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ABSTRACT

Data sharing is very important to enable different types of cloud and IoT-based

services. For example, organizations migrate their data to the cloud and share it with

employees and customers in order to enjoy better fault-tolerance, high-availability, and

scalability offered by the cloud. Wearable devices such as smart watch share user’s activity,

location, and health data (e.g., heart rate, ECG) with the service provider for smart analytic.

However, data can be sensitive, and the cloud and IoT service providers cannot be fully

trusted with maintaining the security, privacy, and confidentiality of the data. Hence, new

schemes and protocols are required to enable secure data sharing in the cloud and IoT.

This work outlines our research contribution towards secure data sharing in the cloud and

IoT. For secure data sharing in the cloud, this work proposes several novel attribute-based

encryption schemes. The core contributions to this end are efficient revocation, prevention

of collusion attacks, and multi-group support. On the other hand, for secure data sharing

in IoT, a permissioned blockchain-based access control system has been proposed. The

system can be used to enforce fine-grained access control on IoT data where the access

control decision is made by the blockchain-based on the consensus of the participating

nodes.
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SECTION

1. INTRODUCTION

Data sharing has become a very common practice amongst individuals, educational

organizations, scientific communities, and medical industry. Industries and financial in-

stitutions have to heavily rely on data sharing within the organization as well as outside

the organization. For example, banks need to share documents internally among the em-

ployees as well as externally with the account holders. Educational institutions share data

with students, faculties and staffs. Scientific communities share data among themselves for

collaboration and knowledge sharing purposes. Medical industry also shares data among

patients, different healthcare professionals, pharmacies, and insurance payers for better in-

teroperability. People are constantly sharing their photos, videos, life-events, stories, views,

opinions, etc. in different social media platforms such as Facebook, Instagram, Youtube,

Vine, TikTok, and Twitter to stay connected with each other regardless of their geographical

distance. Moreover, with the recent wide adoption of IoT devices, knowingly or unknow-

ingly people are sharing data everyday with IoT service providers. For example, smart

wearables like apple watch and fitbit send activity data to the service provider’s server to

perform analytic on the data. Smart home assistant like Google home or Amazon Alexa

continuously exchange data with the respective service provider.

Cloud and IoT service provider cannot be fully trusted with the sensitive user data

because they are prone to insider and outsider attacks. For example, sensitive information

(including date of birth and SSN) of nearly 143 million users was allegedly compromised
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due to the 2017 Equifax data breach 1. Moreover, they canmisuse data or sell it to third-party

for financial benefit. Such unwanted incidents can be avoided and the benefits of cloud and

IoT can be enjoyed to their full potential by designing secure data sharing schemes.

1.1. SECURE DATA SHARING IN CLOUD

A natural way of achieving secure data sharing in cloud is to encrypt the data before

outsourcing it to the cloud. While encryption preserves the data confidentiality in the cloud,

sharing the encrypted data brings a new set of challenges. The most fundamental challenge

of sharing encrypted data is how to distribute the decryption keys among the users. There

are two extreme solutions to this problem discussed as follows:

• The first approach is to encrypt all data with the same key and share the common

decryption key with everyone. This approach makes the key distribution process

much simpler and it also requires the lowest storage and communication cost since

only single encrypted file is created. However, it has the highest security vulnerability

as everything is exposed if the shared decryption key is compromised from anyone.

• In the second extreme approach, for each file, the data owner would choose different

keys for different users and create a different encrypted copy for each key. While this

approach achieves the highest level of security, the storage and communication cost

grows linearly with the number of files and number of total users in the system.

While neither of the solutions discussed above seem practical, researchers across

the world have worked relentlessly to come up with better solutions. Boneh et al. [1]

have proposed a RSA-based [2] solution where users are grouped together according to

their privilege, and each group is assigned with a RSA public-private key pair. The file

is encrypted using symmetric encryption algorithms (e.g., AES) and a decryption token is

created for each group that is allowed to access the file by encrypting the symmetric key

1http://money.cnn.com/2017/09/07/technology/business/equifax-data-breach/index.html
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with the group’s RSA public key. The decryption tokens are added with the encrypted

file as a header and uploaded in the cloud. Later, a legitimate user who belongs to one of

the groups present in the header, can download the encrypted file and decrypt it with the

corresponding RSA private key. Kim et al. proposed a secure data sharing scheme based

on identity-based encryption (IBE) [3] in [4] where files are encrypted with a user’s unique

identity such as email address and shared through cloud. Schemes [5, 6] proposed a secure

cloud-based data sharing scheme based on broadcast encryption scheme where secret keys

are updated on a periodic basis so that a user with the most updated key can only decrypt.

Scheme proposed in [7] is based on Diffie-Hellman protocol. While some schemes being

better than the others, all schemes share a common limitation of not offering fine-grained

access control. This limitation has been overcome by Shahai et al. when they proposed

attribute-based encryption (ABE) scheme in [8]. We discuss in the following different

aspects of ABE related to secure data sharing in cloud.

1.1.1. Attribute-BasedEncryption (ABE). InABE, the access policy is expressed

in terms of a set A of descriptive attributes, and decryption is possible by another set B

if attributes in B satisfy the access policy. The trusted entity known as attribute authority,

generates the system parameters and public key; and assigns decryption keys to the user.

After the proposal of the original ABE, two main variants of ABE have been proposed:

1. Key Policy Attribute-Based Encryption (KP-ABE): In KP-ABE, the access policy

composed of attribute set A is associated with the user’s decryption key and the

attribute set B is associated with the ciphertext.

2. Ciphertext Policy Attribute-Based Encryption (CP-ABE): In CP-ABE, the access

policy composed of attribute set A is associated with the ciphertext and the attribute

set B is associated with the user’s decryption key.
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Since the access policy is associated with the decryption key and the attribute

authority is responsible for generating the decryption keys, attribute authority has more

control on which keys can decrypt a particular ciphertxt in KP-ABE [9, 10, 11, 12, 13, 14].

On the other hand, the data owner has more control on which keys can decrypt a particular

ciphertext in CP-ABE [15, 16, 17, 18, 19] since the access policy in this case is associated

with the ciphertext and the data owner gets to choose the access policy during encryption.

1.1.2. Revocation in ABE. ABE has emerged as a very promising cryptographic

tool for secure data sharing in cloud because it is a highly expressive encryption scheme

and it allows fine-grained access control that is required for secure data sharing in cloud

[20, 21, 22, 23, 24, 25]. However, one of the main challenging issue with ABE is the key

revocation problem. Key revocation is a very important security feature for any secure

data sharing scheme because it allows one to selectively revoke the decryption ability of

users after secret keys have been assigned. Typically, when data is shared with a group

of users, some existing group members may leave the group or new members may join

in. To support such dynamic changes in the data sharing group, revocation is necessary.

Revocation is particularly challenging in ABE because the same attribute can be shared

among multiple users and revoking one user’s attribute key may affect the attribute key of

another non-revoked user who has the same attribute. In the context of ABE, there can be

two types of revocations: user-level revocation and attribute-level revocation. User-level

revocation gives the ability to revoke a user entirely, while attribute-level revocation allows

to revoke particular attribute(s) from a user.

Initially proposed ABE schemes such as [8, 10, 11, 12, 15, 16, 17] do not support

revocation. As a result, it was not possible to use them as a practical tool for secure

data sharing in cloud where revocation was necessary. There are two possible ways of

achieving revocation property in ABE: indirect revocation [26, 22, 27] and direct revocation

[28, 29, 30, 31, 32, 33, 34]. A revocation list is maintained in both methods that specifies

all the revoked users. In indirect revocation, the attribute authority (the trusted party
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responsible for creating and distributing attribute keys) has to perform a periodic update of

attribute keys according to the revocation list, and send them out to every nonrevoked user.

On the other hand, in direct revocation, the owner or the encryptor directly embeds the

revocation list in the ciphertext so that only nonrevoked users can decrypt. ABE schemes

that relies on indirect revocation have much higher communication and runtime overhead

since attribute authority periodically has to do systemwide key update in indirect revocation.

Though directly revocable ABE schemes are more efficient, they are vulnerable a serious

security threat called collusion attack as pointed out in [34]. The collusion attack in ABE

is discussed in the following section.

1.1.3. Collusion Attacks. In a collusion attack, multiple malicious users, who

individually do not have the ability to decrypt a particular ciphertext, combines their keys

together to successfully decrypt the ciphertext. To better understand the collusion attack, let

us consider the following example. Suppose CryptoFlix is a Netflix-like streaming service

that keeps all its media contents in a public cloud run by a third-party cloud service provider.

Before outsourcing media files to the public cloud, it encrypts them using attribute-based

encryption scheme. CryptoFlix offers two types of subscription plans: basic and premium.

Basic and premium plans allow a subscriber to choose three and five attributes, respectively.

Let us assume that two users, Alice and Bob, have a subscription for the basic plan, and

another user, Eve has a subscription for the premium plan. Alice loves science fictionmovies

and documentaries, she gets decryption keys for attributemovie, scifi, and documentary from

the attribute authority (a trusted entity responsible for generating and distributing attribute

secret keys). Conversely, Bob loves tv shows and anime, and gets decryption keys for

new_release, tv_show, and anime attributes. Let Eve has decryption keys for attribute

movie, tv_show, documentary, scifi, and new_release. Attribute-level revocation would

allow CryptoFlix to downgrade Eve’s subscription plan from premium to basic by revoking

attribute movie and scifi such that Eve can decrypt newly released documentary (encrypted

under policy new_release AND documentary) but not newly released science fiction movie
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(encrypted under the policy new_release AND movie AND scifi). On the other hand, user-

level revocation only allows CryptoFlix to revoke Eve entirely but not a subset of attributes

from her. So, the user-level revocation is more suitable when Eve’s subscription plan expires

such that she cannot decrypt either newly released documentary or newly released science

fiction movie.

Let us assume that Eve’s premium subscription plan recently expired or she down-

graded to the basic plan by unsubscribing attribute movie and scifi. In either case, when

CryptoFlix encrypts the newly released science fiction movie XFiction under the policy

(new_release AND movie AND scifi) and uploads it to a public cloud, Eve cannot decrypt

it. Note that the other two users cannot decrypt XFiction either. However, the users can

cooperate with each other and try to decrypt it by launching the following collusion attacks:

• Type I attack: Multiple users who individually do not have enough attributes to satisfy

a policy cooperate with each other so that their collective attribute keys may satisfy

the policy.

• Type II attack: A revoked user who cannot decrypt a file despite having enough

attributes to satisfy the policy cooperates with a nonrevoked user to restore his or her

decryption ability in order to decrypt the file.

In a type I attack, Alice andBobwould combine their attribute keys and try to decrypt

XFiction. On the otherhand, in a type II attack, Eve would combine her attribute keys with

a nonrevoked user (such as Bob) and try to decrypt XFiction. Not to mention CryptoFlix

faces financial loss if any of the attacks becomes successful. Therefore, CryptoFlix must

be resilient to both type of collusion attacks.

ABE schemes such as [8, 10, 11, 12, 15, 16, 17] are resistant to type I collusion

attacks. However, type II collusion attacks do not apply to them as those schemes do not

support revocation. Hur et al. proposed a solution to the revocation problem in [35, 36, 29].

The proposed solution is based on the idea of attribute group. The user’s secret key consists
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of two parts. One is associated with the user’s attributes, and the other is associated with

the attribute group. They are called decryption secret key (DSK) and key encryption key

(KEK), respectively. The revocation is dictated by KEK and is independent of the user’s

DSK. Consequently, the KEK of one user works with the DSK of another user. Hence,

the proposed revocable ABE scheme is not resistant against type II collusion attacks as a

revoked user by colluding with a nonrevoked user can get the valid KEK and restore his or

her decryption ability. This vulnerability was first pointed out by Li et al. [34]. Schemes

such as [31, 37] also have the same vulnerability since these solutions are also based on the

same idea. Li et al. refined their initial solution [34] in [38]. To revoke a user from the

attribute group, the attribute manager (AM) updates the existing user’s KEK keys. They

bind a user’s DSK with his or her KEK so that the KEK of one user does not work with the

DSK of another user. This ensures that a revoked user cannot collude with a nonrevoked

user to restore his or her decryption right. However, the problem is that each time a user

is revoked, all nonrevoked users’ keys (KEK) are affected. This is because DSK and KEK

keys are tied together by a common secret exponent that is only known to a semi-trusted

party called the attribute manager (AM). This exponent is common across attribute secret

keys of all the users. To revoke a user, this exponent needs to be updated in the secret keys

for all the nonrevoked users. As a result, revocation of a single user requires the attribute

manager to send new KEK secret keys to all non-revoked users so that they can update their

KEKs. Transmitting secret keys to nonrevoked users after each revocation is very expensive

and hence it is important to formulate a revocable ABE scheme that is resistant to both type

I and type II collusion attacks and does not require transmitting secret keys to non-revoked

users after any revocation.

1.1.4. Multi-group. An organization may have multiple internal groups and each

groupmay have its own data sharing policy. One groupmay need to collaborate with another

group which requires cross-group data sharing feature so that members from one group can

share data with the members of another group. Moreover, a group can split or multiple
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groups can merge together. Further more, users can move between different groups. So a

multi-group scenario introduces additional challenges to the already challenging problem

of secure data sharing. Previously proposed ABE-based data sharing schemes such as

[39, 40, 41, 42, 43] only address the challenges that are relevant to single group setting

and fail to effectively solve challenges related to multi group setting as discussed earlier.

However, many organizations that are potential users of cloud data sharing service are multi-

group in nature. For example, in an university setting, there are multiple departments- each

representing a different group. There could be dedicated groups for faculties, graduate

students, undergraduate students, and administrative staffs. If the university decides to

move its data to the cloud while preserving the security of the data from the cloud service

provider, it will require a secure data sharing service that supports multi-group setting.

1.2. SECURE DATA SHARING IN IOT

The popularity of IoT device has sky rocketed more recently. Experts have predicted

that there will be 250 billion devices connected to the internet worldwide by the end of year

2020 [44]. IoT has the potential to revolutionize manufacturing, healthcare, hospitality, and

retail industry. The massive popularity and wide adoption of IoT devices have made the

idea of smart home already a reality. If this trend continues, many believe that ideas like

smart cities, once considered too futuristic, may not be too far ahead from present day. The

main benefits of IoT are that they are low maintenance, easy to operate, mostly automated,

remotely configurable, and the can save time and bring convenience by automating many

tasks effectively and efficiently. For example, a smart home surveillance system may send

alerts to the home owner in realtime if it detects the presence of an intruder while the owner

is away. Then the owner can see the live video feed from the camera to verify it and notify

the police or disable the alert in case of a false alarm. The owner may also timely check on

his pet, interact with it or even feed it with smart feeder. Smart home assistant like Google

home or Amazon Alexa can do a quick web search, play a particular video on youtube, set
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a timer or reminder, read news, schedule a meeting, make a phone call, adjust the room

temperature, switch on or off lights, etc. with a simple voice command. The possibilities

here are endless and the convenience it brings is unparalleled. However, as IoT is becoming

more integral part of our life, the data generated by different IoT devices has become more

personal and contains sensitive information in some cases. IoT data is often shared with the

service provider. For example, wearable devices like applewatch periodically sends activity

and healthcare data to the server that is used to build better machine learning models that

can perform smarter analytic. Due to the sensitive nature of the data, secure sharing of the

IoT data has become a significantly important issue.

1.2.1. Traditional Approaches. Secure data sharing in IoT has been addressed by

the research community, and many interesting directions have been put forward [45, 46].

It is pointed out in [47] that secure protocols like TLS, DTLS, or even TinyTLS-like light-

weight protocols may prove to be impractical for IoT because of its unique characteristics

and constraints such as heterogeneity, lack of standardization, low computation andmemory

resource, etc. However, researchers have tried to work around it by designing new protocols

and architectures. Majority of the solutions have a cryptography focus. For example,

schemes such as [48, 49, 50] took a mix of both public and private key cryptography to

solve this problem. Approaches like hardware-based ciphers has also been considered

[51]. The focus of these approaches mostly centers around securing the communication

channel between IoT device and service providers, protecting the confidentiality of the

data, or ensuring user privacy. Moreover, traditional cryptography-based approaches rely

on a centralized trusted entity such as certificate authority in PKI or attribute authority

in ABE for the implementation of the security element. Also, traditional systems are not

well designed for transparency, accountability, and dispute resolution. As a result, if the

service provider misuses user’s IoT data or the data falls into the wrong hand because of the

service provider’s mistake, it is hard to held them accountable. To this end, secure IoT data
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Figure 1.1. Hyperledger Fabric Architecture

sharing solutions not only need to ensure the user’s privacy and data confidentiality, but

also need to incorporate transparency, accountability, and dispute resolution in a distributed

and trust-less fashion.

1.2.2. The Potential of Blockchain. Blockchain is a distributed immutable ledger

maintained by a network of peers where all the peers in the network at any given point of

time agrees on a single identical version of the ledger through some consensus protocol.

The first practical application of blockchain was seen in the digital cryptocurrency called

Bitcoin [52] where blockchain was used to publicly keep track of all the transactions and

prevent double spending. Cryptocurrency like Ethereum [53] soon emerged to enhance

the capability of blockchain by incorporating smartcontract - a program that lives and runs

in the blockchain and can automate the asset (cryptocurrency) transfer according to the

provided logic. Blockchain offers a great platform to build distributed applications for

mutually untrusted parties by eliminating the need of a trusted central authority. Since

data, once written on the blockchain cannot be deleted, it naturally enables transparency,

accountability that can help in any kind of dispute resolution.
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Depending on whether permission is required for a node to join the blockchain

network, there are two types of blockchains: public or permissionless blockchain and private

or permissioned blockchain. Popular examples of public blockchain are Bitcoin blockchain

[52], Ethereum [53], etc. and examples of private blockchain are Hyperledger Fabric [54],

Ripple (XDR)[55], etc. While public blockchain is well-suited for cryptocurrency, it has

a scalability issue that limits the number of transactions the network can process referred

to as blockchain bloat [56]. For example, bitcoin can process only a maximum of seven

transactions per minute. This is due to the fact that the block creation frequency (1 block per

10 minutes) and size (1MB) is limited [52]. The security of the public blockchain relies on

the proof of work (PoW) where all the peers in the network validate all the transactions and

try to solve a computationally intensive cryptographic puzzle. The hardness of the puzzle

is set so that a new block is created every 10 minutes. Due to the network latency, there

exist multiple forks of the blockchain and it can take up to six hours to eventually reach a

consensus. That is why transaction wait time is very high in pubic blockchain (sometimes

up to six hours). Though, consensus protocols like proof of stake (PoS) are there, the

transaction wait time is still high in public blockchain [54]. It makes public blockchain less

feasible for any IoT application where faster transaction is required, e.g. IoT devices sending

data to emergency response team. However, in the private or permissioned blockchain, the

transactions are much faster. This is because it does not rely on PoW or PoS. Rather,

it incorporates much faster consensus protocols like Byzantine Fault Tolerance (BFT) or

proof of authority (PoA) and yet provides a way to secure the transactions among a group of

participants with verified identities who have a common goal but do not fully trust each other

[54]. The architecture of hyperledger fabric showing its important components depicted in

Figure 1.1. To form a blockchain, different organizations (e.g., OrgA, OrgB, OrgC) come

together and creates a private channel between them. Each organization has its own set of

peers that runs the blockchain. The organizations also have their own membership service

providers (MSP) responsible for creating and distributing membership credentials required
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to join the blockchain network. The membership service provider has certificate authority

(CA) to generate the required cryptographic materials (e.g., certifiates, keys, etc). Finally,

there is an ordering service, responsible for managing the temporal order of the transactions

to be written in the blockchain. Because of the faster transaction rate, hyperledger fabric is

more suitable for applications that demand low latency.

1.3. DISSERTATION SUMMARY

This dissertation is composed of three papers presented in publication format of

the conference or the journal wherein they were published (or submitted to) addressing the

aforementioned objectives in the previous sections.

Paper I titled "A collusion-resistant revocable attribute-based encryption scheme for

secure data sharing in cloud" presents a novel revocable attribute-based encryption that is

resilient against both type-I and type-II attacks. Besides being resilient to both types of

collusion attacks, the novelty of our proposed ABE scheme is that it does not require any

trusted entity (e.g., manager) to achieve revocation. Rather, it gives data owner the complete

control on the revocation. The revocation does not affect the secret keys of non-revoked

users. As a result, non-revoked users do not require to update their secret keys. However,

this scheme supports revocation at user-level.

Paper II titled "Attribute-based encryption scheme for secure data sharing in cloud

with fine-grained revocation" extends our scheme proposed in paper I, and proposes a new

scheme that supports attribute-level revocation. Additionally, it inherits other properties

from the previous scheme such as collusion resistance, revocation without the aid of any

trusted entity, etc.

Paper III titled "Attribute-Based Encryption Scheme for Secure Multi-group Data

Sharing in Cloud" proposes an attribute-based encryption scheme that is suitable for multi-

group setting and supports multi-group operations such as group split, group merge, and

cross-group data sharing. It is can also prevent type-I and type-II collusion attack discussed
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earlier. It reduces the decryption cost from the user end by outsourcing the expensive

operations to the cloud. The scheme is based on a dual-cloud architecture and it is secure

as long as both cloud do not collude with each other.

Paper IV titled "A Permissioned Blockchain-based Access Control System for IoT"

puts forward an access control system for secure data sharing in IoT. It implements attribute-

based access control (ABAC) by leveraging smartcontract of permissioned blockchain

(hyperledger fabric). It enables the data owner to define access policy of their data and

the blockchain ensures that the policy is enforced while data sharing. Since the policy is

enforced in the blockchain in a distributed manner, the dispute resolution becomes much

easier and transparent.
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2. LITERATURE REVIEW

The scope of this dissertation primarily deals with secure data sharing in cloud

and IoT. Likewise, we classify the related work into two different categories: 1) Secure

data sharing in cloud and 2) Secure data sharing in IoT. For the first category, we discuss

different cryptography-based approach to deal with the problem of secure data sharing in

cloud. We also discuss their limitation in terms of fine-grained access control. Then we

discuss how attribute-based encryption has revolutionized the field of secure data sharing

in cloud. Later, we discuss different ABE-based protocols designed for secure data sharing

in cloud along with their limitations. For the second category of related work, we discuss

various existing approaches for secure data sharing in IoT. Then we discuss how blockchain

has been leveraged towards secure data sharing in IoT.

2.1. SECURE DATA SHARING IN CLOUD

The idea of securing data in remote untrusted storage has been around well before

the term "cloud computing" was introduced. Eventually, it has become a more urgent

problem to solve as cloud computing has gained in more popularity [57]. Researchers from

both industry and academia have actively tried to solve this problem that has led to various

solution approaches [58]. The related work in this field can be divided into following

sub-categories based on the underlying cryptographic primitives:

2.1.1. Schemes Based on Public Key Cryptography and Symmetric Key Cryp-

tography. Boneh et al. proposed Sirius - a scheme for securing and sharing data in remote

untrusted server in [1]. The proposed scheme has made use of RSA and AES encryption

scheme as the main cryptographic tool. In the bootstrap process, users are divided into

multiple groups based on their access privilege and all users in the same group are provided

with the same RSA private (decryption) key. Then, the file is symmetrically encrypted
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with an AES key. Later, decryption token is created for a user group by encrypting the

AES key with the public RSA key of the respective group. If the file is to be shared with

multiple groups, a separate token is created for each of those groups. Decryption tokens

are attached to the encrypted file in the header and uploaded in the remote server. User

can later download the encrypted file and decrypt with his or her RSA decryption key. An

unauthorized user is unable to decrypt because no decryption token is present for that user’s

group in the header. Plutus [59] is another approach designed for securing data in remote

untrusted server that heavily relies on public key cryptography. Plutus offers a much greater

scalability over Sirius by incorporating a clever key rotation technique that minimizes the

key management cost associated with key revocation. To eliminate the overhead caused by

public key cryptography, Naor et al. proposed a scheme in [60] that does not use public

key cryptography and only relies on symmetric-key cryptography. However, the proposed

solution works well under certain constrained scenarios such as when there are only a few

read-only users or only one publisher with many read-only users.

Zhao et al. put forward a scheme in [61] that relies on a cryptographic primitive

called progressive elliptic curve encryption scheme (PECE). In PECE, a piece of data is

encrypted multiple times using different keys and the final ciphertext is decryptable with

a single key in a single run. In a typical workflow, the cloud storage service provider has

a shared public-private key pair with the data owner and a consumer has his or her own

public-private key pair. The data owner encrypts the data with the shared public key and

a random secret such that cloud service provider cannot decrypt it without knowing the

random secret despite having the corresponding shared private key. Then the consumer

requests access by providing the data owner with his public key. The data owner computes

an intermediate with the consumer’s public key and sends it to the cloud service provider.

The cloud service provider re-encrypts the ciphertext with the intermediate key and sends it
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to the consumer. Finally, the consumer decrypts the ciphertext with his or her private key.

While this scheme provides data confidentiality from the cloud service provider, it requires

the data owner to remain online in order to grant access to any consumer or requester.

2.1.2. Schemes Based on Proxy Re-encryption and Identity-based Encryption.

Proxy re-encryption (PRE) [62] allows a delegator (data owner) to encrypt a data with

his or her public key (pki) and share it with a delegatee (user) by having the ciphertext

transformed (re-encrypted) by a proxy with a re-encryption key (rki→ j) such that the user

can decrypt the transformed ciphertext with his or her decryption key (sk j). The mechanism

of proxy re-encryption is shown in Figure 2.1 due to [63]. Proxy re-encryption has emerged

as a promising cryptographic tool since the proxy does the transformation (re-encryption)

in the encrypted domain without actually decrypting it and hence the actual data remains

secure from the proxy. This technique has been adopted for secure data sharing in cloud

by delegating the role of proxy to the cloud [63]. Initially proposed proxy re-encryption

scheme [62] is based on ElGamal public key cryptography [64] and prone to collusion attack

where the proxy can compute the delegator’s private key by colluding with the delegatee.

Jackboson et al. has fixed this serious problem in [65] by incorporating k out of n secret

sharing scheme. The re-encryption key is divided into n pieces and given to n proxies

such that re-encryption is possible only if at least t number of proxies work together. The

proposed scheme is resilient to collusion attack as long as the number of dishonest proxies

is less than t.

The security model of proxy re-encryption was not formalized until Ateniese at

al. provided the formal definition along with the formal security model of proxy re-

encryption in [66]. They also introduced in thiswork the first bilinear pairing-based proxy re-

encryption scheme. It allows the delegator to periodically update the delegation relationship

by assigning short-lived re-encryption keys without having to change the delegator’s public

key. The limitation of the proposed scheme is that it has single-use characteristic which

only allows the re-encryption of the original ciphertext but not the output ciphertext of
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Figure 2.1. The mechanism of proxy re-encryption

re-encryption algorithm. Hohenberger et al. bridged this gap by proposing a multi-use

PRE scheme in [67] which is also secure against chosen ciphertext attack (CCA). However,

since this scheme is based on bilinear pairing, it is relatively expensive like [66]. Later

Deng at al. proposed a pairing-free scheme in [68] that was more efficient. The proposed

scheme is also bi-directional in nature that allows proxy to re-encrypt delegator’s ciphertext

into delegatee’s ciphertext and vice versa. It has more potential where bi-directional

communication is required.

The capabilities of PRE has been enhanced by coupling it up with other schemes.

One prominent example of that is identity-based proxy re-encryption put forward by Green

el al. in [69]. It combines identity-based encryption [3] with proxy re-encryption to

eliminate the costly certificate management overhead of public keys. However, the scheme

proposed in [69] is not collusion-resistant. Nevertheless, idea of eliminating certificate

management overhead by incorporating identity-based encryption with PRE inspired many

similar subsequent works such as [70, 71, 72, 73, 74]. Although identity-based PRE

eliminates the necessity of certificate management, the formal notion of certificateless-

based PRE (CL-PRE) scheme was proposed by Youngho et al. in [75]. In this work,

PRE was introduced into certificateless public key encryption [76] to achieve the best of
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both public key encryption and identity-based encryption in PRE while eliminating their

individual limitations. Xu et al. proposed a CL-PRE scheme in [77] that is suitable for

secure data sharing in cloud environment. Later, Guo et al. improved upon the security of

[77] by constructing a RCCA (replyable CCA) secure CL-PRE scheme in [78]. In contrast,

Yang et al. proposed a PRE scheme in [79] that despite being certificate-based, has some

distinct advantages making it more suitable for cloud. Firstly, it allows the delegator to

delegate the partial decryption right to a proxy such that the ciphertext can be partially

decrypted by the proxy in a way that greatly reduced the delegatee’s decryption cost. This

makes perfect sense where delegatees are low resource devices like sensors and the proxy is

more resource heavy like cloud. Secondly, it avoids more costly pairing-heavy operations

making it even more efficient for low resources devices.

2.1.3. Schemes Based on Attribute-based Encryption. Progress made in various

fields of cryptography such as different public key encryption schemes, proxy re-encryption,

and identity-based encryption have laid a solid foundation for secure data sharing in cloud.

However, none of them is expressive enough to enforce a flexible and fine-grained cryp-

tographic access control on data. Fine-grained access control is necessary when a data

sharing group has users with various types of access privilege. The first encryption scheme

capable of fine-grained access control was put forward by Sahai and Waters et al. in [8].

The proposed scheme is called fuzzy identity-based encryption because a data is encrypted

with a set of attributes and an identity of a user, represented as a collection of attributes can

decrypt it if the identity has enough attributes in it. The proposed scheme is also regarded

as the first realization of attribute-based encryption (ABE) scheme since encryption and

decryption keys are represented in terms of attributes.

The original ABE [8] was realized as a fuzzy identity-based encryption scheme.

Soon after that, full fledged ABE has been proposed in two different flavours: key policy

attribute-based encryption (KP-ABE) and ciphertext policy attribute-based encrypion (CP-

ABE). In KP-ABE, the access policy is associated with the decryption key and attributes
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are associated with the ciphertext while in CP-ABE, the access policy is associated with

the ciphertext and the attributes are associated with the decryption key. The first KP-ABE

scheme was proposed by Goyal et al. in [9]. Several other KP-ABE schemes such as

[10, 11, 12, 13, 14] has been proposed afterwards. One particular issue with KP-ABE is

that the access policy is associated with the secret key. Since the attribute authority is

responsible for creating and assigning secret keys, the data owner has little control over

the access policy. This may be undesirable for certain data sharing scenarios where data

owner wants to control the access policy. To address this issue, Bethencourt et al. proposed

CP-ABE in [15] that allows the data owner to encrypt data with an access policy that

determines which combination of attributes can decrypt the ciphertext. Various attempts

have been made afterward to improve the original CP-ABE scheme. For example, Emura

et al. proposed a CP-ABE scheme in [17] keeps the ciphertext size constant regardless of

the size of access policy associated with the ciphertext. Ibraimi et al. improved the security

model of CP-ABE and showed that their CP-ABE scheme is provably secure under the given

model. Waters et al. in [16], not only improved the security, but also enabled encryption

with more expressive policies. In the proposed method, they put forward a way to transform

any kind of expressive policy into a boolean expression, and use it to encrypt ciphertext.

Apart from KP-ABE and CP-ABE, several other types of ABE schemes have also

been proposed. The most notable one is multi- authority ABE (MA-ABE) scheme. Chase

et al. first introduced MA-ABE in an attempt to address the key-escrow problem that exists

in all previously proposed ABE schemes [80]. In this work, the single-authority has been

replaced by multiple authorities, and each authority manages a different set of attributes

such that no single authority can create a key capable of decrypting a ciphertext alone. The

most challenging aspect in multi-authority setting is to prevent collusion attack from users.

In single-authority, collusion prevention is achieved by having the authority rerandomizing

the secret sharing appropriately with users such that keys generated for different users cannot

be combined. In order to achieve that, the secret needs to be be split up in different way
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for each user by dividing it among multiple authorities. Additionally, this has to be done

without any communication between the authorities. Chase is able to accomplish this goal

with two main techniques: Global Identifier (GID) and central authority (CA). Each GID

uniquely identified a user in the system and allows the authorities to distinguish users to

prevent collusion. The fully trusted CA will hold the master secret for the system and

will know all of the other authorities’ pseudorandom functions (PRFs), which is used by

each authority to randomize the secret key it gives out to a user. For each user, the CA

will compute an extra value which, when combined with the user’s constructed secret, will

result in a GID-independent system decryption value that allows the user to decrypt. This

approach has two major concerns: protecting the users’ privacy and removing the trusted

central authority. Due to the use of GID between users and authority to prevent users

collusion attack, the disadvantage is that users’ privacy is no longer guaranteed. Imagine

a scenario that multiple authorities collude together to pool their information and build a

complete profile of all the attributes corresponding to each GID. The use of a single trusted

CA is the primitive work of Chase is responsible for issuing each user a unique key. In order

to do so in a way to prevent collusion, the CA knows the master secret of the entire system

and the secret PRF of each authority. Such approach schematic inevitably gives the CA the

power to decrypt any ciphertext. These two concerns were then answered by the subsequent

work done by Chase and Chow to improve the privacy and security in MA-ABE [81].

They proposed a solution which removes the trusted CA and protects the users’ privacy by

preventing the authorities from pooling their information on particular users, thus making

ABE more usable in practice. The idea was suggested by Waters, formalized by Chase

and Chow, in which each pair of attribute authorities (AA) would share a secret key. The

proposed schemes proved that it is secure as long as at least two of the AAs are honest. An

anonymous key issuing protocol was also presented in the paper which allows MA-ABE

with enhanced user privacy by (1) allowing users to communicate with AAs via pseudonyms

instead of GIDs and (2) preventing the AAs from pooling their data and linking multiple
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attributes belonging to the same user. Lin et al. proposed a different approach for MA-ABE

also without a CA that achieves m-resilience. Their construction requires scheme designers

to fix a constant m for the system, such that any group of m + 1 colluding users will be able

to break the security of the encryption [82, 83]. Their threshold based scheme requires a set

of authorities to be fixed ahead of time (similar to [80]), and they must interact during the

system setup. Chase and Chow claimed that their work has two advantages over the work by

Lin et al. First, it is difficult and inconvenient for the designers to fix m appropriately since it

directly determines system efficiency. For large-scale systems, m need to be set reasonably

high in order to guarantee security; this imposes burdens among all the authorities, and

on their secure storage. Secondly, Chase and Chow’s multi-authority scheme is secure no

matter howmany users collude, which is more practical. It is worth noting that the improved

version of MA-ABE by Chase and Chow does not extend to non-monotonic access structure

and the CP-ABE scheme. Li et al. later put forward the first multi-authority-CP-ABE

(MA-CP-ABE) scheme in [18] that only allows small universe attributes, meaning that any

arbitrary string can’t be used as an attribute. Yannis and Waters overcame this limitation by

proposing a large universe MA-CP-ABE scheme in [84] that allows the use of any arbitrary

string as an attribute.

ABE offers a very convenient way of achieving fine-grained access control for secure

data sharing in cloud. However, data sharing groups are often not static and group members

frequently leave and join the group. To be able to use in such dynamic data sharing group,

ABE needs to have revocation feature. Revocation has become a very active research

topic in the field of ABE. Wang et al.[20] proposed a revocation technique using proxy

re-encrytpion. It requires updating not only the attribute secret keys of all the nonrevoked

users, but also the attribute public keys by a proxy (cloud) that results in a lot of overhead.

Additionally, their technique only applies to KP-ABE scheme. Later, Sahai et al. proposed

the idea of a revocable ABE using time-based proxy re-encryption in [26], and then realized

by Qin et al. in [22]. All attributes are associated with an expiration time. In order to



22

achieve revocation, the cloud periodically updates access structure of ciphertext such that

users with expired attribute keys cannot decrypt the ciphertext. The improvements made

in this work over [20] is that the revocation task is fully delegated to the cloud and the

technique is compatible with CP-ABE. However, the major disadvantage is that it is not

resilient against cloud-user collusion attack as cloud can restore the decryption ability of a

revoked user even after his or her attributes expire. Proxy re-encryption-based technique

proposed in PIRATTE [28] is not free from issues either. PIRRATE only allows t our of n

revocations where t needs to be fixed beforehand.

