutron flux is not the same in all reactor positions, 

produced radioactivities in different samples and standards can be 

compared with each other only by using "monitors". A monitor is 

a known amount of element (not the one analyzed for) present in 

or very close to the sample. Sometimes an "internal monitor" can 

be used. This is an element present in the sample at a known 

concentration. In most cases, an external monitor must be 

activated in the same position as the sample. 

After activation of each monitor its activity is determined. 

This permits the calculations of a correction factor for the sample 

and standard activities. 



Counting 

After activation of the sample, the activity of the isotope 

of interest must be counted. The activity can be gamma or beta 

rays. In this study, no beta ray counting was attempted. In 

almost all cases, the isotope of interest must be separated by 

a radiochemical procedure from the rest of the sample, since its 

spectrum is obscured and overlapped by the activity of other 

cations. 

Radiochemical Separation 
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It would be impossible to separate a trace amount of an element, 

i.e. 1 microgram, fran the rest of the sample. Therefore, a "carrier" 

must be added to the sample before the radiochemical separation. A 

"carrier" is a certain amount of the element of inter~st but in 

non-radioactive form. The amount of the carrier must be large 

enough to permit a convenient chemical separation (usually in the 

range of 20-100 mg). Since all isotopes behave chemically the same 

way, the radioactive isotope is separated from the sample together 

with the carrier. Since the amount of carrier added before the 

separation procedure is known and the amount of carrier present 

after the separation can be measured, the amount of element lost 

during the separation can be determined. This "yield" factor must 

then be used to calculate the correct amount of activity of the 

isotope of interest. 

Since the "yield" of the separation is determined, the separation 

procedure can be designed with emphasis on clean separation without 

much regard for partial losses during the separation. 

During this study, attempts were made to determine silver, 

copper, arsenic, zinc and cobalt. Silver was separated as Agel, 
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copper, arsenic,and zinc as sulphides and cobalt as a cobaltinitrite 

complex K3[CO(N02)6]• No silver, arsenic, zinc,or cobalt activities 

were found. Besides copper-radiation, the only other activity 

detected was fran Na24 , which produced by far most of the activity 

but was of no interest in this project. The study was therefore 

limited to the determination of copper. As a final separation 

proced~e for copper the following generalized method was used: 

Copper was precipitated as sulphide. The sulphide was then 

redissolved in dilute HN03 and copper reprecipitated with salicylal­

doxime. The copper salicylaldoxime precipitate was then washed and 

dried at 70°C and the o.s~ MeV peak of the copper spectrum counted 

in 400 channel gamma ray spectrometer (Model RIDL 34-12B) at the 

u.M.R. reactor. 

3) Results and Discussion of Activation Analysis 

Other than the activity of Na24, only the activity of 

cu64 was found. It was concluded that the U.M.R. reactor had not 

enough neutron flux intensity to be useful for the analysis of 

other trace elements in water. Since activation analysis of 

copper proved to be more difficult and time consuming than the 

other two investigated methods, no attempt was made to analyze 

copper quantitatively. Figures 8 and 9 show the half-life 

determination of the copper peak at o.sl MeV. The measured 

half-life of 12.8 hours agrees well with 12.9 hours value given 

in the literature far cu64. The measured sample consisted of 3.5 

liters of water reduced to a volume of about 5 ml. The copper 

activity 15 hours af:ter the irradiation was about 1,000 cpm at 

the 0.51 MeV peak. 
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Previous Work 

TUREKIAN ( 1966) determined Ag and Co in streams by neutron 

activation analysis, using a freeze-dry method for the preparation 

of the samples and a reactor with a high neutron flux for activation. 

c. Atomic Absorption Spectrophotometry 

Atomic absorption spectrophotometry has become an important 

analytical method for trace element analysis only during the last 

few years. Its sensitivity for metallic elements is surpassed 

only by neutron activation analysis. It is, compared to other 

methods, very simple and therefore permits the analysis of many 

samples in a short time. Since the sample has to be in liquid 

form, the method is especially suitable for water analysis. 

1) Theory and Method 

In atomic absorption spectrophotometry, the element of 

interest is merely dissociated from its chemical bounds and placed 

into an unexcited, unionized "ground state". It is then capable of 

absorbing radiation at discrete lines of narrow band width, the 

same lines as would be emitted if the element were excited. 

In practice, the sample, which must be in a liquid state, is 

brought into a flame (usually an air-acetylene flame) where the 

ion of interest is converted into the atomic "ground" state. At 

the same time, radiation from a cathode made of the same element 

as analyzed is passed through the flame. The radiation from the 

cathode is then absorbed by the a tamar elem~nt in the flame. The 

amount of absorbed radiation is proport_ional to the amount of 

element present in the flame. Except far a few multielement 
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cathodes available, a specific cathode is needed for every element 

(e.g. a copper cathode for copper analysis). An excellent 

introduction into the instrumentation of atomic absorption 

spectrophotometry is given by KAHN (1966). 

The instrument used in this project was the Perkin-Elmer 

Model 303. A number of spring and stream samples were analyzed 

for calcium, lead, zinc, cadirnum and copper (Tables 15 and 16). 

The number of analyzed elements is limited, since only a few 

element cathodes were available. 

Calcium was determined directly in filtered samples. Lead, 

zinc, cadmium, and copper were determined in samples which had 

been concentrated by a factor of 100 by reducing the sample in 

retorts and beakers. The limit of detection for these elements, 

as given in the literature (KAHN, 1966) is shown in Table 14. 

TABLE 14 

Relative Detection Limits by Atomic Absorption Spectrophotometry 

Element ppb 

Ca 10 

Cd 10 

Cu 10 

Pb 50 

Zn 5 

2) Previous Work 

ALLAN (1961) has shown that the sensitivity is increased 

severa·l times if the metal is present in an organic solvent instead 
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of water. 

PLATTE (1965) has used the atomic absorption spectrophotometer 

Model 303 to determine Fe, Cu, Mn and Zn in water samples using an 

organic extraction technique to concentrate the water. 

3) Results 

Standard curves for the analyzed elements are shown in 

Figures 10 through 13. The results of the calcium, cadmium, 

copper, zinc and lead analysis are reported in Tables 15 and 16. 



TABLE 15 

Zinc, Lead, Copper and Cadmium Content of Springs and 
S'@lr~",Waters (By Atomic Absorption Spectrophotometry) 

Name Sample 
Number ~~b ~~b ~~ 

Yancy Mill Spring 10 6.9 50.0 11.2 

Wilkins Spring 17 7.0 3.6 13.6 

Rock Spring 6 5.0 6.6 11.8 

Boiling Spring 5 6•9 3.3 12.1 

Merarnec River 24 6.8 50.2 11.8 

.Meramec Spring 18 5.7 4.1 10.4 

Brown Spring 19 5.7 3.8 11.2 

Carrol Spring 8 14.2 5.2 ~.8.1 

Moore-owned Spring 11 7.0 51.3 13.1 

Elm Spring 2 5.9 4.4 13.1 

Piney Creek 4 5.2 5.5 11.8 

Dry Fork 27 9.0 4.1 10.6 

Roulfs Spring 20 5.0 30.0 10.6 

Bubbling Spring 22 7.5 51.1 10.0 

Golla bon Spring 15 6.7 51.0 . .tl·•·s 
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TABLE 16 

Calcium Content of Springs and Streams (By Atomic 
Absorption Spectrophotometry) 
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Name Sample Number Concentration 
ppn 

Montauk Spring 1 18.40 

Elm Spring 2 18.30 

Haacke-owned Spring 3 4.50 

Piney Creek 4 21.50 

Boiling Spring 5 11.00 

Rock Spring 6 10.00 

Indian Spring 7 18.50 

Carrol Spring 8 3.50 

Joe Smith-Owned Spring 9 18.30 

Yancy Mill Spring 10 18.60 

Moore- owned Spring 11 21.60 

Flag Spring 12 9.75 

Mil1er-owned Spring 13 14.40 

Lake Spring 14 31.11 

Gollahan Spring 15 12.60 

Brook Spring 16 26.70 

Wi1kins Spring 17 21.75 

Meramec Spring 18 26.60 

Brown Spring 19 7.00 

Roulfs Spring 20 12.55 

Martin Spring 21 13.60 

Bubbling Spring 22 14.75 

Mint Spring 23 15.00 
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TABLE 16 
(continued) 