Revocable ABE is further divided into two categories: indirectly revocable ABE

and directly revocable ABE based on whether interaction is required between the attribute

authority and the nonrevoked users. Interaction between the attribute authority and non-

revoked users is required in indirect revocable ABE while no such interaction is required

in directly revocable ABE. Revocation schemes such as [20, 26, 22, 28] are examples of

indirectly revocable ABE and all of them require nonrevoked users to update their keys by

interacting with the attribute authority. This key update process introduces a huge overhead

on the user-end. To mitigate this overhead from the user-end, Cui et al. proposed an indi-

rectly revocable ABE scheme in [85]. It minimizes the key update overhead at the user-end

by delegating the key-update task to an aide-server. However, this scheme can’t detect the

malicious event where the aide-server performs the key-update task incorrectly. Yu et al.

solved this problem in [32] by introducing a public auditor that can publicly verify the

correctness of computation performed by the aide-server. Based on the RouselakisâĂŞWa-

ters CP-ABE scheme [84], Qin et al. proposed another server-aided indirectly revocable

CP-ABE scheme [86]. This scheme allows a user to delegate his or her decryption capacity

to others while preventing decryption key exposure (DKE) attack that was left as an open

problem in [85]. In directly revocable ABE scheme, no interaction is required between the

attribute authority and the nonrevoked users. Directly revocable ABE was put forward by

Hur et al. in [35] where revocation is realized by incorporating the concept of attribute
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groups with each attribute. A user’s secret key consists of two parts: decryption secret

key (DSK) and key encryption key (KEK), respectively. The DSK is associated with the

user’s attributes, while the KEK is associated with the user’s attribute groups. Revocation is

achieved by encrypting certain ciphertext components with KEK keys so that a user cannot

decrypt the ciphertext without the appropriate KEK key despite having enough attributes

in the DSK key. In their subsequent work [36, 29], Hur et al. improved the security by

removing the key-escrow problem such that attribute authority alone cannot generate any

secret key. This was achieved by splitting the master secret between the attribute authority

and the group manager and employing a secure multi-party computation protocol between

them during the secret key generation time. The same attribute-group-based revocation

technique has been adopted by many other works such as [87, 31, 37]. Li et al. pointed out

in [34, 88] that this attribute-group-based revocation technique has a serious flaw where a

revoked user, by colluding with a nonrevoked user can restore his or her decryption ability.

This is possible because KEK and DSK are independent of each other and one user’s KEK

is compatible with another user’s DSK. A revoked user simply colludes with a nonrevoked

user to get the nonrevoked user’s KEK and combines it with his or her own DSK to restore

the decryption ability. Li et al. proposed a solution to this problem by binding a user’s KEK

with his or her DSK such that one user’s KEK does not work with another user’s DSK. The

limitation of the proposed scheme is that a semi-trusted attribute manager has to update all

nonrevoked users’ KEK keys for revocation, which not only adds a lot of overhead, but also

adds additional security vulnerability as the attribute manager can collude with revoked

users to restroe their decryption ability. Schemes such as [38, 27] further improved the

security model of Li et al.’s scheme. However, they also rely on a semi-trusted entity for

updating secret key for revocation. Hence, achieving revocation without the help of any

semi-trusted entity was left as an open problem.
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ABE schemes are relatively expensive as they rely on costly group exponentiation

and bilinear pairing operations. Typically, the number of group exponentiation and bilinear

operations grows linearly with the size of the access policy. Green et al. found a way to keep

the decryption cost constant at the user end in [89]. This is achieved by securely outsourcing

those expensive operations to the cloud. The idea is to blind user’s attribute secret key with

a blinding key and give it to the cloud while keeping the blinding key secret. The cloud can

use blinded attribute keys to partially decrypt the ciphertext so that the user can later fully

decrypt it using his or her secret blinding key at a constant cost. Later, [90, 91, 92, 93, 94]

added verifiability to the outsourced decryption to ensure that the cloud correctly performs

the computation. Among them, Qin et al. [90] was able to achieve verifiability with a

short and constant overhead, while others ended up adding a much larger overhead to the

ciphertext.

2.2. SECURE DATA SHARING IN IOT

With the wide adoption of IoT, its security has gained a lot of focus recently [45].

One important security aspect of IoT is how to securely share IoT data [46]. Jose and

Hernandez et al. proposed a secure and privacy preserving framework intended for secure

data sharing of IoT devices [48]. The proposed framework was built by taking into account

both user privacy and data confidentiality. They argue that a compromised IoT device can

potentially hamper user privacy since IoT device carries user’s personalized information

such name, address, ID, etc. As a mitigation strategy, they propose that a centralized

identity management system should be put in place that instead of sharing the whole user

credential, shares only a subset of required attributes of the whole credential. To this

end, their recommendation is to use anonymous credential systems such as Idemix [95]

or Uprove [96]. Such anonymous credential systems allow one to cryptographically proof

the possession of certain attributes of his or her credential instead of sending the whole

credential. To ensure data confidentiality, they recommend the use of ABE that can work in
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conjunction with anonymous user credential systems. A similar privacy preserving secure

IoT data sharing scheme was proposed in [50] that relies on CP-ABE. Motivated by the

establishment of e-Health Record (EHR) and the future potential of IoT application in

healthcare [49], Yang et al. proposed an lightweight secure data management framework

for healthcare IoT in [97]. This scheme is also based on ABE. However, compared to the

previously proposed ABE-based schemes [48, 50], the advantage of this scheme is two-fold:

Firstly, this scheme takes into account the distributed nature of the healthcare domain. It

offers distributed access control by employing multi-authority ABE where each authority

independently manages a distinct set of attributes. Secondly, they have managed to keep

the scheme light-weight such that it is usable for low-resource IoT devices. Hossein and

Hithnawi et al. proposed a cloud-based secure IoT data sharing platform in [98]. This

scheme mainly uses homomorphic encryption to facilitate search query on encrypted data

while it is stored in the cloud. However, the limitation of this scheme is that it is too

expensive in terms of both storage and running time. Besides, it can’t efficiently support

certain types of range queries. A cloud-assisted IoT system was put forward in [99] that

uses conditional identity-based broadcast proxy re-encryption as the main cryptographic

construct for data security. It allows users to store and delegate their IoT data collection

task to the cloud at the same time. Tao and Bhuiyan et al. took a hardware-based security

approach in [51] to address the security concerns in healthcare IoT such as patient health

monitoring sensors. Their proposed secure data collection scheme is composed of four

layers: IoT network and sensor devices, FOG layer, cloud computing layer, and healthcare

provider layer. To ensure the data security in IoT and FOG layers, they use light-weight

field programmable gate array (FPGA) hardware-based cipher algorithm and secret cipher

share algorithm, respectively. To ensure patient’s privacy at the cloud computing layer, they

distribute the database among multiple cloud servers such that no single cloud server have

the entire view of the patient database. They also validate the performance of their scheme

through proper simulation and show that their scheme is practical.
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Most of the traditional cryptography-based solutions are centralized in one way or

other and do not match well with the distributed nature of IoT. In an IoT ecosystem different

parties are involved who may not trust each other. This requires better accountability

and transparency to resolve any kind of dispute which is hard to address in traditional

cryptography-based approach. It turns out that many of these issues can be addressed

by leveraging blockchain. Hossein and Lukas et al. proposed a blockchain-based secure

data sharing platform for IoT in [100]. In the proposed architecture, IoT data is viewed

as chunked data streams. Each stream is divided into chunks of data, encrypted with a

symmetric key and stored in a distributed file system. Data chunks are cryptographically

linked together bymaking one chunk point to the hash of the next chunk. The symmetric key

is encrypted with the owner’s public key by following proxy re-encryption scheme. To share

a data stream with a particular application, the data owner creates a blockchain transaction

containing the stream identifier, proxy re-encryption key, and the blockchain public address

of the application. The storage node, upon receiving data access request from a particular

application, grants access if there exists such a transaction in the blockchain. Note that,

a malicious storage node may still grant access even if no such blockchain transaction

exists. However, that does not compromise the data since data is encrypted and each

node stores a small portion of the data stream. While this encompasses user user-centric

access control, it has several drawbacks. The access control decision is mainly made by

the data owner and not in a distributed manner. Since their approach is based on the public

blockchain, the transactions are much slower and cannot support real-time IoT application.

Xueping and Sachin et al. proposed a data sharing and collaboration platform for mobile

healthcare application in [101] where a private blockchain is the centerpiece of the system

and connects patient with other stakeholders like hospitals, pharmacy, insurance companies

etc. Scheme [102] proposes a secure data sharing technique for IoT that combines proxy re-

encryption with blockchain. The proposed solution is intended for a secure IoT marketplace

where sellers can sell their IoT measurement data to the buyers and the financial transaction
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automatically takes place via a blockchain smartcontract. This blockchain-based transaction

help in any kind of dispute resolution in the future. Wei and Mingdong et al. proposed a

blockchain-based secure data transmission technique for industrial IoT in [103].
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ABSTRACT

Attribute-based encryption (ABE) is a prominent cryptographic tool for secure data

sharing in the cloud because it can be used to enforce very expressive and fine-grained access

control on outsourced data. The revocation in ABE remains a challenging problem as most

of the revocation techniques available today, suffer from the collusion attack. The revocable

ABE schemes which are collusion resistant require the aid of a semi-trusted manager to

achieve revocation. More specifically, the semi-trusted manager needs to update the secret

keys of nonrevoked users followed by a revocation. This introduces computation and

communication overhead, and also increases the overall security vulnerability. In this work,

we propose a revocable ABE scheme that is collusion resistant and does not require any

semi-trusted entity. In our scheme, the secret keys of the nonrevoked users are never affected.

Our decryption requires only an additional pairing operation compared to the baseline ABE
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scheme. We are able to achieve these at the cost of a little increase (compared to the baseline

scheme) in the size of the secret key and the ciphertext. Theoretical performance analysis

and experimental results show that our scheme outperforms the relatable existing schemes.

Keywords: secure cloud data sharing, attribute based encryption, revocation

1. INTRODUCTION

Many companies and organizations often outsource their data to a public cloud to

enjoy advantages such as availability, scalability, and lower maintenance cost offered by

the cloud. However, confidentiality and access control of the outsourced data remains a

concern since the data owner loses control over the data once it is uploaded to the cloud.

Recently, attribute-based encryption (ABE) has become a very promising tool [1] to achieve

confidentiality and fine-grained access control for data outsourcing in the cloud. ABE allows

a data owner to encrypt his or her data using a policy expressed in terms of a set of attributes

so that it can be decrypted only if the secret key has enough attributes to satisfy the policy.

Let us consider the motivational example in the following section.

1.1. A MOTIVATIONAL EXAMPLE

Suppose CryptoFlix is a Netflix-like streaming service that keeps all its media

contents in a public cloud run by a third-party cloud service provider. Before outsourcing

media files to the public cloud, it encrypts them using attribute-based encryption scheme.

CryptoFlix offers two types of subscription plans: basic and premium. Basic and premium

plans allow a subscriber to choose three and five attributes, respectively. Let us assume

that two users, Alice and Bob, have a subscription for the basic plan, and another user,

Eve has a subscription for the premium plan. Alice loves science fiction movies and

documentaries, she gets decryption keys for attributes movie, scifi, and documentary from

the attribute authority (a trusted entity responsible for generating and distributing attribute
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secret keys). Conversely, Bob loves newly released tv shows and gets decryption keys

for new_release, tv_show, and documentary attributes from attribute authority. Let Eve

has decryption keys for attribute movie, tv_show, documentary, scifi, and new_release, but

her premium subscription plan recently expired. CryptoFlix encrypts the newly released

science fiction movie XFiction under the policy (new_release AND movie AND scifi) and

uploads it to a public cloud. Note that none of the three users can decrypt XFiction under

normal circumstance. However, they can cooperate with each other and try to decrypt it by

launching the following attacks:

• Type I attack: Multiple users who individually do not have enough attributes to satisfy

a policy cooperate with each other so that their collective attribute keys may satisfy

the policy.

• Type II attack: A revoked user who cannot decrypt a file despite having enough

attributes to satisfy the policy cooperates with a nonrevoked user to restore his or her

decryption ability in order to decrypt the file.

These attacks are called collusion attack. In a type I attack, Alice and Bob would

combine their attribute keys and try to decrypt XFiction. On the otherhand, in a type

II attack, Eve would combine her attribute keys with a nonrevoked user (such as Bob)

and try to decrypt XFiction. Not to mention CryptoFlix faces financial loss if any of the

attacks becomes successful. This motivational example will be referred to repeatedly in the

upcoming sections.

1.2. LIMITATIONS OF THE EXISTING SCHEMES AND OUR NOVELTY

Collusion resistance is a fundamental security requirement of any ABE scheme, as

stated in the original ABE scheme proposed by Sahai et al. [2]. Initially proposed ABE

schemes such as [2, 3, 1] do not support revocation. If CryptoFlix were to use such an
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ABE scheme, it could not revoke Eve even if her subscription expired. As a result, such

schemes are not suitable for a practical application like secure cloud data sharing. They

are resistant to type I collusion attacks. However, type II collusion attacks do not apply to

them as those schemes do not support revocation. The revocation is a challenging problem

in ABE since the same attribute may be shared among different users. Hur et al. proposed

a solution to the revocation problem in [4, 5]. The proposed solution is based on the idea

of attribute group. The user’s secret key consists of two parts. One is associated with

the user’s attributes, and the other is associated with the attribute group. They are called

decryption secret key (DSK) and key encryption key (KEK), respectively. The revocation is

dictated by KEK and is independent of the user’s DSK. Consequently, the KEK of one user

works with the DSK of another user. Hence, the proposed revocable ABE scheme is not

resistant against type II collusion attacks as a revoked user by colluding with a nonrevoked

user can get the valid KEK and restore his or her decryption ability. This vulnerability was

first pointed out by Li et al. [6]. Schemes such as [7, 8] also have the same vulnerability

since these solutions are also based on the same idea. Li et al. refined their initial solution

[6] in [9]. To revoke a user from the attribute group, the attribute manager (AM) updates

the existing user’s KEK keys. They bind a user’s DSK with his or her KEK so that the KEK

of one user does not work with the DSK of another user. This ensures that a revoked user

cannot collude with a nonrevoked user to restore his or her decryption right. However, this

scheme has the following limitations:

• Each time a user is revoked, all nonrevoked users’ keys (KEK) are affected because

DSK and KEK keys are tied together by a common secret exponent that is only known

to a semi-trusted party called the attribute manager (AM). This exponent is common

across attribute secret keys of all the users. To revoke a user, this exponent needs to

be updated in the secret keys for all nonrevoked users.
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• It requires the additional semi-trusted AM for updating all nonrevoked users’ secret

keys (KEK) and distributing them to the respective users. This not only adds a lot

of overhead, but also increases the security vulnerability by adding an additional

semi-trusted party to the system.

• AM also becomes the performance bottleneck as it needs to participate in the key

generation, key update, encryption, and re-encryption stages. Key generation is an

one-time operation. However, other operations occur very frequently, which can be a

huge burden for a centralized entity like AM to handle.

By following the footstep of [9], CryptCloud+[10] also proposes a collusion-resistant

revocable ABE scheme. In this scheme, the attribute authority has to periodically update the

attribute secret keys of all the users according to a revocation list, which is very inefficient.

Clearly, recent research leaves significant gaps. Our proposed revocable ABE scheme fills

these research gaps for the first time. Like Li et al.’s schemes ([6] and [9]), our revocable

ABE scheme is also collusion resistant against both type I and type II attacks. However, in

our scheme, revocation does not affect the secret key of any nonrevoked user. Moreover, our

scheme does not need the aid of any additional trusted entity, which minimizes the attack

surface. This is made possible since we achieve revocation by modifying the core ABE

secret key and ciphertext elements rather than achieving revocation by attribute group keys

(KEK). We discuss our technique in the following section.

1.3. OUR TECHNIQUE AND CONTRIBUTION

Our revocation technique can be applied to any ABE scheme that does not support

revocation (e.g., [3, 1, 11]). However, in this paper we choose the scheme proposed in

[1] for several reasons. This scheme has a large universe construction (meaning that any

arbitrary string can be used as an attribute) and it has been proven to be selectively secure in

standardmodel (as opposed to the artificial randomoraclemodel) under decisional q-Parallel
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Bilinear Diffie-Hellman exponent (decisional q-BDHE) assumption. These properties are

more desirable in real-life application from both functional and security standpoints. Our

ABE scheme also inherits these properties. We achieve revocation by modifying the core

ABE secret key and ciphertext components and distributing them according to a binary

tree. A data owner can revoke any user while encrypting a message using the minimum

cover algorithm (Section 3.6) on the binary tree. This required us to design new setup,

encryption, keygen, and decryption algorithms for our proposed revocable ABE scheme.

We briefly summarize our contribution as follows:

• We propose a collusion-resistant revocable ABE scheme that is resistant against

both type I and type II collusion attacks. We achieve revocation property through

modification of the core ABE secret key and ciphertext components. Hence, we

eliminate the requirement of any semi-trusted entity for key updating.

• Revocation in our scheme never affects the secret keys of any nonrevoked user. A

data owner can revoke any user’s decryption ability from a particular file by including

him/her in the revocation list during encryption.

• To show the effectiveness of our proposed collusion-resistant revocable ABE scheme,

we build a secure cloud data sharing scheme based on it.

• Through proper security analysis, we prove that our scheme is collusion resistant.

• Through extensive theoretical and experimental performance analysis, we show that

our scheme outperforms recently proposed similar schemes.

2. RELATEDWORKS

Revocable ABE was first addressed by Sahai et al. in [12], and then realized by Qin

et al. in [13]. The attributes in both user’s secret key and the access structure of a ciphertext

are associated with different expiration time. The time specifies how long a secret key is
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allowed to decrypt a ciphertext. The cloud has to periodically update the access structure of

a ciphertext using proxy re-encryption to enforce revocation. However, the problem is that,

a colluding cloud can re-encrypt a ciphertext to an expiration time so that it can be decrypted

by a user’s expired secret key. The scheme proposed in [14] also incorporates the same

idea of achieving revocation by updating the ciphertext. Instead of updating the ciphertext

in a timely fashion, an aide server updates the ciphertext according to the data owner’s

provided revocation list. However, this scheme also suffers from a similar kind of collusion

attack (server-revoked user) as [13]. Recently, [15] and [16] also proposed a revocable ABE

scheme where the revocation is aided by an untrusted server. The untrusted server uses the

transformation key and periodic key updates provided by the attribute authority to partially

decrypt ciphertext for a specific time period. Nonrevoked users at the specific time period

can fully decrypt the partially decrypted ciphertext.

Hur et al. followed a different approach for revocation of ABE in [4] and later

improved its security in [5]. According to their proposed solution, a user belongs to various

attribute groups and the authorized set of attributes is determined by the attribute groups the

user belongs to. A user’s secret key consists of two parts: decryption secret key (DSK) and

key encryption key (KEK), respectively. The DSK is associated with the user’s attributes,

while the KEK is associated with the user’s attribute groups. Revocation is achieved by

encrypting certain ciphertext components with KEK keys so that a user cannot decrypt the

ciphertext without the appropriate KEK key despite having enough attributes in the DSK

key. Li et al. first pointed out in [6] that DSK and KEK keys in Hur et al.’s proposed solution

are independent of each other. As a result, a revoked user can collude with a nonrevoked

user, and combine the nonrevoked user’s KEK key with his or her own DSK keys to restore

the decryption ability. Schemes like [7, 8] also suffer from the same revoked-nonrevoked

user collusion attack. Li et al. proposed an initial solution to solve this
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Table 1. Comparison with related schemes in terms of security and functionality.

Scheme Security assumption Security Model Collusion resistant Revocation affects others’ key
Hur-I [4] Generic Group RO 7 X
Hur-II [5] Generic Group RO 7 X
CryptCloud+ [10] l-SDH Standard X X
Flexible [6] Generic Group RO X X
UserCol [9] Generic Group RO X X
Ours decisional q-BDHE Standard X 7

collusion problem in [6, 17] and later improved the security in [9]. The revoked and

nonrevoked user collusion problem was solved by binding the DSK key with the KEK key

so that one user’s DSK key does not work with another user’s KEK key. The limitation of

the proposed scheme was that a semi-trusted attribute manager has to update all nonrevoked

users’ KEK keys for revocation, which not only adds a lot of overhead, but also adds

additional security vulnerability as the attribute manager can collude with revoked users to

restroe their decryption ability. The attributemanager also needs to process every ciphertext,

which can be a performance bottleneck. The solution proposed in CryptCloud+ [10] also

relies on a semi-trusted entity for key update in revocation. In Table 1, we compare our

scheme with the most relatable ones in terms of security and functionalities. Our scheme

is selectively secure in the standard model under the decisional q-Parallel Bilinear Diffie-

Hellman Exponent (decisional q-BDHE) assumption [1]. CryptCloud+ is proven to be

secure in the standard model based on the hardness of l-Strong Diffie-Hellman (l-SDH)

assumption. Hur-I [4], Hur-II [5], Flexible [6], and UserCol [9] are secure in the random

oracle (RO) model with generic group assumption. According to [1] the random oracle

model is an artificial model and not desirable for real-life applications. Hur-I and Hur-II are

not resistant against a revoked-nonrevoked user collusion attack (type II), while the rest are

secure against this attack. Note that only in our scheme does the revocation not affect the

secret keys of the existing nonrevoked users.
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3. PRELIMINARIES

3.1. SYMBOLS AND NOTATIONS USED

In this paper, we use G and GT to represent two multiplicative cyclic groups of

prime order p, while g is a generator of G. The symbol Zp is used to denote the group

of integers modulo p. We also make use of a randomness extractor function[18] defined

as F : GT → K, where K is the symmetric key space. The encryption and decryption

functions of the symmetric encryption scheme are denoted as Enc and Dec, respectively.

3.2. BILINEAR MAP

A bilinear map is a function e defined as e : G × G → GT , and must have the

following properties:

1. Bilinearity: For ∀g1, g2 ∈ G and ∀a, b ∈ Zp, the following relationship must always

hold: e
(
ga

1, g
b
2

)
= e

(
g1, g2

)ab

2. Non-degeneracy: e
(
g1, g2

)
, 1

3. Computability: group operations in G and e should be efficiently computable.

3.3. DECISIONALQ-PARALLELBILINEARDIFFIE-HELLMANEXPONENTAS-
SUMPTION

We review the definition of decisional q-BDHE assumption from [1]. Following

the notations from Section 3.1, assume that a, s, and q exponents (e.g., b1, b2, . . . , bq)

are randomly chosen from Zp. Then, according to the decisional q-BDHE assumption it

is hard for any probabilistic polynomial time adversary to distinguish e(g, g)aq+1s ∈ GT

from a random element e(g, g)r ∈ GT if the adversary is provided with the vector ~v =

g, gs, ga, . . . , gaq
, gaq+2

, g2q,∀1 ≤ i ≤ q : gsbi, ga/bi, . . . , gaq/bi, gaq+2/bi, . . . , ga2q/bi,∀1 ≤
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i, j ≤ q, i , j : gasbj/bi, . . . , gaq sbj/bi . The advantage ε of a probabilistic polynomial time

algorithm B in solving the decisional q-BDHE problem is defined as ε ≤ |Pr[B(~v, A =

e(g, g)aq+1s) = 0] − Pr[B(~v, A = e(g, g)ar ) = 0]|.

3.4. ACCESS STRUCTURE

Let P = {P1, P2, ·, Pn} be a set of parties. A collection A ⊆ 2P is monotone if ∀B,C

: if B ∈ A and B ⊆ C, then C ∈ A. An access structure is a collection A of non-empty

subsets of P (i.e., A ⊆ 2{P1,P2,·,Pn}\{∅}). The sets in A are called authorized sets, and sets

not in A are called unauthorized sets. In our context, the role of the parties is defined by

the attributes. Thus, the access structure A will contain the authorized sets of attributes.

3.5. LINEAR SECRET SHARING SCHEME (LSSS)

Let p be a large prime. Then, a secret sharing scheme
∏

over a set of parties P is

called linear (over Zp) if

• The shares of each party form a vector over Zp.

• There exists a matrix M with l rows and n columns called the share-generating matrix

for
∏
. For all i = 1, 2, . . . , l, the ith row of M , we define a function ρ such that ρ (i)

maps row i of matrix M to an associated party. When we consider the column vector

~v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are

randomly chosen, then Mv is the vector of l shares of the secret s according to
∏
.

The share (Mv)i belongs to party ρ(i).

Any linear secret sharing scheme defined above has the following linear recon-

struction property: Let
∏

be an LSSS for the access structure A. Let S ∈ A be any

authorized set, and let I ⊂ {1, 2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then, there exist
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constants {wi ∈ Zp}i∈I such that if {λi} are valid shares of any secret s according to
∏
, then∑

i∈I wiλi = s. These constants {wi} can be found in time polynomial in the size of the

share-generating matrix M .

3.6. MINIMUM COVER

Let T be a full binary tree with m leaf nodes. Nodes in T are labelled as y j ,

and each leaf node is associated with a user labelled as u1, u2, . . . , um. We use path(uk) to

denote all the nodes in the path from the root to the associated leaf node of uk . Let the set

U = {u1, u2, . . . , um} and RL represent the set of all users and revoked users, respectively.

Then, we can apply subset cover to get the minimum number of tree nodes (we call it

cover(RL)) that coverU − RL (i.e., all nonrevoked users). The algorithm to find cover(RL)

is as follows:

• ∀y j ∈ RL, color all the nodes of path(y j).

• cover(RL) is the set of all uncolored nodes that are direct children of the colored

nodes.

Figure 1 is an example of a binary tree T with 8 leaf nodes and 8 associated users

(i.e., U = {u1, u2, . . . , u8}). If RL = {y13, y15}, then Cover(RL) = {y2, y12, y14}. Node that

six nonrevoked users (i.e., {u1, u2, u3, u4, u5, u7}) are covered with just three nodes.

4. SYSTEM ARCHITECTURE AND ADVERSARIAL MODEL

4.1. SYSTEM ARCHITECTURE

A high-level system architecture of our secure data sharing scheme has been pre-

sented in Figure 2. Our architecture has four main entities: the attribute authority (AA),

the cloud service provider (CSP), the data owner, and the data user. The attribute authority
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Figure 1. Finding minimum cover

is responsible for managing all the attributes, and it creates and distributes attribute secret

keys to the users according to their authorized attribute set. It also creates and publishes

the public parameters. The CSP manages the public cloud where the encrypted data is

outsourced and stored. Data owners encrypt their files using an attribute-based encryption

scheme and uploads the files to the public cloud so that they are always available for the

data users. Once the data is uploaded in the cloud, the data users can download and decrypt

it anytime if they have enough attributes in their attribute secret keys. Note that a user may

have the dual role of a data owner and a data user.

4.2. ADVERSARIAL MODEL

4.2.1. Security Assumptions. We consider the CSP to be an honest but curious

entity that is a standard practice in revocable ABE literature [5, 6, 9, 7, 19]. This implies

that the CSP properly follows the protocols of our scheme (i.e., it honestly performs tasks

like storing and updating encrypted files as per the data owners’ request and letting the data

users download encrypted files upon request). The CSP does not tamper with any stored

information in the cloud. However, the CSP is open to deduce any plaintext information
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Figure 2. System Architecture

from the stored encrypted files and public parameters on its own. In previously proposed

revocation schemes such as [4, 5, 6, 9], a semi-trusted entity (manager) needs to update

users’ secret keys and ciphertext in order to achieve revocation. This design introduces

additional security vulnerabilities, as a compromised manager can update secret keys and

ciphertext in a way that restores a revoked user’s decryption right. Hence, user and manager

collusion is not allowed. However, we do not need any semi-trusted manager to achieve

revocation since the revocation right is given to the data owner, who can decide whom to

revoke during encryption. We assume that the attribute authority is a trusted entity, and it

distributes attribute secret keys to users via a secure channel such as SSL.

4.2.2. Adversaries and Attacks. A dishonest data user is the main adversary of

our system. A dishonest data user can be either revoked or nonrevoked. The goal of such

adversaries is to decrypt a ciphertext that cannot be decrypted individually, either because
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they do not have enough attributes in their attribute secret keys or because they are revoked

users (but may have enough attributes). To achieve this goal, a dishonest data user colludes

with other dishonest data user(s) and launches type I and type II attacks.

5. OUR PROPOSED REVOCABLE ABE SCHEME

There are two types of ABE schemes: ciphertext policy attribute-based encryption

(CP-ABE) and key policy attribute-based encryption (KP-ABE). The access polity is em-

bedded in the ciphertext in CP-ABE, while the access policy is embedded in the keys in

KP-ABE.We use ABE to denote CP-ABE in the rest of the paper unless otherwise specified.

In this section, we first give the definition of our proposed revocable ABE scheme, followed

by its security model. Finally, we give the detailed construction of our scheme.

5.1. DEFINITION OF OUR PROPOSED REVOCABLE ABE

The revocable ABE scheme is consisted of four algorithms defined as follows:

• (PK, MK) ←− Setup (Attmax, lmax,m): The setup algorithm takes as input the

maximum number of attributes allowed in a secret key, the maximum number of columns

possible in a LSSS matrix, and the total number of users in the system denoted as Attmax,

lmax, and m, respectively. It outputs the public key PK, and the master secret key MK.

• CT ←− Encrypt (PK, (M, ρ), M, RL): The inputs to the encryption algorithm

are the public key PK, the LSSS access structure (M, ρ), the message to be encryptedM,

and the revocation list RL. The algorithm outputs a ciphertext CT so that no user in RL can

decrypt CT even if the attribute set S satisfies the access structure.

• SK ←− Keygen (PK, MK, S, uk): The key generation algorithm takes as input

the public key PK, the master secret key MK, the user’s authorized attribute set S, and the

user’s identifier uk . It outputs the user’s secret key SK.



42

• M/⊥ ←− Decrypt (PK, SK, CT): The decryption algorithm takes as input the

public key PK, the user’s secret key SK, and the ciphertext CT. It outputs the plaintext

messageM if the user does not belong to the corresponding revocation list RL of CT and

his or her authorized attribute set S satisfies the access structure. The decryption algorithm

outputs ⊥ otherwise.

5.2. SECURITY MODEL

We formalize the security model of our proposed revocable ABE scheme by the

following IND-CPA (indistinguishable chosen plaintext attack) game.

Init. The adversary A commits to an access structure (M∗, ρ) by giving it to the

challenger.

Setup. The challenger runs the Setup (Attmax, lmax,m) algorithm to generate PK,

SK, and sends PK to A.

Phase I Query. The adversary A repeatedly makes q1 private key queries for the

user-authorized attribute set tuples as in Q1 = (u1, S1),Q2 = (u2, S2), . . . ,Qq1 = (uq1, Sq1).

The challenger calls Keygen (PK, MK, Sk , uk) for each query Qk = (uk, Sk ), and sends the

secret key SKk to A.

Challenge. A selects two equal size messagesM0,M1, a revocation list RL∗, and

sends them to the challenger. Additionally, A also sends to the challenger the committed

access structure (M∗, ρ). The challenger chooses a bit b ∈ {0, 1} by flipping a random coin,

and runs Encrypt (PK, (M∗, ρ),Mb, RL∗). The challenger then sends the output ciphertext

CT∗ to A. The constraint is that none of the attribute sets (e.g., S1, S2, . . . , Sq1) in phase I

query satisfy the access structure (M∗, ρ).

Phase II Query. A adaptively makes private key queries for tuples Qq1+1 =

(uq1+1, Sq1+1),Qq1+2 = (uq1+2, Sq1+2), . . . ,Qq = (uq, Sq) with the restriction that none of

the attribute sets in these tuples (e.g., Sq1+1, Sq1+2, . . . , Sq) satisfy the committed access

structure (M∗, ρ).
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Guess. A outputs a guess b′ ∈ {0, 1} for b.

The advantage of the adversary A in the above game is defined as Adv = |Pr[b′ =

b] − 1/2|. By allowingA to do decryption queries in phase I and phase II query stage, this

security model can be easily extended to chosen-ciphertext attack (CCA).

Definition 1 Our proposed revocable ABE scheme is secure if all polynomial time adver-

saries have at most a negligible advantage in the IND-CPA game.

5.3. CONSTRUCTION OF OUR PROPOSED REVOCABLE ABE SCHEME

The detailed construction of our proposed collusion-resistant revocableABE scheme

is given as follows:

• (PK, MK) ←− Setup (Attmax, lmax,m): The setup algorithm takes as input Attmax,

the maximum number of attributes any user’s secret key may have; lmax, the maximum

number of columns any LSSS matrix M may have; and m, the total number of users. It

outputs the public and the master secret key PK and SK, respectively. The setup algorithm

first chooses a group G of prime order p with a generator g and defines a bilinear map as

e : G×G→ GT . We assume that attributes can be represented inZp. In practice, a collision-

resistant hash function can be used to transform any string attribute into Zp. The setup

algorithm then randomly chooses a, α, β ∈ Zp. It also utilizes a hash function defined as

H : Zp → G. The hash function is realized by choosing a polynomial L(x) ∈ Zp of degree

N = Attmax + lmax − 1 and computing h0 = H (0) = gL(0), h1 = H (1) = gL(1), . . . , hN =

H (N ) = gL(N ). With these N + 1 values, one can compute hx = H (x) = gL(x) for any

x ∈ Zp by using interpolation.

The AA then creates a full binary tree T of m leaves and associates each user u j

to a different leaf node. For each node yi in T , AA randomly chooses gyi ∈ G. Finally,

AA publishes the public key as PK =
(
T ,G,GT, e(g, g)α, ga, g β, h0, h1, . . . , hN

)
and sets

the master secret key as MK =
(
gα, β

)
and keeps it secret.
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• CT←− Encrypt (PK, (M, ρ),M, RL): The encrypt algorithm takes as input the

public parameters PK, LSSS access structure (M, ρ), the plaintext messageM ∈ GT , and

a revocation list RL. It outputs the ciphertext (CT). In the LSSS access structure (M, ρ),

M is an l × n matrix and ρ is a function that associates rows of M to attributes. In this

construction, ρ is limited to be an injective function (i.e., an attribute can be associated with

at most one row of M). The algorithm chooses a random vector ~v = (s, r2, . . . , rn) ∈ Zn
p.

These values are used to share the random encryption exponent s. For ∀i ∈ {1, 2, . . . , l} it

computes λi = ~v.Mi, where Mi is the vector corresponding to the ith row of M . Finally,

the algorithm finds cover(RL), randomly chooses an exponent r ∈ Zp, and computes the

ciphertext as CT = (C =M .e(g, g)αs,C′ = gsβ, D = gr,∀y j ∈ cover(RL) : Cyj = gs
yj
,∀i ∈

{1, 2, . . . , l} : Ci = gaλiH (ρ(i))−r ). We assume that the LSSS access structure is implicitely

included in CT.

• SK←− Keygen (PK, MK, S, uk): The keygen algorithm takes as input PK, MK,

a set S of attributes the user is authorized for, and the user’s identifier uk and outputs the

attribute secret key SK. Let uk’s associated leaf node in T be y. The algorithm finds

path(y), chooses a random t ∈ Zp, and creates the private key as SK = (∀y j ∈ path(y) :

Kyj =
(
gα+atgyj

)1/β
, L = gt,∀x ∈ S : Kx = H (x)t ).

• M/⊥ ←− Decrypt (PK, SK, CT): The decryption algorithm takes as input the

public paprameters PK, the user’s attribute secret key SK for an attribute set S, and the

ciphertext CT for a LSSS access structure (M, ρ). Assume that S satisfies the access

structure and I ⊂ {1, 2, 3, . . . , l} is defined as I = {i : ρ(i) ∈ S}. The algorithm finds the

constants {wi ∈ Zp}i∈I such that if {λi} are valid shares of a secret s according to M, then∑
i∈I wiλi = s. Note that these constants {wi} can be found in polynomial time in the size of

M and there could potentially be different ways of choosing such {wi}. The algorithm then

computes the following:
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P = e(Kyj,C
′) = e

((
gα+atgyj

)1/β
, g βs

)
= e(g, g)αs+ats .e(gyj, g)s

Q = e(Cyj, g) = e(gyj, g)s

W = P/*
,
Q

∏
i∈I

(
e(Ci, L)e(D, Kρ(i))

)wi+
-

= P/ *
,
Q

∏
i∈I

e(g, g)atλiwi+
-

= e(g, g)αs+ats .e(gyj, g)s/
(
e(gyj, g)se(g, g)ats

)
= e(g, g)αs .