Name Sample Number Concentration 
ppm 

Meramec River 24 16.30 

Meramec River 25 15.80 

Dry Creek 26 12.75 

Dry Fork 27 16.50 

Dry Fork 28 6.40 

Dry Fork 29 2.00 

Dry Fork 30 2.00 

Dry Fork 31 1.48 

Dry Fork 32 1.50 

Dry Fork 33 1. 50 

Dry Fork 34 8.80 

Dry Fork 35 9.50 

Dry Fork 36 8. 75 

Dry Fork 37 18.50 

Dry Fork 38 18.20 

Dry Fork 39 ' 13.30 

Dry Fork 40 10.40 

Dry Fork 41 24.75 

Dry Fork 42 6.60 

Dry Fork 43 5.20 

Dry Fork 44 2.75 

Dry Fork 45 5.40 

Dry Fork 46 1.50 

Dry Fork 47 17.80 
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Figure 10. Standard curves for calcium and zinc (Atomic 

absorption spectrophotometry). 
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Chapter V 

SUMMARY AND CONCLUSIONS 
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In order to determine trace elements in spring and stream 

waters, the sample in most cases must be concentrated before the 

actual analysis, since the available instruments are not sensitive 

enough for direct determination. The concentration methods 

investigated in this thesis include reducing the volume of water 

samples by drying in open beakers and closed retorts and by 

adsorption of the cations on a cation resin. It could be demonstrated, 

that reducing the volume of the samples by drying processes is not 

a feasible technique. In addition to the possibility of contamination 

and the loog time needed for this procedure, the recovery of the 

cations of interest was in all cases much less than 100 percent, 

resulting in values which are to low. 

Concentrating the cations at an adsorption resin is by far 

the most promising method. It can be done in a short time and 

the possibility of contamination from the air is greatly reduced. 

A recovery of 100 percent is possible. More work needs to be done 

to study the elution behaviour of elements other than zinc. 

The investigated analytical procedures were absorption 

spectrophotometry, neutron activation analysis and atomic absorption 

spectrophotometry. 

Adsorption spectrophotometry was considered useful only for 

the analysis of copper. The time needed to complete the copper 

analysis makes the procedure with this method less desirable than 

by atomic absorption spectrophotometry. 
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The possibi1ities far neutron activation ana1ysis were great1y 

reduced by the 1ow neutron f1ux of the U. M.R. reactor. On1y the 

radiation from copper and sodium isotopes were detected. A neutron 

flux of about 1010 n•cm- 2•sec-l was obviously not sufficient for 

the analysis of other trace elements present in the low ppb range. 

Analysis by atomic absorption spectrophotometry was by far 

the best method. In ma~ cases the sample still must be concentrated, 

since the sensitivity of the instrument is not elwaya ~ufficient. 

But no chemica1 preparation of the sample is necessary and a large 

pumber of samples can be analyzed in a short time. 



57 

BIBLIOGRAPHY 

ALLAN, J.E., 19611 The use of organic solvent in atomic absorption 
spectrophotometry: Spectrochemica Acta, v. 17, P• 467-473. 

------• 1961, The determination of copper by atanic absorptio1. 
spectrophotometry: Spectrochemica Acta, v. 17, p. 459-466. 

BECKMAN, H.c. and HINCHEY, N.s., 1944, The large springs of Missouri: 
Mo. Geol. Survey and Water Resources, Ser. 2, v. 29. 

BOLON, H.c., 1935, A study of Missouri springs: Mo. Sch. of Mines 
and Metallurgy, M.s. thesis. 

CALI, J.P., 1964, Trace analysis of semiconductor materials: A 
Pergamon Press book, the MacMillan C~pany, New York. 

CANNEY, F.C., and HAWKINS, D.B., 1960, Field application of ion 
exchange resins in hydrochemical prospecting: u.s.G.s. 
Prof. Paper 400-B, p. 89-90• 

CARRIT, D.E., 1953, Separation and concentration of trace metals from 
natural waters: Analytical Chemistry, v. 25, p. 1927-1928. 

CHENG, KUANG LU and BRAY, R.H., 1953 1 Two specific methods of 
determining copper iO soil and plant material - Biquinolene 
method: Analytical Chemistry, v. 25 1 p. 655-658. 

CONNALLY, R.E., 1956, Instrumental methods of gama-ray spectrometry: 
Analytical Chern is try 1 v. 28 1 P• 1847-1853. 

CORDRY, c.n., 1929, Heavy minerals in the Roubidoux and other 
sandstones of the Ozark region, Missouri: Jour. of Paleontology, 
v. 3, no. 1, p. 59-85. 

CROUTHAMEL, C.E., 1960 1 Applied gama-ray spectrometry: McMillian 
Canpany, New York. 