Then, the decryption algorithm retrieves the plaintext messageM as in C/W =M,

and outputs it. If S does not satisfy the access structure, or the owner of SK belongs to the

revocation list RL, then the decryption algorithm outputs ⊥.

6. A SECURE CLOUD DATA-SHARING SCHEME BASED ON OUR PROPOSED
ABE SCHEME

In this section, we propose a secure data-sharing scheme for the cloud based on

our proposed collusion-resistant revocable ABE scheme. We discuss the details in the

following.

6.1. SYSTEM INITIALIZATION

The attribute authority (AA) runs the Setup algorithm to initialize the system. It

publishes the public key PK in the cloud and keeps the master key MK secret.
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6.2. KEY DISTRIBUTION

For each user in the system, the AA runs the Keygen algorithm and generates the

attribute secret key SK for his or her authorized attribute set S. The AA then sends SK to

the corresponding user via a secure channel.

6.3. FILE OUTSOURCING

The data owner downloads the public parameter PK from the cloud. It randomly

choosesM ∈ GT and extracts the symmetric key using the randomness extractor functionF

as in K = F (M). Using K , the data owner encrypts the actual file F using the symmetric

encryption scheme as in CT′ =Enc(K ,F). Then, the data owner includes any of the users

in the revocation list RL to revoke from the ciphertext, runs Encrypt (PK, (M, ρ),M, RL)

algorithm, and receives CT as output. The data owner then uploads the final ciphertext(
CT, CT′

)
as an encrypted file in the cloud.

6.4. FILE RETRIEVING

The data user downloads an encrypted file
(
CT, CT′

)
from the cloud and calls

Decrypt (PK, SK, CT) algorithm with his or her attribute secret key SK. If SK has enough

attributes to satisfy the access policy of CT, the algorithm returnsM as an output. Then,

the user extracts the symmetric key using the randomness extractor function F as in

K = F (M). Using K , the data user retrieves the actual file F by running the decryption

function of the symmetric encryption scheme as in F =Dec(K ,CT′).

7. SECURITY ANALYSIS

In this section, we analyze the security of our proposed revocable ABE scheme in

terms of semantic security and collusion attacks.
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7.1. SEMANTIC SECURITY

Our IND-CPA game (in Section 5.2) is similar to that of [1] except in our game,

each secret key query in query phase I and II also includes a user identifier ui, and A

provides with a revocation list RL∗ in the challenge stage. It was proven in [1] that if the

decisional q-BDHE assumption holds, then no polynomial-time adversaryA can selectively

win the IND-CPA game with a challenge matrix M∗ of size l∗ × n∗ corresponding to the

access structure (M∗, ρ), and maximum number of attributes per key of Attmax where

n∗ + Attmax ≤ q.

Assume there exists an adversaryA who has a non-negligible advantage ε = AdvA

in the our IND-CPA game and it chooses a challenge access structure (M∗, ρ) with thematrix

M∗ of at most q columns. Then using the same technique as in [1], we can build a simulator

B that plays the decisional q-BDHE problem. The simulator basically programs all the IND-

CPA game parameters from the decisional q-BDHE parameters so that the challenger cannot

distinguish whether it is playing our IND-CPA game or the decisional q-BDHE problem.

Since A has a non-negligible advantage in our IND-CPA game (according to our prior

assumption), A also has a non-negligible advantage in the decisional q-BDHE problem.

However, according to the definition (of decisional q-BDHE problem), no polynomial-time

adversary has a non-negligible advantage in solving the decisional q-BDHE problem. This

implies that A does not have a non-negligible advantage in our IND-CPA game. So, the

DEFINITION 1 holds true.

7.2. COLLUSION ATTACK

The revocable ABE needs to be secure against both type I and type II collusion

attack. The semantic security discussed earlier also guarantees that our scheme is secure

against type I collusion attack since the secret key queries made by the adversaryA in query
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phase I and phase II cannot individually satisfy the committed access structure (M∗, ρ). In

this section, we formalize the security of our scheme against type II collusion attack by the

following theorem.

Theorem 1 A revoked user with enough attributes in his or her attribute secret key cannot

decrypt a ciphertext even if the user colludes with a nonrevoked user who does not have

enough attributes in his or her attribute secret key to decrypt the particular ciphertext.

P = e(K′yj,C
′) = e

((
gα+at ′gyj

)1/β
, g βs

)
= e(g, g)αs+at ′s .e(gyj, g)s (1)

Q = e(Cyj, g) = e(gyj, g)s (2)

W ′ = P/*
,
Q

∏
i∈I

(
e(Ci, L)e(D, Kρ(i))

)wi+
-

= P/ *
,
Q

∏
i∈I

e(g, g)atλiwi+
-

= e(g, g)αs+at ′s .e(gyj, g)s/
(
e(gyj, g)se(g, g)ats

)
= e(g, g)αs+at ′s−ats . (3)

Proof: Assume that ui, uk are two users and y, y′ are their associated leaf nodes in the

binary tree. SK = (∀y j ∈ path(y) : Kyj =
(
gα+atgyj

)1/β
, L = gt,∀x ∈ S : Kx = H (x)t ))

and SK′ = (∀y j ∈ path(y′) : K′yj =
(
gα+at ′gyj

)1/β
, L′ = gt ′,∀x ∈ S′ : K′x = H (x)t ′)

are their attribute secret keys, respectively. A message M is encrypted so that ui ∈ RL.

This results in a ciphertext CT = (C = M .e(g, g)αs,C′ = gsβ, D = gr,∀y j ∈ cover(RL) :

Cyj = gs
yj
,∀i ∈ {1, 2, . . . , l} : Ci = gaλiH (ρ(i))−r ). Note that CT does not have any Cyj

corresponding to the attribute secret key component Kyj of ui since path(y)∩cover(RL) = ∅.

However, there exists a component K′yj in the attribute secret key of the nonrevoked user uk

that corresponds to a Cyj since path(y′) ∩ cover(RL) , ∅. Without the lose of generality,
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Table 2. Symbols used in performance analysis and experiment

Symbol Meaning
u Total number of attributes in the system
a Number of attributes in access struc-

ture A
b Number of attributes in user secret key
s Required minimum number of at-

tributes to satisfy policy
|Gi | Size of a single element in group Gi
|K| Size of symmetric key
|p| Size of a single element in Zp
Ci Single exponentiation time in groupGi
P Computation time of a pairing opera-

tion
m Total number of users in the group
r Total nodes in cover(RL)

let us assume that S satisfies the access structure (M, ρ) but S′ does not satisfy (M, ρ). This

implies that ui has enough attributes in his or her attribute secret keys to decrypt CT but uk

does not have enough attributes to do so. In order to successfully decrypt CT, ui also needs

Kyj in his or her attribute secret keys that corresponds to Cyj . As a result, ui alone cannot

decrypt CT with SK despite having enough attributes in it. However, ui can collude with the

nonrevoked user uk to get K′yj from uk’s attribute secret key SK′ that corresponds to a Cyj

in CT. Then, ui can try to decrypt CT by performing a series of computation as in equation

1, 2, and 3. However, it is apparent that ui cannot successfully compute W = e(g, g)αs and

hence is unable to retrieveM from C =Me(g, g)αs. This proves THEOREM 1.

8. THEORETICAL PERFORMANCE ANALYSIS

In this section, we compare our proposed ABE scheme with other related schemes in

terms of storage, communication, and computational efficiency from the theoretical aspect.

We also include [1] (referred to as BW) in the comparison as a baseline since our scheme

is based on this. Table 4 illustrates different symbols that have been used for this purpose.
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Table 3. Comparison of storage and communication efficiency with other schemes

Scheme Ciphertext size Secret key size Public key size
Hur-I [4] (2a + 1) |G1 | + |GT | (2b + 1) |G1 | + ( log m) |K| 2|G1 | + |GT |

Hur-II [5] (2a + 1) |G1 | + |GT | 2(b + 1) |G1 3|G1 | + |GT |

CryptCloud+ [10] (2a + 5) |G1 | + |GT | (b + 6) |G1 | + 2|p| (u + 6) |G1 | + 3|p|
Flexible [6] (2a + 6) |G1 | + |GT | + 2|p| (b + 4) |G1 | + 2|p| 3|G1 | + 2|GT | + |p|
UserCol [9] (2a + ra + 1) |G1 | + |GT | 4b|G1 | + |GT | 2(u + 3) |G1 | + 2|GT | + (2m − 1) |p|
BW [1] (a + 1) |G1 | + |GT | (b + 2) |G1 | 2|G1 | + |GT |

Ours (a + r + 2) |G1 | + |GT | (b + 1 + logm) |G1 | (2m + 1) |G1 | + |GT |

8.1. STORAGE AND COMMUNICATION EFFICIENCY

The space efficiency comparison in terms of ciphertext, secret key, and public key

size has been summarized in Table 5. The ciphertext size, secret key size, and public key

size represent the storage cost required by the cloud, each user, and the attribute authority to

store them, respectively. Additionally, they represent the communication cost when these

are sent from one party to another. However, we do not consider here the communication

cost that is associated with any intermediate step during the preparation of the ciphertext,

secret key, or public key. For example, in order to achieve revocation, the data owner

sends the whole ciphertext to the manager for re-encryption in UserCol[9]. As a result, the

communication cost for sending the ciphertext to the cloud would be twice as much as what

is shown in Table 5 for [9]. Similar intermediate steps are necessary in [6, 9, 5] during the

secret key generation phase. Thus, the actual communication cost can be higher than what

is shown in Table 5. However, there is no intermediate step in our proposed scheme, so the

cost shown in Table 5 for our scheme is much closer to the real cost.

Compared to the baseline scheme [1], our scheme requires r + 1 and logm − 1

additional group (G1) elements for the ciphertext and secret key, respectively. This is

because the data owner has to create r + 1 additional group elements in the ciphertext out

of which r elements are for cover(RL). On the other hand, the AA has to create logm − 1

additional group elements in the user’s secret key along the path in the binary tree. Our
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scheme also needs 2m − 1 additional group elements in the public parameter compared to

the baseline scheme because a group element (G1) associated with every node in the binary

tree is needed in the public parameter.

Among all collusion-resistant revocable schemes (ours and [10, 6, 9]), [9] has

the biggest ciphertext because for each attribute present in the policy of the ciphertext, r

additional group elements are needed. This results in a total of ra additional group elements

in the ciphertext. How our scheme compares against [10, 6] in terms of ciphertext size,

depends on the value of total number of attributes in the ciphertext (a) and the number

of nodes in cover(RL) (r). If there are few members to revoke or if revoked members are

not very sparsely distributed in the binary tree, then r will be much smaller, and hence

our scheme will have smaller ciphertext. For bigger policies (i.e., bigger a), our ciphertext

size will be relatively smaller. In terms of the secret key size, our scheme requires at most

logm additional group elements compared to [10, 6, 9]. However, if the attribute secret key

holds a lot of attributes, then [9] will have larger secret key size. For example, if there are

1000 users in the group and a user has 10 attributes in his or her attribute secret key, then

there will be only 21 group elements in our secret key as opposed to 41 in [9]. Public key

size increases proportionally with the number of total users for both our scheme and [9].

However, the total public parameter size of [9] is larger than ours.

Compared to [4] and [5] (not resistant against type II collusion attacks), our scheme

has a larger public key size, as the public key includes an additional group element for each

node in the binary tree. While our scheme requires logm additional group elements, [4]

requires logm additional symmetric keys in the secret key because it includes logm KEK

keys to each user’s secret key along the path of the associated leaf node in the KEK key tree.

However, [5] improves this by adding only a single group element per attribute in the secret

key. How [4] and [5] compare against our scheme in terms of ciphertext size is similar to

the logic we presented earlier while comparing our scheme with [10, 6].
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Table 4. Comparison with other schemes in terms of computation cost.

Scheme Key generation Encryption Decryption Key update
Hur-I [4] 2(b + 1)C1 (3a + 1)C1 + CT C1 + (2s − 1)CT + (2s + 1)P bC1
Hur-II [5] (3b + 5)C1 (3a + 2m + 3)C1 + CT s(m + 1)C1 + (2s − 1)CT + (3s + 1)P bmC1
CryptCloud+ [10] (b + 13)C1 + CT + (2b + 7)P (a + 5)C1 + CT 2C1 + sCT + (2s + 5)P 3mC1
Flexible [6] (2b + 9)C1 + 2P 2(a + 3)C1 + 2CT (2s + 3)CT + (2s + 4)P (2m + b + 1)C1 + P
UserCol [9] (4b + 2)C1 (3a + ra + 1)C1 + CT (2s − 1)CT + (3s + 1)P (2m − 1)C1
BW [1] (b + 2)C1 (2a + 1)C1 + CT sCT + (2s + 1)P N/A
Ours (b + 2 + logm)C1 (2a + r + 2)C1 + CT sCT + 2(s + 1)P 0

8.2. COMPUTATION COST ANALYSIS

We show the computation cost of our scheme and compare it with other schemes in

Table 6. The computation cost has been expressed in terms of group exponentiation and

pairing operation in a similar manner as in [18, 5, 4]. This is a reasonable consideration

since these two operations dominate relatively lightweight hash, multiplication, division,

and addition operations.

Compared to the baseline scheme [1], our scheme requires just one additional pairing

operation (inG1) for decryption. For encryption, our scheme requires r+1 additional group

exponentiation operations (inG1), out of which r is for creating r additional group elements

for cover(RL). On the other hand, our scheme requires logm additional group exponentiation

operations (in G1) for the secret key generation. Among logm additional group operations

(in G1), logm − 1 is for creating logm − 1 additional group elements in the user’s secret key

along the path of the associated leaf node in the binary tree.

Our key update cost is zero since we achieve revocation without affecting the secret

key of other nonrevoked users. In contrast, all other revocation schemes require a significant

amount of computation for key updating to achieve revocation. The number of group

exponentiation operation (in G1) required for key update is proportional to the number of

users in the system (except [4]).
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Table 5. Parameter details for different pairing groups

Curves G1 G2 GT p k Security
SS512 512 512 1024 160 2 80

MNT224 224 672 1344 224 6 100

In terms of decryption speed, our scheme outperforms all the revocation scheme,

thanks to only one additional pairing operation for decryption compared to the baseline

scheme [3]. We can see that [5] has the slowest decryption speed as the required number of

group exponentiation operation (in G1) is proportional to the total number of users (m).

The number of group exponentiation operation (in G1) for our key generation algo-

rithm increases logarithmically with the number of users (m). However, our key generation

algorithm is still faster than that of [10]. This is because in addition to the group exponen-

tiation operation, CryptCloud+ also requires (2b + 7)P pairing operations, which is more

expensive than the group exponentiation operation. Our key generation cost may even be

lower than that of [4, 5, 6, 9] if the number of attributes in the secret key (b) is relatively

high since logm increases very slowly.

Our encryption speed is much faster than that of [5, 9] since the required number

of group exponentiation operation (in G1) is proportional to r and ra for [5] and [9],

respectively. Among all the revocation schemes, [10] has the fastest encryption time.

9. EXPERIMENT

Implementation: We have implemented our scheme in Charm [20]. It is a Python-

based framework developed for rapid prototyping of advanced cryptographic protocols.

Charm uses PBC library [21] (written in C language) for low-level system calls including

most expensive group exponentiation and pairing operations. As a result, cryptographic

protocols written in Charm performs very close to the one written C language [22]. All

hash functions were implemented using SHA224.
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A detailed parameter description for our experimental setup is given in Table 3.

SS512 is a super singular EC curve (with symmetric Type 1 pairing), and MNT224 is the

Miyaji, Nakabayashi, Takano curves (with asymmetric Type 3 pairing). In Table 4, p =

bit length of prime order p, k = embedding degree, Security is the security level in bits

with respect to the discrete log problem, and the numbers associated with the curve name

represent the base field size in bits (i.e., SS512 has a base field size of 512 bits). Though our

ReVO-ABE construction is based on a symmetric pairing group (G × G → GT ), we have

tested our implementation in both symmetric and asymmetric group settings. Charm treats

groups as asymmetric, though the actual setting depends on the type of underlying chosen

curve. More specifically, there are three different groups (G1, G2, and GT ), and pairing

is defined as e : G1 × G2 → GT . We keep most of the terms in G1 while implementing

our scheme in the asymmetric setting since operations in G1 are generally much faster than

those in G2.

Testbed setup: We have conducted all the experiments on a Macbook Pro laptop

with Intel® Core i7@2.2 GHz quad-core processor and 16 GB RAM running MacOS

10.14.6. We have used Python 3.7 and the PBC-0.5.14 library.

Results: We have mainly compared our key generation, encryption, decryptioin,

and key update running time with CryptoCloud+ [10], Flexible [6], and UserCol [9]. We

have also reported the key generation, encryption, and decryption running time of BW [1]

scheme as a baseline comparison since our scheme is based on the BW scheme. However,

we have not compared our experimental results with Hur I [4] and Hur II [5] since they

are not collusion resistant (against type II attacks) and the encryption, decryption, and key

update of Hur II takes much longer than the rest. The running time of each algorithm (key

generation, encryption, decryption, and key update) were measured in SS512 and MNT224

curves. Each result reported here has been averaged over five individual runs.
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Figure 3. Key generation time

The running time of the key generation algorithm linearly increases with the total

number of attributes in the secret key (b) (Figure 3). However, our scheme also has a

logarithmic relationship with the total number of users (m). We have set the value of m to

be 1000 and measured the running time of key generation algorithm by varying the value of

b between 5 and 25. For all four curves, our running time is close to that of BW. Even for the

value of b being as little as 5, our running time is lower than that of others. The performance

of our key generation algorithm is even better compared to others for a higher value of b

because with the higher value of b, the number of group exponentiation operation (in G1)

increases at a slower rate compared to others (refer to Table 6). Interestingly, the running

time of UserCol is the highest for the SS512 curve (Figure 3a). However, forMNT224 curve,

its running time is much faster than that of CryptCloud+ because the pairing operations

take more time in MNT224 curve compared to the SS512 curve, and CryptCloud+ requires

(2b + 7) pairing operations while UserCol requires only two pairing operations for the key

generation.
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Figure 4. Encryption time

The encryption running time has been shown in Figure 5. UserCol has the fastest

running time andCryptCloud+ has the slowest running time. The running time of encryption

algorithm mainly depends on the access structure length or the number of attributes in the

access structure (a). This is because the number of group exponentiation operations (inG1)

has a linear relationship with a. However, the number of group exponentiation operations

of our scheme and UserCol is also proportional to r and ar , respectively. As a result, the

running time of UserCol is significantly faster than the rest. For our experiment, we have

set the value of r to be 10 and varied the value of a between 5 and 25.

Figure 6 shows that the running time of the decryption algorithm has a linear

relationship with the number of minimum required attributes to satisfy the access structure

(s). We have varied the value of s from 5 to 25 at an interval of 5. Both the number

of group exponentiation (in GT ) and pairing operation has a linear relationship with s for

all schemes. The pairing operation is much slower in MNT224 curve compared to the

SS512 curve. Consequently, the decryption running time is higher in the MNT224 curve
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Figure 5. Decryption time

for all schemes. Note that our decryption time is very close to the baseline scheme, as our

decryption requires only one additional pairing operation compared to that of the baseline

scheme.

The revocation in our scheme does not affect the secret key of any nonrevoked user.

As a result, our revocation does not require any key update and hence the key update cost

is zero for our scheme. However, other revocable schemes need to update the secret keys

of existing nonrevoked users. In Figure 6, we have shown how the running time of the key

update algorithm increases with the number of users (m) by varying the value of m from

100 to 1000. The running time of the key update algorithm increases linearly with m for all

schemes except ours. In this comparison we exclude [1] as it does not support revocation,

and hence the key update time is irrelevant.

Note that, the performance of all the algorithms do not have equal importance.

For instance, key generation is normally a one time task. A file may be encrypted by the

owner only once but is potentially decrypted many times by different users. If users are

revoked frequently, then key update cost can be very critical. As a result, the performance
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Figure 6. Key update time

of decryption and key update are more important than that of other algorithms (e.g., key

generation and encryption). From Figure 6 and 6 we can see that our decryption and key

update algorithms outperform other schemes.

10. CONCLUSION AND FUTUREWORKS

In this paper, we have proposed a revocable ABE scheme that is resistant against

both type I and type II collusion attacks. Our scheme does not require any semi-trusted

entity to achieve revocation. Moreover, the revocation does not affect the secret key of

any non-revoked user, and hence the key update cost for revocation is zero in our scheme.

We have also proposed a cloud-based secure data sharing scheme based on our proposed

revocable ABE. Through security analysis, we have shown that our scheme is collusion

(both type I and type II) resistant. It is evident from both theoretical performance analysis

and experimental results that our scheme outperforms the most relatable ABE schemes.

However, in this work we have only considered user-level revocation, but not attribute-level
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revocation. More specifically, using our proposed revocation scheme, a user (e.g., Eve) can

be revoked from a ciphertext as a whole, but not some of his or her specific attributes (e.g.,

revoke only new_release and movie while keeping tv_show, documentary, and scifi intact).

In the future, we want to extend our work to support attribute-level revocation. We have

also limited the scope of this work to static access structures only. It will be an interesting

extension if we could incorporate dynamic access policies in our scheme in the future.
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ABSTRACT

Attribute-based encryption (ABE) is a prominent cryptographic tool for secure data

sharing in the cloud because it can be used to enforce very expressive and fine-grained access

control on outsourced data. The revocation in ABE remains a challenging problem as most

of the revocation techniques available today, suffer from the collusion attack. The revocable

ABE schemes which are collusion resistant require a semi-trusted manager to update the

secret keys of nonrevoked users in order to achieve revocation. This introduces computation

and communication overhead, and also increases the overall security vulnerability. In this

paper, we propose two collusion resistant revocable ABE schemes that do not require any

semi-trusted entity. Our first scheme supports revocation at the user-level that is equivalent

to revoking all the attributes from a user. Our second scheme supports revocation at the

attribute-level that enables more fine-grained revocation by allowing selective attribute(s)

revocation from a user. We call them user-level revocable ABE (ULR-ABE) and attribute-

level revocable ABE (ALR-ABE), respectively. For both the schemes, the secret keys of the

nonrevoked users are never affected and the decryption algorithm has the same performance

as the baseline ABE scheme. We are able to achieve these at the cost of some increase

(compared to the baseline scheme) in the size of the secret key and the ciphertext.
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1. INTRODUCTION

Many companies and organizations often outsource their data to a public cloud to

enjoy advantages such as availability, scalability, and lower maintenance cost offered by

the cloud. However, confidentiality and access control of the outsourced data remains a

concern since the data owner loses control over the data once it is uploaded to the cloud.

Recently, attribute-based encryption (ABE) has become a very promising tool [1] to achieve

confidentiality and fine-grained access control for data outsourcing in the cloud. ABE allows

a data owner to encrypt his or her data using a policy expressed in terms of a set of attributes

so that it can be decrypted only if the secret key has enough attributes to satisfy the policy.

Let us consider the following motivational example.

1.1. A MOTIVATIONAL EXAMPLE

Suppose CryptoFlix is a Netflix-like streaming service that keeps all its media

contents in a public cloud run by a third-party cloud service provider. Before outsourcing

media files to the public cloud, it encrypts them using attribute-based encryption scheme.

CryptoFlix offers two types of subscription plans: basic and premium. Basic and premium

plans allow a subscriber to choose three and five attributes, respectively. Let us assume

that two users, Alice and Bob, have a subscription for the basic plan, and another user,

Eve has a subscription for the premium plan. Alice loves science fiction movies and

documentaries, she gets decryption keys for attribute movie, scifi, and documentary from

the attribute authority (a trusted entity responsible for generating and distributing attribute

secret keys). Conversely, Bob loves tv shows and anime, and gets decryption keys for

new_release, tv_show, and anime attributes. Let Eve has decryption keys for attribute

movie, tv_show, documentary, scifi, and new_release. Attribute-level revocation would
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allow CryptoFlix to downgrade Eve’s subscription plan from premium to basic by revoking

attribute movie and scifi such that Eve can decrypt newly released documentary (encrypted

under policy new_release AND documentary) but not newly released science fiction movie

(encrypted under the policy new_release AND movie AND scifi). On the other hand, user-

level revocation only allows CryptoFlix to revoke Eve entirely but not a subset of attributes

from her. So, the user-level revocation is more suitable when Eve’s subscription plan expires

such that she cannot decrypt either newly released documentary or newly released science

fiction movie.

Let us assume that Eve’s premium subscription plan recently expired or she down-

graded to the basic plan by unsubscribing attribute movie and scifi. In either case, when

CryptoFlix encrypts the newly released science fiction movie XFiction under the policy

(new_release AND movie AND scifi) and uploads it to a public cloud, Eve cannot decrypt

it. Note that the other two users cannot decrypt XFiction either. However, the users can

cooperate with each other and try to decrypt it by launching the following collusion attacks:

• Type I attack: Multiple users who individually do not have enough attributes to satisfy

a policy cooperate with each other so that their collective attribute keys may satisfy

the policy.

• Type II attack: A revoked user who cannot decrypt a file despite having enough

attributes to satisfy the policy cooperates with a nonrevoked user to restore his or her

decryption ability in order to decrypt the file.

In a type I attack, Alice andBobwould combine their attribute keys and try to decrypt

XFiction. On the otherhand, in a type II attack, Eve would combine her attribute keys with

a nonrevoked user (such as Bob) and try to decrypt XFiction. Not to mention CryptoFlix

faces financial loss if any of the attacks becomes successful. Therefore, CryptoFlix must

be resilient to both type of collusion attacks. This motivational example will be referred to

repeatedly in the upcoming sections.
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1.2. LIMITATIONS OF THE EXISTING SCHEMES

Collusion resistance is a fundamental security requirement of any ABE scheme as

stated in [2]. Initially proposed ABE schemes such as [2, 3, 1] do not support revocation. If

CryptoFlix were to use such anABE scheme, it could not revoke Eve even if her subscription

expired. As a result, such schemes are not suitable for a practical application like secure

cloud data sharing. They are resistant to type I collusion attacks. However, type II collusion

attacks do not apply to them as those schemes do not support revocation. The revocation

is a challenging problem in ABE since the same attribute may be shared among different

users. Hur et al. proposed a solution to the revocation problem in [4, 5] where they achieved

attribute-level revocation. The proposed solution is based on the idea of attribute group.

The user’s secret key consists of two parts. One is associated with the user’s attributes,

and the other is associated with the attribute group. They are called decryption secret key

(DSK) and key encryption key (KEK), respectively. The revocation is dictated by KEK and

is independent of the user’s DSK. Consequently, the KEK of one user works with the DSK

of another user. Hence, the proposed revocable ABE scheme is not resistant against type II

collusion attacks as a revoked user by colluding with a nonrevoked user can get the valid

KEK and restore his or her decryption ability. This vulnerability was first pointed out by Li

et al. [6]. Schemes such as [7, 8] also have the same vulnerability since these solutions are

also based on the same idea. Li et al. refined their initial solution [6] in [9]. To revoke a

user from the attribute group, the attribute manager (AM) updates the existing user’s KEK

keys. They bind a user’s DSK with his or her KEK so that the KEK of one user does not

work with the DSK of another user. This ensures that a revoked user cannot collude with

a nonrevoked user to restore his or her decryption right. However, this scheme has the

following limitations:
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• Each time a user is revoked, all nonrevoked users’ keys (KEK) are affected because

DSK and KEK keys are tied together by a common secret exponent that is only known

to a semi-trusted party called the attribute manager (AM). This exponent is common

across attribute secret keys of all the users. To revoke a user, this exponent needs to

be updated in the secret keys for all nonrevoked users.

• It requires the additional semi-trusted AM for updating all nonrevoked users’ secret

keys (KEK) and distributing them to the respective users. This not only adds a lot

of overhead, but also increases the security vulnerability by adding an additional

semi-trusted party to the system.

• AM also becomes the performance bottleneck as it needs to participate in the key

generation, key update, encryption, and re-encryption stages. Key generation is an

one-time operation. However, other operations occur very frequently, which can be a

huge burden for a centralized entity like AM to handle.

By following the footstep of [9], CryptCloud+[10] also proposes a collusion-resistant

revocable ABE scheme. In this scheme, the attribute authority has to periodically update the

attribute secret keys of all the users according to a revocation list and send it to nonrevoked

users, which is very inefficient. Cui et al. proposed a more secure and efficient method

to update nonrevoked users’ keys in server-aided revocable ABE (SR-ABE) scheme [11].

In SR-ABE, users have two types of keys: transformation key and secret decryption key.

Transformation key is given to an untrusted server and the secret decryption key is given

to the user. Attribute authority generates key updates for time period t which is sent to the

untrusted server. Then, the untrusted server uses the key update and the user’s transformation

key to partially decrypt the ciphertext encrypted for the time period t. Finally, a user can

fully decrypt it with the secret decryption key if he is not revoked for time period t. The

updates are created in a way such that if a user is revoked by the attribute authority for time

period t, he cannot decrypt any ciphertext created for that time period even if he colludes
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with the untrusted server. Additionally, it can resist both type-I and type-II collusion attack.

However, SR-ABE does not allow attribute-level revocation. Besides, revocation is done

centrally by the attribute authority. Hence, independent data owners do not have any control

over revocation.

1.3. OUR CONTRIBUTION

In this paper, we propose two revocable ABE schemes that are resistant to both

type I and type II collusion attacks. Our first scheme [12] supports user-level revocation,

and called user-level revocable ABE (ULR-ABE). Our second scheme supports attribute-

level revocation, and called, attribute-level revocable ABE (ALR-ABE). Unlike Li et al.’s

schemes ([6] and [9]), our revocation does not affect the secret key of any nonrevoked user.

Moreover, our schemes do not need the aid of any additional trusted entity, which minimizes

the attack surface. For revocation, periodic key update like SR-ABE [11] is not required

since data owners can independently revoke users according to their own revocation list.

Our revocation techniques can be applied to any ABE scheme that does not support

revocation (e.g., [3, 1, 13]). However, in this paper, we choose the scheme proposed in

[1] for several reasons. This scheme has a large universe construction (meaning that any

arbitrary string can be used as an attribute) and it has been proven to be selectively secure in

standardmodel (as opposed to the artificial randomoraclemodel) under decisional q-Parallel

Bilinear Diffie-Hellman exponent (decisional q-BDHE) assumption. These properties are

more desirable in real-life application from both functional and security standpoints. Our

ABE schemes also inherit these properties. We achieve revocation by modifying the core

ABE secret key and ciphertext components and distributing them according to a binary

tree. A data owner can revoke any user or attributes(s) from a user while encrypting

a message using the minimum cover algorithm (Section 3.6) on the binary tree. More

specifically, ULR-ABE scheme generates some redundant components in both ciphertext

and user’s secret key such that a non-revoked user has exactly one redundant key component
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that can decrypt one of the ciphertext components, while revoked user do not have any

such component. On the other hand, in order to achieve attribute-level revocation, ALR-

ABE scheme generates such redundant components in ciphertext and secret key for each

attribute. Note that it is not trivial to generate such redundant components as we have to

cryptographically bind the components together such that multiple users cannot combine

their keys and be successful with any collusion attack. Hence, both ULR-ABE and ALR-

ABE scheme require us to design new setup, encryption, keygen, and decryption algorithms.

We briefly summarize our contribution as follows:

• We propose two revocable ABE schemes called ULR-ABE and ALR-ABE to support

user-level revocation and attribute-level revocation, respectively while maintaining

the important collusion resistance property (against both type I and type II collusion

attacks).

• The schemes enable the data owner to revoke any user (ULR-ABE) or any number

of attribute from any particular user (ALR-ABE) during encryption. Hence, we

eliminate the requirement of any semi-trusted entity to achieve revocation by key

updating.

• Revocation of our schemes never affect the secret keys of any nonrevoked user.

• Through proper security analysis, we prove that our proposed ULR-ABE and ALR-

ABE schemes are collusion resistant.

• Through extensive theoretical and experimental performance analysis, we show that

our schemes outperform recently proposed similar schemes in terms of decryption

speed and key update cost.
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Table 1. Comparison with related schemes in terms of security and functionality.
Scheme Security assumption Security Model Collusion resistant Revocation affects others’ key Fine-grained revocation
Hur-I [4] Generic Group RO 7 X X
Hur-II [5] Generic Group RO 7 X X
CryptCloud+ [10] l-SDH Standard X X 7

Flexible [6] Generic Group RO X X 7

UserCol [9] Generic Group RO X X X
SR-ABE [11] decisional q-BDHE Standard X X 7

ULR-ABE [12] decisional q-BDHE Standard X 7 7

ALR-ABE decisional q-BDHE Standard X 7 X

2. RELATEDWORKS

According to recent surveys such as [14] and [15], revocation is still considered as

one of the most challenging problems in ABE. Revocable ABE was first addressed by Sahai

et al. in [16], and then realized by Qin et al. in [17]. The attributes in both user’s secret

key and the access structure of a ciphertext are associated with different expiration time.

The time specifies how long a secret key is allowed to decrypt a ciphertext. The cloud

has to periodically update the access structure of a ciphertext using proxy re-encryption

to enforce revocation. However, the problem is that, a colluding cloud can re-encrypt a

ciphertext to an expiration time so that it can be decrypted by a user’s expired secret key.

The scheme proposed in [18] also incorporates the same idea of achieving revocation by

updating the ciphertext. Instead of updating the ciphertext in a timely fashion, an aide server

updates the ciphertext according to the data owner’s provided revocation list. However, this

scheme also suffers from a similar kind of collusion attack (server-revoked user) as [17].

Recently, [11] and [19] also proposed a revocable ABE scheme where the revocation is

aided by an untrusted server. The untrusted server uses the transformation key and periodic

key updates provided by the attribute authority to partially decrypt ciphertext for a specific

time period. Nonrevoked users at the specific time period can fully decrypt the partially

decrypted ciphertext. This scheme can prevent both type of collusion attacks. However,

it still needs the aid of an additional entity (the aide server) to achieve revocation, and

it does not support attribute-level revocation. More recently, Azhar et al. proposed a

revocable ABE scheme that supports a multiple-group environment efficiently where users
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can move between different groups. However, this scheme also does not support attribute-

level revocation, and they need the aid of two semi-trusted servers to achieve revocation. A

recently proposed traceable ABE scheme [20, 21] focuses on revoking a user by finding the

leaked keys rather than preventing a revoked-nonrevoked user collusion attack.

Hur et al. followed a different approach for revocation of ABE in [4] and later

improved its security in [5]. According to their proposed solution, a user belongs to various

attribute groups and the authorized set of attributes is determined by the attribute groups the

user belongs to. A user’s secret key consists of two parts: decryption secret key (DSK) and

key encryption key (KEK), respectively. The DSK is associated with the user’s attributes,

while the KEK is associated with the user’s attribute groups. Revocation is achieved by

encrypting certain ciphertext components with KEK keys so that a user cannot decrypt the

ciphertext without the appropriate KEK key despite having enough attributes in the DSK

key. Li et al. first pointed out in [6] that DSK and KEK keys in Hur et al.’s proposed solution

are independent of each other. As a result, a revoked user can collude with a nonrevoked

user, and combine the nonrevoked user’s KEK key with his or her own DSK keys to restore

the decryption ability.

Schemes like [7, 8] also suffer from the same revoked-nonrevoked user collusion

attack. Li et al. proposed an initial solution to solve this collusion problem in [6, 22] and

later improved the security in [9]. The revoked and nonrevoked user collusion problem was

solved by binding the DSK key with the KEK key so that one user’s DSK key does not work

with another user’s KEK key. The limitation of the proposed scheme was that a semi-trusted

attribute manager has to update all nonrevoked users’ KEK keys for revocation, which not

only adds a lot of overhead, but also adds additional security vulnerability as the attribute

manager can collude with revoked users to restore their decryption ability. The attribute

manager also needs to process every ciphertext, which can be a performance bottleneck.

The solution proposed in CryptCloud+ [10] also relies on a semi-trusted entity for key

update in revocation.
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In Table 1, we compare our schemes with the most relatable ones in terms of

security and functionalities. Both our schemes (ULR-ABE and ALR-ABE) and SR-ABE

[11] are selectively secure in the standard model under the decisional q-Parallel Bilinear

Diffie-Hellman Exponent (decisional q-BDHE) assumption [1]. CryptCloud+ is proven to

be secure in the standard model based on the hardness of l-Strong Diffie-Hellman (l-SDH)

assumption. Hur-I [4], Hur-II [5], Flexible [6], and UserCol [9] are secure in the random

oracle (RO) model with generic group assumption. According to [1] the random oracle

model is an artificial model and not desirable for real-life applications. Hur-I and Hur-II are

not resistant against a revoked-nonrevoked user collusion attack (type II), while the rest are

secure against this attack. Note that only in our scheme does the revocation not affect the

secret keys of the existing nonrevoked users.

3. PRELIMINARIES

3.1. SYMBOLS AND NOTATIONS USED

In this paper, we use G and GT to represent two multiplicative cyclic groups of

prime order p, while g is a generator of G. The symbol Zp is used to denote the group

of integers modulo p. We also make use of a randomness extractor function[23] defined

as F : GT → K, where K is the symmetric key space. The encryption and decryption

functions of the symmetric encryption scheme are denoted as Enc and Dec, respectively.

3.2. BILINEAR MAP

A bilinear map is a function e defined as e : G × G → GT , and must have the

following properties:

1. Bilinearity: For ∀g1, g2 ∈ G and ∀a, b ∈ Zp, the following relationship must always

hold: e
(
ga

1, g
b
2

)
= e

(
g1, g2

)ab
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2. Non-degeneracy: e
(
g1, g2

)
, 1

3. Computability: group operations in G and e should be efficiently computable.

3.3. DECISIONALQ-PARALLELBILINEARDIFFIE-HELLMANEXPONENTAS-
SUMPTION

We review the definition of decisional q-BDHE assumption from [1]. Following

the notations from Section 3.1, assume that a, s, and q exponents (e.g., b1, b2, . . . , bq)

are randomly chosen from Zp. Then, according to the decisional q-BDHE assumption it

is hard for any probabilistic polynomial time adversary to distinguish e(g, g)aq+1s ∈ GT

from a random element e(g, g)r ∈ GT if the adversary is provided with the vector ~v =

g, gs, ga, . . . , gaq
, gaq+2

, g2q,∀1 ≤ i ≤ q : gsbi, ga/bi, . . . , gaq/bi, gaq+2/bi, . . . , ga2q/bi,∀1 ≤

i, j ≤ q, i , j : gasbj/bi, . . . , gaq sbj/bi . The advantage ε of a probabilistic polynomial time

algorithm B in solving the decisional q-BDHE problem is defined as ε ≤ |Pr[B(~v, A =

e(g, g)aq+1s) = 0] − Pr[B(~v, A = e(g, g)ar ) = 0]|.

3.4. ACCESS STRUCTURE

Let P = {P1, P2, ·, Pn} be a set of parties. A collection A ⊆ 2P is monotone if ∀B,C

: if B ∈ A and B ⊆ C, then C ∈ A. An access structure is a collection A of non-empty

subsets of P (i.e., A ⊆ 2{P1,P2,·,Pn}\{∅}). The sets in A are called authorized sets, and sets

not in A are called unauthorized sets. In our context, the role of the parties is defined by

the attributes. Thus, the access structure A will contain the authorized sets of attributes.

3.5. LINEAR SECRET SHARING SCHEME (LSSS)

Let p be a large prime. Then, a secret sharing scheme
∏

over a set of parties P is

called linear (over Zp) if
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• The shares of each party form a vector over Zp.

• There exists a matrix M with l rows and n columns called the share-generating matrix

for
∏
. For all i = 1, 2, . . . , l, the ith row of M , we define a function ρ such that ρ (i)

maps row i of matrix M to an associated party. When we consider the column vector

~v = (s, R2, . . . , Rn), where s ∈ Zp is the secret to be shared and R2, . . . , Rn ∈ Zp are

randomly chosen, then Mv is the vector of l shares of the secret s according to
∏
.

The share (Mv)i belongs to party ρ(i).

Any linear secret sharing scheme defined above has the following linear recon-

struction property: Let
∏

be an LSSS for the access structure A. Let S ∈ A be any

authorized set, and let I ⊂ {1, 2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then, there exist

constants {wi ∈ Zp}i∈I such that if {λi} are valid shares of any secret s according to
∏
, then∑

i∈I wiλi = s. These constants {wi} can be found in time polynomial in the size of the

share-generating matrix M .

3.6. MINIMUM COVER

Let T be a full binary tree with m leaf nodes. Nodes in T are labelled as y j ,

and each leaf node is associated with a user labelled as u1, u2, . . . , um. We use path(uk) to

denote all the nodes in the path from the root to the associated leaf node of uk . Let the set

U = {u1, u2, . . . , um} and RL represent the set of all users and revoked users, respectively.

Then, we can apply subset cover to get the minimum number of tree nodes (we call it

cover(RL)) that coverU − RL (i.e., all nonrevoked users). The algorithm to find cover(RL)

is as follows:

• ∀u j ∈ RL, color all the nodes of path(u j).

• cover(RL) is the set of all uncolored nodes that are direct children of the colored

nodes.
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Figure 1. Finding minimum cover

Figure 1 is an example of a binary tree T with 8 leaf nodes and 8 associated users

(i.e.,U = {u1, u2, . . . , u8}). If RL = {u6, u8}, then Cover(RL) = {y2, y12, y14}. Node that six

nonrevoked users (i.e., {u1, u2, u3, u4, u5, u7}) are covered with just three nodes.

4. SYSTEM ARCHITECTURE AND ADVERSARIAL MODEL

4.1. SYSTEM ARCHITECTURE

A high-level system architecture of our secure data sharing scheme has been pre-

sented in Figure 2. Our architecture has four main entities: the attribute authority (AA),

the cloud service provider (CSP), the data owner, and the data user. The attribute authority

is responsible for managing all the attributes, and it creates and distributes attribute secret

keys to the users according to their authorized attribute set. It also creates and publishes

the public parameters. The CSP manages the public cloud where the encrypted data is out-

sourced and stored. Data owners encrypt their files using an our ULR-ABE or ALR-ABE

scheme and uploads the files to the public cloud so that they are always available for the
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Figure 2. System Architecture

data users. Once the data is uploaded in the cloud, the data users can download and decrypt

it anytime if they have enough attributes in their attribute secret keys. Note that a user may

have the dual role of a data owner and a data user.

4.2. ADVERSARIAL MODEL

4.2.1. Security Assumptions. We consider the CSP to be an honest but curious

entity that is a standard practice in revocable ABE literature [5, 6, 9, 7, 24]. This implies

that the CSP properly follows the protocols of our scheme (i.e., it honestly performs tasks

like storing and updating encrypted files as per the data owners’ request and letting the data

users download encrypted files upon request). The CSP does not tamper with any stored

information in the cloud. However, the CSP is open to deduce any plaintext information

from the stored encrypted files and public parameters on its own. In previously proposed

revocation schemes such as [4, 5, 6, 9], a semi-trusted entity (manager) needs to update users’
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secret keys and ciphertext in order to achieve revocation. This design introduces additional

security vulnerabilities, as a compromised manager can update secret keys and ciphertext

in a way that restores a revoked user’s decryption right. Hence, user and manager collusion

is not allowed. On the other hand in SR-ABE [11], the attribute authority revokes users by

generating periodic key update for the nonrevoked users such that the revocation process

can be carried out by an untrusted server with the key update. However, we do not need

any semi-trusted manager or periodic key update to achieve revocation since the revocation

ability is given to the data owner, who can decide whom to revoke during encryption. We

assume that the attribute authority is a trusted entity, and it distributes attribute secret keys

to users via a secure channel such as SSL.

4.2.2. Adversaries and Attacks. A dishonest data user is the main adversary of

our system. A dishonest data user can be either revoked or nonrevoked. The goal of such

adversaries is to decrypt a ciphertext that cannot be decrypted individually, either because

they do not have enough attributes in their attribute secret keys or because some of their

mandatory attribute(s) (attribute(s) mandatory to satisfy the access structure) are revoked

or they are entirely revoked as a user (but may have enough attributes). To achieve this goal,

a dishonest data user colludes with other dishonest data user(s) and launches type I and type

II attacks.

5. USER-LEVEL REVOCABLE ABE (ULR-ABE)

In this section we give details of our user-level revocable ABE scheme. We first give

the definition of ULR-ABE, followed by its security model. Finally, we give the detailed

construction of the scheme.
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5.1. DEFINITION OF ULR-ABE

Our ULR-ABE scheme is consisted of four algorithms defined as follows:

• (PK, MK) ←− Setup (Attmax, lmax,m): The setup algorithm takes as input the

maximum number of attributes allowed in a secret key, the maximum number of columns

possible in a LSSS matrix, and the total number of users in the system denoted as Attmax,

lmax, and m, respectively. It outputs the public key PK, and the master secret key MK.

• CT ←− Encrypt (PK, (M, ρ), M, RL): The inputs to the encryption algorithm

are the public key PK, the LSSS access structure (M, ρ), the message to be encryptedM,

and the revocation list RL. The algorithm outputs a ciphertext CT so that no user in RL can

decrypt CT even if the attribute set S satisfies the access structure.

• SK ←− Keygen (PK, MK, S, uk): The key generation algorithm takes as input

the public key PK, the master secret key MK, the user’s authorized attribute set S, and the

user’s identifier uk . It outputs the user’s secret key SK.

• M/⊥ ←− Decrypt (PK, SK, CT): The decryption algorithm takes as input the

public key PK, the user’s secret key SK, and the ciphertext CT. It outputs the plaintext

messageM if the user does not belong to the corresponding revocation list RL of CT and

his or her authorized attribute set S satisfies the access structure. The decryption algorithm

outputs ⊥ otherwise.

5.2. SECURITY MODEL

We formalize the security model of ULR-ABE scheme by the following IND-CPA

(indistinguishable chosen plaintext attack) game.

Init. The adversary A commits to an access structure (M∗, ρ) by giving it to the

challenger.

Setup. The challenger runs the Setup (Attmax, lmax,m) algorithm to generate PK,

SK, and sends PK to A.
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Phase I Query. The adversary A repeatedly makes q1 private key queries for the

user-authorized attribute set tuples as in Q1 = (u1, S1),Q2 = (u2, S2), . . . ,Qq1 = (uq1, Sq1).

The challenger calls Keygen (PK, MK, Sk , uk) for each query Qk = (uk, Sk ), and sends the

secret key SKk to A.

Challenge. A selects two equal size messagesM0,M1, a revocation list RL∗, and

sends them to the challenger. Additionally, A also sends to the challenger the committed

access structure (M∗, ρ). The challenger chooses a bit b ∈ {0, 1} by flipping a random coin,

and runs Encrypt (PK, (M∗, ρ),Mb, RL∗). The challenger then sends the output ciphertext

CT∗ to A. The constraint is that none of the attribute sets (e.g., S1, S2, . . . , Sq1) in phase I

query satisfy the access structure (M∗, ρ).

Phase II Query. A adaptively makes private key queries for tuples Qq1+1 =

(uq1+1, Sq1+1),Qq1+2 = (uq1+2, Sq1+2), . . . ,Qq = (uq, Sq) with the restriction that none of

the attribute sets in these tuples (e.g., Sq1+1, Sq1+2, . . . , Sq) satisfy the committed access

structure (M∗, ρ).

Guess. A outputs a guess b′ ∈ {0, 1} for b.

The advantage of the adversary A in the above game is defined as Adv = |Pr[b′ =

b] − 1/2|. By allowingA to do decryption queries in phase I and phase II query stage, this

security model can be easily extended to chosen-ciphertext attack (CCA).

Definition 2 ULR-ABE scheme is secure if all polynomial time adversaries have at most a

negligible advantage in the IND-CPA game.

5.3. CONSTRUCTION OF ULR-ABE SCHEME

The detailed construction of ULR-ABE scheme is given as follows:

• (PK, MK) ←− Setup (Attmax, lmax,m): The setup algorithm takes as input Attmax,

the maximum number of attributes any user’s secret key may have; lmax, the maximum

number of columns any LSSS matrix M may have; and m, the total number of users. It
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outputs the public and the master secret key PK and SK, respectively. The setup algorithm

first chooses a group G of prime order p with a generator g and defines a bilinear map as

e : G×G→ GT . We assume that attributes can be represented inZp. In practice, a collision-

resistant hash function can be used to transform any string attribute into Zp. The setup

algorithm then randomly chooses a, α, β ∈ Zp. It also utilizes a hash function defined as

H : Zp → G. The hash function is realized by choosing a polynomial L(x) ∈ Zp of degree

N = Attmax + lmax − 1 and computing h0 = H (0) = gL(0), h1 = H (1) = gL(1), . . . , hN =

H (N ) = gL(N ). With these N + 1 values, one can compute hx = H (x) = gL(x) for any

x ∈ Zp by using interpolation.

The AA then creates a full binary tree T of m leaves and associates each user u j

to a different leaf node. For each node yi in T , AA randomly chooses gyi ∈ G. Finally,

AA publishes the public key as PK =
(
T ,G,GT, e(g, g)α, ga, g β, h0, h1, . . . , hN

)
and sets

the master secret key as MK =
(
gα, β

)
and keeps it secret.

• CT←− Encrypt (PK, (M, ρ),M, RL): The encrypt algorithm takes as input the

public parameters PK, LSSS access structure (M, ρ), the plaintext messageM ∈ GT , and

a revocation list RL. It outputs the ciphertext (CT). In the LSSS access structure (M, ρ),

M is an l × n matrix and ρ is a function that associates rows of M to attributes. In this

construction, ρ is limited to be an injective function (i.e., an attribute can be associated with

at most one row of M). The algorithm chooses a random vector ~v = (s, r2, . . . , rn) ∈ Zn
p.

These values are used to share the random encryption exponent s. For ∀i ∈ {1, 2, . . . , l} it

computes λi = ~v.Mi, where Mi is the vector corresponding to the ith row of M . Finally,

the algorithm finds cover(RL), randomly chooses an exponent r ∈ Zp, and computes the

ciphertext as CT = (C =M .e(g, g)αs,C′ = gsβ, D = gr,∀y j ∈ cover(RL) : Cyj = gs
yj
,∀i ∈

{1, 2, . . . , l} : Ci = gaλiH (ρ(i))−r ). We assume that the LSSS access structure is implicitely

included in CT.
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• SK←− Keygen (PK, MK, S, uk): The keygen algorithm takes as input PK, MK,

a set S of attributes the user is authorized for, and the user’s identifier uk and outputs the

attribute secret key SK. Let uk’s associated leaf node in T be y. The algorithm finds

path(y), chooses a random t ∈ Zp, and creates the private key as SK = (∀y j ∈ path(y) :

Kyj =
(
gα+atgyj

)1/β
, L = gt,∀x ∈ S : Kx = H (x)t ).

• M/⊥ ←− Decrypt (PK, SK, CT): The decryption algorithm takes as input the

public paprameters PK, the user’s attribute secret key SK for an attribute set S, and the

ciphertext CT for a LSSS access structure (M, ρ). Assume that S satisfies the access

structure and I ⊂ {1, 2, 3, . . . , l} is defined as I = {i : ρ(i) ∈ S}. The algorithm finds the

constants {wi ∈ Zp}i∈I such that if {λi} are valid shares of a secret s according to M, then∑
i∈I wiλi = s. Note that these constants {wi} can be found in polynomial time in the size of

M and there could potentially be different ways of choosing such {wi}. The algorithm then

computes the following:

P = e(Kyj,C
′) = e

((
gα+atgyj

)1/β
, g βs

)
= e(g, g)αs+ats .e(gyj, g)s

Q = e(Cyj, g) = e(gyj, g)s

W = P/*
,
Q

∏
i∈I

(
e(Ci, L)e(D, Kρ(i))

)wi+
-

= P/ *
,
Q

∏
i∈I

e(g, g)atλiwi+
-

= e(g, g)αs+ats .e(gyj, g)s/
(
e(gyj, g)se(g, g)ats

)
= e(g, g)αs .

Then, the decryption algorithm retrieves the plaintext messageM as in C/W =M,

and outputs it. If S does not satisfy the access structure, or the owner of SK belongs to the

revocation list RL, then the decryption algorithm outputs ⊥.
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6. ATTRIBUTE-LEVEL REVOCABLE ABE (ALR-ABE)

In ULR-ABE scheme, our strategy to achieve revocation without the aid of any

semi-trusted entity is to create a ciphertext component Cyj for each node in cover(RL) and

create a secret key component Kyj for each node in the path from the user’s associated leaf

node to the root of the binary tree. For any revoked user, there is no common node in the

binary tree between the user’s associated path and cover(RL). Hence, the revoked user does

not have any Kyj in the secret key that works with any Cyj in the ciphertext. For our ALR-

ABE scheme, we apply the similar technique on each attribute in order to enable attribute

revocation. However, applying this technique is not trivial as we have to cryptographically

bind together both secret key components and ciphertext components such that malicious

users cannot combine their keys to decrypt unauthorized ciphertext.

In the following, we first give the definition of our proposed ALR-ABE scheme and

its security model. Then, we give the detailed construction of the scheme.

6.1. DEFINITION OF ALR-ABE

Our ALR-ABE scheme is consisted of four algorithms defined as follows:

• (PK, MK) ←− Setup (Attmax, lmax,m): The setup algorithm takes as input the

maximum number of attributes allowed in a secret key, the maximum number of columns

possible in a LSSS matrix, and the total number of users in the system denoted as Attmax,

lmax, and m, respectively. It outputs the public key PK, and the master secret key MK.

• CT ←− Encrypt (PK, (M, ρ), M, RL): The inputs to the encryption algorithm

are the public key PK, the LSSS access structure (M, ρ), the message to be encryptedM,

and a set of revocation list RL = {RL1, RL2, . . . , RLl }, where where RLk is the revocation

list for the attribute ρ(k). The algorithm outputs a ciphertext CT. If a user belongs to RLk ,

he or she cannot decrypt attribute ρ(k) of the LSSS access structure associated with CT.



82

• SK ←− Keygen (PK, MK, S, uk): The key generation algorithm takes as input

the public key PK, the master secret key MK, the user’s authorized attribute set S, and the

user’s identifier uk . It outputs the user’s secret key SK.

• M/⊥ ←− Decrypt (PK, SK, CT): The decryption algorithm takes as input the

public key PK, the user’s secret key SK, and the ciphertext CT. It outputs the plaintext

messageM if the user has enough nonrevoked attributes in his or her authorized attribute

set S to satisfy the access structure of CT. The decryption algorithm outputs ⊥ otherwise.

6.2. SECURITY MODEL

The security model of ALR-ABE scheme can be formalized by the following IND-

CPA game.

Init. The adversary A commits to an access structure (M∗, ρ) by giving it to the

challenger.

Setup. The challenger runs the Setup (Attmax, lmax,m) algorithm to generate PK,

SK, and sends PK to A.

Phase I Query. The adversary A repeatedly makes q1 private key queries for the

user-authorized attribute set tuples as in Q1 = (u1, S1),Q2 = (u2, S2), . . . ,Qq1 = (uq1, Sq1).

The challenger calls Keygen (PK, MK, Sk , uk) for each query Qk = (uk, Sk ), and sends the

secret key SKk to A.

Challenge. A selects two equal size messages M0,M1, a set of revocation lists

RL∗, and sends them to the challenger. Additionally, A also sends to the challenger the

committed access structure (M∗, ρ). The challenger chooses a bit b ∈ {0, 1} by flipping

a random coin, and runs Encrypt (PK, (M∗, ρ), Mb, RL∗). The challenger then sends

the output ciphertext CT∗ to A. The constraint is that none of the attribute sets (e.g.,

S1, S2, . . . , Sq1) in phase I query satisfy the access structure (M∗, ρ).
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Phase II Query. A adaptively makes private key queries for tuples Qq1+1 =

(uq1+1, Sq1+1),Qq1+2 = (uq1+2, Sq1+2), . . . ,Qq = (uq, Sq) with the restriction that none of

the attribute sets in these tuples (e.g., Sq1+1, Sq1+2, . . . , Sq) satisfy the committed access

structure (M∗, ρ).

Guess. A outputs a guess b′ ∈ {0, 1} for b.

The advantage of the adversary A in the above game is defined as Adv = |Pr[b′ =

b] − 1/2|. By allowingA to do decryption queries in phase I and phase II query stage, this

security model can be easily extended to chosen-ciphertext attack (CCA).

Definition 3 Our proposed ALR-ABE scheme is secure if all polynomial time adversaries

have at most a negligible advantage in the IND-CPA game.

6.3. CONSTRUCTION OF ALR-ABE SCHEME

The detailed construction of our proposed ALR-ABE scheme is as follows:

• (PK, MK) ←− Setup (Attmax, lmax,m): The setup algorithm takes as input Attmax,

the maximum number of attributes any user’s secret key may have; lmax, the maximum

number of columns any LSSS matrix M may have; and m, the total number of users. It

outputs the public and the master secret key PK and SK, respectively. The setup algorithm

first chooses a group G of prime order p with a generator g and defines a bilinear map

as e : G × G → GT . We assume that attributes can be represented in Zp. In practice, a

collision-resistant hash function can be used to transform any string attribute into Zp. The

setup algorithm then randomly chooses a, α, β ∈ Zp. It also utilizes a hash function defined

asH : Zp → G which is similar to that of ULR-ABE scheme.

The AA then creates a full binary tree T of m leaves and associates each user u j

to a different leaf node. For each node yi in T , AA randomly chooses gyi ∈ G. Finally,

AA publishes the public key as PK =
(
T ,G,GT, e(g, g)α, ga, h0, h1, . . . , hN

)
and sets the

master secret key as MK = gα and keeps it secret.
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• CT←− Encrypt (PK, (M, ρ),M, RL): The encrypt algorithm takes as input the

public parameters PK, LSSS access structure (M, ρ), the plaintext messageM ∈ GT , and a

set of revocation lists RL. It outputs the ciphertext (CT). In the LSSS access structure (M,

ρ), M is an l × n matrix and ρ is a function that associates rows of M to attributes. In this

construction, ρ is limited to be an injective function (i.e., an attribute can be associated with

at most one row of M). The algorithm chooses a random vector ~v = (s, R2, . . . , Rn) ∈ Zn
p.

These values are used to share the random encryption exponent s. For ∀i ∈ {1, 2, . . . , l}

it computes λi = ~v.Mi, where Mi is the vector corresponding to the ith row of M . Let us

assume that RL = {RL1, RL2, . . . , RLl }, where RLk is the revocation list for the attribute

ρ(k). The algorithm finds cover(RL)k for each attribute ρ(k), randomly chooses exponents

r1, r2, . . . , rl ∈ Zp, and computes the ciphertext as CT = (C =M .e(g, g)αs,C′ = gs, ((∀y j ∈

cover(RL1) : C1,yj = gaλ1H (ρ(1))−r1 (gyj )
−r1, D1 = gr1 ), . . . , (∀y j ∈ cover(RLl) : Cl,yj =

gaλlH (ρ(l))−rl (gyj )
−rl, Dl = grl ). We assume that the LSSS access structure is implicitely

included in CT.

• SK←− Keygen (PK, MK, S, uk): The keygen algorithm takes as input PK, MK,

a set S of attributes the user is authorized for, and the user’s identifier uk and outputs the

attribute secret key SK. Let uk’s associated leaf node in T be y. The algorithm finds

path(y), chooses a random t ∈ Zp, and creates the private key as SK = (K = gα+at, L =

gt,∀x ∈ S,∀y j ∈ path(y) : Kx,yj = (H (x)gyj )
t ).

• M/⊥ ←− Decrypt (PK, SK, CT): The decryption algorithm takes as input the

public paprameters PK, the user’s attribute secret key SK for an attribute set S, and the

ciphertext CT for a LSSS access structure (M, ρ). Assume that S satisfies the access

structure and I ⊂ {1, 2, 3, . . . , l} is defined as I = {i : ρ(i) ∈ S}. The algorithm finds the

constants {wi ∈ Zp}i∈I such that if {λi} are valid shares of a secret s according to M, then
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∑
i∈I wiλi = s. Note that these constants {wi} can be found in polynomial time in the size of

M and there could potentially be different ways of choosing such {wi}. The algorithm then

computes the following:

P = e(K,C′) = e
(
gα+at, gs

)
= e(g, g)αse(g, g)ats .

Qi = e(Ci,yj, L)e(Kρ(i),yj, Di)

= e(gaλiH (ρ(i))−ri (gyj )
−ri, gt )e((H (ρ(i))gyj )

t, gri )

= e(g, g)atλi .

W =
∏
i∈I

Qwi

i =
∏
i∈I

e(g, g)atwiλi = e(g, g)at
∑

i∈I wiλi

= e(g, g)ats .

Then, the decryption algorithm retrieves the plaintextmessageM as inCW/P =M,

and outputs it. If S does not satisfy the access structure, or the owner of SK belongs to the

revocation list RL, then the decryption algorithm outputs ⊥.

7. A SECURE CLOUD DATA-SHARING SCHEME BASED ON OUR PROPOSED
ABE SCHEME

In this section, we propose a secure data-sharing scheme for the cloud. We keep the

data sharing scheme generic such that it works with both ULR-ABE and ALR-ABE scheme.

ULR-ABE should be used as the underlying encryption scheme if only user-level revocation

is required. However, if more fine-grained revocation is necessary, then ALR-ABE scheme

should be used. We discuss the details in the following.
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7.1. SYSTEM INITIALIZATION

The attribute authority (AA) runs the Setup algorithm to initialize the system. It

publishes the public key PK in the cloud and keeps the master key MK secret.

7.2. KEY DISTRIBUTION

For each user in the system, the AA runs the Keygen algorithm and generates the

attribute secret key SK for his or her authorized attribute set S. The AA then sends SK to

the corresponding user via a secure channel.

7.3. FILE OUTSOURCING

The data owner downloads the public parameter PK from the cloud. It randomly

choosesM ∈ GT and extracts the symmetric key using the randomness extractor functionF

as in K = F (M). Using K , the data owner encrypts the actual file F using the symmetric

encryption scheme as in CT′ =Enc(K ,F). For each attribute, the data owner creates a

revocation list by adding the users he wants to revoke the attribute from. Let RL be the

revocation list (or set of all revocation lists if ALR-ABE is chosen). The data owner then

runs Encrypt (PK, (M, ρ),M, RL) algorithm, and generates CT as output. Note that if a

user is included in RL, then his or her secret key (or revoked attributes for ALR-Scheme)

won’t work during decryption. Finally, the data owner uploads the ciphertext
(
CT, CT′

)
as

an encrypted file in the cloud.

7.4. FILE RETRIEVING

The data user downloads an encrypted file
(
CT, CT′

)
from the cloud and calls

Decrypt (PK, SK, CT) algorithm with his or her attribute secret key SK. If the user is

not revoked (when ULR-ABE is used) or SK has enough nonrevoked attributes to satisfy
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the access policy of CT (when ALR-ABE is used), the algorithm returnsM as an output.

Then, the user extracts the symmetric key using the randomness extractor function F as in

K = F (M). Using K , the data user retrieves the actual file F by running the decryption

function of the symmetric encryption scheme as in F =Dec(K ,CT′).

8. SECURITY ANALYSIS

In this section, we analyze the security of our proposed ABE schemes in terms of

semantic security and collusion attacks.

8.1. SEMANTIC SECURITY

Our IND-CPA game for both ULR-ABE (in Section 5.2) and ALR-ABE (in Section

6.2) scheme is similar to that of [1] except in our game, each secret key query in query

phase I and II also includes a user identifier ui, and A provides with a revocation list (for

ULR-ABE) or a set of revocation lists (for ALR-ABE) RL∗ in the challenge stage. It was

proven in [1] that if the decisional q-BDHE assumption holds, then no polynomial-time

adversary A can selectively win the IND-CPA game with a challenge matrix M∗ of size

l∗ × n∗ corresponding to the access structure (M∗, ρ), and maximum number of attributes

per key of Attmax where n∗ + Attmax ≤ q.

Assume there exists an adversaryA who has a non-negligible advantage ε = AdvA

in the our IND-CPA game and it chooses a challenge access structure (M∗, ρ) with thematrix

M∗ of at most q columns. Then using the same technique as in [1], we can build a simulator

B that plays the decisional q-BDHE problem. The simulator basically programs all the IND-

CPA game parameters from the decisional q-BDHE parameters so that the challenger cannot

distinguish whether it is playing our IND-CPA game or the decisional q-BDHE problem.

Since A has a non-negligible advantage in our IND-CPA game (according to our prior

assumption), A also has a non-negligible advantage in the decisional q-BDHE problem.
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However, according to the definition (of decisional q-BDHE problem), no polynomial-time

adversary has a non-negligible advantage in solving the decisional q-BDHE problem. This

implies that A does not have a non-negligible advantage in our IND-CPA game. So, the

DEFINITION 2 and 3 hold true.

8.2. COLLUSION ATTACK

Both ULR-ABE and ALR-ABE scheme can prevent type I collusion attack because

we bind all attributes of a particular user’s secret key with a random exponent t such that

attribute of one user’s secret key does not work with the attribute of another user’s secret key.

InULR-ABEscheme, the attribute components of the secret keySK is∀x ∈ S : Kx = H (x)t .

The exponent t is chosen randomly and it is different for different SKs. Since it is not possible

for the adversary know t, the adversary cannot make attribute components of multiple secret

keys to work together. Hence, type I collusion attack is not possible in ULR-ABE scheme.

On the other hand in ALR-ABE scheme, the attribute components of secret key SK is

represented as ∀y j ∈ path(y) : Kx,yj = (H (x)gyj )
t . Like ULR-ABE scheme, the attribute

components of ALR-ABE scheme are also binded together with a random exponent t. So,

type I collusion attack is not possible in ALR-ABE scheme as well.

Next, we discuss the security analysis of type II collusion attack for both ULR-ABE

and ALR-ABE schemes.

8.2.1. Security Analysis of ULR-ABE Scheme. We formalize the security of

ULR-ABE scheme against type II collusion attack by the following theorem.

Theorem 2 A revoked user with enough attributes in his or her attribute secret key cannot

decrypt a ciphertext even if the user colludes with a nonrevoked user who does not have

enough attributes in his or her attribute secret key to decrypt the particular ciphertext.
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Proof: Assume that ui, uk are two users and y, y′ are their associated leaf nodes in the

binary tree. SK = (∀y j ∈ path(y) : Kyj =
(
gα+atgyj

)1/β
, L = gt,∀x ∈ S : Kx = H (x)t ))

and SK′ = (∀y j ∈ path(y′) : K′yj =
(
gα+at ′gyj

)1/β
, L′ = gt ′,∀x ∈ S′ : K′x = H (x)t ′)

are their attribute secret keys, respectively. A message M is encrypted so that ui ∈ RL.

This results in a ciphertext CT = (C = M .e(g, g)αs,C′ = gsβ, D = gr,∀y j ∈ cover(RL) :

Cyj = gs
yj
,∀i ∈ {1, 2, . . . , l} : Ci = gaλiH (ρ(i))−r ). Note that CT does not have any Cyj

corresponding to the attribute secret key component Kyj of ui since path(y)∩cover(RL) = ∅.

However, there exists a component K′yj in the attribute secret key of the nonrevoked user uk

that corresponds to a Cyj since path(y′) ∩ cover(RL) , ∅. Without the lose of generality,

lets assume that S satisfies the access structure (M, ρ) but S′ does not satisfy (M, ρ). This

implies that ui has enough attributes in his or her attribute secret keys to decrypt CT but uk

does not have enough attributes to do so. In order to successfully decrypt CT, ui also needs

Kyj in his or her attribute secret keys that corresponds to Cyj . As a result, ui alone cannot

decrypt CT with SK despite having enough attributes in it. However, ui can collude with

the nonrevoked user uk to get K′yj from uk’s attribute secret key SK′ that corresponds to a

Cyj in CT. Then, ui can try to decrypt CT as follows:

P = e(K′yj,C
′) = e

((
gα+at ′gyj

)1/β
, g βs

)
= e(g, g)αs+at ′s .e(gyj, g)s

Q = e(Cyj, g) = e(gyj, g)s

W ′ = P/*
,
Q

∏
i∈I

(
e(Ci, L)e(D, Kρ(i))

)wi+
-

= P/ *
,
Q

∏
i∈I

e(g, g)atλiwi+
-

= e(g, g)αs+at ′s .e(gyj, g)s/
(
e(gyj, g)se(g, g)ats

)
= e(g, g)αs+at ′s−ats .
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It is apparent that ui cannot successfully computeW = e(g, g)αs and hence is unable

to retrieveM from C =Me(g, g)αs. This proves THEOREM 2.

8.2.2. SecurityAnalysis ofALR-ABEScheme. The security ofALR-ABEscheme

against type II collusion attack can be formalized by the following theorem.

Theorem 3 A user with some mandatory attribute(s) (attribute(s) mandatory to satisfy

the access structure) been revoked from his or her attribute secret key cannot decrypt a

ciphertext even if the user colludes with another user who has the mandatory attribute(s) but

does not have enough attributes in his or her attribute secret key to decrypt the particular

ciphertext.

Proof: Assume that ui, u′i are two users and y, y′ are their associated leaf nodes in

the binary tree. SK = (K = gα+at, L = gt,∀x ∈ S,∀y j ∈ path(y) : Kx,yj = (H (x)gyj )
t ) and

SK′ = (K′ = gα+at ′, L′ = gt ′,∀x ∈ S′,∀y j ∈ path(y) : K′x,yj = (H (x)gyj )
t ′) are their at-

tribute secret keys, respectively. AmessageM is encrypted that results in a ciphertext CT =

(C = M .e(g, g)αs,C′ = gs, ((∀y j ∈ cover(RL1) : C1,yj = gaλ1H (ρ(1))−r1 (gyj )
−r1, D1 =

gr1 ), . . . , (∀y j ∈ cover(RLl) : Cl,yj = gaλlH (ρ(l))−rl (gyj )
−rl, Dl = grl ). Let ρ(k) be a

mandatory attribute to satisfy the access structure of CT and attribute ρ(k) is revoked from

user ui (e.g., ui ∈ RLk) but not from user u′i . This means that CT does not have anyCk,yj cor-

responding to the attribute secret key component Kρ(k),yj of ui since path(y)∩cover(RL) = ∅.

However, there exists a component K′
ρ(k),yj

in the attribute secret key of user u′i that corre-

sponds to Ck,yj since path(y′) ∩ cover(RL) , ∅. Without the lose of generality, lets assume

that S satisfies the access structure (M, ρ) but S′ does not satisfy (M, ρ). This implies that

ui has enough attributes in his or her attribute secret key to satisfy the access structure,

but cannot decrypt CT since the mandatory attribute ρ(k) is revoked. On the other hand,

although u′i have attribute ρ(k) nonrevoked, he or she does not have enough attributes to

satisfy the access structure alone. In order to successfully decrypt CT, ui also needs Kρ(k),yj
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in his or her attribute secret keys that corresponds to Ck,yj . As a result, ui alone cannot

decrypt CT with SK despite having enough attributes in it. However, ui can collude with

the nonrevoked user u′i to get K′
ρ(k),yj

from u′i’s attribute secret key SK′ that corresponds to

a Ck,yj in CT. In order to decrypt CT, ui first computes

P = e(K,C′) = e
(
gα+at, gs

)
= e(g, g)αse(g, g)ats .

Then, ∀i ∈ I − k, ui computes Qi as in

Qi = e(Ci,yj, L)e(Kρ(i),yj, Di)

= e(gaλiH (ρ(i))−ri (gyj )
−ri, gt )e((H (ρ(i))gyj )

t, gri )

= e(g, g)atλi .

But for i = k, ui computes

Qk = e(Ck,yj, L′)e(K′ρ(k),yj, Dk )

= e(gaλkH (ρ(k))−rk (gyj )
−rk, gt ′)e((H (ρ(k))gyj )

t ′, grk )

= e(g, g)at ′λk .

Then, ui computes W ′ as in

W ′ = *
,

∏
i∈I−k

Qwi

i
+
-

Qwk

k

= *
,

∏
i∈I−k

e(g, g)atwiλi+
-

e(g, g)at ′wkλk

= e(g, g)at
∑

i∈I−k wiλi+at ′wkλk .
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Table 2. Symbols used in performance analysis and experiment

Symbol Meaning
u Total number of attributes in the system
a Number of attributes in access struc-

ture A
b Number of attributes in user secret key
s Required minimum number of at-

tributes to satisfy policy
|Gi | Size of a single element in group Gi
|K| Size of symmetric key
|p| Size of a single element in Zp
Ci Single exponentiation time in groupGi
P Computation time of a pairing opera-

tion
m Total number of users in the group
r Total nodes in cover(RL)

From the decryption algorithm, we can see that in order to retrieveM from C =

Me(g, g)αs, ui must recover W = e(g, g)ats first. However, the above computation of W ′

shows that it is not possible unless t equals to t′. Since t and t′ are chosen randomly from a

large field Zp, their chance of being equal is negligible. Hence, ui is unable to retrieveM

from C =Me(g, g)αs. This proves THEOREM 3.