DURUM, W.H. and HAFFTY, Joseph, 1963, Implication of the minor 
element content of some major streams of the world: Geochemica 
et Cosmochimica Acta, v. 27, P• 1-11. 

, 1960, Occurance of minor elements 
-----~--------~~~~~~~--~ in water: u.s.G.s. Circular 445, p. 11. 

FREDERICK, G., SMITH, MCCURDY, W.H., Jr., 1952 1 New specific in 
spectrophotometric determination of copper, 2,9-Dimethyl-1, 
10-phenantholene: Analytical Chemistry, v. 24, P• 271-273. 

FRITZ, J.S., GARRALDA, B.B., and KARRAKER, S.K., 1961, C~tion. 
separation of metal ions by elution with hydrofluor1c ac1d: 
Analytical Chemistry, v. 33, P• 882-886. 



58 

------~~~~----~~~~--~~· 1962 1 Cation exchange separation of 
metal ions w1th hydrochloric acid: Analytical Chemiatry, v. 34, 
p. 102-106. 

--------~--and RETTING, T.A., 1963, Separation of metals by cation 
exchange in water-acetone-hydrochloric acid: Analytical 
Chemistry, v. 34, p. 1562-1566. 

----------~and KARRAKER, S.K., 1960, Ion exchange separation of 
metal cations: Analytieal Chemistry, v. 321 p. 957-960. 

GUEST, R.J., 1953, Determination of copper in metallurgical analysis, 
use of 2,2' biquinolene: Analytical Chemistry, v. 25, p. 1484-1486. 

HASHMI, M.H., ABDJk. R., MOHAMMAD, u. and FAROOD, A., 1966 1 
Spectrophotometric determination of gold, copper and cobalt: 
Analytical Chemistry, v. 38 1 p. 439-441. 

HENDRIKS, H.E., 1954, The geologycof the Steelville quadrangle, 
Missouri: Mo. Geol. Survey and Water Resources, v. 36 1 2nd series. 

HOSTE, J., 1950, On a new copper specific group: Analytical 
Chimica Acta, v. 4, p. 23-37. 

, EECKOUT, J. and GILLIS, J., 1953, Spectrophotometric 
----~~-determination of copper with cuproine: Acta Analytical 

Chemica, v. 9, p. 263-274. 

IDDINGS, F.A., 1966, Absorption of traces of silver on container 
surfaces: Analytical ehemistry, v. 38 1 p. 1566-1570. 

KAHN, H.L., 1966 1 Instrumentation for atomic absorption: Jour. 
of Chemical Educ., v. 43, no. 1, Jan. 1966; no. 2, Feb. 1966. 

KUNIN, R. and MYERS, R.J., 1950 1 Ion exchange resins: John Wiley 
and Sons, Inc., New York. 

KRAUS, K.A. and MOORE, G.E., 1953 1 Anion exchange studies, the 
divalent transition elements manganese to zinc in hydrochloric 
acid: Amer. Chern. Soc. Jour., v. 75 1 p. 1460-1462. 

LOCKYER, R. and HAMES, G.E., 1959 1 Quantitative determination of 
some noble metals by atomic absorption spectrophotometry: 
Analyst, v. 84, p. 385-887. 

LYONS, w.s., 19641 Guide to activation analysis: D. Van Nostrand Co., 
Inc., Princeton, Hew Jersey. 

MASON, B., 19521 Principle of geochemistry; John Wiley and Sons, 
New York, New York. 

MEINKE, w.w., 1955 1 Trace element sensitivity, comparison of 
activation analysis with other methods: Science 121, no. 3137, 
p. 177-183. 



59 

MENZIES, A.c., 1960, A study of atomic absorption spectroscopy: 
Analytical Chemistry, v. 32, p. 898-904. 

MUELLER, H.E., 1951, Geology of north half of the Meramec Spring 
quadrangle, Missouri: Missouri School of Mines and Metallurgy, 
M.s. thesis. 

NORWITZ, G. and GORDON, H., 1965, Spectrophotometric determination 
of iron, nickel, copper and cobalt in tungsten and tungsten 
alloys: Analytical Chemistry, v. 37, p. 417-419. 

PLUMB, J .A. and MARCY, V .H., 1965, Atomic absorption spectrophotometry 
as a tool for the water chemist: Atomic Absorption Newsletter, 
v. 4, p. 289-293. 