9. THEORETICAL PERFORMANCE ANALYSIS

In this section, we compare our proposed ABE schemes with other related schemes

in terms of storage, communication, and computational efficiency from the theoretical

aspect. Note that we also include [1] (referred to as BW) in the comparison as a baseline

since both our ULR-ABE and ALR-ABE schemes are based on this. Table 4 illustrates

different symbols that have been used for this purpose.
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Table 3. Comparison of storage and communication efficiency with other schemes

Scheme Ciphertext size Secret key size Public key size
Hur-I [4] (2a + 1) |G1 | + |GT | + ar |K| (2b + 1) |G1 | + (logm) |K| 2|G1 | + |GT |

Hur-II [5] (2a + 1) |G1 | + |GT | 2(b + 1) |G1 3|G1 | + |GT |

CryptCloud+ [10] (2a + 5) |G1 | + |GT | (b + 6) |G1 | + 2|p| (u + 6) |G1 | + 3|p|
Flexible [6] (2a + 6) |G1 | + |GT | + 2|p| (b + 4) |G1 | + 2|p| 3|G1 | + 2|GT | + |p|
UserCol [9] (ar + 2a + 1) |G1 | + |GT | 4b|G1 | + |GT | 2(u + 3) |G1 | + 2|GT | + (2m − 1) |p|
SR-ABE [11] (3a + 2) |G1 | + |GT | (2logm(b + 1) + 1) |G1 | 7|G1 |

BW [1] (a + 1) |G1 | + |GT | (b + 2) |G1 | 2|G1 | + |GT |

ULR-ABE [12] (a + r + 2) |G1 | + |GT | (b + 1 + logm) |G1 | (2m + 1) |G1 | + |GT |

ALT-ABE (ar + a + 1) |G1 | + |GT | (blogm + 2) |G1 | 2m |G1 | + |GT |

9.1. STORAGE AND COMMUNICATION EFFICIENCY

The space efficiency comparison in terms of ciphertext, secret key, and public key

size has been summarized in Table 5. The ciphertext size, secret key size, and public key

size represent the storage cost required by the cloud, each user, and the attribute authority to

store them, respectively. Additionally, they represent the communication cost when these

are sent from one party to another. However, we do not consider here the communication

cost that is associated with any intermediate step during the preparation of the ciphertext,

secret key, or public key. For example, in order to achieve revocation, the data owner

sends the whole ciphertext to the manager for re-encryption in UserCol[9]. As a result, the

communication cost for sending the ciphertext to the cloud would be twice as much as what

is shown in Table 5 for [9]. Similar intermediate steps are necessary in [6, 9, 11] during the

secret key generation phase. Thus, the actual communication cost can be higher than what

is shown in Table 5. However, there is no intermediate step in our proposed scheme, so the

cost shown in Table 5 for our scheme is much closer to the real cost.

Compared to the baseline scheme [1], our ULR-ABE scheme requires r + 1 and

logm − 1 additional group (G1) elements for the ciphertext and secret key, respectively

while our ALR-ABE scheme requires ar and blogm − b additional group (G1) elements.

This is because in ULR-ABE scheme, the data owner has to create r + 1 additional group

elements in the ciphertext out of which r elements are for cover(RL). On the other hand in
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ALR-ABE scheme, for each attribute in the access structure, the data owner creates r group

elements (all are for cover(RL)). The AA has to create logm − 1 additional group elements

in the user’s secret key along the path in the binary tree in ULR-ABE scheme while in

ALR-ABE scheme, AA creates logm group elements for each attribute in the secret key as

opposed to just one in BW. Both ULR-ABE and ALR-ABE schemes need 2m−1 additional

group elements in the public parameter compared to the baseline scheme because a group

element (G1) associated with every node in the binary tree is needed in the public parameter.

Among all collusion-resistant revocable schemes (ULR-ABE, ALR-ABE, [10, 6, 9],

and [11]), [9] and ALR-ABE have the largest sized ciphertext because both require r group

elements per attribute in the ciphertext to enable attribute-level revocation. This results in

a total of ra additional group elements in the ciphertext. Scheme [10, 6, 11], and ULR-

ABE do not require r group elements per attribute as they do not support attribute-level

revocation. How our ALR-ABE scheme compares against [10, 6] in terms of ciphertext

size, depends on the number of attributes in the ciphertext (a) and the number of nodes in

cover(RL) (e.g., r). If there are few members to revoke or if revoked members are not very

sparsely distributed in the binary tree, then r will be much smaller, and hence the ciphertext

size will be relatively small.

The secret key size of ALR-ABE scheme is relatively larger than other schemes

because AA generates logm group elements for each attribute in the secret key that are

necessary for attribute-level revocation. Though [4, 5, 9] support attribute-level revocation,

they don’t require logm group elements per attribute. This is because their decryption

method is different from ours where the ciphertext is partially decrypted by a semi-trusted

entity such that it can be later fully decrypted by a smaller sized secret key. Although [11]

does not support attribute-level revocation, it requires 2logm group elements per attribute

making its secret key size the largest of all.
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Table 4. Comparison with other schemes in terms of computation cost.

Scheme Key generation Encryption Decryption Key update
Hur-I [4] 2(b + 1)C1 (3a + 1)C1 + CT C1 + (2s − 1)CT + (2s + 1)P bC1
Hur-II [5] (3b + 5)C1 (3a + 2m + 3)C1 + CT s(m + 1)C1 + (2s − 1)CT + (3s + 1)P bmC1
CryptCloud+ [10] (b + 13)C1 + CT + (2b + 7)P (a + 5)C1 + CT 2C1 + sCT + (2s + 5)P 3mC1
Flexible [6] (2b + 9)C1 + 2P 2(a + 3)C1 + 2CT (2s + 3)CT + (2s + 4)P (2m + b + 1)C1 + P
UserCol [9] (4b + 2)C1 (3a + ar + 1)C1 + CT (2s − 1)CT + (3s + 1)P (2m − 1)C1
SR-ABE [11] ((2b + 3)logm + b + 1)C1 (5a + 2)C1 + CT sCT + (3s + 4)P (2r + 4)C1
BW [1] (b + 2)C1 (2a + 1)C1 + CT sCT + (2s + 1)P N/A
ULR-ABE [12] (b + logm + 2)C1 (2a + r + 2)C1 + CT sCT + 2(s + 1)P 0
ALR-ABE (blogm + 2)C1 (3a + ar + 1)C1 + CT sCT + (2s + 1)P 0

Public key size increases proportionally with the number of total users for [9], ULR-

ABE, and ALR-ABE scheme. However, the total public parameter size of [9] is larger than

our schemes. Compared to [4, 5] and [11], ULR-ABE and ALR-ABE have a larger sized

public key, as the public key includes an additional group element for each node in the

binary tree.

9.2. COMPUTATION COST ANALYSIS

We show the computation cost of our scheme and compare it with other schemes in

Table 6. The computation cost has been expressed in terms of group exponentiation and

pairing operation in a similar manner as in [23, 5, 4]. This is a reasonable consideration

since these two operations dominate relatively lightweight hash, multiplication, division,

and addition operations.

If we compare [12] and our scheme with the baseline scheme [1], we can see that

the revocation does not have any effect on the decryption running time. However, the the

running time of key generation and encrytion algorithms depend on the granularity of the

revocation. For encryption, [12] requires r + 1 additional group exponentiation operations

(in G1), out of which r is for creating r additional group elements for cover(RL). Our

scheme on the other hand requires such r + 1 additional group exponentiation operations
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per attribute since our revocation is at attribute-level. Similarly for secret key generation,

while [12] requires logm additional group exponentiation operations (in G1) our scheme

requires such logm operations per attribute in the secret key.

Both our scheme and [12] have a zero key update cost since both scheme achieve

revocation without affecting the secret key of other nonrevoked users. In contrast, all other

revocation schemes require a significant amount of computation for key updating to achieve

revocation. The number of group exponentiation operation (in G1) required for key update

is proportional to the number of users in the system (except [4] and [11]).

In terms of decryption speed, our scheme is similar to the baseline scheme [1] and

outperforms all the revocation scheme. We can see that [5] has the slowest decryption speed

as the required number of group exponentiation operation (inG1) is proportional to the total

number of users (m).

Our key generation algorithm is faster than that of [10]. This is because in addition to

the group exponentiation operation, CryptCloud+ also requires (2b+7)P pairing operations,

which is more expensive than the group exponentiation operation. Our key generation time

is also faster than that of [11] as it requires twice as much additional (2logm) group

exponentiation operations (in G1) per attribute compared to ours.

When we compare our scheme in terms of encryption speed with other schemes that

support fine-grained revocation (e.g., [4, 5], and [9]), both our scheme and [9] have similar

performance as both needs logm exponentiation operations (in G1). Scheme [5] is much

slower than ours since the number of group exponentiation operations for each attribute

grows linearly with the total number of users (e.g., m). However, [4] has a faster encryption

running time than ours because the cloud is trusted to perform revocation transformation

of the ciphertext and partial decryption. Hence, it can avoid multiple group exponentiation

operations per attribute like ours. Schemes that do not support attribute-level revocation in

general have a faster encryption running time than ours.
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Table 5. Parameter details for different pairing groups

Curves G1 G2 GT p k Security
SS512 512 512 1024 160 2 80

MNT159 159 477 954 158 6 70
MNT201 201 603 1206 181 6 90
MNT224 224 672 1344 224 6 100

10. EXPERIMENT

Implementation: We have implemented our scheme in Charm [25]. It is a Python

based framework developed for rapid prototyping of advanced cryptographic protocols.

Charm uses PBC library [26] (written in C language) for low-level system calls including

most expensive group exponentiation and pairing operations. As a result, cryptographic

protocols written in Charm performs very close to the one written C language [27]. All

hash functions were implemented using SHA224.

A detailed parameter description for our experimental setup is given in Table 3.

SS512 is a super singular EC curve (with symmetric Type 1 pairing), and MNT (159, 201,

224) are the Miyaji, Nakabayashi, Takano curves (with asymmetric Type 3 pairing). In

Table 4, p = bit length of prime order p, k = embedding degree, Security is the security

level in bits with respect to the discrete log problem, and the numbers associated with the

curve name represent the base field size in bits (i.e., SS512 has a base field size of 512

bits). Though our schemes are based on a symmetric pairing group (G×G→ GT ), we have

tested our implementation in both symmetric and asymmetric group settings. Charm treats

groups as asymmetric, though the actual setting depends on the type of underlying chosen

curve. More specifically, there are three different groups (G1, G2, and GT ), and pairing is

defined as e : G1 × G2 → GT . We keep most of the terms in G1 while implementing our

scheme in the asymmetric setting since operations in G1 are generally much faster than that

in G2.
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Figure 3. Key generation time

Testbed setup: Wehave conducted all the experiments on aMacbook Pro laptopwith

Intel® Core i7@2.2 GHz quad-core processor and 16 GB RAM running MacOS Cataline

10.15.7. We have used Python 3.7 and the PBC-0.5.14 library.

Results: We have mainly compared our key generation, encryption, decryptioin, and

key update running time with Flexible [6], UserCol [9], CryptoCloud+ [10], and SR-ABE

[11] scheme. We have also reported the key generation, encryption, and decryption running
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Figure 4. Encryption time

time of BW [1] scheme as a baseline comparison since our scheme is based on the BW

scheme. However, we have not compared our experimental results with Hur I [4] and Hur

II [5] since they are not collusion resistant (against type II attacks) and the encryption,

decryption, and key update of Hur II takes much longer than the rest. The running time of

each algorithm (key generation, encryption, decryption, and key update) were measured for
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Figure 5. Decryption time

SS512, MNT159, MNT201, and MNT224 curves. Each result reported here has been

averaged over five individual runs.

From Figure 3 we can see that the key generation running time of all schemes

increases linearly with the number of attributes in the secret key (b). The running time of

ALR-ABE scheme and [11] is longer than those of [1, 9, 6], and ULR-ABE scheme since the

running time of the key generation algorithm is proportional to blogm where m is the total

number of user. However, the key generation running time of both schemes seems to be
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linearly increasing with b since we have kept the value of m to be fixed at 1000. Compared to

ALR-ABE scheme, key generation of [11] is slower as it requires more group exponentiation

operations (refer to Table 6). Interestingly, the key generation running time of [10] is faster

than ALR-ABE in SS512 curve (Figure 3a) but slower than ALR-ABE scheme in MNT159,

MNT201, and MNT224 curves (Figure 3b, 3c, and 3d, respectively). This is because in

addition to group exponentiation operation, [10] also requires (2b + 7) pairing operations

that take more time in MNT159, MNT201, and MNT224 curves compared to the SS512

curve.

The encryption running time has been shown in Figure 5. We can see that schemes

with fine-grained revocation (e.g., ALR-ABEandUserCol) have relatively slower encryption

running time for all curves. This is because ALR-ABE and UserCol generate r (r being

the number of nodes in cover(RL)) number of G1 group components for each attribute

present in the access structure such that a user, not revoked from an attribute, have exactly

one matching secret key component to decrypt one of the r group components. Creating

a G1 group component requires one group exponentiation operation and hence the total

number of group exponentiation operations for both ALR-ABE and UserCol is proportional

to ar (where a is the total number of attributes in the access structure). As a result, the

encryption running time increases linearly with ar for both schemes. For other schemes

(e.g., [1, 6, 10, 11], and ULR-ABE) the running time increases linearly with a as the number

of group exponentiation operation required is proportional to a. In our experiment, we have

set the value of r to be 10 and varied the value of a between 5 and 25.

Figure 6 shows that the running time of the decryption algorithm has a linear

relationship with the number of minimum required attributes to satisfy the access structure

(s). We have varied the value of s from 5 to 25 at an interval of 5. Both the number of group

exponentiation (in GT ) and pairing operation has a linear relationship with s for all the

schemes. The pairing operation is much slower in MNT159, MNT201 andMNT224 curves

compared to the SS512 curve. Consequently, the decryption time is higher in those three
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Figure 6. Key update time

curves for all the schemes. Note that the decryption time of ULR-ABE and ALR-ABE is

very close to the baseline scheme [1], as our decryption requires similar number of pairing

operation compared to that of the baseline scheme.

In Figure 6, we have shown how the running time of the key update algorithm

increases with the number of users (m) by varying the value of m from 100 to 1000. The

revocation in ULR-ABE and ALR-ABE does not affect the secret key of any nonrevoked

user. As a result, the revocation does not require any key update and hence the key update
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cost is zero for both schemes. Note that in Figure 6 ULR-ABE and ALR-ABE lines overlap

with each other and only ALR-ABE line is visible. However, other revocable schemes

need to update the secret keys of existing nonrevoked users. The running time of the key

update algorithm increases linearly with m for scheme [9, 6, 10]. However, scheme SR-ABE

performs better than [9, 6, 10] since the running time increases linearly with the number

of nodes in cover(RL) (e.g., r) as opposed to number of users. In general, the value of r is

significantly smaller than m but r increases as the value of m gets bigger.

Note that, the performance of all the algorithms do not have equal importance.

For instance, key generation is normally a one time task. A file may be encrypted by the

owner only once but is potentially decrypted many times by different users. If users are

revoked frequently, then key update cost can be very critical. As a result, the performance

of decryption and key update is more important than that of other algorithms (e.g., key

generation and encryption). From Figure 6 and 6 we can see that our decryption and key

update algorithms outperform other schemes.

11. CONCLUSION AND FUTUREWORKS

In this paper, we have proposed two revocable ABE schemes called ULR-ABE and

ALR-ABE. The first one supports revocation at the user-level while the later one supports

revocation at the attribute-levelwhilemaintaining the important collusion resistance (against

both type I and type II collusion attacks) property. Our schemes do not require any semi-

trusted entity to achieve revocation. Moreover, the revocation does not affect the secret key

of any non-revoked user, and hence the key update cost for revocation is zero in our scheme.

It is evident from theoretical performance analysis and experimental results that both ULR-

ABE and ALR-ABE schemes outperform the most closely related ABE schemes in terms

of decryption and key update cost. Compared to ULR-ABE scheme, ALR-ABE scheme

has a slower key generation and encryption algorithm, and the secret key and ciphertext

sizes are also larger. In the future, we would like to improve the running time of both key
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generation and encryption algorithms as well as make the secret key and ciphertext sizes

shorter. The scope of this work is limited to static access structures only. It will be an

interesting extension if we could incorporate dynamic access policies in our schemes in the

future.
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ABSTRACT

Most of the organizations using the cloud-based data sharing platforms are multi-

group in nature. The existing directly revocable attribute-based encryption (ABE) schemes

though seem to be a good fit, but they fail to provide any effective solution for secure multi-

group data sharing scenarios. To bridge this gap, we first propose Revocable ABE with

Verifiable Outsourced decryption (ReVO-ABE)- a directly revocable collusion-resistant

ABE scheme that allows any number of user revocation and joining without affecting

the secret membership keys of the nonrevoked users. Based on ReVO-ABE, we build a

DynamicMulti-Group Secure Data Sharing scheme called DMG-SDS. For operations that

are exclusive to multi-groups like group merge and split can be performed without affecting

the attribute secret keys or membership keys of the nonrevoked users, which is not possible

with any of the existing schemes. Our proposed scheme meets the necessary security

requirements, and the performance assessment shows that it has much better performance

benefits when compared with the most recent competitive schemes.

Keywords: Secure Data Sharing, Attribute-Based Encryption, Access Control.
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1. INTRODUCTION

Attribute-based encryption (ABE) offers convenient encryption–decryption meth-

ods with the use of attributes and highly expressive access policies. For example, a file

may be encrypted using the access policy manager AND (marketing OR quality) for a

company C. This limits the file access to only the marketing or quality manager. Using

ABE, company C can migrate all of its data to the cloud and enforce fine-grained access

control while sharing it among the employees. As a result, the company C may enjoy

advantages like availability, scalability, and lower maintenance cost offered by the cloud

while safeguarding its data from any potential data breach. Benefits as such have made

ABE more popular than other encryption schemes [1, 2]. In practice, data-sharing groups

are dynamic, meaning that members are revoked or added any time. Dealing with such

dynamic groups poses new challenges to attribute-based group data sharing schemes since

the same attributes may be shared among different users. For example, companyCmay fire

the current marketing manager and recruit a new one instead. Consequently, the decryption

rights from the former marketing manager should be revoked while giving decryption rights

to the new one even though both have attributes manager and marketing. Things get even

more challenging in a dynamic multi-group setting as it has some exclusive operations such

as groups merge and split in addition to those discussed earlier. This is important because

most of the organizations in real life are multi-group in nature. For example, a company C

may have two different groups for its two separate branches: A and B. Group merging is

necessary when the company decides to merge both branches to cut down the operational

cost. Similarly, a group split is required when the company wants to split B into branches

B1 and B2 for better growth opportunity.
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1.1. LIMITATIONS OF THE EXISTING SCHEMES

In the ABE, dynamic group is supported by revocable ABE. There are two possible

ways of achieving revocation property in ABE: indirect revocation [3, 4, 5] and direct

revocation [6, 7, 8, 9, 10, 11, 12]. A revocation list is maintained in both the methods

that specifies all the revoked users. In a indirect revocation, the attribute authority (the

trusted party responsible for creating and distributing attribute keys) performs a periodic

update of the attribute keys according to the revocation list, and distributes them to every

nonrevoked user. On the other hand, the direct revocation schemes such as [13, 7] are

based on the idea of attribute groups. A user’s secret key has two parts. One is associated

with the user’s authorized attributes, while the other one is associated with the attribute

group. They are called attribute secret key (SKS) and membership key (MbK), respectively.

The data owner excludes MbKs of all the users in the revocation list from the attribute

group while encrypting. Consequently, the users in the revocation list cannot decrypt using

their MbKs. However, these schemes are vulnerable to revoked–nonrevoked user collusion

attack, where a nonrevoked user can restore a revoked user’s decryption ability by sharing

his or her MbK with the nonrevoked user. This is possible because SKS and MbK are

independent of each other. Schemes proposed in [9, 10, 11] also suffer from the same type

of collusion attack. Li et al. proposed a solution addressing this issue in [12] by binding

SKS withMbK so that one user’s SKS does not work with another user’s MbK. Li et al. later

refined the solution by updating the security model in [14]. However, the group admin (the

trusted centralized entity that manages the attribute group and membership keys) becomes

a performance bottleneck in [12, 14] because in each revocation epoch, the group admin

has to update and transmit the new membership keys (MbK) to all the nonrevoked users.

The scheme proposed in [5] also suffers from the similar issues as it follows the similar

revocation technique as [12, 14]. Despite these issues, revoked-nonrevoked user collusion

resistance is a desirable property for an ABE scheme according to [15].
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The schemes [13, 9, 10, 11, 14, 5, 8] use a static binary key tree for assigning MbKs

to the users. Specifically, a binary tree with a total of mmax leaf nodes is created during

the initialization and distinct keys are assigned to the nodes. Each user is associated with

a leaf node, and a user’s membership key (MbK) consists of all the keys in the path from

the leaf to the root node. Adding a new user (after exceeding mmax) changes the key tree

structure and affects the membership keys of the nonrevoked users. This requires the admin

to transmit new MbKs to the nonrevoked users. To avoid this, a static binary tree is created

by choosing a large mmax which sets a limit at mmax for the maximum number of users

to be added. Scheme [6] does not put a limit on the total number of new user joining.

However, [6] generates MbKs using t out of n secret sharing scheme, and hence allows only

a t number of maximum revocations.

The existing revocable ABE schemes require the distribution of secret keys to the

nonrevoked users during dynamic multi-group operations like group split and merge. For

example, when a companyC splits branchB into branchB1 andB2, it may try to handle this

in either of the following ways. The attribute authority may create attributes branchB1 and

branchB2, and distribute corresponding attribute secret keys to all existing users of branch

B1 and B2, respectively. Or, two new binary key trees may be created for two different

branches. For the new binary key tree, the new membership keys of a user’s corresponding

leaf node to the root must be sent out. On the other hand, the merging of branch B and C

can be handled by merging two key trees into one. In this case, the secret key of the new

root node has to be sent as a membership key to all the nonrevoked users.

To the best of our knowledge, there is no directly revocable ABE scheme that is

resistant to revoked–nonrevoked user collusion attackwith the following properties: 1) Does

not put any limit on the total number of user revocation or joining. 2) The group admin

itself does not need to transmit any new secret membership keys (MbKs) to nonrevoked
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users followed by revocation or joining. 3) Supports multi-group operations like group

merge and split without requiring to transmit attribute secret keys or membership keys to

the nonrevoked users.

1.2. OUR TECHNIQUE AND CONTRIBUTION

We propose a collusion-resistant directly revocable ABE scheme that does not have

the limitations listed above. To realize our ABE scheme, we introduce a federated cloud-

based architecture with two clouds (cloud1 and cloud2). The user has the attribute secret

key (SKS) and the membership key (MbK), while cloud1 has the transformation key (TKS)

and cloud1 master key (C1MK), and cloud2 has the update key (UK). After a revocation or

a new user joining, the group admin creates a single proxy update key (Upr) and gives it to

cloud2 so that cloud2 can update UKs for all the nonrevoked users. To decrypt a ciphertext

(CT), cloud1 and cloud2 jointly create a partially decrypted ciphertext (CTpart). Then, a

non-revoked user can fully decrypt CTpart using SKS and MbK. We cryptographically bind

SKS, MbK, TKS, and UK together that helps our scheme to achieve revocation, and prevent

the revoked-nonrevoked user and cloud-revoked user collusion attacks as long as one of the

two clouds remains honest.

To overcome any limit on the number of revocations or joinings, we propose a data

structure called the extended TGDH (or e-TGDH) tree based on the TGDH tree (Section

3.2.1). The difference between the original TGDH and our proposed e-TGDH tree is that

when any leaf node is added or removed from the TGDH tree, all the keys along the path

from the leaf to the root are overridden while they are efficiently preserved in the e-TGDH

tree (Section 5). We provide algorithms for removing (Alg. 1) and adding (Alg. 2) a leaf

node in the e-TGDH tree that are used for user revocation or joining, respectively. The

e-TGDH tree replaces the role of the key tree and offers the following advantages: 1) users

need to keep only a single membership key as opposed to all the keys in the path of the

key tree, 2) revocation and joining can happen anytime and as many times as needed, 3)
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after revocation, joining or any multi-group operation such as group split or merge does

not require to directly transmit any secret key to the nonrevoked users. Rather, it gives the

user with the ability to compute all updated secret keys using public information available

in the cloud. The only disadvantage is that a decryption may require an additional logm

operations (as opposed to constant number of operations in the key tree approach) for a

total m of users. We compensate this additional cost by outsourcing the computationally

expensive operations of decryption (while creating CTpart) to the cloud using the key

blinding technique in [16]. To make sure the cloud completes the computation correctly, a

short proof for verification is also added in the ciphertext (using the technique in [17]). We

call our direct revocation scheme Revocable ABE with Verifiable Outsourced decryption

(ReVO-ABE). Finally, using our ReVO-ABE, we build a Dynamic Multi-Group Secure

Data Sharing scheme called DMG-SDS. We summarize our key contributions in this paper

as follows:

1. We propose ReVo-ABE by utilizing our federated cloud architecture and newly pro-

posed data structure called e-TGDH. It is collusion-resistant, and does not put any

limit on the number of user revocations or joining.

2. We propose the first ABE based multi-group data sharing scheme, called the dynamic

multi-group secure data sharing scheme (DMG-SDS) that supports the operations

like group merge and group split.

3. Our security analysis shows that our scheme is secure against different kind of col-

lusion attacks. We present a detailed performance analysis of our scheme from both

the experimental and theoretical standpoint, and the results show that our proposed

scheme has better performance benefits than others.
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2. RELATEDWORKS

Attribute-based encryption was introduced by Waters et al. [18] and the two other

variants ofABE called key-policy attribute-based encryption (KP-ABE) [19] and ciphertext-

policy attribute-based encryption (CP-ABE) [20] were eventually proposed. In KP-ABE,

the access policy is associatedwith the secret keys, while in CP-ABE, it is associatedwith the

ciphertext. It was until the emergence of revocable ABE [3] that ABE became more popular

for secure group data sharing in the cloud since it has the ability to revoke or add a user

in the data sharing group. The schemes [3, 4] proposed indirect revocation schemes where

the attribute authority realizes the revocation by periodic update and redistribution of secret

keys to the nonrevoked users. A more practical method named directly revocable ABE was

proposed in PIRRATE [6] and [7], where the revocation list is embedded in the ciphertext

by the encryptor. PIRRATE has a limitation that only allows t out of n revocations, where

t has to be fixed beforehand. On the other hand, encryption and decryption time increases

linearly with the number of nonrevoked users in [7]. A more efficient directly revocable

ABE scheme was proposed by embedding a revocation list in the ciphertext using subset

cover from a binary key tree [8, 9, 10, 11]. The main limitation was that the total number of

users needs to be fixed during the tree creation, and no new user can be added afterwards.

Despite these limitations, the directly revocable ABE is the most compatible ABE scheme

for secure group data sharing in the cloud. However, it fails to provide an efficient solution

for multi-group data sharing because it cannot handle group merge and split operations

without affecting the attribute secret keys and membership keys of nonrevoked users.

The schemes [12, 21, 14] put forward a revocable ABE scheme where each user’s

private key is composed of two parts: one associated with her authorized attribute (SKS)

and the other associated with the group she belongs to (MbK). Unlike previous schemes

such as [7, 13, 11, 9, 10], MbK here is collusion resistant. As a result, the system remains

secure even if a revoked user obtains the group secret key component of a valid user. But the

disadvantage is that after a revocation, the group manager has to update and transmit group
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Table 1. Comparison with related schemes in terms of security and functionality.

Scheme Security
assumption

Model Outsourced
Decryption

Verifiability Revocation Unlimited
joining

Multi-
group

Collusion
resistant

DASS [8] Decisional PB-
DHE

Standard 7 7 3 7 7 7

Hur-I [13] Generic Group RO 7 7 3 7 7 7

Hur-II [7] Generic Group RO 7 7 3 3 7 7

PIRATTE [6] Generic Group RO 7 7 3 3 7 7

VO-ABE [17] Decisional
q-PBDHE

Standard 3 3 7 7 7 N/A

CryptCloud+[5] l-SDH Standard 7 7 3 7 7 3

Flexible [12] Generic Group RO 3 7 3 3 7 3

UserCol [14] Generic Group RO 7 7 3 7 7 3

Ours CDH RO 3 3 3 3 3 3

secret key components of all the existing users. Besides, every encryption and re-encryption

also requires the group manager’s participation, which is inefficient. The scheme [5] also

suffers from the same issues. The directly revocable schemes proposed in [22, 23, 24, 25]

delegate the revocation task to the cloud, but unable to prevent a collusion attack when a

revoked user colludes with a nonrevoked user and the cloud. A recently proposed traceable

ABE scheme [26, 27] focuses on revoking a user by finding the leaked keys rather than

preventing a revoked-nonrevoked user collusion attack.

ABE is computationally intensive because it has expensive pairing and group expo-

nentiation operations. Green et al. [16] first reduced ABE decryption cost at the user end

by securely outsourcing those expensive operations to the cloud. The idea is to blind user’s

attribute secret key with a blinding key and give it to the cloud while keeping the blinding

key secret. The cloud can use blinded attribute keys to partially decrypt the ciphertext so

that the user can later fully decrypt it using the secret blinding key. Later, [17, 28, 29, 30, 31]

added verifiability to the outsourced decryption to ensure that the cloud correctly performs

the computation. Among them, Qin et al. [17] was able to achieve verifiability with a

short and constant overhead, while others ended up adding a much larger overhead to the

ciphertext. However, none of them supports revocation.
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A comparison in terms of different functionalities and security among [8, 13, 7,

6, 17, 5, 12, 14] and our work has been shown in Table 1. Since these schemes are the

most closely related to our scheme, we will refer to these schemes throughout this paper

for comparison. VO-ABE [17] is the only one that does not support revocation but it is

also the only one (except ours) to support verifiable outsourced decryption. The scheme

[6, 13, 7, 12], and ours are based on the CP-ABE scheme in [20]. As a result, these four

are secure in the random oracle (RO) model like [20]. Only [12, 14, 5] and our scheme are

collusion resistant ( against a revoked-nonrevoked user collusion attack), and none of the

schemes except ours supports multi-group scenario.

3. BACKGROUND

In this section, we first present the symbols and notations used in this paper re-

peatedly. Then, we discuss the access structure and access tree. Finally, the cryptographic

primitives related to our scheme are given, followed by their security assumptions.

3.1. SYMBOLS AND NOTATIONS USED

We use G and GT to represent two multiplicative cyclic groups of prime order p,

while g is a generator of G. The symbol Zp is used to denote the group of integers modulo

p. We utilize four hash functions, defined as H : {0, 1}∗ → G, H1 : GT → {0, 1}l1 ,

H2 : {0, 1}∗ → {0, 1}l2 , and H3 : G → Zp. We also make use of a randomness extractor

function [17] defined as F : GT → K, whereK is the symmetric key space. Enc andDec are

the encryption and decryption functions, respectively for the symmetric encryption scheme

used. We denote the CP-ABE scheme proposed in [20] as CP-ABE0.

Access structure (A): LetU be an attribute universe. An access structure onU is

a collection A of non-empty sets of attributes (i.e. A ⊆ 2U \ ∅). The sets in A are called

the authorized sets, and the sets not in A are called the unauthorized sets.
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Access tree (Υ): An access treeΥ is a tree representation of access structureA. Each

non-leaf node represents a threshold gate. Each leaf node y is associated with an attribute of

A, and attr(y) returns that attribute. For any node y, it is assumed that 0 ≤ ty ≤ numy, where

ty and numy stand for the threshold value and the number of children of y, respectively. The

parent of y is represented by parent(y). Each child y of a parent node x is given a number

from 1 to numx denoted by index(y). To decrypt a leaf node, the corresponding attribute

secret key is required. However, to decrypt a non-leaf node y, at least ty children must be

decrypted. An access structure A is said to be satisfied if the root of the corresponding Υ

can be decrypted successfully.

Lagrange Coefficient (Li,Q): We define Li,Q
(
y
)
=

∏
j∈Q, j,i

y − j
i − j

as the Lagrange

Coefficient for i ∈ Zp and a set Q = {x |x ∈ Zp}.

3.2. CRYPTOGRAPHIC PRIMITIVES

Definition 4 Bilinear Map: A bilinear map is a function e defined as e : G × G → GT

where e must have the following properties:

1. Bilinearity: for all u, v ∈ G, and a, b ∈ Zp, the following relationship must always

hold: e
(
ua, vb

)
= e (u, v)ab

2. Non-degeneracy: e
(
g, g

)
, 1

3. Computability: group operations in G and e should be efficiently computable.

3.2.1. Tree-based Group Diffie-Hellman (TGDH). Tree-based Group Diffie -

Hellman is a secure and efficient protocol that can be realized by a complete binary tree

called the TGDH tree [32]. Each node in the tree is either a leaf node or has two children.

The index of a node is represented as < l, k >, where l is the level of the node and
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Figure 1. A TGDH Key Tree of height 3 consisting of seven members

0 ≤ k ≤ 2l − 1. Each member of the group is associated with a leaf node. Every node

< l, k > in the tree has a secret key K<l,k> and a blinded key BK<l,k> that are calculated as

follows:

BK<l,k> = gK<l,k> mod p (1)

K<l,k> = H3
((

BK<l+1,2k+1>
)K<l+1,2k>

)
mod p

= H3
((

BK<l+1,2k>
)K<l+1,2k+1>

)
mod p

= H3
(
gK<l+1,2k>K<l+1,2k+1>

)
mod p (2)

Equation (2) is a recursive formula and the base case is when node < l, k > is a leaf.

Each member is associated with a leaf < l, k > and knows the secret key K<l,k> = ai of that

leaf. This is the user’s membership secret key. The set of nodes from a leaf to the root is

called the path of that leaf and the set of sibling nodes of all the nodes in the path is called

the co-path of that leaf. If an authentic current member of the group at leaf < l, k > knows
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all the blinded keys of its co-path, it can calculate the secret keys of all the nodes in its path

from < l, k > to the root using Equation (2). In TGDH protocol, K<0,0> and BK<0,0> serves

as group secret and public key, respectively.

Figure 1 is a TGDH tree consisting of seven members. Member u4 is associated

with leaf < 3, 3 > and his or her co-path is {< 3, 2 >, < 2, 0 >, < 1, 1 >}. If u4 knows the

blinded key set of its co-path (i.e., {BK<3,2>, BK<2,0>, BK<1,1>}), he/she can compute the

secret key set {K<2,1>, K<1,0>, K<0,0>}.

3.3. COMPLEXITY ASSUMPTIONS

In the following, we review the complexity assumption of TGDH called DDH

(decisional Diffie-Hellmanand) and CDH (computation Diffie-Hellman), as well as the

complexity assumption of bilinear map called DBDH (decisional bilinear Diffie-Hellman).

Decisional Diffie-Hellman (DDH) Assumption: Let a, b, r be chosen randomly

from Zp. Then, no probabilistic polynomial time adversary can distinguish (ga, gb, gab)

from (ga, gb, gr ) with a non-negligible advantage.

Computation Diffie-Hellman (CDH) Assumption: By following the notations of

DDH assumption, given (g, ga, gb), no polynomial time adversary can compute gab.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption: Let g be a generator of

a cyclic group G and e : G × G → GT be a bilinear pairing. Then, no probabilistic

polynomial time adversary can distinguish
(
ga, gb, gc, e(g, g)abc

)
from

(
ga, gb, gc, e(g, g)r

)
with a non-negligible advantage given that a, b, c, r ∈ Zp are chosen randomly.

4. SYSTEM AND THREAT MODEL

In this section, we present our system model followed by the threat model and its

implications.
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4.1. SYSTEMMODEL

The system model we consider here is a multi-group cloud storage similar to that of

Figure 2. Our system is composed of four basic entities: federated cloud with two different

cloud service providers (cloud1 and cloud2), attribute authority (AA), group admin (GA),

and users. Users can be also data owners. There can be multiple user groups, and each

group consists of some users and a group admin.