RAINWATER, F.H. and THATCHER, L.L., 1960 1 Method 'for collection and 
analysis of water samples: Geological Survey Water Supply 
Paper 1454. 

RICHES, J.P.R., 1946 1 Use of synthetic resins in the estimation 
of trace elements: Nature, v. 158 1 p. 96-97. 

, 1947 1 Prelimenary experiments on the use of synthetic 
___ r_e_s~J. ... n_s_J._n_ the estimation of trace elements: Chemistry and 

Industry, p. 656-658. 

ROLAND, S.Y., 1953 1 Industrial inorganic analysis: John Wiley 
and Ions, Inc., New York, New York. 

ROSS, H.H., 1948, Guide to activation analysis: D. Van Nostrand 
Company, Inc., Princeton, New Jersey. 

SAMUELSON, o., 1953, Ion exchangers in::.analytical chemistry: 
John Wiley and Sons, Inc., New York, New York. 

SANDELL, E.B., 1944 1 Colorimetric determination of traces of metals: 
Interscience Publishers, Inc., New York, New York, v. 3. 

, 1950, Colorimetric determination of traces of -------metals: Interscience Publishers, New York, New York, v. 3, 
P• 305. 

SCHLICHTER, c.s., 1902 1 A study of Missouri springs: u.s.G.s., 
Water Resources 67 1 P• 32-33. 

STRELOW, F.W.E., RUTHILD, RETHEMEYER 1 and BOTHMA 1 C.J., 1965, Ion 
exchange selectivity scales for cations in nitric acid and 
sulfuric acid media with a sulfonated polystyrene resin: 
Analytical Chemist~, v. 37, p. 106-110. 

1 1960 1 An ion exchange selectivity scale of cations 
___ ba_s_e_d~o-n--equilibrium distribution coefficients: Analytical 

Chemistry, v. 32 1 p. 118-1188. 



60 

TAYLOR, D., 1964, NeutDGD irradiation and activation analysis: 
George Newnes Ltd., London. 

TUREKIAN, K.K., 1964, Multiple trace element determination in sea 
water by neutron activation analysis: Annual Progress 
Report, Geochemistry Technical Report No. 10 1 Atomic Energy 
Commission - AT(30-l)-2912 

WALLACE, L., 1913 1 The geology of the Rolla quadrangle, Missouri: 
Mo. Bureau of Geology and Mines, Ser. 21 v. 12. 

WILLARD, H.H., MERRITT, L.L., and DEAN, J.A., 1962 1 Instrumental 
method of analysis: Van Nostrand Co., Inc., Princeton, 
New Jersey, P• 20-22. 

WILLIS, J.B., 1962, Determination of lead and other heavy metals 
in urine by atanic absorption spectroscopy: Analytical 
Chemistry, v. 34 1 P• 614. 

YORSTON, H.J., 1954, Geology of the south half of the Meramec 
Spring quadrangle, Missouri: Mo. Sch. of Mines and Metallurgy, 
M.s. thesis. 



VITA 

Faridoon A. Namdarian was born on March 31, 1933 in Yezd, 

Iran. He received his primary and secondary education from 

Markar and Kaykhosrove School, Yezd, Iran during the years 

195Q-51 and 1953-54 respectively. 

In June, 1957 he received his BacheJ.or ··6f Science degree 

in Geology from Teheran University, Iran. He was enrolled for 

Traffic Control in 1955-56 and graduated in June, 1957. 

He was appointed as a teacher in Hayat High School, Sheraz, 

Iran in September, 1957. In April, 1958 he was appointed as the 

Airport Manager for Shiraz Civil Airport, Iran. 

He was enrolled in Woolwich Polytechnic, London, England, 

in June, 1961 and received an ordinary level certificate of 

Pure and Applied Mathematics in June, 1963 and enrolled in Acton 

Technical College in September 1963 from which he received an 

Advanced Certificate of Pure and Applied Mathematics in January, 

1964. 

In February, 1965 he was enrolled in the graduate school of 

the University of Missouri at Rolla for work toward the Master's 

degree in Economic Geology (Geochemistry). 

The writer married Dr. Dolly. Namdarian (formerly Irani) in 

1961 and has two children. She was a great help in this work 

and was looking forward to its conclusion. She passed away 

in 1966, before his graduation. 

1.29487 

61 


	Analysis of trace elements in river and spring waters
	Recommended Citation

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066