The workflow starts when AA initializes the system by generating the public key

(PK), the master secret key (MK), the cloud1 master secret key (C1MK), and the group

master secret key (GMK). Then, AA publishes PK and securely sends C1MK and GMK

to cloud1 and GAs, respectively while keeps MK secret (not shown in Figure 2). To add

a user in the group, GA creates a new leaf node in the TGDH tree and provides him or

her with a membership key (MbK) associated with the new leaf. Whereas GA revokes a

user by removing the associated leaf node from the tree (Section 6). GA publishes the

group public key to the cloud. Then, AA generates attribute secret key (SKS) for the user’s

authorized attribute set (S), and securely sends to the user. At the same time, AA secretly

sends the transformation key (TKS) and the update key (UK) corresponding to SKS to

cloud1 and cloud2, respectively. After each revocation or joining epoch, GA sends the

proxy update key (UPr) to cloud2, and cloud2 updates the UK of all nonrevoked users.

The data owner uploads the ciphertext (CT) to cloud1 for sharing purpose. Eventually,

the user requests for the CT from cloud1. If the user is a nonrevoked member and his or

her authorized attribute set satisfies the ciphertext policy, then cloud1 and cloud2 jointly

carryout outsourced decryption using the user’s TK and UK, and returns the partially

decrypted ciphertext (CTpart to the user. The valid user then computes the group secret key

(GSK) from his or her MbK, and fully decrypts CTpart. Our model differs from the typical

single-group model ([7, 6]) because there can be multiple groups, and operations like group

merge and split are allowed.
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Figure 2. Multi-group cloud storage

4.2. THREAT MODEL

We consider all entities to be preloaded with a public-private key pair and all the

secret key distribution happens via a secure channel. We assume the cloud to be a semi-

honest entity, a standard practice in revocable ABE literature [7, 4, 8, 9, 11]. Semi-honest

means that the cloud is open to deduce any information from the services it provides like

storing and updating files and giving them to legitimate users upon request. We also assume

that the attribute authority and the group admins are honest entities and do not collude.

In this paper, we consider different types of collusion attacks. To be more specific,

we assume that in federation, individual cloud1 or cloud2 (but not both, and clouds don’t

collude with each other also) may collude with a revoked user to restore his/her decryption

ability. We also assume that a revoked user may collude with the nonrevoked user(s) to

restore his/her decryption ability. We formally define the possible collusion attacks as

follows:
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Type-1 collusion attack: Here, cloud1 colludes with a revoked user (while cloud2

follows the protocol) in order to help him/her decrypt a ciphertext. The attribute set (S) in

the revoked user’s attribute secret key (SKS) may satisfy the access policy of the ciphertext

(CT). To be more specific, cloud1 with TKS, and the revoked user with SKS and MbK, tries

to decrypt CT without any cooperation from cloud2 given that S may satisfy the access

policy of CT.

Type-2 collusion attack: This is same as the type–1 attack except that cloud2 colludes

with the revoked user while cloud1 follows the protocol. So in this case, cloud2 with the

update key UK, and the revoked user with SKS and MbK, try to decrypt CT without any

cooperation from cloud1 given that S may satisfy the access policy of CT.

Type-3 collusion attack: In this type of collusion attack, a revoked user (who has

SKS and MbK) colludes with a nonrevoked user (who has SK′S′ and MbK′), and one of

the clouds (e.g., either cloud1 or cloud2) in order to decrypt a ciphertext CT. However,

the constraint is that S may satisfy the access policy of CT but S′ does not satisfy it. The

reason for this constraint is that if S′ satisfies the access policy, then the nonrevoked user

can legally decrypt CT (and directly give to the nonrevoked user).

5. EXTENDED TGDH KEY TREE STRUCTURE

Before discussing ReVO-ABE in Section 6, we present its main component extended

TGDH (or e-TGDH) tree structure, in this section. As users keep joining or leaving, the

TGDH tree discussed in Section 3.2.1 keeps changing. This also results in a new blinded

and secret key for each node in the path. For example, revoking u5 from the key tree in

Figure 1 results in the key tree in Figure 3a. Here, blinded and secret keys of node < 1, 1 >

and < 0, 0 > are changed. To compute the group secret key (K<0,0>), a valid user needs

his/her membership secret key and blinded keys of the co-path. If the history of the blinded

key is not saved, nonrevoked users cannot compute any previous group secret key unless



122

Table 2. The e-TGDH index table for group GID

UID (version, < l, k >)
u1 (0,<3,0>)
u2 (0,<3,1>)
u3 (0,<3,2>)
u4 (0,<3,3>)
u5 (0,<2,2>)
u6 (0,<3,6>), (1,< 2,2>)
u7 (0,<3,7>), (1,<2,3>), (2,<3,6>)
u8 (2,<3,7>)

one has previously been computed and saved. Thus, it is necessary to preserve blinded

key history. One solution approach is to create a new tree each time, but this poses a huge

overhead as a tree of size 2m needs to be created every time. To solve this problem efficiently,

we propose a new data structure named the e-TGDH tree. It is based on the observation that

a revocation or joining only affects the keys of nodes in the path. Therefore, a new version

of the tree can be generated by reusing the unaffected nodes and creating new nodes only

for those who are affected in the path. This requires only O(logm) additional space to create

a new version of the tree while keeping the previous one.

Versioning and Indexing: We will use a simple versioning technique to keep track

of the changes made in the tree. CurrVer j (initially 0) will be used to refer to the latest

version number for a group, say j. According to our scheme, the group admin will store

only a single TGDH tree of the latest version that contains both secret and blinded keys.

The clouds will store the e-TGDH tree that contains only blinded keys. the indices of the

left and right child of an intermediate node < l, k > are represented as < l + 1, 2k > and

< l + 1, 2k + 1 >, respectively. The advantage is that the binary representation of k in l

digits is actually the traversal path of node < l, k > from the root. For example, the traversal

path of leaf < 3, 2 > in Figure 1 is 010, where 0 and 1 denote left and right, respectively.

In the e-TGDH tree, a node might be shared among multiple tree versions and its index

may vary in different versions. The clouds maintain a table called e-TGDH index to store
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node indices for different versions. Since users are associated with leaf nodes, only leaf

indices are required to be saved in the table. We will use Table 2 to illustrate how indices are

saved as e-TGDH tree changes. Bold-faced entries in the second column (having version=0)

represent the initial leaf indices for the users of the tree in Figure 1.

Algorithm 1 Revokes UID from the group and updates the e-TGDH tree
Procedure: Revoke-User ( list_BK, root, GID, version, UID )
1: new_root = new_ptr = old_ptr = next← null
2: path← Get-Path ( GID, version, UID )
3: if list_BK is empty then
4: new_root← sibling of UID’s associated leaf node
5: Record-Index ( version+1, new_root, 0, 0 )
6: else
7: new_root = new_ptr← New-Node(); old_ptr← root
8: i = l = k ← 0; new_ptr.BK← list_BK[i]
9: while path.length-2 > i do
10: next← New-Node()
11: if path[i]==0 then
12: new_ptr.right← old_ptr.right; new_ptr.left← next
13: old_ptr← old_ptr.left; k ← 2k
14: else
15: new_ptr.left← old_ptr.left; new_ptr.right← next
16: old_ptr← old_ptr.right; k ← 2k + 1
17: end if
18: i++; l++; next.BK ← list_BK[i]; new_ptr← next
19: end while
20: tmp_ptr← old_ptr
21: old_ptr← (path[i]==0 ? old_ptr.left : old_ptr.right)
22: old_ptr← (path[++i]==0 ? old_ptr.right : old_ptr.left)
23: if path[i − 1]==0 then
24: new_ptr.right← tmp_ptr.right; new_ptr.left← old_ptr
25: Record-Index ( version+1, old_ptr, l+1, 2k )
26: else
27: new_ptr.left← tmp_ptr.left; new_ptr.right← old_ptr
28: Record-Index ( version+1, old_ptr, l+1, 2k+1 )
29: end if
30: end if
31: return ( new_root, ++version )
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Figure 3. Group admin and cloud’s view of the TGDH and e-TGDH tree respectively after
removing user u5 from the group

The changes caused by user revocation or joining is propagated along the e-TGDH

tree, which is discussed in Section 5.1 and 5.2, respectively.

5.1. USER REVOCATION

To revoke a user from the group, the group admin deletes the corresponding leaf

node from its TGDH tree, updates the blinded and secret keys of the path, and increments

CurrVer j . The admin then sends GID- the group id, UID- the user id, and list_BK- the list

of updated blinded keys in the path to the cloud. The cloud calls procedure "Revoke-User"

in Alg. 1 with parameters version, root, and received values from the admin, where version

equals CurrVer j and root is the corresponding e-TGDH tree root for that version. The

algorithm first gets the traversal path of the leaf node associated with UID by calling the

subroutine "Get-Path" (line 2). This subroutine gets the leaf index of UID with the highest

version value from e-TGDH index table and returns k as a l characters binary string. An

empty list_BK (line 3) means that UID is associated with a leaf that is a child of the root.

In this case, the other child of the root becomes the new root (line 4). Then, subroutine
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Record-Index (Alg. 3) is called on the new root (line 5). This subroutine creates new entries

in an e-TGDH index table for the users whose leaf node indices have been changed. If the

list_BK is not empty, a new node is created for each BK in list_BK (line 7–19). Each new

node will have two children; one being the next new node and the other being the existing

unaffected child in the tree. In line 20–29, the sibling node of UID’s associated leaf node

is added and "Record-Index" is called on that node to create new leaf indices with new a

version number in the e-TGDH index table. Finally, version is incremented and returned

with the new_root (line 31). Now, version is assigned to CurrVer j and new_root becomes

the root for this new version.

Example: Let us assume that Figure 1 represents the TGDH tree of version=0 for a

group of seven users. After revoking a user u5, Figure 3a becomes the admin’s view of the

TGDH tree. Admin sends u5, GID, and {BK<0,0>} to the cloud. Then, the cloud calls Alg.

2. The value of path in line 2 becomes ’10’ since (0, < 2, 2 >) is the entry with the greatest

version value. A new node is created and BK<0,0> becomes its blinded key. "Record-Index"

is called on the sibling node of u5 that results in (1, < 2, 2 >) and (1, < 2, 3 >) entries for u6

and u7 in Table 2. Finally, the version is incremented to 1 and is returned with the new root.

As a result, CurrVer j becomes 1. Figure 3b shows the e-TGDH tree after the revocation.

Dotted lines have been used to show the changes that happened due to this revocation.

5.2. NEW USER JOINING

To add a new user with user id (UID) to the group, the admin picks the shallowest

leaf node associated with user id (_UID) and replaces the leaf node with a node having

two children, the left child being the shallowest leaf and the right child being a new node

associated with UID. Eventually the cloud gets UID, _UID, and list_BK from the admin

and calls the procedure described in Alg. 2. "Get-Path" subroutine is called (line 1) to get

the path of _UID. A node is added for each BK in list_BK (line 4–14) similarly to that of

Alg. 1. In line 15–17, the leaf of _UID becomes the left leaf of its new parent. A new node
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is created for the new user UID and is assigned as the right leaf. "Record-Index" is called

on the new parent to record the index with new version for _UID and UID. Finally, version

is incremented and returned with new_root. CurrVer j and the corresponding root are also

updated accordingly.

Algorithm 2 Adds UID to the group and updates the e-TGDH tree
Procedure: Add-User ( list_BK, root, GID, version, UID, _UID )
1: path← Get-Path ( GID, version, _UID )
2: new_root = new_ptr← New-Node(); old_ptr← root
3: i = l = k ← 0; new_root.BK← list_BK[i]
4: while path.length > i do
5: next← New-Node()
6: if path[i]==0 then
7: new_ptr.right← old_ptr.right; new_ptr.left← next
8: old_ptr← old_ptr.left; k ← 2k
9: else
10: new_ptr.left← old_ptr.left; new_ptr.right← next
11: old_ptr← old_ptr.right; k ← 2k + 1
12: end if
13: i++; l++; next.BK ← list_BK[i]; new_ptr← next
14: end while
15: new_ptr.left← old_ptr; new_ptr.right← New-Node()
16: new_ptr.right.BK← list_BK[i+1]
17: new_ptr.right.UID← UID; new_ptr.right.leaf← True
18: Record-Index ( version+1, new_ptr, l, k)
19: return ( new_root, ++version )

Algorithm 3 Records the updated indices in the e-TGDH index table
Procedure: Record-Index ( version, node, l, k )
1: if node is a leaf then
2: Write ( node.UID, version, l, k )
3: else
4: Record-Index ( version, node.left, l+1, 2k )
5: Record-Index ( version, node.right, l+1, 2k+1 )
6: end if
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Figure 4. Group admin and cloud’s view of the TGDH and e-TGDH tree respectively after
adding user u8 in the group

Example: Figure 4a is the result of adding u8 to the tree in Figure 3a by the admin.

Note that u8 has been added to node < 2, 3 > that used to be the leaf node of u7. The

admin sends _UID = u7, UID = u8, and list_BK = {BK<0,0>, BK<1,1>, BK<2,3>, BK<3,7>} to

the cloud. To add u8 to the e-TGDH tree, the cloud calls "ADD-User". The variable path

becomes ’11’ since (1, < 2, 2 >) has the greatest version in the e-TGDH index table for u7

at that time. Then, the counterpart of Figure 4a is created in the e-TGDH tree by adding a

new node for each BK in list_BK. Also, (2, < 3, 6 >) and (2, < 3, 7 >) are added in Table 2.

CurrVer j becomes 2 after the function returns. Figure 4b represents the e-TGDH tree after

adding u8. Thick lines have been used to mark the changes caused by this event.

5.3. UNLIMITED USER REVOCATION AND JOINING

In order to revoke or add a user, the admin deletes the corresponding leaf node or

adds a new node in the TGDH tree, respectively. The admin also updates the blinded keys

along the path and sends to the cloud so that cloud can update the e-TGDH tree. Note that

the secret key re-distribution to the existing users is not required as the existing users can

compute the new group secret key (K<0,0>) with the updated public blinded key available in
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the cloud. Since leaves can be deleted or new leaves can be added as many time as required,

the number of revocation or new user joining in our scheme have no limit as well. On the

contrary, the schemes such as [9, 10, 11, 8, 13, 5, 14] uses a static key tree because adding

or removing leaves changes the secret membership keys of the existing users. Hence, the

admin would require sending new secret membership keys to those users. It is avoided by

creating a large static tree that limits the number of total users in the group.

6. PROPOSED REVO-ABE SCHEME

We construct our ReVO-ABE scheme by performing the following transformations

to CP-ABE0. First, the user is given a membership key (MbK) associated with the leaf of

e-TGDH tree in addition to the attribute secret key (SKS). Cloud1 and cloud2 are given the

cloud1 master key (C1MK) and the update key (UK), respectively. For secure outsource

decryption, cloud1 is given the transformation key (TKS), created by blinding SKS with a

random exponent t. The data owner creates ciphertext (CT) by encrypting with a policy and

the group public key (GPK). The GPK is created from all the non-revoked users’ MbKs so

that revoked users cannot decrypt. We cryptographically bind SKS,MbK,UK, and C1MK

in a novel way so that collusion attacks can be prevented. Revocation or joining is done by

removing or adding a node in the e-TGDH tree and updating the GPK from all nonrevoked

users’ MbKs. Since SKS,MbK,UK, and C1MK are cryptographically binded together, a

user’s access is immediately revoked after removing him/her from the e-TGDH tree as long

as one of the clouds acts honestly. Our detailed ReVO-ABE construction is as follows:

• Setup(1K ): This algorithm is run by AA. The algorithm takes as input the

security parameter K and generates a group G of prime order p with a generator g and

chooses hash functions H , H1, H2, and H3. In addition, it chooses randomness extractor

F and two random exponents α, β ∈ Zp. It randomly chooses tc ∈ Zp and sets cloud1

master secret key as C1MK = tc, and computes the group master secret key as GMK=gtc/β.
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The master secret key MK= (β, gα, tc) is kept secret, and the public key is published as

PK= (G, g,GT,H ,H1,H2,H3, F, e(g, g)α, h = g β). The C1MKandGMK is sent to cloud1,

and all group admins (GAs), respectively.

• Group-Setup(PK, GMK, N, j): This algorithm takes as input PK, GMK, the

total number of initial users in the group (N), and the group id ( j). Each user is identified

with a user id (ui), where 1 ≤ i ≤ N . It initializes the TGDH key tree with N leaf nodes and

associates each ui with a leaf node that has a membership secret key ai ∈ Zp. The blinded

and secret key for all the intermediate nodes are calculated. Let K j
0 and g

K j
0 be the initial root

secret key (K<0,0>) and blinded key (BK<0,0>) of group j, respectively. Then, GA randomly

chooses b0 ∈ Zp and publishes the initial group public key GPK j
0 = (gK j

0, gb0K j
0, g βK j

0 ), and

keeps GSKi
0 = K j

0 secret. GA also publishes the TGDH key tree (without the secret key of

any node) so that cloud1 and the cloud2 can create the corresponding e-TGDH tree.

• KeyGen(PK, MK, S,G, {GPK j
l }∀ j∈G): The key generation algorithm chooses r and

{r1, r2, · · · , r |s |} randomly from Zp. Then, it computes D1,G = {D1, j = g(α+r+blK
j
l
)tc/β}∀ j∈G

and SK′S = ({D′2,i = gr/β .H (i)ri, D′3,i = g βri }∀i∈S) where S and G are user’s authorized

attribute set and groups, respectively. Next, it chooses a random exponent t ∈ Zp and

computes the transformation key TKS = ({D2,i = gr/βt .H (i)ri/t, D3,i = g βri/t }∀i∈S). Finally,

it sends D1,G to cloud2, TKS to cloud1, and the attribute secret key SKS = (TKS, t) to the

user.

• Group-KeyGen(PK, GMK, j,GPK j
l , ui): If ui is an existing user of group j, then

this algorithm outputs the membership secret key ai of the user’s associated leaf node in

the TGDH key tree. Otherwise, it replaces the shallowest node < l′, k > with a parent node

having two children labeled as < l′ + 1, 2k > and < l′ + 1, 2k + 1 >. The old < l′, k >

node becomes < l′+ 1, 2k >, and ui is associated with < l′+ 1, 2k + 1 >. Next, it randomly

selects ai ∈ Zp, sets K<l ′+1,2k+1> = ai and updates the blinded and secret keys of all the

nodes along the path. GA increments the version to l + 1, and updates the group secret key

as GSK j
l+1 = K j

l+1 = K<0,0> and the group public key as GPK j
l+1 = (gK j

l+1, gbl+1K j
l+1, g βK j

l+1 ).
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GA also computes a proxy update key UPr j
l→l+1 = g(bl+1K j

l+1−blK
j
l
)tc/β. It securely sends ai

and UPr j
l→l+1 to the user and cloud2, respectively. Both cloud1 and cloud2 updates their

copy of e-TGDH tree using Alg. 2. Cloud2 updates D1, j for all nonrevoked users as in

D′1, j = D1, jUPr j
l→l+1 = g(α+r+bl+1K j

l+1)tc/β.

• Encrypt(PK, M, A, { j,G}, {GPK j ′

l }∀ j ′∈G∪ j ): This algorithm selects a random

polynomial Py of degree dy for each node y of Υ corresponding to A with the condition

dy = ty−1 in the followingmanner. First, a random s ∈ Zp is chosen to set PR(0) = s, where

PR represents the polynomial associated with the root R. Then, dR number of other points

on PR are chosen randomly to define it completely. For any other node y, the algorithm com-

pletely defines the corresponding polynomial Py by setting Py (0) = Pparent(y) (index(y))

and choosing dy random values on Py. This process is carried out in a top-to-bottom

fashion starting from the root R. Let V be the set of leaf nodes in Υ. Afterwards,

it computes C′0, j = e(g, g)αs+blK
j
l

s,CPr = {CPr j→ j ′ = e(g, g)bl′K
j ′

l′
s−blK

j
l

s
}∀ j ′∈G,C1,G =

{C1, j ′ = g βK j ′

l
s}∀ j ′∈G∪ j, {C2,v = gPv (0) β,C3,v = H (attr (v))Pv (0)}∀v∈V . Next, it chooses

a random seed KR ∈ GT and computes h1 = H1(KR), the symmetric encryption key

KSE = F (KR), symmetric ciphertext CTSE = EncKSE(M), and the verification key VK =

H2(h1 | |CTSE ). Finally, the algorithm outputs the complete ciphertext as CT = (C0, j =

KRC′0, j = KRe(g, g)αs+blK
j
l

s, {C2,v,C3,v }∀v∈V,CTSE,CPr, C1,G,VK).

• Transform(TKS, CT, D1, j, j, ui): This algorithm partially decrypts CT by using

a recursive algorithm called DecryptNode ( CT,TKS, v) that works as follows. It returns

Fv when called on a node v in the access tree Υ corresponding to A. The base case of the

algorithm includes the fact when v is a leaf node. For an attribute i = attr (v), if i < S, then

Fv =⊥. Otherwise,

Fv =
e(C2,v, D2,i)
e(C3,v, D3,i)

=
e(gPv (0) β, (gr/β .H (i)ri )1/t )
e(H (attr (v))Pv (0), g βri/t )

= e(g, g)rPv (0)/t .
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The recursive case of the algorithm is when v is a non-leaf node. Let us assume

that Sv is the set of successfully decrypted child nodes of v. If |Sv | < tv, then Fv =⊥.

Otherwise, the following value is returned:

Fv =
∏
y∈Sv

F
L j,S′v

(0)
y ;where j=index(y)

S′v={index(y):y∈Sv }

=
∏
y∈Sv

(
e
(
g, g

)r .Pparent (y) (index(y))/t
)L j,S′v

(0)

=
∏
y∈Sv

e
(
g, g

)rPv ( j).L j,S′v
(0)/t
= e(g, g)r .Pv (0)/t .

Eventually, DecryptNode returns FR = e(g, g)rs/t if root R of Υ is successfully

decrypted. A failure symbol ⊥ is returned otherwise.

If the user (ui) is a valid member of group j, cloud1 chooses a random b ∈ Zp

and sends (ui, j,C′1, j = (C1, j )b) to cloud2. Then, cloud2 computes T = e(C′1, j, D1, j ) and

sends it back to cloud1. After that, cloud1 computes T1 = T1/tcb = e(g, g)(α+r+blK
j
l
)K j

l
s.

Then, it either sets T2 = C0, j , or computes T2 = C0, j ′CPr j ′→ j = KRe(g, g)αs+blK
j
l

s (if

j , j′and j ∈ G). Finally, cloud1 sends CTpart = (T1,T2, FR,CTSE,VK) to the user.

• Decrypt(PK, SKS, CTpart,GSK
j
l ): The decryption algorithmfirst computes K′R =

T2(FR)t/T
1/K j

l

1 . Next, it verifies the outsourced delegation by

verify =




1 if VK = H2(H1(K′R) | |CTSE )

0 otherwise.

If verification fails,⊥ is returned. Otherwise, it computes KSE = F (K′R) and returns

M = DecKSE (CTSE ).
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• Revoke(ui, GMK, j, l): This algorithm removes the user (ui) from the group j.

Then, GA removes the leaf node associated with ui from the TGDH tree, merges its sibling

node with its parent, and updates all the blinded and secret keys along the path from the

leaf to the root. GA increments the version to l + 1, and updates the group secret key as

GSK j
l+1 = K j

l+1 = K<0,0> and the group public key as GPK j
l+1 = (gK j

l+1, gbl+1K j
l+1, g βK j

l+1 ).

GA also computes the proxy update key UPr j
l→l+1 = g(bl+1K j

l+1−blK
j
l
)/β. It secretly sends

UPr j
l→l+1 to cloud2. The e-TGDH tree is also modified by cloud1 and cloud2 using

Alg. 1 to reflect the changes. Cloud2 updates D1, j for all nonrevoked users as in D′1, j =

D1, jUPr j
l→l+1 = g(α+r+bl+1K j

l+1)tc/β.

7. PROPOSED DMG-SDS SCHEME

In this section, we discuss how we use ReVO-ABE to construct our dynamic multi-

group secure data sharing (DMG-SDS) scheme. The DMG-SDS scheme calls the ReVO-

ABE algorithms in the backend. There are multiple groups in the system and each group is

associatedwith an e-TGDH tree and a TGDH tree. They aremaintained by the cloud (cloud1

and cloud2) and the corresponding group admin, respectively. DMG-SDS scheme supports

group merge and group split. The data owner determines if re-encryption is required during

file update by comparing the associated version l with CurrVer j of the TGDH. The details

are as follows:

7.1. SYSTEM INITIALIZATION

The attribute authority calls Setup algorithm to generate PK and MK. It pub-

lishes PK and keeps MK secret. Let us assume that initially, there are n different groups

{1, 2, · · · , n} in the system and each group j has m j users (i.e., j = {u j,1, u j,2, · · · , u j,m j }).

For each group j, the group admin GA j calls Group-Setup and initializes the TGDH key

tree TG j . Then, each GA j sends to the cloud the respective TG j with only the blinded keys
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and the cloud builds the initial e-TGDH tree from it. Both the cloud and GA j sets CurrVer j

equals to zero.

7.2. MEMBER JOINING

A user joins a set of groups (G) by the following two steps:

• Each GA j first assigns a user id u j,i to the new user. Then, calls Group-KeyGen with

arguments (PK, GMK, j,GPK j
l , ui) and returns membership secret key ai to u j,i.

• The user requests attribute secret keys for the authorized attribute set S. Attribute

authority calls KeyGen(PK, MK, S,G, {GPK j
l }∀ j∈G). It sends D1,G to cloud2, TKS to

cloud1, and the attribute secret key SKS = (TKS, t) to the user.

7.3. FILE OUTSOURCING

A data owner has to encrypt a file before uploading it to the cloud to protect its

privacy from potential adversaries. To outsource a file M for a set of groups {G ∪ j}, the

owner follows the steps below:

• Gets the latest GPK j
l for ∀ j′ ∈ {G ∪ j} from the cloud.

• Calls Encrypt(PK, M, A, { j,G}, {GPK j ′

l }∀ j ′∈G∪ j ) and uploads (ID, CT) to cloud1

where ID represents the file id.

7.4. FILE RETRIEVING

User u j,i requests a file from the cloud by sending Req=(u j,i, j, ID). Then, the cloud

and the user act as follows:

Cloud:
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• The cloud1 retrieves ciphertext (ID, CT) from its storage and the blinded key list B

of the user’s co-path from the e-TGDH tree.

• Cloud1 and cloud2 jointly run Transform algorithm, and either CTpart (if the user

ui, j is a valid member of group j and the attributes in the secret key satisfy the policy)

or ⊥ is returned.

• Cloud1 sends (ID, CTpart/ ⊥,B) to the user.

User:

• Let l be the associated version of CTpart. Then, u j,i computes GSK j
l from ai and B if

u j,i has not already computed it previously.

• Finally, calls Decrypt that outputs either M or ⊥.

7.5. MEMBER REVOCATION

The steps to revoke u j,i from the group j are as follows:

• The GA j calls Revoke(u j,i, GMK, j, l) that results in an incremented version of l + 1,

proxy update key UPr j
l→l+1 and updated ( GSK j

l+1, GPK
j
l+1).

• Cloud2 updates D1, j of all non-revoked users by proxy re-encrypting the old D1, j with

UPr j
l→l+1.

From this point, owners have to use the new GPK j
l+1 for encrypting or updating any file.

Note that by repeating this process, any number of user revocation is possible.

7.6. FILE UPDATE

For file update, the data owner checks if l , CurrVer j . In that case re-encryption

is necessary, and the data owner creates anonymous updates for timestamp ts′ as in

Uts→ts′=(ts′,U1ts→ts′ = e(g, g)bl′K
j

l′
s−blK

j
l

s,U2ts→ts′ = g βK j

l′
s), where l′ and l are the ver-
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sion numbers at timestamps ts′ and ts (ts′ > ts), respectively. The owner sends Uts→ts′ to

cloud1, and cloud1 updates CT by replacing C0, j and C1, j with C0, jU1ts→ts′ and U2ts→ts′,

respectively. For this method to work properly, the owner needs to securely store s dur-

ing creating the ciphertext (CT) so that it can be used later during creating updates (e.g.,

Uts→ts′).

7.7. GROUP MERGE

In our group merge operation, multiple groups are merged into a single group

without requiring any user to change his/her membership secret key. Even this is done

without the exchange of any secret information between group admins. To merge group j

with k, group admin GA j and GAk run between themselves a Diffie-Hellman key exchange

protocol with authentication as follows. Let (SKG j = GSK j
l = a, PKG j = ga) and (SKGk

=

GSKk
l ′ = b, PKGk

= gb) be the TGDH root secret and blinded key pair of group j and k,

respectively. (KU j, K R j ), (KU k, K Rk ) are the public and private digital signature key pairs

of GA j and GAk , respectively. We assume that GA j and GAk know each other’s public

signature key beforehand from the attribute authority. One of the group admins (say GA j)

starts the protocol by sending PKG j to GAk . Then, GAk computes SKG jk
= H3

(
gab

)
, h1 =

H2(KUk | |PKG j | |PKGk
| |SKG jk

), σ1 = Sign(K Rk, h1) and sends (PKGk
, h1, σ1) to GA j .

Group admin GA j verifies signature σ1 as in V eri f y(KUk, σ1) ?
= h1. Then, GA j computes

SKG jk
and verifies hash h1 as in H2(KUk | |PKG j | |PKGk

| |SKG jk
) ?
= h1. At this point, GA j

knows he is talking to GAk . Now GA j sends (h2 = H2(KUj | |SKG jk
), σ2 = Sign(K R j, h2))

to GAk . Then, GAk makes sure he is talking to GA j by checking V eri f y(KUj, σ2) ?
= h2

and H2(KUj | |SKG jk
) ?
= h2. Finally, admins compute corresponding root blinded key

PKG jk
= g

SKGjk and send it to both cloud1 and cloud2. Both clouds simply merge the

corresponding e-TGDH trees by making them left and right subtrees of a newly created

root node with PKG jk
as its blinded key. The merged group’s secret and public keys are

initialized as GSK j k
0 = K j k

0 = SKG jk
and GPK j k

0 = (gK jk
0 , gb0K jk

0 , g βK j
0 ).
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Table 3. Parameter of different pairing groups

Curves G1 G2 GT p k Security
SS512 512 512 1024 160 2 80

MNT224 224 672 1344 224 6 100

7.8. GROUP SPLIT

For splitting a group into multiple subgroups, the group admin needs to split the

TGDH tree and create a new TGDH tree for each sub-group. To reduce the number of

blinded and secret key computation, the admin forms new TGDH trees from the sub-trees

having users from the same group. Let L be the list of a list of leaf nodes corresponding to

the same sub-group. The algorithm has the following steps: 1) For a leaf list in L, color all

the nodes in the path of all other nodes in TGDH tree. 2) Find all the uncolored subtrees

and form a new TGDH tree using their roots. 3) Reset colors of all colored nodes. 4)

Repeat from step 1 for all lists in L. 5) Return roots of all the new TGDH trees. The admin

then sends to the cloud all the updated blinded key and the cloud carries out the update

accordingly. Note that users do not need to change their membership secret keys. For

example, say that the admin wants to split the group of seven users in Figure 1 into two sub-

groups with members {u1, u2, u6, u7} and {u3, u4, u5}. So, L = {{u1, u2, u6, u7}, {u3, u4, u5}}.

To create TGDH tree for the first group, in step 2 of the algorithm, a new root is created and

its left and right subtrees are set as subtrees rooted at < 2, 0 > and < 2, 3 >, respectively.

Note that for this tree, the admin only needs to create secret and blinded key of the new

root as in K′<0,0> = H3(gK<2,0>K<2,3> ) and BK′<0,0> = gK ′
<0,0> and reuses all existing keys in

subtrees rooted at < 2, 0 > and < 2, 3 >. Likewise, a TGDH tree for the second group is

generated by creating a new root and making node < 2, 1 > and < 2, 3 > its left and right

child, respectively.
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Figure 5. Encryption

8. IMPLEMENTATION AND EVALUATION

Implementation: We have implemented our scheme in Charm [33]. It is a Python-

based framework developed for rapid prototyping of advanced cryptographic protocols.

Charm uses PBC library [34] (written in C) for low-level system calls, including the most

expensive group exponentiation and pairing operations. Hash functions H ,H1,H2, and

H3 were implemented using SHA224, and the randomness extractor F was implemented

using SHA256.

A detailed parameter description for our experimental setup is given in Table 3.

SS512 is a super singular elliptic curve (with symmetric Type 1 pairing), and MNT224 is

the Miyaji, Nakabayashi, Takano curve (with asymmetric Type 3 pairing). In Table 3, p

= bit length of prime order p, k = embedding degree, Security is the security level in bits

with respect to the discrete log problem, and the numbers associated with the curve name

represent the base field size in bits (i.e., SS512 has a base field size of 512 bits). Though our

ReVO-ABE construction is based on a symmetric pairing group (G × G → GT ), we have

tested our implementation in both symmetric and asymmetric group settings. Charm treats

groups as asymmetric, though the actual setting depends on the type of underlying chosen
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Figure 6. Decryption

curve. More specifically, there are three different groups (G1, G2, and GT ), and pairing

is defined as e : G1 × G2 → GT . We keep most of the terms in G1 while implementing

our scheme in the asymmetric setting since operations in G1 are generally much faster than

those in G2.

Testbed setup: We have simulated our user, attribute authority, and group admin in a

desktop with Intel® Core i5-2400@3.1 GHz × 4 processor and 8 GB RAM running Ubuntu

16.04. For the cloud, we used a virtual instance in Amazon EC2 with Intel® Xeon(R)

ES-1620v2@3.7 GHz × 8 processor and 16 GB RAM running Ubuntu server 16.04.3. Both

machines run Python 3.5.2 and PBC-0.5.14 library.

Results: First, we compare the runtime of our encryption, decryption, and re-

encryption (caused by revocation or joining) with the related schemes in Figure 5, 6, and

7, respectively. For each scheme, we first set up the system with 100 users. Next, we

encrypt a message with the same access structure having eight distinct attributes. Then, we

decrypt the ciphertext with a secret key that has five attributes, four of which being common

attributes with the access structure. Finally, we re-encrypt the same ciphertext while we
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Figure 7. Re-encryption

keep access formula the same. We carried out the same experiment for SS512 andMNT224

curves. The time shown in Figure 5, 6, and 7 is the average of 50 individual trials. The

local and cloud runtime is shown in separate sub-figures. For encryption and decryption,

we compare our scheme with others who have similar features/objectives such as VO-ABE

[17], Hur-II [7], UserCol [14], CryptCloud+ [5], and CPABE0 [20]. We use CPABE0 for

the baseline comparison. For encryption, UserCol has the highest local runtime (Figure

5a), while the rest of the schemes have almost the same local runtime because UserCol

needs more group exponentiation operations (in G1) locally. Only Hur-II requires cloud-

side computation because the cloud needs to transform the ciphertext to enforce revocation

(Figure 5b). On the other hand, only our scheme and VO-ABE supports outsourced

decryption. So, local decryption cost is very small for both the schemes (Figure 6a).

However, the cloud-side computation of our scheme is less than that of VO-ABE (Figure

6b) since runtime in the cloud for our scheme increases logarithmically with the number

of attributes in the access structure, while for VO-ABE, the time increases linearly with

the number of total attributes. However, the difference here is not that prominent because

we have used a small access structure. The local cost for Hur-II is much higher than any
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Figure 8. Re-keying time

other scheme because it requires decrypting a header that involves group exponentiation

operations growing linearly with the number of total users. The performance for re-

encryption of Hur-II, DASS, UserCol, and our scheme are shown in Figure 7. Note that our

local computation cost for re-encryption is smaller than that of DASS (Figure 7a). Hur-II

only needs the computation in the cloud-side as it does not involve the data owner and

trusts the cloud for re-encryption. On the other hand, re-encryption is done by the group

admin in UserCol (shown as local cost in Figure 7a), which can be a huge performance

bottleneck considering the revocation and joining happens frequently. A very small amount

of computation cost is associated with the cloud for our scheme because cloud only does

multiplication operation to update the ciphertext (Figure 7b).

In Figure 8, we show the re-keying cost of Hur-II, UserCol, CryptCloud+, and our

scheme caused by user revocation or new user joining. The re-keying runtime grows linearly

with the number of total users in the group for all schemes except ours (Figure 8a). The

runtime for both the user (local) and the group admin of our scheme appear to be constant in

Figure 8a because runtime of other schemes is much higher which shrinks the graph along
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y axis. However, when drawn separately as shown in Figure 8b, we see that our runtime

grows logarithmically with the total number of users. The results shown here are for the

SS512 curve only. For other curves, a similar trend also follows.

We show the group split and merge cost associated with the admin in Figure 9. We

split each group into two equal sized groups and record the time by taking the average of

50 trials. In our experiment, the subgroup assignment of each user was done randomly, and

hence the time appears to grow linearly with the number of users in the original group. If

members from the same sub-group are part of a larger subtree in the original tree, then the

time becomes less as all keys in the subtree are re-used during forming new TGDH tree.

Group merging cost, on the other hand, is constant (about 1.3 ms.) because it requires only

constant number of group exponentiation operation in G1.

To summarize, our experimental results show that the proposed scheme is able to

reduce the user-side computation of ABE significantly compared to other ABE schemes.

Our scheme also keeps the re-keying and re-encryption cost at the user end relatively small.
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Table 4. Symbols used in performance analysis

Symbol Meaning
u Total number of attributes in the system
a Number of attributes in access structure A
b Number of attributes in user secret key
s Number of satisfied attributes by user secret key
|Gi | Size of a single element in group Gi
|K| Size of symmetric key
|C| Ciphertext size of actual file
|p| Size of a single element in Zp
l2 Output size of the hash functionH2
Ci Single exponentiation time in group Gi
P Computation time of a pairing operation
t Maximum number of revocations allowed
m Total number of users in the group
r Subset cover of all revoked users in the binary key tree

9. THEORETICAL PERFORMANCE ANALYSIS

In this section, we first compare our schemewith other CP-ABE-based schemes from

a theoretical perspective in terms of storage, communication, and computational efficiency.

Finally, we analyze the space complexity of the TGDH and e-TGDH trees maintained by

the group admin and clouds, respectively. Table 4 illustrates different symbols that have

been used for this purpose.

9.1. STORAGE AND COMMUNICATION EFFICIENCY

The space efficiency comparison in terms of ciphertext and secret and public key

size has been summarized in Table 5. The ciphertext size, secret key size, and public key

size represent the storage cost required by the cloud, each user, and the attribute authority to

store them, respectively. Additionally, they represent the communication cost when these

are sent from one party to another. Our ciphertext has fewer group elements compared to

[5, 12, 14]. Compared to other schemes, our scheme and VO-ABE [17] have additional l2

bytes in the ciphertex to support verifiability.
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Table 5. Comparison of storage and communication efficiency with other schemes

Scheme Ciphertext size Secret key size Public key size
DASS [8] (2a + 1) |G1 | +

|GT | + |C|
(b + 1) |G1 | +
( logm) |K|

(u + 2) |G1 |
+ |GT |

Hur-I [13] (2a + 1) |G1 | +
|GT | + |C|

(2b + 1) |G1 |
+ ( logm) |K|

2|G1 | + |GT |

Hur-II [7] (2a + 1) |G1 | +
|GT | + |C|

2(b + 1) |G1 3|G1 | + |GT |

VO-ABE [17] (2a + 1) |G1 | +
|GT | + |C| + l2

(b+ 3) |G0 | + |p| (u + 2) |G1 |
+ |GT |

PIRATTE [6] (a + 1) |G1 | +
a |G2 |+ |GT |+ |C|

2b|G1 | + (b +
1) |G2 | + 2|p|

2|G1 | + |G2 | +
|GT |

CryptCloud+ [5] (2a + 5) |G1 | +
|GT | + |C|

(b + 4 +

2logm) |G1 |
(u+6) |G1 |+3|p|

Flexible [12] (2a + 6) |G1 | +
|GT | + 2|p| + |C|

(b+4) |G1 |+2|p| 3|G1 | + 2|GT | +

|p|
UserCol [14] (4a + ra +

1) |G1 | + |GT | +

|C|

4b|G1 | + |GT | 2(u + 3) |G1 | +
2|GT | + (2m −
1) |p|

Ours (2a + 1) |G1 | +
|GT | + |C| + l2

2b|G1 | + 2|p| 2|G1 | + |GT |

The user’s secret key consists of the attribute secret key (SKS) and the membership

key (MbK). Because of using the e-TGDH tree, our MbK consists of a single Zp element

(of size |p|). On the other hand, [8, 13, 5] use a static binary tree, and the MbK consists of

all the keys along the path from the leaf to the root resulting in a MbK of size logm |K| for

[8] and [13], and MbK of size 2logm |G1 | for [5]. The scheme [14] reduces the MbK size

to 2b|G1 | (assuming logm < 2b). To create MbK, [14] generates two G1 elements from the

leaf node for each attribute in SKS (resulting in a total of 2b elements). Due to the reduced

MbK size, the total secret key size (SKS and MbK) in our scheme is smaller than that of

[13, 5, 14]. The scheme [17] have smaller secret key size than ours because [17] does not

support revocation, hence does not have any MbK.
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The public key size has a direct correlation with the underlying CP-ABE scheme

used. The scheme [6, 13, 7, 12] and our scheme are based on CP-ABE0 [20]. Hence, our

scheme is equally good or slightly better than those schemes. On the other hand, the public

key size of [17, 8, 5, 14] is very large as they are based on [35], whose public key size

increases with the total number of attributes in the system. In addition to the space cost

shown in Table 5, all schemes except [17] need to store some additional information in the

cloud to support revocation. For [13, 8, 5, 14], and our scheme, this cost is O(2m) since

these schemes store all the user information in a binary tree.

9.2. COMPUTATION COST ANALYSIS

We show the computation cost of our scheme and compare it with other schemes in

Table 6. The computation cost has been expressed in terms of group exponentiation and

pairing operation in a similar manner to [17, 7, 13, 6], etc. This is a reasonable consideration

since these two operations dominate other lightweight hash, multiplication, division, and

addition operations. Our encryption cost is less than all other schemes except that of [5].

For the local decryption cost, our scheme outperforms others except [17] because we need

one more C1 and P locally for decryption (compared to [17]) to support dynamic changes

in the group. Nevertheless, our decryption cost in the cloud-side is a lot less than that

of [17, 12] if the number of attributes (a) in the access structure grows bigger. Though

[6] does not support outsourced decryption, the cloud needs to do aC2 operations for each

decryption.

9.3. OVERHEAD DUE TO CHANGE IN GROUP DYNAMICS

In [8, 13, 7] and [12], the user has to update all the common attributes between

his and the revoked user’s attribute secret keys. Each attribute update requires one group

exponentiation operation (in G1). Consequently, the user has to do O(logm) group expo-
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Table 6. Comparison with other schemes in terms of computation cost.

Scheme Encryption Decryption
local cloud

DASS [8] (3a+1)C1+CT (s + 1)P +
s(C1 + CT )

N/A

Hur-I [13] (3a + 1)C1
+ CT

(2s + 1)P +
C1 + CT loga

N/A

Hur-II [7] (3a + 2m +
3)C1 + CT

(3s + 1)P +
CT loga

+ (m + 1)sC1

N/A

VO-ABE [17] (3a+1)C1+CT CT (2s + 1)P
+ aCT

PIRATTE [6] (a + 1)C1 +
CT + aC2

(s + loga)CT
+ (3s + 1)P

aC2

CryptCloud+ [5] (a + 5)C1
+ CT

2C1 + sCT +

(2s + 5)P
N/A

Flexible [12] 2(a + 3)C1 +
2CT

4CT (2s + 4)P +
CT loga

UserCol [14] (3a + ra +
1)C1 + CT

(2s − 1)CT +

(3s + 1)P
N/A

Ours 2(a + 1)C1
+ CT + P

2CT (2s + 1)P +
C1 + CT loga

nentiation operations. In our scheme, the user needs to compute all the secret keys along the

e-TGDH tree path to ultimately compute the new GSK which requires logm exponentiation

operations in G1 as shown in Table 7. The group admin (GA) on the other hand needs to

compute new blinded and secret keys along the path, creates one proxy update key (UPr),

and updates GPK that requires 2logm, one, and two group exponentiation operations in G1,

respectively, incurring a total of (2logm + 3)C1 cost. Our key update operation cost for the

GA is less than that of [7, 6, 12, 5, 14] because the admin needs to create update keys for

m nonrevoked users that requires O(m) group exponentiation operations. There is no cost

associated with the user in [6, 5, 14], and the cloud or the GA in [13, 8] because there is no

expensive group exponentiation or pairing operations involved.
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For re-encryption (Table 7), all a attributes in the ciphertext policy need to be

updated in [8, 13, 7]. Each attribute update requires three group exponentiation operations

(in G1). Two additional group exponentiation operations (one in G1 and one in GT )

are required to update two other ciphertext components. So the total computation cost

becomes (3a + 1)C1 + CT . This entire cost is associated with the data owner in [8], and

with the cloud in [13, 7]. In [6], the data owner alone does the re-encryption task. It

requires two group exponentiation operations (one in G1 and one in G2) for updating each

attribute and two additional group exponentiation operations (one in G1 and one in GT ) for

updating two other ciphertext components, incurring a total cost of (a + 1)C1 + CT + aC2.

CryptCloud+ does not consider re-encrypting the ciphertext after revocation. The group

admin in [12] generates a ciphertext component update that requires only a pairing and

a group exponentiation operation (a total cost of C1 + P) and the cloud multiplies this

component with the ciphertext for re-encryption. Although it is very efficient, the re-

encryption process cannot prevent a cloud-revoked user collusion attack. To prevent the

collusion attack the group admin in [14] re-encrypts the ciphertext that requires three

group exponentiation operations (inG1) to update each attribute, and three additional group

exponentiation operations (two in G1 and one in GT ) to compute three updated ciphertext

components (a total of (3a + 2)C1 + CT cost). In our scheme, the owner needs to compute

U1ts→ts′ = e(g, g)bl′K
j

l′
s−blK

j
l

s,U2ts→ts′ = g βK j

l′
s, which require two pairing and two group

exponentiation operations, incurring a total cost of C1 + CT + 2P.

9.4. SPACE COMPLEXITY ANALYSIS OF KEY TREES

In this section, we discuss the space complexity of key trees. Each admin has to

maintain a TGDH tree, and clouds have to maintain a corresponding e-TGDH. At any point,

if the total number of users in the group is m, then the space complexity of the TGDH tree

for the admin would be 2.2logm+1 − 1 = 4.2logm − 1 = 4.m − 1 ≈ O(m).
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Table 7. Cost of group dynamic change

Scheme Key update Re-encryption
user Cloud/GA Owner Cloud/GA

DASS [8] bC1 0 (3a + 1)C1
+ CT

0

Hur-I [13] bC1 0 0 (3a + 1)C1
+ CT

Hur-II [7] bmC1 2(m + 1)C1 0 (3a + 1)C1
+ CT

PIRATTE [6] 0 amC2 (a + 1)C1 +
CT + aC2

0

CryptCloud+ [5] 0 3mC1 N/A N/A
Flexible[12] (b + 1)C1 2mC1 + P 0 C1 + P
UserCol [14] 0 (2m − 1)C1 0 (3a + 2)C1 + CT
Ours C1logm (2logm+3)C1 C1 + CT + 2P 0

The space complexity of the e-TGDH tree for the cloud ismore difficult to determine.

On average, each revocation or joining operation adds logm nodes to the tree. Lets assume

that there are initially Xm = 2m − 1 nodes in the e-TGDH tree and d number of random

revocation or joining has been performed. The space complexity can be calculated as

follows:

Xm + logm + log(m+1) + · · · · · · + log(m+d)

= Xm + log(m(m + 1)(m + 2) · · · (m + d))

= Xm + log
(

m!
d!

)
≈ O(m + logm!).

Efficiency of the e-TGDH tree: The cloud needs to create only logm new nodes along the

path from the affected leaf to the root on average to create a new version of the tree if it

uses our proposed e-TGDH tree structure, as opposed to 2m − 1 new nodes if using the

original TGDH tree. For each revocation or joining, the cloud’s space saving would be

2m − logm − 1, and d such operations would save d(2m − logm − 1) space.
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10. SECURITY ANALYSIS

10.1. ANALYSIS OF COLLUSION ATTACKS

In this section prove that our scheme is secure against the three type of collusion

attacks discussed in the threat model, and at the same time achieves immediate revocation

against those attacks. Note that immediate revocation is possible only if the user does not

locally store the symmetric encryption key (KSE). Otherwise KSE can be directly used

to decrypt CTSE . Suppose two users (of group j), u j,k and u j,k ′ are authorized for the

attribute set S and S′, respectively. The transformation key of u j,k and u j,k ′ are denoted as

TKS = {D2,i = gr/βt .H (i)ri/t, D3,i = g βri/t }∀i∈S and TK′S′ = {D2,i = gr ′/βt ′ .H (i)r ′i/t
′

, D3,i =

g βr ′i/t
′

}∀i∈S′, respectively, and their update keys for group j are denoted as UK = D1, j =

g(α+r+blK
j
l
)tc/β and UK′ = D′1, j = g(α+r ′+blK

j
l
)tc/β, respectively. The user u j,k and u j,k ′

have the attribute secret key SKS = (TKS, t) and SK′S′ = (TK′S′, t
′), respectively, and the

membership key MbK = ak and MbK′ = ak ′, respectively. Now, cloud1 has TKS and TK′S,

and its master key C1MK=tc, while cloud2 has UK and UK′. For the sake of simplicity,

we denote a ciphertext encrypted for group j as CT = (C0, j = KRe(g, g)αs+blK
j
l

s,C1, j =

g βK j
l

s, {C2,v = gPv (0) β,C3,v = H (attr (v))Pv (0)}∀v∈V ). The assumption is that attribute set S

satisfies the policy of CT while S′ does not. Now in the following we prove that CT cannot

be decrypted by launching type–1, type–2, or type–3 collusion attacks.

10.1.1. Security Against Type–1 Collusion Attack. Let us assume that u j,k gets

revoked from group j and colludes with cloud1 to decrypt CT. However, cloud2 remains

honest and removes u j,k from its e-TGDH tree and increases its version number (CurrVer j)

to l+1 as per the protocol. Note that cloud1, with SKS andCT, can compute FR = e(g, g)rs/t .

Now, cloud1 requests cloud2 to compute T by sending (u j,k, j,C′1, j = (C1, j )b) to cloud2.

However, cloud2 finds out that u j,k has been removed from the latest (CurrVer j = l + 1)

e-TGDH tree, and declines the request. Hence, cloud1 cannot compute T1. Without

T1 it is computationally impossible for u j,k to compute e(g, g)αs+blK
j
l

s, and retrieve KR
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from T2 = KRe(g, g)αs+blK
j
l

s. For the same reason u j,k cannot retrieve KR after the data

owner updates the CT components for the version l + 1 (e.g., updates C0, j and C1, j to

KRe(g, g)αs+bl+1K j
l+1s and g βK j

l+1s, respectively). As a result, type–1 collusion attack fails.

This also proves the security of immediate revocation against type–1 collusion attack since

the revocation becomes effective even before the data owner updates CT to version l + 1.

10.1.2. Security Against Type–2 Collusion Attack. Let us assume that u j,k gets

revoked from the group j and colludes with cloud2 to decrypt CT. However, cloud1 remains

honest and removes u j,k from its e-TGDH tree, and increases its version number (CurrVer j)

to l+1 as per the protocol. To help u j,k decrypt CT, cloud2 gives to u j,k the update key UK =

D1, j = g(α+r+blK
j
l
)tc/β. Then, u j,k can compute FR = e(g, g)rs/t (since S satisfies the policy),

and T ′ = e(D1, j, (C1, j )1/K j
l ) = e(g(α+r+blK

j
l
)tc/β, g βs) = e(g, g)(α+r+blK

j
l
)stc . However, the

revoked user has to compute e(g, g)(α+r+blK
j
l
)s from T ′ which is computationally hard

(because of the CDH assumption) without the cloud1 master key (C1MK). Consequently,

u j,k cannot retrieve KR from T2 = KRe(g, g)αs+blK
j
l

s. For the same reason u j,k cannot

retrieve KR after the data owner updates the CT components for the version l + 1 (e.g.,

updates C0, j and C1, j to KRe(g, g)αs+bl+1K j
l+1s and g βK j

l+1s, respectively). As a result, type–2

collusion attack fails. This also proves the security of immediate revocation against type–2

collusion attack since the revocation becomes effective even before the data owner updates

CT to version l + 1.

10.1.3. Security Against Type–3 Collusion Attack. Let us assume that u j,k gets

revoked from group j, and colludes with u j,k ′ and one of the clouds to decrypt CT. We

have already proved in the previous sections that u j,k cannot successfully decrypt CT by

colluding with one of the clouds. However, in this collusion attack u j,k has some advantage

since u j,k ′ is also colluding. Following two cases are possible in this collusion attack:

Cloud1 colludes: In this case, cloud1 can request cloud2 to compute T by send-

ing it (u j,k ′, j,C′1, j = (C1, j )b). Since u j,k ′ is a nonrevoked user, cloud2 computes T =

e(C′1, j,UK′) = e(g, g)(α+r ′+blK
j
l
)btcK j

l
s, and sends to cloud1. Now, cloud1 computes
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T1 = (T )1/btc = e(g, g)(α+r ′+blK
j
l
)K j

l
s, and sends CTpart to u j,k . Then, u j,k computes

K′R = T2(FR)t/T
1/K j

l

1 = KRe(g, g)(r−r ′)s. This means u j,k cannot retrieve KR, and hence un-

able to decrypt CT. Note that when the data owner updates CT for the current version (e.g.,

l + 1), T1 and T2 becomes e(g, g)(α+r ′+bl+1K j
l+1)K j

l+1s and KRe(g, g)αs+bl+1K j
l+1s, respectively.

In this case, u j,k ′ may compute K j
l+1 from MbK′ and the blinded key list B of his or her co-

path, and give to u j,k . With K j
l+1, u j,k computes K′R = T2(FR)t/T

1/K j
l+1

1 = KRe(g, g)(r−r ′)s,

meaning that KR cannot be retrieved.

Cloud2 colludes: In this case, cloud2 gives UK = gα+r+blK
j
l (if CT is not updated by

the owner) or UK = UK.UPr j
l→l+1 = g(α+r+blK

j
l
)tc/βg(bl+1K j

l+1−blK
j
l
)tc/β = g(α+r+bl+1K j

l+1)tc/β

(if CT is updated by the owner). Then, u j,k ′ can compute K j
l+1 and give to u j,k . Similar

to type–2 collusion attack (Section 10.1.2), u j,k may compute T ′. However, u j,k cannot

retrieve KR since T ′ is blinded with C1MK.

We can see that type–3 collusion attack also fails as long as one of the clouds follows

the protocol. This also proves the security of immediate revocation against type–3 collusion

attack since the revocation becomes effective even before updating CT to version l + 1.

10.2. SEMANTIC SECURITY ANALYSIS

In this section, we define the formal security model of our ReVO-ABE scheme

by a CPA (chosen plaintext attack) game. In this security game, the adversary launches

a collusion attack where it tries to correctly guess a challenged ciphertext by combining

previously queried revoked user’s key with a nonrevoked user’s key. To keep things simple,

without loosing generality, we will assume a single group setting during our security game

formulation.

Init: The adversary commits to an access structure A∗ by giving it to the challenger.
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Setup: The challenger runs Setup(1K ) and Group-Setup algorithms. The Setup algo-

rithm generates the master secret key MK, public key PK, cloud1 master secret key C1MK,

and group master secret key GMK. On the other hand, the Group-Setup algorithm initial-

izes the TGDH key tree with N leaves and generates the initial group public and secret key

GPK0 and GSK0, respectively. The challenger then gives PK and GPK to A.

Phase 1: The challenger initializes an empty table T, an empty set D, and an integer j = 0.

The adversary A adaptively makes the following queries polynomial number of times:

• Create(S, u j): Challenger sets j = j + 1 and runs KeyGen and Group-KeyGen

algorithms to generate (SKS, TKS, D1), and a j , respectively. Next, it gives TKS to

the adversary and stores tuple ( j, u j, S, SKS, TKS, a j, D1) in table T.

• Corrupt(i): If there exists ith tuple in table T, then the challenger retrieves tuple

(i, ui, S, SKS, TKS, ai, D1). Finally, updates D := D ∩{(S, ui)} and returns (ai, SKS) to

the adversary if either of the following is true:

– S does not satisfy A∗.

– The user ui is a revoked user.

However, if S satisfies A∗ and ui is a nonrevoked user or no such ith tuple exists in T,

then it returns ⊥.

Challenge: The adversary submits two equal length messages M0 and M1 along with an

access structureA∗ such that for ∀(S, u j ) ∈ D, either S does not satisfyA∗ or u j is a revoked

user. The challenger then randomly picks a bit b ∈ {0, 1}. Finally, it runs Encrypt and

returns the output CT to the adversary.

Phase 2: The adversary repeats Phase1 with the following constraints:

• The adversary cannot submit a Corrupt query for a nonrevoked user ui and an

attribute set S such that S satisfies A∗ and S is added to D.
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Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins if b′ = b.

Definition 5 The security game defined above is called IND-CPA game. Our proposed

ReVO-ABE scheme is CPA (chosen plaintext attack) secure if a probabilistic polynomial

time (PPT) adversary A has a negligible advantage in wining this IND-CPA game.

Theorem 4 If the CDH assumption described in Section 3.3 holds, then our ReVO-ABE

scheme is secure in the selective model. In other words, if there exists a polynomial time

adversary A that can win the IND-CPA game with a non-negligible advantage after a

total of q∗ queries, then we can find a polynomial time algorithm B that breaks the CDH

assumption with a non-negligible advantage.

Proof: The challenger produces the bilinear group parameters {p,G,GT, g, e}, where G

and GT represent two multiplicative cyclic groups of prime order p, g is a generator of G,

and e is a bilinear map. The challenger then randomly selects x, y ∈ Zp, and computes

X = gx,Y = gy. The CDH challenge (X,Y ) is then given to the algorithm B. Now, the goal

of B is to compute Z = gxy by utilizing A. To achieve this goal, B interacts with A by

programming the parameters of the original IND-CPA game in the following manner:

Init: The adversary A commits to an access structure A∗ by giving it to the challenger.

Setup: The system parameters are programmed by B as follows:

• B randomly chooses α, β ∈ Zp. Then, it randomly chooses tc ∈ Zp and sets

cloud1 master secret key as C1MK = tc, and computes the group master secret

key as GMK=gtc/β. The master secret key MK= (β, gα, tc) is kept secret, and the

public key is published as PK= (G, g,GT,H ,H1,H2,H3, F, e(g, g)α, h = g β). Here,

H ,H1,H2,H3, F are replaced by the following oracles:
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– Oracle H : It maintains a dictionary to answer to the attribute hash queries.

For a query on attribute attri, if the attribute does not exist in the dictionary, it

randomly chooses ni ∈ G, stores tuple
(
attri, ni,H (attri) = gni ) in the dictionary

and returns gni as a query response. However, if attri already exists in the

dictionary, it returns the preexisting gni .

– OracleH1: For a query on a value Ki ∈ GT , if it does not exist in the dictionary,

the oracle randomly chooses h1i ∈ {0, 1}l1 , stores tuple
(
Ki,H1(Ki) = h1i

)
in

the dictionary and returns h1i as a query response. However, if Ki already exists

in the dictionary, it returns the preexisting h1i .

– OracleH2: For a query on a value vi ∈ {0, 1}∗, if it does not exist in the dictionary,

the oracle randomly chooses VKi ∈ {0, 1}l2 , stores tuple
(
vi,H2(Vi) = VKi

)
in

the dictionary and returns VKi as a query response. However, if vi already exists

in the dictionary, it returns the preexisting VKi.

– Oracle H3: For a query on a value gi ∈ G, if it does not exist in the dictionary,

the oracle randomly chooses mi ∈ Zp, stores tuple
(
gi,H2(gi) = mi

)
in the

dictionary and returns mi as a query response. However, if gi already exists in

the dictionary, it returns the preexisting mi directly.

– Oracle F: For a query on a value Ki ∈ GT , if it does not exist in the dictionary,

the oracle randomly chooses KSEi ∈ K, stores tuple
(
Ki, F (Ki) = KSEi

)
in the

dictionary and returns KSEi as a query response. However, if Ki already exists

in the dictionary, it returns the preexisting KSEi .

• B programs the parameters of Group-Setup algorithm by initializing the TGDH key

tree with N leaf nodes and associates each ui with a leaf node that has a membership

secret key ai ∈ Zp. The blinded and secret keys for all the intermediate nodes are

calculated. Let K0 and gK0 be the initial root secret key (K<0,0>) and blinded key
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(BK<0,0>). Then, B randomly chooses b0 ∈ Zp and publishes the initial group public

key GPK0 = (gK0, X b0K0 = gxb0K0, g βK0 ), and keeps GSK0 = K0 secret. B also

publishes the TGDH key tree.

Phase 1: B initializes an empty table T, an empty set D, and an integer j = 0. Then, A

adaptively makes the following queries polynomial number of times:

• Create(S, u j): Algorithm B sets j = j + 1 and responds to adversaryA’s queries as

follows:

– If S does not satisfy A∗ but u j is a nonrevoked user, then B randomly chooses

r and {r1, r2, · · · , r |s |} from Zp. Then, it computes D1 = g(α+r+xblKl )tc/β

and SK′S = ({D′2,i = gr/β .H (i)ri, D′3,i = g βri }∀i∈S). Next, it chooses a ran-

dom exponent t ∈ Zp, computes the transformation key TKS = ({D2,i =

gr/βt .H (i)ri/t, D3,i = g βri/t }∀i∈S), and sets SKS = (TKS, t). For the sake of

simplicity, lets assume that user u j already exists in the TGDH tree and a j is

the associated leaf node of u j . Finally, B gives TKS to the adversary and stores

tuple ( j, u j, S, SKS, TKS, a j, D1) in table T.

– If S satisfies A∗ but u j is a revoked user, then B randomly chooses r and

{r1, r2, · · · , r |s |} from Zp. For the revoked user u j , instead of using gxblKl for

the computation of D1, B computes X∗ = X b∗
l
K∗
l for unknown y∗ ∈ Zp such

that b∗l K∗l = y∗bl Kl . Then, B computes D∗1 = g(α+r+xb∗
l
K∗
l

)tc/β and SK′S =

({D′2,i = gr/β .H (i)ri, D′3,i = g βri }∀i∈S). Next, it chooses a random exponent

t ∈ Zp, computes the transformation key TK∗S = ({D2,i = gr/βt .H (i)ri/t, D3,i =

g βri/t }∀i∈S), and sets SK∗S = (TK∗S, t). To capture the security regarding the

revoked user u j , instead of associating u j with any leaf of the TGDH key, B

randomly picks a∗j ∈ Zp. Finally, B gives TK∗S to the adversary and stores tuple

( j, u j, S, SK∗S, TK
∗
S, a
∗
j, D∗1) in table T.
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– If S satisfies A∗ and u j is a nonrevoked user, then B returns a ’fake’ transforma-

tion key to A.

• Corrupt(i): If there exists ith tuple in table T, then the challenger retrieves tuple

(i, ui, S, SKS, TKS, ai, D1). Finally, updates D := D ∩{S} and returns (ai, SKS) to the

adversary if either of the following is true:

– S does not satisfy A∗.

– The user ui is a revoked user.

However, if S satisfies A∗ and ui is a nonrevoked user or no such ith tuple exists in T,

then it returns ⊥.

Challenge: The adversary A submits two equal length messages M0 and M1 along

with an access structure A∗ such that for ∀(S, u j ) ∈ D, either S does not satisfy A∗

or u j is a revoked user. The challenger then randomly picks a bit b∗ ∈ {0, 1} and

encrypts Mb∗ as follows:

– B selects a random polynomial Pw of degree dw for each node w of access

tree Υ corresponding to A∗ with the condition dw = tw − 1 in the following

manner. First, a random s ∈ Zp is chosen to set PR(0) = s, where PR represents

the polynomial associated with the root R. Then, dR number of other points

on PR are chosen randomly to define it completely. For any other node w,

the algorithm completely defines the corresponding polynomial Pw by setting

Pw (0) = Pparent(w) (index(w)) and choosing dw random values on Pw. This pro-

cess is carried out in a top-to-bottom fashion starting from the root R. LetV be

the set of leaf nodes inΥ. Afterwards, it computesC′0 = e(g, g)αse(X blKl,Y s) =

e(g, g)αs+xyblKl s,C1 = g βKl s, {C2,v = gPv (0) β,C3,v = H (attr (v))Pv (0)}∀v∈V .
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– Next, B chooses a random seed KR ∈ GT and computes h1 = H1(KR),

the symmetric encryption key KSE = F (KR), symmetric ciphertext CT∗SE =

EncKSE (Mb∗ ), and the verification key VK = H2(h1 | |CTSE ).

Finally, the B sends out to the adversary A the complete ciphertext as CT∗ =

(C∗0 = KRC′0 = KRe(g, g)αs+xyblKl s,C1, {C2,v,C3,v }∀v∈V,CT∗SE,VK). Note that in B’s

simulation of this Encrypt algorithm, we have omitted the ciphertext components

CPr and C1,G since we are only considering a single group scenario for simplicity.

Phase 2: The adversary repeats Phase1 with the following constraints:

– The adversary cannot submit a Corrupt query for a nonrevoked user ui and an

attribute set S such that S satisfies A∗ and S is added to D.

Guess: The adversary A outputs a guess b′ ∈ {0, 1}.

At this point, we can see that by successfully programming all the parameters of the

original IND-CPA game, B can interact withA as if fromA’s point of view, its interaction

with algorithm B is the same as the interaction with the challenger of the original game. If

A wins in the security game, then it must have done corrupt queries for a revoked user and

a nonrevoked user to get (a∗j, SK
∗
S) and (a j, SKS), respectively such that by combining both

keys, A has successfully decrypted the challenge ciphertext CT∗.

To find the corrupt keys that A has used to decrypt the challenge ciphertext, B

ignores A’s output guess and randomly chooses two tuples ( j, u j, S, SKS, TKS, a j, D1) and

( j∗, u∗j, S
∗, SK∗S, TK

∗
S, a
∗
j, D∗1) from tableT. Let us assume that tuple ( j, u j, S, SKS, TKS, a j, D1)

represents the corrupt query result for a nonrevoked user u j and a set S that does not sat-

isfy A∗ whereas tuple ( j∗, u∗j, S
∗, SK∗S, TK

∗
S, a
∗
j, D∗1) represents the corrupt query result for a

revoked user u∗j and a set S∗ that satisfies A∗. Then, B carries out the decryption as follows:
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The algorithm B calls the recursive algorithm DecryptNode ( CT∗,TK∗S, v) that

works as follows. It returns Fv when called on a node v in the access tree Υ corresponding

to A∗. The base case of the algorithm is when v is a leaf node. For an attribute i = attr (v),

if i < S, then Fv =⊥. Otherwise,

Fv =
e(C2,v, D2,i)
e(C3,v, D3,i)

=
e(gPv (0) β, (gr/β .H (i)ri )1/t )
e(H (attr (v))Pv (0), g βri/t )

= e(g, g)rPv (0)/t .

The recursive case of the algorithm is when v is a non-leaf node. Let us assume

that Sv is the set of successfully decrypted child nodes of v. If |Sv | < tv, then Fv =⊥.

Otherwise, the following value is returned:

Fv =
∏
w∈Sv

F
L j,S′v

(0)
w ;where j=index(w)

S′v={index(w):w∈Sv }

=
∏
w∈Sv

(
e
(
g, g

)r .Pparent (w) (index(w))/t
)L j,S′v

(0)

=
∏
w∈Sv

e
(
g, g

)rPv ( j).L j,S′v
(0)/t
= e(g, g)r .Pv (0)/t .

Eventually, DecryptNode returns FR = e(g, g)rs/t if root R of Υ is successfully

decrypted. A failure symbol⊥ is returned otherwise. Then, it chooses a random b ∈ Zp and

computes C′1 = (C1)b), T = e(C′1, D∗1). After that using C1MK, it computes T1 = T1/tcb =

e(g, g)(α+r+xb∗
l
K∗
l

)Kl s. Then, sets T2 = C∗0 = KRe(g, g)αs+xyblKl s. Eventually, B computes

TGDH root secret key Kl from a j , and retrieves K′R as in

K′R = T2(FR)t/T1/Kl

1

=
KRe(g, g)αs+xyblKl se(g, g)rs

e(g, g)(α+r+xb∗
l
K∗
l

)s
=

KRe(g, g)xyblKl s

e(g, g)xb∗
l
K∗
l

s

=
KRe(gxy, g)blKl s

e(gxy∗, g)blKl s
=

KRe(Z, g)blKl s

e(gxy∗, g)blKl s
.
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From the above equation, if K′R = KR, then Z must be equal to gxy∗ or y = y∗. This

means that B must have computed Z = gxy during computing D∗1. Now, if the adversaryA

makes a total of q∗ corrupt queries that results in q∗ tuples in table T, then B’s probability

of randomly choosing tuple ( j∗, u∗j, S
∗, SK∗S, TK

∗
S, a
∗
j, D∗1) is 1/q∗. Given that A wins the

IND-CPA gamewith a non-negligible advantage, B’s probability of successfully computing

Z is 1/q∗. Since q∗ is only polynomially large, 1/q∗ is non-negligible. This proves our

theorem 4. Since the CDH assumption is believed to be hard, by contradiction, we can

conclude that there exists no such polynomial time adversaryA that can win the IND-CPA

game with a non-negligible advantage.

11. CONCLUSIONS AND FUTUREWORK

In this paper, we have proposed a directly revocable ABE scheme called ReVO-

ABE using our proposed data structure called e-TGDH tree. It utilizes our federated cloud

architecture (using two clouds) and a novel key binding technique to prevent collusion

attacks and achieve revocation under the assumption that at least one of the two clouds acts

honestly. Unlike existing schemes, ReVO-ABE does not put any cap on the number of user

revocation or joining. The local decryption cost has been reduced by securely outsourcing

most computationally expensive tasks to the cloud. Finally, we have built a multi-group

secure data sharing scheme called DMG-SDS to demonstrate that our ABE scheme supports

a muti-group setting. We have implemented our scheme, and the performance results show

the effectiveness of the solution in comparison to others. In the future, we plan to develop

an Android mobile client application based on our scheme and conduct more performance

tuning for mobile platforms. In addition, we have only considered static access policy in

this work. Thus, it will be interesting to see how it affects our system if dynamic access

policy change is allowed.
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ABSTRACT

IoT devices produce a lot of valuable and sensitive data that is often shared with

external parties to provide different kinds of useful services. Traditional IoT access control

systems are centralized and do not include all the stakeholders in the access control decision-

making process. To fill this gap, we propose a permissioned blockchain-based access control

system for IoT, where a different phase of access control like creating access policy and

making the access control decision happens based on the consensus of all the stakeholders.

To be more specific, we design and implement attribute-based access control (ABAC) in

a permissioned blockchain called Hyperledger Fabric and leverage its smartcontract and

distributed consensus to enable a distributed access control for IoT. The effectiveness of our

proposed system is demonstrated by the performance evaluation result in an IoT testbed.

Keywords: IoT, Blockchain, Access control

1. INTRODUCTION

As IoT devices are becoming more popular, security and privacy of the heteroge-

neous data produced by these devices have become more important than ever before. This

is because the data produced by IoT devices can contain extremely private information like
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audio and video clips from smart surveillance systems, medical information from fitness

devices, location and activity pattern or even daily schedule of individuals in the house hold.

Often times, IoT devices are not utilized to their full potential unless this data is shared with

different service providers. For example, data from fitness devices may need to be shared

with the physician and the hospital, temperature sensor data may need to be shared with

the emergency department and service providers like Amazon and Google can collect user

data through smart home devices like Echo, Google home etc. to ensure better quality of

service. While sharing the IoT device data with other parties, there are two fundamental

questions that need to be asked: 1)Who is accessing the shared data? and 2)What data is

accessed? Answer to the first question determines whether the data falls into the hands of

the wrong parties. On the other hand, the second question is to find out whether IoT data

requester is collecting anything without the data owner’s consent.

Currently, how data requester collects user data from IoT devices lacks transparency

and even doubtful in some cases. This is because the owner has no role in the access

control of how the data will be shared with the data consumer. Although in some cases,

requesters provide the owner with some kind of agreement policy that the owner has to

agree on to enjoy the intended service. This leaves the data owner with no other choice

but to trust the data consumer blindly. These agreement policies are often very high level

and obscure. Moreover, there is no way for the data owner to verify whether the requester

is complying with the agreement and not collecting anything more than what was agreed

upon. On top of that, it is hard to tell if different service providers implement their security

mechanisms properly. This gives the malicious parties an opportunity to get access to the

user’s confidential and sensitive IoT device data by exploiting any security backdoor that

may exist.

The above mentioned problems of IoT data security mainly stem from the fact that

different parties involved in the IoT ecosystem are under different administrative entity and

there may be a lack of trust between them. Using traditional approaches like [1], it is
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impossible to ensure the active participation of all mutually untrusted parties in different

aspects of the IoT access control mechanism, like fixing the access policy and making the

access control decision. Blockchain offers a great platform to build distributed applications

for mutually untrusted parties by eliminating the need of a trusted central authority. At a

high level, blockchain is a distributed immutable ledger maintained by a network of peers

where all the peers in the network at any given point of time agrees on a single identical

version of the ledger through some consensus protocol.

The blockchain empowering the cryptocurrencies like bitcoin [2] and Ethereum [3]

are called public or permissionless blockchain as no permission is needed for a peer to

participate in the blockchain. While public blockchain is well-suited for cryptocurrency, it

has a scalability issue that limits the number of transactions the network can process referred

to as blockchain bloat [4]. For example, bitcoin can process only a maximum of seven

transactions per minute. This is due to the fact that the block creation frequency (1 block

per 10 minutes) and size (1MB) is limited [2]. The security of the public blockchain relies

on the proof of work (PoW) where all the peers in the network validate all the transactions

and try to solve a computationally intensive cryptographic puzzle. The hardness of the

puzzle is set so that a new block is created every 10 minutes. Due to the network latency,

there exist multiple forks of the blockchain and it can take up to six hours to eventually

reach a consensus. That is why transaction wait time is very high in pubic blockchain

(sometimes up to six hours). Though, consensus protocols like proof of stake (PoS) are

there, the transaction wait time is still high in public blockchain [5]. However, in the

private or permissioned blockchain, the transactions are much faster. This is because it

does not rely on PoW or PoS. Rather, it incorporates much faster consensus protocols like

Byzantine Fault Tolerance (BFT) and yet provides a way to secure the transactions among

a group of participants with verified identities who have a common goal but do not fully

trust each other [5]. As a result, it is a better fit for IoT access control. This inspires us

to propose an access control system for IoT which is based on permissioned blockchain.
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By utilizing the smartcontract, we implement attribute based access control (ABAC) in

the blockchain which is a great fit for IoT than other access control mechanisms such as

role based access control or identity based access control. This is because IoT ecosystem

consists of a huge number of IoT devices that varies in functionalities, characteristics and

capabilities. Only ABAC can offer expressive fine-grained access control in such a diverse

environment. We implement our access control system in Hyperledger Fabric [5] which is

an open source implementation of a permissioned blockchain, and evaluate its effectiveness

in an IoT testbed. Our results also demonstrates the practicality of our proposed system.

The most closely related work to ours is [6] which is a physical access control management

system based on permissioned blockchain. However, it is not specifically intended for IoT

and it can not therefore enforce fine-grained access control like ours as role based access

control was used. IoT access control systems proposed in [7, 8, 9, 10] are also related to

ours. Since they are based on public blockchain, it is needless to say that all of them inherit

the the existing limitations of the public blockchain. Besides, access control mechanisms

proposed in these works are not as sophisticated as ABAC.

Our contributions can be summerized as follows:

• To the best of our knowledge, we are the first to propose a private blockchain based

IoT access control system based on attribute based access control. Since our scheme

is based on private blockchain, the access requests are resolved much faster than that

of a public blockchain.

• We report a full implementation of our proposed system in a permissioned blockchain

platform called Hyperledger Fabric and prove its practicality by evaluating its perfor-

mance in an IoT testbed environment.
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2. RELATEDWORK

Besides cryptocurrency, the adoption of blockchain is also noticeable in the IoT

spectrum. For example, an access control mechanism based on bitcoin was proposed in

[4, 7]. Since, bitcoin does not support smartcontract, the proposed access controlmechanism

is very basic and does not offer fine-grained access control for heterogeneous IoT devices.

[8] proposed an architecture for scalable access management of IoT devices based on

Ethereum smartcontract where blockchain is run in the IoT devices. It was implemented in

a small scale local Ethereum test network. However, it is not clear how it is going to work

in the original pubic Ethereum network. Dorri et al. proposed a solution in [11, 9, 10]

where an overlay network is formed by the IoT nodes. Multiple overlay nodes form a cluster

with an elected cluster head (CH) for each cluster. The CHs maintains a newly proposed

pubic blockchain. It has a new transaction format and does not have smartcontract which

makes implementation of sophisticated access control policy really hard. An access control

management system based on private blockchain has been proposed in [6] although it was

not directly intended for IoT. Besides, role-based access control was considered in this work

which is not a good fit for IoT access control involving a large scale of heterogeneous devices

with lack of standardization.

3. BACKGROUND

In this section, we discuss the necessary background of for our proposed system.

First, we discuss how resource is managed inside an IoT network. Then, we discuss different

components of Hyperledger Fabric.
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3.1. RESOURCE MANAGEMENT IN AN IOT NETWORK

Many standards in line with the IEEE 802.15.4 radio [12] were defined by the

IETF for IoT networks. IoT-Auth [1] adopted many of these well defined protocols to

manage resource within an IoT network. For this purpose, the gateway maintains three

data structures: Routing Table, Resource Table, and Data Table. There are following steps

involved:

3.1.1. Device Discovery. The first step is to do the device discovery. It is done

according to theRouting Protocol for LowPower andLossyNetworks (RPL) protocol. More

specifically, a network coordinator or sink node initiates this process by periodically sending

in the IoT network the Destination Oriented Directed Acyclic Graph (DODAG) Information

Object (DIO) message. A newly joining device replies with the Destination Advertisement

Object (DAO) message. The sink node forwards this message to the gateway. The gateway

stores the identifier of all the active IoT end nodes along with their communication path in

the Routing Table.

3.1.2. Resource Discovery. The gateway starts the process by sending a GET

message to the well-known URI of the IoT device called ./well-known/core. The IoT device

sends a response message in the Constrained RESTful Environments (CoRE) Link Format.

The response message includes information such as resource type (rt), interface description

(if), and maximum size estimate (sz). These information are processed and stored in the

Resource Directory.

3.1.3. Data Collection. The gateway collects data from the intended IoT device as

new data is available. Data is stored in the Data Table along with its identity information.
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3.2. HYPERLEDGER FABRIC

Hyperledger Fabric is an opensource implementation of a permissioned blockchain

[5]. It offers a modular architecture allowing different kinds of pluggable functionalities

by leveraging well known and proven technologies. One of the most powerful aspect of

Hyperledger Fabric is that it gives a platform to run smartcontracts on the blockchain.

Smartcontracts are special kinds of programs that can be written using traditional pro-

gramming language such as GO to perform different kinds of operations on the underlying

blockchain. We discuss the core building blocks of Hyperledger Fabric as follows:

3.2.1. Peer, Organization, and Client. In Hyperledger Fabric, peers are the nodes

that host the blockchain and runs the smartcontract. There could be two basic types of peers

based on the role it takes up: validating peer and non-validating peer. A validating peer runs

the consensus protocol, executes and validates transactions, and maintains the blockchain.

A non-validating peer acts as a proxy to connect the external applications/clients to the

validating peers. Some peers can take up a special role of endorsing transactions referred to

as endorsing peers. Peers are part of a conceptual entity called the organization. Each peer

is part of some organization andmultiple organizations collectivelymaintain the blockchain.

On the other hand, clients are the entities that submit transaction requests to the blockchain.

They are normally third-party applications written by the provided SDK.

3.2.2. Membership Service Provider (MSP). The permission to participate in

the blockchain is handled by the MSP. For example, every peer needs to collect enrollment

certificate and transaction certificate from the designated certificate authority (CA) of the

MSP to connect to the network and submit transactions, respectively. Each organization

can have a separate MSP that independently operates its own membership service.

3.2.3. Transaction Endorsement. Hyperledger fabric does not rely on proof-of-

work or proof-of-stake to maintain the immutability of the blockchain or to prevent double

spending. Rather, it relies on the endorsement policy that states which peers need to

endorse a transaction to be considered as a valid one. An endorsement policy is written
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using endorsement policy syntax. For example, endorsement policy OR(’Org1.peer1’,

AND(’Org2.peer2’, ’Org3.peer3’)) states that transaction needs to be endorsed by either

peer1 of Org1 or by both peer2 of Org2 and peer3 of Org3.

3.2.4. Ordering Service. The ordering service accepts endorsed transactions from

the client, orders them according to the plugged-in consensus protocol, and delivers them

to the designated peers to be written in the blockchain. It guarantees the proper ordering of

the transactions that ensures the consensus.

3.2.5. Chaincode. Chaincode is similar to smartcontract in the context of Hyper-

ledger Fabric. These are piece of programs written in traditional programming language

such as Go, java, and node.js and can manipulate the blockchan. In this paper, we will use

the term smart contract and chaincode interchangeably.

3.2.6. Blockchain Data Structures. Blockchain in Hyperledger Fabric incorpo-

rating two different kinds of data structures: state and ledger. State stores the latest state

of the blockchain by modeling it as a key-value storage (KVS). It is maintained and hosted

by the peers and can be manipulated from the chaincode, triggered by transactions. On

the other hand, ledger stores the verifiable history of all the unsuccessful attempts and

successful change made in the state as a totally ordered hashchain of blocks of transactions.

4. PROPOSED SYSTEM ARCHITECTURE

We discuss our system architecture in this section. Our proposed architecture is

depicted in Figure 1. In the following subsections, we first discuss the main actors of

our system. Then, we discuss the main components followed by how the constrained IoT

resource is accessed by a requester who is external to the IoT network.
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4.1. ACTORS

There are mainly two types of actors in our system as discussed below:

4.1.1. Resource Provider/Owner. This actor is basically the owner of the IoT

equipped smart home, smart office, school etc. where variety of IoT devices produce

different kinds of data. The data could range from environment sensing data (such as

temperature, pressure, humidity, luminosity, etc.) to healthcare data generated by wearable

devices or even image, audio and video data generated by surveillance systems.

4.1.2. Requester. Any party that accesses data generated by IoT devices is a re-

quester. Normally, a party who relies on the IoT data to provide different kinds of service

is considered as data requester. For instance, google, amazon provides services like music

streaming, voice search result etc. based on the data provided by google home, amazon

echo. Emergency service providers such as hospitals, fire service etc. are also requesters

since emergency services may rely on the IoT device such as elderly monitoring device, or

different healthcare devices for data. Different research organizations may also rely on user

IoT data to conduct scientific research and survey. Finally, regulatory organizations are also

considered as requester since they may need to access IoT data for auditing purpose. These

requesters are generally external to the IoT local network and access IoT data by through

access control mechanism imposed by blockchain.

4.2. COMPONENTS

The main components of our system are the local IoT networks and the blockchain.

A brief discussion of these components are given below:

4.2.1. Local IoT Network. Each local IoT network is composed of one or more

IoT devices, a sink node and a gateway. The sink node works like a network coordinator

for all the IoT devices and is connected to the gateway. The gateway acts as an interface

to the external world to access any resource within the local IoT network. A gateway can
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Figure 1. System Architecture

have its own public IP address or may be connected to the cloud that provides it with a

public interface so that resource requesters can access IoT data from outside the local IoT

network. It manages all the information available within the IoT network. For this purpose,

it maintains three data structures named as Routing Table, Resource Dictionary, and Data

Table. According to our architecture, there can be many local IoT networks as such, each

representative of an IoT equipped smart home, office or school etc.

4.2.2. Blockchain. The blockchain in our architecture is a permissioned one, im-

plemented in Hyperledger Fabric. All the attributes and ABAC policies upon validation are

stored in the blockchain. It also works as a policy enforcement point for any access request

to a particular IoT resource. In brief, the blockchain provides an unified ABAC platform

for the entire IoT ecosystem.
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Figure 2. Resource Access

4.3. RESOURCE ACCESS PROCESS BY THE REQUESTER

The sequence diagram presented in Figure 2 shows how the IoT resource is accessed

by the requester. Steps 1, 2, 3, and 4 is for the Device Discovery and populating the Routing

Table. Steps 5, 6, and 7 are to complete the Resource Discovery process and populate the

Resource Table as described in Section 3.1. At this point, a requester who is external to the

IoT local network, can request for IoT resource. First, the requester sends the authorization

request as an access request transaction Tx (step 8). Let PKOw and DKOw be the public and

private key of the IoT resource provider/owner respectively; Enc and Dec be the public key

encryption and decryption algorithm respectively; SKRe and VKRe be the requester’s signing

and verification key respectively; Sig and Ver be the DSA (Digital Signature Algorithm)

signing and verification algorithm respectively, and H(.) be a secure hash function. In the

authorization request, the requester sends the following information:

Req = (Resource Location, policyID, C), σ (1)



173

Resource Location is Equation 1 is the IP address or public interface of the gateway of the

intended IoT network, PolicyID is the ID of the ABAC policy that determines the access

control rule of the resource. C = Enc(k, PKOw), where k is a session key. Signature σ is

computed as σ = Sig(H(Req), SKRe).

In step 9, each endorsing peer in the blockchain first checks the validity of the

request by checking the following equality:

H(Req) == Ver(σ, VKRe) (2)

Then, the policy corresponding to the PolicyID is retrieved from the blockchain. Each

endorsing peer evaluates the request in the smartcontract against the policy. In step 10, the

transaction is marked as accept / reject based on the consensus protocol and committed in

the blockchain. The following information is saved in the transaction:

TxID, Tx = (Req, σ, Decision) (3)

Here, TxID is a unique ID for Tx, and Decision can have as a value either accept or reject.

Then, the requester gets the TxID from the blockchain (step 11). Later, the requester

sends TxID, τ = Sig(H(TxID), SKRe) to the gateway indicating its intention to access the

IoT resource (step 12). In step 13, the gateway checks the authenticity of the request by

verifying the requester’s signature as in H(TxID) == Ver(τ, VKRe). Later in step 14, the

gateway queries the blockchain for transaction Tx with TxID and gets the Tx as response.

Then (in step 15), upon confirming if the transaction was marked as accept, the gateway

retrieves the session key k by decrypting C with its decryption key as k = Dec(C, DKOw).

The gateway checks if the resource is sent to the proper requester by verifying σ using

Equation 2 with the same verification key used to verify τ. If the requested resource

according to the policy is available in the Data Table, the gateway sends to the requester the
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data D right away by symmetrically encrypting it with k as in E(D,k) (step 18). Otherwise,

the gateway polls the resource from the designated IoT device(s). That is why steps 16 and

17 are shown in dotted arrows.

5. DETAILS OF OUR ABAC MODEL

In this section, we discuss our attribute based access control (ABAC)model in detail.

This includes how we model attributes and policies and how those policies are evaluated

against attributes.

5.1. MODELING ATTRIBUTES

Attribute is a core component of our ABAC system. We model attribute as a multi-

component data structure. Each attribute is composed of three components: name, value,

and type. Name is simply a string. On the other hand, value can be any data type such as

string, numeric, date etc. The general representation of an attribute is as follows:

attti = (name, t, val) (4)

In Equation 4 name, t, and val stands for the name, type, and value of the attribute,

respectively. We use the dot (.) operator to access an assigned member of an attribute,

i.e. attti .val is used to access the assigned values of attti . The set of all possible values of

an attribute attti is denoted as Val(attti) = {vali, j : 1 ≤ j ≤ Mi}. Mi is the total number of

possible values of atti. In our system, we consider four types of attributes: subject attribute,

resource attribute, environment attribute, and action attribute. Description of these four

types of attributes is as follows:
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5.1.1. Subject Attribute. This type of attribute is used to completely describe the

requester or the resource owner. Examples of subject attribute can be the organization,

title, rank etc. Let attSub
i and NSub be a subject attribute and the total number of subject

attributes in the system, respectively. Then, the set of all subject attributes are expressed as

Attr(Sub) = {attSub
i : 1 ≤ i ≤ NSub}.

5.1.2. Resource Attribute. Anything that can describe the IoT resource properly

are considered as resource attributes and is denoted as attRes
i . For example, the IoT resource

name, type, identifier etc. are resource attributes. If there are NRes resource attributes in the

system, then all resource attributes are represented as Attr(Res) = {attRes
i : 1 ≤ i ≤ NRes}.

5.1.3. Environment Attribute. Time, location etc. related attributes are consid-

ered as environment attributes and are represented as attEnv
i . We assume that there are NEnv

environment attribute in total and express them as Attr(Env) = {attEnv
i : 1 ≤ i ≤ NEnv}.

5.1.4. Action Attribute. Any type of action the requester or resource owner is

allowed to perform falls into this category. Example includes attributes such as read, write,

delete, update etc. Action attributes are represented as attAct
i . Let Attr(Act) be the set of all

NAct possible action attributes in the system which is expressed as Attr(Act) = {attAct
i : 1 ≤

i ≤ NAct}.

5.2. MODELING POLICY

Apolicy is expressed as a boolean expression that defines the access rule to a resource

in terms of attributes and their corresponding values. In our ABACmodel, policies are very

expressive as both attribute values and attributes themselves are boolean expressions. A

complete policy consists of attribute value expression and attribute expression as discussed

below:
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5.2.1. Attribute Value Expression. Allowed values of an attribute attti in a policy

are expressed as the following boolean expression:

Eattti := Exp (E[, E]) (5)

In Equation 5, Exp is either AND or OR joining two boolean expressions and E is

either an attribute value vali, j ∈ Val(attti ) or a recursive call to Exp.

5.2.2. Attribute Expression. For each attribute type t, we use a separate policy Pt .

Each such policy is a boolean expression composed of t type attributes as in:

Pt := Exp (E[,E]) (6)

In the above equation, E is either an attribute value expression Eattti or a recursive call to

Exp. Finally, the combined policy is written as a conjunction of all four types of policies as

in Equation 7:

P = PSub AND PRes AND PEnv AND PAct (7)

5.3. POLICY EVALUATION

Granting an access request for a resource is determined by evaluating a policy against

a set of subject, object, environment and action attributes. A complete policy P contains

four attribute expressions and each attribute in an attribute expression contains an attribute

value expression. So, evaluation of P can be broken down into following two parts:

5.3.1. Evaluation of Attribute Value Expression. If S ⊂ Val(attti) is a set of

assigned values to a particular attribute attti , and I is the minimum number of values

required to satisfy the boolean expression in Eattti , then we say that attti satisfies Eattti if
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I ⊂ S. It is expressed by the following notation:

Eattti ` att
t
i =




true, if I ⊂ S,

false, otherwise.

5.3.2. Evaluation of Attribute Expression. Let It be the minimum number of

required attributes to satisfy the boolean expression in Pt , and Eattti ` attti = true for

∀attti ∈ It where Eattti ∈ Pt . Then we say that attribute set At ⊂ Att(t) satisfies Pt if It ⊂ At ,

and it is represented by the following notation:

Pt ` At =




true, if It ⊂ At,

false, otherwise.

Finally, the satisfaction of a complete policyP by an attribute setA = {ASub,ARes,AEnv,AAct}

is represented by the following notation:

P ` A =




false, if ∃At ∈ A : Pt ` At = false,

true, otherwise.

6. ABAC IMPLEMENTATION IN HYPERLEDGER FABRIC

In this section, we discuss how our ABAC model discussed in the previous section

is implemented in Hyperledger Fabric. The first step towards our ABAC implementation

is to form the blockchain network. After that, attribute creation and assignment, policy

creation and resource access request are done by sending transactions to the blockchain by

the requester. These steps are discussed in the following subsections.
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6.1. FORMING THE BLOCKCHAIN NETWORK

The permission to join the blockchain is managed by the MSP (Managed Service

Provider) of some high-level organizations. For our ABAC implementation in the Hyper-

ledger Fabric, we assume that there exist multiple high level organizations. For example,

an organization may represent all the regulatory institutions, companies like google, ama-

zon who provide IoT based services can have their own authoritative organizations in the

blockchain, and research institutions can have an authoritative organization as well. Finally,

the data owners must be part of some organization also. For example, a smart city can play

the role of an organization for all the smart home owners of that city. Each organization

may have one or more running peers. It is worth noting that the data owners need to have

their own running peers to be able to directly take part in the access control decision making

process of their data. There will be some dedicated nodes that will perform the ordering

service. Peers from different organizations along with the ordering service collectively form

and run the blockchain.

6.2. SETTING UP THE ENDORSEMENT POLICY

The consensus in hyperledger fabric largely depends on the endorsement policy.

This is because it dictates who need to endorse a particular transaction to be considered by

the validating peers as a valid one. A data owner fixes the endorsement policy by creating a

configuration transaction in the blockchain. The endorsement policy along with the identity

of all the endorsing peers are embedded in this transaction. An endorsement policy creates

a logical channel between the endorsing peers and the ordering service. In order to be

committed in the blockchain, transactions submitted to a channel need to be endorsed by

the channel’s endorsing peers according to the endorsement policy. Different data owners

will have different endorsement policies. Hence, many channels as such will exist in the

Hyperledger Fabric.
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6.3. ATTRIBUTE MANAGEMENT

For an ABAC system to function properly, attributes should be created with name,

type and a set of allowable values. After creating attributes, they need to be assigned to

different entities. Subject attributes are created and assigned to the specific subject by an

attribute authority through an administration point. There are multiple such authorities,

each with authority over different set of subject attributes. In our blockchain based ABAC

model, the MSP of each organization plays the role of this attribute authority. Resource

attributes on the other hand are created and assigned to the specific resource by the owner

of that resource. Environment and action attributes are system wide common, and must be

created by the regulatory organizations. We use general terms attribute creator and issuer

to refer to the entity responsible for attribute management. In practice, they are the same

entity. Attribute creation and assignment is handled by a smart contract function named

AttributeMgr and details are discussed below.

6.3.1. Attribute Creation. No attribute can be used in our system without register-

ing it in the blockchain. To register an attribute, the creator first sends a transaction request

in the bockchain. Within the transaction, the complete attribute structure as in Equation 4

is embedded. AttributeMgr parses the attribute from the transaction, checks the semantics,

and converts it into a json object. Besides name, type and value, some additional fields

such as creatorID, organization name (orgName) are also added in the json object. Upon

endorsement, ordering and verification phase, the json object is written in the key-value

storage of Hyperledger Fabric called the state. One critical issue of ABAC system is the

conflict resolution of attributes. Conflict during the attribute creation occurs when two

different attributes with the same name are created by two different creators. For example,

manager attribute of org A is different from the manager attribute of org B. The system

should allow both org A and org B to createmanager attribute. At the same time, the system

should know the difference between them. AttributeMgr resolves this issue prior to writing
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the attribute in the state by creating unique IDs for each attribute as follows:

IDattti = H
(
orgName | | creatorID | | attti .name | | att

t
i .t

)
IDattti is used as the key for the attribute when stored in the state. Two attributes with the

same key cannot be stored in the state. This allows the creation of attributes with same name

by two different creators while restricting same creator from creating duplicate attributes.

6.3.2. Attribute Assignment. After attribute creation, the issuer has to assign the

attribute along with the appropriate set of values to the proper entities. It is important

to take enough security measures so that attributes cannot be altered or tampered with

to maliciously satisfy an access policy. To accomplish this, we cryptographically bound

attributes to the entities. During attribute assignment, the attribute issuer would add the

attributes to the attributes field of an X.509 attribute certificate (AC) according to the

IETF standard [13]. The issuer sends this certificate by embedding it in a blockchain

transaction. AttributeMgr verifies the certificate and converts it in a json object to store it in

the state. Finally, it is stored in the state after endorsement, ordering and verification phase.

6.4. ABAC POLICY MANAGEMENT

In our blockchain based access control system, access to the restricted IoT resource

is controlled by the ABAC access policy. Both the IoT resource owner and requester first

agrees on a policy which is expressed according to our policy model as discussed in Section

5.2. The policy is sent in a blockchain transaction. The transaction has to be endorsed by

both the resource owner and the requester. It is then written in the state as a key-value pair

with key being policyID = H(P), and the value being the policy itself.

Meta Policy: Some policies may require meta policy. It determines things like who

can modify or delete the actual policy P, the validity period of P etc. Meta policy is denoted

byMP and modeled in the similar fashion as the original policy except the resource attribute
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expression PRes points to P. Meta policy is included in the blockchain transaction when

the policy is created. Default meta policy applies to the policies that do not have any meta

policy. According to the default policy, only the resource owner can modify or delete the

policy. For the security purpose, meta policy is assumed to be immutable.

A smartcontract function named PolicyMgr is responsible for policy management

tasks such as checking the semantics while policy creation and modifying the policy ac-

cording to the meta policy.

Algorithm 4
Procedure: ACDecMaker ( Req, σ)
1: get policy P from the state database for key Req.policyID
2: get the relevant attribute set A = {ASub,ARes,AEnv,AAct} from the state database
3: if H(Req) != Ver(σ, VKRe) then
4: return (

TxID, Tx = (Req, σ, reject)
)

5: end if
6: for each (At, Pt ) in (A, P) do
7: if Pt ` At == true then
8: continue
9: else
10: return (

TxID, Tx = (Req, σ, reject)
)

11: end if
12: end for
13: return (

TxID, Tx = (Req, σ, accept)
)

6.5. POLICY EVALUATION

The policy evaluation logic is implemented in a smart contract function called

ACDecMaker (access control decision maker). The endorsing peers responsible for en-

dorsing resource access request transaction Tx (Equation 3) invoke this smartcontract.
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ACDecMaker takes as input Req = (Resource Location, policyID, C), σ and checks if the

access policy P corresponding to the policyID is satisfied by the relevant attribute set A.

The algorithm for ACDecMaker is shown in Alg. 4.

7. EXPERIMENT

We did a full implementation of our blockchain based access control system in order

to demonstrate the practicality of our solution. In the following section, we first provide

details of our implementation, i.e. blockchain and IoT network testbed implementation.

Then, we evaluate the performance of our system by experiments.

7.1. THE IOT NETWORK

We have developed an IoT testbed in our lab using MEMSICâĂŹs TelosB Mote

TPR2420CA devices [14]. TPR2420CA bundles many essential elements required to

perform IoT based lab studies such as an integrated temperature, light and humidity sensor,

an IEEE 802.15.4 radio with integrated antenna etc. In our testbed, we divide the sensors

into three groups: group 1, 2, and 3. Each group has four TPR2420CA devices- three of

them act as IoT end device and one serves as the purpose of a sink node. All three sink

nodes are connected to a PC through a USB hub and directly communicate with the PC

through USB port. For each group, the PC runs a separate gateway program. The gateway

program is written in java and uses SQLite for storing Routing Table, Resource Dictionary,

and Data Table. Each group along with the gateway forms an individual IoT network. The

device discovery and the resource discovery within the IoT network is done according to the

IEEE 802.15.4 standard as discussed in Section 3.1. Each group of our testbed represents

an IoT equipped smart home, office or school etc. in real life.
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Table 1. Endorsement policy for IoT resource access control of different IoT groups

ID Endorsement Policy Intended IoT group
1 Any peer from OrgA, OrgB or OrgC Group 1
2 At least one peer from each Org Group 2
3 All peers from OrgA, OrgB, and OrgC Group 3

7.2. THE BLOCKCHAIN NETWORK

Our blockchain network has been implemented in Hyperledger Fabric v1.3 [15]. We

have considered three different organizations: OrgA, OrgB, and OrgC for our Hyperledger

Fabric setup. We assume that all IoT resource owners belong to OrgA and each of them

has a running peer under OrgA (OrgA.peer1-3). OrgB is the representative organization for

all resource requesters and there are five running peers (OrgB.peer1-5) under it. Finally,

we assume that OrgC represents all regulatory organizations and there are three running

peers (OrgC.peer1-3) under it. All peers of OrgA are hosted in a desktop with Intel® Core

i5-2400@3.1 GHz × 4 processor and 8 GB RAM running Ubuntu 16.04. A desktop with

Xeon(R) ES-1620v2@3.7 GHz × 8 processor and 16 GB RAM running Ubuntu server

16.04.3 was used to host all the OrgB peers. Peers of OrgC run in a desktop which has

the similar configuration as that of OrgA. As the ordering service, we have two orderer

nodes backed by a kafka-zookeeper cluster. The ordering service runs in a separate desktop

having the same configuration as that of OrgA.

We have written a java web based client application using the fabric client SDK to

interact with the blockchain. This client application provides a simple interface to create

attributes, assign attributes to a particular entity and create ABAC policy targeting a specific

resource.

During the bootstrap phase, the MSP of each organization provides the participants

with necessary crypto materials, i.e. certificates, signature keys, and encryption keys. Then,

three different endorsement policies are created for three different IoT groups as in Table 1.
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Figure 3. Attribute Creation

After setting up the endorsement policies, our smartcontract with three main functions, i.e.

AttributeMgr, PolicyMrg, and ACDecMaker is installed in each peer. Then, theMSP of each

organization creates subject attributes and registers in the blockchain. Environment and

action attributes are created by the MSP of OrgC. Finally, the resource attributes for each

IoT group is created by their respective owner using the client application. After attribute

creation, attribute is assigned to different entities. In our experimental setup, we create 20

subject, 20 resource, 10 environment and 5 action attributes, each having 5 values. Five

different ABAC policies were created with the number of attributes required to be satisfied

ranging from 10 to 50.

7.3. WORKLOADS AND EXPERIMENTAL RESULTS

We show the performance of our scheme in terms of how fast different ABAC actions

can be performed. All the results presented are averaged over five runs. Three of the most

important fabric configurable parameters are the stateDB, endorsement policy, and block

size. Between the two choices of GoLevelDB and CouchDB, we choose stateDB as it was

shown in [16] that GoLevelDB has better throughput and faster read/write. A new block is

created when either the number of pending transactions since the last written block reaches
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Figure 4. Attribute Assignment

the block size or timeout happens. We set the timeout to be 1 second. Then, we examine

the latency for attribute creation, attribute assignment and policy creation operations for

block size values 10, 20, and 30 with three different transaction arrival rates (20, 40 and 60

transactions per second). It is noticeable from Figure 3, 4, and 5 that the latency increases

with the increase in block size. For example, when the transaction arrival rate for attribute

creation (Figure 3) is at 40, an increase in the block size from 10 to 30 increases the latency

by 3-fold from 255 ms. to 805 ms. This is because with larger block size, a pending

transaction has to wait a little longer at the orderer queue causing delay in the transaction

writing rate in the blockchain on average. Between attribute creation, attribute assignment,

and policy creation, we observe that attribute assignment takes longer on average compared

to the other two operations. The reason for this is that AttributeMgr in this case verifies

the signatureVale in X.509 attribute certificate which is an expensive cryptographic

operation. Across the board, we notice the lowest latency when the transaction arrival rate

is at 40 tps and the block size is 10. Note that, we use the first endorsement policy in Table

1 for the three experiments discussed above.

For the next experiment (Figure 6), we set the block size to be 10 and transaction

arrival rate at 40 tps which was found to be the optimum for our Hyperledger Fabric setup.
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Figure 5. Policy Creation

Besides, hash function H, public key encryption (Enc, Dec), and digital signature (Sig,

Ver) were implemented using SHA-256, RSA-1024, and DSA with 1024 bits key size,

respectively. With these parameters fixed, we measure the latency of serving IoT resource

access request for different types of ABAC policies in different IoT groups configured with

different endorsement policies as stated in Table 1. As a baseline comparison, the latency of

serving IoT resource is shown when no access control mechanism is in place. We observe

that latency is the lowest (.4 sec.) when there is no access control mechanism in place. On

the other hand, group 3 has much higher latency compared to group 1 and 2. The reason

is that the endorsement policy of group 3 requires all 11 peers to endorse a transaction

while group 1 and 2 requires only 1 and 3, respectively. The latency also increases with the

increase in required number of attributes to satisfy ABAC policy. This is because ABAC

policy evaluation algorithm is NP-complete and therefore, the complexity increases with

the number of attributes in the policy.

Public blockchain based IoT access control schemes are still limited by the very

high transaction latency. For example, it may take several hours before a bitcoin transaction

is committed in the blockchain. So, it is not suitable for any IoT access control scenario

requiring low transaction latency. For instance, medical emergency service requires quick
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access to the wearable device data of elderly people. Our permissioned blockchain based

scheme can serve IoT resource access request much faster (around 4 sec.) by utilizing the

low transaction latency in Hyperledger Fabric.

8. CONCLUSION AND FUTUREWORK

Any public blockchain based IoT access control system inherits the shortcomings

of a public blockchain. On the other hand, permissioned blockchain can overcome these

limitations with a very small number of peers whose identities are verified but are not

necessarily trusted to each other. This motivates us to design and implement a permissioned

blockchain-based access control system for IoT in Hyperledger Fabric. By using attribute

based access control (ABAC) as our access control model, we can provide fine-grained

access control while IoT devices share resource (data) with external parties. By running

experiments in an IoT testbed, we have fine-tuned our blockchain network for access control

by finding the optimum parameter values for our network (block timeout = 1s, block size =

20 at 40 transactions per second). Using the optimum parameter values, we show that our

access control system can serve access request of IoT resources much faster than the public
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blockchain. The ABAC policy evaluation algorithm we have used is NP-complete. There-

fore, in our future work, we plan to reduce the latency even more by optimizing this

algorithm.
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SECTION

3. CONCLUSION AND FUTUREWORK

In this research we have proposed three novel attribute-based encryption schemes

for secure data sharing in the cloud. All three schemes support efficient revocation while

being resilient against both type I and type II collusion attacks. The scheme presented in

Paper I does not require any trusted entity to achieve revocation, and the revocation does

not affect the secret keys of the non-revoked user. As a result, there is no key update

cost associated with the non-revoked users. However, this scheme only supports user-level

revocation which is equivalent to revoking a particular user’s all attributes at the same time.

It is not possible to revoke some attribute(s) from a user, while keeping the others intact.

In Paper II, we overcome this issue by proposing an attribute-based encryption scheme that

supports revocation at the attribute-level. In order to achieve attribute-level revocation, some

additional components are created in both secret key and ciphertext that not only increases

the ciphertext and secret key size, but also adds additional computational overhead. So, this

scheme should be used only if there is a necessity of revoking selective attribute(s) from

the user. Otherwise, the scheme proposed in Paper I would perform better. The scheme

proposed in Paper III is more appropriate for secure data sharing in a multi-group setting

where a group can split into multiple groups or multiple groups can combine together to

form a larger group. The group members can move between different groups and one group

can collaborate with another group.

In order to evaluate the performance of our schemes, we have implemented them in

a desktop environment. It will be interesting to see how our schemes perform in a mobile

environment such as android or iOS. In our research we have only considered static access

policy where it is not possible to change the policy without completely re-encrypting the
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data. So, enabling dynamic policy can be a good future extension to our work. Researchers

believe that most of the public key cryptography schemes are vulnerable to adversaries

equipped with the capability of a quantum computer. Hence, researchers are trying to

develop post-quantum variants of different cryptographic schemes. We think developing

quantum-safe variants of our schemes would be an interesting research direction.

For secure data sharing in IoT, we propose a permissioned blockchain-based access

control system. The system provides a secure and convenient way for the data owner

to share IoT data with anyone. The data owner uploads the data sharing policy in the

blockchain. In order to access the data, one needs to send a request to the blockchain.

The request is evaluated by the blockchain nodes against the policy uploaded by the data

owner. The access permission is granted only if the blockchain nodes reach to a consensus

about granting permission. It not only ensures proper access control but also ensures better

transparency as all requests are recorded in the blockchain and can be verified later on. This

helps in resolving any kind of dispute that may arise later on. In our work, we have only

considered the access control and security aspect of data sharing. It will be interest to also

consider the economic aspect of it. For example, the data owner can share data with third

party in exchange for some financial incentive. The data owner can charge less for sharing

approximate location data while charge more for sharing more accurate location data. Since

our scheme supports fine-grained access control, the data owner can create two types of

policies and upload in the blockchain. While our current system takes care of the access

control part, further research is required to take care of the various financial aspect such as

payment, refund, any kind of dispute resolution over payment.
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